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Abstract

We consider the following setting: a decision maker must
make a decision based on reported data points with binary
labels. Subsets of data points are controlled by different self-
ish agents, which might misreport the labels in order to sway
the decision in their favor. We design mechanisms (both de-
terministic and randomized) that reach an approximately op-
timal decision and are strategyproof, i.e., agents are bestoff
when they tell the truth. We then recast our results into a
classical machine learning classification framework, where
the decision maker must make a decision (choose between
the constant positive hypothesis and the constant negative
hypothesis) based only on a sampled subset of the agents’
points.

Introduction
In the design and analysis of multiagent systems, one often
cannot assume that the agents are cooperative. Rather, the
agents might be self-interested, seeking to maximize their
own utility, possibly at the expense of the social good. With
the growing awareness of this situation, game-theoretic no-
tions and tools are increasingly brought into play.

One such setting, which we shall consider here, arises
when a decision has to be made based on data points that
are controlled by multiple (possibly) selfish agents, and the
decision affects all the agents. The decision maker would
like to make a decision which is consistent, as much as pos-
sible, with all the available data. However, the agents might
misreport their data in an attempt to influence the final deci-
sion in their favor.

Motivating Examples
Consider, for instance, a spatial sensor array (represented as
points inR

3), and assume that each agent controls a subset
of the sensors (such as the ones positioned in its own ter-
ritory). A sensor’s output is only available, as private infor-
mation, to the controlling agent. One such scenario might be
battlefield acoustic sensors (Lesser and Erman 1980): every
agent controls a sector, and is charged with a specific mis-
sion in this sector. An agent might be interested in retreating
(and thus failing to complete its mission) only if massive en-
emy movement is detectedin its own sector. However, a
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global decision, to proceed or retreat, has to be made. An
agent may misreport its sensor readings in order to bring
about a favorable allied decision.

A second example with an economic aspect might be a
common central bank, such as the European Central Bank
(ECB). The governing council makes decisions that are
based on reports from the various national central banks (so
one can think of the national central bankers as the agents).
The national central bankers, in turn, collect private infor-
mation, by means of their own institutions, regarding vari-
ous economic indicators (these are the data points). Natu-
rally, decisions taken at the European level (about, for in-
stance, whether or not to support certain monetary policies)
affect all national central banks. This strongly incentivizes
the national central bankers to misreport their national statis-
tics in a way that guarantees a decision they find desirable
(though in this particular case, fear of discovery does incen-
tivize truthfulness).

Overview of Models and Results
We present our results at two levels of generality. The more
specific level is strongly motivated in its own right, but tech-
nically is also directly applied in order to obtain more gen-
eral results in a machine learning framework.

Our specific model concernsn agents, each controlling a
set of data points. Each point is labeled either as positive or
negative; a positive label should be construed as implying
that this data point supports some decision or proposition.
Now, all agents report the labels of their points to some cen-
tral authority, which in turn outputs a positive or negative
decision. An agent’srisk is (proportional to) the number of
its points that the final decision mislabels, e.g., the number
of negative points it controls in case of a positive decision.
The decision maker is seeking to minimize the global risk,
i.e., the total number of mislabeled points.

As noted above, an agent might find it advantageous to
misreport the labels of its points. We are interested in de-
signing decision-making mechanisms that arestrategyproof:
agents cannot benefit by lying. In return we only ask for ap-
proximate optimality. We put forward a simple deterministic
decision-making mechanism which is group strategyproof
(i.e., even coalitions of agents do not gain from lying) and
gives a 3-approximation of the optimal global risk; in other
words, the number of mislabeled points is at most 3 times



the minimal number. Moreover, we show that no determinis-
tic strategyproof mechanism can do better. Interestingly,we
circumvent this result by designing a strategyproofrandom-
izedmechanism which gives a 2-approximation, and further
demonstrate that this is as far as randomization can take us.

The second part of the paper recasts the first into a more
general model, which deals with the classical machine learn-
ing classification framework. It is often the case that the de-
cision maker cannot query agents regarding all their points,
due to, for example, communication or privacy constraints
(think of the European bank example given above; in this ex-
ample, both abovementioned constraints apply, as the num-
ber of economic indicators is enormous, and economic insti-
tutions are well-aware of privacy considerations). To com-
plicate matters, in the general model each agent holds a dif-
ferent distribution over the input space, which reflects the
relative importance it gives to different data points. So,
we assume that a mechanism receives labels of points from
agents, where each agent’s points are sampled from its indi-
vidual distribution. The mechanism then outputs a decision:
one oftwo functions, theconstant positive hypothesisor the
constant negative hypothesis. The goal is to guarantee that
the concept returned by the algorithm gives a good approx-
imation of the optimal risk, in expectation. Crucially, we
demonstrate that the results of the previous, more specific,
model can be leveraged to achieve this goal.

Related Work
Our work is closely related to the work of Dekel, Fischer and
Procaccia (2008). They also investigated game-theoretic as-
pects of machine learning, albeit in aregression learningset-
ting. Specifically, in their setting the label of each data point
is a real number, and the risk of some hypothesis is the total
distanceto the correct labels. Dekel et al. put forward ap-
proximately optimal and strategyproof algorithms for some
limited hypothesis classes. Our work should be seen as an
extension of theirs to the world of classification, specifically
under the very interesting (as will become apparent later) hy-
pothesis class that contains only the two constant (positive
and negative) functions.

Some existing work studies issues on the border of ma-
chine learning and game theory (Balcan et al. 2005;
Procaccia et al. 2007). For example, some papers on mul-
tiagent learning (see, e.g., Littman (1994), or Hu and Well-
man (2004)) attempt to learn a Nash equilibrium in Markov
games (which model multiagent interactions), usually via re-
inforcement learning. That research does not consider in-
centives in the learning process itself, but rather investigates
using learning to deal with strategic situations.

Another line of research attempts to learn in the face of
noise (Littlestone 1991; Kearns and Li 1993; Goldman and
Sloan 1995). Perhaps closer to our work is the paper of Dalvi
et al. (2004), who model classification as a game between
a classifier and an adversary. Dalvi et al. examine the op-
timal strategies of the classifier and adversary, given their
strategic considerations. In contrast (but similarly to Dekel
et al. (2008)), our research concentrates on designing strat-
egyproof algorithms, i.e., algorithms that preclude strategic
behaviorin the first place, rather than algorithms that work

well in spite ofstrategic behavior.

A Simple Setting
In this section we present a specific model, as described
above: each agent controls a subset of data points; the deci-
sion maker has full information about the “identity” of the
points controlled by the various agents, but does not know
their labels. Rather, the labels are reported by the agents.
This simple setting is strongly motivated in its own right
(see the examples given above), but will also be leveraged
later to obtain results in a learning-theoretic setting. Inorder
to easily recast the results later, we introduce some learning
theoretic notions already in this section.

Formally, letI = {1, . . . , n} be the set of agents. LetX
be the input space, and{+,−} be the set of labels to which
points inX can be mapped.

For each agenti ∈ I, let Xi = {xi,1, . . . , xi,mi
} ⊆ Xmi

be the set of points that agenti controls, and let Yi =
{yi,1, . . . , yi,mi

} ⊆ {+,−}mi the set oflabels that are
associated with these points. We refer to the pairsi,j =
〈xi,j , yi,j〉 as anexample. A positive label means, intu-
itively, that the example supports a decision, while a neg-
ative one means the example opposes it. We denote the sub-
set of the dataset controlled by agenti with Si = {si,j}

mi

j=1

and the entire dataset, i.e., the multiset of all examples, by
S = ⊎i∈ISi.

Let C be a class of functions fromX to {+,−}, i.e., each
c ∈ C is a classifier that maps all possible points to labels.
In learning theory,C is referred to as theconcept classof
the problem. In this paper we will consider the special case
whereC contains only the two constant functions{c+, c−}
where∀x ∈ X , c+(x) = +; c−(x) = −, i.e., the classifica-
tion mechanism may decide to classifyall examples as pos-
itive, or all of them as negative. This should be interpreted
as taking either a positive or a negative decision.

We evaluate each such classifier simply according to the
number of errors it makes on the set of examples. Formally,
we define thesubjective riskassociated by agenti with the
classifierc as

Ri(c, Si) =
1

mi

mi∑

j=1

ℓ(c(xi,j), yi,j),

whereℓ is the natural 0–1 loss function:ℓ(y, y′) is 1 if y 6=
y′ and 0 ify = y′. We define theglobal risk in a similar way
to be the average risk with respect to all agents:

R(c, S) =

∑
i∈I mi Ri(c, Si)∑

i∈I mi

=
1

m

∑

〈x,y〉∈S

ℓ(c(x), y),

(1)

wherem =
∑

i∈I mi.
A mechanismreceives as input a datasetS, and outputs

one of the two concepts inC. Our goal is to design a mech-
anism that minimizes the global risk, i.e., a mechanism that
chooses from{c+, c−} the concept that makes fewer errors
onS. Less formally, the decision maker would like to make
either a positive or negative decision, in a way that is most
consistent with the available data.



Figure 1: ERM is not strategyproof. Agent 1 changes one
of its points from negative to positive, thus changing the risk
minimizer from c− to c+, to agent 1’s advantage. In this
illustration,X = R

2.

In our model, agents report to the mechanism the labels
of the points they control. If all agents report truthfully,the
above problem is trivially solved by choosingc according to
the majority of labels. This is a special case of the Empirical
Risk Minimization (ERM) mechanism,1 which by definition
picks the concept inC that minimizes the risk on the set of
given examples. We denote byc∗ the concept returned by
ERM, formally:

c∗ = ERM(S) = argminc∈CR(c, S)

Unfortunately, if we choose ERM as our mechanism then
agents may lie in order to decrease their subjective risk.
Indeed, consider the following dataset (illustrated in Fig-
ure 1): agent 1 controls 3 examples, 2 positive and 1 neg-
ative. Agent 2 controls 2 examples, both negative. Since
there is a majority of negative examples, ERM would return
c−; agent 1 would suffer a subjective risk of 2/3. On the
other hand, if agent 1 reported his negative example to be
positive as well, ERM would returnc+, with a subjective
risk of only 1/3 for agent 1. Indeed, note that an agent’s
utility is measured with respect to its real labels, rather than
with respect to the reported labels.

Why is truth-telling important? Once we guarantee that
agents are telling the truth, we may concentrate on mini-
mizing the risk, knowing that this is equivalent to actually
maximizing the social good (i.e., making the right decision).
In other words, we would like our mechanism to bestrate-
gyproof(SP). By definition, a mechanism is SP (in dominant
strategies) if no agent may gain (i.e., lower its subjective
risk) by reporting labels that differ from its real labels.
Remark 1. If we allow payments to be transferred to and
from the agents, ERM can be augmented with Vickrey-
Clarke-Groves (VCG) payments to achieve strategyproof-
ness (see, e.g., (Nisan 2007) for an overview of the VCG
mechanism). However, in many multiagent systems, and in
particular in internet settings, such payments are often not
feasible. Therefore, we concentrate throughout the paper on
achieving good mechanismswithout payments. See Dekel
et al. (2008) for a discussion of this point.

Despite the fact that ERM is not SP, the concept that mini-
mizes the global risk is clearly optimal. Thus we would like

1In the current setting, there is no distinction between empirical
risk and “real” risk. This distinction will become apparentin the
next section.

to use it to evaluate other concepts and mechanisms. For-
mally, define the optimal risk to be

r∗ = R(c∗, S) = min{R(c+, S), R(c−, S)}.

As is common in computer science, we will be satisfied
with only approximate optimality (if this guarantees strate-
gyproofness). Indeed:
Definition 2. A mechanismM is an α-approximation
mechanism if for any datasetS it holds thatR(M(S), S) ≤
α · r∗.

ERM, for example, is a 1-approximation mechanism, but
is not SP. On the other hand, a mechanism that always re-
turnsc− is SP but does not give any finite approximation
ratio (it is sufficient to consider a dataset with one positive
example).
Remark 3. Informally we state that in our current set-
ting, we can obtain similar approximation results even under
mechanisms that are not SP, assuming agents lie only when
this is beneficial to them. Nevertheless, strategyproofness
gives us a very clean framework to analyze mechanisms in
the face of strategic behavior. When we discuss our learn-
ing theoretic framework, where obtaining strategyproofness
is next to impossible, we shall apply the former, less elegant,
type of analysis.

Deterministic Mechanisms
We start with some observations. Note that the identity
of each sampled point is not important, only thenumber
of positive and negative points each agent controls. Thus
we denote byPi = |{〈x, y〉 ∈ Si : y = +}|, Ni =
mi − Pi = |{〈x, y〉 ∈ Si : y = −}|. For convenience
we also letP =

∑
i∈I Pi, N =

∑
i∈I Ni. We emphasize

that{Pi, Ni}i∈I contain all the information relevant for our
problem and can thus replaceS.

Now, denote byci the ERM onSi, i.e., ci = c+ if
Pi ≥ Ni andc− otherwise. Clearlyci is the best classifier
agenti can hope for. Consider the following mechanism

Mechanism 1
1. Based on the labels of each agentPi, Ni, calculateci. De-

fine each agent as anegative agentif ci = c−, and as a
positive agentif ci = c+.

2. Denote byP ′ =
∑

i:ci=c+
mi the number of exam-

ples that belong to positive agents, and similarlyN ′ =∑
i:ci=c−

mi = m − P ′.

3. If P ′ ≥ N ′ returnc+, otherwise returnc−.
Remark 4. Mechanism 1 can be thought of as a specialized,
imported version of the Project-and-Fit mechanism of Dekel
et al. (Dekel, Fischer, and Procaccia 2008). However, the
results regarding Mechanism 1’s guarantees do not follow
from their results, since the setting is different (regression
vs. classification).

We will show that this mechanism has the excellent game-
theoretic property of beinggroup strategyproof: no coalition
of players can gain by lying. In other words, if some agent
in the coalition strictly gains from the joint lie, some other
agent in the coalition must strictly lose.



Theorem 5. Mechanism 1 is a 3-approximation group strat-
egyproof mechanism.

Proof. We first show group strategyproofness. LetB ⊆ I.
We can assume without loss of generality that either all
agents inB are positive or all of them are negative, since
a positive (resp., negative) agent cannot gain from lying if
the mechanism returnsc+ (resp.,c−). Again w.l.o.g., the
agents are all positive. Therefore, if some agent is to benefit
from lying, the mechanism has to returnc− on the truthful
dataset. However, since the mechanism considers all agents
in B to be positive agents when the truthful dataset is given,
an agent inB can only hope to influence the outcome by re-
porting a majority of negative examples. However, this only
increasesN ′, reinforcing the mechanism’s decision to return
c−.

It remains to demonstrate that the approximation ratio is
as claimed. We assume without loss of generality that the
mechanism returnedc+, i.e.,P ′ ≥ N ′. We first prove that if
the mechanism returned the positive concept, at least1/4 of
the examples are indeed positive.

Lemma 6. P ≥ 1

4
m.

Proof. ClearlyP ′ ≥ m
2
≥ N ′ otherwise we would getc =

c−. Now, if an agent ispositive(ci = c+), at least half of its
examples are also positive. Thus

P =
∑

i∈I

Pi ≥
∑

i:ci=c+

Pi ≥
∑

i:ci=c+

mi

2
=

P ′

2
,

and so:

P ≥
P ′

2
≥

m

4

Now, we know thatP + N = m, so:

N = m − P ≤ m − (
m

4
) =

3m

4
≤ 3P

Clearly if the mechanism decided “correctly”, i.e.,P ≥
m/2, then

R(c, S) = R(c+, S) =
N

m
= r∗.

Otherwise, ifP < m/2, then

R(c, S) = R(c+, S) =
N

m
≤ 3

P

m
= 3R(c−, S) = 3r∗.

In any case we have thatR(c, S) ≤ 3r∗, proving that Mech-
anism 1 is indeed a 3-approximation mechanism.

As 3-approximation is achieved by such a trivial mech-
anism, we would naturally like to know whether it is pos-
sible to get a better approximation ratio, without waiving
the SP property. We show that this isnot the case by prov-
ing a matching lower bound on the best possible approx-
imation ratio achievable by an SP mechanism. Note that
the lower bound only requires strategyproofness, not group
strategyproofness.

Figure 2: The examples of each agent in the three datasets
are shown (fork = 2). Agent 1 can make dataset II look
like dataset III and vice versa by reporting false labels. The
same goes for agent 2 regarding datasets I and II.

Theorem 7. Let ǫ > 0. There is no(3 − ǫ)-approximation
strategyproof mechanism.

Proof. To prove the bound, we present 3 different datasets.
We show that any SP mechanism must return the same result
on all of them, while neither concept inC yields an approx-
imation ratio of(3 − ǫ) in all three.

Let ǫ > 0. We will useI = {1, 2}, and an integerk =
k(ǫ) to be defined later. Note that in all 3 datasetsm1 =
m2 = 2k + 1. We define the three datasets as follows (see
Figure 2 for an illustration):

• SI : P1 = 2k + 1, N1 = 0 ; P2 = k, N2 = k + 1

• SII : P1 = 2k + 1, N1 = 0 ; P2 = 0, N2 = 2k + 1

• SIII : P1 = k + 1, N1 = k ; P2 = 0, N2 = 2k + 1

Let M be some strategyproof mechanism. Then it must
hold thatM(SI) = M(SII). Indeed, otherwise assume first
thatM(SI) = c+ andM(SII) = c−. Notice that the only
difference between the two settings is agent 2’s labels. If
agent 2’s truthful labels are as inSI , his subjective ERM
is c−. Therefore, he can report his labels to be as inSII

(i.e., all negative) and obtainc−. Now, if M(SI) = c− and
M(SII) = c+, agent 2 can gain by deviating fromSII to
SI . A symmetric argument, with respect to agent 1 (that in
all settings prefersc+) shows thatM(SII) = M(SIII).

So, without loss of generality assume thatc = M(SI) =
M(SII) = M(SIII) = c+ (otherwise, symmetric argu-
ments yield the same result). Therefore:

R(c, SIII) = R(c+, SIII) =
N1 + N2

m
=

3k + 1

4k + 2
(2)

On the other hand, the negative concept is much better:

r∗ = R(c−, SIII) =
k + 1

4k + 2

By combining the last two equations:

R(c, SIII)

r∗
=

3k+1

4k+2

k+1

4k+2

=
3k + 1

k + 1



Let us setk > 3

ǫ
; then the last expression is strictly greater

than3 − ǫ, and thusR(c, SIII) > (3 − ǫ)r∗. We conclude
that any SP mechanism cannot have an approximation ratio
of 3 − ǫ.

Randomized mechanisms

What if we let our mechanism flip coins? Can we find an
SP randomized mechanism that beats (in expectation) the 3-
approximation deterministic lower bound? To answer the
question we first need to formally define the risk of such
a mechanism, since it may return different concepts on the
same dataset. We do this by simply by taking theexpected
risk over all possible outcomes.

Definition 8. Let M be a randomized mechanism, which
returns each conceptc ∈ C with probabilitypM (c|S).

R(M(S), S) = E[R(c, S)] =
∑

c∈C

pM (c|S) · R(c, S)

For our simple concept classC = {c+, c−}, a random-
ized mechanism is defined only by the probability of return-
ing a positive or negative concept, givenS. Accordingly, the
risk is

R(M(S), S) = pM (c+|S)R(c+, S) + pM (c−|S)R(c−, S)

We start our investigation of SP randomized mechanisms
by establishing a lower bound of 2 on their approximation
ratio.

Theorem 9. Let ǫ > 0. There is no(2 − ǫ)-approximation
strategyproof randomized mechanism.

The remaining proofs are omitted due to space limitations.
We presently put forward a randomized SP 2-

approximation mechanism, thereby matching the lower
bound with an upper bound. We will calculateP ′ andN ′

as in our deterministic Mechanism 1. The natural thing to
do would be simply to selectc+ with probability P ′/m
andc− with probabilityN ′/m. Unfortunately, this simple
randomization (which is clearly SP) cannot even beat the
deterministic bound of3 − ǫ.2

Crucially, a more sophisticated (and less intuitive)
randomization can do the trick.

Mechanism 2

1. ComputeP ′ andN ′ as in Mechanism 1.

2. If P ′ ≥ N ′, sett = N ′

m
; returnc+ with probability 2−3t

2−2t
,

andc− with probability t
2−2t

.

3. Else ifN ′ > P ′, sett = P ′

m
; returnc− with probability

2−3t
2−2t

, andc+ with probability t
2−2t

.

Theorem 10. Mechanism 2 is a group strategyproof 2-
approximation randomized mechanism.

2We will not prove this formally, but shortly considerP1 =
k + 1, N1 = k; N2 = m2 = k(2k + 1) ask increases.

A Learning Theoretic Setting
In this section we extend our simple setting to a more general
machine learning framework. Our previous results will be
leveraged to obtain powerful learning theoretic results.

Instead of looking at a fixed set of examples and selecting
the concept that fits them best, each agenti ∈ I now has a
private functionYi : X → {+,−}, which assigns a label
to every point in the input space. In addition, every agent
holds a (known) distributionρi over the input space, which
reflects the relative importance it attributes to each point.
The new definition of the subjective risk naturally extends
the previous setting by expressing the errors a concept makes
when compared toYi, given the distributionρi:

Ri(c) = Ex∼ρi
[ℓ(c(x), Yi(x))]

The global risk is calculated similarly to the way it was be-
fore. For ease of exposition, we will assume in this section
that all agents have equal weight.3 (n = |I|)

R(c) =
∑

i∈I

1

n
· Ri(c)

Since we cannot directly evaluate the risk in this learning
theoretic framework, we may only sample points from the
agents’ distributions and ask the agents to label them. We
then try to minimize thereal global risk, using theempirical
risk as a proxy. The empirical risk is the risk on the sampled
dataset, as defined in the previous section.

Mechanism 3

1. For each agenti ∈ I, samplem points i.i.d. fromρi. De-
notei’s set of points asXi = {xi1, . . . , xim}.

2. For everyi ∈ I, j = 1, . . . , m, ask agenti to labelxij .
DenoteSi = {〈xi,j , yi,j〉}

m
j=1.

3. Use Mechanism 2 onS = {S1, . . . , Sn}, and return the
result.

We presently establish a theorem that explicitly states the
number of examples we need to sample in order to properly
estimate the real risk. We will get that, in expectation (taken
over the randomness of the sampling procedure and Mech-
anism 2’s randomization), Mechanism 3 yields close to a 2-
approximation with relatively few examples, even in the face
of strategic behavior. The subtle point here is that Mecha-
nism 3 is not strategyproof. Indeed, even if an agent gives
greater weight to negative points (according toYi andρi),
it might be the case that (by miserable chance) the agent’s
sampled dataset only contains positive points.

However, since Mechanism 2 is SP in the previous sec-
tion’s setting, if an agent’s sampled dataset faithfully repre-
sents its true distribution, and the agent is strongly inclined
towardsc+ or c−, the agent still cannot benefit by lying. If
an agent is almost indifferent betweenc+ andc−, it might
wish to lie—but crucially, such an agent contributes littleto
the global risk.

3The results can be generalized to varying weights by sampling
for each agent a number of points proportional to its weight,yet
still large enough.



Our game theoretic assumption in the theorem is that
agents that cannot gain by lying will tell the truth (so under
this assumption, some agents may tell the truth even if they
gain by lying). This is a weaker assumption than the com-
mon assumption that all agents are utility maximizing (i.e.,
simply wish to minimize their subjective risk). It is useful
to employ the weaker version, as in many settings it might
be the case that some of the agents are centrally designed,
and so are bound to tell the truth regardless (even if they can
gain by lying).

Remark 11. Consider the following simple mechanism:
sample one point per agent, and let the agent label this sin-
gle point. If the agent labels the point positively, the agent
is positive; otherwise it is negative. Now apply Mechanism
2. Under the latter (strong) assumption this mechanism pro-
vides good guarantees, but under the former (weak) assump-
tion it provides bad guarantees (since truthful agents might
be assigned datasets that do not reflect their risk)—unlike
Mechanism 3, as will become apparent momentarily.

One can also consider a mechanism that just asks each
agent to report whether it prefersc+ or c−. Such a mech-
anism, though, is not consistent with our learning theoretic
framework, and so is outside the scope of this paper.

Theorem 12. Given sampled datasets, assume that agents
are truthful if they cannot gain by lying. LetR(M3) denote
the expected risk of Mechanism 3, where the expectation is
taken over the randomness of the sampling and Mechanism
2. For anyǫ > 0, there is anm (polynomial in ln(n) and 1

ǫ
)

such that by samplingm points for each agent, it holds that

R(M3) ≤ 2r∗ + ǫ.

Specifically, samplingm > 50 1

ǫ2
ln(10n

ǫ
) will suffice.

Remark 13. In our current learning theoretic setting there
are no reasonable SP mechanisms. Indeed, even dictator-
ship, i.e., choosing some fixed agent’s best classifier given
its reported examples, is not SP, as one can sample a major-
ity of positive examples when the agent in fact prefersc−.
In their Theorem 5.1, Dekel et al. (2008) do not obtain SP
in the (regression) learning theoretic setting, but ratherǫ-SP:
agents cannot gain more thanǫ by lying—with high prob-
ability, given enough examples. We circumvent the strate-
gyproofness issue with a more complicated assumption, and
thereby obtain a far stronger result (which is not true in the
Dekel et al. setting). On the other hand, our result only holds
for the very small hypothesis class{c+, c−}, while theirs is
more general.

Conclusions
We explored the problem of making a decision based on la-
beled data, under the assumption that the labels are not di-
rectly accessible. Rather, they are reported by agents that
may lie in order to bias the final decision in their favor.

Using the classic definition of optimal risk as the minimal
number of mislabeled data points, we presented a very sim-
ple deterministic strategyproof mechanism whose risk is at
most three times optimal. Moreover, we demonstrated that
no deterministic mechanism can do better while maintain-
ing the strategyproofness property. We further showed that

the deterministic 3-approximation bound can be improved
to a 2-approximation using the notion of expected risk and
a nonintuitive randomized mechanism. Finally, in the last
section we demonstrated how to reformulate this mechanism
in a learning theoretic setting, where the mechanism essen-
tially learns a constant concept based on sampled data that
is controlled by selfish agents.

Our mechanisms can serve human and automated deci-
sion makers that wish to maximize social welfare in the face
of data that is biased by conflicting interests. Crucially,
our results in the learning theoretic setting constitute first
steps in designing classifiers that can function well in non-
cooperative environments; in the future we intend to extend
the results to richer concept classes.
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