
Using Distributed Problem Solving to Search the Web
Amir Langer Jeffrey S. Rosenschein

School of Engineering and Computer Science
Hebrew University, Jerusalem, Israel

amirl@agentsoft.com

School of Engineering and Computer Science
Hebrew University, Jerusalem, Israel

jeff@cs.huji.ac.il

1. INTRODUCTION
The huge growth of the Internet in recent years encouraged the
ermegence of information retrieval tools that assist the user in
accessing data on the Web. These tools have been epitomized by
many popular search engines, such as AltaVista and Google.
Current Web search engines consist primarily of information
databases and groups of agents that update this database while
browsing through the Web. So far, Search Engines suffer from
poor precision and poor recall.

We propose a different approach to gathering information on the
Web, by viewing the search problem as a distributed problem that
requires cooperation among different agents in order to arrive at a
solution. This approach differs radically from the approach of
current search engines ([4], [5]) by being distributed, rather than
parallel. Our system is composed of autonomous agents
cooperating to achieve a better result, rather than spiders feeding a
large amount of information into a database. This idea also differs
from the meta-crawler ([7]) approach, because in our proposed
method, the different agents cooperate and exchange their partial
solutions in order to arrive at one global solution instead of just
merging all results into one list.

In Section 2 we elaborate on the intuitions and reasons why we
chose to use a DPS algorithm for the Internet search problem. In
Section 3 we discuss the analogy between the Device Vehicle
Monitoring Testbed and the Internet search problem, and present
an outline of our proposed system. In Section 4 we mention our
current prototype and several points for future work.

2. USING A DPS APPROACH
The Internet is probably the most natural environment of all for
distributed applications, and therefore a DPS system fits it well.
Different agents with different limited views of the Internet are
capable of cooperation, at the end of which a better solution could
be achieved than one giant database with a single view of what’s
out there, no matter how much faster it receives the information.
This is mainly because the limited view of a certain topic / a
specific area on the Web that every agent has, is much more
accurate and up-to-date than the view of the same topic / area by
the giant database. For example, our bookmarks file is a very
limited view of the web, but if we queried it for some information
it possesses, the results would be much more accurate and up-to-
date than querying a search engine. The only problem with this
approach is that our bookmark’s view of the web is extremely
limited. But what would happen if many users would cooperate by
sharing their “bookmarks”? Cooperation among several
autonomous entities is what is implied by a DPS approach.

3. SYSTEM OUTLINE
From the point of view of the user, let’s assume that you’re
looking for information about the island of Java. This is exactly
the sort of query for which every syntactic-based search engine

would return lots of information about the Java programming
language, Java coffee, etc. In order to find the information you
want you might use several search engines, follow several links,
and after some filtering, even find a few sites you might like.
Then, you would probably save those “good” sites in your
bookmarks. When you look for more sites, you would probably
prefer to exchange your acquired knowledge with other Java
enthusiasts around the world and get immediate links to related
sites, rather than to start searching all over again. Note that as the
number of persons who exchange this knowledge increases, you
don’t need to hold information about Java to receive Java-related
sites from the system. You could get the Java-related sites in
exchange for your knowledge about “shareware sites”, for
example. The system would also continue to provide good quality
knowledge, as long as more knowledge of that quality is poured
into it, where this “it” is a totally virtual concept, just like the
Internet itself. You could view this solution as an attempt to
enhance the recall rate of many small Web indexes that have good
precision rates (many small “Yahoos”, if you like, with a very
limited views of the Web, cooperating to create a much larger
virtual Web index). Therefore, our algorithm should know how to
automatically create a small database with specific expertise based
on a small portion of the web, and how to integrate all these many
databases into one large system.

We create this good precision rate database by finding clusters of
related pages (using either the hyperlinks between them, or an
occurrence of words, in those pages), and then finding a topic for
these page clusters via user intervention. The communication
mechanism between small databases is drawn from the DVMT.

3.1 Analogy to DVMT
DVMT was designed as a framework for Distributed Problem
Solving algorithms ([1], [3]). It includes a simulation of a network
constituted of several problem-solving nodes. Each node applies
simplified signal processing knowledge to acoustically sensed
data to identify location and track patterns of vehicles moving
through a two-dimensional space. The data that is used by the
sensors is the location of the signal and its frequency. The DVMT
architecture is based on the Hearsay-II architecture [2], with
knowledge sources and abstraction levels appropriate for vehicle
monitoring. The goal in the DVMT system was to construct a
high-level map of vehicle movement by cooperation among
different sensors, where each had a limited area it can sense or
different fields of expertise. In our system, we view each agent as
a sensor with a limited view of the Web, where instead of trying
to chart vehicle movement we attempt to find groups of related
pages and a topic that relates to a specific group.

3.2 System View of WWW
In the same way that location and frequency data is used by
DVMT nodes, our agents view the Web according to two different
signals, a Context Signal (a prominent word appearance on a

specific page) and a Hyperlink Signal (a prominent hyperlink
from one page to another). This produces two graphs of the Web.
The first graph is produced from the Hyperlink Signals and is the
straightforward WWW graph of pages as nodes and hyperlinks as
edges. The second is a graph constructed from the Context Signals
by viewing the pages again as nodes and defining an edge
between nodes x, y if for a specific word w exists Context Signals
(x,w) and (y,w). The belief parameter of both signals is based on
the prominence of the link or word on the page (this could be the
size of the text or image, its position on the page, etc.).

This system view of the Web allows us to define goals, and plans,
and to use the same architecture as described in the DVMT
system. We use a planning mechanism by generating sub-goals
and solving sub-problems. This planning process can be
distributed among several agents and is initiated by the signals
picked up by the sensors (lowest-level goals). From these
achieved goals (hypotheses), the planners plan, attempting to
achieve higher goals until we get a group of pages that are linked
to a specific topic – The Topic Group goal.

The Context and Hyperlink Signal types are a result of the
information we get from the basic lowest level signal — The Page
Signal (a Web page and its URL). The URLs can be inserted into
the system as an initial input or as a side effect of finding a
Hyperlink Signal to an as yet unknown URL. This is a low level
goal that is always achieved.

Higher-level goals define a higher abstraction level. The goals
direct the agent to construct collections (= groups) of Web pages
according to context or hyperlinks. These groups are equivalent to
the ‘track’ goals of the DVMT. The goal driven planner goes
higher and higher in the abstraction level with each goal, and one
of the agents’ planners should arrive at the highest level goal
which is the Topic Group.

The Topic Signal is specific to our domain. It is used to define a
specific word or sequence of words as a topic of a specific page.
Defining the topic as a signal enables us to integrate the phase of
creating the topics or concepts into the agents’ process and in this
way create topics or link topics to existing pages while the system
is already running. This enables a much more dynamic mapping
of the web. The signal data is generated by the user and used as a
trigger for the agent planner that would now create a plan to
achieve the goal of a group of Web pages which correspond to
this topic — i.e., achieve a Topic Group for that topic.

Higher abstraction levels are: a) Two Context Signals belong to
the same Context Group if both are defined by the same context;
b) Two Hyperlink Signals belong to the same Hyperlink Group if
there is a short path (links) between the pages in the signals.

The Group goal is a higher level goal used to merge hyperlink and
Context Groups into one collection of pages. A Group is formed
from a Context Group and a Hyperlink Group that have a large
correlation between their elements (Web pages). The Topic Group
goal is actually the main goal of the whole system, i.e., to build a
group of Web pages that are related to a specific Topic Signal.
The agent’s planner tries to achieve this goal by building a Topic
Group from a Group of pages and a topic that is related to a large
number of pages in that Group. (In other words, there is a Topic
Signal of a specific topic defined in a large number of pages in the
group.) Note that this end result returns us not only the pages that
were defined as connected to the topic, but all “close” pages in

terms of close nodes in the Internet graph, and in terms of similar
context. That context is not necessarily the actual topic words, so
the results are not based on any syntactic pattern.

The system is organized according to specific interest areas for
each of the agents. This interest area may consist not only of part
of the WWW space (a limited number of hosts, for example), but
also part of the solution space. (Agent1 may be involved only in
creating signals while agent2 may not extract information from
the Web at all, and would limit itself to constructing higher level
goals out of these low-level signals.) Because our view of the
Web is based on low-level signals and higher levels of abstraction
of those signals, we can organize our system of agents according
to the levels with which every agent deals.

In our domain, the intervention of an expert or an expert agent is
highly important. We intend to enable the user to add her own
signals or even groups to the list of achieved goals—hypotheses
(with a high belief rate). This is how user bookmarks are supposed
to get integrated into the system. The user should also set all the
Topic Signals of all topics she would like the agent to explore.

4. CURRENT AND FUTURE WORK
We built a prototype that explores the potential of our approach.
Currently we test using two agents who communicate and classify
pages from different portions of the web. The current prototype
builds graphs without weights on the edges and does not have a
planner, but results are already proving to be quite promising.

There are a variety of directions in which to expand the research
described in this paper. These directions include the following:
a) Adding weights to the graphs edges is bound to give a more
accurate view of the Web; b) Using a planner to direct the agents’
actions. Extensive work done on Partial Global Planning and
Generalized Partial Global Planning by Durfee [3], Decker [7],
and others may be most relevant here; c) Enabling expert
intervention – drawing data from real bookmark folders;
d) Testing on a much larger number of agents.

5. REFERENCES
[1] E. H. Durfee, V. R. Lesser & D. D. Corkill, “Coherent

cooperation among communicating problem solvers”, in
Readings in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers, San Mateo, 1988, pp. 268–284.

[2] L. D. Erman, F. Hayes-Roth, V.R. Lesser and D.R. Reddy,
“The Hearsay-II speech understanding system: Integrating
knowledge to resolve uncertainty”, Computing Surveys, Vol.
12, pp. 213–253, June 1980.

[3] E.H. Durfee & V. R. Lesser, “Using Partial Global Plans to
Coordinate Distributed Problem Solvers”, in Readings in
Distributed Artificial Intelligence, Morgan Kaufmann
Publishers, San Mateo, 1988, pp. 285–293.

[4] AltaVista: http://www.altavista.com

[5] Yahoo: http://www.yahoo.com

[6] MetaCrawler: http://www.metacrawler.com

[7] K. S. Decker and V. R. Lesser, “Generalizing the Partial
Global Planning Algorithm”, International Journal of
Intelligent Cooperative Information Systems, Vol. 1(2),
1992, pp. 319–346.

