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Abstract

We introduce a multi-model variant of the EMT-based con-
trol algorithm. The new algorithm, MM-EMT, is capable of
balancing several control tasks expressed using separate dy-
namic models with a common action space. Such multiple
models are common in both single-agent environments, when
the agent has multiple tasks to achieve, and in team activities,
when agent actions affect both the local agent’s task as well
as the overall team’s coordination.
To demonstrate the behaviour that MM-EMT engenders, sev-
eral experimental setups were devised. Simulation results
support the effectiveness of the approach, which in the multi-
agent scenario is expressed in the MM-EMT algorithm’s abil-
ity to balance local and team-coordinated motion require-
ments.

Introduction
Many real-world tasks can be characterised as team exer-
cises that require formation support. Some examples in-
clude air-to-air refuelling between a tanker aircraft and the
receiver of the fuel, multiple search helicopters scanningthe
sea for survivors, and multiple manipulators cooperatively
transporting heavy construction equipment. The roots of the
basic problem, however, can be analysed at a deeper level,
and are quite general. These team tasks are characterised by
two or more independent or loosely correlated mission state-
ments (e.g., cover a certain area, but maintain relative dis-
tance from other aircraft); the mission statements are inde-
pendent in their description, but for one parameter, namely,
the actions and effects they allow an agent to perform.

This separation into sub-systems, however, need not
be problematic. In fact, an effective control methodol-
ogy has been proposed (Arkin 1998), and continually re-
fined (Buffet, Dutech, and Charpillet 2002; Kaminka and
Frenkel 2005; Kaminka et al. 2007), based on just such a
separation—Behaviour-Based Robotics (BBR). As for bal-
ancing and unification, this can be readily accomplished us-
ing certain expert-based approaches (Freund et al. 1997;
Vovk and Watkins 1998; Littlestone and Warmuth 1994), or
resolved directly via learning (Gabor, Kalmar, and Szepes-
vari 1998). These control and decision unification tech-
niques, however, have their limitations. For instance, the
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expert-based approach provides a fluent merging of basic
advice from sub-systems, but concerns itself only with this
merging and does not dictate how the basic advice from the
sources is produced.

In this paper, we consider the situation where the sub-
system models are not explicitly designed together with
the overall system controller, and yet the control algorithm
needs to compute and provide selection of an action for each.
In other words, the algorithm has to be model-independent,
universal, and programmable. Thus, we modify the EMT-
based controller (see, e.g., (Rabinovich and Rosenschein
2006)) to give it the capability to resolve, balance, and unify
decision-making in multi-model domains. We then design a
discrete time and space environment where a stochastic ver-
sion of the formation support task is formulated. This en-
vironment allowed us to simulate multi-model task require-
ments, as well as to create model incoherence vis-à-vis the
environment, along with exogenous noise effects.

Our algorithm has demonstrated good and reliable per-
formance both in terms of controllable balance among the
tasks, and in terms of scalability with respect to the number
of agents in the formation.

The rest of the paper is organised as follows. We first de-
scribe in brief the EMT algorithm, its control mechanism,
and our extension to the case of multiple models. Exper-
imental settings are then described (the simulated environ-
ment and sub-system models), followed by our experimen-
tal data from the application of the algorithm. We conclude
with a discussion of our results and future work.

Multi-Model EMT-based Control
The Extended Markov Tracking (EMT) algorithm was de-
signed to identify and estimate the transition matrix of a
single Markov chain, based on two consecutive estimates
of the chain’s state. EMT has been incorporated into a se-
ries of perceptual (Powers 1973) control algorithms (Ra-
binovich and Rosenschein 2004; 2005; 2006; Rabinovich,
Rosenschein, and Kaminka 2007), culminating in the cre-
ation of a novel control framework (Rabinovich, Rosen-
schein, and Kaminka 2007). Until now, however, EMT-
based algorithms have been incapable of generating a con-
trol signal that could influence multiple independent envi-
ronments. In this paper, we present a modification of the
EMT-based control algorithm that enables this capability.



EMT Control of Markovian Environments

Following previous work on EMT-based control, we focus
on discrete Markovian environments with partial observabil-
ity, described by a tuple< S, s0, A, T, O, Ω >, where:

• S is the set of all possible environment states;

• s0 is the initial state of the environment (which can also
be viewed as a distribution overS);

• A is the set of all possible actions applicable in the envi-
ronment;

• T is the environment’s probabilistic transition function: a
mappingT : S × A → Π(S). That is,T (s′|a, s) is the
probability that the environment will move from states to
states′ under actiona;

• O is the set of all possible observations. This is what the
sensor input would look like for an outside observer;

• Ω is the observation probability function: a mapping
Ω : S×A×S → Π(O). That is,Ω(o|s′, a, s) is the prob-
ability that one will observeo given that the environment
has moved from states to states′ under actiona.

This, however, only describes the environment in which
the control agent operates, and must be extended by a de-
scription of the task to be performed. For an EMT-based
controller, the task is described by areference system dy-
namics1 τ∗ : S → Π(S), a conditional distribution that
describes an idealised trajectory of the system. In a sense,
τ∗(s′|s) ∈ [0, 1] can be interpreted as a preference for the
system to move to states′ ∈ S if it currently resides in state
s ∈ S. According to the perceptual control principle (Pow-
ers 1973), given the reference dynamicsτ∗, the target of
the controller is to enforce a perceptual equivalent ofτ∗ on
the system by means of selecting an appropriate sequence
of actions. In other words, given an algorithm capable of
estimating the system’s autonomous dynamics of the form
τ : S → Π(S), the controller needs to produce a sequence
of actions so thatτ will be as close as possible to the refer-
enceτ∗.

The estimation algorithm used by an EMT-based con-
troller is Extended Markov Tracking (EMT), which also
gives rise to the controller’s name. The estimator takes ad-
vantage of the fact that at any point in time knowledge about
the system state can be summarised by a distribution vec-
tor over the statespt ∈ Π(S), and this knowledge summary
can be updated using a simple Bayesian rule. In turn, the
estimate,τEMT

t : S → Π(S), of the system’s autonomous
dynamics that it produces, has to describe the change in that
knowledge frompt−1 at timet− 1 to pt at timet. Thus, the
dynamics estimate has to satisfypt = τEMT

t pt−1. Since
there exists more than one dynamics satisfying the equa-
tion, EMT selects its estimateconservatively, and produces
τEMT
t as close as possible toτEMT

t−1 with respect to the
Kullback-Leibler divergence. Formally, the estimate is com-
puted by the following optimisation problem:

1EMT’s term for this isideal system dynamics or tactical target.

τEMT
t = H [pt−1 → pt, τ

EMT
t−1 ]

= argmin
τ

DKL(τ × pt−1‖τ
EMT
t−1 × pt−1)

s.t.

pt(x
′) =

∑

x

(τ × pt−1)(x
′, x)

pt−1(x) =
∑

x′

(τ × pt−1)(x
′, x)

Note the update abbreviation:
τEMT
t = H [pt−1 → pt, τ

EMT
t−1 ].

The EMT-based controller selects actions in a greedy, on-
line manner, utilising the EMT estimator in two ways. First,
it uses it as a predictor of a perceptual effect an action may
have. Second, in combination with a Bayesian update of the
system state knowledgept ∈ Π(S), EMT is used to track
the perception of the exhibited system dynamics under the
applied control, given that we would like to enforce the per-
ception of a reference system dynamicsτ∗ : S → Π(S).
EMT-based control is summarised in Algorithm 1.

Algorithm 1 EMT-based control

1: p0(s) = s0 ∈ Π(S)
2: τEMT

0 (s̄|s) = prior(s̄|s)
3: t = 0.
4: for all actiona ∈ A do ⊲ select which action to apply:
5: p̄a

t+1 = Ta ∗ pt ⊲ predict the future state distribution
6: Da = H [pt → p̄a

t+1, τ
EMT
t ]

7: Selecta∗ = arg min
a

〈DKL (Da‖τ
∗)〉pt

8: Apply a∗ and receive an observationo ∈ O
9: pt+1(s) ∝ Ω(o|s, a)

∑

s′

T (s|a, s′)pt(s
′) ⊲ Bayesian

update
10: ComputeτEMT

t+1 = H [pt → pt+1, τ
EMT
t ]

11: Sett := t + 1, goto 4

Before we proceed, one needs to notice two important fea-
tures of the EMT-based controller. First, it is a universal and
programmable on-line controller in the following sense. The
EMT-based controller relies on a task model and reference
dynamics to make on-line decisions. The algorithm itself
remains unchanged, which means that the model and the
reference dynamics essentially operate as aprogram. Al-
though for some specific environments it may be possible
to design a hand-written controller that will perform better
than the EMT-based controller, any hand-written controller
will quickly lose its edge in an open or time-variant system.

The second important feature of the EMT-based controller
is its optimality criterion. Although the controller is only
a greedy representative of the more general DBC frame-
work (Rabinovich, Rosenschein, and Kaminka 2007), it re-
tains the framework’s point of view on optimality of perfor-
mance. As a consequence, a direct performance compari-
son with other control methods, e.g., controllers produced
by Reinforcement Learning (RL) (Sutton and Barto 1998),
would be extremely artificial. EMT has a qualitatively dif-
ferent optimality criterion than that used in the RL literature.



The action selection mechanism is different in implementa-
tion and objective: EMT tries to select the action that will
keep a certain dynamic given the world model, while in RL,
the agent chooses actions that tend to increase the long-run
sum of reinforcement signal values. Comparisons would be
artificial, and any performance advantage shown by MM-
EMT might be claimed to be the result of the specific rein-
forcement function that was chosen. Since no other DBC
framework representatives are known at the moment, only a
direct performance evaluation of an EMT-based control al-
gorithm can be validly performed.

Multi-Model EMT-based Control
At times, there may be several behavioural preferences. For
example, in the case of multi-robot movement in formation,
two preferences on motion direction exist—one dictated by
keeping in formation, the other by robot-specific capabilities
and circumstances. Furthermore, these motion preferences
are expressed by separate models, with only one thing in
common, namely the action space, dictated by the robot’s
capabilities alone.

We are thus faced with a set of environment models
< Sk, sk

0 , A, T k, Ok, Ωk >M
k=1

with common action space
A, and a set of respective reference dynamicsτ∗,k : Sk →
Π(Sk). The control decision is to select asingle action that
would satisfy some balance in achievingall of the reference
dynamics inall of the environments.

To satisfy this balanced action selection, we modify the
EMT-based control algorithm, replacing the action selection
loop (line 4 of Algorithm 1), by the multi-model version pre-
sented in Algorithm 2. For ease of presentation we denote
V (a, k) =

〈

DKL

(

Dk
a‖τ

∗,k
)〉

pk
t

. Also, Zk =
∑

a∈A

V (a, k)

is a normalisation factor.

Algorithm 2 MM EMT action selection
Require: A set of environment models, corresponding ref-

erence dynamics and their balancing weightsw(k)
1: for all actionsa ∈ A do
2: for all model indexesk = 1 . . .M do
3: p̄k,a

t+1 = T k
a ∗ pk

t ;

4: Dk
a = H(p̄k,a

t+1, p
k
t , τEMT,k

t );

5: for all reference dynamicsτ∗,k do
6: V k(a) = 1

Zk V (a, k)

7: Selecta∗ = argmin
a

∑M

k=1
w(k)V k(a)

The weight vector~w = (w1, . . . , wM ) allows the addi-
tional “tuning of importance” among the environment mod-
els, without redesigning them or their reference dynamics.

There is, however, an additional modification that we
deem necessary for the multi-model version of EMT. In the
scenarios of interest the requirement for a multitude of mod-
els may occur due to a simplification or a structural separa-
tion attempt that simplifies the system reaction complexity
by factoring it into several models. As a result, no model in
the set will be exact, but only approximate. This may signif-
icantly influence the auxiliary Bayesian update used by the

EMT algorithm and render its outcome inappropriate.
We thus replace the Bayesian update used in the standard

EMT algorithm by a belief update with explicit noise as was
proposed in (Even-Dar, Kakade, and Mansour 2007):

Algorithm 3 MM EMT belief update

Require: pk
t : the auxiliary state estimate of thek’th model

at time t. Uni(·): a uniform distribution overSk, the
state space of thek’th model.ǫU : a small mixing factor.

1: p̄k
t+1(s) ∝ Ωk(o|s, a)

∑

s′

T k(s|a, s′)pk
t (s′)

2: pk
t+1 = (1 − ǫU )p̄k

t+1(s) + ǫUUni(s)

Formation Support Experiment
To test the performance of this version of the algorithm, we
designed a discrete space version of a multi-robot formation
support domain. A set ofM agents is placed on parallel dis-
crete tracks, starting from position zero and with zero mo-
tion velocity, as depicted in Figure 1. In this domain, the
number of steps taken by each agent at any given time is
modelled by a Poisson distribution,Pois(λ), and the veloc-
ity is then interpreted as a setting of that distribution’s pa-
rameterλ. In turn, they also follow some stochastic process
of motion, parametrised by acceleration, which becomes a
hyperparameter of the position change along the tracks. The
agents’ personal task is to modulate their acceleration so as
to maintain some predetermined motion velocity. However,
in addition to their personal task, the agents are also givena
group activity. Specifically, the agents are arranged in a ring
formation, and are tasked to maintain a constant relative dis-
tance to the agent next in the ring order.

Figure 1: Discrete formation support

In our simulation, the range of possible velocities was
λ ∈ [0, 3]; however, we chose to discretise this range by
a mappingSvel = [1 : velmax] ↔ [0, 3]. This allowed us
to model and implement the velocity development over time
as a random discrete walk. The model naturally took the
Markovian environment form
Mvel =< Svel, svel

0 , A, T vel, Ovel, Ωvel >, whereA be-
came a discrete set of possible accelerations, and the overall
setting was reminiscent of the Drunk-Man model of (Rabi-
novich and Rosenschein 2004). The shift in agent’s position
along the tracks was simulated by sampling from a Pois-
son distribution parametrised by the velocity value mapped
into the range[0, 3]. As a result, the EMT-based control al-
gorithm could be directly applied to the modulation of the
local agent’s speed. The relative distance control, however,
needed an environment model different from the actual sim-
ulation process.



The relative distance of the agents, theoretically ranging
from −∞ to +∞, was mapped using a Moebius transfor-
mation and discretisation onto a set[1 : rposmax]. This was
completed by the set of possible speeds, forming the discrete
state space,Srel = [1 : rposmax] × [1 : rvelmax], of the
Markovian model of the relative distance used by an EMT-
based controller. The transition function,T rel, of the model
was formed under two assumptions. First, relative speed be-
haves as a random walk parametrised by the acceleration,
and the relative position as a random walk parametrised
by the relative speed at the previous time step; that is,
T rel((r′, v′)|(r, v), a) = PDM (r′|r, v) ∗ PDM (v′|v, a),
where PDM expresses a Drunk-Man type probability of
transition. Secondly, the observation space of the relative
model, M rel =< Srel, srel

0 , A, T rel, Orel, Ωrel >, casts
light only on the relative position,Orel = [1 : relmax],
with Ωrel completely omitting the relative speed portion of
the state, and adding blurring noise to the relative position.

Task Balancing Results

We ran a set of experiments with various settings of the rel-
ative model weightsw = (wvel , wrel), with wvel denoting
the weight of the local velocity model, andwrel denoting
the weight of the relative distance and speed model.

The reference dynamics for the relative distance and
speed were set to converge and maintain zero relative dis-
tance; the system is to be forced to remain in the subset of
states{s = (r, v) ∈ Srel|r = rposmax/2}. Combined with
the local speed model, this should have resulted in the agents
synchronously increasing their speed to reach the optimum,
and then modulating it slightly to maintain zero relative dis-
tance. An ideal relative distance, as a function of time, is
zero. However, neither speed nor the relative position re-
main ideal. The speed varies stochastically under the applied
acceleration, and since the position of the agents along the
tracks is developing stochastically as well, different exper-
iment runs can and will deviate temporarily from the ideal
speed and relative distance.

Application of a control signal will lead to an empirical
distribution of the speed and relative distance, with the pa-
rameters of that distribution expressing the effectiveness of
the control signal applied. Figure 2 shows a set of such em-
pirical distributions for the relative distance in a two-agent
scenario. Each distribution corresponds to a specific relative
weight setting between the tasks, and was obtained under
multi-model EMT control.

The algorithm successfully combined the two tasks. Un-
der control of the multi-model EMT algorithm, both agent-
specific speed and the relative distance and speed were
maintained, as can be seen from Figure 3. Although the po-
tential contradiction between the two models has affected
the means, the response to the varying weight of a model is
best seen when the variance of the empirical distributions is
inspected (Figure 4). Notably, asymmetry in the response
to weights has also been observed in the multi-target version
of the algorithm in (Rabinovich and Rosenschein 2006), and
was also attributed to the dynamic properties of the reference
dynamics used.

Figure 2: Empirical distribution of relative distance

Figure 3: Expected value of the speed and relative distance
as a function of the speed model weight

Scaling

The success of the two-agent version of our scenario, how-
ever, is hardly indicative of the real power of the algorithm
in larger formations. We thus fixed the relative weight of
the models, but increased the number of agents participating
in the ring formation and once again measured the proper-
ties of the empirical distributions of the speed and relative
position of the agents. The experiments illustrated the per-
sistence of the expected value of the speed (Figure 5). What
is more interesting is that long-range influences propagating
through the ring had only sub-linear effect, as can be seen
from the speed variance (Figure 6). We also performed two
types of measurements on the relative position of the agents.
First, we recorded alocal measure—the empirical distribu-
tion of the maximum absolute difference in position of any
two consecutive agents in the ring formation, denotedz(t),
wheret is the time step in the system development. Second,
we recorded aglobal measure—the maximum absolute dif-
ference between any two agents’ positions, without regard
to their order in the ring, denotedn(t).

Thelocal measure, although it deteriorated both in the ex-
pected value and variability, deteriorated at a sublinear rate
with the increase in the number of agents (Figure 7). In other



Figure 4: Variance of the speed and relative distance as a
function of model weight

Figure 5: Speed expected value vs. formation size

words, although it became harder and harder to maintain rel-
ative position within the formation, the formation did not
disintegrate, but rather actively counteracted the accumulat-
ing noise and disturbance within the team. This is further
demonstrated by the stability of the expected value and vari-
ance parameters over time. For instance, Figure 8 shows the
development of the expected value of thelocal measure for
a variety of formation sizes over time. As if to underline the
resistance to error accumulation by the formation as a group,
the global measure repeated this pattern. Furthermore, the
increase in theglobal measure parameters slows down as
the formation becomes larger. To demonstrate this, we plot-
ted the ratio between the expected value (variance) and the
number of agents in the ring formation, as seen in Figure 9.

Discussion and Future Work
In this research, we modified the EMT-based control algo-
rithm to support multi-model environments. Such environ-
ments are frequently observed in domains where a team of
agents has to balance their action selection with respect to
local and team goals. It is important to note that the re-
sulting control algorithm isprogrammable: the EMT-based
controller relies on a task model and reference dynamics to

Figure 6: Speed variance vs. formation size

Figure 8:Local measure vs. time for various formations

make on-line decisions. The algorithm remains unchanged,
i.e., the model and reference dynamics essentially operate
as aprogram. With respect to multi-tasking, this means that
task model calibration, as well as the number of the tasks,
can be done dynamically and also on-line. The algorithm
should be able to accommodate any change in the number
or nature of tasks in an on-line fashion, though experimental
support of this assessment remains for future work.

We also constructed a discrete time and space domain,
where agents are tasked with supporting motion in forma-
tion, under random variation of their speed and position
in response to applied acceleration. We considered a sim-
ple ring formation that allowed each agent to maintain just
two distinct models—the model of the local agent’s speed,
and the model of its relative position and speed with re-
spect to the next agent in the ring structure. Multi-model
EMT was successfully applied to the ring formation domain,
and showed natural balancing capabilities between local and
global tasks. Furthermore, the algorithm’s performance sur-
vived the scaling of the domain to larger numbers of agents
composing the ring. Obviously, our algorithm is not limited
to this specific structure, and can accommodate general for-
mations where the number of models can naturally vary and
be heterogeneous across the formation.



Figure 7:Local position measure, expected value vs. formation size and variance vs. formation size

Figure 9: Expected value and variance of theglobal position measure in ratio to the number of agents
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