
Learning Voting Trees

Ariel D. Procaccia and Aviv Zohar and Yoni Peleg and Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem, Israel

{arielpro, avivz, jonip, jeff}@cs.huji.ac.il

Abstract

Binary voting treesprovide a succinct representation for a
large and prominent class of voting rules. In this paper, we in-
vestigate the PAC-learnability of this class of rules. We show
that, while in general a learning algorithm would require an
exponential number of samples, if the number of leaves is
polynomial in the size of the set of alternatives then a polyno-
mial training set suffices. We apply these results in an emerg-
ing theory: automated design of voting rules by learning.

Introduction
Voting has recently attracted attention from computer scien-
tists (particularly in artificial intelligence) as a methodfor
preference aggregation. A substantial body of research now
exists on computational aspects of social choice (Conitzer&
Sandholm 2002; Procaccia & Rosenschein 2007), as well as
on many of its applications (Ephrati & Rosenschein 1997;
Hayneset al. 1997; Ghoshet al. 1999).

In general, in voting settings it is common to consider a
setN = {1, . . . , n} of voters, and a setA = {x1, . . . , xm}
of alternatives. Each voteri ∈ N is associated with a linear
orderingRi of the alternatives; that is, each voter ranks the
alternatives in a way that reflects its preferences. The winner
of the election is determined according to avoting rule—
essentially a function from rankings to alternatives.

Voting Rules and Voting Trees
The theoretical properties of many voting rules have been
investigated (Brams & Fishburn 2002). For example, in the
simplePlurality rule used in most real-life elections, every
voter gives one point to the alternative it ranks first, and the
alternative with the most points wins the election. Other
voting rules rely on the concept ofpairwise elections: al-
ternativea beats alternativeb in the pairwise election be-
tweena andb if the majority1 of voters prefersa to b. Ide-
ally, we would like to select an alternative that beats every
other alternative in a pairwise election, but such an alterna-
tive (called aCondorcet winner) does not always exist.

However, there are other prominent voting rules that rely
on the concept of pairwise elections, which select an alter-
native in a sense “close” to the Condorcet winner. In the
Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We will assume, for simplicity, an odd number of voters.

Copeland rule, for example, the score of an alternative is the
number of alternatives it beats in a pairwise election; the al-
ternative with the highest score wins. In the Maximin rule,
the score of an alternative is its worst pairwise election (the
least number of voters that prefer it to some alternative), and,
predictably, the winner is the alternative that scores highest.

When discussing such voting rules, it is possible to con-
sider a more abstract setting. Atournament“≻” over A
is a complete binary irreflexive relation overA (that is, for
any two alternativesa andb, a ≻ b or b ≻ a, but not both).
Clearly, the aforementioned majority relation induces a tour-
nament (a beatsb in the pairwise election iffa ≻ b). More
generally, this relation can reflect a reality that goes beyond a
strict voting scenario. For example, the tournament can rep-
resent a basketball league, wherea ≻ b if teama is expected
to beat teamb in a game. Denote the set of all tournaments
overA by T = T (A).

So let us look at voting rules as simply functionsF : T →
A. The most prominent class of such functions is the class of
binary voting trees. Each function in the class is represented
by a binary tree, with the leaves labeled by alternatives. At
each node, the alternatives at the two children compete; the
winner ascends to the node (so ifa andb compete anda ≻ b,
a ascends). The winner-determination procedure starts at the
leaves and proceeds upwards towards the root; the alterna-
tive that survives to the root is the winner of the election.

For example, assume that the alternatives area, b andc,
andb ≻ a, c ≻ b anda ≻ c. In the tree given in Figure 1,b
beatsa and is subsequently beaten byc in the right subtree,
whilea beatsc in the left subtree.a andc ultimately compete
at the root, makinga the winner of the election.

Figure 1: A binary voting tree

Notice that we allow an alternative to appear in multiple
leaves; further, some alternatives may not appear at all (so,
for example, a singleton tree is a constant function). Not
every voting ruleF : T → A can be implemented by a
voting tree; however, some of the prominent rules, such as
Copeland, can be implemented (Trick 2006).

Automated Design of Voting Rules by Learning
In this paper, we characterize the complexity oflearning
voting trees. The basic setting is as follows: there is a
designer, who has a desired voting rule in mind. In other
words, for any given tournament, the designer is able to
specify who the winner of the election is. Further, we as-
sume that the voting rule the designer has in mind can be
represented by a voting tree (as we mentioned above, this
is the case for many prominent voting rules). However, the
designer does not know how to actually represent the rule as
a tree. The goal is to learn the designer’s voting rule through
exposure to examples of specific tournaments and their win-
ners. The overall approach is known asautomated design of
voting rules by learning.

There are several rationales for studying this problem.

Note that the number of voting rulesF : T → A is m2
(m

2)
,

so in general a representation of a voting rule requires a
number of bits which is exponential inm. On the other
hand, it is clear that voting trees can be concisely repre-
sented. Therefore, the designer may wish to transform an
extremely inefficient representation he might have for a vot-
ing rule into a concise one—and the learning procedure pro-
duces such a representation.

Additionally, it might be the case that the designer wishes
to build a voting rule that satisfies different desirable prop-
erties, such as election of a Condorcet winner if one exists.
The designer could use a representation of these properties
to designate the just winner in every tournament given to him
as a query. By configuring the structure of voting trees, it is
possible to obtain a wide range of properties; thus, the learn-
ing process could ultimately produce a voting tree that satis-
fies the desiderata, if one exists. For further motivating de-
tails regarding automated design of voting rules in general,
see the work of Procaccia, Zohar and Rosenschein (2006).

Our learning model can be described as follows. We as-
sume the designer has in mind a voting rule—thetargetvot-
ing rule—which can be represented by a tree. The learner
draws tournaments according to a fixed distributionD over
T ; these tournaments, in the context of learning, are called
examples. When faced with each such tournament, the de-
signer responds by giving the correct winner in the tourna-
ment, with respect to the target voting rule. The goal of the
learner, given enough examples, is to come up with a voting
rule that is “close” to the target. More precisely, we allow
only a small probability that, when tournaments are drawn
according toD, our rule disagrees with the target rule. The
reader may recognize that we are talking about learning in
the formal model of learning theory—the PAC model. Rel-
evant technical details about the model are given in the Pre-
liminaries section, below.

Our main question in this paper is: how many examples

are needed in order to construct a tree that is “close” to the
target voting tree? We will show that the answer is two-fold:
in general, due to the expressiveness and possible complex-
ity of binary trees, the number of examples required is ex-
ponential inm. However, if we assume that the number of
leaves is polynomial inm, then the required number of ex-
amples is also polynomial inm. In addition, we investigate
the computational complexity of problems associated with
the learning process.

Related Work
This paper can be seen as extending the very recent work of
Procaccia, Zohar and Rosenschein (2006). The authors pre-
sented and motivated the use of learning techniques to au-
tomatically design voting rules. However, that work investi-
gated learningscoring rules, an important but small family
of voting rules (which includes, for instance, the Plurality
rule mentioned above). In contrast, the current paper stud-
ies the learnability of the much larger (and disjoint) family
of voting trees, and shows that they are harder to learn than
scoring rules. To the best of our knowledge, the current pa-
per and the abovementioned paper are the only ones to apply
learning in the context of voting.

Learning has been applied, however, in other economic
settings. A prominent example is a paper by Lahaie and
Parkes (2004), which discusses preference elicitation in
combinatorial auctions, and shows that learning algorithms
can be used as a basis for preference elicitation algorithms.
The learning model in that work (exact learning) is different
from ours. Another paper in this direction, which does use
the PAC model, is that of Beigman and Vohra (2006); they
applied PAC learning to compute utility functions that are
rationalizations of given sequences of prices and demands.

Preliminaries
In this section we give a very short introduction to the PAC
model and the generalized dimension of a function class. A
more comprehensive (and slightly more formal) overview
of the model, and results concerning the dimension, can be
found in (Natarajan 1991).

In the PAC model, the learner is attempting to learn a
functionf : Z → Y , which belongs to a classF of func-
tions fromZ to Y . The learner is given atraining set—a set
{z1, z2, . . . , zt} of points inZ, which are sampled i.i.d. (in-
dependently and identically distributed) according to a dis-
tribution D over the sample spaceZ. D is unknown, but
is fixed throughout the learning process. In this paper, we
assume the “realizable” case, where a target functionf∗(z)
exists, and the given training examples are in fact labeled
by the target function:{(zk, f∗(zk))}t

k=1
. The error of a

functionf ∈ F is defined as

err(f) = Pr
z∼D

[f(z) 6= f∗(z)]. (1)

ǫ > 0 is a parameter given to the learner that defines the
accuracyof the learning process: we would like to achieve
err(h) ≤ ǫ. Notice thaterr(f∗) = 0. The learner is also
given anaccuracyparameterδ > 0, that provides an upper

bound on the probability thaterr(h) > ǫ:

Pr[err(h) > ǫ] < δ. (2)

We now formalize the discussion above:

Definition 1.

1. A learning algorithmL is a function from the set of all
training examples toF with the following property: given
ǫ, δ ∈ (0, 1) there exists an integers(ǫ, δ)—thesample
complexity—such that for any distributionD on Z, if S
is a sample of size at leasts where the samples are drawn
i.i.d. according toD, then with probability at least1 − δ
it holds thaterr(L(S)) ≤ ǫ.

2. A function classF is PAC-learnableif there is a learning
algorithm forF .

The sample complexity of a learning algorithm forF is
closely related to a measure of the class’s combinatorial rich-
ness known as the generalized dimension.

Definition 2. LetF be a class of functions fromZ to Y . We
sayF shattersS ⊆ Z if there exist two functionsf, g ∈ F
such that

1. For allz ∈ S, f(z) 6= g(z).
2. For allS1 ⊆ S, there existsh ∈ F such that for allz ∈

S1, h(z) = f(z), and for allz ∈ S \ S1, h(z) = g(z).

Definition 3. Let F be a class of functions from a setZ
to a setY . The generalized dimensionof F , denoted by
DG(F), is the greatest integerd such that there exists a set
of cardinalityd that is shattered byF .

Lemma 1. (Natarajan 1991, Lemma 5.1) LetZ andY be
two finite sets and letF be a set of total functions fromZ to
Y . If d = DG(F), then2d ≤ |F|.

A function’s generalized dimension provides both upper
and lower bounds on the sample complexity of algorithms.

Theorem 1. (Natarajan 1991, Theorem 5.1) LetF be a
class of functions fromZ to Y of generalized dimensiond.
Let L be an algorithm such that, when given a set oft la-
beled examples{(zk, f∗(zk))}k of somef∗ ∈ F , sampled
i.i.d. according to some fixed but unknown distribution over
the instance spaceX, produces an outputf ∈ F that is
consistent with the training set. ThenL is an(ǫ, δ)-learning
algorithm forF provided that the sample size obeys:

s ≥
1

ǫ

(

(σ1 + σ2 + 3)d ln 2 + ln

(

1

δ

))

(3)

whereσ1 and σ2 are the sizes of the representation of ele-
ments inZ andY , respectively.

Theorem 2. (Natarajan 1991, Theorem 5.2) LetF be a
function class of generalized dimensiond ≥ 8. Then
any (ǫ, δ)-learning algorithm forF , whereǫ ≤ 1/8 and
δ < 1/4, must use sample sizes ≥ d

16ǫ
.

Learnability of Large Voting Trees
Recall that we are dealing with a set ofalternativesA =
{x1, . . . , xm}; sometimes, we will also denote alternatives
by a, b, c ∈ A. A tournamentis a complete binary irreflex-
ive relation≻ over A; we denote the set of all possible

tournaments byT = T (A). A voting rule is a function
F : T → A.

A binary voting treeis a binary tree with leaves labeled
by alternatives. To determine the winner of the election with
respect to a tournament≻, one must iteratively select two
siblings, label their parent by the winner according to≻, and
remove the siblings from the tree. This process is repeated
until the root is labeled, and its label is the winner of the
election.

Let us denote the class of voting trees overm alternatives
by Fm; we would like to know what the sample complexity
of learning functions inFm is. To elaborate a bit, we think of
voting trees as functions fromT to A, so the sample space is
T . In this section, we will show that in general, the answer
is that the complexity is exponential inm. We will prove
this by relying on Theorem 2; the theorem implies that in
order to prove such a claim, it is sufficient to demonstrate
that the generalized dimension ofFm is at least exponential
in m. This is the task we presently turn to.

Theorem 3. DG(Fm) is exponential inm.

Proof. Without loss of generality, we letm = 2k +
2. We will associate every distinct binary vectorv =
〈v1, . . . , vk〉 ∈ {0, 1}k with a distinct example in our set
of tournamentsS ⊆ T . To prove the theorem, we will show
thatFm shatters this setS of size2k.

Let the set of alternatives be:

A = {a, b, x0

1
, x1

1
, x0

2
, x1

2
, . . . , x0

k, x1

k}.

For every vectorv ∈ {0, 1}k, define a tournament≻v as
follows: for i = 1, . . . , k, if vi = 0, we letx0

i ≻v b ≻v x1

i ;
otherwise, ifvi = 1, thenx1

i ≻v b ≻v x0

i . In addition, for
all tournaments≻v, and alli = 1, . . . , k, j = 0, 1, a beats
xj

i , but a loses tob. We denote byS the set of these2k

tournaments.2 Let f be the constant functionb, i.e., a voting
tree which consists of only the nodeb; let g be the constant
functiona. We must prove that for everyS1 ⊆ S, there is a
voting tree such thatb wins for every tournament inS1 (in
other words, the tree agrees withf), anda wins for every
tournament inS \ S1 (the tree agrees withg). Consider the
tree in Figure 2, which we refer to as thei’th 2-gadget.

Figure 2: 2-gadget

With respect to this tree,b wins a tournament≻v∈ S iff
vi = j. Indeed, ifvi = j, thexj

i ≻v b ≻v x1−j
i , and in

particularb beatsx1−j
i ; if vi 6= j, thenx1−j

i ≻v b ≻v xj
i , so

b loses tox1−j
i .

2The relations described above are not complete, but the way
they are completed is of no consequence.

Let v ∈ {0, 1}k. We will now use the 2-gadget to build
a tree whereb wins only the tournament≻v∈ S, and loses
every other tournament inS. Consider a balanced tree such
that the deepest nodes in the tree are in fact 2-gadgets (as in
Figure 3). As before,b wins in thei’th 2-gadget iffvi = j.
We will refer to this tree as av-gadget.

Figure 3:v-gadget

Now, notice that ifb wins in each of the 2-gadgets (and
this is the case in the tournament≻v), thenb is the winner of
the entire election. On the other hand, letv′ 6= v, i.e., there
existsi ∈ {1, . . . , k} such that w.l.o.g.0 = v′

i 6= vi = 1.
Then it holds thatx0

i ≻v′ b ≻v′ x1

i ; this implies thatx0

i wins
in the i’th 2-gadget.x0

i proceeds to win the entire election,
unless it is beaten in some stage by some other alternative
xj

l —but this must be also an alternative that beatsb, as it
survived thel’th 2-gadget. In any case,b cannot win the
election.

Consider the small extension, in Figure 4, of thev-gadget,
which (for lack of a better name) we call thev-gadget*.

Figure 4:v-gadget*

Recall that, in every tournament inS, a beats any alterna-
tive xi

j but loses tob. Therefore, by our discussion regarding
thev-gadget,b wins the election described by thev-gadget*
only in the tournament≻v; for any other tournament inS,
alternativea wins the election.

We now present a tree and prove that it is as required, i.e.,
in any tournament inS1, b is the winner, and in any tourna-
ment inS \S1, a prevails. Let us enumerate the tournaments
in S1:

S1 = {≻v1
, . . . ,≻vr

}.

We construct a balanced tree, as in Figure 5, where the bot-
tom levels consist of thevl-gadgets*, forl = 1, . . . , r.

Let ≻vl
∈ S1. What is the result of this tournament in the

election described by this tree? First, note thatb prevails

Figure 5: The constructed tree

in the vl-gadget*. The only alternatives that can reach any
level above the gadgets area andb, andb always beatsa.
Therefore,b proceeds to win the election. Conversely, let
≻v∈ S \ S1. Thena survives ineveryvl-gadget*, forl =
1, . . . , r. a surely proceeds to win the entire election.

We have shown thatFm shattersS, thus completing the
proof.

Remark 1. Even if we restrict our attention to the class of
balanced voting trees (corresponding to a playoff schedule),
the dimension of the class is still exponential inm. Indeed,
any unbalanced tree can be transformed to an identical (as
a voting rule) balanced tree. If the tree’s height ish, this
can be done by replacing every leaf at depthd < h, labeled
by an alternativea, by a balanced subtree of heightd − h
in which all the leaves are labeled bya. This implies that
the class of balanced trees can shatter any sample which is
shattered byFm.

Remark 2. The proof we have just completed, along with
Lemma 1, imply that the number of different voting func-
tions that can be represented by trees is double exponential
in m, which shows the high expressiveness of voting trees.

Learnability of Small Voting Trees
In the previous section, we have seen that in general, a large
number of examples is needed in order to learn voting trees
in the PAC model. This result relied on the number of leaves
in the trees being exponential in the number of alternatives.
However, in many realistic settings one can expect the voting
tree to be compactly represented, and in particular one can
usually expect the number of leaves to be at most polynomial
in m. Let us denote byFn

m the class of voting trees overm
alternatives, with at mostn leaves. Our goal in this section
is to prove the following theorem.

Theorem 4. DG(Fn
m) ≤ n(log m + log n).

This theorem implies, in particular, that if the number of
leavesn is polynomial inm, then the dimension ofFn

m is
polynomial inm. In turn, this implies by Lemma 1 that the
sample complexity ofFn

m is only polynomial inm. In other
words, given a training set of size polynomial inm, 1/ǫ and
1/δ, any algorithm that returns some tree consistent with the
training set is an(ǫ, δ)-learning algorithm forFn

m.
To prove the theorem, we require the following lemma.

Lemma 2. |Fn
m| ≤ mn · n!

Proof. The number of voting trees with exactlyn leaves is
at most the number of binary tree structures multiplied by
the number of possible assignments of alternatives to leaves.
The number of assignments is clearly bounded bymn. In
order to count the number of distinct structures a tree withn
leaves can have, we define asplit operation on a leafv of a
binary treeT : the treeT ′ which is obtained by the operation
is exactly the same asT , except thatv is now an internal
node, and is the parent of two leaves (see Figure 6).

Figure 6: A binary tree split at a nodev.

Lemma 3. Any binary tree withn leaves can be obtained
by starting with a singleton tree, and performingn−1 splits
(proof omitted due to lack of space).

Lemma 3 allows us to bound the number of distinct struc-
tures a binary tree with exactlyn leaves might have. Starting
with the singleton tree, we have one option for a split; for a
tree with two leaves, we have two options; and so on. Thus,
the total number of ways to construct a binary tree withn
leaves is at most:

1 · 2 · · ·n − 1 = (n − 1)!

So, the total number of voting trees with exactlyn leaves
is bounded bymn · (n− 1)!, and the number of voting trees
with at mostn leaves is at most:

n · (mn · (n − 1)!) = mn · n!

We are now ready to prove Theorem 4.

Proof of Theorem 4.By Lemma 3, we have that|Fn
m| ≤

mn · n!. Therefore, by Lemma 1:

DG(Fn
m) ≤ log(mn · n!) ≤ n log m + n log n.

Computational Complexity
In the previous section, we restricted our attention to voting
trees where the number of leaves is polynomial inm. We
have demonstrated that the dimension of this class is poly-
nomial in m, which implies that the sample complexity of
the class is polynomial inm. Therefore, any algorithm that

is consistent with a training set of polynomial size is a suit-
able learning algorithm (Theorem 1).

It seems that the significant bottleneck, especially in the
setting of automated voting rule design (finding a compact
representation for a voting rule that the designer has in
mind), is the number of queries posed to the designer, so
in this regard we are satisfied that realistic voting trees are
learnable. Nonetheless, in some contexts we may also be
interested in computational complexity: given a training set
of polynomial size, how computationally hard is it to find a
voting tree which is consistent with the training set?

In this section we explore that question. We will assume
hereinafter that the structure of the voting tree is knowna
priori . This is an assumption that we did not make above,
but observe that, at least for balanced trees, Theorems 3 and
4 hold regardless. We shall try to determine how hard it is
to find an assignment to the leaves which is consistent with
the training set. We will refer to the computational problem
as TREE-SAT (pun intended).

Definition 4. In the TREE-SAT problem, we are given a
binary tree, where some of the leaves are already labeled by
alternatives, and a training set that consists of pairs (≻j ,xij

),
where≻j∈ T andxij

∈ A. We are asked whether there
exists an assignment of alternatives to the rest of the leaves
which is consistent with the training set, i.e., for allj, the
winner in≻j with respect to the tree isxij

.

Notice that in our formulation of the problem, some of the
leaves are already labeled. However, it is reasonable to ex-
pect any efficient algorithm that finds a consistent tree, given
that one exists, to be able to solve the TREE-SAT problem.
Hence, anNP-hardness result implies that such an algo-
rithm is not likely to exist. This is actually the case (proof
omitted due to lack of space):

Theorem 5. TREE-SAT is NP-complete.

Empirical Results

Despite Theorem 5, it seems that in practice, solving the
TREE-SAT problem is sometimes possible; here we shall
empirically demonstrate this.

Our simulations were carried out as follows. Given a fixed
tree structure, we randomly assigned alternatives (out of a
pool of 32 alternatives) to the leaves of the tree. We then
used this tree to determine the winners in 20 random tour-
naments over our 32 alternatives. Next, we measured the
time it took to find some assignment to the leaves of the tree
(not necessarily the original one) which is consistent with
the training set of 20 tournaments. We repeated this proce-
dure 10 times for each number of leaves in{4, 8, 16, 32, 64},
and took the average of all ten runs.

The problem of finding a consistent tree can easily be rep-
resented as a constraint satisfaction problem, or in particular
as a SAT problem. Indeed, for every node, one simply has to
add one constraint per tournament which involves the node
and its two children. To find a satisfying assignment, we
used the SAT solver zChaff. The simulations were carried
out on a PC with a Pentium D (dual core) CPU, running
Linux, with 2GB of RAM and a 2.8GHz clock speed.

We experimented with two different tree structures. The
first is seemingly the simplest—a binary tree which is as
close to a chain as possible, i.e., every node is either a leaf,
or the parent of a leaf; we refer to these trees as “almost
chains”. The second is intuitively the most complicated: a
balanced tree. Notice that, given that the number of leaves
is n, the number of nodes in both cases is2n − 1. The sim-
ulation results are shown in Figure 7.

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Number of leaves

R
un

ni
ng

 ti
m

e
(s

ec
)

Almost chains
Balanced Trees

Figure 7: Time to find a satisfying assignment

In the case of balanced trees, it is indeed hard to find a
consistent tree. Adding more sample tournaments would
add even more constraints and make the task harder. How-
ever, in most elections the number of candidates is usually
not above several dozen, and the problem may still be solv-
able. Furthermore, the problem is far easier with respect
to trees that are almost chains (although the reduction in
Theorem 5 builds trees that are “almost{almost chains}”).
Therefore, we surmise that for many tree structures, it may
be practically possible (in terms of the computational effort)
to find a consistent assignment, even when the input is rela-
tively large, while for others the problem is quite computa-
tionally hard even in practice.

Conclusions
We have discussed the learnability of voting trees in the PAC
model. Our main results imply that when the number of
leaves in the tree is unbounded, the number of samples re-
quired in order to achieve arbitrary accuracy and confidence
is exponential in the number of alternatives. However, if
the number of leaves is polynomial, a training set of poly-
nomial size suffices. In this case, any tree which is consis-
tent with the training set will do; our empirical results show
that finding these trees may prove to be a feasible compu-
tational task, depending on the structure of the tree that is
being learned.

Our results have several important implications. Most sig-
nificantly, with respect to automated design of voting rules,
we have essentially shown that when the designer has in

mind a voting rule that can be concisely represented using
a “small” voting tree, an approximation of this concise rep-
resentation can be achieved. So, using our approach, the de-
signer can translate a cumbersome representation of a voting
rule into a concise one, or find a voting tree that satisfies a
given set of desiderata. A limitation of our approach in this
context is that there are voting rulesF : T → A that cannot
be implemented by voting trees (Trick 2006); the designer
may have such a voting rule in mind. Nevertheless, the class
of voting rules that can be represented by trees is large and
prominent, including, among others, the Copeland rule.

Acknowledgments
The authors would like to thank Noam Nisan for suggesting
the topic of this paper. This work was partially supported by
Israel Science Foundation grant #898/05.

References
Beigman, E., and Vohra, R. 2006. Learning from revealed
preference. InProceedings of the 7th ACM Conference on
Electronic Commerce, 36–42.
Brams, S. J., and Fishburn, P. C. 2002. Voting proce-
dures. In Arrow, K. J.; Sen, A. K.; and Suzumura, K., eds.,
Handbook of Social Choice and Welfare. North-Holland.
chapter 4.
Conitzer, V., and Sandholm, T. 2002. Complexity of ma-
nipulating elections with few candidates. InThe National
Conference on Artificial Intelligence, 314–319.
Ephrati, E., and Rosenschein, J. S. 1997. A heuristic tech-
nique for multiagent planning.Annals of Mathematics and
Artificial Intelligence20:13–67.
Ghosh, S.; Mundhe, M.; Hernandez, K.; and Sen, S. 1999.
Voting for movies: the anatomy of a recommender sys-
tem. In Proceedings of the Third Annual Conference on
Autonomous Agents, 434–435.
Haynes, T.; Sen, S.; Arora, N.; and Nadella, R. 1997.
An automated meeting scheduling system that utilizes user
preferences. InProceedings of the First International Con-
ference on Autonomous Agents, 308–315.
Lahaie, S., and Parkes, D. C. 2004. Applying learning
algorithms to preference elicitation. InProceedings of the
Fifth ACM Conference on Electronic Commerce, 180–188.
Natarajan, B. K. 1991.Machine Learning: A Theoretical
Approach. Morgan Kaufmann.
Procaccia, A. D., and Rosenschein, J. S. 2007. Junta dis-
tributions and the average-case complexity of manipulat-
ing elections. Journal of Artificial Intelligence Research
28:157–181.
Procaccia, A. D.; Zohar, A.; and Rosenschein, J. S. 2006.
Automated design of voting rules by learning from exam-
ples. InProceedings of the First International Workshop
on Computational Social Choice, 436–449.
Trick, M. 2006. Small binary voting trees. InProceed-
ings of the First International Workshop on Computational
Social Choice, 500–511.

