
Proceedings

Ninth International Workshop on
Programming Multi-Agent Systems

ProMAS 2011

Taipei, Taiwan
May 3rd, 2011

http://www.inf.ufrgs.br/promas2011/

Held with the Tenth International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2011)

Edited by

Louise A. Dennis, Olivier Boissier, Rafael H. Bordini



Preface

The ProMAS workshop series has produced, throughout this decade, a number
of solid contributions towards programming languages and development tools
that are appropriate for the development of complex autonomous systems that
operate in dynamic environments. With applications of autonomous software
(e.g., UAVs, companion robots, ambient intelligence, and semantic applications,
to name just a few) becoming required with wide commercial interest, it is im-
perative to support the ever more complex task of professional programmers of
multi-agent systems. Importantly, such languages and tools must be developed
in a principled but practical way. ProMAS aims to address both theoretical and
practical issues related to developing and deploying multi-agent systems.

Now in its 9th edition, ProMAS has been an invaluable venue bringing to-
gether leading researchers from both academia and industry to discuss issues
on the design of programming languages and tools for multi-agent systems. In
particular, the workshop promotes the discussion and exchange of ideas con-
cerning the techniques, concepts, requirements, and principles that are impor-
tant for multi-agent programming technology. These include the theory and
applications of agent programming languages, how to effectively implement
a multi-agent system design or specification, the verification and analysis of
agent systems, as well as the implementation of social structures in agent-based
systems (e.g., organisations, coordination, and communication in multi-agent
systems).

May 2011 Louise A. Dennis
Olivier Boissier

Rafael H. Bordini

ii



Programme Committee

Matteo Baldoni (University of Torino, Italy)
Juan Botia (Universidad de Murcia, Spain)
Lars Braubach (University of Hamburg, Germany)
Rem Collier (University College Dublin, Ireland)
Ian Dickinson (Epimorphics Ltd., UK)
Marc Esteva (IIIA-CSIC, Spain)
Michael Fisher (University of Liverpool, UK)
Jorge Gomez-Sanz (Computense University of Madrid, Spain)
Vladimir Gorodetsky (IIAS, Russia)
Dominic Greenwood (Whitestein Technologies AG, Switzerland)
James Harland (RMIT University, Australia)
Koen Hindriks (TU Delft, Netherlands)
Benjamin Hirsch (Technical University of Berlin, Germany)
Jomi Hübner (Federal University of Santa Catarina, Brazil)
João Leite (New University of Liston, Portugal)
Brian Logan (University of Nottingham, UK)
Viviana Mascardi (University of Genova, Italy)
Philippe Mathieu (University of Lille, France)
John-Jules Meyer (Utrecht University, Netherlands)
Jörg Müller (TU Clausthal, Germany)
Andrea Omicini (University of Bologna, Italy)
Agostino Poggi (University of Parma, Italy)
Alexander Pokahr (University of Hamburg, Germany)
Alessandro Ricci (University of Bologna, Italy)
Birna van Riemsdijk (TU Deflt, Netherlands)
Ralph Ronnquist (Intendico Pty Ltd, Australia)
Ichiro Satoh (National Institute of Informatics, Japan)
Michael Ignaz Schumacher (HES-SO, Switzerland)
Munindar Singh (NCSU, USA)
Tran Cao Son (New Mexico State University, USA)
Patrick Taillibert (Thales Aerospace Division, France)
Paolo Torroni (University of Bologna, Italy)
Jørgen Villadsen (DTU Informatics, Denmark)
Gerhard Weiss (University of Maastricht, Netherlands)
Michael Winikoff (University of Otago, New Zealand)
Neil Yorke-Smith (American University of Beirut and SRI)

iii



Committees

Organising Committee

Olivier Boissier, Ecole des Mines de St Etienne, France
Rafael H. Bordini, Federal University of Rio Grande do Sul, Brazil
Louise A. Dennis, University of Liverpool, UK

Steering Committee

Rafael H. Bordini, Federal University of Rio Grande do Sul, Brazil
Mehdi Dastani, Utrecht University, The Netherlands
Jürgen Dix, Clausthal University of Technology, Germany
Amal El Fallah Seghrouchni, Univesity of Paris VI, France

iv



Workshop Schedule

09:00–09:30 Workshop Opening
Session 1

09:30–10:30 Invited Talk
TBA

10:30–11:00 Coffee Break
11:00–12:00 Foundations of Agent Programming Languages

Logical Foundations for a Rational BDI Agent Programming Language (Extended Version)
(Shakil M. Khan and Yves Lespérance)
A Coupled Operational Semantics for Goals and Commitments
(Pankaj R. Telang, Neil Yorke-Smith, and Munindar P. Singh)

12:00–13:00 Applying (Multi-)Agent Oriented Programming
Developing a Knoweldge Management Multi-Agent System Using JaCoMo
(Carlos M. Toledo, Rafael H. Bordini, Omar Chiotti, and Maria R. Galli)
Notes on pragmatic agent-programming with Jason
(Radek Pibil, Peter Novák, Cyril Brom, and Jakub Gemrot)

13:00–14:00 Lunch
14:00–15:30 Programming Languages and Platforms

The agent programming language Meta-APL
(Thu Trang Doan, Natasha Alechina, and Brian Logan)
BDI4JADE: a BDI layer on top of JADE
(Ingrid Nunes, Carlos J. P. de Lucena, and Michael Luck)
Integrating Expectation Handling into Jason
(Surangika Ranathunga, Stephen Cranefield, and Martin Purvis)

15:30–16:00 Coffee Break
16:00–17:30 Model Checking

Abstraction for Model Checking Modular Interpreted Systems over ATL
(Michael Köster and Peter Lohmann)
MAS: Qualitative and Quantitative Reasoning
(Ammar Mohammed and Ulrich Furbach)
State Space Reduction for Model Checking Agent Programs
(Sung-Shik T. Q. Jongmans, Koen V. Hindriks, and M. Birna van Riemsdijk)

17:30–18:00 Closing Session
Multi-Agent Programming Contest (Announcement)
(Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico Schlesinger)
Workshop Close

v



Contents

1 Foundations of (Multi-)Agent Programming 1
1.1 Logical Foundations for a Rational BDI Agent Programming Lan-

guage (Extended Version)
Shakil M. Khan, Yves Lespérance . . . . . . . . . . . . . . . . . . . 2

1.2 A Coupled Operational Semantics for Goals and Commitments
Pankaj R. Telang, Neil Yorke-Smith, Munindar P. Singh . . . . . . . 21

2 Applying (Multi-)Agent Oriented Programming 37
2.1 Developing a Knowledge Management Multi-Agent System Using

JaCaMo
Carlos M. Toledo, Rafael H. Bordini, Omar Chiotti, Maŕıa R. Galli . 39

2.2 Notes on pragmatic agent-programming with Jason
Radek Pibil, Peter Novák, Cyril Brom, Jakub Gemrot . . . . . . . . 55

3 Programming Languages and Platforms 71
3.1 The agent programming language Meta-APL

Thu Trang Doan, Natasha Alechina, Brian Logan . . . . . . . . . . 72
3.2 BDI4JADE: a BDI layer on top of JADE

Ingrid Nunes, Carlos J. P. de Lucena, Michael Luck . . . . . . . . . 88
3.3 Integrating Expectation Handling into Jason

Surangika Ranathunga, Stephen Cranefield, Martin Purvis . . . . . 105

4 Model Checking 121
4.1 Abstraction for Model Checking Modular Interpreted Systems over

ATL
Michael Köster, Peter Lohmann . . . . . . . . . . . . . . . . . . . . 122

4.2 MAS: Qualitative and Quantitative Reasoning
Ammar Mohammed, Ulrich Furbach . . . . . . . . . . . . . . . . . 141

4.3 State Space Reduction for Model Checking Agent Programs
Sung-Shik T. Q. Jongmans, Koen V. Hindriks, M. Birna van Riemsdijk157

vi





Chapter 1

Foundations of (Multi-)Agent
Programming



Logical Foundations for a Rational BDI Agent
Programming Language (Extended Version)!

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada

{skhan, lesperan}@cse.yorku.ca

Abstract. To provide efficiency, current BDI agent programming languages with
declarative goals only support a limited form of rationality – they ignore other
concurrent intentions of the agent when selecting plans, and as a consequence,
the selected plans may be inconsistent with these intentions. In this paper, we
develop logical foundations for a rational BDI agent programming framework
with prioritized declarative goals that addresses this deficiency.We ensure that the
agent’s chosen declarative goals and adopted plans are consistent with each other
and with the agent’s knowledge. We show how agents specified in our language
satisfy some key rationality requirements.

1 Introduction

This paper contributes to the foundations of Belief-Desire-Intention agent programming
languages/frameworks (BDI APLs), such as PRS [10], AgentSpeak [19], etc. Recently,
there has been much work on incorporating declarative goals in these APLs [7, 28, 21,
5, 27, 22]. In addition to defining a set of plans that can be executed to try to achieve
a goal, these programming languages also incorporate goals as declarative descriptions
of the states of the world which are sought. A typical BDI APL with declarative goals
(APLwDG) uses a user-specified hierarchical plan library Π containing abstract plans,
a procedural goal-base Γ containing a set of plans that the agent is committed to exe-
cute, and a declarative goal-base∆ that has goals that the agent is committed to achieve.
In response to events in the environment and to goals in ∆, in each cycle the agent in-
terleaves selecting plans from Π , adopting them to Γ , and executing actions in Γ . The
execution of some of these actions can in turn trigger the adoption of other declara-
tive goals. This process is repeated until all the goals in ∆ are successfully achieved.
The role of these declarative goals in an APLwDG is essentially for monitoring goal
achievement and performing recovery when a plan has failed by decoupling plan fail-
ure/success from that of goal. Since these declarative goals capture the reason for exe-
cuting plans, they are necessary to perform rational deliberation, and react in a rational
way to changes in goals that result from communication, e.g. requests.

While current APLwDGs have evolved over the past few years — e.g. some of them
handle restricted forms of temporally extended goals [8] — to keep them tractable
! This paper is an extended version of [16] and is also a revised version of [14].

2



and practical, they sacrifice some principles of rationality. In particular, while select-
ing plans to achieve a declarative goal, they ignore other concurrent intentions of the
agent. As a consequence, the selected plan may be inconsistent with the agent’s other
intentions. Thus the execution of such an intended plan can render other contemporary
intentions impossible to bring about. Also, these APLwDGs typically rely on syntactic
formalizations of declarative goals, subgoals, and their dynamics, whose properties are
often not well understood.

Apart from this, there has been work that focuses on maintaining consistency of a
set of concurrent intentions. For example, Clement et al. [3, 4] argue that agents should
be able to reason about abstract HTN plans and their interactions before they are fully
refined. They propose a method for deriving summary information (i.e. external pre-
conditions and effects) of abstract plans and discuss how this information can be used
to coordinate the interactions of plans at different levels of abstractions. Thangarajah et
al. [26] use such summary information to detect and resolve conflicts between goals at
run time. Horty and Pollack [9] propose a decision theoretic approach to compute the
utility of adopting new (non-hierarchical) plans, given a set of already adopted plans.
While some of these approaches can be integrated in APLs (e.g. [26]), they leave out
many aspects of rationality (e.g. they do not say what the agent should do if external
interference makes two of her intentions permanently incompatible), and do not deal
with declarative goals.

In this paper, we develop a logical framework for a rational BDI APL with pri-
oritized declarative goals called Simple Rational APL (SR-APL, henceforth), that ad-
dresses these deficiencies of previous APLwDGs. Our framework combines ideas from
the situation calculus-based Golog family of APLs (e.g. [6]), our expressive semantic
formalization of prioritized goals, subgoals, and their dynamics [13, 15], and work on
BDI APLs. We ensure that the agent’s chosen declarative goals and adopted plans are
consistent with each other and with the agent’s knowledge. In doing this, we must ad-
dress two fundamental questions about rational agency: (1) What does it mean for a
BDI agent to be committed to concurrently execute a set of plans next while keeping the
option of further commitments to other plans open, in a way that does not allow pro-
crastination? (2) How to ensure consistency between an agent’s adopted declarative
goals and adopted plans, given that some of the latter might be abstract, i.e. might be
only partially instantiated in the sense that they include subgoals for which the agent
has not yet adopted a (concrete) plan?We show how agents specified in our framework
satisfy some key rationality requirements. We discuss how new practical programming
languages can be developed by restricting the proposed representation and reasoning.
Our framework tries to bridge the gap between agent theories and practical APLs by
providing a model and specification of an idealized BDI agent whose behavior is closer
to what a rational agent does. As such, it allows one to understand how compromises
made during the development of a practical APLwDG affect the agent’s rationality.

The paper is organized as follows: in the next section, we discuss a motivating
example. In Sections 3 and 4, we outline our formal BDI framework. In Section 5, we
specify the semantics of SR-APL. In Section 6, we show that in the absence of external
interference, our agent behaves in ways that satisfy some key rationality principles.
Then in Section 7, we summarize our results and discuss possible future work.

3



2 A Motivating Example
Consider a blocks world domain, where each block is one of four possible colors: blue,
yellow, green, and red. There is only a stacking action stack(b, b′): b can be stacked
on b′ in state s if b != b′, both b and b′ are clear in s, and b is on the table in s. There
are no unstacking actions, so the agent cannot use a block to build two different towers
at different times. Assume that there are four blocks, BB , BY , BG, and BR, one of
each color. the agent knows the color of these blocks, and knows that initially all the
blocks are on the table and are clear. Now assume that the agent has the following
two goals: (1) to eventually have a 2 blocks tower that has a green block on top and
a non-yellow block underneath, and (2) to have a 2 blocks tower with a blue block on
top and a non-red block underneath; thus ∆ = {♦TwrGȲ ,♦TwrBR̄}, where TwrC1

C̄2

.=
∃b, b′. OnTbl(b′) ∧ On(b, b′) ∧ ¬C2(b′) ∧ C1(b). Suppose our agent’s plan library Π
has two rules:

♦TwrGȲ : [OnTbl(b) ∧ OnTbl(b′) ∧ b != b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬Y(b) ∧ G(b′)] ← stack(b′, b),

♦TwrBR̄ : [OnTbl(b) ∧ OnTbl(b′) ∧ b != b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬R(b) ∧ B(b′)] ← stack(b′, b).

That is, if the agent has the goal to have a green and non-yellow tower and knows about
a green block b′ and a distinct non-yellow block b that are both clear and are on the
table, then she should adopt the plan of stacking b′ on b, and similarly for the goal of
having a blue and non-red tower.

Now, consider a typical APLwDG, that (without considering the overall consistency
of the agent’s intentions) simply select plans from Π for the agent’s goals in ∆ and
eventually executes them in an attempt to achieve her goals. We claim that such an APL
is not always sound and rational. For instance, according to this plan library, one way of
building a green non-yellow (and a blue non-red) tower is to construct a green-blue (a
blue-green, respectively) tower. While these two plans are individually consistent, they
are inconsistent with each other, since the agent has only one block of each color. Thus
a rational agent should not adopt these two plans. However, it can be shown that the
following would be a legal trace for our blocks world domain in such an APL:

〈{},∆〉 ⇒ 〈{σ1},∆〉 ⇒ 〈{σ1,σ2},∆〉 ⇒ 〈{σ2}, {♦TwrGȲ }〉.

The agent first moves to configuration 〈{σ1},∆〉 by adopting the plan σ1 = stack(BB ,
BG) in response to ♦TwrBR̄ , then to 〈{σ1,σ2},∆〉 by adopting σ2 = stack(BG, BB)
to handle ♦TwrGȲ , and then to 〈{σ2}, {♦TwrGȲ }〉 by executing the intended action σ1.
At this point, the agent is stuck and cannot complete successfully. Thus, in such an
APL, not only is the agent allowed to adopt two inconsistent plans, but the execution
of one of these plans makes other concurrent goals impossible (e.g. the execution of
stack(BB , BG) makes ♦TwrGȲ impossible to achieve).

The problem arises in part because actions are not reversible in this domain; there
is no action for moving a block back to the table or for unstacking it. This is common
in real world domains, for instance, most tasks with deadlines or resources, e.g. doing
some errands before noon, a robot delivering mail without running out of battery power,

4



etc. While such irrational behavior could in principle be avoided by using appropriate
conditions in the antecedent of the plan-selection rules (e.g. by stating that the agent
should only adopt a given plan if she does not have certain other goals), this puts an
excessive burden on the agent programmer. Ideally, such reasoning about goals should
be delegated to the agent.

3 Preliminaries
Our base framework for modeling goal change is the situation calculus as formalized
in [17, 20]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agent believes the
domain might be initially, i.e. situations in which no actions have yet occurred. Init(s)
means that s is an initial situation. The actual initial state is represented by a special
constant S0. There is a distinguished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing the action a. Thus the situations
can be viewed as a set of trees, where the root of each tree is an initial situation and
the arcs represent actions. Relations (and functions) whose truth values vary from situ-
ation to situation, are called relational (functional, respectively) fluents, and are denoted
by predicate (function, respectively) symbols taking a situation term as their last argu-
ment. There is a special predicate Poss(a, s) used to state that action a is executable in
situation s. Finally, the function symbol Agent(a) denotes the agent of action a.

We use a theoryD that includes the following set of axioms:1 (1) action precondition
axioms, one per action a characterizing Poss(a, s), (2) successor state axioms (SSA),
one per fluent, that succinctly encode both effect and frame axioms and specify exactly
when the fluent changes [20], (3) initial state axioms describing what is true initially
including the mental states of the agents, (4) axioms identifying the agent of actions,
one per action a characterizing Agent(a), (5) unique name axioms for actions, and (6)
domain-independent foundational axioms describing the structure of situations [17].

Following [23], we model knowledge using a possible worlds account adapted to
the situation calculus. K(s′, s) is used to denote that in situation s, the agent thinks
that she could be in situation s′. Using K, the knowledge of an agent is defined as:
Know(Φ, s) .= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knows Φ in s if Φ holds in all of her
K-accessible situations in s. K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. The dynamics of knowledge is specified by
providing a SSA forK that supports knowledge expansion as a result of sensing actions
[23] and some informing communicative actions [12]. As shown in [23], the constraints
on K continue to hold after any sequence of actions since they are preserved by the
SSA forK. We also assume that the agent is aware of all actions.

To support modeling temporally extended goals, we introduced a new sort of paths
along with an axiomatization for paths in [13]. A path is essentially an infinite sequence
of situations, where each situation along the path can be reached by performing some
executable action in the preceding situation. We use (possibly sub/super-scripted) vari-
ables p to denote paths. There is a predicate OnPath(p, s), meaning that the situation s

1 We will be quantifying over formulae, and thus assume D includes axioms for encoding of
formulae as first order terms, as in [25]. We will also be using lists of programs, and assume
that D includes an axiomatization of lists.

5



is on path p. Also, Starts(p, s) means that s is the starting situation of path p. A path p
starts with s iff s is the earliest situation on p.

We use Φ(s),Ψ(s), · · · , etc. to denote state formulae in the context of knowledge
(and φ(p),ψ(p), · · · , etc. for path formulae in that of goals), each of which has a free
situation variable s (path variable p, respectively). s (and p) will be bound by the context
where the formula Φ(s) (and φ(p), respectively) appears. Where the intended meaning
is clear, we sometimes suppress the situation variable (path variable) fromΦ,Ψ, · · · , etc.
(φ,ψ, · · · , etc. respectively). Also, we often use now to refer to a placeholder constant
that stands for the current situation.

We will use some useful constructs that are defined in [13]. A state formula Φ even-
tually holds over the path p if Φ holds in some situation that is on p, i.e.: ♦Φ(p) .=
∃s′. OnPath(p, s′) ∧ Φ(s′). Secondly, Suffix(p′, p, s) means that path p′ is a suffix of
another path p w.r.t. a situation s; Suffix(p′, p, s) holds iff s is on p, and p′ is the sub-
path of p that starts with s. Finally, SameHist(s1, s2)means that the situations s1 and s2

share the same history of actions, but perhaps starting from different initial situations.

4 Formalization of Prioritized Goals
In [13], we proposed a logical framework for modeling prioritized goals and their dy-
namics. In that framework, an agent can have multiple goals or desires at different pri-
ority levels, possibly inconsistent with each other. We specify how these goals evolve
when actions/events occur and the agent’s knowledge changes. We define the agent’s
chosen goals or intentions, i.e. the goals that the agent is actively pursuing, in terms of
this goal hierarchy. In that framework, agents constantly optimize their chosen goals. To
this end, we keep all prioritized goals in the goal-base unless they are explicitly dropped.
At every step, we compute an optimal set of chosen goals given the hierarchy of priori-
tized goals, preferring higher priority goals, such that chosen goals are consistent with
each other and with the agent’s knowledge. Thus at any given time, some goals in the
hierarchy are active, i.e. chosen, while others are inactive. Some of these inactive goals
may later become active (e.g. if a higher priority active goal that is currently blocking
an inactive goal becomes impossible or is dropped) and trigger the inactivation of other
currently active (lower priority) goals.

Goal Semantics As in [13], we specify the agent’s prioritized goals or p-goals us-
ing accessibility relation/fluent G. A path p is G-accessible at priority level n in situ-
ation s if all the goals of the agent at level n are satisfied over this path and if it starts
with a situation that has the same action history as s. The latter requirement ensures
that the agent’s G-accessible paths are compatible with the actions that have been per-
formed so far. We say that an agent has the p-goal that φ at level n in situation s (i.e.
PGoal(φ, n, s)) iff φ holds over all paths that are G-accessible at n in s. A smaller n
represents higher priority, and the highest priority level is 0. Thus as in [13], we assume
that the set of p-goals are totally ordered according to priority. Note that, in this frame-
work one can evaluate goals over infinite paths and thus can handle arbitrary temporally
extended goals; hence, unlike some other situation calculus based accounts where goal
formulae are evaluated w.r.t. finite paths (e.g. [24]), in this framework one can handle,
for example, unbounded maintenance goals.

As in [13], we allow the agent to have infinitely many p-goals. However in many
cases, the modeler will want to specify a finite set of initial p-goals. When a finite num-

6



ber of p-goals is assumed, we can use the functional fluentNPGoals(s) to represent the
number of prioritized goals that the agent has in situation s. The modeler/programmer
will usually provide some specification of the agent’s initial p-goals at the various pri-
ority levels, using some initial goal axioms. For instance, the initial prioritized goals for
our blocks world example with domain theory DBW can be specified as follows:

(a) Init(s) ⊃ ((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrGȲ )

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrBR̄)),
(b) ∀n, p, s. Init(s) ∧ n ≥ 2 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals of the agent in the initial situations (we assume that the goal
♦TwrGȲ has higher priority than ♦TwrBR̄); (b) makesG(p, n, s) true for every path p that
starts with an initial situation for n ≥ 2. Thus at these levels, the agent has the trivial
p-goal that she be in an initial situation.

An agent’s chosen goals must be realistic. To filter out the paths that are known to
be impossible from G, we define realistic p-goal accessible paths: p is GR-accessible
at level n in s if it is G-accessible at n in s and if it starts with a situation that is K-
accessible in s. In our framework, an agent has the realistic p-goal that φ at level n in
situation s (i.e. RPGoal(φ, n, s)) iff φ holds over all GR-accessible paths at n in s.

We define chosen goals or c-goals using realistic p-goals. Note that an agent’s real-
istic p-goals at various priority levels can be viewed as candidates for her c-goals. Given
the set of realistic p-goals, in each situation the agent’s c-goals are specified to be those
that are in the maximal consistent set of higher priority realistic p-goals. We define this
iteratively starting with a set that contains the highest priority realistic p-goal accessible
paths, i.e.GR-accessible paths at level 0. At each iteration we obtain the intersection of
this set with the set of next highest priorityGR-accessible paths. If the intersection is not
empty, a new chosen set of p-goal accessible paths (and p-goals defined by these paths)
at level i is obtained. We call a p-goal chosen by this process an active p-goal. If on the
other hand the intersection is empty, then it must be the case that the p-goal represented
by this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked as inactive), and the chosen set of p-goal accessible
paths at level i is the same as at level i − 1. To get the prioritized intersection of the
set of GR-accessible paths up to level n, the process is repeated until i = n is reached.
G∩(p, n, s) is used to denote that in situation s, path p is in the prioritized intersection
of GR-accessible paths up to level n. We say that a path p is G∩-accessible in situation
s, i.e.G∩(p, s), ifG∩(p, n, s) holds for all levels n. Finally, we say that an agent has the
c-goal that φ in situation s (i.e. CGoal(φ, s)) if φ holds over all G∩-accessible paths in
s. We can show that initially our blocks world agent has the p-goals/c-goals that ♦TwrGȲ
and ♦TwrBR̄ , i.e.: DBW |= ∀s. Init(s) ⊃ CGoal(♦TwrGȲ ∧ ♦TwrBR̄ , s).

To get positive and negative introspection of goals, we impose two inter-attitudinal
constraints on the K and G-accessibility relations in the initial situations. We have
shown that these constraints then continue to hold after any sequence of actions since
they are preserved by the SSAs forK and G. See [11] for details.

Goal Dynamics An agent’s goals change when her knowledge changes as a result

7



of the occurrence of an action (including exogenous events), or when she adopts or
drops a goal. There are two special actions, for adopting a p-goal φ at some level n
and dropping a p-goal φ, adopt(φ, n) and drop(φ), and a third action for adopting a
subgoal ψ relative to a supergoal φ, adoptRT (ψ,φ).

The dynamics of p-goals are specified using a SSA for G as follows (the agent’s
c-goals are automatically updated when her p-goals change). Firstly, to handle the oc-
currence of a non-adopt/drop action a, all p-goals are progressed to reflect the fact that
this action has occurred. Secondly, to handle adoption of a p-goal φ at level m, a new
formula containing the p-goal is added to the agent’s goal hierarchy atm. To be precise,
in addition to progressing all p-goals at all levels, a new level containing the p-goal that
φ is inserted at m and all current levels with priority greater or equal to m are pushed
one level down the hierarchy. Finally, to handle the dropping of a p-goal φ, the levels
that imply the dropped goal in the agent’s goal hierarchy are replaced by the trivial for-
mula that the history of actions in the current situation has occurred, and thus the agent
no longer has the p-goal that φ. See [13] for details.

Handling Subgoals We also handle subgoal adoption and model the dependencies
between goals and the subgoals and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal should be dropped when the
parent goal becomes impossible, or is dropped. We handle this as follows: adopting a
subgoal ψ relative to a parent goal φ adds a new p-goal that contains both this subgoal
and this parent goal, i.e. ψ ∧ φ. This ensures that when the parent goal is dropped,
the subgoal is also dropped, since when we drop the parent goal φ, all the p-goals at
all G-accessibility levels that imply φ including ψ ∧ φ are also dropped. Note that the
parent goal φ could be a p-goal at multiple levels. We assume that the subgoal ψ is
always adopted w.r.t. the highest priority supergoal level, i.e. the highest priority level
where φ holds. Also, the subgoal ψ is always adopted at the level immediately below
the supergoal φ’s level. The reason for doing this is that since ψ is a means to the end
φ, they should have similar priorities. ψ is said to be a subgoal of φ in situation s (i.e.
SubGoal(ψ,φ, s)) iff there is a G-accessibility level n in s such that φ is a p-goal at n
while ψ is not, and for all G-accessibility levels in s where ψ is a p-goal, φ is also a
p-goal. See [15, 11] for details of our formalization of subgoals.

Prioritized Goals for Committed Agents The formalization of prioritized goal dy-
namics in [13] ensures that the agent always tries to optimize her chosen goals. She
will abandon a c-goal φ if an opportunity to commit to a higher priority but inconsistent
with φ goal arises. As such, our account in [13] displays an idealized form of rational-
ity. This is in contrast to Bratman’s [1] practical rationality that takes into consideration
the resource-boundedness of real world agents. According to Bratman, intentions limit
the agent’s reasoning as they serve as a filter for adopting new intentions. However, the
agent is allowed to override this filter in some cases, e.g. when adopting φ increases
her utility considerably. The framework in [13] can be viewed as a theory of intention
where the filter override mechanism is always triggered.

Note that, in that framework, the agent’s c-goals are very dynamic. For instance, as
mentioned earlier, a currently inactive p-goal φ may become active at some later time,
e.g. if a higher priority active c-goal that is currently blocking φ (as it is inconsistent
with φ) becomes impossible. This also means that another currently active c-goal ψ

8



may as a result become inactive, not because ψ has become impossible, was achieved,
or was dropped, but due to the fact that ψ has lower priority than and is inconsistent
with the newly activated goal φ (see [13] for a concrete example).

Such very dynamic c-goals/intentions are problematic as a foundation for an APL,
as the agent spends a lot of effort in “recomputing” her intentions and plans to achieve
them, and her behavior becomes hard to predict for the programmer. To avoid this, here
we use a modified version of our formalization in [13] that eliminates the filter over-
ride mechanism altogether so that agents’ p-goals/desires are dropped as soon as they
become inactive. We can do this with the following simple changes: (1) we require
that initially the agent knows that her p-goals are all possible and consistent with each
other, (2) we don’t allow the agent to adopt p-goals that are inconsistent with her cur-
rent c-goals/intentions, and (3) we modify the SSA for G so that the agent’s p-goals
are dropped when they become impossible or inconsistent with other higher priority c-
goals. In the resulting “committed agent” framework, an agent’s p-goals are much more
dynamic than in the original framework. On the other hand, her c-goals are now much
more persistent, and are simply the consequential closure of her desires, as these must
now all be consistent with each other and with the agent’s knowledge. The resulting
model of goals is somewhat simplistic, but is sufficient in an APL context.

5 Agent Programming with Prioritized Goals
Our proposed framework SR-APL combines elements from BDI APLs such as AgentS-
peak [19] and from the ConGolog APL [6], which is defined on top of the situation
calculus. In addition, to facilitate monitoring of goal achievement and performing plan
failure recovery, we incorporate declarative goals in SR-APL. To specify the operational
semantics of plans in SR-APL, we will use a subset of the ConGolog APL. This subset
includes programming constructs such as primitive actions a, wait/test actions Φ?, se-
quence of actions δ1; δ2, nondeterministic choice of arguments πv. δ, nondeterministic
iteration δ∗, and concurrent execution of programs δ1‖δ2, to mention a few. Also, as
in ConGolog, we will use Trans(σ, s,σ′, s′) to say that program σ in situation s can
make a single step to reach situation s′ with the program σ′ remaining, and Final(σ, s)
to mean that the program σ may legally terminate in situation s. Finally, Do(σ, s, s′)
means that there is a terminating execution of program σ that starts in s and ends in s′.

Components of SR-APL First of all, we have a set of axioms/theory D specifying
actions that can be done, the initial knowledge and (both declarative and procedural)
goals of the agent, and their dynamics, as discussed in Section 3 and 4. Moreover, we
also have a plan libraryΠ with rules of the form φ : Ψ ← σ, where φ is a goal formula,
Ψ is a knowledge formula, and σ is a plan; a rule φ : Ψ ← σ means that if the agent
has the c-goal that φ and knows that Ψ , then she should consider adopting the plan
that σ. The plan language for σ is a simplified version of ConGolog and includes the
empty program nil, primitive actions a, waiting for a condition Φ?, sequence (σ1;σ2),
and the special action for subgoal adoption, adoptRT (♦Φ,σ); here ♦Φ is a subgoal
to be adopted and σ is the plan relative to which it is adopted.2 While our account of
2 We use the ConGolog APL here because it has a situation calculus-based semantics that is
well specified and compatible with our agent theory. We could have used any APL with these
characteristics.

9



goal change is expressive enough to handle arbitrary temporally extended goals, here
we focus on achievement goals and procedural goals exclusively. We believe that ex-
tending our framework to support maintenance goals should be straightforward, since
maintenance goals behave like additional constraints on the agent behavior in contrast
to achievement goals for which the agent needs to plan for.

Semantics of SR-APL An SR-APL agent can work on multiple goals at the same
time. Thus at any time, an agent might be committed to several plans that she will exe-
cute in an interleaved fashion. We use our situation calculus domain theory D to model
both adopted declarative goals and plans. Initially D only contains declarative goals.
As specified by the SSA for G, D is updated by adding plans or other declarative goals
to the agent’s goal hierarchy when a transition rule (see below) makes the agent perform
an adopt or adoptRT action. We ensure that an agent’s declarative goals and adopted
plans are consistent with each other and with the agent’s knowledge. In our semantics,
we specify this by ensuring that there is at least one possible course of actions (i.e. a
path) known to the agent, and if she were to follow this path, she would end up realizing
all of her declarative goals and executing all of her procedural goals.

One way of specifying an agent’s commitment to execute a plan σ next in D is to
say that she has the intention that Starts(s) ∧ ∃s′. OnPath(s′) ∧ Do(σ, s, s′), i.e. that
each of her intention-accessible paths p is such that it starts with some situation s, it
has the situation s′ on it, and s′ can be reached from s by executing σ. However, this
does not allow for the interleaved execution of several plans, since Do requires that σ
be executed before any other actions/plans.

A better alternative is to represent the procedural goal as Starts(s)∧∃s′. OnPath(s′)∧
DoAL(σ, s, s′), which says that the agent has the intention to execute at least the pro-
gram σ next, and possibly more. DoAL(σ, s, s′) holds if there is an execution of pro-
gram σ, possibly interleaved with other actions by the agent herself, that starts in situa-
tion s and ends in s′, which we define as:3

DoAL(σ, s, s′) .= Do(σ‖(πa. Agent(a) = agt?; a)∗, s, s′).

However, a new problem with this approach is that it allows the agent to procrastinate
in the execution of the intended plans in D. For instance, suppose that the agent has
the p-goal at priority level n1 to execute the program σ1 and at level n2 to execute σ2

next. Then, according to our definition of DoAL, the agent has the intention at level n1

to execute σ1 and at level n2 to execute σ2, possibly concurrently with other actions
next, since we use DoAL to specify those goals. The “other actions” at level n1 (n2,
respectively) are meant to be actions from the plan σ2 (σ1, respectively). However,
nothing requires that the additional actions that the agent might execute are indeed from
σ2(σ1, respectively), and thus this allows her to perform actions that are unnecessary as
long as they do not perturb the execution of σ1 and σ2.

To deal with this, we include an additional component, a procedural intention-base
Γ , to an SR-APL agent. Γ is a list of plans that the agent is currently actively pursuing.
To avoid procrastination, we will require that any action that the agent actually performs

3 We will use this construct to specify the procedural goals of an agent agt. Note that, while our
theory supports exogenous actions performed by other agents, we assume that all actions in
the plans of agt that specify her behavior must be performed by agt herself.

10



comes from Γ (as specified in the transition rule Astep below). In the following, we will
use Γ ‖ to denote the concurrent composition of the programs in Γ :4

Γ ‖ .= if (Γ = [nil]) then nil else First(Γ )‖(Rest(Γ ))‖.

In SR-APL, a program configuration 〈σ, s〉 is a tuple consisting of a program σ and
a ground situation s. An agent configuration on the other hand is a tuple 〈Γ, s〉 that
consists of a list of plans Γ and a ground situation s. The initial agent configuration
is 〈[nil], S0〉. Although strictly speaking an agent configuration includes the knowledge
and the goals of the agent, these can be obtained from the (fixed) theory D and the
situation in the configuration.

The semantics of SR-APL are defined by a two-tier transition system. Program-
level transition rules specify how a program written in our plan language may evolve.
On top of this, we use agent-level transition rules to specify how an SR-APL agent
may evolve. Our program-level transition rules are simply a subset of the ConGolog
transition rules. We use 〈σ, s〉 → 〈σ′, s′〉 as an abbreviation for Trans(σ, s,σ′, s′).

Agent-Level Transition Rules These transition rules are given in Table 1 and are
similar to those of a typical BDI APL.5 First of all, we have a rule Asel for selecting
and adopting a plan using the plan libraryΠ for some realistic p-goal ♦Φ. It states that
if: (a) there is a rule in the plan library Π which says that the agent should adopt an
instance of the plan σ if she has ♦Φ as her p-goal and knows that some instance of Ψ ,
(b) ♦Φ is a realistic p-goal with priority n in s for which the agent hasn’t yet adopted
any subgoal, (c) the agent knows in s that Ψ ′, (d) θ unifies Ψ and Ψ ′, and (e) the agent
does not intend not to adopt DoAL(σθ) w.r.t. ♦Φ next, then she can adopt the plan σθ,
adding DoAL(σθ) as a subgoal of ♦Φ to her goals in the theory D, and adding σθ to Γ
(here Handled(φ, s) is defined as ∃ψ. SubGoal(ψ,φ, s)).

We can show that if an agent does not have the c-goal in s not to adopt a subgoal ψ
w.r.t. a supergoal φ, then she does not have the c-goal that ¬ψ next in s, i.e.:

Theorem 1.

D |= ¬CGoal(¬∃s′. Do(adoptRT (ψ,φ), now, s′), s) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ,φ), s′)) ∧ ψ(p′), s).

Theorem 1 and condition (e) above imply that the agent does not have the c-goal not to
execute σθ concurrently with Γ ‖ and possibly other actions next, i.e.:

(i). ¬CGoal(¬∃s′, s′′. Do(adoptRT (DoAL(σθ),♦Φ), now, s′)
∧ DoAL(σθ ‖ Γ ‖, s′, s′′), s).

4 We will use various standard list operations, e.g. First (representing the first item of a list), Rest
(representing the sublist that contains all but the first item of a list), Cons (for constructing a
new list from an item and a list), Member (for checking membership of an item within a list),
Remove (for removing a given item from a list), Replace (for replacing a given item with
another item in a list), etc.

5 We use CGoal(∃s′. DoAL(σ, now, s′), s) or simply CGoal(DoAL(σ), s) as a shorthand for
CGoal(∃s′. Starts(now) ∧ OnPath(s′) ∧ DoAL(σ, now, s′), s).

11



Table 1. Agent Transition Rules

Member(♦Φ : Ψ ← σ, Π), D |= RPGoal(♦Φ, n, s),
D |= ¬Handled(♦Φ, s) ∧ Know(Ψ ′, s), mgu(Ψ, Ψ ′) = θ,

(Asel) D |= ¬CGoal(¬∃s′. Do(adoptRT (DoAL(σθ), ♦Φ), now, s′), s)
〈Γ, s〉 ⇒ 〈Cons(σθ, Γ ), do(adoptRT (DoAL(σθ), ♦Φ), s)〉

Member(σ, Γ ), D |= RPGoal(DoAL(σ), n, s),
(Astep) D |= 〈σ, s〉 → 〈σ′, do(a, s)〉 ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

〈Γ, s〉 ⇒ 〈Replace(σ, σ′, Γ ), do(a, s)〉

(Aexo) D |= Exo(a) ∧ Poss(a, s)
〈Γ, s〉 ⇒ 〈Γ, do(a, s)〉

(Aclean) Member(σ, Γ ), D |= ¬∃n. RPGoal(DoAL(σ), n, s)
〈Γ, s〉 ⇒ 〈Remove(σ, Γ ), s〉

D |= ¬∃s′. 〈Γ ‖, s〉 → 〈Γ ′, s′〉, D |= ¬Final(Γ ‖, s),
For all σ s.t. Member(σ, Γ ) we have:
D |= ∃n. RPGoal(DoAL(σ), n, s) ∧ Handled(DoAL(σ), s),

D |= ¬CGoal(¬∃s′. Do(adopt(Do(→a ), NPGoals(s)), now, s′), s),

(Arep) D |= Agent(→a ) = agt ∧ Do(→a , s, s′) ∧ 〈Γ ‖, s′〉 → 〈Γ ′, s′′〉
〈Γ, s〉 ⇒ 〈Cons(→a , Γ ), do(adopt(Do(→a ), NPGoals(s)), s)〉

Moreover, it can be shown that in our framework, an agent acquires the c-goal that ψ
after she adopts it as a subgoal of φ in s, provided that she has the realistic goal at some
level n in s that φ, and that she does not have the c-goal in s that ¬ψ next, i.e.:

Theorem 2.

D |= ∃n. RPGoal(φ, n, s) ∧
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ,φ), s′)) ∧ ψ(p′), s)
⊃ CGoal(ψ, do(adoptRT (ψ,φ), s)).

From (b), (i), and Theorem 2, we have that:
(ii). CGoal(∃s′. DoAL(σθ ‖ Γ ‖, now, s′), do(adoptRT (DoAL(σθ),♦Φ), s)).

(i) ensures that the adopted subgoal σθ is consistent with Γ ‖ in the sense that they
can be executed concurrently, possibly along with other actions in s. (ii) confirms that
σθ is indeed intended after the adoptRT action has happened. Note that this notion
of consistency is a weak one, since it does not guarantee that there is an execution of
the program (σθ ‖ Γ ‖) after the adoptRT action happens, but rather ensures that the
program DoAL(σθ ‖ Γ ‖) is executable. In other words, σθ and the programs in Γ
alone might not be concurrently executable, and additional actions might be required.
We’ll come back to this issue later.

Secondly, we have a transition rule Astep for single stepping the agent program by
executing an intended action from Γ . It says that if: (a) a program σ in Γ can make

12



a program-level transition in s by performing a primitive action a with program σ′

remaining in do(a, s) afterwards, (b) DoAL(σ) is a realistic p-goal with priority n in s,
and (c) the transition is consistent with the agent’s goals in the sense that she does not
have the c-goal not to execute a in s, then the agent can execute a, and Γ and s can be
updated accordingly.

Once again we have a weak consistency requirement in condition (c) above. Ide-
ally, we would have added to (c) that the agent can continue from do(a, s) in the sense
that she does not have the c-goal not to execute the remaining program σ′ concur-
rently with the other programs in Γ in do(a, s), i.e. that D |= ¬CGoal(¬∃s′. Do(a; (σ′
‖ Γ ‖), now, s′), s). However, note that Γ may not be complete in the sense that it may
include plans that have actions that trigger the adoption of subgoals, for which the ex-
ecution of Γ ‖ waits; but Γ does not have any adopted plans yet that can achieve these
subgoals. Thus Γ ‖ by itself might currently have no complete execution, and will only
become completely executable when all such subgoals have been fully expanded.

For example, consider a new agent for our blocks world domain who has a goal to
eventually build a 3 blocks tower, i.e. ♦3Tower, where 3Tower .= ∃b, b′, b′′. OnTbl(b)∧
On(b′, b) ∧ On(b′′, b′). Also, in addition to the above rules, her plan libraryΠ includes
the following rule:

♦3Tower : [OnTbl(b) ∧ OnTbl(b′) ∧ OnTbl(b′′) ∧ b != b′ ∧
Clear(b) ∧ Clear(b′) ∧ Clear(b′′) ∧ ¬Y(b) ∧ G(b′) ∧ Y(b′′)] ← σ1,

where σ1 = adoptRT (♦TwrGȲ ,DoAL(σ2));σ2, and σ2 = TwrGȲ ?; stack(b′′, b′).

This says that, if the agent knows about a non-yellow block b, a distinct green block b′,
and a yellow block b′′ that are all clear and on the table, then her goal of building a 3
blocks tower can be fulfilled by adopting the plan that involves adopting the subgoal to
eventually build a green non-yellow tower, waiting for the achievement of this subgoal,
and then stacking b′′ on b′. Suppose that in response to ♦3Tower, the agent adopted σ1

as above as a subgoal of this goal using the Asel rule, and thus σ1 is added to Γ . In the
next few steps, she will step through the adopted plan σ1, executing one action at a time
in an attempt to achieve her goal that ♦3Tower.

Note that, in SR-APL, the hierarchical decomposition of a subgoal, e.g. σ1 above,
is a two step process. In the first step, in response to the execution (via Astep) of the
adoptRT (♦TwrGȲ ,DoAL(σ2)) action in her plan σ1 in Γ , the agent adopts ♦TwrGȲ as
a subgoal of executing the remaining program σ2, possibly along with other actions,
i.e. w.r.t. DoAL(σ2). Then in the second step, she uses the Asel rule to select and adopt
a plan for the subgoal ♦TwrGȲ . We assume that the subgoal ♦TwrGȲ must always be
achieved before the supergoal. To do this, we suspend the execution of the supergoal by
waiting for the achievement of the subgoal. This can be specified by the programmer
by having the supergoal σ2 start with the wait action TwrGȲ ? that waits for the subgoal
to complete. But this means that σ2 (and thus σ1) by itself, i.e. without the DoAL con-
struct, might not have a complete execution as it might get blocked when it reaches
TwrGȲ ?. Moreover, since σ2 is a member of Γ , Γ ‖ will have a complete execution only
when all the subgoals in Γ have been fully expanded. To deal with this, we use a weak
consistency check that does not perform full lookahead over Γ ‖. However, our seman-
tics ensures that any action a performed by the agent must not make the concurrent

13



execution of all the adopted plans of the agent possibly with other actions impossible,
i.e. it must be consistent with DoAL(Γ ‖), since Astep requires that doing a must be
consistent with all her DoAL procedural goals (and other concurrent declarative goals)
in her goal hierarchy, i.e. that D |= ¬CGoal(¬∃s′. Do(a, now, s′), s).

Thirdly, we have a rule Aexo for accommodating exogenous actions, i.e. actions
occurring in the agent’s environment that are not under her control. When such an action
a occurs in s, the agent must update her p-goals by progressing the situation component
of her configuration to do(a, s).

Fourthly, we use the Aclean rule for dropping adopted plans from the procedural
goal-base Γ that are no longer intended in the theoryD. It says that if there is a program
σ in Γ , and executing σ possibly along with other actions is no longer a realistic p-
goal, then σ should be dropped from Γ . This might be required when the occurrence
of an exogenous action forces the agent to drop a plan by making it impossible to
execute or inconsistent with her higher priority realistic p-goals. Recall that our theory
automatically drops such plans from the agent’s goal-hierarchy specified by D.

Finally, we have a rule Arep for repairing an agent’s plans in case she gets stuck,
i.e. when for all programs σ in Γ , the agent has the realistic p-goal that DoAL(σ)
at some level n (and thus all of these DoAL(σ) are still individually executable and
collectively consistent), but together they are not concurrently executable without some
non-σ actions in the sense that Γ ‖ has no program-level transition in s. This could
happen as a result of an exogenous action or as a side effect of our weak consistency
check, as discussed below. The Arep rule says that if: (a) Γ ‖ does not have a program
level transition in s (which ensures that Astep can’t be applied), (b) Γ ‖ is not considered
to be completed in s, (c) every program in Γ is currently a realistic p-goal that has been
handled (which ensures that Aclean and Asel can’t be applied), (d) there is a sequence
of actions →a that the agent does not intend not to execute next, and (e) →a repairs Γ in
the sense that there is a program level transition of Γ ‖ after →a has been executed in s,
then in an attempt to repair Γ , the agent should adopt →a at the lowest priority level (i.e.
at NPGoals(s)).

Why do we need this rule? One reason is because the agent could get stuck due to
the occurrence of an exogenous action e, e.g. when e makes the preconditions of a plan
σ in Γ false; note that, DoAL(σ)might still be executable after the occurrence of e, e.g.
if there is an action r (encoded by the DoAL construct) that can be used to restore the
preconditions of σ.

Another reason repair may be needed is that we use partial lookahead when exe-
cuting actions via Astep. For example, assume a domain with actions a, b, and r, all
of which are initially possible. The execution of b makes the preconditions of a false,
while that of r restores them. Our agent has two adopted plans, DoAL(a) and DoAL(b)
in the theory D, and Γ = [a, b]. Note that b; a is not a valid execution of Γ ‖, since
the execution of b breaks the preconditions of a. But b; r; a is indeed a valid execution
of (DoAL(a) ∧ DoAL(b)). Since we only do partial consistency checking, our seman-
tics allows the agent to perform b as the first action.6 That is, to execute b using the
Astep transition rule, we only need to ensure that b has a program-level transition in s

6 Note that this does not mean that Astep allows the agent to perform an action that makes one
of her goals impossible, e.g. to execute b when such a repair action r is not available.

14



and that this transition is consistent with the agent’s goals in D, i.e. with DoAL(a) and
DoAL(b), both of which hold. After the execution of b, the agent will get stuck, as there
is no action in the progression of Γ that she can perform. To deal with this, we include
the repair rule that makes the agent plan for and commit to a sequence of actions that
can be used to repair Γ , which for our example is r. Note that, we could have avoided
the need for repairing plans in this case by strengthening the conditions of the Astep rule
to do full lookahead by expanding all subgoals in Γ . However, this requires modeling
the plan selection/goal decomposition process as part of the consistency check, which
we leave for future work. We could have also relied on plan failure recovery techniques
[28]. Finally, our repair rule does a form of conformant planning; more sophisticated
forms of planning such as synthesizing conditional plans that include sensing actions
could also be performed.

When the agent has complete information, there must be a repair plan available
to the agent (whose actions can be performed by the agent herself) if her goals are
consistent. In our framework, since the SSA for G drops all inconsistent goals/plans,
the agent’s p-goals are always consistent, and thus if complete information is assumed,
it is always possible to repair the remaining plans. Consider our previous example: if the
agent has DoAL(a) and DoAL(b) as her realistic p-goals, Γ = [a, b], and if she has the
c-goal not to execute an action from Γ ‖ (i.e. CGoal(¬∃s′. 〈Γ ‖, now〉 → 〈Γ ′, s′〉, s)),
then it must be the case that she does not have the c-goal not to execute Γ ‖ along
with other actions (e.g. r), i.e. ¬CGoal(¬∃s′. DoAL(a‖b, now, s′), s). Otherwise, one
of DoAL(a) or DoAL(b) would have been dropped by the SSA for G as an agent’s
p-goals are always consistent with each other. Thus there must be a plan →

a that can
repair Γ . Since the agent has complete information, this plan must work in all her
epistemic alternatives (our repair rule does a form of conformant planning). Also, since
by definition, the agent of the “other actions” in the DoAL construct is the agent herself,
this means that she is also the agent of →a . If on the other hand the agent has only
incomplete information, then a repair plan may need to perform sensing actions and
branch on the results. We leave this kind of conditional planning for future work.

Also, note that this rule allows the agent to procrastinate in the sense that in addition
to the plan that actually repairs Γ , she is allowed to adopt and execute actions that are
unnecessary. This could be avoided by constraining the repair plan →a , e.g. by requiring
it to be the shortest or the least costly plan etc. We leave this for future work.

In our operational semantics, we want to ensure that the procedural goals in Γ are
consistent with those in the theory D before expansion of a subgoal/execution of an
action occurs; so we assume that the Aclean rule has higher priority than Asel and Astep.
We can do this by adding appropriate preconditions to the antecedent of the latter, which
we leave out for brevity.

To summarize, in SR-APL we formalize both declarative goals and plans uniformly
in the same goal hierarchy specified by D. We maintain the consistency of adopted
declarative and procedural goals by ensuring that there is at least one path known to the
agent over which all of her adopted declarative goals hold and that encodes the con-
current execution of all of her adopted plans, possibly along with other actions. When-
ever the agent’s goals/plans become inconsistent due to some external interference, the
successor-state axiom in D will drop some of the adopted goals/plans, respecting their

15



priority, and consistency of the goal-base is automatically restored. We also have a pro-
cedural goal-base Γ containing the adopted plans in D, whose sole purpose is to ensure
that the agent does not procrastinate w.r.t. her adopted plans. The set of transition rules
of SR-APL allows an SR-APL agent to select, adopt, and execute plans from the plan
library and thus serves as SR-APL’s practical reasoning component. While adopting
plans and executing actions, we use a weak consistency check, and thus avoid searching
over the entire plan-space while ensuring consistency. SR-APL also includes a repair
rule that can be used to repair plans if the agent gets stuck (a) as a result of our weak
consistency check (and lack of lookahead in plan selection), (b) due to external inter-
ferences, or (c) due to the existence of an adopted declarative goal for which there is no
plan specified in the plan library.

Let us now define some useful notions of program execution in SR-APL. A labeled
execution trace T relative to a theory D is a (possibly infinite) sequence of configura-
tions 〈Γ0, s0〉

l0⇒ 〈Γ1, s1〉
l1⇒ 〈Γ2, s2〉

l2⇒ 〈Γ3, s3〉
l3⇒ · · ·, s.t. Γ0 = [nil], s0 = S0 is the

actual initial configuration, and for all 〈Γi, si〉, the agent level transition rule li can be
used to obtain 〈Γi+1, si+1〉. Here li is one of Asel, Astep, Aexo, Aclean, and Arep, and
in the absence of exogenous actions, li can be one of Asel, Astep, Aclean, and Arep. We
sometimes suppress these labels. A complete trace T relative to a theory D is a finite
labeled execution trace relative to D, 〈Γ0, s0〉

l0⇒ · · · ln−1⇒ 〈Γn, sn〉, s.t. 〈Γn, sn〉 does
not have an agent level transition, i.e. 〈Γn, sn〉 !.

For our blocks world example, we can show that our SR-APL agent for this domain
will not adopt inconsistent plans as seen in Section 2 and will in fact achieve all her
goals. Note that, when arbitrary exogenous actions can occur, even the best laid plans
can fail. Here we only consider the case of where exogenous actions are absent. We
model this using the following axiom, which we callNoExo: ∀a. ¬exo(a). Given this,
we can show that:

Proposition 1 (a). There exists a complete trace T relative to DBW ∪ {NoExo}
for our blocks world program. (b). For all such complete traces T = 〈Γ0, s0〉 ⇒
〈Γ1, s1〉 ⇒ · · ·⇒〈Γn, sn〉, we have:DBW∪{NoExo} |= Final(Γ ‖

n , sn)∧TwrGȲ (sn)∧
TwrBR̄(sn). (c). There are no infinite traces relative to DBW ∪ {NoExo}.

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks world
agent achieves all her goals.

6 Rationality of SR-APL Agents
We next prove some rationality properties that are satisfied by SR-APL agents. We
only consider the case when exogenous actions do not occur. We could have considered
exogenous actions, but in that case we would have to complicate the framework further,
e.g. by assuming a fair environment that gives a chance to the agent to perform actions.
Moreover, it is not obvious what rational behavior means in such contexts.

First of all, in each situation, for all domains D that are part of an SR-APL agent,
the knowledge and c-goals/intentions as specified by D must be consistent:7

7 This follows independently from the underlying agent theory.

16



Theorem 3 (Consistency of Knowledge and CGoals).

D |= ∀s. ¬Know(false, s) ∧ ¬CGoal(false, s).

We can also show that the procedural goals in Γ and the declarative and procedural
goals in the theory D ∪ {NoExo} remain consistent. Let’s say that the procedural
goals in Γ are consistent with those in the theory D in situation s in a configuration
〈Γ, s〉 iff for all σ s.t. Member(σ,Γ ), we have D |= CGoal(DoAL(σ), s). Also, define
D ¯Exo

.= D ∪ {NoExo}. We have that:

Theorem 4 (Consistency of Γ and D ¯Exo). If T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒
〈Γn, sn〉 is a complete trace of an SR-APL agent w.r.t. a theory D ¯Exo, then for all i s.t.
0 ≤ i < n, we have:
(a). If si+1 = do(a, si) for some a, then the procedural goals in Γi are consistent with
those in the theory D ¯Exo in si,
(b). If si = si+1, then there exists j s.t. 0 < i < j ≤ n and the goals in Γj are
consistent with those in the theory D ¯Exo in sj ,
(c). The procedural goals in Γn are consistent with those in the theory D ¯Exo in sn.

(a) and (c) are self-explanatory. (b) shows that whenever there is some procedural goal
in Γi that is not a goal w.r.t. the theoryD ¯Exo, the Aclean rule will remove it from Γi, and
eventually consistency is restored.8 It follows from Theorem 4 that in all configurations
〈Γ, s〉 where the plans in Γ are consistent with those in the theory D ¯Exo in s, the agent
intends to execute the programs in Γ concurrently starting in s, possibly with other
actions, i.e. D ¯Exo |= CGoal(∃s′. DoAL(Γ ‖, now, s′), s).

Finally, our agents evolve in a rational way:

Theorem 5 (Rationality of Actions in a Trace). If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒
· · · ln−1⇒ 〈Γn, sn〉 is a trace of an SR-APL agent relative to a theory D ¯Exo, then for all i
s.t. 0 < i ≤ n and si = do(a, si−1), we have:

(a). D ¯Exo |= ¬CGoal(¬∃s′. Do(a, now, s′), si−1).
(b). If li−1 = Astep then D ¯Exo |= CGoal(∃s′. DoAL(a, now, s′), si−1).
(c). D ¯Exo |= ∀φ,ψ, n. a = adoptRT (ψ,φ) ∨ a = adopt(ψ, n) ⊃

¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(a, s′)) ∧ ψ(p′), si−1).

This states that SR-APL is sound in the sense that any trace produced by the APL
semantics is consistent with the agent’s chosen goals. To be precise, (a) if an SR-APL
agent performs the action a in situation si−1, then it must be the case that she does
not have the intention not to execute a next in si−1. Moreover, (b) if a is performed via
Astep, then a is indeed intended in si−1 in the sense that she has the intention to execute
a possibly along with some other actions next. Finally, (c) if a is the action of adopting
a subgoal ψ w.r.t. a supergoal φ or that of adopting a goal ψ at some level n, then the
agent does not have the c-goal in si−1 not to bring about ψ next.
8 Recall that applications of Aclean do not change situations.

17



7 Discussion and Conclusion
Based on a “committed agent” variant of our rich theory of prioritized goal/subgoal
dynamics [13], we developed a specification of an APL framework that handles priori-
tized goals and maintains the consistency of adopted declarative and procedural goals.
We also showed that an agent specified in this language satisfies some strong rationality
properties. While doing this, we addressed some fundamental questions about rational
agency. We model an agent’s concurrent commitments by incorporating the DoAL con-
struct in her adopted plans, which allows her to be open towards future commitments to
plans, using a procedural goal-base Γ to prevent procrastination. We formalized a weak
notion of consistency between goals and plans that does not require the agent to expand
all adopted goals while checking for consistency.

While SR-APL agents rely on a user-specified plan library, they can achieve a goal
even if such plans are not specified. Indeed the Arep rule can be used as a first principles
planner for goals that can be achieved using sequential plans. Thus, given a goal ♦Φ,
all the programmer needs to do to trigger the planner is to add a plan of the form
(♦Φ : true ← Φ?) to the plan library Π . Since the program Φ? is neither executable
nor final, it will eventually trigger the Arep rule, which will make the agent adopt a
sequence of actions to achieve Φ.

Here, we focused on developing an expressive agent programming framework that
yields a rational/robust agent without worrying about tractability. Thus our framework
is a specification and model of an ideal APL rather than a practical APL. In the future,
we would like to investigate restricted versions of SR-APL that are practical, with an
understanding of how they compromise rationality. We think this can be done. For in-
stance if we assume a finite domain, then reasoning with the underlying theory should
be decidable. We could adapt techniques from partial order planning such as summary
information/causal links to support consistency maintenance. We could also simply find
a global linear plan and cache it, using summary information to revise it when necessary.
There are some controller synthesis techniques that can deal with temporally extended
goals [18, 2].

Also, it would be desirable to study a version where the agent fully expands an ab-
stract plan and checks its executability before adopting it. Finally, while our underlying
agent theory supports arbitrary temporally extended goals, in SR-APL we only consider
achievement goals. We would like to relax this in the future.

References

1. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, USA, 1987.

2. D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about Actions and Planning in
LTL Action Theories. In Proc. KR’02, pages 593–602, 2002.

3. B. J. Clement and E. H. Durfee. Theory for Coordinating Concurrent Hierarchical Planning
Agents Using Summary Information. In Proc. AAAI’99, pages 495–502, 1999.

4. B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract Reasoning for Planning and Coor-
dination. J. of Artificial Intelligence Research, 28:453–515, 2007.

5. M. Dastani. 2APL: A Practical Agent Programming Language. J. of AAMAS, 16(3):214–248,
2008.

18



6. G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence, 121:109–169, 2000.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming with
Declarative Goals. In Intelligent Agents VII : Agent Theories, Architecture, and Languages,
vol. 1986 of LNAI, pages 228–243. Springer-Verlag, 2000.

8. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming with
Temporally Extended Goals. In Proc. AAMAS’09, pages 137–144, 2009.

9. J. F. Horty and M. E. Pollack. Evaluating New Options in the Context of Existing Plans.
Artificial Intelligence, 127:199–220, 2001.

10. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for Real-Time Reasoning and
System Control. IEEE Expert, 7(6):34–44, 1992.

11. S. M. Khan. Rational Agents : Prioritized Goals, Goal Dynamics, and Agent Programming
Languages with Declarative Goals (in preparation). Ph.D. thesis, York University, Canada,
2011.

12. S. M. Khan and Y. Lespérance. ECASL: A Model of Rational Agency for Communicating
Agents. In Proc. AAMAS’05, pages 762–769, 2005.

13. S. M. Khan and Y. Lespérance. A Logical Framework for Prioritized Goal Change. In Proc.
AAMAS’10, pages 283–290, 2010.

14. S. M. Khan and Y. Lespérance. Towards a Rational Agent Programming Language with
Prioritized Goals. In Working Notes of DALT VIII, pages 18–33, 2010.

15. S. M. Khan and Y. Lespérance. Prioritized Goals and Subgoals in a Logical Account of Goal
Change – A Preliminary Report. In Proc. DALT VII, vol. 5948 of LNAI, pages 119–136,
Springer-Verlag, 2010.

16. S. M. Khan and Y. Lespérance. SR-APL: AModel for a Programming Language for Rational
BDI Agents with Prioritized Goals (Extended Abstract). To appear in Proc. AAMAS’11,
2011.

17. H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situations. Electronic
Transactions of AI (ETAI), 2(3–4):159–178, 1998.

18. M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-
Deterministic Domains. In Proc. IJCAI’01, pages 479–484, 2001.

19. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Agents Breaking Away, vol. 1038 of LNAI, pages 42–55. Springer-Verlag, 1996.

20. R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, 2001.

21. S. Sardiña, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. In Proc. AAMAS’06, pages 1001–1008, 2006.

22. S. Sardiña and L. Padgham. A BDI Agent Programming Language with Failure Recovery,
Declarative Goals, and Planning. J. of AAMAS (to appear), 2010.

23. R. Scherl and H. J. Levesque. Knowledge, Action, and the Frame Problem. Artificial Intel-
ligence, 144(1–2):1–39, 2003.

24. S. Shapiro and G. Brewka. Dynamic Interactions Between Goals and Beliefs. In Proc.
IJCAI’07, pages 2625–2630, 2007.

25. S. Shapiro, Y. Lespérance, and H. J. Levesque. Goal Change in the Situation Calculus. J. of
Logic and Computation, 17(5):983–1018, 2007.

26. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference between
Goals in Intelligent Agents. In Proc. IJCAI’03, pages 721–726, 2003.

27. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict: Semantic Founda-
tions of Goals in Agent Programming. J. of AAMAS, 18(3):471–500, 2009.

28. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals
in Intelligent Agent Systems. In Proc. KR’02, pages 470–481, 2002.

19





A Coupled Operational Semantics
for Goals and Commitments

Pankaj R. Telang1,4, Neil Yorke-Smith2,3, and Munindar P. Singh4

1 Cisco Systems Inc., Research Triangle Park, NC 27709, USA. prtelang@ncsu.edu
2 Olayan School of Business, American University of Beirut, Lebanon.

3 SRI International, Menlo Park, CA 94025, USA. nysmith@aub.edu.lb
4 North Carolina State University, Raleigh, NC 27695-8206, USA. singh@ncsu.edu

Abstract. Commitments capture how an agent relates with another
agent, whereas (private) goals describe states of the world that an agent
is motivated to bring about. Researchers have observed that goals and
commitments are complementary, but have not yet developed a combined
operational semantics for them. This paper does just that by relating
their respective lifecycles as a basis for (1) how these concepts cohere
for an individual agent and (2) engender cooperation among agents. We
illustrate on a real-world scenario in the domain of aerospace aftermarket
services. Our semantics yields important desirable properties, including
convergence of the configurations of cooperating agents, thereby delineat-
ing some theoretically well-founded yet practical modes of cooperation
in a multiagent system.

1 Introduction and Motivation

Whereas the study of goals is a long-standing theme in AI, the last several years
have seen the motivation and elaboration of a theory of (social) commitments.
The concepts of goals and commitments are intuitively complementary. A com-
mitment describes how an agent relates with another agent, while a goal describes
a state of the world that an agent is motivated to bring about. A commitment
carries deontic force in terms of what an agent would bring about for another
agent, while a goal describes an agent’s proattitude toward some condition.

Researchers have begun tying these two concepts together. We go beyond
existing works by developing a formal, modular approach that accomplishes the
following. First, it characterizes the lifecycles and more generally the operational
semantics of the two concepts. Second, it characterizes the interplay between
goals and commitments. Third, this approach distinguishes the purely semantic
aspects of their lifecycles from the pragmatic aspects of how a cooperative agent
may reason. Fourth, it shows that certain desirable properties can be guaranteed
for agents who respect selected rules of cooperation. These properties include
convergence: the agents achieve a level of consistency internally (between the
states of their goals and commitments) and externally (between the states of
their commitments relevant to each other).

21



Fig. 1. Commitment lifecycle as a state transition diagram.

We begin in Sect. 2 by introducing the concepts of commitment and goals,
and for each presenting their lifecycle as a state transition diagram. Sect. 3
presents our combined operational semantics, which is based on guarded rules.
We distinguish between two types of rules: mandatory structural rules which
reflect the lifecycle of goals and commitments, and practical rules that an agent
may choose to follow in order to achieve certain desirable properties. In Sect. 4
we prove convergence properties for agents that adopt both types of rules. Sect. 5
illustrates on a real-world scenario, and Sect. 6 places our work in context.

2 Background: Commitments and Goals

Commitments. A commitment expresses a social relationship between two
agents. Specifically, a commitment C(debtor, creditor, antecedent, consequent)
denotes that the debtor commits to the creditor to bringing about the con-
sequent if the antecedent begins to hold [10]. Fig. 1 shows the lifecycle of a com-
mitment simplified from Telang and Singh [12] (below, we disregard timeouts,
and commitment delegation or assignment). A labeled rectangle represents a
commitment state, and a directed edge represents a transition, labeled with the
corresponding action or event.

A commitment can be in one of the following states: Null (before it is created),
Conditional (when it is initially created), Expired (when its antecedent remains for-
ever false, while it was still Conditional), Satisfied (when its consequent is brought
about while it was Active regardless of its antecedent), Violated (when its an-
tecedent has been true but its consequent will forever be false, or it is canceled
when Detached), Terminated (when canceled while Conditional or released while
Active), or Pending (when suspended while Active). Active has two substates: Con-
ditional (when its antecedent is false) and Detached (when its antecedent has held)
A debtor may create, cancel, suspend, or reactivate a commitment; a creditor may
release a debtor from a commitment.

22



Fig. 2. Simplified lifecycle of an achievement goal as a state transition diagram.

Goals. An agent’s desires represent a proattitudes on part of the agent; an
agent may concurrently hold mutually inconsistent desires. By contrast, goals
are at least consistent desires: we take a rational agent to believe that its goals
are mutually consistent. An agent’s intentions are adopted or activated goals.

A goal G = G(x, p, r, q, s, f) of an agent x has a precondition (or context) p
that must be true before G can become Active and an intention can be adopted
to achieve it, a in-condition r that is true once G is Active until its achievement,
and a post-condition (or effect) q that becomes true if G is successfully achieved
[16]. The success condition s defines the success of G, and the failure condition
f defines its failure. A goal G is successful iff s becomes true prior to f : that is,
the truth of s entails the satisfaction of G only if f does not intervene. Often,
the post-condition q and the success condition s coincide, but they need not. As
for commitments, the success or failure of a goal depends only on the truth or
falsity of the various conditions, not on which agent brings them about.

Fig. 2 simplifies Thangarajah et al.’s [13] lifecycle of an achievement goal (we
do not consider maintenance goals). A goal can be in one of the following states:
Null, Inactive (renamed from Pending to avoid conflict with commitments), Active,
Suspended, Satisfied, Terminated, or Failed. The last three collectively are terminal
states: once a goal enters any of them, it stays there forever. The semantic rules
will link the the definition of a goal G and its states.

Before its creation, a candidate goal is in state Null; once considered by an
agent (its “goal holder”), it commences as Inactive, in contrast to commitments
which are created in state Active. Upon activation, the goal becomes Active; the
agent may pursue its satisfaction by attempting to achieve s. If s is achieved, the
goal moves to Satisfied. At any point, if the failure condition of the goal becomes
true, the goal moves to Failed. At any point, the goal may enter Suspended, from
which it may eventually return to an Inactive or Active state. Lastly, at any point
the agent may drop or abort the goal, thereby moving it to the Terminated state.

23



3 Proposed Operational Semantics

Whereas a goal is specific to an agent (but see Sect. 6), a commitment involves
a pair of agents. On the one hand, an agent may create commitments towards
other agents in order to achieve its goals. On the other hand, an agent may
consider goals in order to fulfill its commitments to other agents.

Chopra et al. [3] formalize a semantic relationship between commitments
and goals. They write goals in either or both of the antecedent or consequent
of a commitment, i.e., C(x, y, g1, g2), where antecedent (g1) and consequent (g2)
are objective conditions (success conditions of one or more goals), not goals.
For example, a car insurer may commit to a repair garage to paying if the lat-
ter performs a repair: C(insurer, repairer, car_repaired, payment_made). Here,
car_repaired is the success condition of the insurer’s goal. The insurer may con-
sider a goal with success condition of payment_made to satisfy the commitment.

3.1 Formal Semantics

We consider the configuration of an agent x as the tuple Sx = 〈B,G, C〉 where B
is its set of beliefs, G its set of goals, and C its set of commitments. Conceptually,
an agent’s configuration relates to both its cognitive and its social state: it in-
corporates its beliefs and goals as well as its commitments. Where necessary, we
index sets or states by agent; for brevity, we omit the parts of the configuration
that are clear. We adopt a standard propositional logic.

– B is the set of x’s beliefs about the current snapshot of the world, and include
beliefs about itself and other agents. Each snapshot is itself atemporal.

– C is a set of commitments, of the form C(x, y, s, u), where x and y are agents
and s and u are logical conditions. We use a superscript from Fig. 1 to denote
the state of a commitment

– G is a set of goals adopted by x, of the form G(x, p, r, q, s, f). G includes goals
that are Inactive. Since the goals in G are adopted, we take it that they are
mutually consistent [16]. Superscripts from Fig. 2 denote goal states.

We capture the operational semantics of reasoning about goals and commit-
ments via guarded rules in which Si are configurations:

guard
S1 −→ S2 (1)

Si.B, Si.G, and Si.C are the appropriate components of Si. Si −→ Sj is a tran-
sition. In most settings, we can specify a family of transitions as an action.
For example, for a commitment C, suspend(C) refers to the set of transitions
Si −→ Sj where C ∈ Si.C and suspend(C) ∈ Sj .C. For actions a and b, a ∧ b
indicates that both must be performed.

The same guard may enable multiple transitions Si −→ Sj with the same
Si, indicating choice (of the agent involved). For example, intuitively, if a com-
mitment corresponding to a goal expires, an agent could either (i) establish an

24



alternative commitment or (ii) drop the goal. The resulting rules have the same
guards, but specify different transitions.

We assume that rational agents seek to achieve their Active goals. That is, an
agent at least believes that it has some means to achieve the success condition s
of a goal it intends. Either the agent can adopt a plan whose success will achieve
s, or it can seek to persuade another agent to bring about the condition s.

3.2 Structural Rules

We distinguish between two types of rules. Structural rules specify the progres-
sion of a commitment or a goal per their respective lifecycles. Each action that
an agent can perform on a goal or a commitment derives a rule of this form. The
guard of such a rule is an objective fact. For example, if f holds, a goal whose
failure condition is f would be considered as having Failed. Rules such as these
capture the hard integrity requirements represented by the lifecycles of goals and
commitments. In our particular setting, such rules are both complete and deter-
ministic, in that there is exactly one target state for each potential transition.
The state diagrams in Fig. 1 and 2 correspond to the structural rules. The rules
are straightforward to derive; we write one rule out in full below, and omit the
remainder for reasons of space. We also do not write the standard lifting rule
that relates transitions on single commitment/goal to transitions on sets.

A conceptual relationship is established between a goal and a commitment
when they reference each other’s objective conditions. Even when related in
such a manner, however, the goal and the commitment independently progress
in accordance with their respective lifecycles. For example, consider a goal G =
G(x, p, r, q, s, f) of agent x. To satisfy this goal, x may create a commitment
C(x, y, s, u). That is, agent x may commit to agent y to bring about u if y brings
about s. When y brings about s, C detaches, and G is satisfied. We describe the
progression of x’s configuration as a structural rule:

Bx ! s

〈GA, CA〉 −→ 〈GS , CD〉 (2)

where the superscripts denote commitment and goal states from Figs. 1 and 2.
Some rules apply in multiple states, indicated via superscripts such as CE∨T .

3.3 Practical Rules

Practical (reasoning) rules capture not necessary integrity requirements, but
rather patterns of pragmatic reasoning that agents may or may not adopt under
different circumstances. The guard of such a rule is usually the antecedent or
consequent of a commitment or the success or failure condition of a goal. The
outcome of such a rule can be expressed as an action or an event from the
applicable lifecycle diagram, which effectively summarizes a family of transitions
from configurations to configurations. For example, an agent having an Active
goal may decide to create a commitment as an offer to another agent, in order

25



to persuade the second agent to help achieve its goal. Or, an agent may decide
to create a goal to service a commitment.

Such practical rules may be neither complete nor deterministic, in that an
agent may find itself at a loss as to how to proceed or may find itself with mul-
tiple options. Such nondeterminism corresponds naturally to a future-branching
temporal model: each agent’s multiplicity of options leads to many possible pro-
gressions of its configuration and of the configurations of its peers. The con-
vergence results we show below indicate that our formulated set of rules are
complete (i.e., sufficient) in a useful technical sense.

Note that the practical rules are merely options that an agent has available
when it adopts these rules as patterns of reasoning—as illustrated in our earlier
example of two possible agent actions when a commitment expires. An agent may
refine on these rules to always select from among a narrower set of the available
options, for example, through other reasoning about its preferences and utilities.
Our approach supports such metareasoning capability in principle, but we defer
a careful investigation of it to future research.

It is helpful to group the practical rules into two cases.

Case I: From Goals to Commitments. Here, an agent creates a commitment
to satisfy its goal. Consider an agent x having a goal G = G(x, p, r, q, s, f), and a
commitment from x to y: C = C(x, y, s, u) . Notice that s occurs as the success
condition of G and the antecedent of C. This case presumes that x lacks (or
prefers not to exercise) the capability to bring about s, but can bring about u,
and that y can bring about s. Thus x uses C as a means to achieve G (x’s end
goal). Agent x’s (goal holder) practical reasoning rules are as follows.

Note that we do not assume that commitments are symmetric. That is, in
general, an agent may have a commitment to another agent without the latter
having a converse commitment to the former agent.

Recall that superscripts indicate the state of a goal or commitment; for a
goal G, the Suspended state is indicated by GU. The guard is a pattern-matching
expression. For example, 〈GA〉 matches all configurations in which G is Active,
regardless of other goals and commitments.

– entice: If G is active and C is null, x creates an offer (C) to another agent.

〈GA, CN 〉
create(C)

entice
(3)

Motivation: (Only) by creating the commitment can the agent satisfy its goal.
– suspend offer: If G is suspended, then x suspends C.

〈GU , CA〉
suspend(C)

suspend offer
(4)

Motivation: The agent may employ its resources in other tasks instead of
working on the commitment.

26



– revive: If G is active, and C is pending, then x reactivates C.

〈GA, CP 〉
reactivate(C)

revive
(5)

Motivation: An active commitment is needed by the agent to satisfy its goal.
– withdraw offer: If G fails or is terminated, then x cancels C.

〈GT∨F , CA〉
cancel(C)

withdraw offer
(6)

Motivation: The commitment is of no utility once the end goal for which it is
created no longer exists.

– revive to withdraw: If G fails or is terminated and C is pending, then x
reactivates C.

〈GT∨F , CP 〉
reactivate(C)

revive to withdraw
(7)

Motivation: If the goal fails or is terminated, and the commitment is pending,
then the agent reactivates the commitment, and later cancels the commitment
by the virtue of withdraw offer. As per the commitment lifecycle from
Fig. 1, an agent needs to reactivate a commitment before cancelling it.

– negotiate: If C terminates or expires, and G is active or suspended, then x
creates another commitment C ′ to satisfy its goal.

〈GA∨U , CE∨T 〉
create(C ′)

negotiate
(8)

Motivation: The agent persists with its goal by trying alternative ways to
induce other agents to cooperate.

– abandon end goal: If C terminates or expires, then x gives up on G.

〈GA∨U , CE∨T 〉
drop(G)

abandon end goal
(9)

Motivation: The agent may decide no longer to persist with its end goal. Note
that an agent may also employ a structural rule to drop a goal without any
condition.

It is necessary only that the rules cover possible combinations of goal and
commitment states. For example, the 〈GA, CV 〉 state is not possible since C can
violate only after G satisfies; hence no rule is required.

Case II: From Commitments to Goals Here, an agent creates a goal to bring
about its part (consequent if debtor, antecedent if creditor) in a commitment.

Consider commitment C = C(x, y, s, u) and goals G1 = G(x, p, r, q, u, f) and
G2 = G(y, p′, r′, q′, s, f ′). The practical reasoning rules for agent x are as follows.

27



– deliver: If G1 is null and C is detached, then x considers and activates goal
G1 to bring about C’s consequent.

〈GN
1 , CD〉

consider(G1)∧ activate(G1)
deliver

(10)

deliver′: If G1 is inactive and C is detached, then x activates goal G1 to
bring about C’s consequent.

〈GI
1, C

D〉
activate(G1)

deliver’ (11)

Motivation: The agent is honest in that it activates a goal that would lead to
discharging its commitment.

– back burner: If G1 is active and C is pending, then x suspends G1.

〈GA
1 , CP 〉

suspend(G1)
back burner

(12)

Motivation: By suspending the goal, the agent may employ its resources to
work on other goals.

– front burner: If G1 is suspended and C is detached, then x reactivates G1.

〈GU
1 , CD〉

reactivate(G1)
front burner

(13)

Motivation: An active goal is necessary for the agent to bring about its part
in the commitment.

– abandon means goal: If G1 is active and C terminates (y releases x from
C) or violates (x cancels C), then x drops G1.

〈GA
1 , CT∨V 〉

drop(G1)
abandon means goal

(14)

Motivation: The goal is not needed since the commitment for which it is
created no longer exists.

– persist: If G1 fails or terminates and C is detached, then x activates goal G′
1

identical to G1.
〈GT∨F

1 , CD〉
consider(G′

1) ∧ activate(G′
1)

persist
(15)

Motivation: The agent persists in pursuing its part in the commitment.
– give up: If G1 fails or terminates and C is detached, then x cancels C.

〈GT∨F
1 , CD〉

cancel(C)
give up

(16)

Motivation: x gives up pursuing its commitment by cancelling or releasing it.

28



Many of the practical reasoning rules for agent y are similar to x’s.
– detach: If G2 is null and C is conditional, then y considers and activates goal

G2 to bring about C’s antecedent.

〈GN
2 , CC〉

consider(G2)∧ activate(G2)
detach

(17)

detach′: If G2 is inactive and C is conditional, then y activates goal G2 to
bring about C’s antecedent.

〈GI
2, C

C〉
activate(G2)

detach’ (18)

Motivation: The creditor brings about the antecedent hoping to influence the
debtor to discharge the commitment.

– back burner: If G2 is active and C is pending, then y suspends G2.

〈GA
2 , CP 〉

suspend(G2)
back burner

(19)

Motivation: By suspending the goal, the agent may employ its resources to
work on other goals.

– front burner: If G2 is suspended and C is conditional, y reactivates G2.

〈GU
2 , CC〉

reactivate(G2)
front burner

(20)

Motivation: An active goal is necessary for the agent to bring about its part
in the commitment.

– abandon means goal: If G2 is active and C expires or terminates (either x
cancels, or y releases x from C), then y drops G2.

〈GA
2 , CE∨T 〉

drop(G2)
abandon means goal

(21)

Motivation: The goal is not needed since the commitment for which it is
created no longer exists.

– persist: If G2 fails or terminates and C is conditional, then y activates goal
G′

2 identical to G2.

〈GT∨F
2 , CC〉

consider(G′
2) ∧ activate(G′

2)
persist

(22)

Motivation: The agent persists in pursuing its part (either antecedent or con-
sequent) in the commitment.

– give up: If G2 fails or terminates and C is conditional, y releases x from C.

〈GT∨F
2 , CC〉

release(C)
give up

(23)

Motivation: y gives up pursuing its commitment by cancelling or releasing it.

29



4 Convergence Properties

We would like to be assured that a coherent world state will be reached, no
matter how the agents decide to act, provided that they act according to the
rules we have given. We show that the practical rules are sufficient for an agent
to reach a coherent state. Informally, in a coherent state, corresponding goals
and commitments align.

Definition 1 Let G = G(x, p, r, q, s, f) be a goal and C = C(x, y, s, u) a com-
mitment. Then we say that any configuration that satisfies 〈GA, CA〉, 〈GU , CP 〉,
〈GT∨F , CE∨T∨V 〉, or 〈GS , CS〉 is a coherent state of G and C.

We have rules that can recreate goals and commitments (namely, persist
and negotiate). These rules could cause endless cycles; therefore we introduce:

Definition 2 A progressive rule is any practical rule other than persist and
negotiate. The latter two rules we call nonprogressive.

Theorems 1 and 2 capture the intuition of coherence of a single agent’s con-
figuration. All possible agent executions eventually lead to one of the coherent
states if the agent obeys our proposed practical rules. They relate to the situa-
tions of Case I and Case II respectively.

Theorem 1. Suppose G = G(x, p, r, q, s, f) and C = C(x, y, s, u). Then there
is a finite sequence of progressive rules interleaving finitely many occurrences of
nonprogressive rules that leads to a coherent state of G and C. '(

Theorem 2. Suppose C = C(x, y, s, u) and G = G(x, p, r, q, u, f). Then there
is a finite sequence of progressive rules interleaving finitely many occurrences of
nonprogressive rules that leads to a coherent state of G and C. '(

Theorem 3 applies to the configurations of two agents related by a com-
mitment. If the agents obey our proposed practical rules, then the state of the
debtor’s means goal follows the state of the creditor’s end goal.

Theorem 3. (Goal convergence across agents) Suppose G1 = G(x, p1, r1, q1, s, f1)
and G2 = G(y, p2, r2, q2, s, f2) are goals, and C = C(x, y, s, u) is a commitment.
Then there is a finite sequence of rules drawn from the practical rules that leads
to G2’s state equaling G1’s state. '(

5 Illustrative Application

We illustrate the value of integrated reasoning over commitments and goals with
a real-world scenario, drawn from European Union CONTRACT project [14] in
the domain of aerospace aftermarket services.

Fig. 3 shows a high-level process flow of aerospace aftermarket services. The
participants are an airline operator, an aircraft engine manufacturer, and a parts
manufacturer. The engine manufacturer provides engines to the airline operator,

30



!"#$"%&'(")*(+,)-%-&
.!"#/

0(-,1&'(")*(+,)-%-&
.$!"#/

23%-(,4-&
.%$&'/

23%-(,%&5$-+-(*, '4"$,4-&!"#$"%&6%(7,8

9"*4-:&'($",%"("+%

;+8%<)7%&'($",%"("+%

23%-(,%&5$-+-(*, =%:4>%&!"#$"%

=%37(+% =%*)-?$18 ;)337@&0(-,1

;+8%<)7%<

A"1+8%<)7%<

Fig. 3. A high-level model of the aerospace aftermarket process (verbatim from the
Amoeba [5] paper, originally from CONTRACT project [14])

and additionally services the engines to keep them operational; in return, the
operator pays the manufacturer. If a plane waits on the ground for an engine
to be serviced, the manufacturer pays a penalty to the operator. As part of the
agreement, the operator regularly provides engine health data to the manufac-
turer, and may proactively request the manufacturer to perform schedule engine
maintenance. The manufacturer analyzes the health data and informs the oper-
ator of any required unscheduled engine maintenance. As part of servicing the
engine, the manufacturer can either refurbish or replace it. The manufacturer
maintains a supply of engines by procuring parts from a parts manufacturer.

Table 1 describes the goals and commitments that model this scenario. For
reasons of space, we exclude the airline manufacturer purchasing parts from the
parts manufacturer. In the table, service_promised proposition represents creation
of C3 and C4, and health_reporting_promised represents creation of C5.

Table 2 describes a possible progression of the aerospace scenario. Each step
shows the structural or practical reasoning rule that the airline manufacturer
(MFG) or the operator (OPER) employ, and how their configurations progress.
For readability, we place new or modified state elements in bold, and omit sat-
isfied commitments and goals in steps subsequent to their being satisfied.

In Steps 1 and 2, the airline manufacturer and the operator consider and
activate goals G1 and G2. In Step 3, the manufacturer entices (entice rule)
the operator to create C1, which would enable the manufacturer to satisfy G1.
Notice how entice causes manufacturer’s configuration to reach the coherent
state 〈{GA

1 }, {CA
1 }〉. Similarly in Step 4, operator creates C2.

In Step 5, the manufacturer considers and activates G4 to detach (detach
rule) C2. Observe how detach activates manufacturer’s (debtor’s) means goal

31



Table 1. Goals and commitments from the aerospace scenario.

ID Goal, Commitment, or Event Description

G1 G(mfg, !, !, payment_made ∧
health_reporting_promised, payment_made
∧ health_reporting_promised,
insufficient_money)

Airline manufacturer’s (MFG’s) goal to
receive the payment and the promise to
provide the health report

G2 G(oper, !, !, engine_provided ∧
service_promised, engine_provided ∧
service_promised, engine_not_provided)

Operator’s (OPER’s) goal to receive the
engine and the promise to provide the
service

G3 G(oper, !, !, payment_made ∧
health_reporting_promised, payment_made
∧ health_reporting_promised,
insufficient_money)

Operator’s goal to make the payment and
the promise to provide the health report

G4 G(mfg, !, !, engine_provided ∧
service_promised, engine_provided ∧
service_promised, engine_not_provided)

Airline Manufacturer’s goal to provide the
engine and the promise to provide the
service

G5[i] G(oper, service_needed[i], !,
service_requested[i], service_requested[i],
service_not_requested[i])

Operator’s goal to request the service;
there is an instance of this goal for each
occurrence of service needed

G6[i] G(mfg, service_requested[i], !,
service_provided[i] , service_provided[i],
service_not_provided[i])

Manufacturer’s goal to provide the ser-
vice; there is an instance of this goal for
each service request

G7[i] G(mfg, engine_down[i], !,
penalty_paid[i], penalty_paid[i],
penalty_not_paid[i])

Manufacturer’s goal to pay the penalty if
the engine is down; there is an instance of
this goal for each engine down occurrence

C1 C(mfg, oper, payment_made ∧
health_reporting_promised, engine_provided
∧ service_promised)

Mfr’s commitment to operator to provide
the engine and service if operator pays
and promises to provide the health report

C2 C(oper, mfg, engine_provided ∧
service_promised, payment_made ∧
health_reporting_promised)

Operator’s commitment to the mfr to pay
and to provide the health report if the mfr
provides the engine and service

C3[i] C(mfg, oper, service_requested[i] ∧
¬expired, service_provided[i])

Mfr’s commitment to the operator to pro-
vide the service if the operator requests
service prior to the contract expiration

C4[i] C(mfg, oper, engine_down[i] ∧
¬expired, penalty_paid[i])

Manufacturer’s commitment to the oper-
ator to pay penalty if the engine is down
prior to the contract expiration; there is
an instance of this commitment for each
occurrence of the engine downtime

C5[i] C(oper, mfg, health_report_requested[i]
∧ ¬expired, health_report_provided[i])

Operator’s commitment to the manufac-
turer to provide the health report if the
manufacturer requests the report; there is
an instance of this commitment for each
health report request

32



G4, which corresponds to the operator’s (creditor’s) end goal G2. In Step 6, the
operator considers and activates G3 to detach C1.

In Step 7, due to other priorities, the operator decides to suspend G2. The
operator suspends C2 (suspend offer rule) in Step 8, which transitions its
configuration to the coherent state 〈{GU

2 }, {CP
2 }〉. In Step 9, the manufacturer

suspends G4 (back burner rule), which transitions its configuration to the
coherent state 〈{GU

4 }, {CP
2 }〉. Observe how the practical reasoning rules cause

the manufacturer (debtor) to suspend its means goal G4 in response to the
operator (creditor) suspending its end goal G2. In Step 10–11, the operator
reactivates G2, and reactivates (revive rule) C2. In Step 12, the manufacturer
reactivates (revive rule) G4.

In Steps 13–15, the manufacturer provides engine (engine_provided) to the
operator and creates C3 and C4. Recall that service_promised means creation
of C3 and C4, and satisfaction condition of G2 and G4 is engine_provided ∧
service_promised. Therefore, in Step 15, G2 and G4 are satisfied. Further since
engine_provided ∧ service_promised is consequent of C1 and antecedent of C2, in
Step 15, C1 is satisfied and C2 is detached. In Steps 16–17, operator pays the
manufacturer (payment_made), and creates C5 (health_reporting_promised). This
satisfies G1, G3, and C2. Observe how, in Step 17, the practical reasoning rules
cause the manufacturer’s and the operator’s configuration to reach the coherent
states 〈{GS

1 }, {CS
1 }〉 and 〈{GS

2 }, {CS
2 }〉.

A service_needed event occurs at Step 18; it instantiates the parameter i
with the value 1. In response, the operator activates G5[1], an instance of G5,
to request the service in Step 19. By its requesting the service, in Step 20 the
operator satisfies G5[1] and detaches C3[1], an instance of C3. To deliver upon
its commitment, the manufacturer activates G6[1] in Step 21, and provides the
service in Step 22. This satisfies G6[1], and C3[1]. Finally, in Step 23, only the
recurring commitments C3, C4, and C5 remain in the agent configurations.

6 Related Work

Chopra et al. [3] formalize semantic relationship between agents and protocols
encoded as goals and commitments, respectively to verify at design time if a
protocol specification (commitments) supports achieving goals in an agent spec-
ification, and vice versa. In contrast, our semantics applies at runtime, and we
propose practical reasoning rules that agents may follow to achieve coherence be-
tween related goals and commitments. Dalpiaz et al. [4] propose a model of agent
reasoning based on pursuit of variants—abstract agent strategies for pursuing
a goal. We conjecture that their approach can be expressed as sets of practical
reasoning rules, such as those we described above.

Winikoff [15] develops a mapping from commitments to BDI-style plans. He
modifies SAAPL, an agent programming language, to include commitments in
an agent’s belief-base and operational semantics update the commitments. Our
operational semantics addresses goals (more abstract than plans) and commit-

33



T
able

2.
P

rogression
ofconfigurations

in
the

aerospace
scenario.

#
E
vent

or
R

u
le

m
fg

’s
A

ction
m

fg
’s

S
tate

o
per

’s
A

ction
o
per

’s
S
tate

1
(structural)

consider(G
1 )

∧
activate(G

1 )
〈{

G
A1
}〉

〈
〉

2
(structural)

〈{
G

A1
}〉

consider(G
2 )

∧
activate(G

2 )
〈{

G
A2
}〉

3
entice

create(C
1 )

〈{
G

A1
}
,{

C
C1
}〉

〈{
G

A2
}
,{

C
C1
}〉

4
entice

〈{
G

A1
}
,{

C
C1

,
C

C2
}〉

create(C
2 )

〈{
G

A2
}
,{

C
C1

,
C

C2
}〉

5
detach

consider(G
4 )

∧
activate(G

4 )
〈{

G
A1

,
G

A4
}
,{

C
C1

,
C

C2
}〉

〈{
G

A2
}
,{

C
C1

,
C

C2
}〉

6
detach

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

C2
}〉

consider(G
3 )

∧
activate(G

3 )
〈{

G
A2

,
G

A3
}
,{

C
C1

,
C

C2
}〉

7
(structural)

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

C2
}〉

suspend(G
2 )

〈{
G

U2
,
G

A3
}
,{

C
C1

,
C

C2
}〉

8
suspend

o
ffer

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

P2
}〉

suspend(C
2 )

〈{
G

U2
,
G

A3
}
,{

C
C1

,
C

P2
}〉

9
back

burner
susp

end(G
4 )

〈{
G

A1
,
G

U4
}
,{

C
C1

,
C

P2
}〉

〈{
G

U2
,
G

A3
}
,{

C
C1

,
C

P2
}〉

10
(structural)

〈{
G

A1
,
G

U4
}
,{

C
C1

,
C

P2
}〉

reactivate(G
2 )

〈{
G

A2
,
G

A3
}
,{

C
C1

,
C

P2
}〉

11
revive

〈{
G

A1
,
G

U4
}
,{

C
C1

,
C

C2
}〉

reactivate(C
2 )

〈{
G

A2
,
G

A3
}
,{

C
C1

,
C

C2
}〉

12
revive

reactivate(G
4 )

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

C2
}〉

〈{
G

A2
,
G

A3
}
,{

C
C1

,
C

C2
}〉

13
(structural)

engine_
provided

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

C2
}〉

〈{
G

A2
,
G

A3
}
,{

C
C1

,
C

C2
}〉

14
(structural)

create(C
3 )

〈{
G

A1
,
G

A4
}
,{

C
C1

,
C

C2
,
C

C3
}〉

〈{
G

A2
,
G

A3
}
,{

C
C1

,
C

C2
,
C

C3
}〉

15
(structural)

create(C
4 )

〈{
G

A1
,
G

S4
}
,{

C
S1

,
C

D2
,
C

C3
,
C

C4
}〉

〈{
G

S2
,
G

A3
}
,{

C
S1

,
C

D2
,
C

C3
,
C

C4
}〉

16
(structural)

〈{
G

A1
}
,{

C
D2

,
C

C3
,
C

C4
}〉

paym
ent_

m
ade

〈{
G

A3
}
,{

C
D2

,
C

C3
,
C

C4
}〉

17
(structural)

〈{
G

S1
}
,{

C
S2

,
C

C3
,
C

C4
,
C

C5
}〉

create(C
5 )

〈{
G

S3
}
,{

C
S2

,
C

C3
,
C

C4
,
C

C5
}〉

18
service_

needed[1]
〈{

C
C3

,
C

C4
,
C

C5
}〉

〈{
C

C3
,
C

C4
,
C

C5
}〉

19
detach

〈{
C

C3
,
C

C4
,
C

C5
}〉

consider(G
5
[1

])
∧

activate(G
5
[1

])
〈{

G
A5

[1
]}

,{
C

C3
,
C

C4
,
C

C5
}〉

20
(structural)

〈{
C

D3
[1

],
C

C3
,
C

C4
,
C

C5
}〉

service_
requested[1]

〈{
G

S5
[1

]}
,{

C
D3

[1
],

C
C3

,
C

C4
,
C

C5
}〉

21
deliver

consider(G
6
[1

])
∧

activate(G
6
[1

])
〈{

G
A6

[1
]}

,{
C

D3
[1

],
C

C3
,
C

C4
,
C

C5
}〉

〈{
C

D3
[1

],
C

C3
,
C

C4
,
C

C5
}〉

22
(structural)

service_
provided

〈{
G

S6
[1

]}
,{

C
S3
[1

],
C

C3
,
C

C4
,
C

C5
}〉

〈{
C

S3
[1

],
C

C3
,
C

C4
,
C

C5
}〉

23
〈{

C
C3

,
C

C4
,
C

C5
}〉

〈{
C

C3
,
C

C4
,
C

C5
}〉

34



ments. It will be interesting to combine Winikoff’s work with ours to develop a
joint semantics for commitments, goals, and plans.

Avali and Huhns [1] relate an agent’s commitments to its beliefs, desires,
and intentions using BDICTL∗. In contrast, we relate an agent’s commitments
to its goals. We consider goal lifecycle in our semantics, and propose practical
reasoning rules for coherence with commitments.

Telang and Singh [11] enhance Tropos, an agent-oriented software engineering
methodology, with commitments. They describe a methodology that starts from
a goal model and derives commitments. Our operational semantics complements
by providing a formal underpinning.

Telang and Singh [12] propose a commitment-based business metamodel, a
set of modeling patterns, and an approach for formalizing the business models
and verifying message sequence diagrams with respect to the models. Our com-
bined operational semantics of commitments and goals can provide a basis for
how a business model can be enacted and potentially support the derivation of
suitable message sequence diagrams.

van Riemsdijk et al. [9] and Thangarajah et al. [13] propose abstract archi-
tectures for goals, on which is based the simplified goal lifecycle that we consider.
These and other authors formalize the goal operationalization. In contrast, our
work formalizes the combined operational semantics of goals and commitments.
A future extension of our work is to address the different goal types that have
been suggested [9, 17]. Our work is complementary also to exploration of goals
that have temporal extent (e.g., [2, 7]). Moreover, we have considered each goal
to be private to an agent. Works that study coordination of agents via shared
proattitudes, such as shared goals, include for example [6, 8].

7 Conclusion and Future Work

This paper studied the complementary aspects of commitments and goals by
establishing an operational semantics of the related lifecycles of the two concepts.
We have distinguished the purely semantic aspects of their lifecycles from the
pragmatic aspects of how a cooperative agent may reason, and demonstrated
desirable properties such as convergence of mental states. From the viewpoint of
agent programming, we have provided a foundational set of rules that is complete
in a technical sense; their sufficiency in practice will be found through use.

Our work carries importance because of its formalization of the intuitive
complementarity between goals and commitments. Directions for building on this
foundation include considering a hierarchy of prioritized goals or commitments,
and extending our semantics to include maintenance goals, shared goals, or plans.
We are also interested in examining converge properties when there are more
than two agents working collaboratively.

Acknowledgments. We gratefully acknowledge the suggestions of the anony-
mous reviewers.

35



References

1. Avali, V.R., Huhns, M.N.: Commitment-based multiagent decision making. In:
Proc. Cooperative Information Agents. pp. 249–263 (2008)

2. Braubach, L., Pokahr, A.: Representing long-term and interest BDI goals. In: Proc.
ProMAS Workshop (2009)

3. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents
and protocols via goals and commitments. In: Proc. AAMAS. pp. 457–464 (2010)

4. Dalpiaz, F., Chopra, A.K., Giorgini, P., Mylopoulos, J.: Adaptation in open sys-
tems. In: Proc. 29th Conf. Conceptual Modeling. pp. 31–45 (2010)

5. Desai, N., Chopra, A.K., Singh, M.P.: Amoeba: A methodology for modeling and
evolution of cross-organizational business processes. ACM Trans. Software Engi-
neering and Methodology 19(2), 6:1–6:45 (2009)

6. Grosz, B., Kraus, S.: Collaborative plans for complex group action. Artificial In-
telliegence 86(2), 269–357 (1996)

7. Hindriks, K.V., van der Hoek, W., van Riemsdijk, M.B.: Agent programming with
temporally extended goals. In: Proc. AAMAS. pp. 137–144 (2009)

8. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., NagendraPrasad, M., Raja, A., Vincent, R., Xuan, P., Zhang, X.:
Evolution of the GPGP/TAEMS Domain-Independent Coordination Framework.
J. Autonomous Agents and Multi-Agent Systems 9(1), 87–143 (2004)

9. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems. In: Proc.
AAMAS. pp. 713–720 (2008)

10. Singh, M.P.: An ontology for commitments in multiagent systems. AI and Law 7,
97–113 (1999)

11. Telang, P.R., Singh, M.P.: Enhancing Tropos with commitments. In: Conceptual
Modeling: Foundations and Applications. pp. 417–435. LNCS 5600, Springer (2009)

12. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models. IEEE Trans. Services Comput. 4 (2011)

13. Thangarajah, J., Harland, J., Morley, D., Yorke-Smith, N.: Operational behaviour
for executing, suspending and aborting goals in BDI agent systems. In: Proc. DALT
Workshop. pp. 1–17 (2010)

14. van Aart, C.J., Chábera, J., Dehn, M., Jakob, M., Nast-Kolb, K., Smulders,
J.L.C.F., Storms, P.P.A., Holt, C., Smith, M.: Use case outline and requirements.
Deliverable D6.1, IST CONTRACT Project (2007), http://tinyurl.com/6adejz

15. Winikoff, M.: Implementing commitment-based interactions. In: Proc. AAMAS.
pp. 873–880 (2007)

16. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and proce-
dural goals in intelligent agent systems. In: Proc. KR. pp. 470–481 (2002)

17. Winikoff, M., Dastani, M., van Riemsdijk, M.B.: A unified interaction-aware goal
framework. In: Proc. ECAI. pp. 1033–1034 (2010)

36



Chapter 2

Applying (Multi-)Agent
Oriented Programming





Developing a Knowledge Management
Multi-Agent System Using JaCaMo

Carlos M. Toledo1, Rafael H. Bordini2, Omar Chiotti1, and Maŕıa R. Galli1

1 INGAR-CONICET, Avellaneda 3657, Santa Fe Argentina
{cmtoledo, chiotti, mrgalli}@santafe-conicet.gov.ar

2 INF-UFRGS, CP 15064, 91501-970 Porto Alegre RS, Brazil
r.bordini@inf.ufrgs.br

Abstract. Recent research on social and organisational aspects of multi-
agent systems has led to practical organisational models and the idea
of organisation-oriented programming. These organisational models help
agents to achieve shared (global) goals of the multi-agent system. Having
an organisational model is an important advance, but this model needs to
be integrated to an environment infrastructure and agent-oriented pro-
gramming platforms. The JaCaMo platform is the first fully operational
programming platform that integrates three levels of multi-agent abstrac-
tions: an agent programming language, an organisational model, and an
environment infrastructure. In this paper, with the aim to help showcase
the advantages of a fully-fledged multi-agent platform, we have modelled
a concrete agent-based architecture to proactively supply knowledge to
knowledge-intensive workflows using JaCaMo.

Keywords: Multi-agent systems, Multi-agent organisation, Multi-agent
programming platform, Knowledge management, Knowledge intensive
workflow.

1 Introduction

Agent autonomy becomes a crucial problem when a global coherent behaviour
has to be accomplished in multi-agent systems. Its importance is not to be
discussed when it comes to achieving suitable flexible autonomous behaviour,
but some degree of restriction on agent behaviour is required for a system to
achieve shared global goals [11]. This problem is even worse in open Multi-
Agent Systems (MAS), where the agents that could enter or leave the system
is not known a priori. In this context, organisational models arise as a way to
control the agents’ behaviour, so they can work as a coordinated team achieving
common goals.

Recent research on social and organisational aspects of multi-agent systems
has led to concrete approaches to organisation-oriented programming, such as

39



Moise [12]. Moise is an organisational model that considers structural, func-
tional, and deontic relations among agents describing organisational collabora-
tion in order to address the collective behaviour. When an agent enters the
system, it must comply with organisational rules constraining its autonomy.
Moise offers an organisational modelling language and principles for defining
these rules, organising the system, and ensuring organisational constraints by
means of notions such as roles, groups, schemes, missions, and deontic relations
such as obligations.

Having an organisational model is an important advance, but this model
needs to be integrated with an environment infrastructure and an agent pro-
gramming platform. Agents must reason about their organisation and interact
with their environments where the organisation is situated. Recently, researchers
have focused on the integration of theoretical organisational models with agent-
oriented programming platforms so as to provide practical solutions for MAS
development [12, 8, 10, 11]. With that purpose, the JaCaMo MAS programming
platform3 was developed and is, to our knowledge, the first fully-operational
multi-agent programming platform to allow users to take advantage of first-class
abstractions and declarative language constructs that encompass the three main
levels of abstractions of a multi-agent system, namely agent, environment, and
organisational levels. It was developed through the integration of three inde-
pendent existing MAS technologies: Jason [5], CArtAgO [21], and Moise [12],
addressing the agent, environment, and organisation levels respectively.

In this work, we present the concrete development of a MAS architecture
using the JaCaMo platform. This architecture allows the proactive supply of
knowledge to knowledge-intensive workflows by integrating the Business Process
Management (BPM) and Knowledge Management (KM) infrastructures. The
remainder of the paper is structured as follows: Section 2 describes the various
features of the JaCaMo platform. Section 3 presents an agent-based architecture
for BPM and KM integration. In Section 4, we put JaCaMo’s functionalities
into practice by specifying the architecture of our application. Finally, Section 6
presents conclusions and future work.

2 JaCaMo Platform

JaCaMo4 is a platform for multi-agent programming that combines three inde-
pendent existing MAS technologies: Jason5 [5], CArtAgO6 [21], and Moise7 [12].
JaCaMo allows developers to program organisation-aware agents using an agent
programming language and supports the A&A meta-model [17] for the imple-
mentation of environment-based coordination mechanisms, and non-autonomous
services and tools. JaCaMo addresses the three main levels of MAS abstractions

3 http://jacamo.sourceforge.net
4 Available at http://jacamo.sourceforge.net/
5 Available at http://jason.sourceforge.net/
6 Available at http://cartago.sourceforge.net/
7 Available at http://moise.sourceforge.net/

40



providing high-level support for implementing BDI (Belief-Desire-Intention) agents,
virtual artifact-based environments [26], and organisational models. It should be
highlighted that JaCaMo is more than a set of MAS technologies, it is a unified
and fully operational platform that supports designers in developing complex
multi-agent oriented software using high-level abstractions in all three main di-
mensions of a multi-agent system. The following subsections detail the JaCaMo
functionalities.

2.1 Organisational Model

JaCaMo uses the Moise model to specify MAS organisations. Moise is a model
for the organisational dimension of multi-agent systems. It provides an organisa-
tion modelling language, an organisation management infrastructure, and sup-
ports organisation-based reasoning mechanisms at the agent level. Moise has
three dimensions that deal with different aspects of the organisational specifica-
tion: structural, functional, and deontic.

The structural dimension deals with the more static aspect of the organi-
sational model, and it is built in three levels: the individual level, which deals
with the responsibilities that an agent assumes when it adopts a role; the social
level, which describes acquaintance, communication, and authority links between
roles; and the collective level, which is responsible for the aggregation of roles
into groups.

At the individual level, agents adopt roles in organisational groups, accepting
some behavioural constraints related to such roles. This adoption is constrained
by compatibility relations between roles, so an agent can play two or more roles
only if they are compatibles. At the collective level, agents are divided into
groups and sub-groups. Groups and sub-groups are considered well-formed if
they comply with the constraints referred to maximum and minimum number of
members playing each role. At the social level, roles are linked through authority,
communication, and acquaintance relationships. These relationships indicate the
degree of influence or the rights that an agent that plays a role has over other
agents that play the linked roles. Relationships can be intra-group and inter-
group depending if their linked roles belong to the same group or to different
groups.

The functional dimension deals with the dynamic aspects of the organisa-
tional specification. It intends to make agents work together to achieve global
goals. This dimension is composed of a set of schemes in which a goal is decom-
posed into social plans and distributed to agents through missions [12]. These
schemes are modelled by trees in which the root is a global purpose and the leafs
are goals. Achieving some or may be all of the goals make the scheme succeed.

Schemes also define execution plans that indicate partial orders for the achieve-
ment of goals. The execution of goals of a plan can be sequential, parallel, or
alternative. In a sequence, a goal can be achieved only if the preceding goal has
been previously achieved. In a parallel decomposition, two goals can be achieved
at the same time. In an alternative decomposition, a goal is achieved if any of
its sub-goals is achieved.

41



Moreover, each scheme defines a number of missions. A mission is a set of
coherent goals that an agent playing a particular roles can/must achieve [12]
within a given amount of time (time-to-fulfil or TTF). Agents commit to mis-
sions, so they are responsible for their fulfilment. Schemes can be represented
diagrammatically, as in Figures 4 and 5 that we introduce later in this paper.

The deontic dimension links the structural dimension (roles and groups)
with the functional dimension (schemes). It limits the autonomy of the agents
by defining what missions an agent, playing a role in the organisation, is per-
mitted to take on and to what missions it is obliged to commit. A relationship
permission(r, m) specifies that agents that play role r can commit to mission m,
while a relationship obligation(r, m) specifies that agents that play role r must
commit to mission m.

2.2 Agent Platform

To develop the agents of the application, JaCaMo uses the Jason MAS plat-
form [5]. Jason is an interpreter for an extended version of the AgentSpeak
language [20] that provides a platform for the development of BDI MAS. Jason
allows user-defined internal actions and it is fully customisable in Java (percep-
tion, selection functions, trust functions, belief-revision, agent communication,
etc. are all customisable).

Moreover, Jason includes a clear notion of a multi-agent environment and
the capability to program MAS distributed over a network, including through
JADE [4]. Communication mechanisms of Jason allow agents to communicate
with each other in a high-level way. Jason uses speech-act based communication
among AgentSpeak agents, based on the Knowledge Query and Manipulation
Language (KQML) performatives. For more details, see [5].

2.3 Environment as a First-Class Abstraction

In MAS development tools, ideally the environment should be not only the source
of agent perceptions and the target of agent actions, but is also considered as an
active abstraction, i.e. a first-class entity that encapsulates functionalities and
services by supporting coordination, agent mobility, communication, security,
and non-autonomous special functions [26].

JaCaMo provides an infrastructure to program the MAS environment adopt-
ing the A&A meta-model, which is implemented by the CArtAgO technology
[21]. JaCaMo uses the environment to have access to external resources, which
allows it to interact with hardware/software resources hiding away low-level as-
pects. The environment also provides a mechanism to have access to shared
resources and mediate the interaction between agents.

This way, with JaCaMo users can program the environment by means of
a set of first-class entities called artifacts. Each artifact represents a resource
or tool that agents can instantiate, share, use, and perceive at runtime [17].
Artifacts are non-autonomous and function-oriented entities (similar to objects

42



in the oriented-object paradigm), unlike agents that are autonomous and goal-
oriented entities. Unlike objects, artifacts are at the same level of abstraction as
agents in declarative approaches to programming multi-agent systems.

Agents and artifacts communicate through actions and perceptions. Agents
execute actions (or operations) of the artifact usage interface (or control inter-
face) to modify the artifact state or to request a service. Changes in the state of
an artifact are perceived by agents through observable events. These events are
perceived by agents and potentially become agent beliefs.

Additionally, artifacts can be linked and work together accomplishing their
purposes by executing operations of the link interfaces of other artifacts. When
an agent (or another artifact) executes an operation over an artifact (of its usage
or link interface), the operation request is suspended while the invoked operation
is executed and a result (success or failure) is returned. Artifacts handle all
aspects of concurrency control for the operations they provide.

Agents and artifacts are grouped in workspaces which act as their logical
container. Workspaces define the MAS environment topology. They can be dis-
tributed while agents and artifacts work together by means of direct communica-
tion and sharing artifacts. An artifact can belong to a single workspace whereas
an agent can inhabit one or more workspaces and share artifacts. Agents that
work in the same workspace can use the same artifacts.

2.4 Three-Level Abstraction Integration

The three main MAS levels of abstractions (agent, organisation, and environ-
ment) are available in the JaCaMo platform. Agents are integrated to the envi-
ronment (agent-environment integration) by joining and working in a workspace,
using the artifact operations, and sensing the observable properties of artifacts.
This fact allows heterogeneous agents to work in the same artifact-based envi-
ronment, sharing the repertoire of actions and the observable events that agents
can perceive.

The organisation-environment integration is based on the ORA4MAS infras-
tructure [10]. The organisation management infrastructure is developed as a set
of organisational artifacts and organisational agents. They are responsible for
encapsulating functionalities concerning the management and enactment of the
organisation specification, implementing and controlling regimentation and en-
forcement mechanisms. Regimentation aims to prevent agents from performing
actions that are forbidden by an organisational norm, whereas enforcement aims
to give tools to detect possible norm violations, checking whether they were
violations or not, and applying appropriate sanctions in case they were [10].

In ORA4MAS, there are two main types of organisational artifacts: scheme
artifact and group artifact. They are responsible for implementing the structural,
functional, and normative dimensions of Moise through a set of operations that
allow agents to adopt a role, to join or leave a group, to commit to a mission,
etc. On the other hand, the organisational agents are responsible for the creation
and management of organisational artifacts and for performing enforcement ac-
tivities. If a norm is violated, artifacts should detect and show this violation,

43



and the organisational agents should deal with this. Organisational agents and
organisational artifacts are described in detail in [14].

The agent-organisation integration happens through the mapping of the
agents’ actions into organisational artifact operations. That is, an agent executes
an operation (such as adopt a role, leave a mission, etc.) of an organisational
artifact by means of its repertoire of environment actions. This provides a uni-
fied mechanism for taken normal environment actions as well as organisational
actions (i.e., actions that change the state of an agent organisation).

3 An Agent-Based Architecture for BPM and KM
Integration

These days, many organisations and institutions coordinate their activities through
business processes. To accomplish the tasks involved in a business process, work-
ers may need information that is scattered throughout the organisation. This
need for information should be attended to in a contextualised way and be suit-
ably delivered by the organisational Knowledge Management (KM) infrastruc-
ture [19]. Business Process Management (BPM) and KM are closely interrelated
and are both important elements of an organisation.

Organisational activities structured through a business process and auto-
mated by a Workflow Management System (WfMS) should be considered as an
opportunity to provide a KM infrastructure in order to bring the right knowl-
edge to the right people in the right form and at the right time [9]. A WfMS
defines, manages, and executes structured business processes (workflows) arrang-
ing task executions by means of a computational representation of the workflow
logic. It should be a trigger of KM support activities and a distributor of organ-
isational knowledge that provides workers with necessary information to make
better judgements and decisions.

Some complex business processes rely on intensive information needs, such as
design processes, government tenders, decision making activities, etc., in which
workers would like WfMS to automatically and proactively offer the relevant
knowledge [16]. When a worker selects a task for execution, the system should
make available all relevant information for executing the selected task. It allows
workers to automatically obtain relevant information, avoiding the waste of time
with information searches.

Considerable work has dealt with the integration between KM and BPM
in order to combine the advantages of both paradigms; however, most existing
approaches are only theoretical approaches and they do not put forward any
concrete solutions [19]. Other existing frameworks fail to support the diversity
of knowledge domains, making static systems in which the knowledge domains
are tied with the architecture [1, 13].

Toledo et al. [25] proposed an agent-based architecture for the integration of
business processes orchestrated by a WfMS with the organisational knowledge
repository administered by ontology-driven KM systems (Figure 1). This is the
The architecture is based on a distributed organisational memory [22] and the

44



KM conceptual model proposed in [2]. This architecture consists of an organi-
sational knowledge repository and one or more business processes automated by
a WfMS.

Fig. 1. Organisational Knowledge Management Architecture.

In the organisational knowledge repository, the organisation can be seen as
an interrelated group of functional units, areas, or departments formally defined
in the organisational structure, informal groups, or practice communities. Each
of these units is considered an organisational knowledge domain which executes
activities and processes that produce and consume information. These activities
and processes are often unstructured, dynamic, unpredictable, and constantly
changing; also, they are not included in a workflow. This need for information
is satisfied in a reactive way through domain KM systems.

In KM systems are responsible for storing knowledge about their respec-
tive domains and providing information to requests from their own knowledge
domain, to other knowledge domains, and, in the case of this proposal, to work-
flows as well. The set of all knowledge domains of the organisation constitutes
the organisational knowledge repository, i.e., the organisational memory [15].

Each knowledge domain implements its own KM system. This KM system is
part of a distributed organisational memory [22]. KM systems typically use an
ontology (although this is not mandatory) to annotate and retrieve information
based on a strategy that processes users’ natural language queries.

In the knowledge intensive workflows component, there is a set of business
processes automated as a workflow composed of one or more tasks that need
and/or produce valuable enterprise knowledge as a result of their execution, the
so called Knowledge Intensive Tasks (KITs). For each KIT, the KM architec-
ture should proactively provide relevant information for its execution, consid-
ering the KIT context (profile of the organisation’s worker, worker role profile,
task specification, and workflow instance information) and workers’ behaviour in
previous executions. Also, it stores relevant information produced as a result of
their execution in a suitable knowledge domain. Unlike organisation functional
units (knowledge domain), which execute their processes in an unstructured

45



way, knowledge intensive workflows execute their tasks in a structured process
orchestrated by a WfMS.

With the aim of exchanging knowledge between the two components and
proactively and reactively delivering knowledge, the KM architecture imple-
ments a MAS. It enables the integration between the KM systems executed
in the knowledge domains of the organisational knowledge repository and the
knowledge intensive workflows orchestrated by a WfMS. Through suitable inter-
action protocols, agents exchange the necessary information and control data to
satisfy the workers’ need for information within the workflow execution. Conven-
tional workflows are extended with KM-support automatic tasks that execute
instances of software agents. These agents are responsible for retrieving knowl-
edge and storing results.

The architecture uses MAS technologies for the following reasons. First, it
is an open system; workflows and knowledge domains can be added automati-
cally. Knowledge domains follow the autonomy principle [22] that enables each
domain to manage the local information, providing the possibility of choosing
more appropriate perspectives, mechanisms, and policies (e.g., security policies,
domain ontology) to represent the local knowledge. Workflows and knowledge
domains cannot be known in advance. Even the architecture can be extended to
include foreign information sources, such as information from partner organisa-
tions used to provide knowledge to workflows that produce a product or service
with/for the partner organisation. Second, agents can easily add machine learn-
ing techniques that allow the architecture to improve the knowledge provision
and storing processes. Third, the involved entities should have autonomous be-
haviour in deciding to provide or store the knowledge independently from the
rest of the architectural entities. The integration architecture needs to decide the
most convenient way to store the generated information, and the most suitable
information sources to consult.

In the following section, this architecture is specified using the JaCaMo plat-
form.

4 Specifying the Architecture with the JaCaMo Platform

4.1 Environment Specification

The proposed MAS architecture is composed of a set of distributed artifact-
based workspaces [18], which can be classified in three types: KIT workspaces,
knowledge domain workspaces, and the knowledge integration workspace. Each
workspace contains agents and artifact instances that supply agents with infor-
mation and help them to coordinate their activities. Artifacts also encapsulate
other non-autonomous services, such as the KM system artifact which is respon-
sible for managing the local domain knowledge (Figure 2).

Each KIT workspace models the enactment of a KIT, and contains instances
of artifacts and agents responsible for providing and storing information relevant
to the KIT. The KIT workspace contains instances of the knowledge provider

46



Fig. 2. MAS Topology

agent and the knowledge storage agent. The former is responsible for retrieving
information relevant to the KIT, taking into account data related to the worker
profile, the worker role profile, and the KIT. The KIT specification is responsible
for keeping information about a KIT. For details of its structure, see [25].

The knowledge storage agent is responsible for collecting results obtained
from the KIT execution. Once all the generated and/or modified information
documents are collected, this agent establishes a communication process with
the aim of storing results in the suitable knowledge domain. To determine the
knowledge domain in which results will be stored, configuration parameters of
the KIT specification artifact are taken into account.

The knowledge provider agent and the knowledge storage agent join the KIT
workspace as well as the knowledge integration workspace. This allows agents to
use artifacts of both workspaces and exchange data, enabling the integration of
the architecture.

The knowledge domain workspace represents each organisational knowledge
domain; therefore, there are as many knowledge domain workspaces in the ar-
chitecture as there are knowledge domains in the organisation. Each knowledge
domain workspace includes an instance of the KM system artifact that is re-
sponsible for providing and storing the domain knowledge (an approach for its
implementation is detailed in [24]). The knowledge domain agent uses opera-
tions of the KM system artifact to consult information and then provides this
information to a KIT through the knowledge coordinator agent. The knowledge
domain agent joins the knowledge domain workspace and the knowledge inte-
gration workspace.

Finally, the MAS architecture has a single instance of the knowledge integra-
tion workspace which makes the integration between organisational knowledge

47



repositories and knowledge intensive workflows possible by means of artifact-
based coordination and communication among agents. The knowledge coordi-
nator agent is responsible for making possible the knowledge exchange among
workflows and knowledge domains. It can also proactively offer knowledge to KIT
workers. The knowledge coordinator agent also manages the organisation by ap-
plying sanctions and rewards, and controlling the access of KITs and Knowledge
Domains (KDs) to the system.

The knowledge integration workspace is inhabited by a set of artifacts that
allow the architecture to authenticate KIT and KD instances (KIT authenti-
cation and KD authentication artifacts), store access credentials (KIT creden-
tials and KD credentials artifacts), coordinate agents and exchange knowledge
(KIT knowledge storage request, KIT knowledge request, knowledge request,
knowledge storage, and knowledge response artifacts), and help the knowledge
coordinator agent to fulfil its responsibilities (work memory and knowledge base
artifacts). The following code shows how the knowledge coordinator agent cre-
ates and focuses on the artifacts of its environment.
+!create_artifacts: true
<- makeArtifact("KnowledgeProvider","kiWorkspace.KnowledgeProvider",[],KnowledgeProviderID);

makeArtifact("KITAutentication","kiWorkspace.KITAutentication",[],KITAutenticationID);
makeArtifact("KDAutentication","kiWorkspace.KDAutentication",[],KDAutenticationID);
makeArtifact("KDCredentials","kiWorkspace.KDCredentials",[],KDCredentialsID);
makeArtifact("KITCredentials","kiWorkspace.KITCredentials",[],KITCredentialsID);
makeArtifact("KITStorageRequest","kiWorkspace.KITStorageRequest",[],KITStorageRequestID);
makeArtifact("KnowledgeBase","kiWorkspace.KnowledgeBase",[],KnowledgeBaseID);
makeArtifact("WorkMemory","kiWorkspace.WorkMemory",[],WorkMemoryID);
makeArtifact("KnowledgeRequest","kiWorkspace.KnowledgeRequest",[],KnowledgeRequestID);
makeArtifact("KnowledgeResponse","kiWorkspace.KnowledgeResponse",[],KnowledgeResponseID);
makeArtifact("KnowledgeStorage","kiWorkspace.KnowledgeStorage",[],KnowledgeStorageID);
focus(KnowledgeProviderID);
focus(KITStorageRequestID);
focus(KnowledgeRequestID);
focus(KnowledgeResponseID).

Also, the knowledge coordinator agent creates two organisational artifacts
to manage the organisational model: group artifact and scheme artifact (for the
sake of clarity, these are not shown in the Figure 3). The scheme artifact keeps
track of which goals are feasible and creates the respective obligations for agents,
whereas the group artifact manages the organisational groups. The organisa-
tional specification (groups, goals, roles, etc.) is defined in the organisation.xml
file.
+!create_organisational_artifacts: true

<- makeArtifact("Scheme", "ora4mas.nopl.SchemeBoard",
["organisation.xml", scheme, false, true], SchemeID);

makeArtifact("Group", "ora4mas.nopl.GroupBoard",
["organisation.xml", group, false, true], GroupID);

focus(SchemeID);
focus(GroupID).

Workspaces together with artifacts form the MAS environment. Agents have
access only to artifacts of the workspace that they have joined, but an agent
can join more than one workspace. This makes possible the coordination and
communication through artifacts of agents that belong to different workspaces.
The following code shows how the knowledge domain agent discovers the artifacts
when it enters the system.

48



+!enter_kmArchitecture: true
<- joinWorkspace("KnowledgeIntegration",kiID);

!discover_artifact("Scheme");
!discover_artifact("Group");
!discover_artifact("KnowledgeRequest");
!discover_artifact("KnowledgeStorage").

+!discover_artifact(ArtifactName): true
<- lookupArtifact(ArtifactName,ArtifactId);

focus(ArtifactId).

4.2 Structural Specification

In order to achieve global goals, agents’ autonomy should be controlled by means
of behavioural constraints [11]. These constraints are defined in the organisa-
tional specification of our system architecture. As discussed in Section 2, the
JaCaMo platform follows the Moise model to assign an organisation to the sys-
tem using groups, roles, and shared goals to coordinate the global behaviour.

Fig. 3. Structural Specification Diagram.

At the collective level of the Moise structural dimension, the agents are di-
vided into three groups: coordinator agents, workflow agents, and domain agents
(see Figure 3). The coordinator agent group is formed by one agent role: the
knowledge coordinator agent ; at least one agent must play this role. The work-
flow agent group is formed by two agent roles: knowledge provider and knowledge
supply agent. The architecture can have zero or more (up to k) KITs, where each
KIT is composed of just one instance of a knowledge provider agent and one in-
stance of a knowledge supply agent. The domain agent group, is composed of
one or more (up to m) agents that play the knowledge domain agent role. All
these agent roles inherit the properties of the knowledge management agent role.

At the social level of Moise, inter-group communication relationships specify
the possibility that two agents can exchange data. The structural specification
diagram (Figure 3) depicts that the knowledge coordinator agent can communi-
cate with other agents, allowing the exchange of information between KITs and
KDs.

49



4.3 Functional and Deontic Specifications

The MAS behaviour is determined by social plans that agents should execute
together with the aim of achieving global goals. The Moise functional dimension
decomposes (through plans) global goals and distributes them to agents (through
missions) [12]. This architecture has two global goals: store relevant information
and provide relevant information, depicted in Figures 4 and 5 respectively.

Fig. 4. Functional Specification of the “Store Relevant Information” Goal.

In the first case, when a workflow worker creates or modifies an information
document, the knowledge storage agent can trigger the global goal “store rele-
vant information” by committing to mission s1. In this case, other agents must
commit to the another missions (see the deontic specification, Table 1), and the
agents interact in the following way:

– The knowledge storage agent creates a request to store information in the
KIT storage request artifact. This request includes storage criteria (included
in the KIT specification), information about the workflow instance, and the
information document to be stored (a text document, a spreadsheet, an
email, etc.).

– The KIT storage request artifact validates the request. If the request comes
from an authorised agent, the artifact generates an environment perception,
which is perceived by knowledge coordinator agent instances.

– The knowledge coordinator agent receives the request. Here, it decides, based
on information about the KIT (stored in the KIT specification) and its own
knowledge (current active knowledge domains, preferred domains, frequently
consulted domains, etc.), in which knowledge domain(s) the information will
be stored.

– Once the target domain(s) are decided, the knowledge coordinator agent cre-
ates a storage request in the corresponding domain storage request artifacts.

– The knowledge domain agents receive this perception and check whether it is
directed to them. Finally, the knowledge domain agent stores the information
in its own KM system.

In the case of the second global goal, when a worker selects a KIT from the
work list for its execution, agents interact with the aim of providing knowledge
to the workflow worker in a proactive way, as follows:

50



– The knowledge provider agent makes a request in the KIT knowledge request
artifact. It includes the KIT specification (which specifies knowledge pref-
erences and information about the KIT), information about the workflow
instance (for learning purposes), worker profile, and worker role profile.

– The KIT knowledge request artifact validates the request. If the request
comes from an authorised agent, it generates an environment percept that
is perceived by the knowledge coordinator agent.

– The knowledge coordinator agent receives the request. It decides (based on
the KIT specification, worker profile, worker role profile, and its own knowl-
edge) from which knowledge domain(s) the information will be consulted.

– Once the target domain(s) are decided, the knowledge coordinator agent
creates a knowledge request in the knowledge request artifact of selected
domains.

– Finally, the domain agent consults the information from its own KM system
and retrieves the required information for the knowledge coordinator agent ;
then it supplies the information to knowledge provider agent that made the
request.

Fig. 5. Functional Specification of the “Provide Relevant Information” Goal.

Workflow workers can also request knowledge in a reactive way through Nat-
ural Language Queries (NLQs). In this case, workers make a query which is sent
to knowledge domains to be processed and the information that answers the
query can be retrieved.

Also, due to the characteristics of the multi-agent system technology and
the features of JaCaMo, the knowledge coordinator agent can include machine
learning strategies and knowledge recommendation mechanisms [27] to improve
the knowledge supply. In the same way, as it is an open system where knowl-
edge domains can be automatically added, the knowledge storage process can
be improved including information about reliability, security, confidence, etc.,
information that the knowledge coordinator agent can use to decide in which
domain the information will be stored or consulted.

Moreover, the use of a MAS and the encapsulation of the KM system in an
artifact allow knowledge domains to implement different information retrieval

51



Table 1. Deontic specification

role deontic relation mission
Knowledge coordinator agent (KCA) obligation s2
Knowledge coordinator agent (KCA) obligation pp2
Knowledge coordinator agent (KCA) obligation pr2
Knowledge domain agent (KDA) obligation s3
Knowledge domain agent (KDA) obligation pp3
Knowledge domain agent (KDA) obligation pr3
Knowledge storage agent (KSA) permission s1
Knowledge provider agent (KPA) permission pp1
Knowledge provider agent (KPA) permission pr1

strategies, according to their own needs, in a simple way. Different knowledge
domains can implement different strategies as long as they provide information
fulfilling the operations of the KM system artifact. Some of these strategies for
information retrieval that the system implements can be found in [2] and [24].

5 Related Work

Recently, some research has focused on the integration of theoretical organi-
sational models with MAS platforms with the purpose of providing practical
solutions for MAS development [7, 8, 10–12, 3, 23], but from the point of view of
multi-agent system programming, to our knowledge JaCaMo is the first fully
operational platform that integrates programming language abstractions at all
three levels of a multi-agent system: agent, environment, and organisation. In
this paper, we show how a practical MAS platform that is comprehensive like
JaCaMo can significantly facilitate the development of complex multi-agent ap-
plications, in this case in the knowledge management application domain. As
JaCaMo is the first comprehensive multi-agent programming platform that is
fully operational, it was the only choice we had to develop the case study pre-
sented here.

Of course not all multi-agent system will need all the functionalities of full
multi-agent oriented programming. JaCaMo is meant to be used when you need
complex autonomous agents (and BDI is the best known approach to develop
such agents), as well as a dynamic agent organisation situated in an environ-
ment that can support agent interaction at the right level of abstraction. We
believe this case study has helped illustrate how we can obtain a sophisticated
knowledge management system by creating autonomous agents, their organisa-
tion, and coordination through the environment using very high-level techniques
for each of these levels of the multi-agent system. This makes it clearly easier
to develop a system that is open and can evolve at runtime, again by human
designers or agents themselves changing very high level specifications of agent,
organisation, or environment behaviour.

52



6 Conclusion and Future Work

We have described an integral platform to program multi-agent systems: Ja-
CaMo. This integrates three main levels for multi-agent system programming:
agents, organisation, and environment. To our knowledge, JaCaMo is the first
fully operational programming platform for comprehensive MAS development.
It is more than a set of multi-agent technologies; it is a complete platform for
multi-agent programming that allows programmers to develop agent-based sys-
tems at a high abstraction level.

With the aim of demonstrating the main features of JaCaMo, we specified
a concrete case study of an agent-based architecture for business process man-
agement and knowledge management. This case study shows the functionalities
available in JaCaMo for the design of multi-agent systems. As JaCaMo has been
recently released, to our knowledge this is the first application to employ this
approach.

In future work, we will define the concrete sanctions that the knowledge
coordinator agent can apply when an agent does not obey an obligation, and
a set of rewards that the knowledge domains will receive if they answer with
suitable information. Also, due to the lack of a suitable modelling language, we
plan to develop a modelling language based on MAS-ML [6], which will allow
describing all static and dynamic characteristics of JaCaMo applications. This
is likely to be a language based on the OMG’s Meta Object Facility (MOF).

References

1. Abecker, A., Bernardi, A., Maus, H., Sintek, M., Wenzel, C.: Information supply
for business processes: coupling workflow with document analysis and information
retrieval. Knowledge-Based Systems 13(5), 271 – 284 (2000)

2. Ale, M.A.: An Organizational Knowledge Management Conceptual Model. PhD in
information systems, National Technological University (2009)

3. Baldoni, M., Baroglio, C., Bergenti, F., Boccalatte, A., Marengo, E., Martelli,
M., Mascardi, V., Padovani, L., Patti, V., Ricci, A., et al.: MERCURIO: An
Interaction-oriented Framework for Designing, Verifying and Programming Multi-
Agent Systems

4. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley (2007)

5. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. Wiley (2007)

6. Da Silva, V., Choren, R., de Lucena, C.: Using the mas-ml to model a multi-agent
system. Software Engineering for Multi-Agent Systems II pp. 349–351 (2004)

7. Dastani, M., Grossi, D., Meyer, J., Tinnemeier, N.: Normative multi-agent pro-
grams and their logics. Knowledge Representation for Agents and Multi-Agent
Systems pp. 16–31 (2009)

8. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. Autonomous Agents and MAS, Inter-
national Joint Conference on 1, 236–243 (2004)

9. Hollingsworth, D.: The workflow reference model. Tech. Rep. TC00-1003, Workflow
Management Coalition (1995)

53



10. Hübner, J., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisa-
tions with organisational artifacts and agents. AAMAS 20, 369–400 (2010)

11. Hübner, J., Sichman, J., Boissier, O.: S-Moise+: A middleware for developing or-
ganised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann,
G., Matson, E., Ossowski, S., Sichman, J., Vzquez-Salceda, J. (eds.) Coordination,
Organizations, Institutions, and Norms in Multi-Agent Systems, Lecture Notes in
Computer Science, vol. 3913, pp. 64–78. Springer Berlin / Heidelberg (2006)

12. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the Moise+ model: programming issues at the system and agent levels. Inter.
Journal of Agent-Oriented Software Engineering 1(3/4), 370 – 395 (2007)

13. Jung, J., Choi, I., Song, M.: An integration architecture for knowledge management
systems and business process management systems. Computers in Industry 58(1),
21 – 34 (2007)

14. Kitio, R., Boissier, O., Hübner, J., Ricci, A.: Organisational artifacts and agents
for open multi-agent organisations: giving the power back to the agents. In: Inter.
conference on COIN in agent systems III. pp. 171–186. Springer-Verlag (2007)

15. Kühn, O., Abecker, A.: Corporate memories for knowledge management in indus-
trial practice: Prospects and challenges. Journal of Universal Computer Science
3(8), 929–954 (1997)

16. Lai, J., Fan, Y.: Workflow and knowledge management: Approaching an integra-
tion. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS. Lecture Notes in Computer
Science, vol. 2480, pp. 16–29. Springer (2002)

17. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

18. Piunti, M., Ricci, A.: Cognitive use of artifacts: Exploiting relevant information
residing in mas environments. In: Meyer, J.J., Broersen, J. (eds.) Knowledge Rep-
resentation for Agents and Multi-Agent Systems, Lecture Notes in Computer Sci-
ence, vol. 5605, pp. 114–129. Springer Berlin / Heidelberg (2009)

19. Raghu, T., Vinze, A.: A business process context for knowledge management. De-
cision Support Systems 43(3), 1062 – 1079 (2007), integrated Decision Support

20. Rao, A.: AgentSpeak (L): BDI agents speak out in a logical computable language.
Agents Breaking Away pp. 42–55 (1996)

21. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
An artifact-based perspective. Autonomous Agents and MAS pp. 1–35 (2010)

22. Souza, R.G.S.: Agent-oriented constructivist knowledge management. Ph.D. thesis,
University of Twente, Enschede (2006)

23. Stratulat, T., Ferber, J., Tranier, J.: MASQ: towards an integral approach to in-
teraction. In: Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2. pp. 813–820. International Foundation
for Autonomous Agents and Multiagent Systems (2009)

24. Toledo, C.M., Ale, M., Chiotti, O., Galli, M.R.: An agent-based architecture for
ontology-driven knowledge management. In: The V International Conference on
Knowledge, Information and Creativity Support Systems. Thailand (2010)

25. Toledo, C.M., Chiotti, O., Galli, M.R.: Towards business process management and
knowledge management integration through an agent-based architecture. In: XXIX
International Conference of the Chilean Computer Society JCC 2010. Chile (2010)

26. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Autonomous Agents and Multi-Agent Systems 14, 5–30 (2007)

27. Zhen, L., Huang, G.Q., Jiang, Z.: Recommender system based on workflow. Deci-
sion Support Systems 48(1), 237 – 245 (2009)

54



Notes on pragmatic agent-programming with
Jason

Radek Ṕıbil1, Peter Novák2, Cyril Brom1, and Jakub Gemrot1

1 Department of Software and Computer Science Education
Faculty of Mathematics and Physics, Charles University in Prague

Czech Republic

2 Agent Technology Center, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

Czech Republic

Abstract AgentSpeak(L), together with its implementation Jason, are
one of the most influential agent-oriented programming languages. Be-
sides having a strong conceptual influence on the niche of BDI-inspired
agent programming systems, Jason also serves as one of the primary tools
for education of and experimentation with agent-oriented programming.
Despite its popularity in the community, relatively little is reported on
its practical applications and pragmatic experiences with adoption of the
language for non-trivial applications.
In this work, we present our experiences gathered during an experiment
aiming at development of a non-trivial case-study agent application by
a novice Jason programmer. In our experiment, we tried to use the pro-
gramming language as is, with as few customisations of the Jason in-
terpreter as possible. Besides providing a structured feedback on the
most problematic issues faced while learning to program in Jason, we
informally propose a set of ideas aimed at solving the discussed design
problems and programming language issues.

1 Introduction

Jason [6] is an agent-oriented programming system implementing the agent pro-
gramming language AgentSpeak(L) [14]. AgentSpeak(L) was proposed as a theo-
retical language, an articulation and operationalization of the Bratman’s Belief-
Desire-Intention architecture [7]. Jason is nowadays one of the most prominent
approaches in the group of theoretically-rooted agent-oriented programming lan-
guages (APLs). Building on the foundations of formal logics, these languages
serve as vehicles for study of both theoretical issues in agent systems (language
features, generic programming constructs, reasoning, coordination, etc.), as well
as practical aspects of their design and implementation (e.g., modularity, de-
sign, debugging, or code maintenance). To enable program verification, or model
checking for more rigorous reasoning about agent programs, Jason, together with
the majority of APLs in this class, e.g., 2APL, 3APL, GOAL, Jazzyk, Golog (for

55



an overview consult e.g., [3,5,4]) puts a strong emphasis on their rooting in
computational logic and rigorous formal semantics. Unlike the more pragmatic
approaches, such as Jadex, or JACK (cf. [13,15]), these languages, including
AgentSpeak(L), were constructed from scratch which also led to serious short-
comings with respect to practicality of their use.

While on one hand, pragmatic problems of agent design and implementa-
tion, such as e.g., code modularity, are gaining a more prominent role in the
research community, on the other, the feedback on practical use of such APLs
in more elaborated settings is rather scarce. AgentSpeak(L) often serves as a
basic APL for various extensions and integration with 3rd party tools, however,
little is reported in the research community on its practical applications, be it
more involved applied research projects, or more significant close-to-real-world
applications (cf. also the Jason related projects website [11]). The only report
on pragmatic issues faced when using Jason in a more involved context is the
recent study by Madden and Logan [12] in which the authors deal with problems
of modularity in their application and in turn propose a corresponding improve-
ments of the language itself. At the same time, to our knowledge, the most
elaborated applications of the Jason programming system include the entries
to the Multi-Agent Programming Contest, which already witnessed 8 submis-
sions in years 2006-2010 altogether by three independent research groups. The
reports on development of these applications, however, do not include discussion
of the practical issues of agent program implementation, but rather focus on the
analysis and design issues with an emphasis on the multi-agent coordination.

In this paper we discuss our experiences gathered during an experiment aim-
ing at development of a non-trivial case-study agent application by a novice
Jason programmer. The main goal of the undertaking was exploration of basic
problems in multi-agent coordination in a simple simulated environment using
the Jason programming system. In particular, we implemented an application
involving a team of 8 agents collaboratively exploring a grid maze and subse-
quently traversing the environment while cooperatively maintaining a formation.
Our experiment aimed at a naive, relatively conservative, use of the Jason pro-
gramming system. I.e., we tried to use the programming language as is, with
as few customisations of the Jason interpreter as possible. In contrast, most
involved example applications published at the Jason project website [11] and
submissions to the AgentContest employ extensive customisations of the Jason
interpreter as an inherent part of the system implementation.

The contribution of the presented paper is twofold. Firstly, we provide a
structured feedback on the most problematic issues faced while learning to pro-
gram in Jason, so that it will be useful for the wider community involved in the
research on agent-oriented programming languages and tools. Secondly, with-
out an ambition to provide conclusive technical solutions, we rather informally
propose a set of ideas aimed at solving the discussed design problems and pro-
gramming language issues.

After a brief introduction into AgentSpeak(L) and Jason in Section 2 and the
description of the implemented case-study (Section 3), in Section 4, the core of

56



this paper, we discuss a selection of problems we faced during the experiment.
For each discussed issue, we firstly motivate and explain the problem on the
background of the introduced case-study application, or its extension, and sub-
sequently we discuss the possible solutions. The topics covered in the discussion
include implementation of a simple loop design pattern, handling of interactions
between several plans and interruptibility thereof, usage of mental notes as lo-
cal variables in plans and two technical issues arising from implementation of
agents embodied in dynamic environment and the unclear boundary between
Jason programming language itself and its underlying extension/customisation
API in Java. We conclude the paper by final remarks in Section 5.

2 AgentSpeak(L) and Jason

AgentSpeak(L) is a theoretical agent-oriented programming language introduced
by Rao in [14]. It can be seen as a flavour of logic programming implementing the
core concepts of the BDI agent architecture, a currently dominant approach to
design of intelligent agents. Structurally, an AgentSpeak(L) agent is composed of
a belief base and a plan library. The belief base, essentially a set of belief literals,
provides the initial beliefs of the agent. The plan library serves as a basis for ac-
tion selection, as well as for steering the evolution of the agent’s mental state over
time. The plans of the agent are rules of the form event : context ← plan.
The rule denotes a plan, a sequence of basic actions and/or subgoals, which is ap-
plicable in reaction to the triggering event if the context condition, a conjunction
of belief literals, is satisfied.

AgentSpeak(L) agents are reactive planning systems which react to events
occurring in their environment, or are generated as subgoals internally by the
agent as a result of a deliberative change in its own goals. The dynamics of
the agent system is facilitated by i) instantiation of abstract plans as intentions
relevant in particular contexts, and subsequently ii) gradual execution of the in-
tentions leading to their subsequent decomposition into more and more concrete
subgoal invocations and finally atomic action executions. In each deliberation
cycle, such an agent performs the following sequence of steps:

1. perceive the environment and update the belief base accordingly
2. select an event to handle
3. retrieve all relevant plans
4. select an applicable plan and update the intentions accordingly
5. select an intention for further execution
6. execute one step of an intention and modify the intention base and the set

of events accordingly

Jason is a Java-based programming system implementing the AgentSpeak(L)
with various extensions and includes an integration with several multi-agent mid-
dleware platforms such as JADE, or Moise+. In its original incarnation, Agent-
Speak(L) is underspecified in several points of the deliberation cycle, namely

57



how exactly the three selection functions SE , SP and SI , denoting the selec-
tion of events, applicable plans and intentions respectively, are implemented.
In Jason, these are customizable functions which can be implemented as Java
methods. Furthermore, AgentSpeak(L) disregards the implementation details of
agent’s interaction with its environment. In particular, the interpreter assumes
that the belief base was updated according to agent’s percepts at the beginning
of each deliberation cycle. Jason extends the framework for reasoning about
agent’s beliefs in that it incorporates a Prolog interpreter in the belief base and
also provides a toolbox for implementation of custom belief bases meant as a
means for representing complex beliefs, such as the topology of environments, or
interface to relational databases. Finally, Jason provides a framework for imple-
mentation of perception handlers and external events as Java methods, together
with an API for implementation of customised exogenous actions embodying the
behaviours of the agent in its implementation.

The customisation interfaces of the Jason interpreter provide a means to
tailor the deliberation cycle to the domain specific requirements, as well as to
improve the efficiency of the agent program execution. Our motivation in the pre-
sented experiment was to explore the issues faced in the course of agent program
implementation using the vanilla Jason interpreter with minimal customisations
required to make the implemented agents interact with their environment.

3 The case-study

The Cows & Cowboys problem of the Multi-Agent Programming Contest editions
2009 and 2010 (cf. [2], scenarios for the 2009-10 editions) is a challenging sce-
nario for benchmarking cooperative multi-agent teams. In the Cows & Cowboys
scenario, two teams of agents, herders, compete for a shared resource, cows. The
environment is a grid, usually a square with a size approximately 100 cells wide.
Each cell can be either empty, or can contain an object which can be either a
tree, a fence, an agent, or a cow. Trees serve as obstacles in the environment
and are arranged so that the freely traversable space forms a kind of a maze.
Agents can move between empty cells and are able to open fences located in
the environment, by pushing a button at the edge of each fence. Similarly to
agents, cows are also able to move between empty cells, however their movement
is steered by the environment and takes into account their mutual distances,
as well as the distances from the agents and the trees the cow can see. Agents
and cows have a limited view, and in each simulation step receive a perception
containing cells in their vicinity (agents see a square of 17× 17 cells centred at
the agent’s position, cows see a square of 11× 11 cells). The task of each agent
team is to herd as many cows as possible into a corral belonging to the team. As
cows are afraid when they see an agent, they can be pushed by a coordinated
team of agents in a particular direction.

For the purposes of the here reported case-study, we implemented a fragment
of the Cows & Cowboys scenario. The concrete problem was to implement a
team of agents, which cooperatively explore the maze, find some pre-determined

58




  




 







Figure 1. The scheme of the architecture of a single Jason agent interacting with the
simulated environment.

landmarks and then traverse the maze from one landmark to another while
maintaining a formation of a particular shape.

The simulated environment was provided by the MASSim server [1]. The
scheme of the implemented system is depicted in Figure 1. The interaction with
the simulator was implemented in Java by the class AgentProxy derived from the
AbstractAgent example stub class provided together with the MASSim package.
In each simulation step, the MASSim server sends to each agent an XML message
encoding the agent’s perception, essentially the content of the cells the agent sees.
VisionProcessor, a component of the AgentProxy object, then decodes the XML
message and updates the belief base of the agent accordingly.

Upon an update of the belief base, the Jason interpreter triggers a set of belief
update events, which serve to maintain up-to-date state and consistency of the
belief base, as well as to pre-compute answers to some often requested and at the
same time computationally-intensive queries. The belief base itself is customised
to support unique beliefs. Its implementation replicates the belief base from Gold
Miners II example from the standard distribution of Jason. Unique beliefs are
agent’s location, its team mates’ position, timestep and similar.

Following the updates of the belief base, an action from the previous timestep,
if there was a one, is marked as executed and Jason thread continues its deliber-
ation upon new percepts. The AgentProxy control thread then goes to sleep for
2000 milliseconds (the server sends new percepts every 2500 milliseconds) unless
it is woken up by the Jason thread upon an invocation of an exogenous action
from within some intention of the agent. The AgentProxy then validates the
action (correct timestep), and if it is valid, it is then translated into the corre-
sponding XML message and sent back to the server. The only exogenous actions
the agent can execute are moves in the eight directions: north, east, south, west
and the diagonal moves north-east, north-west, south-east and south-west.

The toolbox of internal actions includes most importantly the implementa-
tion of the path planning algorithm A*, together with a few auxiliary functions

59



such as the lottery-like mechanism for choosing the formation leader, queries for
contents of map cells, etc.

One of the most important constraints on the implementation of the case-
study was that we do not customise the Jason interpreter itself, neither the
event, plan and intention selection functions SE , SP , SI .

4 Issues faced

In the following, we discuss a set of problems we encountered in the course of im-
plementing the case-study described above in Section 3 by a programmer learning
the Jason language along the way. As the authoritative source and documenta-
tion, the book Programming multi-agent systems in AgentSpeak using Jason [6]
was used. For clarity, the discussion of each issue includes a brief motivation and
explanation of the particular design problem, subsequently followed by a discus-
sion on the available solutions, their consequences and wherever appropriate an
informal proposal for an improved solution to the issue.

4.1 Loop implementation

Often a designer needs to implement some kind of a loop design pattern. E.g.,
in a maze-like environment, the agent calculates a path from a point A to a
point B using some path planning algorithm and then it should follow the path.
This design could be implemented by the following algorithm in an imperative
language:

before−loop−code
while not loop−condition do

loop−body
end
after−loop−code

Jason does not feature a loop programming construct3, however it can be
implemented by the following Jason code:

event: context ←
before−loop−plan;
!loop;
after−loop−plan.

+!loop: not loop−condition ←
loop−body;
!loop.

This design implements the idea of tail recursion. However, as in the current
versions of Jason, the interpreter does not feature a special treatment of tail
recursion, according to the language semantics, this design unfolds into an ever
growing intention stack. At the bottom of the stack is the plan after−loop−plan

with a series of invocations of !loop of length equal the number of iterations of
the loop. In order to facilitate correct plan failure handling, Jason interpreter

3 From the version 1.3.4 Jason interpreter includes an explicit loop programming
construct. The update was however released only after finishing the here described
experiment and the authoritative source on Jason [6] does not discuss this issue.

60



does not remove top-level event invocation from the intention stack. In the path-
following scenario, if the path is of length 1000, the intention stack would grow
to the size 1000 plus the length of after−loop−plan. In cases with extremely high
number of loop iterations, e.g., several dozen thousands path steps is not that
extreme for large grid environments, the intention stack growth can lead to high
memory consumption, and perhaps more importantly, upon reaching the loop
condition, prolonged intention stack cleanup before the interpreter continues
with the after−loop−plan.

A naive attempt by a novice programmer could be a loop implementation
using the asynchronous event invocation !!loop, straightforward use of which how-
ever is inappropriate in this context as besides invoking the loop, it would lead
to immediate continuation with the after−loop−plan.

We propose the following implementation of the loop design pattern, which
uses higher order variables feature of Jason (cf. [6], Chapter 3) to implement a
kind of a callback scheme:

event: context ←
before−loop−plan;
!!loop(after−loop−event).

+!after−loop−event: true ← after−loop−plan
+!loop(Callback): not loop−condition ←

loop−body;
!!loop(Callback).

+!loop(Callback): loop−condition ← !!Callback.

The above loop implementation is well-formed and a valid program according
to the Jason syntax and semantics. Instead of a synchronous event invocation,
we invoke the loop in an asynchronous manner !!loop and provide it with an
argument, which is a string denoting the event which should be invoked after the
loop finishes, i.e., after−loop−event. When the loop termination condition becomes
true, the pattern simply invokes the event stored as the callback. The advantage
of this loop implementation is that it does not lead to intention stack length
increase, while at the same time still allows for plan failure handling as in the
standard loop implementation.

In the pattern above, the loop recurring event carries with it the appropriate
callback to invoke upon the loop’s successful termination. An extension of this
callback design solution allows a programmer to introduce a powerful plan failure
handling mechanism as follows:

event: context ←
before−loop−plan;
!!loop(after−loop−event, fail−loop−event).

+!after−loop−event: true ←
after−loop−plan.

+!fail−loop−event: true ←
loop−failure−plan.

+!loop(SuccessCallback, FailCallback): not loop−condition & loop−continuation−condition ←
loop−body;
!!loop(SuccessCallback, FailCallback).

+!loop( , FailCallback): not loop−condition & not loop−continuation−condition ←
!!FailCallback.

+!loop(SuccessCallback, ): loop−condition ←
!!SuccessCallback.

61



Loop is a handy and often used design pattern. However, for a novice pro-
grammer, loop implementation in Jason is rather unintuitive and its implemen-
tation often leads to a confusion. One of the straightforward solutions, well in
the spirit of BDI architecture, would be use of persistent goals, such as in 3APL.
Another way to deal with this confusion would be to implement a built-in loop
programming construct, or a macro pre-processor construction similar to the
various types of goals and commitment strategies discussed in [6], Chapter 8.

4.2 Interruptions and plan interactions

Among other desirable properties, intelligent agents are supposed to be able to
follow long term goals, but at the same time should be reactive to events in the
environment and proactively seek opportunities for action whenever they arise in
an appropriate context. Consider the following slight extension of the case-study
scenario. The team of agents is moving through the environment in a formation,
however, agents are also capable of picking up objects, let’s say garbage, from
the cells they stand on. Let’s also assume, an agent perceives the object to pick,
only when it is located in the same cell as the object and it can pick up an
object only after it closely inspected it. In Jason, a straightforward and naive
implementation of the two behaviours would look like as follows:

+!formation loop : not aligned ←
/∗ calculate the move action towards formation position ∗/
move;
!formation loop.

+see(Object) : true ←
inspect(Object);
pick(Object).

The above naive implementation does not work properly using the vanilla
Jason interpreter. The reason is that after the new intention leading to picking up
the object from the cell is formed, it is not ensured that in the same deliberation
cycle, the intention selection function SI selects the same intention for execution.
In the case SI selects for execution first the intention for keeping the formation
aligned, it can happen that at the moment the agent wants to inspect, or pick
up the object, the plan fails since the agent is no more located in the same cell
as the object – the plan for keeping the formation aligned moved it away.

The implementation problem described above is that of interacting plans,
which can mutually interrupt each other. In Jason, similarly to most state-of-
the-art BDI-based agent programming languages, plans are considered implicitly
interruptible. However, having several plans involved in the same context, i.e.,
modifying the same aspect of agent’s state, which can be instantiated as inten-
tions in parallel, the problem is how to determine the priority of execution of the
corresponding intentions?.

There are basically three solutions to this problem. The straightforward so-
lution would be to use some kind of plan synchronisation mechanism. Jason
provides atomic, a pre-defined plan annotation construct ensuring that the inten-
tion instantiated from an atomic plan is executed without interruption until it
finishes. The following code shows use of the construct:

62



@object picking[atomic]
+see(Object) : true ←

inspect(Object);
pick(Object).

While simple and straightforward, this solution of the plan interaction does
not scale with the number of involved interacting plans. Consider that our agent
should be able to quickly renegotiate the details of formation location and its
heading with the team. While interdependent with the formation alignment be-
haviour, it is independent to the object picking behaviour. In result, we would
like to impose the following ordering on the three behaviours: the formation
alignment behaviour is preceded by the opportunistic object picking, which is
in turn preceded by the negotiation. However, the atomic construct applied to
the object picking behaviour would cause it to be non-interruptible, hence the
negotiation could not take place.

Another possibility to deal with interacting plans would be to let the pro-
gram handle the situations, in which they can be interrupted, not the plans
themselves. I.e., all plans would be considered implicitly non-interruptible and
at every point when a plan can be interrupted by a higher-priority event, there
would be an explicit check for all the possibilities of such interruptions, a syn-
chronous invocation of the interrupting event, followed by an explicit check for
preconditions of the remaining plan. The following code snippet demonstrates
use of such a technique:

+!formation alignment : context ←
align−plan−start;
!pick object; !negotiation;
align−plan−rest.

+!pick object : see(Object) ←
pick−plan−start;
!negotation;
pick−plan−rest.

+!negotiation: request(Sender, Msg) ←
negotiation−plan.

Obviously, this technique leads to implementation of agent behaviours in
terms of finite state machines and consequently to brittle, non-elaboration-
tolerant, code. In order to add a new behaviour, interactions with all the other
existing behaviours have to be considered and these have to be modified accord-
ingly.

The only scalable and flexible mechanism solving the problem of interact-
ing plans is the customisation of the intention selection function SI in Java so
that it prioritises the running intentions appropriately according to the partic-
ular application domain. The downside of this, rather heavyweight, solution is
that it renders the resulting Jason program to be not unambiguously readable
and understandable in isolation. An important part of the program semantics
is this way shifted to the Java side and the Jason program cannot be fully
comprehended without understanding the Java code functionality.

Finally, in [6], authors discuss the plan annotation priority reserved for future
use. The annotation is intended to instruct the plan selection and intention
selection functions SP and SI about the plan, resp. intention selection prior-
ity. However, they also note that the mechanism is not implemented in Jason

63



programming system yet and do not provide enough technical detail on its func-
tionality.

Above, we tried to show that the problem of steering plan interactions and
interruptions is an important one, yet not solved appropriately in the current
incarnation of Jason. On one hand, an intuitive and clean mechanism for plan
interaction is vital in BDI-style agent programming, where several plans might
be running in parallel and interleave their executions. On the other, plans can
interact in too many different ways. To strike balance between the two require-
ments, as an informal attempt, we call for a conservative extension of Jason
allowing to impose partial ordering of plans in a program. While certainly not a
mechanism general enough (consider e.g., specification of the priority of program
modules, similar to the one proposed in [12]), such a mechanism would, in many
cases, help avoid customisation of the intention selection function SI , which we
consider a bad design for the reasons discussed above.

4.3 Mental notes and plan destructors

Mental notes are a means for an agent to modify its belief base from its plans in
run time. This way the agent can remind itself about status of its own execution
and thus partially treat the above discussed problem of plan interactions. An-
other use of mental notes is transfer of complex information between a behaviour
and its invoked subgoals. In result, the mental notes can be used as a kind of
local variables of plans. Often, after plan completion, the belief base should be
cleaned up, i.e, a programmer would like to retract the set of “local variables”
corresponding to the plan. If implemented carefully, Jason provides a means to
implement such a mechanism. Consider the following code:

+!eventX: context ←
+eventX(note1);
...;
+eventX(note2);
...;
−eventX( ).

I.e., each mental note local to the plan triggered by the event eventX is of a
particular form, allowing later a bulk retract of all the beliefs in that form from
the belief base.

While relatively straightforward, this technique can lead to difficulties in the
case of plan failure. Firstly, upon plan failure the local mental notes have to be
cleaned up as well, i.e., always when using such mental notes, a plan failure code
similar to the following should be used:

−!eventX: context ←
...;
−eventX( ).

Besides code duplication, a novice Jason programmer can simply forget to
implement the appropriate plan failure mechanism. Another problem of this
technique is that it might be necessary to use different mental note forms for
alternative plans handling the event eventX. However, upon plan failure, it is no

64



longer possible to recognise which particular plan handling the event failed, what
can lead to difficulties with the belief base clean up.

We informally propose a language extension similar to exception handling
programming construct try−catch−finally present in many imperative languages, as
well as in some niche agent programming languages, such as e.g., StorySpeak [9].
Consider the following code snippet:

+!event: context ←
try {

plan−body;
} finally {

−eventX( )
}.

In the finally block, code includes a plan destructor, i.e., a subplan which
should be invoked upon plan termination, regardless of its success, or a failure.
The advantage of this construct is that the plan destructor is associated with the
particular plan variant handling the event unlike when using the standard Jason
plan failure event invocation −!event .

4.4 Jason agents vs. external environment

In the implemented case-study, the agents had a time limit imposed on the length
of their deliberation. In particular, they were allowed 2500ms to decide upon
their next actions. If the action was not issued within the timeout, the simulated
environment went on as if the agent executed the action skip and discarded any
action reply delivered after the timeout. In such environments, it is vital for
the agent programmer firstly, to be able to optimise and speed up the agent’s
deliberation as much as possible, and secondly, to be able to steer the deliberation
cycle of the agent from within its plans.

In the implemented case-study, it was necessary for the agent to reason about
complex aspects of the environment, such as the form of obstacle structures
ahead, fence structures, etc. In order to speed up the deliberation of the agent,
we implemented a relatively complex mechanism of belief updating. Upon each
belief update, the agent triggered an event to pre-calculate answers to often-
queried context conditions and stored them as mental notes in its belief base.
While serving the solution, this mechanism led to relatively complex belief base
handling within the agent. However, even with this optimisation, it often hap-
pened that the implemented agents were not able to reply to the server within
the set time limit.

To solve this problem, we propose two extensions of the Jason programming
system. Prolonged reasoning over the agent’s beliefs is often invoked from the
rule context conditions (e.g., deliberation over complex aspects of the environ-
ment, such as the form of obstacles ahead, path calculation, etc.). In order to
speed up such Prolog query evaluations, we propose to implement a RETE-style
mechanism [8] for context conditions which can be calculated only once and
treated as constant queries for the rest of the deliberation cycle. In result, we
propose introduction of annotations of rules, or their context conditions, with a

65



flag denoting their constant value throughout a deliberation cycle, or even until
a special belief update event is triggered.

Current implementation of the Jason programming system provides the in-
ternal action .drop intention facilitating forceful intention cancellation from within
a plan of the agent. The straightforward use of this mechanism is however not
well suited for the case-study application. It would require implementation of a
recurring goal, a loop like pattern, regularly checking whether the timeout al-
ready passed, or not. Another option would be to add the timestep mechanism
handling to the environment implementation, annotate the relevant plans with
a particular name pattern and finally enhance the agent program with a plan
similar to the following one:

+timestep: true ←
.drop intention(...);
/∗ possibly restart some of the intentions afresh ∗/

The invocation of the action .drop intention(...) drops all intentions matching the
pattern provided as the argument.

Usage of design solutions such as the two introduced in the previous para-
graph, however, would interact with other plans as discussed in Subsection 4.2
and would be difficult without an appropriate customisation of the intention se-
lection function. Secondly, and perhaps more importantly in the case of the first
solution, regularly checking the timeout could lead to further slow-down of the
deliberation cycle.

We propose an extension of the Jason annotation mechanism to include
a possibility to annotate agent’s intentions with integer values, timesteps. At
the point when the system timestep value is incremented, either by the agent
program itself, or from within the underlying Java code interfacing the agent
with the environment, all the intentions annotated with lower timestep value
should automatically fail, because they are no longer relevant.

To conclude this part, in its current incarnation, Jason, similarly to many
other agent-oriented programming languages, is rather introverted. In particular,
the programming system implicitly assumes that the agent acts in a synchronous
manner with respect to the environment. This assumption holds when the speed
of the agent’s deliberation is relatively higher, or at least matching the rate
of change, resp. speed of update, of the environment. However, in cases when
the agent deliberation struggles to match the rate of change imposed by the
environment, the current implementation of the Jason programming system does
not provide enough optimisation mechanisms to deal with the issue (we discuss
possibilities to deal with this problem in the context of videogame bots in [10]).

4.5 Jason vs. Java

As already remarked above, Jason programming system is tightly integrated
with the underlying Java environment. This setup allows interfacing the imple-
mented agents with their environments in a flexible way, as well as it provides
great possibilities with respect to customisation of the language interpreter for

66



the particular application domain in terms of custom belief bases, and specially
tailored event, plan and intention selection functions SE , SP and SI respectively.

We argue, that the flexibility of this setup, however, is also a major drawback.
As already discussed above, such customisations lead to an unclear boundary
between Java and Jason parts of the implemented agent program. Often, signif-
icant and important parts of the agent program functionality are implemented
in Java code what renders the Jason program itself only hardly understandable
in isolation.

Another point, especially relevant for novice Jason programmers, is the ques-
tion what are the guidelines regarding which aspects of the agent program should
be implemented in Java and which in Jason? In an extreme case, this might lead
to a trivial Jason program of the form:

!main.
+!main: true ← .main.

I.e., there is a single event invoked at the start of the program which leads to
invocation of an internal action main implementing the whole functionality of the
agent as a Java code. While such a Jason program is absurd, it illustrates the
point. The possibility to shift pieces of functionality between Java and Jason
and at the same time not having clear guidelines regarding what belongs where,
leads to confusion of programmers.

Bordini, Hübner and Wooldridge touch on this issue in [6], Chapter 11. They
seem to take a puristic stance, since they argue that programmers should re-
sist the temptation to enhance environments with “fake” actions and other user
customisations leading to “cheating” in Jason programming. While the point is
fair, pragmatic use of the Jason language by a relatively inexperienced program-
mer facing design issues such as those discussed in this section might lead to a
series of implementation stages characterised by a growing frustration with the
programming system concluded by an escape to the path of “minimal effort”,
i.e., using a more familiar tool, in this case Java programming language.

4.6 Minor technical and methodological issues

Finally, let us conclude the core discourse by listing of some minor issues a
programmer learning the Jason programming system encounters.

Debugging Debugging of BDI agent systems is a problem known and discussed
in the community. Apart from deeper discussion on particular debugging meth-
ods, one of the issues are the debugging tools available within the particular
programming platform. Jason provides a tool for stepping through the agent’s
reasoning cycle, display its current belief base, the pursued intentions and events
awaiting evaluation. Apart from problems with stability of the tool, one of the
main difficulties with this style of program debugging is that in situations with
relatively short time limit on agent’s deliberation, this approach is unusable. A
more appropriate technique in such situations is to use a logging facility.

67



However, in the Jason implementation ver. 1.3.3, which has been used for
this study, the provided logger does not provide enough information for the pro-
grammer. It is not comprehensible enough, as, apart from user defined outputs, it
only reports selected events and plans, percepts and execution control messages.
It would be useful to export the whole current state of the agent, provided the
user is allowed to specify different levels of detail for logging (dynamically during
the execution), as output of whole states could be sometimes space intensive.

Integrated Development Environment Even though the provided Eclipse
plug-in is reasonably comfortable, it does not follow some of the established
patterns for plug-ins of the same category for Eclipse IDE. Instead of adding
run options directly to the project options, it has them attached to the context
menu of a mas2j file. An ordinary Eclipse plug-in would try and replicate the
selection of main class of Java program, which has essentially the same objective.

Another issues is the lack of code completion function in the standard Jason
IDE, which rather slows down agent program implementation.

Educational material One of the most difficult aspects of programming in
Jason was actually learning it. There is only limited material freely available.
Thus, along with generated documentation for the source code (javadoc), exam-
ples and demos, the most useful resource is the book “Programming Multi-agent
Systems in AgentSpeak Using Jason” [6]. While the book provides a complete
description of the programming system itself, it is still relatively difficult to use
it as a pedagogical tool. It imposes a strong emphasis on the theoretical part of
Jason, without introducing the student into pragmatics of building more com-
plex agent systems. To improve the situation, availability of several authoritative
tutorials on incremental building complex agent systems would definitely help
to promote the correct programming techniques in the language. As of now, the
initial barrier between first working plans and first complex interacting plans is
tremendous and requires a lot of trial and error approach on the side of the novice
Jason programmer. In our opinion, it is much greater than for other languages,
such as Java, C++ or Python.

5 Final remarks

In the above sections, we discussed some of the most problematic issues we faced
during the experiment. In particular, the experiment aimed at implementation
of a relatively complex case-study application by a programmer without a prior
knowledge of Jason language. To keep the experience as relevant to Jason-style
agent programming as possible, one of the strict prior requirements was to try to
use Jason programming system as is, i.e., with as few customisations as possible.
In particular, we decided not to customise the deliberation cycle of the Jason
interpreter and the only parts implemented as Java code were those facilitating
the interaction with the simulated environment, i.e., a set of internal actions

68



implementing e.g., path planning algorithms and some arithmetic calculations
and the customised belief base handling the availability of perceptions received
from the simulated environment from within Jason code.

Since we used the simulated environment provided in the Multi-Agent Pro-
gramming Contest (AgentContest), the complexity of the implemented case-
study is directly comparable to the implementations of AgentContest entries in
its last few editions, which featured the Cows & Cowboys scenario, i.e., the same
simulated environment. For comparison, our implementation resulted in code-
base involving 1127 lines of code, while the AgentContest entries to editions 2009
and 2010, presented by teams involving the Jason platform developers, included
1416 and 1648 lines of code respectively. The AgentContest entries, however,
aimed at the full-featured cows herding scenario, while our case-study imple-
mented only a fragment of the scenario, environment exploration and movement
in a formation through the environment. The independent entry to the 2010
edition of the AgentContest by the team of the Technical University of Denmark
featured only 173 lines of Jason code and most of the team functionality was
thus implemented on Java side. If our assumption, that the AgentContest entries
are the largest, publicly available, applications written to date, is correct, then
our case-study resulted in one of the most extensive Jason codebases to date.

In parallel to conducting the here reported Jason implementation, several
students implemented the same case-study application in Java in the context of
Multi-Agent Systems course at CTU in Prague. Interestingly, while most of them
considered the task quite work-intensive and reported a workload in range of 40-
60 hours of programming and testing to complete the undertaking, the Jason
implementation took more than 120 hours to complete for an experienced Java
programmer. The average Java codebase resulting from the exercise involved
more than 4000 lines of code. While no hard conclusion can be drawn from this
remark, it can serve as an indicator that learning Jason on a non-trivial example
application is definitely a hard task and the community should also invest more
effort in promoting educational material and more extensive tutorials on teaching
agent-oriented programming.

The discussion in this paper does not aim at providing a significant scientific
contribution. However, we believe that reports, such as this, contribute to the
on-going discussion in the community on usefulness, relevance and pragmatics
of agent-oriented programming systems, tools and languages, as well as to the
future developments of the field.

Acknowledgements We are grateful to Jomi F. Hübner (Federal University of
Santa Catarina, Brasil) and Jørgen Villadsen (Technical University of Denmark) for
the permission to study and use the code of their entries to the AgentContest.

Authors of the presented work were supported by the Czech Ministry of Education
grants MSM6840770038 and MSM0021620838, the Grant Agency of the Czech Techni-
cal University in Prague, grant SGS10/189/OHK3/2T/13, the Grant Agency of Czech
Republic grant P103/10/1287 and the Grant Agency of Charles University in Prague
0449/2010/A-INF/MFF. Preparing this text and presenting this work was also sup-

69



ported by the project CZ.2.17/3.1.00/31162 that is financed by the European Social
Fund and the Budget of the Municipality of Prague (for Radek Pibil).

References

1. Tristan M. Behrens, Jürgen Dix, Mehdi Dastani, Michael Köster, and Peter
Novák. MASSim: Technical Infrastructure for AgentContest Competition Series.
http://www.multiagentcontest.org/, 2009.

2. Tristan Marc Behrens, Jürgen Dix, Mehdi Dastani, Michael Köster, and Peter
Novák. Multi-Agent Programming Contest. http://www.multiagentcontest.org/,
2009.

3. Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah Seghrouchni,
Jorge J. Gomez-Sanz, João Leite, Gregory O’Hare, Alexander Pokahr, and Alessan-
dro Ricci. A survey of programming languages and platforms for multi-agent sys-
tems. Informatica, 30:33–44, 2006.

4. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni,
editors. Multi-Agent Programming: Languages, Tools and Applications. Springer,
Berlin, 2009.

5. Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni.
Multi-Agent Programming Languages, Platforms and Applications, volume 15 of
Multiagent Systems, Artificial Societies, and Simulated Organizations. Kluwer Aca-
demic Publishers, 2005.

6. Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming
Multi-agent Systems in AgentSpeak Using Jason. Wiley Series in Agent Technology.
Wiley-Blackwell, 2007.

7. Michael E. Bratman. Intention, Plans, and Practical Reason. Cambridge Univer-
sity Press, March 1999.

8. Charles Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell., 19(1):17–37, 1982.

9. Jakub Gemrot. Joint behaviour for virtual humans. Master’s thesis, Faculty of
Mathematics and Physics, Charles University, Prague, 2009.

10. Jakub Gemrot, Cyril Brom, and Tomáš Plch. A periphery of pogamut: From
bots to agents and back again. In Frank Dignum, editor, Agents for Games and
Simulations II: Trends in Techniques, Concepts and Design, volume 6525 of Lecture
Notes in Computer Science, pages 19–37. Springer Verlag, 2011.

11. Jason Developers. Jason, a Java-based interpreter for an extended version of
AgentSpeak. http://jason.sourceforge.net/, 2011.

12. Neil Madden and Brian Logan. Modularity and Compositionality in Jason. In Lars
Braubach, Jean-Pierre Briot, and John Thangarajah, editors, PROMAS, volume
5919 of Lecture Notes in Computer Science, pages 237–253. Springer, 2009.

13. Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI Rea-
soning Engine, chapter 6, pages 149–174. Volume 15 of Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations [5], 2005.

14. Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In Walter Van de Velde and John W. Perram, editors, MAAMAW,
volume 1038 of Lecture Notes in Computer Science, pages 42–55. Springer, 1996.

15. Michael Winikoff. JACKTM Intelligent Agents: An Industrial Strength Platform,
chapter 7, pages 175–193. Volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations [5], 2005.

70



Chapter 3

Programming Languages and
Platforms



The agent programming language Meta-APL

Thu Trang Doan, Natasha Alechina, and Brian Logan

University of Nottingham, Nottingham NG8 1BB, UK
{ttd,nza,bsl}@cs.nott.ac.uk

Abstract. We describe a novel agent programming language, Meta-APL, and
give its operational semantics. Meta-APL allows both agent programs and their
associated deliberation strategy to be encoded in the same programming lan-
guage. We define a notion of equivalence between programs written in different
agent programming languages based on the notion of weak bisimulation equiv-
alence. We show how to simulate (up to this notion of equivalence) programs
written in other agent programming languages by programs of Meta-APL. This
involves translating both the agent program and the deliberation strategy under
which it is executed into Meta-APL.

1 Introduction

In this paper we sketch the agent programming language Meta-APL. Its distinguishing
feature is that the agent’s deliberation strategy can be encoded as part of the agent pro-
gram. Meta-APL is designed to form part of a platform for verifying multi-agent sys-
tems where the agents are implemented in different (BDI-based) agent programming
languages. As part of the verification process, the agent programs will be translated
into Meta-APL and verification tools designed for Meta-APL will be used to verify the
system. Similar approaches have been proposed before, see for example [4]. The dis-
tinguishing feature of our approach is that Meta-APL is itself an agent programming
language (rather than a special purpose library as in [4]) and that the deliberation strat-
egy of the target agent can be expressed in the Meta-APL program along with the agent
program itself. It is clearly necessary to encode the deliberation strategy correctly, as
executing the same program under different strategies may give very different results.
Other agent programming languages have also been used to program agent deliberation,
see for example [1]. However Meta-APL is specifically designed with this capability in
mind, for example it is possible to write rules in Meta-APL which match against the
contents of the agent’s plan base.

This paper describes the first step towards this long term goal, concentrating on the
design and the operational semantics of Meta-APL itself. We also define a notion of
equivalence or bisimulation between programs written in different agent programming
languages. We sketch how programs written in other agent programming languages
plus their deliberation strategies can be translated in Meta-APL so that the resulting
Meta-APL program is equivalent to the original program together with its deliberation
strategy.

The remainder of this paper is organised as follows. In section 2 we introduce the
syntax of Meta-APL. In section 3 we define its operational semantics. In section 4 we

72



define the notion of equivalence between programs and show how to simulate programs
written in 3APL [2]. We conclude and outline directions for future work in section 5.

2 Syntax of Meta-APL

The language of beliefs and goals in Meta-APL is similar to that of other BDI-based
agent programming languages, for example, 3APL [2], but we assume a propositional
language for ease of presentation (to avoid extra notation to do with substitutions etc.
The actual implementation has Prolog-like syntax for beliefs).

We assume that beliefs and goals are built using propositional atoms from a finite
set Prop. Beliefs are either atoms p, or Horn clauses p:- q1, . . . , qn. A belief base is a
finite set of beliefs. A belief query φ is defined as φ ::= p | not p | φ1 and φ2 | φ1 or φ2,
where not is negation as failure. Goals are atoms or conjunctions of atoms. A goal base
is a finite set of goals.

Before we introduce plans, we define the notion of a plan body. A plan body is a
finite sequence of basic actions, test actions, meta-actions and sub-goals, where

– A basic action has the form of #a where the symbol # is used to indicate that this
is a basic action, and a is the name of the basic action.

– A test action has the form of ?ϕ where ? is used to indicate that this is a test action,
and ϕ is a belief query.

– A sub-goal has the form of !g where ! is used to indicate that this is a sub-goal, and
g is a goal.

– Meta-actions are actions that allow the agent to add and delete beliefs and goals,
and to delete and execute applicable plans. The set of meta-actions is as follows:
• add-bel(d) is for adding a belief d into a belief base.
• del-bel(d) is for deleting a belief d from a belief base.
• add-goal(d) is for adding a goal d into a goal base.
• del-goal(d) is for deleting a goal d from a goal base.
• del-plan(i) is for deleting an applicable plan i from a plan base.
• exec(i) is for executing an applicable plan i.
• step(i) is for executing a single step of an applicable plan i.

A plan in Meta-APL represents the triggering conditions and execution state of a
plan body. A plan is a tuple of the form (g, b,π, x,π′) where:

– g is a goal,
– b is a context query (defined below),
– π is an initial plan-body,
– x is a flag for specifying the state of the plan which can have one of the following

values: a (to say that it is active), ex (to say that it is executed), na (to say that it is
not active).

– π′ is a partially executed plan-body.

A plan base is a finite set of plans.
Context queries are evaluated against the agent’s belief and plan bases. In order to

define context queries, we first need to introduce the notion of plan-body terms, goal

73



terms and flag terms. Informally, a plan-body term is a plan-body except that variables
may occur where plan-bodies normally are. Given a set Vars of variables, the syntax of
plan-body terms is as follows:

tπ ::= X |!s |?ϕ | #a | ma(d) | mb(tπ) | tπ; t′π

where X ∈ Vars, !s is a sub-goal, ?ϕ is a test action, #a is a basic action, ma(d)
is a meta-action with ma ∈ {add-bel,del-bel,add-goal,del-goal}, d is a
belief, and mb(tπ) is also a meta-action with mb ∈ {del-plan,exec,step}.

A goal term is either a variable or a goal. A flag term is either a variable or a flag.
Then, context queries are defined by the following syntax:

b ::= X | t1 = t2 | t1 "= t2 | ϕ | p(tg, b, tπ, tx, tπ′) | ¬p(tg, b, tπ, tx, tπ′) | b&b′

where X ∈ Vars, t1, t2, tπ and tπ′ are plan-body terms, ϕ is a belief query, tg is a goal
term, and tx is a flag term. Evaluation of context queries will be defined in the next
section when we define the operational semantics of Meta-APL. Informally, a belief
query is evaluated against the belief base in a standard way, t1 = t2 is used to check if
two terms t1 and t2 are unifiable, p(tg, b′, tπ, ts, tπ′) means that there is a plan in the
plan base that can unify with (tg, b′, tπ, ts, tπ′); and ¬p(tg, b′, tπ, ts, tπ′) means there
is no applicable plan in the plan base which can unify with (tg, b′, tπ, ts, tπ′).

A plan (g, b,π, x,π′) is effectively identified by the first three components g, b and
π. It can not happen that two applicable plans have the same first three components in a
plan base at the same time. During the existence of the plan, its components g, b, π stay
unchanged.

In Meta-APL, plans are generated by means of rules. A rule has the form:

g, b → π.

where g is a goal and is optional, b is a context query where variables are not allowed
to occur outside the scope of the atom p(. . .), and π is a plan-body. When a rule has no
goal, we define that its “hidden” goal is $.

3 Operational semantics of Meta-APL

An agent program consists of an initial belief base, an initial goal base and a set of rules.
The initial plan base is empty.

A configuration is a tuple of the form 〈σ, γ,Π, D〉 where σ is a belief base, γ is a
goal base, Π is a plan base and D is a phase indicator of the deliberation cycle which
can have one of the following values to indicate in which phase the configuration is:
UpdatePercept, ApplyRule, and Exec.

Informally, an agent runs by repeatedly performing a deliberation cycle. In the delib-
eration cycle, there are three main phases: updating percepts (UpdatePercept), match-
ing and applying rules (ApplyRule), and executing executable intentions (Exec). At the
beginning of a deliberation cycle, the agent first updates its percepts where the belief
base of the agent is updated according to the percepts collected from the environment.

74



In this phase, the agent also updates its goal base by adding new goals which are re-
ceived from outside and dropping goals which become achieved after the belief base
is updated. In the next phase, the agent looks for applicable rules from the set of rules
against the belief base, the goal base and the plan base. Then, an arbitrary applicable
rule is applied to add a new applicable plan into the plan base. Notice that this newly
added applicable plan may enable or disable the applicability of other rules. The agent
then repeats looking for applicable rules and applying them, one by one, until no more
are found. This is when the agent switches to the next phase where it executes exe-
cutable intentions. In this phase, an executable applicable plan is selected and executed.
After a plan is executed, the flag of the plan is set to be “ex”. The phase is continued
until all executable plans are marked with “ex”. Then, the phase is changed to Update-
Percept for starting a new deliberation cycle and all “ex” applicable plans are changed
to “a”.

In the following, we discuss each phase of the deliberation cycle in more detail
and define the operational semantics by describing transition rules which transform one
configuration to another.

First we give a definition of evaluation of beliefs, goals and belief queries. For a
belief base σ and a belief or goal d, we say that σ |=Pr d iff d is propositionally
entailed by σ. For a goal base γ and a goal d, we say that γ |=g d iff d propositionally
follows from one of the goals in γ. Finally, for belief query φ and a belief base σ, we
define σ |=naf φ as follows:

σ |=naf p iff σ |=Pr p.
σ |=naf ¬p iff σ "|=Pr p.
σ |=naf φ1 and φ2 iff σ |=naf φ1 and σ |=naf φ2.
σ |=naf φ1 or φ2 iff σ |=naf φ1 or σ |=naf φ2.

Next we define how to evaluate a context query, where variables can occur only
within the scope of the literal p(. . .), against a configuration 〈σ, γ,Π, D〉. We write
t = g | θ to say that two terms t and g are unifiable by the most general unifier (mgu)
θ. When two terms t and g fail to unify, we write t "= g. We evaluate a context query
against a configuration 〈σ, γ,Π, D〉 inductively as follows:

– 〈σ, γ,Π, D〉 |= ϕ | ∅ iff σ |=naf ϕ where ∅ is used to denote an empty substitution
– 〈σ, γ,Π, D〉 |= t1 = t2 | θ iff the two terms t1 and t2 are unifiable by the mgu θ,

that is t1 = t2 | θ.
– 〈σ, γ,Π, D〉 |= t1 "= t2 | ∅ iff the two terms t1 and t2 are not unifiable.
– 〈σ, γ,Π, D〉 |= p(tg, b′, tπ, ts, tπ′) | θ iff there exists an applicable plan i ∈ Π

such that p(tg, b′, tπ, ts, tπ′) = i | θ.
– 〈σ, γ,Π, D〉 |= ¬p(tg, b′, tπ, ts, tπ′) | ∅ iff for all applicable plans i ∈ Π , we have

that p(tg, b′, tπ, ts, tπ′) "= i.
– 〈σ, γ,Π, D〉 |= b1&b2 | θ iff 〈σ, γ,Π, D〉 |= b1 | θ and 〈σ, γ,Π, D〉 |= b2 | θ

Given a plan base Π , in order to determine which plans can be executed, we define
the relation “>” over plans in Π as follows. Given

i1 = (g1, b1,π1, s1,π
′
1)

i2 = (g2, b2,π2, s2,π
′
2)

75



we say that i1 > i2 iff p(g2, b2,π2, , ) occurs in b1 (is a subformula of b1). We use the
notation underscore as in Prolog for representing any value. This means i1 is created
because of the existence of i2 and we shall call i1 to be the meta plan (of i2). In each
deliberation cycle of the agent, we only execute the maximal meta applicable plan,
which could indirectly lead to the execution of the lower meta plans through the help of
the meta-actions for executing intentions.

Then, we define the set of active plans (those with the flag to be a), the set of roots
(the most meta applicable plan), the set of leafs (the least meta applicable plans or the
object applicable plans), and the set of executable applicable plans (only roots which
are not leafs are allowed to execute), respectively, with respect to a plan base Π as
follows:

active(Π) = {(g, b,π, a,π′) ∈ Π}
root(Π) = {i ∈ active(Π) | " ∃i′ ∈ active(Π) : i′ > i}
leaf(Π) = {i ∈ active(Π) | " ∃i′ ∈ active(Π) : i > i′}

executable(Π) = root(Π) \ leaf(Π)

Before defining transition rules for the operational semantics of Meta-APL, let us
model an environment by two functions env percept and env perform. The ef-
fect of each function is as follows:

– env percept(σ, γ, e) takes a belief base σ, a goal base γ, and the environment e
as arguments. This function returns a pair of an updated belief base and an updated
goal base. The current implementation assumes that percepts are atomic formulas,
and the updated belief base is obtained by adding new beliefs and removing incor-
rect beliefs according to the percepts from the environment. Likewise, the updated
goal base is obtained by adding new goals and removing achieved goals, also, ac-
cording to the percepts from the environment.

– env action(α, e) takes a basic action and the environment as argument. This
function performs the action on the environment. For the moment, we assume that
this function returns the value true or false where it only returns true iff the basic
action is supported by the environment.

At the beginning of a deliberation cycle, an agent always updates its belief base and
goal base. The transition rule for the phase of updating percepts is as follows.

env percept(σ, γ) = (σ′, γ′)

〈σ, γ,Π, UpdatePercept〉 → 〈σ′, γ′,Π, ApplyRule〉 (1)

The transition above expresses the phase UpdatePercept where the belief base and
goal base are updated with the percepts. Apart from the belief base and the goal base
being updated, the phase indicator also changes from UpdatePercept to ApplyRule
so that the agent can start the next phase.

We say that a rule g, b → π is applicable with respect to a configuration 〈σ, γ,Π, D〉
by a substitution θ iff the following conditions hold:

– γ |=g g,

76



– 〈σ, γ,Π, D〉 |= b | θ,
– There is no applicable plan (g, bθ,πθ, X,π′) ∈ Π where π′ "= ε.

Let Applicable(〈σ, γ,Π, D〉) be the set of pairs of (ρ, θ) where ρ is an applicable rule
with respect to 〈σ, γ,Π, D〉 and θ is the corresponding substitution. Moreover, the last
condition is for avoiding the case when a rule may be fired more than once to produce
the same applicable plan. The transitions rules for the phase ApplyRule are as follows:

∃((g, b → π), θ) ∈ Applicable(〈σ, γ,Π, ApplyRule〉)
〈σ, γ,Π, ApplyRule〉 → 〈σ, γ,Π ∪ {(g, bθ,πθ, a,πθ)}, ApplyRule〉 (2)

The phase will change to the next one when there are no more applicable rules.

Applicable(〈σ, γ,Π, ApplyRule〉) = ∅
〈σ, γ,Π, ApplyRule〉 → 〈σ, γ,Π, Exec〉 (3)

Notice that programmers have the responsibility to make sure that the loop of ap-
plying applicable rules terminates. A neglectful design of rules can easily cause the
phase ApplyRule to run forever, for example if one of the rules is p(G, B,Π, a, X) →
exec(G, B,Π, a, X).

In the phase of executing applicable plans, we execute the first step of every exe-
cutable plan (those which are active, root and not leaf). Let us define transition rules
corresponding to each type of the first step as follows.

The following rule is for executing a basic action.

i = (g, b,π, a,#α;π′) ∈ executable(Π) and env action(α) = true

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(4)

When the basic action is not allowed (or supported) by the environment, the applicable
plan is put into the inactive state as follows:

i = (g, b,π, a,#α;π′) ∈ executable(Π) and env action(α) = false

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, na,#α;π′)}, Exec〉
(5)

The test action simply checks if the belief query is true against the belief base.

i = (g, b,π, a, ?ϕ;π′) ∈ executable(Π) and σ |=naf ϕ

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(6)

When it is not, the test action is not removed from the applicable plan.

i = (g, b,π, a, ?ϕ;π′) ∈ executable(Π) and σ "|=naf ϕ

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, na, ?ϕ;π′)}, Exec〉
(7)

We execute a sub-goal by simply leaving it there and the programmer needs to define a
suitable rule to process the subgoal.

i = (g, b,π, a, !h;π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, ex, !h;π′)}, Exec〉
(8)

77



The following rule is for the case of the meta-action for deleting beliefs:

i = (g, b,π, a,del-belief(d);π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ \ {d}, γ,Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(9)

The effect of the above rule is to remove the belief d from the belief base. Similarly, we
have the following rules for the case for adding a new belief.

i = (g, b,π, a,add-belief(d);π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ ∪ {d}, γ′,Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(10)

where γ′ = γ \ {g ∈ γ | σ ∪ {d} |= g}. Besides the effect of adding new beliefs, we
also remove achieved goals from the goal base. The following rule is for deleting a goal
from the goal base:

i = (g, b,π, a,del-goal(d);π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ \ {d},Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(11)

Similarly, we have the following rule for adding a new goal into the goal base:

i = (g, b,π, a,add-goal(d);π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ′,Π \ {i} ∪ {(g, b,π, ex,π′)}, Exec〉
(12)

where γ′ = γ ∪ {d} iff σ "|= d; otherwise, γ′ = γ. This means d is added into the goal
base only when it is not an achieved goal.

The next transition rule is for deleting an applicable plan.

i = (g, b,π, a,del-plan(i′);π′) ∈ executable(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i, i′} ∪ {(g, b,π, ex,π′)}, Exec〉
(13)

Then, we define the transition rules for the meta-actions for executing applicable
plans. In principle, the “exec” meta-action makes similar effect as executing the first
step of an intention.

For convenience, we also define a different transition rule, denoted as →i for exe-
cuting an active applicable plan i which is not required to be a root, but has to be active
(i.e. the flag is a). The definitions are the repetition of those above for the execution
phase where we replace the condition i ∈ executable(Π) by i ∈ active(Π). Then for
every transition rule of the form 〈σ, γ,Π, Exec〉 → 〈σ′, γ′,Π \ {i} ∪{ i′}, Exec〉, we
also define:

i ∈ active(Π)

〈σ, γ,Π, Exec〉 →i 〈σ′, γ′,Π \ {i} ∪ {i′}, Exec〉 (14)

Notice that the transition rules →i are not the operational semantics of Meta-APL but
we use them as auxiliary transition rules for defining the operational semantics of the
meta actions exec and step of Meta-APL. We shall define the transition rule for the
meta-action exec(i′) based on →i′ as follows:

i = (g, b,π, a,exec(i′);π′) ∈ executable(Π) and
〈σ, γ,Π, Exec〉 →i′ 〈σ, γ′,Π \ {i′} ∪ {i′′}, Exec〉

〈σ, γ,Π, Exec〉 → 〈σ′, γ,Π \ {i, i′} ∪ {i′′, (g, b,π, ex,π′′)}, Exec〉
(15)

78



where π′′ = exec(i′′);π′ if i′′ is not an empty plan; otherwise π′′ = π′. The above
rule means that if we have an executable applicable plan which starts with exec(i′),
and i′ can be executed by means of →i′ to become i′′, then exec(i′) means to execute
i′ and to change to exec(i′′). The semantics step(i′) is similar to exec(i′) except
that the action step(i′) does not execute the remainder i′′ of i′. The transition rule for
this meta-action is as follows:

i = (g, b,π, a,step(i′);π′) ∈ executable(Π) and
〈σ, γ,Π, Exec〉 →i′ 〈σ′, γ′,Π \ {i} ∪ {i′′}, Exec〉

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i, i′} ∪ {i′′, (g, b,π, ex,π′)}, Exec〉
(16)

In both cases of the transition rules for exec and step, if i′ "∈ Π or is inactive, then i also
becomes an inactive plan.

i = (g, b,π, a,exec(i′);π′) ∈ executable(Π) and i′ /∈ active(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, na,exec(i′);π′)}, Exec〉
(17)

We also have:

i = (g, b,π, a,step(i′);π′) ∈ executable(Π) and i′ /∈ active(Π)

〈σ, γ,Π, Exec〉 → 〈σ, γ,Π \ {i} ∪ {(g, b,π, na,step(i′);π′)}, Exec〉
(18)

Notice that the new definition of the transition rules → for the meta-actions exec
and step also implicitly gives extra definitions of the transition rule →i. This helps us
to define further transition rules for nested meta-actions exec and step.

Then, when there is no more executable plans, the phase turns back to UpdatePer-
cept for a new deliberation cycle. All plans have the flag “ex” are also changed to “a”
for further execution in the next deliberation cycle. We also have:

executable(Π) = ∅
〈σ, γ,Π, Exec〉 → 〈σ, γ,Π ′, UpdatePercept〉 (19)

where Π ′ = (Π \ {(g, b,π, ex,π′) ∈ Π}) ∪ {(g, b,π, a,π′) | (g, b,π, ex,π′) ∈ Π∧
π′ "= ε} ∪ {(g, b,π, na, ε) | (g, b,π, ex, ε) ∈ Π}.

In the above transition rule, when transiting from the phase Exec back to Update-
Percept in the deliberation cycle, all applicable plans in the plan base with the flag
being ex are changed back to a so that they are ready for further execution, except those
have an empty plan (denoted as ε) which are changed to the state inactive.

4 Simulating 3APL

In this section we show how to translate agent programs of 3APL into Meta-APL. Both
languages share similar features, but have different deliberation cycles. We show how
meta rules can be used to simulate deliberation cycle of other languages in Meta-APL.

First we define what we mean by simulating one program by another program.
We use the concept of weak bisimulation [5]. We treat transitions other that basic
actions as internal or τ actions. By a run of a program we will mean a sequence

79



s0
a0−→ s1

a1−→ s2 . . . where si are agent’s configurations and ai are transitions of
the agent’s operational semantics which are either basic actions or other internal τ tran-
sitions. Two runs r = s0

a0−→ s1
a1−→ s2 . . . and r′ = s′0

a′
0−→ s′1

a′
1−→ s′2 . . . are

equivalent if there is a symmetric relation R (later referred to as equivalence) between
the configurations in r1 and r2 such that:

– R(s0, s′0)
– if R(s, s′) then the agent’s beliefs about environment in s and s′ are the same
– if R(s, s′) and s

τ∗
−→ t1

a−→ t2 in r, then s′
τ∗
−→ t′1

a−→ t′2 in r′ and R(t2, t′2),
where τ∗ is a sequence of 0 or finitely many internal transitions, and a is the first
basic action occurring after s

Intuitively, R(s, s′) means that in configurations s and s′ the agent has the same beliefs
and goals.

We say that a program p1 simulates another program p2 iff:

– For every run r1 of p1, there is a run r2 of p2 such that r1 and r2 are equivalent.
– For every run r2 of p2, there is a run r1 of p1 such that r2 and r1 are equivalent.

In this paper we show how to translate a program p2 of some agent programming lan-
guage into a program p1 of Meta-APL so that p1 simulates p2.

4.1 3APL
In this paper, we refer to 3APL as the agent programming language which was presented
in [2]. Since the version of Meta-APL introduced in this paper for simplicity only al-
lows propositional beliefs and goals, we show how to simulate propositional 3APL pro-
grams, but the extension to full 3APL beliefs and goals is straightforward. Moreover,
we also slightly modify 3APL in order to omit the plan constructs if-then-else
and while-do.

An agent in 3APL can have three types of rules:

– PG (plan generation) rule: g ← b | π
– GR (goal revision) rule: g ← b | g′

– PR (plan revision) rule: π ← b | π′

Where g and g′ are goals, b is a belief query, π and π′ are plans. A plan π is a sequence
of basic actions, test actions and abstract plans. Moreover, test actions are of the form
B(ϕ) only. Branching and looping constructs (if-then-else and while-do) in a plan are
not allowed as they can be translated into rules in 3APL using abstract plans. Note that
omitting if-then-else and while-do in plans does not reduce the expressiveness
of 3APL as they can be represented by abstract plans by using PG and PR rules. For
example, the following PG rule of 3APL:

g ← b | π;if b′ then π1 else π2 end-if;π′.

is translated into an abstract plan by one PG rule and two PR rules as follows:

g ← b | π; abs;π′.

abs ← b′ | π1.

abs ← ¬b′ | π2.

80



Similarly, the while-do construct

g ← b | π;while b′ do π1 end-while;π′.

is translated into abstract plans as follows

g ← b | π; abs;π′.

abs ← b′ | π1; abs.

abs ← ¬b′ | ε.

In order to prove the correctness of the simulation, we need to show the equivalence
between runs in 3APL and those by the simulation. Firstly, we specify a deliberation
cycle of 3APL. A basic deliberation cycle of 3APL is as follows:

1. Apply applicable rules.
2. Execute plans.

However, we have not defined in detail each of the above two stages. In the stage of
applying applicable rules, two extreme approaches are either to apply only one rule,
or to apply all the rules until no more are applicable (more precisely, compute a set
of applicable rules, if it is not empty, choose a rule and apply it, recompute the set of
applicable rules, etc. until the set of applicable rules is empty). In the stage of plan
execution, a common approach is to pick a plan and to execute one step. If plans for
executing a step are selected randomly, we call this an interleaved execution method.
Otherwise, if a selected plan is executed completely before any other plan’s steps are
selected, we called this a non-interleaved execution method.

In order to demonstrate how to simulate 3APL by means of Meta-APL, we choose
the following approach to define how the rule application is done:

1. Apply all applicable PG rules (in any order).
2. Continuously pick an applicable PR rule and apply until no more are applicable.

The two different methods of plan executions are considered in the next sections.

4.2 Simulating interleaved deliberation cycle of 3APL

Firstly, we translate a plan π in 3APL into Meta-APL by translating each element of π.
Let us denote the translated plan as tr(π).

We translate each type of rules into the corresponding ones in Meta-APL as follows:

– A PG rule g ← b | π is translated into: g, b → tr(π).
– A GR rule g ← b | g′ is translated into the following rule:

g, b & ¬p(g, ,del-goal(g); X, a, ) → del-goal(g);add-goal(g′).

The above rule is for replacing a goal g in the goal base with another goal g′.
Comparing to the original rule in 3APL, the guard of the translated rule has an
extra condition ¬p(. . .) which is for preventing from applying the same rule and
other rules for revising the same goal g once this rule has been fired.

81



– A PR rule π ← b | π′ is translated into the following rule:

p(G, B, P, a, tr(π)) & b &

¬p(G′, p(G, B, P, a, tr(π)) & B′, P ′, a,del-plan(G, B, P, a, tr(π)); X)

→ del-plan(G, B, P, a, tr(π)); tr(π′).

The above rule is for revising a plan tr(π) in the plan base with another plan tr(π′).
Similar to the case of GR rules, the guard of the translated rule also has an extra con-
dition ¬p(. . .) which is for preventing from applying the same rule and other rules for
revising the same plan tr(π) once this rule has been fired.

Then, we implement the interleaved deliberation cycle. Below are the rules for im-
plementing the interleaved deliberation cycle of 3APL:

¬p(G1, B1, P1, a,step(G2, B2, P2, a, Y )) & p(G3, B3, P3, a, X)

→ step(G3, B3, P3, a, X).

p(G1, B1, P1, a,step(G2, B2, P2, a, X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′)

→ del-plan(G1, B1, P1, a,step(G2, B2, P2, a, X)).

p(G1, B1, P1, a,step(G2, B2, P2, a, X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′)

→ step(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′).

p(G1, B1, P1, a,step(G2, B2, P2, a, X))

& X "= del-plan(G3, B3, P3, a, Y ); Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a, X); X ′)

& p(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z); Z ′)

→ step(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z); Z ′).

p(G1, B1, P1, a,step(G2, B2, P2, a, X))

& X "= del-plan(G3, B3, P3, a, Y ); Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a, X); X ′)

& p(G5, B5, P5, a,exec(G6, B6, P6, a, Z))

→ step(G5, B5, P5, a,exec(G6, B6, P6, a, Z)).

We also have the following rule for executing the rules which translate GR rules:

p(G1, B1, P1, a,del-goal(G); Z) → exec(G1, B1, P1, a,del-goal(G); Z).

The first rule selects an arbitrary plan in the plan base for execution but of only one
step. Then, once applied, the rule is not applicable any more in that cycle, hence, we

82



can prevent selecting another plan to apply at the same cycle. When a plan is selected
to execute but it is also selected to be revised by another rule, we transfer the selection
to the newly revised plan by means of the next two rules. Finally, the last two rules are
there blocking the above selection when there are the application of rules to revise plans
or goals where they generate plans starting with either del-plan or exec.

Let us revisit the example in [3] as an illustration of how the translation from 3APL
into Meta-APL works. The example is about moving blocks on a floor to a desired
configuration by an agent which has the power to put a block which has nothing on the
top on the floor or on top of other block which also has no block on top. In the example,
there are three blocks namely a, b and c. The initial setting is that a and b are on the
floor while c is on top of a. The desired setting is that c is on the floor, b is on c and a is
on b.

In 3APL, the program of the agent is as follows:

– Belief base: on(a, floor), on(b, f loor), on(c, a)
– Goal base: on(c, f loor) ∧ on(b, c) ∧ on(a, b)
– Rule base:

on(X, Y ) ← ¬on(X, Y ) | clear(X); clear(Y ); move(X, Y ).

clear(X); Z ← on(Y, X) ∧X "= floor | clear(Y ); move(Y, floor); Z.

clear(X); Z ← ¬on(Y, X) | Z.

clear(floor); Z ← $ | Z.

The set of rules above is translated into Meta-APL as follows:

on(X, Y ),¬on(X, Y )

→!clear(X); !clear(Y ); #move(X, Y ).

p(G, B, P, a, !clear(X); Z) & on(Y, X) & X "= floor

& ¬p(G′, p(G, B, P, a, !clear(X); Z) & B′, P ′, a,

del-plan(G, B, P, a, !clear(X); Z); Z ′)

→ del-plan(G, B, P, a, !clear(X); Z); !clear(Y ); #move(Y, floor); Z.

p(G, B, P, a, !clear(X); Z) & ¬on(Y, X)

& ¬p(G′, p(G, B, P, a, !clear(X); Z) & B′, P ′, a,

del-plan(G, B, P, a, !clear(X); Z); Z ′)

→ del-plan(G, B, P, a, !clear(X); Z); Z.

p(G, B, P, a, !clear(floor); Z)

& ¬p(G′, p(G, B, P, a, !clear(floor); Z) & B′, P ′, a,

del-plan(!clear(floor); Z); Z ′)

→ del-plan(!clear(floor); Z); Z.

83



Notice that the above rules are in the abbreviated form.
We sketch here the proof that one cycle in 3APL corresponds to one or more cycles

in the simulation by Meta-APL (hence the runs of the two programs are equivalent).
There are two cases:

1. Consider a cycle in 3APL, if there are no PR and GR rules applicable, at the end of
the cycle, a plan is selected for execution. The corresponding run in Meta-APL also
contains only a single cycle, as no rules into which PR and GR rules are translated
are applicable, there is no plan starting with del-plan or exec, hence, a plan
which is selected for execution of one step is not blocked. The corresponding cycle
is chosen by selecting the corresponding plan in the case of 3APL.

2. Consider a cycle in 3APL where some PR or GR rules are applicable, at the stage
of applying PR and GR rules, it is repeated until no more PR and GR rules are ap-
plicable. We define sequences of PR rule application which are sequences of plans
π0, . . . ,πk where πi is obtained by appling some PR rule to revise πi−1for all i ≥ 1.
We also define a sequence of GR rule application as a sequence of goals g0, . . . , gm

where gi is replaced by applying some GR rule for all i ≥ 0. Then, let n + 1 be
the length of the longest sequence among sequences of PR rule applications, then
we construct a run in Meta-APL containing n + m + 1 cycles where the starting
and ending configurations are equivalent to configurations in 3APL before and af-
ter the cycle, respectively. In the first cycle, we apply all translated PR rules which
are applicable by following the order of PR rule application in 3APL (ignore those
which is not applicable yet). Of course, since some PR rule is applied, any plan
which is selected for execution is blocked. We repeat this again and again and after
n cycles, we must reach a configuration where no more PR rules are applicable.
Then, the next cycles are for applying GR rules in the order of the corresponding to
the sequence of GR rule application. The final cycle is just for selecting the corre-
sponding plan in 3APL for execution (and it is not blocked as no more PR and GR
rules are applicable).

The reverse direction can be shown similarly.

4.3 Simulating non-interleaved deliberation cycle of 3APL

In this section, we simulate the non-interleaved deliberation cycle of 3APL. In this
deliberation cycle, we keep executing a plan and any plans which revise this plan until
it becomes empty. The implementation of the non-interleaved deliberation cycle is quite
similar to the case of interleaved deliberation cycle as in the previous section except that
we interchange the use of the meta-actions step and exec.

In particular, we keep the function tr to translate plans, the translation of PG, GR
and PR rules from 3APL to Meta-APL unchanged. The only difference comparing to
the case of the interleaved deliberation cycle of 3APL is the implementation of the non-
interleaved deliberation cycle. The rules to implement the non-interleaved deliberation
cycle of 3APL are as follows:

¬p(G1, B1, P1, a,exec(G2, B2, P2, a, Y )) & p(G3, B3, P3, a, X)

84



→ exec(G3, B3, P3, a, X).

p(G1, B1, P1, a,exec(G2, B2, P2, a, X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′)

→ del-plan(G1, B1, P1, a,exec(G2, B2, P2, a, X)).

p(G1, B1, P1, a,exec(G2, B2, P2, a, X))

& p(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′)

→ exec(G3, B3, P3, a,del-plan(G2, B2, P2, a, X); X ′).

p(G1, B1, P1, a,exec(G2, B2, P2, a, X))

& X "= del-plan(G3, B3, P3, a, Y ); Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a, X); X ′)

& p(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z); Z ′)

→ step(G5, B5, P5, a,del-plan(G6, B6, P6, a, Z); Z ′).

p(G1, B1, P1, a,exec(G2, B2, P2, a, X))

& X "= del-plan(G3, B3, P3, a, Y ); Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a, X); X ′)

& p(G5, B5, P5, a,step(G6, B6, P6, a,add-goal(G); Z))

→ step(G5, B5, P5, a,step(add-goal(G); Z)).

p(G1, B1, P1, a,exec(G2, B2, P2, a, X))

& X "= del-plan(G3, B3, P3, a, Y ); Y ′

& ¬p(G4, B4, P4, a,del-plan(G2, B2, P2, a, X); X ′)

& p(G5, B5, P5, a,step(G6, B6, P6, a,del-goal(G); Z)))

→ step(G5, B5, P5, a,step(G6, B6, P6, a,del-goal(G); Z))).

Similar to the implementation of the interleaved deliberation cycle of 3APL, the first
rule is also to select a plan to execute by using the meta action exec. Since exec is
used, this selection of the plan to execute is still kept in the next deliberation cycle if it
does not become empty. We also have the next two rules is for changing the selection
of a plan to its parents when it is revised by some rule. Finally, the last three rules
are also for blocking the selected plan from being executed if some plans or goals are
revised. Notice that we have more than one rule comparing to the implementation of
the interleaved deliberation cycle of 3APL.

In order to execute the rules which translate GR rules, we have the following rules:

p(G1, B1, P1, a,del-goal(G); Z) → step(G1, B1, P1, a,del-goal(G); Z).

p(G1, B1, P1, a,add-goal(G); Z) → step(G1, B1, P1, a,add-goal(G); Z).

85



It is straightforward to prove that the translated program in Meta-APL simulates the
non-interleaved deliberation cycle of 3APL. The proof is similar to that of the inter-
leaved case in the previous section.

5 Conclusions and future work

We have introduced the syntax and operational semantics of Meta-APL. We have sketched
how it can be used to simulate programs written in other agent programming languages
together with their operational semantics. In our future work, we plan to develop au-
tomatic methods for producing provably equivalent translations of agent programs in
Meta-APL and a set of tools for automatically verifying properties of agent systems
implemented in Meta-APL.

References

1. M. Dastani, F. de Boer, F. Dignum, and J.J. Meyer. Programming agent deliberation: an
approach illustrated using the 3APL language. In The Second International Joint Conference
on Autonomous Agents & Multiagent Systems, AAMAS 2003, July 14-18, 2003, Melbourne,
Victoria, Australia, Proceedings, pages 97–104. ACM, 2003.

2. M. Dastani, F. Dignum, and J.J. Meyer. 3APL: A Programming Language for Cognitive
Agents. ERCIM News, European Research Consortium for Informatics and Mathematics,
Special issue on Cognitive Systems, 2000.

3. Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer. A Program-
ming Language for Cognitive Agents Goal Directed 3APL. In Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, editors, Programming Multi-Agent Systems, First International
Workshop, PROMAS 2003, Melbourne, Australia, July 15, 2003, Selected Revised and Invited
Papers, volume 3067 of Lecture Notes in Computer Science, pages 111–130. Springer, 2003.

4. Louise A. Dennis, Berndt Farwer, Rafael H. Bordini, and Michael Fisher. A flexible frame-
work for verifying agent programs. In Lin Padgham, David C. Parkes, Jörg P. Müller, and
Simon Parsons, editors, 7th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Volume 3, pages 1303–
1306. IFAAMAS, 2008.

5. R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation seman-
tics. Journal of the ACM (JACM), 43(3):555–600, 1996.

86





BDI4JADE: a BDI layer on top of JADE

Ingrid Nunes1,2, Carlos J.P. de Lucena1, and Michael Luck2

1 PUC-Rio, Computer Science Department, LES - Rio de Janeiro, Brazil
{ionunes,lucena}@inf.puc-rio.br

2 King’s College London, Strand, London, WC2R 2LS, United Kingdom
michael.luck@kcl.ac.uk

Abstract. Several agent platforms that implement the belief-desire-intention (BDI)
architecture have been proposed. Even though most of them are implemented
based on existing general purpose programming languages, e.g. Java, agents are
either programmed in a new programming language or Domain-specific Lan-
guage expressed in XML. As a consequence, this prevents the use of advanced
features of the underlying programming language and the integration with ex-
isting libraries and frameworks, which are essential for the development of en-
terprise applications. Due to these limitations of BDI agent platforms, we have
implemented the BDI4JADE, which is presented in this paper. It is implemented
as a BDI layer on top of JADE, a well accepted agent platform.

Keywords: Multi-agent Systems, Agent Platforms, Agent Programming, BDI
Architecture, BDI4JADE, JADE.

1 Introduction

With the popularity of the web, complex systems has become a reality. These are char-
acterized by being distributed and composed of multiple autonomous entities, which
interact with each other. Multi-agent systems are considered a promising approach for
developing this kind of systems [17], by decomposing them into agents, each of which
with its own thread of execution, possibly a proactive behavior, thus aiming to achieve
its individual goals, and able to perceive its surrounding environment and respond in a
timely fashion to changes to it. From a software engineering perspective, multi-agent
systems can be seen as a paradigm in which systems are decomposed into autonomous
and proactive software components, namely agents.

Due to the complexity associated with the development of multi-agent systems,
which typically involves thread control, message exchange across the network, cogni-
tive ability, and discovery of agents and their services, several architectures and plat-
forms have been proposed. One of the widely known architectures for designing and
implementing cognitive agents is the belief-desire-intention (BDI) architecture, follow-
ing a model initially proposed by Bratman [3], which consists of beliefs, desires and in-
tentions as mental attitudes that deliberate human action. Rao & Georgeff [15] adopted
this model and transformed it into in a formal theory and an execution model for BDI
agents that serves as a basis for the implementation of several BDI agent platforms.

88



Examples of agent platforms that implement the BDI architecture include Jason [2],
JACK [7], Jadex [14], and the 3APL Platform3. In particular, these four platforms are
based on the Java language. However, even though the underlying language is a gen-
eral purpose programming language, agents are implemented in these platforms in a
new programming language – AgentSpeak(L) [16], JACK Agent Language, a Domain-
specific Language (DSL) writen in XML, and 3APL [5], respectively. Source code
written in these languages is either precompiled or processed at runtime by the agent
platform. As a consequence, the adoption of this approach prevents developers from
using advanced features of the Java language, such as reflection and annotations, and
it makes it complicated to integrate the implementation of a multi-agent system with
existing technologies. Both issues are essential in the context of the development of
large scale enterprise applications. Due to these limitations of existing platforms, we
have implemented a new BDI agent platform, namely BDI4JADE. Our implementation
is a layer on top of an existing agent platform, JADE [1], which provides a robust in-
frastructure to implement agents, but not follow the BDI architecture. We built a BDI
reasoning mechanism for JADE agents implemented directly in the Java language, thus
addressing the aforementioned problems.

The remainder of this paper is organized as follows. We first provide an overview of
the BDI4JADE in Section 2, and then detail its individual components in Section 3. Sec-
tion 4 discusses relevant aspects of our BDI implementation on top of JADE, followed
by Section 5, which describes related work. Finally, Section 6 presents final remarks.

2 BDI4JADE: an Overview

As stated in the introduction, our motivation for implementing a new BDI agent plat-
form is that the languages provided by existing platforms, even though based on general
purpose programming languages, limit integration with up-to-date available technolo-
gies, and also the use of advanced features of the underlying programming language.
We faced problems of this nature while implementing different multi-agent systems
[11–13], and also in our current research [10], which involves dynamic adaptations of
BDI agent architectures. These problems are detailed in Section 4.

An agent framework that fulfils the requirement of not relying on a DSL is JADE
[1]. JADE is not based on the BDI model, which is our target architecture, but imple-
ments a task-oriented model, in which agents have a set of behaviors. No cognitive
abilities, such as a reasoning cycle, are provided for agents. However, JADE is a robust
and mature infrastructure, and provides many features that are needed for implementing
multi-agent systems, which include the yellow pages service and message exchange. In
addition, it provides a behavior scheduler that can be used to control the execution of
plans of BDI agents. So, instead of developing an agent platform from scratch, we im-
plemented the BDI architecture as a layer on top of JADE. Agents implemented with
BDI4JADE use only the constructions provided by the Java language, which makes it
easy to integrate with existing applications and reusable software assets (frameworks,
components, libraries). Next, we briefly introduce the main BDI4JADE components.

3 http://www.cs.uu.nl/3apl/

89



BDI agent. A BDI agent represents an agent that follows the BDI architecture. It ag-
gregates a reasoning cycle, responsible for driving agent behavior, strategies, and
capabilities.

Capability. A BDI agent does not directly include a belief base and a plan library,
but these are part of a capability. A capability [4] is a self-contained part of an
agent, consisting of (i) a set of plans, (ii) a fragment of the knowledge base that is
manipulated by these plans and (iii) a specification of the interface to the capabil-
ity. Capabilities have been introduced into some multi-agent systems as a software
engineering mechanism to support modularity and reusability, while still allowing
meta-level reasoning.

Strategies. A BDI agent is associated with different strategies, which are points for
customizing the reasoning cycle, and can have their default behavior modified by
developers. They are related to the revision of beliefs, the generation and delibera-
tion of goals and selection of plans.

Goal. Goals represent the motivational state of the system. It is an entity that represents
a desire that the agent wants to achieve.

Intention. An intention captures the deliberative component of the system. An inten-
tion is a goal that the agent is committed to achieve, i.e. when an agent has an
intention, it will select plans to try to achieve this intention, until the associated
goal is achieved, no longer desired or considered unachievable.

Belief Base and Belief. Beliefs represent environment characteristics, which are up-
dated accordingly after the perception of changes on it. Beliefs can be seen as the
informative component of the system. A belief base is a set of beliefs, each of which
has a name and a value.

Plan Library and Plan. BDI4JADE provides an infrastructure to implement reactive
planning systems, in which plans are not generated but selected from an existing
plan library. Plans contain a set of actions and are executed with the aim of achiev-
ing a specific goal.

Events. BDI4JADE provides means for creating observers (listeners) of beliefs and
goals, in order to notify them when these concepts are updated, so they can update
their state accordingly. Any component that registers itself as an observer is notified
when beliefs are created, update or removed, and when goals changed their status.

These components are used in the reasoning cycle of our BDI agents, which is
based on the BDI-interpreter algorithm presented in [15]. This cycle is implemented in
six major steps:

1. Revising beliefs. This first step of the cycle consists of revising agent beliefs. In the
default implementation, nothing is done at this step, but developers can specify a
customized strategy for specific agents.

2. Removing finished goals. Before the cycle is executed, goals might have “finished,”
i.e. they may be achieved, no longer desired or considered unachievable. These are
removed from the set of goals of the agent, and observers of these goals are notified
about the event.

3. Generating options. In this step, the goals available to the agent are determined
(its desires). It can generate new desired goals, determine that existing goals are no
longer desired, or keep existing goals that are still desired.

90



4. Removing dropped goals. When a goal, or set of goals, is determined as no longer
desired in the previous step, it is removed from the set of goals of the agent, and
observers are notified about the occurrence of this event.

5. Deliberating goals. In this step, the current agent goals are partitioned into two
subsets: (i) goals to be tried to be achieved (intentions); and (ii) goals to not be
tried to be achieved. The last will remain as an agent desire, but the agent is not
committed to achieve it at the moment.

6. Updating goals status. Based on the partition performed in previous step, the sta-
tus of the goals are updated. Selected goals are updated to the status of trying to
achieve, and unselected goals are updated to the status of waiting. When a goal has
the status trying to achieve, the agent will select plans for achieving that goal.

3 Detailing BDI4JADE Components

The previous section provided an overview of the main components of our implementa-
tion of the BDI architecture, which was slightly modified, for instance, by the addition
of capabilities. It also described the implemented reasoning cycle in a high-level way.
In this section, we provide further details of our JADE extension, BDI4JADE. We first
present the core of our implementation, which consists of agents, intentions, capabil-
ities and the reasoning cycle, and its whole structure. Then, we describe individual
BDI4JADE components – how they were implemented and how to extend them.

Most os the concepts presented in previous section, and their relationships, are de-
picted in Figure 1, which shows the class diagram of BDI4JADE. Due to space restric-
tions, it contains only the main components of our implementation, and it presents only
methods from interfaces, and not from classes.

3.1 BDI4JADE Core

A BDI agent in our platform must extend the BDIAgent class, which in turn is an
extension of the Agent class from JADE. Therefore, as JADE agents, a BDI agent has
its own thread of control, managed by JADE. A BDIAgent (from now on, we refer it to
as agent) is composed of a set of intentions (Intention class) and a set of capabilities
(Capability class).

When a goal is added to an agent, a new intention is created and attached to it.
Intentions have a status associated with them, which are: (i) Achieved – the goal associ-
ated with that intention was achieved; (ii) No longer desired – the goal associated with
that intention is no longer desired; (iii) Plan failed – the agent is trying to achieve the
goal associated with that intention, but the last executed plan has failed; (iv) Trying to
achieve – the agent is trying to achieve the goal associated with that intention, but it is
executing a plan for achieving it; (v) Unachievable – all available plans were executed
to try to achieve the goal associated with that intention, but none of them succeeded;
and (vi) Waiting – the agent has the goal, but it is not trying to achieve it.

In the BDI architecture, an intention is a goal that an agent is committed to achieve.
Our implementation does not make this distinction explicitly, but implicitly. Table 1
shows how concepts of the BDI architecture are related to the status of BDI4JADE

91



Fi
g.

1:
C

la
ss

di
ag

ra
m

–
B

D
I4

JA
D

E
m

ai
n

cl
as

se
s

an
d

in
te

rf
ac

es
.

92



Status of the BDI4JADE Intention BDI Architecture Concept
Waiting Goal
Plan failed Intention
Trying to achieve Intention
Achieved - (was an Intention)
No longer desired - (was an Intention)
Unachievable - (was an Intention)

Table 1: Intention Status x BDI Architecture Concept.

intentions. This approach was chosen to facilitate the implementation of the reasoning
cycle. The last three status shown in Table 1 represent intentions/goals in a final state,
and intentions with such status are removed from the agent in the next reasoning cycle.

As introduced before, beliefs and plans are not part of an agent (directly), as pro-
posed in the BDI architecture, but part of capabilities. This concept is also implemented
by JACK and Jadex agent platforms. As opposed to these platforms, beliefs and plans
in our platform are not part of capabilities and agents, but only capabilities. However,
a belief, or a plan, can be part of an agent if all capabilities contain that belief, or that
plan. As we deal with Java objects, this can be easily done, because all capabilities will
have a pointer for the same object. Shared belief bases are also possible.

A capability of our JADE extension is essentially composed of a belief base and plan
library. The first is a collection of beliefs (see Section 3.3), and the latter a collection of
plans (see Section 3.4). BDI4JADE does not provide means for explicitly defining ca-
pability interfaces, but they are exposed by documenting the capability. As a capability
is associated with a set of plans, and these in turn are associated with the goals they can
achieve, this set of goals indicates the goals that the capability can achieve. In addition,
plans of a capability might require that other subgoals must be achieved when they
are executed, so this set of goals indicates the goals that external components should
achieve in order for the capability to be able to execute properly. These two set of goals
can be seen as the provided and required interfaces of the capability, and should be part
of the capability documentation.

All these components – capability, belief base and plan library – can be implemented
either by extension or by instantiation. A developer can extend these components in the
code and override the empty implementations of the setup() method for capabilities
and the init() method for belief bases and plan libraries to initialize these compo-
nents. The other option is to instantiate these components and add beliefs and plans
through method invocation.

As opposed to typical BDI platforms, ours does not have an explicit declaration
of goals in agents and capabilities. This binding occurs only at runtime. This provides
more flexibility, because plans can be added (learned) to plan libraries at runtime and
goals (which can be unknown at development time) can be added (desired) and achieved
at runtime. This does not prevent the addition of goals at the agent initialization.
Reasoning Cycle. An essential part of a BDI agent platform is the reasoning cycle that
it provides as part of agents. We previously presented how we implemented it in a high-
level way. Next, we provide additional details. Listing 1.1 shows the source code of the
reasoning cycle implemented in our platform.

93



Listing 1.1: BDI4JADE Reasoning Cycle.
1 p u b l i c vo id action ( ) {
2 beliefRevisionStrategy .reviewBeliefs (BDIAgent . t h i s ) ;
3
4 s y n c h r o n i z e d (intentions ) {
5 Map<Goal ,GoalStatus> goalStatus =new HashMap<Goal ,GoalStatus>() ;
6 Iterator<Intention> it = intentions .iterator ( ) ;
7 w h i l e (it .hasNext ( ) ) {
8 Intention intention = it .next ( ) ;
9 GoalStatus status = intention .getStatus ( ) ;

10 s w i t c h (status ) {
11 c a s e ACHIEVED :
12 c a s e NO_LONGER_DESIRED :
13 c a s e UNACHIEVABLE :
14 intention .fireGoalFinishedEvent ( ) ;
15 it .remove ( ) ;
16 b r e a k ;
17 d e f a u l t :
18 goalStatus .put (intention .getGoal ( ) , status ) ;
19 b r e a k ;
20 }
21 }
22
23 Set<Goal> generatedGoals = optionGenerationFunction
24 .generateGoals (goalStatus ) ;
25 Set<Goal> newGoals = new HashSet<Goal>(generatedGoals ) ;
26 newGoals .removeAll (goalStatus .keySet ( ) ) ;
27 f o r (Goal goal : newGoals ) {
28 addGoal (goal ) ;
29 }
30 Set<Goal> removedGoals = new HashSet<Goal>(goalStatus .keySet ( ) ) ;
31 removedGoals .removeAll (generatedGoals ) ;
32 f o r (Goal goal : removedGoals ) {
33 it = intentions .iterator ( ) ;
34 w h i l e (it .hasNext ( ) ) {
35 Intention intention = it .next ( ) ;
36 i f (intention .getGoal ( ) .equals (goal ) ) {
37 intention .noLongerDesire ( ) ;
38 intention .fireGoalFinishedEvent ( ) ;
39 it .remove ( ) ;
40 }
41 }
42 }
43
44 goalStatus = new HashMap<Goal , GoalStatus>() ;
45 f o r (Intention intention : intentions ) {
46 goalStatus .put (intention .getGoal ( ) , intention .getStatus ( ) ) ;
47 }
48 Set<Goal> selectedGoals=deliberationFunction .filter (goalStatus ) ;
49 f o r (Intention intention : intentions ) {
50 i f (selectedGoals .contains (intention .getGoal ( ) ) ) {
51 intention .tryToAchive ( ) ;
52 } e l s e {
53 intention .doWait ( ) ;
54 }
55 }
56
57 i f (intentions .isEmpty ( ) ) {
58 t h i s .block ( ) ;
59 }
60 }
61 }

94



The first step (line 2) invokes the belief revision function. It is performed by in-
voking the method void reviewBeliefs(BDIAgent) of an implementation of
the BeliefRevisionStrategy interface. Next (lines 6-21), all finished intentions,
i.e. intentions whose status is achieved, no longer desired or unachievable, are removed
from the set of intentions of the agent, and a map goalStatus is created to store the
status of each current goal of the agent.

The method Set<Goal> generateGoals(Map<Goal, GoalStatus>) of
an instance of the OptionGenerationFunction interface is then invoked (lines
23-24) to create new goals or to drop existing ones. Based on the set of goals received
as output, two actions are performed: (i) new goals are added to the agent, and conse-
quently associated intentions are created (lines 25-29); and (ii) removed goals are set as
no longer desired and removed from the agent (lines 30-42). Existing but not removed
goals remain unchanged. The goalStatus is then updated (lines 44-47).

Next, it is time for the deliberation process, in which the agent selects the goals it
will be committed to achieve. This is performed by invoking the method Set<Goal>
filter(Map<Goal, GoalStatus>) of an instance of the deliberation function
interface (line 48). It selects a set of goals that must be tried to achieve (intentions)
from the set of goals. Selected goals and associated intentions will be set to trying to
achieve, and unselected goals and associated intentions will be set to a waiting state.
The invocation of the methods in lines 51 and 53 correctly adjusts the new state of the
intention.

This reasoning cycle is implemented as part of a CyclicBehaviour of JADE,
therefore it is performed continuously. In addition, it is added to all instances of BDIAgent.
The if condition in line 57 tests if the agent has no current intentions, and, if so, it
blocks the behavior. This avoids this behavior to be continuously executed while there
are no intentions and goals. In case a new intention is added to the agent, the reasoning
cycle is resumed.
Plan Selection. When the intention status is set to trying to achieve or plan failed,
the private method void dispatchPlan() of the Intention class is invoked in
order to select and execute a plan to try to achieve the goal associated with the intention.

This method first retrieves all plans that can achieve the goal, and then removes
from this set of plans all plans that were already executed. The set of all plans that
can achieve the goal is generated each time the dispatchPlan() method is exe-
cuted because while a previous plan was being executed, new plans can be added to
any capability of the agent. If there is no plan that can achieve the goal, the inten-
tion is set to unachievable. Otherwise, a plan will be selected by invoking the method
Plan selectPlan(Goal goal, Set<Plan>) of the plan selection strategy of
the agent. After the plan selection, it will be instantiated and started.
Extension points. While describing the implemented reasoning cycle, we mentioned
four strategies: BeliefRevisionStrategy, OptionGenerationFunction,
DeliberationFunction and PlanSelectionStrategy, but we did not de-
tail it. These are Java interfaces, and are extension points of our platform. Developers
can customize a BDIAgent by setting the implementation to be used during the rea-
soning cycle of a specific agent. BDI4JADE provides a default implementation for each
of these strategies:

95



– DefaultBeliefRevisionStrategy: the void reviewBeliefs()method
of the BeliefBase class of all capabilities is invoked;

– DefaultOptionGenerationFunction: it returns the current set of goals,
i.e. it does not drop any of them and does not create any new goal;

– DefaultDeliberationFunction: it returns the whole set of goals, i.e. all
goals will be set to a trying to achieve status; and

– DefaultPlanSelectionStrategy: it returns null if the set of plans is
empty, and the first plan retrieved from the set, otherwise.

This way of extending and customizing agents is an implementation of the strategy
design pattern [6].

3.2 Goals

A goal in BDI4JADE can be any Java object, with the condition that it must implement
the Goal interface. Therefore, a class implementing this interface can be created and
attributes can be added to it as inputs and outputs of the goal. We also provide a set of
predefined goals to be used in applications:

BeliefGoal. The input of this goal is the name of a belief. This goal is achieved
when a belief with the provided name is part of the agent’s beliefs.

BeliefSetValueGoal<T>. The input of this goal is the name of a belief and a
value. This goal is achieved when the belief with the provided name is part of the
agent’s beliefs and has the provided value.

CompositeGoal. This class represents an abstract goal that is a composition of other
goals (subgoals). It has two subclasses, which indicate if the goals must be achieved
in a parallel or sequential way.

ParallelGoal. This class represents a goal that aims at achieving all goals that
compose it in a parallel way. It is a subclass of the CompositeGoal.

SequentialGoal. This class represents a goal that aims at achieving all goals that
compose it in a sequential way. It is a subclass of the CompositeGoal.

MessageGoal. This goal is created when a message is received by the agent. It stores
the message received. How this goal will be achieved is described in Section 3.5.

In order to add a new goal to an agent, the only thing that must be done is to invoke
the method void addGoal(Goal goal) of an instance of the BDIAgent.

3.3 Beliefs

The BeliefBase class offers methods to manipulate beliefs, such as add, remove
and update beliefs. Beliefs can store any kind of information and are associated with a
name. If the value of a belief is retrieved, it must be cast to its specific type, as it is the
case in Jadex. We have used Java generics to capture incorrect castings at compile time,
so beliefs in the BDI4JADE are instances of subclasses of Belief<T>.

A belief has two main properties: a name and a value. The belief name must be
unique in the scope of a belief base. There are two main characteristics about beliefs

96



to be described: (i) its class is generic, i.e. it receives a type when it is instantiated.
Therefore, when a belief is declared in a plan or somewhere else, no type casting must
be performed to retrieve its value; and (ii) it extends the class MetadataElement,
which is a class of metadata – a map from string to objects. Metadata can be used for
specific purposes of applications, for instance, time can be added to beliefs, so they can
be forgotten after a certain amount of time.

The Belief<T> is an abstract class, because it does not specify how the value is
stored, but defines methods that must be implemented by subclasses to retrieve and set
the value associated with the belief. Currently, there is only one form of storing beliefs,
which is implemented by the TransientBelief<T> class. This class stores the
value of the type T in memory, and there is no persistence mechanism.

In addition, there is a particular type of belief to store sets – the BeliefSet<T>,
which extends Belief<Set<T>>. As the Belief<T> class, it is abstract and can
have different subclasses to store belief values. The BeliefSet<T> defines methods
to retrieve, store and iterate belief values, and has an implementation that stores values
in memory – the TransientBeliefSet<T> class.

3.4 Plans

The representation of plans in the BDI4JADE is not associated with one but with a set
of classes. One of the reasons is that our goal is to reuse JADE as much as possible in
order to: (i) facilitate the learning process of developers already familiar with JADE; (ii)
take advantage of the family of JADE behaviors; and (iii) exploit reuse benefits – which
is higher quality due to the use of a piece of software used a lot of times, and reduced
development costs. Plans to be executed (plan bodies) in our platform are instances of
the JADE behavior, and their execution is controlled by the JADE scheduler.

Our platform has three main classes associated with plans:

Plan. A Plan does not state a set of actions to be executed in order to achieve a goal,
but has some information about it, which is: (i) the plan id; (ii) the plan library that
is belongs to; (iii) the goals that it is able to achieve; and (iv) the message templates
it can process. In addition, it defines some important methods to be implemented
by subclasses:

– public abstract Behaviour createPlanBody() – this method
returns an instance of a JADE behavior, which corresponds to the body to be
executed to achieve the goal. This behavior instance must also implement the
PlanBody interface (verification made at runtime). This method must be im-
plemented, because it is an abstract method, and therefore the Plan class is
also abstract.

– protected void initGoals() – this method must be overridden by
subclasses to initiate the set of type of goals that this plan can achieve.

– protected void initMessageTemplates() – this method must be
overridden by subclasses to initiate the set of message templates (from JADE)
that this plan can process.

– protected boolean matchesContext(Goal goal) – this method
verifies a context to determine if the plan can achieve the goal according to the

97



Listing 1.2: Verifying if a plan can achieve a goal.
1 p u b l i c b o o l e a n canAchieve (Goal g ) {
2 i f (g i n s t a n c e o f MessageGoal ) {
3 r e t u r n canProcess ( ( ( MessageGoal ) g ) .getMessage ( ) ) ;
4 } e l s e {
5 r e t u r n goals .contains (g .getClass ( ) ) ? matchesContext (g ) : f a l s e ;
6 }
7 }

current situation of the environment. The default implementation returns al-
ways true.

Listing 1.2 presents the method that is executed to verify if a plan can achieve
a given goal. If the goal is an instance of MessageGoal, i.e. it is the goal of
processing a received message, it verifies if any of the message templates of the
plan matches the received message. Otherwise, it checks if the goal has a type that
can be achieved by the plan, and if so, it verifies if the context required by the plan
matches the current context.
Our platform provides a concrete implementation of Plan, the SimplePlan.
This class has a Class<? extends Behaviour> associated with it, which
must also implement the PlanBody interface (test made at runtime). When the
createPlanBody() is invoked, an instance of the class associated with the
SimplePlanwill be created. This class in turn has two subclasses used to achieve
generically sequential and paralell goals (see Section 3.2). In addition, we also pro-
vide plans for achieving CompositeGoal goals.

PlanInstance. This class, as the name indicates, is an instance of a plan, which is
created to achieve a particular goal, according to a specification of a plan. It has the
following attributes: (i) Behaviour behaviour – the behavior being executed
to achieve the goal associated with the intention; (ii) Intention intention –
the intention whose goal is trying to be achieved; (iii) Plan plan – the plan that
this plan instance is associated with; (iv) EndState endState – the end state
of the plan instance (FAILED or SUCCESSFUL), or null if it is currently being
executed; (v) List<Goal> subgoals – the subgoals dispatched by this plan.
In case of the goal of the intention associated with this plan of this plan instance is
dropped, all subgoals are also dropped; and (iv) List<GoalFinishedEvent>
goalEventQueue – when this plan instance dispatches a goal, it can be notified
when the dispatched goal finished.

PlanBody. As we established that JADE behaviors would be used to execute plans
and that we aimed at reusing the JADE behaviors hierarchy, we could not extend
the Behaviour class of JADE, due to Java limitations regarding multiple inheri-
tance. So, our decision was to define an interface to be implemented by plan bod-
ies, besides extending a JADE behavior. Two methods should be implemented by
plan bodies: (i) EndState getEndState() – it returns the end state of the
plan body. If it has not finished yet, it should return null. This shows that the
platform detects that a goal was achieved when the selected plan finished with a

98



Listing 1.3: Dispatching and waiting for subgoals.
1 s w i t c h (state ) {
2 c a s e 0 :
3 planInstance .dispatchSubgoalAndListen (subgoal ) ;
4 state++;
5 b r e a k ;
6 c a s e 1 :
7 GoalFinishedEvent goalEvent = planInstance .getGoalEvent ( ) ;
8 i f (goalEvent != n u l l ) {
9 i f (GoalStatus .ACHIEVED .equals (goalEvent .getStatus ( ) ) ) {

10 ( . . . )
11 } e l s e {
12 ( . . . )
13 }
14 }
15 b r e a k ;
16 }

SUCCESSFUL state; and (ii) void init(PlanInstance planInstance)
– this method is invoked when the plan body is instantiated. This is used to initialize
it, for instance retrieving parameters of the goal to be achieved.

In order to dispatch a goal and wait for its end, we adopted a mechanism similar
to the one of receiving messages in JADE. The developer, after dispatching the goal,
should retrieve a goal event and test if it is null (no goal event received yet) or not
(an event was received). Listing 1.3 shows an example of how it can be done. The
method dispatchSubgoalAndListen() blocks the behavior in case there is no
goal event when it was invoked (a timeout can be provided for the method). The behav-
ior will become active again when a goal event is received.

3.5 Messages

Messages are received and sent in the BDI4JADE basically as it is done in JADE. Con-
versations are made by sending messages, and using the receive(MessageTemplate)
method to receive a reply. Additionally, BDI4JADE provides an additional mecha-
nism for processing messages that are received. Every BDIAgent has a behavior
BDIAgentMsgReceiver associated with it, which extends the MsgReceiver class
from JADE. The latter is a behavior that handles a message when the match expression
of the behavior returns a true value related to the analysis of the message received.
The match expression of the BDIAgentMsgReceiver class checks if any of the ca-
pabilities of the agent have at least one plan that can process the received message. If
so, the expression returns true. After that, the behavior adds a MessageGoal to the
agent, with the received message associated with it. Eventually, the reasoning cycle will
select a plan that can process the message to perform it.

3.6 Events

Our platform implements the observer design pattern [6] in some points to enable the
observation of events that occur in an agent. Currently, there are two kinds of events:

99



belief and goal events. Belief listeners can be associated with a belief base, and when-
ever a belief is added, removed or changed, the listener will be notified. It is impor-
tant to highlight that a belief can have its value changed simple by invoking the void
setValue(T) method of the Belief class, and in this case, the listeners will not
be notified. Goal listeners in turn are associated with an intention. It is used to observe
changes in the status of the intention. An example of its use was presented in Sec-
tion 3.4, in order to detect when a subgoal is achieved (or finished with another status).

4 Discussion

In this section, we discuss relevant aspects related to our JADE extension. These as-
pects are mainly associated with current limitations of BDI4JADE and development
experiences with it.
Not implemented yet. There are improvements that we aim at developing for BDI4JADE,
but they have not been implemented yet and will be future extensions of the platform.
They are: (i) Persistent beliefs – currently, our platform only provides transient beliefs.
We intend to incorporate the Hibernate4 framework to our platform to facilitate the cre-
ation of beliefs that are persisted in databases; (ii) Control of intention/goal owners
– we have created the InternalGoal interface to denote a goal that is internal to a
capability. Plans that are being executed are associated with a plan library, which is in
turn associated with a capability. Therefore, if the plan dispatches a goal, this goal is
under the scope of this capability. This information is not being currently stored. Our
goal is to limit the scope of the searching space of plans to the capability that dispatched
the goal, when the goal is an internal goal. This helps creating encapsulated capabilities
and improving reuse; and (iii) Indexes for plan libraries – every time that a plan must
be selected for achieving a goal, the plan library is asked to provide the list of plans that
can achieve that goal. We aim at creating indexes for speeding up this process.

As we have not implemented (ii) yet, we also did not consider nested capabilities.
The difference between adding two capabilities to an agent, or adding one capability to
another, and the last to an agent is that when an internal goal is dispatched by the parent
capability, it can be achieved by the plans that are part of it, or part of sub-capabilities.
Without goal owners control, nested capabilities will present the same behavior of ca-
pabilities added to the same agent.
Debugging BDI4JADE agents. Most of existing BDI platforms provide tools to debug
the implemented multi-agent systems and to inspect current state of agents. We have
not developed any tools for supporting the development of agents. Nevertheless, as
BDI4JADE agents are fully developed with Java, its debugger already provides infor-
mation for debugging agents. The agent current state can be inspected with existing
tools, typically attached to Java IDEs. In addition, tools provided by the JADE platform
can also be adopted. They allow not only monitoring messages exchange, but also active
plans, as they are implemented as JADE behaviors.
Testing BDI4JADE. In order to test our implementation, we have developed several ex-
ample applications that test different parts of BDI4JADE. The tests included messages

4 http://www.hibernate.org/

100



exchange (ping application), different aspects of the reasoning cycle (trying different
plans, dropping goals, and so on), and subgoals and composite goals. In addition, we
have implemented the typical BDI application “Blocks world,” which consists on mov-
ing blocks in an initial configuration to a target configuration. Moreover, BDI4JADE is
been used in the context of our current research work [10]. It involves the development
of agent-based software to assist users in routine tasks that users can customize based
on a high-level language. This requires dynamic adaptation of agents architectures, and
for that we adopt enterprise frameworks such as the Spring framework,5 and therefore
having agents implemented in “pure” Java is essential.

We have not run any stress test in BDI4JADE in order to test its scalability and
performance, and compare these aspects with other existing platforms. We did not pri-
oritize this kind of test because our main motivation with this work is to improve the
development of multi-agent systems from a developer perspective, but, as thread control
in BDI4JADE is performed by JADE, and this is the main issue related to the perfor-
mance of multi-agent systems, we believe that systems implemented with BDI4JADE
tend to have a performance similar to the ones implemented with JADE. However, fur-
ther studies must be performed in this direction.

Relevance of the Integration with Existing Technologies. Our major concern while de-
veloping BDI4JADE was to provide an infrastructure that can be easily integrated with
existing technologies. We identified this need during the development of multi-agent
applications [11–13]. They involve the development of web-based systems that require
the integration with: web application frameworks (help on managing web requests and
creating dynamic web pages); Spring framework5 (provides transaction management
and dependency injection); software aspects [8] (a modularization technique for cross-
cutting concerns); and persistence frameworks (deal with database access and persisting
entities). These technologies are commonly used for developing large scale enterprise
applications and they are essential to increase software quality and reduce development
costs, as these technologies have already been widely tested and provide ready-to-use
infrastructures. In addition, software evolution is a reality, and agent technology must
be able to be smoothly integrated to existing systems.

The main issue related to the integration with software frameworks is that, as op-
posed to libraries that are invoked by specific applications, they adopt the Hollywood
principle: “Don’t call us, we call you.” This means that application-specific components
are instantiated and invoked by the framework, and this usually requires components to
implement interfaces. With existing agent platforms, this is not possible because com-
ponents are not implemented with Java classes, and also the platform components are
instantiated and manipulated by the agent platform, and its it usually hard to identify
pointers to the platform component instances to make advances manipulations with
them. In the case of software aspects, one of the most widely used implementations of
it, AspectJ6, requires exposing Java interfaces for the specification of join points, and
again, without the implementation of Java classes, this is not possible.

5 http://www.springsource.org/
6 http://www.eclipse.org/aspectj/

101



5 Related Work

Different BDI agent platforms have already been proposed. Nevertheless almost all of
them require the implementation of agents in a new programming language or a DSL,
even though the implementation of the underlying agent platform is expressed in a
general purpose programming language. This is the case of Jason [2], whose agents
are implemented in an extension of the AgentSpeak language [16]; JACK [7], that has
an specific language, the JACK Agent Language, which is precompiled for Java; and
3APL [5], an agent programming language with a platform implemented in Java.

The framework that has more similarities to BDI4JADE is Jadex [14], which uses
JADE as a middleware. Our experience with the development of different applications
using Jadex [11, 12] was also a motivation for developing our implementation. The main
benefit of Jadex is that it provides the concepts of the BDI architecture for developers.
In addition, it provides the capability concept, which allows for packaging a subset of
beliefs, plans, and goals into an agent module and to reuse this module wherever needed.
As a consequence, one can easily (un)plug capabilities to agents and reuse them.

However, Jadex defines agents through XML files, and this leads to drawbacks dur-
ing the implementation. Programming an agent using XML prevents the use of features
of the underlying programming language, and the integration with existing technolo-
gies becomes a challenge. Another disadvantage is that finding errors in XML files is
a tedious task. Additionally errors are not captured during compilation time, because
typos may occur even though the document is valid according to its DTD. For instance,
if a goal is referenced within the XML file with a wrong letter, an error will occur only
during execution time, and the message only says that the XML file has errors. As a con-
sequence, the developer has to find the error manually. Moreover, even though plans are
Java classes, beliefs and parameters are retrieved by methods that return an object of
the class Object, so there must be type casting while invoking these methods. This
leads again to capturing errors only at runtime.

6 Final Remarks

In this paper we presented BDI4JADE, an agent platform that implements the BDI ar-
chitecture. As opposed to different BDI platforms that have been proposed, it does not
introduce a new programming language nor rely on a DSL written in terms of XML
files. Because agents are implemented with the constructions of the underlying pro-
gramming language, Java, we bring two main benefits: (i) features of the Java language,
such as annotations and reflection, can be exploited for the development of complex ap-
plications; and (ii) it facilitates the integration of existing technologies, e.g. frameworks
and libraries, what is essential for the development of large scale enterprise applications,
which involve multiple concerns such as persistence and transaction management. This
also allows a smooth adoption of the agent technology. BDI4JADE is a BDI layer on
top of JADE, and it leverages all the features provided by the framework and reuses it
as much as possible. Other highlights of our JADE extension, besides providing BDI
abstractions and reasoning cycle, include: (i) use of capabilities: agents aggregate a set
of capabilities, which are a collection of beliefs and plans. This allows modularizing

102



particular behaviors of agents; (ii) Java generics for beliefs – beliefs can store any kind
of information and are associated with a name. If the value of a belief is retrieved, it
must be cast to its specific type. We have used Java generics to capture incorrect cast-
ings at compile time; and (iii) plan bodies as instances of JADE behaviors: in order to
better exploit JADE features, in particular its behaviors hierarchy, plan bodies are sub-
classes of JADE behaviors. Our platform as well as examples of its use are available in
[9]. BDI4JADE is being used in the context of our current research work [10].

References
1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE

(Wiley Series in Agent Technology). John Wiley & Sons (2007)
2. Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in AgentS-

peak using Jason. John Wiley & Sons (2007)
3. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cam-

bridge, MA (1987)
4. Busetta, P., Howden, N., Rönnquist, R., Hodgson, A.: Structuring BDI agents in functional

clusters. In: ATAL ’99. pp. 277–289 (2000)
5. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.C.: A programming language

for cognitive agents goal directed 3apl. In: Programming Multi-Agent Systems, LNCS, vol.
3067, pp. 111–130. Springer Berlin / Heidelberg (2004)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley (1995)

7. Howden, N., Rnnquista, R., Hodgson, A., Lucas, A.: Jack intelligent agents™: Summary
of an agent infrastructure. In: The Fifth International Conference on Autonomous Agents.
Montreal, Canada (2001)

8. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-Oriented Programming. In: ECOOP 1997. vol. 1241, pp. 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York (June 1997)

9. Nunes, I.: A bdi extension for jade (2010), http://www.inf.puc-rio.br/˜ionunes/bdi4jade/
10. Nunes, I., Barbosa, S., Lucena, C.: Increasing users’ trust on personal assistance software

using a domain-neutral high-level user model. In: ISoLA 2010, LNCS, vol. 6415, pp. 473–
487. Springer (2010)

11. Nunes, I., Cirilo, E., Lucena, C.: Developing a family of software agents with fine-grained
variability: an exploratory study. In: SEAS 2009. pp. 71–82 (2009)

12. Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., Lucena, C.: Extending web-based applications
to incorporate autonomous behavior. In: Proc. of the 14th Brazilian Symposium on Multi-
media and the Web (WebMedia’08). pp. 115–122 (2008)

13. Nunes, I., Nunes, C., Kulesza, U., Lucena, C.: Agent-oriented software engineering ix. chap.
Developing and Evolving a Multi-agent System Product Line: An Exploratory Study, pp.
228–242. Springer-Verlag, Berlin, Heidelberg (2009)

14. Pokahr, A., Braubach, L.: Jadex user guide. Tech. Rep. 0.96, University of Hamburg, Ham-
burg, Alemanha (2007)

15. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First
Intl. Conference on Multiagent Systems. San Francisco (1995)

16. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language. In: MAA-
MAW ’96. pp. 42–55. Springer-Verlag (1996)

17. Zambonelli, F., Jennings, N.R., Omicini, A., Wooldridge, M.: Agent-oriented software engi-
neering for internet applications. In: Coordination of Internet Agents, pp. 326–346. Springer
Verlag (2001)

103





Integrating Expectation Handling into Jason

Surangika Ranathunga, Stephen Cranefield, and Martin Purvis

Department of Information Science, University of Otago,
PO Box 56, Dunedin 9054, New Zealand

{surangika,scranefield,mpurvis}@infoscience.otago.ac.nz

Abstract. Although expectations play an important role in designing
cognitive agents, agent expectations are not explicitly being handled in
most common agent programming environments. There are techniques
for monitoring fulfilment and violation of agent expectations, however
they are not linked with common agent programming environments so
that agents can be easily programmed to respond to these circumstances.
This paper investigates how expectation monitoring tools can be tightly
integrated with the Jason BDI agent interpreter by extending it with
built-in actions to initiate and terminate monitoring of expectations.
This enables Jason agents to monitor for the fulfilment and violation of
their expectations without relying on a centralised monitoring mecha-
nism. This way, it is possible for agents to have plans that respond to
the identified fulfilments and violations of their expectations.

1 Introduction

Expectations represent the anticipatory mental component of an agent, thus
they resemble an important part of cognitive agents. When an agent bases its
practical reasoning on the assumption that one or more of its expectations will
hold, it somehow has to ensure that it is aware of when these expectations are
fulfilled and/or violated.

Although much research can be found on techniques for monitoring fulfil-
ment and violation of various types of future expectation such as those based
on norms, commitments, and contracts (see [8] for a brief survey of the exist-
ing monitoring techniques), we do not see much research on providing support
for these monitoring techniques in common agent programming environments.
However, to successfully implement normative multiagent systems using these
agent programming environments, it is important that they support techniques
to monitor for the fulfilment and violation of these various types of future ex-
pectations to help in the development of socially aware multiagent systems.

In this work, we present an approach for tightly integrating expectation mon-
itoring with the Jason [4] Belief-Desire-Intension (BDI) agent interpreter, by ex-
tending it with built-in actions to initiate and terminate monitoring of expected
constraints on the future and by defining specific belief types to represent de-
tected fulfilments and violations of expectations. With the introduction of these
built-in actions, any third party monitoring tool can be “plugged in” to the Jason

105



environment, and in this paper we demonstrate this with an expectation monitor
developed in previous research [7]. Moreover, we present extended operational
semantics for Jason, which incorporates expectation handling.

Our mechanism allows agents to choose to delegate to an expectation monitor
service the monitoring of rules that specify conditional constraints on the future.
These rules may be based on published norms, agreed contracts, commitments
created through interaction with other agents, or personally inferred regularities
of behaviour, and multiple instances of the monitoring service may be active
on behalf of different agents at any time. In some future time, fulfilments and
violations of an agent’s expectations may occur and will be detected by the
monitor. These result in belief addition events for the given agent and can be
handled in a flexible way by creating plans that are triggered by those events.

The benefit of using a monitoring service available within Jason rather than
using an external monitoring agent is that it is easier to apply this monitoring
mechanism to different applications. The only requirements for agent system de-
velopers to understand and use our approach are understanding of the abstract
idea of monitoring for fulfilments and violations of future-oriented expectations
and the signature of two new internal Jason actions, and to be provided with
the customized (Java) logic needed to connect a given monitoring technique with
Jason. This is in contrary to monitoring mechanisms based on specialised moni-
toring agents, such as what was presented by Meneguzzi et al. [10]. In that work,
a norm monitoring tool for a specific domain was implemented as an agent and
agent-level communication was used between the monitor agent and its client
(a Jason agent). This can be seen as an application pattern that can be reused
for different domains, but this reuse requires understanding of the function of
the monitor agent, the protocols used for communication, and the Jason plans
used to handle communication with the monitor agent. Furthermore, while this
approach is suitable for providing an official monitor for norms and contracts
defined at the institutional level, it would introduce undesirable communica-
tion overhead if used as an architecture for agents wanting their own individual
expectations monitored, for use in their own personal reasoning processes.

However, it should be noted that our approach does not rule out the use
of a single designated monitoring agent to monitor expectations (e.g. norms)
applying to a whole society. Such a monitor agent can also make use of the
techniques discussed in this paper.

The rest of the paper is organized as follows. Section 2 gives an overview
of agent expectations and their significance. Section 3 gives an overview of the
Jason platform, and Section 4 contains an overview of the expectation monitor
used in this work. Section 5 lays out the introduced extensions to Jason, and
in Section 6 we demonstrate these by means of an example. Finally, Section 7
concludes the paper.

106



2 Expectations of Cognitive Agents

Expectations represent the anticipatory mental component of an agent. In a
theoretical perspective, expectations are “hybrid mental configurations whose
components entail not only beliefs but also converging goals that those beliefs
will be realized” [6]. Despite several definitions on how expectations are really
formed based on beliefs and goals, it is the common agreement that beliefs and
goals are the two elements that form expectations of an agent.

According to Castelfranchi [5], the belief component of an expectation is
a mental anticipation of a future state or event. In addition, the expectation
includes a goal (which can be any motivational mental state, such as a wish,
desire or an intention1) to know whether the anticipated state or event occurs.
This means that the agent has to monitor what is happening, and it should
compare this received information with its mental representation of the belief in
order to satisfy the goal to know whether the world actually is as anticipated.

Along with perceptions, expectations play a very important role in generating
emotions of agents such as hope, fear, frustration, disappointment, and relief [5].
For example, if the agent had been expecting something bad, and the received
punishment is less than what was expected, it generates the emotion relief. On
the other hand, if the agent achieved a lesser result than what was expected, it
leads to the emotional state disappointment.

Expectations also have an important role to play in the social context of
multi-agent systems. They play a fundamental role in defining social norms,
conventions, and commitments, and on the other hand, can arise due to these
normative components [6]. Expectations are also the root course in generating
social trust, where trust can be defined as a complex form of expectation [9].
Therefore properly analysing and modeling individual agent expectations is ben-
eficial in developing more reactive and emotional agents as well as normative
multi-agent societies.

3 Jason

Jason [4] is a Java-based interpreter for an extended version of the AgentSpeak
agent programming language [12], which is based on the BDI model. Jason is
open source, and is commonly used in research related to developing agent sys-
tems. It is a well documented and well supported platform with an active user
community.

A Jason agent program consists of plans that are executed in response to
the events received. These events are generated by the addition or deletion of
the beliefs and goals of an agent. A belief is the result of a percept the agent
1 In our approach, we provide a mechanism for the agent programmer to directly create

an intention to monitor an expectation that is delegated to an external expectation
monitoring tool. The belief component of the expectation is a declarative represen-
tation of the expectation in the language used by the monitor, e.g. a conditional rule
encoded in temporal logic.

107



Fig. 1. Possible state transitions within one reasoning cycle [4]

retrieves from its environment or it could be based on a message received from
another agent. A goal could be internally generated by the agent, or it could be
a goal that was asked to be achieved by another agent. While executing a plan,
an agent might generate new goals, act on its environment, create mental notes
to itself or execute internal actions.

3.1 Jason Agent Reasoning Cycle

An agent is operated in a continuous cycle called the reasoning cycle, operating
on a stream of belief update events produced as the agent perceives its environ-
ment. The Jason semantics define the following steps for interpreting AgentS-
peak programs, as shown in Figure 1 [4]. First, the reasoning cycle checks for
messages received by the agent and selects one of the messages to process fur-
ther (ProcMsg). Then one event from the many pending events is selected to be
processed further in that reasoning cycle (SelEv). Then is the step of selecting
the set of relevant plans for the given event (RelPl). From the relevant plans,
a subset of plans are again retrieved, which are currently applicable (ApplPl),
meaning that their context conditions evaluate to true given the agent’s current
beliefs. Then, one plan from the set of applicable plans (the intended means) is
selected for execution (SelAppl), and the new intended means is added to the
set of intentions (AddIM). Then the reasoning cycle chooses one of the pending
intentions (SelInt), executes one step of that intention (ExecInt), and clears the
intended means that may have finished in the previous step (ClrInt).

Most of the aforementioned steps are directly customizable and since the
Jason source is freely available, other functionalities of the Jason interpreter can
also be changed as needed.

4 The Monitoring Tool

In this paper we selected an expectation monitor developed in previous re-
search [7] to be integrated with the Jason platform. This expectation monitor
aims at monitoring expectations that encode complex temporal constraints on
the future. It uses a language based on hybrid temporal logic to facilitate this en-
coding. With the use of temporal logic, this expectation monitor is able to deal

108



with expectations with complex temporal aspects, as opposed to many other
monitoring techniques that handle only propositions that must come true by a
deadline2.

The language that the expectation monitor accepts includes the following
operators relating to conditional rules of expectation3:

– Exp(Condition,Expectation)
– Fulf(Condition,Expectation)
– Viol(Condition,Expectation)

where Condition and Expectation are formulae in a form of linear propositional
temporal logic. Condition expresses a condition on the past and present, and
Expectation is a constraint that may express an expectation on the future or
a check on the past (or both). Expectations come into existence when their
condition evaluates to true in the current state. These expectations are then
considered to be fulfilled or violated if they evaluate to true in a state.

However, this evaluation must be done without using any information from
future states in the model. For example, when examining a model representing
an audit trail, the expectation that a certain party will never access a certain
file (Exp(true,!¬bob accessed file)) should not be deemed to be violated be-
fore any state (s9, say) in which that prohibited access occurs, even though
!¬bob accessed file would evaluate to false in any state up to and including s9.
Thus the semantics for Fulf and Viol include a notion of truncating the model
at the current state and using “strong” finite model semantics to evaluate the
expectation [7]. In this way, the language provides declarative semantics for
expectations and their fulfilment and violation can be applied to both offline
monitoring such as examining audit trails, and online monitoring where states
are added incrementally to the model.

If an active expectation is not fulfilled or violated in a given state, then
it remains active in the following state, but in a “progressed” form. Formula
progression involves partially evaluating the formula in terms of the current
state and re-expressing it from the viewpoint of the next state [3], e.g. if p is
true in the current state, an expectation that “p is true and q is true in the next
state” will progress to the expectation that “q is true in the current state”.

Although this expectation monitor supports the monitoring for the existence
(i.e. activation) of an expectation, as well as its fulfilment or violation, in the
integration of the monitor with Jason, we currently handle only the fulfilment
and violation of an expectation. We intend to modify our extension to support
monitoring for the existence of an expectation in future versions.

As an example, consider the football team play scenario “give and go” illus-
trated in Figure 2. This team play scenario involves two players where one player
2 A comparison with other approaches used for monitoring expectations and related

concepts such as norms and commitments is out of the scope of this paper, but can
be found in reference 8.

3 In previous work these operators were named ExistsExp, ExistsFulf and ExistsViol,
but we use simplified names here.

109



(player 1 in the figure) passes the ball to her team mate (player 2). Player 2 then
adopts an expectation that player 1 will run down to an advantageous field po-
sition (which was agreed upon according to the team tactic). The intention of
player 2 is to pass the ball back to player 1, when she fulfils this expectation.
On the other hand, if player 1 was unable to fulfil this expectation, player 2 has
to initiate a new tactic.

As player 2 has to focus on advancing down the field while avoiding opposition
players, the expectation monitor can be delegated to monitor the performance
of player 1, to check whether she fulfils (or violates) the defined expectation
of player 2. The fulfilment and violation of this expectation can be expressed
using the following two formulae, where we assume that player 1 is supposed to
advance towards the goal B in the field, until she reaches the penalty area in
front of goal B.

Fulf(s5 , advanceToGoalB(player1 ) U penaltyB(player1 ))
Viol(s5 , advanceToGoalB(player1 )U penaltyB(player1 ))

The first argument in the formulae refers to the condition that triggers the
expectation, as explained earlier. As Player 2 wants to begin monitoring the
expectation as soon as the ball is received, this condition is given as a nominal
(a proposition that is true in only one state) that ‘names’ the current state
(state 5, in this example). This ensures that the rule is fired precisely once,
immediately4.

The first formula above evaluates to true in any state in which the rule is
fulfilled (i.e. player 1 reaches the penalty B area), and the second formula will be
true in any state in which the rule is violated (e.g. player 1 moves in the opposite
direction from goal B or stops moving before reaching the penalty area). In these
cases, the monitor sends a belief addition event back to player 2 to inform her
that this rule was fulfilled or violated.

5 Expectation Handling in Jason

5.1 New Internal Actions to Start and Stop Expectation Monitoring

An important feature of our monitoring mechanism is the ability to use any third-
party monitoring tool in conjunction with Jason plans. Therefore the interface
between Jason and an expectation monitor was designed to be more abstract
than the logic described in the previous section. This helps to switch to different
expectation monitor techniques without changing the actual agent logic that
initializes or terminates expectation monitoring. Our intention is to provide a
generic interface that would suit a range of monitoring tools.
4 In practice, we do not require the agent to know the nominal for the current state—

we allow a special keyword “#once” to be used as the condition of a rule, and this
is replaced by a nominal for the current state when the rule is sent to the monitor
(see Section 6).

110



Fig. 2. The “give and go” tactic in football

Internal actions in the Jason platform help programmers to extend agent
capabilities by defining them in the Java programming language. Internal ac-
tions are appropriate to use when the corresponding logic cannot be expressed
in AgentSpeak language constructs (e.g. integrating Jason with an external pro-
gram) or involve computations of a procedural nature that are more conveniently
expressed in Java.

The new internal actions needed to extend the Jason platform are directly
added to the standard internal actions library, enabling any agent program to
refer to those. Thus an agent programmer does not have to know how to design
these internal actions. However, if the custom logic related to an expectation
monitor is included in these internal actions, the agent programmer has to change
the standard Jason code each time when integrating a new expectation monitor
type. Therefore we have made it possible to store this custom code in a Java
class which is stored inside the same Java package as the related agent program.
The internal actions expect the existence of this customized class to handle the
specific logic related to a given expectation monitor. The internal actions decode
the parameter values sent by an AgentSpeak program, and send these values
to this customized class, to be processed according to the selected expectation
monitor.

Initiating Expectation Monitoring: The internal action corresponding to
the initialization of expectation monitoring is start monitoring. Currently each
call to start monitoring creates a new instance of the monitor. This is due to a
current limitation of the monitor implementation that it only handles one rule
at a time. This introduces a limitation to the flexibility of the start monitoring
internal action, as a monitor started later in an agent’s reasoning process may
not be aware of the past states that occurred before its initialization. However
in future work, we plan to have a single monitor handling multiple rules at a
time, eliminating this limitation.

The start monitoring internal action takes in the following parameters:
monitoring mode: This is either “fulf” or “viol” to indicate whether the rule

of expectation is to be monitored for fulfilment or violation. For example, with
respect to the expectation monitor we are currently employing, the logic of the

111



internal action generates a Fulf formula if the parameter refers to “fulf” and a
Viol formula if the parameter refers to “viol”.

expectation name: This specifies a name for the expectation, for ease of future
reference.

monitor tool: This identifies the monitoring tool that should be used to mon-
itor this expectation.

condition: This specifies the requirements on the past and present that acti-
vate monitoring for the expectation.

expectation: This specifies the actual expectation.
context information list: This argument can be used to assign any other

contextual information that might be useful for monitoring an expectation. For
example, we can specify a specific agent or a group of agents to be monitored.
This information will be added to any fulfilment belief or violation belief sent to
the agent as a result of monitoring the expectation.

Terminating Expectation Monitoring: We have made it possible for an
agent to stop monitoring for an expectation if the need arises to do so during
its reasoning process. The internal action stop monitoring stops the monitoring
of the expectation. It takes the following parameters:

expectation name: The name of the expectation
monitor tool: The monitoring tool that is currently running the specified

expectation.

5.2 Representing Expectation Fulfilments and Violations in Jason

An important design consideration is how to encode the fulfilments and viola-
tions identified by the external expectation monitor as Jason events to Jason.
The Environment class in Jason acts as the interface to integrate the Jason plat-
form with outside simulation environments. Therefore the Environment class
was selected as the best option to communicate the detected fulfilments and vi-
olations to Jason agents. Just like percepts, these result in new beliefs that lead
to the execution of plans that handle the detected fulfilment or violation.

We define the structure of beliefs based on the detected fulfilments and vio-
lations as follows:

fulf(Name,StateId)[rule(Cond ,Exp), rule triggered in state(OldStateId),
context(Context)]

viol(Name,StateId)[rule(Cond ,Exp), rule triggered in state(OldStateId),
context(Context)]

Here, fulf encodes the fulfilment of an expectation, while viol represents a vio-
lation.

The variable Name represents the name assigned to a particular fulfilment
or violation detected, and the StateId represents the identifier for the state in
which the actual fulfilment or violation of the expectation occurred. The notion

112



of a state is important because fulfilments and violations arise in a particular
temporal context that is encapsulated by the state identifier. It is up to the
monitor to provide an appropriate form of state identifier.

In Jason, a percept with the same content as an already existing belief will
not lead to the generation of a new belief. However, we want a fulfilment or a
violation detected in one iteration of the Jason reasoning cycle to be distinct
from the same fulfilment or violation detected in the previous cycle (e.g. two dif-
ferent robberies in consecutive states are two different crimes). This requirement
can be accomplished with the state number associated with the fulfilment (and
violation) beliefs.

When creating beliefs in Jason, an agent programmer can add any other
variable of importance using ‘annotations’. These annotations can be omitted
when specifying the triggering event for a plan if the context and the body of
the corresponding plan do not need this information. In the above predicates,
we have defined three annotations. The first annotation represents the actual
rule that was fulfilled or violated. It has two parameters: the condition that
triggers the expectation and the actual expectation. These can be defined in
any format according to the expectation monitor in use. The second annota-
tion is ‘rule triggered in state’ which identifies the state in which the condition
of the expectation became true. The third annotation is the list of contextual
information that is related to this identified fulfilment or violation. The context
information list that was generated for the related expectation when it was ini-
tiated by star monitoring internal action is used to provide information in this
annotation.

5.3 Extended Jason Semantics

In this section, we present the extended Jason semantics which includes the
operation of the expectation monitor.

In Jason, the state of an agent is determined by the belief base, the set of
events, the plan library and the set of intentions. With our extension, an agent
can have a set of expectation monitors that are active on behalf of it, which
operate external to the Jason core logic. A monitor has its own state, which is
different from an agent’s state. For simplicity, we only model a single expectation
monitor in the semantics. Incorporating multiple monitors is a straightforward
extension.

An expectation monitor can have many ‘monitor tasks’, distinguished by
their unique name. Each monitor task is comprised of a rule (a rule resembles an
expectation, and its triggering condition), and a property which states whether
the rule should be monitored for its fulfilment or violation. Associated with a
monitor, there is also a history component, which resembles the set of input
states received by the monitor. We also define a set of notifications, which be-
comes the output of the expectation monitor. The set of notifications resembles
the set of states where the expectation monitor recorded a fulfilment or vio-
lation for any of the monitor tasks that are currently being monitored. These
notifications are eventually consumed by the agent.

113



An expectation monitor is represented by the triple 〈H,MTs, Ns〉, where:

– H is the history of the monitor. As mentioned earlier, H resembles the set of
input states received by the monitor. The input states have a state identifier,
and some associated information of the world in a representation specific to
the expectation monitor being used.

– MTs is the set of monitor tasks associated with the expectation monitor.
A monitor task MT is a 4-tuple of the form 〈Na,Cn,Ex, Pr〉. Here Na
refers to the unique name assigned to the monitor task. The Cn and Ex
parameters represent a rule, where Cn represents the condition specifying
when an expectation becomes active and Ex refers to the actual expectation.
Pr is the property which has the grammar Pr := FULF |V IOL, meaning
that the property refers to the fulfilment or violation of a rule.

– Ns is the map of notifications generated by the expectation monitor as the
output. This map associates state identifiers with sets of pairs 〈Na,Pr〉
where each pair expresses the information that in the given state, the monitor
task named Na resulted in a detected event of type Pr (FULF or V IOL).

This abstract model of a monitor can be related to the semantics of a specific
monitor tool as shown by the following example rule. This shows how the model
theoretic semantics (top left) of our chosen monitor [3] is related to the emission
of a fulfilment notification. A similar rule can be defined to explain the emission
of violation notifications.

H, ∅, |H| |= Fulf(Cn, Ex) 〈Na,Cn,Ex, FULF 〉 ∈ MTs

〈H,MTs, Ns〉 → 〈H,MTs, Ns′〉

where
Ns′ = Ns ∪ (|H| &→ 〈Na,FULF 〉) if |H| is not a key in Notifications,
or
Ns′ = map update(Ns, |H|, Ns[|H|] ∪ 〈Na,FULF 〉) otherwise.

In this rule, we assume that history states are identified by their (1-based) in-
dices, so |H| (the length of the history H) is the identifier for the final state in
the history.

The rule states that when a fulfilment formula logically holds in the logic
used by the monitor5, and the corresponding rule is being monitored, a fulfil-
ment notification is emitted for the current state (the last in the history). The
notification map is updated either by adding a new mapping |H| &→ 〈Na,FULF 〉
to the monitor notifications, or by adding 〈Na,FULF 〉 to the notifications for
state |H| if any exist.

In the Jason semantics, the transition relation of an agent’s configuration is
given by a set of conditional rules that change the agent’s configuration in each
of the steps of the reasoning cycle. The configuration for an agent is represented
by the tuple 〈ag, C,M, T, s〉 [4], where:

5 The details of this particular monitor’s semantics [3] are outside the scope of this
paper.

114



– ag refers to the agent program, which consists of a set of beliefs and a set of
plans

– C is an agent’s circumstance, denoted by the tuple 〈I, E, A〉, with I being
the set of intentions, E the set of events and A being the set of actions to
be performed in the environment.

– M is a tuple 〈In, Out, SI〉 that registers different aspects of communicating
agents. Here, In is the message inbox of an agent, Out is the out-going
message box, and SI keeps track of the suspended intentions related to the
communication messages that are currently being processed.

– T is a structure that stores temporary data required in various steps of
the reasoning cycle. This is a tuple 〈R,Ap, i, ε, ρ〉, where R represents the
relevant plans, Ap represents the set of applicable plans, and i, ε, ρ respec-
tively represent an intention, event and an applicable plan that are being
considered along the execution of one reasoning cycle.

– s is the current step (or state) in the agent reasoning cycle shown in Figure 1,
where:
s ∈ {ProcMsg, SelEv, Relpl, ApplPl, SelAppl, AddIM, SelInt, ExecInt, ClrInt}.

Subscripts are used to identify individual components of tuples, e.g. CE denotes
the events set within a configuration C, and the notation i[p] is used to denote
an intention consisting of plan p on top of intention i.

To define the semantics of our Jason extension we must address three issues:
i) the effect of the new internal actions start monitoring and stop monitoring,
and ii) how notifications emitted from the monitor are communicated to Jason
as beliefs. There is a third issue that we consider out of the scope of these
semantics: the process that adds states to the monitor’s history. This is because
the Jason agent is not responsible for sending percepts to the monitor, and our
architecture does not even assume that the monitor receives state information
from the Jason environment object—it may have its own separate mechanism
for obtaining information from the system in which the Jason agent is situated6.

In the rules below we define transitions on an extended system configuration
comprising the Jason agent and the monitor. This is a pair 〈AG, EM〉, where
AG = 〈ag, C, M, T, s〉 and EM represents the expectation monitor as defined
above.

start monitoring :
Through the start monitoring internal action, an expectation monitor is

started and is added to the set of active expectation monitors of the agent.
The start monitoring internal action takes place when the body of an agent

plan is being executed, and this internal action becomes the current intended
means to be executed. This refers to the ExecInt step in the reasoning cycle
in Figure 1. The internal action executes completely (i.e. without suspension,
which is the normal procedure for executing internal actions) and returns.
6 This is the case for our work on integrating this extended version of Jason with the

Second Life virtual world [11]

115



The Jason semantics for this action is shown below.

Ti = i[head ← start monitoring(Mm, En,Mt, Cn,Ex,Cil);h]
〈〈ag, C,M, T,ExecInt〉, EM〉 → 〈〈ag, C, M, T ′,ClrInt〉, EM ′〉

Where:

– Parameters Mm, En, Mt, Cn, Ex and Cil respectively refer to monitor-
ing mode, expectation name, monitor tool, condition, expectation and con-
text information list, as defined in Section 5.1

– Here EM ′
MTs = EMMTs ∪ {〈En,Cn,Ex,Mm〉}

– T ′
i = i[head ← h]

As in the standard Jason semantics, where a transition is defined as transforming
a structure S into a new version S′, all components of S′ are assumed to be the
same as those in S except where otherwise specified.

stop monitoring : The stop monitoring internal action also takes place when
the body of an agent plan is being executed, and this internal action becomes
the current intended means to be executed. This refers to the ExecInt step in
the reasoning cycle, and it moves the transition to the state ClrInt.

Ti = i[head ← stop monitoring(En,Mt);h]
〈〈ag, C,M, T,ExecInt〉, EM〉 → 〈〈ag, C, M, T ′,ClrInt〉, EM ′〉

where:

– Parameters En and Mt respectively refer to the expectation name and mon-
itor tool as defined in Section 5.1

– EM ′
MTs = EMMTs \ {MT}. In other words, the stop monitoring internal

action removes the monitor task MT referenced by En (here, the expecta-
tion name refers to the unique name of the monitor task) from the expecta-
tion monitor.

– T ′
i = i[head ← h]

Though not included in the paper, we also modify the condition of the existing
Jason semantic rule for handling internal actions to exclude it from applying
the standard operational semantics in the case that the selected action a is
start monitoring or stop monitoring.

Handling Fulfilment and Violation Notifications Whenever the monitor
identifies the fulfilment or violation of a rule defined in it, it sends a notification
to Jason. These notifications are treated as Jason percepts and subsequently
result in new belief events. We use the function NotBels to denote the process
that converts monitor notifications into belief events using the syntax defined in
Section 5.2, and the corresponding rule for this transition can be written as:

EMNs (= ∅
〈〈ag, C, M, T, s〉, EM〉 → 〈〈ag, C ′,M, T, s〉, EM ′〉

116



In this rule, EM ′
Ns = ∅ and C ′

E = CE ∪NotBels(EMNs).
Here, EM ′

Ns refers to the set of notifications belonging to all the monitor
tasks active for that expectation monitor.

This rule is not executed as part of the Jason agent’s reasoning cycle. Rather,
it represents a separate process that consumes notifications from the monitor and
adds them as new events for the agent to process. This process runs concurrently
with the Jason interpreter, and we do not assume any sychronisation between
the two processes (except to avoid concurrent modification of the agent’s input
event set CE). Therefore this rule can be applied in any state of the agent7.

6 Example Scenario - A Jason Agent Engaged in the
Football Team Play Scenario “Give and Go”

We have integrated this Jason extension with the popular virtual world Second
Life [1], with the use of a framework we have developed [11] for integrating agents
with Second Life. This enables the implementation and testing of sophisticated
Jason agents.

In this example, we demonstrate how the ability of a Jason agent to monitor
and detect fulfilments and violations of its expectations is useful in its decision
making process. We implement this example in the SecondFootball [2] virtual
simulation in Second Life which enables playing virtual football. This system
provides scripted stadium and ball objects that can be deployed inside Second
Life, as well as a “head-up display” object that an avatar can wear to allow the
user to initiate kick and tackle actions.

In this example, we implement the “give and go” team play scenario described
in Section 4. Here, the Jason agent Ras Ruby is engaged in the team play scenario
with the player Su Monday, who is controlled by a human. When Ras Ruby
receives the ball, it adopts the expectation which states that Su Monday should
run until she reaches the PenaltyB area, so that she can pass the ball back to
Su Monday for her to attempt a goal score at Goal B.

When the system starts, the Jason agent corresponding to Ras Ruby is ini-
tialized. When the Jason agent starts executing, it first tries to log itself into
Second Life. After sending its login request, the agent has to wait till it gets
the confirmation of the successful login. When it receives the successful login
notification, the agent adopts the new goal to walk to the area MidfieldB2. The
corresponding plan for this goal addition is shown below (+! denotes a goal ad-
dition event, a context condition appears after the colon, and the arrow operator
separates the head and body of the plan).

+!check_connected: connected <-
action("walk", "MidfieldB2").

7 In practice, the monitor’s notifications are recorded as percepts in the Jason En-
vironment object, and the agent perceives them via Jason’s belief update phase.
However, Jason’s operational semantics do not include a state for perceiving the
environment, so here we model the connection between the monitor and the agent
as a separate process that pushes fulfilment and violation beliefs to the agent.

117



Once in the area MidfieldB2, the agent Ras Ruby waits for Su Monday to
kick and pass the ball to it. Once it successfully receives the ball, the agent
gets the “successful kick(su monday, ras ruby)” percept (which is generated by
our Second Life integration framework and states that Su Monday successfully
passed the ball to Ras Ruby through a kick), and this triggers the corresponding
plan related to this belief addition, as given below.

+successful_kick(su_monday,ras_ruby)
<-
//internal actions
.start_monitoring("fulf",

"move_to_target",
"expectation_monitor",
"#once",
"(’U’,

’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]);

.start_monitoring("viol",
"move_to_target",
"expectation_monitor",
"#once",
"(’U’,

’advanceToGoalB(su_monday)’,
’penaltyB(su_monday)’)",

[]).

This plan uses the new internal actions introduced in 5.1 for monitoring
for the fulfilment and violation of the agent’s expectation. Here, in the first
parameter we define the type of expectation; in the first call to the internal
action, it is of the type ‘fulfilment’ (fulf), and in the second, it is of the type
‘violation’ (viol). In the second parameter, the name of the expectation is given
as ‘move to target’. The third parameter is the name of the expectation monitor
used. The fourth parameter is the triggering condition for the expectation, and
as explained in 4, it is a keyword with a special meaning (#once). The BDI
execution cycle only executes a single step of a plan at each iteration, and any
knowledge of the current state of the world retrieved by the plan may be out of
date by the time the monitor is invoked. Therefore the #once keyword instructs
the monitor to insert a nominal for the current state of the world just before
the rule begins to be monitored. The expectation formula referred by the fifth
parameter resembles the formulae presented in Section 4, and it states that
Su Monday should advance towards GoalB ( ’advanceToGoalB(su monday)’),
until (’U’) she reaches PenaltyB, denoted by ’penaltyB(su monday)’. We do
not utilize the optional sixth parameter in this example.

The fulfilment of this expectation occurs when Su Monday advances towards
GoalB until she reaches PenaltyB. Similarly, the violation of this expectation

118



occurs if Su Monday stopped somewhere before reaching PenaltyB, or she moves
in the opposite direction before reaching PenaltyB area8.

If Su Monday fulfilled Ras Ruby’s expectation, the expectation monitor de-
tects this and reports back to the Jason agent, which results in a fulfilment belief.
The following plan handles this detected fulfilment and instructs the avatar to
carry out the kick action9.

+fulf("move_to_target", X)
<-
//Calculate kick direction and force, turn, then ...
action("animation", "kick").

On the other hand, if Su Monday violated the expectation, the expectation
monitor reports the violation to the Jason agent, generating a violation belief for
the agent. The agent uses the first plan below to decide the agent’s reaction to
the detected violation, which creates a goal to choose a new tactic for execution.
The second plan (responding to this new choose and enact new tactic) is then
triggered, and the agent adopts the tactic of attempting to score a goal on its
own by running towards the PenaltyB area with the ball.

+viol("move_to_target",X)
<-
!choose_and_enact_new_tactic.

+!choose_and_enact_new_tactic
<-
action("run", "penaltyB").

7 Conclusion

This paper addressed the importance of agents having a capability to directly
monitor their expectations and detect the fulfilments and violations of these
expectations, and respond accordingly.

We demonstrated a tight integration of expectation monitoring in the BDI
agent model and presented an implemented mechanism to monitor expectations
of individual agents in the Jason agent model. Also, we identified this as an
approach to focus on monitoring at the individual agent level, as opposed to
the organizational level monitoring that has received the main focus in the past
research. With our approach, individual Jason agents can monitor for the ful-
filment and violation of their own expectations, and can react to the identified
fulfilments and violations by having plans that are triggered by those events.
8 The conditions and expectations are defined in temporal logic and we do not wish

to elaborate on them in the scope of this paper. These are written as nested Python
tuples, as this is the input format for the expectation monitor written in Python.

9 Due to technical problems the Second Life avatar cannot currently perform the actual
‘kick’ animation

119



As future work, it is interesting to investigate ways of how agents can publish
their expectations to make other agents in the society aware of their personal
expectations, and how agents should react to the detected fulfilments and vio-
lations of their expectations, both in a social context and with respect to their
emotions. Moreover, it should also be investigated how agents can use their ex-
pectations as well as expectations of other agents in the society that they are
aware of, proactively in their deliberation process.

References

1. Linden Lab. Second Life Home Page. http://secondlife.com, August 2010.
2. Vstex Company. Secondfootball Home Page. http://www.secondfootball.com,

August 2010.
3. F. Bacchus and F. Kabanza. Using Temporal Logics to Express Search Control

Knowledge for Planning. Artificial Intelligence, 116(1-2):123–191, 2000.
4. R. H. Bordini, J. F. Hubner, and M. Wooldridge. Programming Multi-Agent Sys-

tems in AgentSpeak using Jason. John Wiley & Sons Ltd, England, 2007.
5. C. Castelfranchi. Mind as an anticipatory device: For a theory of expectations. In

M. De Gregorio, V. Di Maio, M. Frucci, and C. Musio, editors, Brain, Vision, and
Artificial Intelligence, volume 3704 of Lecture Notes in Computer Science, pages
258–276. Springer Berlin / Heidelberg, 2005.

6. C. Castelfranchi, F. Giardini, E. Lorini, and L. Tummolini. The prescriptive destiny
of predictive attitudes: From expectations to norms via conventions. In Proceedings
25th Annual Meeting of the Cognitive Science Society (CogSci 2003), Boston, USA,
31 July 2 August, 2003.

7. S. Cranefield and M. Winikoff. Verifying social expectations by model checking
truncated paths. Journal of Logic and Computation, 2010. Advance access, doi:
10.1093/logcom/exq055.

8. S. Cranefield, M. Winikoff, and W. Vasconcelos. Modelling and monitoring inter-
dependent expectations. Discussion Paper 2011/03, Department of Information
Science, University of Otago, 2011. http://eprints.otago.ac.nz/1094/.

9. E. Lorini and R. Falcone. Modeling expectations in cognitive agents. In AAAI
2005 Fall Symposium: From Reactive to Anticipatory Cognitive Embodied Systems,
2005.

10. F. Meneguzzi, S. Miles, M. Luck, C. Holt, and M. Smith. Electronic contracting in
aircraft aftercare: a case study. In Proceedings of the 7th international joint con-
ference on Autonomous agents and multiagent systems: industrial track, AAMAS
’08, pages 63–70, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

11. S. Ranathunga, S. Cranefield, and M. Purvis. Interfacing a Cognitive Agent Plat-
form with a Virtual World: a Case Study using Second Life. In 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), 2011.
To appear.

12. A. S. Rao. BDI agents speak out in a logical computable language. In Proceedings
of the 7th European workshop on Modelling autonomous agents in a multi-agent
world: agents breaking away, pages 42–55. Springer-Verlag Berlin, Heidelberg, 1996.

120



Chapter 4

Model Checking



Abstraction for Model Checking Modular
Interpreted Systems over ATL

Michael Köster and Peter Lohmann

Computational Intelligence Group, Clausthal University of Technology
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

mko@tu-clausthal.de

Theoretical Computer Science, Leibniz University Hannover
Appelstr. 4, 30167 Hannover, Germany

lohmann@thi.uni-hannover.de

Abstract. We present an abstraction technique for model checking multi-
agent systems given as modular interpreted systems (MIS) (introduced
by Jamroga and Ågotnes). MIS allow for succinct representations of
compositional systems, they permit agents to be removed, added or re-
placed and they are modular by facilitating control over the amount of
interaction. Specifications are given as arbitrary ATL formulae: We can
therefore reason about strategic abilities of groups of agents.

Our technique is based on collapsing each agent’s local state space with
handcrafted equivalence relations, one per strategic modality. We present
a model checking algorithm and prove its soundness: This makes it possi-
ble to perform model checking on abstractions (which are much smaller
in size) rather than on the concrete system which is usually too com-
plex, thereby saving space and time. We illustrate our technique with an
example in a scenario of autonomous agents exchanging information.

1 Introduction

Multi-agent systems (MAS) and their logical frameworks have attracted some
attention in the last decade. Agent logics have been used to reason about knowl-
edge, time, strategic abilities, coordination and cooperation [13,10,1]. An impor-
tant technique for verifying properties of a system is model checking [5], which
has been refined and improved over the last years.

While an important feature of a MAS is its modularity, e.g., removing, re-
placing, or adding an agent, only a few of the existing compact representations
are both modular, computationally grounded [22] and allow the system designer
to represent knowledge and strategic ability. Among these few approaches are
Modular Interpreted Systems (MIS) [17], which we modify a bit, and use it to ap-
ply our abstraction techniques. MIS are inspired by interpreted systems [12,13]
but achieve a modularity and compactness property much like concurrent pro-
grams [18], i.e., they are modular, compact and computationally grounded while
allowing at the same time to represent strategic abilities.

122



2 Michael Köster and Peter Lohmann

Although explicit models (and symbolic representations [21,20]) achieve the
second part very well (because the semantics are defined over them) some prob-
lems arise with the first part: Usually temporal models have an exponential
number of states and, in addition, they do not support modularity since there
is no easy way to remove or replace an agent. Interpreted systems [12,13], how-
ever, have a modular state space. But they use a joint transition function for
modelling temporal aspects of the system and are thus not modular wrt actions.
In contrast, concurrent programs [18] are both modular and compact not only
wrt the states but also wrt the actions. However, in the context of a MAS it is
important that actions can have side effects on the states of other agents as well
and this behaviour is difficult to model with concurrent programs ([17] contains
a detailed comparison). Finally, our choice of using MIS to model MAS is, al-
though motivated by the above reasons, still arbitrary to some extent and our
techniques could certainly be used with other formalisms as well.

A major obstacle to model checking real systems is the state explosion prob-
lem. As model checking algorithms require a search through the state space of
the system, the efficiency of any algorithm highly depends on the size of this
state space. While for small problems this is still feasible, for larger state spaces
it soon becomes intractable. We therefore need to eliminate irrelevant states by
using appropriate abstraction techniques [4] which guarantee that the property
to be verified holds in the original system if it holds for the abstract system.
We present such an abstraction technique for MIS. More precisely, we reduce
the local state space of each agent in a MIS. We do this by using hand crafted
equivalence relations because, clearly, there cannot be a generic automatizable
abstraction technique: Model checking ATL for MIS is EXPTIME-complete,
therefore in the worst case there are instances where no abstraction technique
at all is applicable.

While abstraction of reactive systems for temporal properties is a lively re-
search area [2,3,7,19], there are only a few approaches when it comes to MAS and
even fewer concerning an abstraction technique for dealing with strategic abili-
ties. One interesting approach by Cohen et al. [6] achieves an abstraction that
preserves temporal-epistemic properties. However, the abstraction is based on an
interpreted system to model the MAS and therefore limits the modularity of the
MAS. Several other abstraction approaches for epistemic properties (cf. [8,11])
are either not computationally grounded or use an explicit representation of the
model.

Another approach by Henzinger et al. [15] shows how to use abstraction
for symbolic model checking of alternating-time µ-calculus formulae over MAS
given as alternating transition systems. Their technique is quite similar to ours
but still more restricted in an important way. They assume that there are only
two agents present and then use a single abstraction to model check the whole
formula. Our approach allows for multiple agents and for many abstractions
(one per strategic operator). Hence, we allow for a much finer control over what
information is abstracted away but still preserve soundness of our model checking
algorithm.

123



Abstraction for Model Checking Modular Interpreted Systems over ATL 3

Note that we will assume the existence of handcrafted equivalence relations,
e.g. generated from manual annotations of program code, since any automatic
abstraction generation or refinement (as in [14] for two-player games) can only
work in typical cases but not in the worst case. That is also the reason why
we do not work out how our algorithms can be implemented fully symbolically:
in the worst case it will be as bad as a non-symbolic algorithm. We are not
trying to neglect the usefulness of either of those techniques but our focus lies
on something else: a provable upper bound for the runtime which is exponential
in the sum of the sizes of the abstract systems but linear in the size of a succinct
representation of the concrete system (see Theorem 11). The exponential part
of this is not as bad as it sounds because, as argued above, our technique allows
for more than one abstraction and therefore each abstraction can be quite small
and still much of the relevant information of the whole concrete system can be
preserved for the overall model checking process.

Finally, the abstraction for MIS which we present in this paper is motivated
by the idea of an IT ecosystem [9], i.e., a system composed of a large number
of distributed, decentralized, autonomous, interacting, cooperating, organically
grown, heterogeneous, and continually evolving subsystems. In such an ecosys-
tem, which can be seen as a MAS, it is important to verify safety, fairness and
liveness properties in order to control the stability of it. A non-trivial demonstra-
tor (mentioned in [9]) describes one instance of such a system by introducing
a fictional scenario, namely a smart airport. In that airport there exist many
agents doing different things, e.g., carrying your bags, buying flight tickets or
exchanging pictures about the travel destination. Among many other things some
agents at the airport want to share some information with other agents. Assum-
ing that no direct agent-to-agent connection is possible, the agents have to send
the information to some middleman that forwards the message. Obviously this
communication protocol raises some questions about safety, fairness and liveness
properties. While examining these properties, i.e., model checking the whole sys-
tem (consisting of many agents and therefore many states), is intractable, model
checking a MIS allows us to concentrate on just the agents that have to commu-
nicate. Using our abstraction method it is sufficient to model-check a fairly small
subset of the original system. We will use this scenario as a running example
throughout the paper.

The structure of the paper is as follows: First we present the background of
our work. Section 2 recalls the MIS framework and describes our modifications.
We extend this section by formulating the communicating agents example as
a MIS. In Section 3 we introduce the logic ATL. The main contributions of
this paper are in Section 4, Section 5 and Section 6: We design an abstraction
technique for MIS, then construct a model checking algorithm based on this
technique and conclude with a soundness proof as well as a complexity analysis
of the algorithm. Section 7 illustrates the abstraction technique by an example.
Finally, Section 8 summarizes the results and discusses future work.

124



4 Michael Köster and Peter Lohmann

2 Modular Interpreted Systems

We model multi-agent systems in the framework of Modular Interpreted Systems
(MIS) [17]. Each agent is described by a set of possible local states, i.e., states it
can be in, and a function that calculates the available actions in a certain state.
A local transition function specifies how an agent evolves from one local state to
another. States are labeled with a set of propositional symbols by an associated
labeling function. Finally, an agent is equipped with a function that defines the
possible influences of an agent’s action on its environment, i.e. the other agents,
and a function for the influence of the environment on this particular agent.

Definition 1. A Modular Interpreted System (MIS) is a tuple S = (Agt,Act ,
In) where Act is the set of actions all agents can perform. In is called inter-
action alphabet. It describes the interaction between the agent and its environ-
ment. Finally, Agt = {a1, . . . , ak} is a set of agents where an agent is a tuple
ai = (Sti, di, outi, ini, oi,Πi, πi) with
– Sti is the local state space. It is a non-empty set of possible local states for

agent ai.
– di : Sti → P(Act) defines for each state in Sti the available actions for agent
ai. With P we denote the power set.

– outi : Sti×Act → P(In) defines the possible influences (one is then chosen
non-deterministically) of agent ai’s action (executed in a certain local state)
on its environment.1 Intuitively, this describes the external effect of an action
which agent ai is executing.

– ini : Sti×Ink−1 → P(In) defines the possible influences (one is then chosen
non-deterministically) of its environment on this agent.1 It maps the external
effects of the actions of all other agents to the influence these actions might
have on the agent in a particular state.

– oi : Sti ×Act × In → P(Sti) is a local (non-deterministic) transition func-
tion.2.

– Πi are the local propositions, where Πi and Πj are disjoint when i 6= j.
– πi : Sti → P(Πi) is a valuation (local labeling function) of these propositions.

The global state space is defined as St := St1 × · · · × Stk.

Example 2. We consider a system with several autonomous agents which can
gather information about their environment and share that information between
each other if they are in communication range. We consider groups of them
working together as teams.

Our example consists of six agents {a1, a2, a3, a4, b1, b2} partitioned in two
teams A = {a1, a2, a3, a4} and B = {b1, b2} and where the agents’ locations are

1 This is different from the original MIS definition in so far as we have a set of possible
influences and the authors had one deterministic influence symbol; it is changed to
cope with possible ambiguities when doing abstraction later.

2 Non-deterministic as opposed to in the original definition; it inherits the non-
determinism from ini and adds additional non-determinism to cope with abstraction
of states later.

125



Abstraction for Model Checking Modular Interpreted Systems over ATL 5

such that each agent ai can reach each agent bj but no two agents from the same
team can reach each other (see Figure 1). Agents of team A can send a message
(if they already know it) to b1 or b2 or choose to do nothing. Agents of team B,
however, are not allowed to send a message back to its sender agent. Once an
agent ai sent a message to an agent bj the agent bj is not allowed to send it to
ai in any future round. Additionally, if an agent bj has received a message from
ai then it has to send it to some agent ak in the following round (unless this
contradicts the former rule) and if possible k has to be greater than i.

Now agent a1 has learned something and wants to communicate its newly
gathered knowledge to its team member a4. The difficulty is that the message
has to pass through an agent of the other team. But we will see that it is still
possible for team A to ensure that a4 will know the message eventually. Formally
we have the following MIS

S := (Agt = {a1, a2, a3, a4, b1, b2},Act = {sendx | x ∈ Agt} ∪ {noop},
In = {nothing,ma1 ,ma2 ,ma3 ,ma4}

∪ P({maibj
| i ∈ {1, . . . , 4}, j ∈ {1, 2}}))

with ai := (Stai , dai , outai , inai , oai ,Πai , πai) where
– Stai = {k(nown), u(nknown)}
– Πai = {knownai , unknownai}
– πai : k 7→ {knownai}, u 7→ {unknownai}
– dai : k 7→ {sendb1 , sendb2 ,noop}, u 7→ {noop}
– outai : (k, sendbj) 7→ {{maibj

}}
(k,noop) 7→ {nothing}
(u, noop) 7→ {nothing}

for all j ∈ {1, 2},

– inai : (s, γ1, . . . , γ5) 7→
{
{mai

} if mai
∈ {γ1, . . . , γ5}

{nothing} else
for all s ∈ Stai , γ1, . . . , γ5 ∈ In,

– oai : (k, α, γ) 7→ {k}
(u, α,nothing) 7→ {u}
(u, α,mai

) 7→ {k}
for all γ ∈ In and α ∈ Act .

For the agents bj we have bj := (Stbj , dbj , outbj , inbj , obj ,Πbj , πbj ) where
– Stbj = P({r1, . . . , r4})×P({n1, . . . , n4}),
– Πbj = {knownbj , unknownbj},

– πbj : (R,N) 7→
{
{knownbj} if R 6= ∅
{unknownbj} else ,

– dbj : (R,N) 7→


{noop} if R = ∅{

sendai

∣∣∣∣ ri /∈ R and there is no k ≥ i:
nk ∈ N and ∃` > k: r` /∈ R

}
∪

{
{noop} if N = ∅ or R = {r1, . . . , r4}
∅ else

 else
,

– outbj : ((R,N), sendai) 7→ {mai
}

((R,N),noop) 7→ {nothing}
for all i ∈ {1, . . . , 4},

126



6 Michael Köster and Peter Lohmann

– inbj : ((R,N), γ1, . . . , γ5) 7→{{maibj
| {maibj

} ∈ {γ1, . . . , γ5}}}
if there is i ∈ {1, . . . , 4} with {maibj

} ∈ {γ1, . . . , γ5}
{nothing} else

for all γ1, . . . , γ5 ∈ In,
– obj : ((R,N), α,M) 7→ (R ∪ {ri | maibj

∈M}, {ri | maibj
∈M})

((R,N), α,nothing) 7→ (R, ∅)
for all α ∈ Act , ∅ 6= M ⊆ {ma1bj

, . . . ,ma4bj
},

for all (R,N) ∈ Stbj . R stands for “received (now or some time ago)” while N
means “received now”.

Figure 2 shows the agent a1. Each arrow is denoted by an action and an
incoming interaction symbol. Outgoing symbols and propositions are omitted
for ease of representation. Nevertheless state u should be labeled with unknowna1

and k with knowna1 . The agents ai are fairly simply structured, they consist of
two states representing whether the agent knows the message (k) or it does not
know it (u). In the former case the agent can send the message to one of the
opponents or just do nothing. In the latter case it has to wait for some agent of
team B sending the message to it.

The structure of the agent bj however is more complex since it consists of
256 states. Every state is labeled with knownbj if the state name contains at
least one ri, i.e., the agent received some time ago the message from agent ai.
Consequently, states that do not have any ri are marked as unknownbj . Intuitively,
while the agent is waiting for a message it does nothing. When it receives a
message, i.e., the state contains a ni it has to send the message to one of the
opponents with a higher number than i and with the condition that this agent
did not send it to bj before. If the state contains all r1 to r4 the agent does
nothing.

We will come back to this concrete example when presenting the logic and
the model checking algorithm.

3 Specification Logic ATL

After having outlined the framework with which we model our MAS, we now
have to specify a logic to talk about strategic properties of such a system. We
recall the syntax of ATL, define some abbreviations and sketch the semantics of
ATL for MIS.

Definition 3. Alternating-time temporal Logic (ATL) [1] is a logic that enables
reasoning about temporal and strategic abilities of multi-agent systems. The syn-
tax of plain ATL is defined by (with A ⊆ Agt)

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕUϕ.

Informally, 〈〈A〉〉Xϕ means that agents A have a collective strategy to enforce
that in the next step ϕ holds. The operator X is read “in the next state”, the
symbol G means “globally” and U “until”. Other Boolean operators are defined
by macros in the usual way.

127



Abstraction for Model Checking Modular Interpreted Systems over ATL 7

For the model checking algorithm presented in Section 5 we need to split a
formula into subformulae.

Definition 4. For an ATL formula ϕ we write qsf(ϕ) for the multiset of all
subformulae of ϕ which start with a quantifier 〈〈A〉〉.

Note that identical formulae occurring in two different places inside ϕ occur
twice in qsf(ϕ) and if ϕ itself begins with a quantifier it is in the multiset as
well.

Finally, we need the following notions.

Definition 5. For a formula ϕ = 〈〈A〉〉ψ we write JϕK for the set A of agents.
For an arbitrary formula ϕ and an arbitrary ψ ∈ qsf(ϕ) let ϕ(ψ,w) denote the
formula resulting from ϕ by replacing ψ with the new proposition w.

Example 6. Considering the communicating agents example (cf. Example 2) we
can ask the following question: Is it possible for team A to ensure that a4 will
know the message eventually? Written in ATL this corresponds to the question
whether

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state where a1 is in state k, all other
agents from team A are in state u and the agents from team B are in state (∅, ∅),
i.e. where only a1 knows the message.

3.1 Semantics of ATL for MIS

Modular Interpreted Systems can be easily transformed into concurrent game
structures (CGS, cf. [1]) as shown for deterministic CGS in [17]. The notion of
a CGS is a very universal formalism to model MAS but it comes at the cost
of not being modular, i.e., CGS have an unstructured global state space. Also,
just as MIS, they have for every agent i a function di : St → Act expressing
which actions are available to agent i in a certain global state. The global tran-
sition function of a CGS takes as input a global state and for every agent a
permissible action and outputs a set of possible successor states (one is then
chosen non-deterministically), i.e., the influences of an agent on its environment
are implicitly given and there is no way to measure or limit that influence in the
framework of CGS.

Definition 7. For a MIS S = ({a1, . . . , ak},Act , In) with ai = (Sti, di, outi,
ini, oi,Πi, πi) (1 ≤ i ≤ k) the corresponding (non-deterministic) concurrent
game structure ncgs(S) = (Agt′, St′,Π ′, π′,Act ′, d′, o′) is defined as follows:
– Agt′ := {1, . . . , k}

– St′ :=
k∏
i=1

Sti

– Π ′ := Π1 ∪ · · · ∪Πk

– π′(p) := {(q1, . . . , qi, . . . , qk) | qi ∈ πi(p)}
– Act ′ := Act

128



8 Michael Köster and Peter Lohmann

– d′i((q1, . . . , qk)) := di(qi)
– δ′((q1, . . . , qk), α1, . . . , αk) :=
{(q′1, . . . , q′k) | ∀1 ≤ i ≤ k : q′i ∈ oi(qi, αi, γi) for a γi ∈ ini(qi, γ1, . . . , γi−1,
γi+1, . . . , γk) for some γ1, . . . , γi−1, γi+1, . . . , γk with γj ∈ outj(qj , αj)}

Note that our concurrent game structures extend the definition from [1] in two
ways. Firstly we use labeled actions instead of plain numbers. Secondly we al-
low the transition relation to be non-deterministic. The semantics of a formula
〈〈A〉〉ϕ over a non-deterministic CGS is defined with the non-determinism work-
ing against the agents in A. The rationale behind this is that 〈〈A〉〉ϕ means “the
agents A have a combined strategy which enforces ϕ”. Now, to enforce ϕ this
strategy needs to ensure that in each of the possible runs of the system – deter-
mined by the other agents’ choices and the non-deterministic branching – the
formula ϕ holds.

Model checking ATL for deterministic MIS is EXPTIME-complete as stated
in [16] and for deterministic CGS it is PTIME-complete as stated in [1]. These
results still hold for the non-deterministic versions of the structures. This is
because in the model checking algorithm from [1, Chapter 4.1] introducing non-
determinism only changes the function Pre(A, ρ) (which for a given set ρ of
system states and a given set A of agents outputs the set of system states from
which the agents A can enforce that the next state in any run will lie in ρ). And
computing Pre does not get more difficult with non-determinism because even
in the case of deterministic systems it is already necessary to take into account
all transitions in order to compute Pre.

Having defined MIS and ATL we can now present our new abstraction tech-
nique.

4 Abstraction for MIS

In general, multi-agent systems have large associated state spaces and even if
they are symbolically represented it is infeasible to verify properties by consid-
ering all reachable states. Nevertheless, interesting properties often only refer to
parts of a system. Under this assumption it makes sense to reduce the state space
by removing irrelevant states and/or by combining them. Due to the modularity
of MIS, we can in a first step easily remove the obviously non-relevant parts of
the global state space by removing particular agents while keeping the others.
Secondly, we reduce the state space of each agent by abstraction. As in [4] and
[6] we do this by partitioning the state space into equivalence classes: Each class
collects all concrete states that are equivalent and forms one new abstract state.
This new state is labeled by those propositions which are shared by all concrete
states. We define the local transition functions of the abstract system in such
a way that it behaves just as the concrete one. The set of available actions in
an abstract state is decreased so that it only contains actions available in every
one of the equivalent concrete states. Finally we show how to handle the inter-
action with an agents’ environment. We start by introducing the definition of an
abstraction relation.

129



Abstraction for Model Checking Modular Interpreted Systems over ATL 9

Definition 8. An abstraction relation for a MIS is a product ≡ = ≡1 × · · ·× ≡k
where each ≡i⊆ Sti × Sti is an equivalence relation for the states Sti of agent
ai.

For q ∈ Sti, we write [q]≡i for the equivalence class of the local state q with
respect to ≡i. And for q ∈ St = St1×· · ·×Stk, we write [q]≡ for the equivalence
class of the global state q.

An abstraction relation as in Definition 8 defines for each agent of the MIS,
which local states are equivalent and therefore can be condensed to one abstract
state. Note that this definition does not say anything about how to define the
equivalence, because this depends on the concrete system that is model checked.
Therefore these relations have to be handcrafted when modeling a system.

Using the definition of a MIS and Definition 8 we can now specify the ab-
straction of a system:

Definition 9. For a MIS S = (Agt,Act , In), an abstraction relation ≡ for S
and a set of favored agents A ⊆ Agt we define the abstraction of S with respect
to ≡ and A as the MIS

SA≡ := (Agt′,Act , In)

where Agt′ := {a′1, . . . , a′k} and a′i = (St′i, d
′
i, out

′
i, in

′
i, o

′
i,Π

′
i, π

′
i) with

i) St′i := {[q]≡i | q ∈ Sti}

ii) d′i([q]≡i) :=

{⋂
q′∈[q]≡i

di(q′) for ai ∈ A⋃
q′∈[q]≡i

di(q′) for ai /∈ A
iii) out′i([q]≡i , α) :=

⋃
q′∈[q]≡i

outi(q′, α)

iv) in′i([q]≡i , γ1, . . . , γk−1) :=
⋃

q′∈[q]≡i

ini(q′, γ1, . . . , γk−1)

v) o′i([q]≡i , α, γ) :=
⋃

q′∈[q]≡i

{[q′′]≡i | q′′ ∈ oi(q′, α, γ)}

vi) Π ′
i := Πi ∩ {pi | ∀q ∈ πi(pi) : ∀q′ ∈ [q]≡i : q′ ∈ πi(pi)}

vii) π′i(pi) := {[q]≡i | q ∈ πi(pi)}

for all q ∈ Sti, α ∈ Act, γ, γ1, . . . , γk ∈ In and pi ∈ Π ′
i.

Note that there might be i ∈ {1, . . . , k} and q ∈ Sti such that d′i([q]≡i) = ∅. As
this would paralyse the system we will from now on assume that the abstraction
relation is chosen in such a way that this does not happen.

Formula i) defines a partition of the local state space by using the handcrafted
equivalence relation of this agent. We reduce all equivalent states to just one.
Function ii) then computes for this element the available actions by giving agents
in A fewer choices and the opponents more choices than before. Due to this con-
struction if a property 〈〈A〉〉ϕ (with ϕ propositional) holds in the abstract system
it also holds in the concrete one, since we restricted the actions of the protago-
nists and extended the set of actions of the antagonists. The possible influences
of these actions concerning the environment are calculated by the resulting func-
tion iii). It takes for the action α the union of all resulting influence symbols
of all states in the equivalence class, i.e., collecting all influence symbols that

130



10 Michael Köster and Peter Lohmann

are an outcome of executing action α in each state q′ of the equivalence class
[q]≡i . Taking the union is motivated by the fact that executing the same action
in equivalent local states results in an equivalent influence on the environment.
iv) is defined the same way: We just use the union of ini for each state in the
equivalence class. Moreover, the outi- and ini-functions are of the same type
for the protagonists as well as the antagonists because they do not introduce
deliberate choices by the agents but instead introduce nondeterminism which
will – as we will see in Section 5 – always work against the formula which is
to be verified. The local transition function v) has to be modified to cope with
equivalence classes: It gets as input an abstract state, an action and one (nonde-
terministically chosen) influence symbol. The output is the set of all equivalence
classes that are successors. To determine this we unfold both equivalence classes
and check whether there is a connection between a concrete state of the first
equivalence class to another concrete state of the second equivalence class.

Finally, we have to define how to label the abstract states (cf. vi) and vii)).
We do this by assigning a proposition to an abstract state if all concrete states
in the equivalence class are labeled with that proposition. If a proposition only
holds in some states of the class we remove it from set of propositions. This
ensures that if a proposition is true in an abstract state it is also true in all
concrete ones.

In the next section we describe how to evaluate whether a formula holds in
a system.

5 The Model Checking Algorithm

Our algorithm takes as input a MIS S, a set init of global states of S (the initial
states), an ATL formula ϕ and for each ψ ∈ qsf(ϕ) an abstraction relation ≡ψ.
The algorithm either returns true or it returns unknown but it will never return
false. If it returns true it is guaranteed that S, q |= ϕ for all q ∈ init. But if it
returns unknown we do not know whether S satisfies ϕ or not.

This behaviour is due to the way model checking is done here: Several ab-
stractions of S (generated out of the abstraction relations ≡ψ) are used each to
model check a part of ϕ. And as usual with handcrafted abstractions there can
be false negatives. The important point is that there are no false positives, i.e. if
the abstractions fulfill ϕ then so does the concrete system.

Before we can present the algorithm we need the technical notion of a pseudo-
MIS which will be used in it.

Definition 10. A pseudo-MIS is a MIS together with a set Π of global propo-
sitions (which is disjoint to each set of local propositions) and a global labeling
function π : St → P(Π). Note that every MIS can be viewed as a pseudo-MIS
with Π = ∅.

The algorithm now works as follows. Details about efficiently implementing some
of the steps are given in the proof of Theorem 11.

131



Abstraction for Model Checking Modular Interpreted Systems over ATL 11

Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)):
Let ϕ = λ(θ1, . . . , θn, `1, . . . , `m) where
– λ is a monotone Boolean formula, i.e. λ is composed of conjunctions and

disjunctions only,
– θ1, . . . , θn are arbitrary ATL formulae each beginning with a quantifier or a

negation directly followed by a quantifier, i.e. each θi is of the form 〈〈B〉〉θ′i
or ¬〈〈B〉〉θ′i (in the latter case we will still write ≡θi and JθiK instead of
≡〈〈B〉〉θ′i and J〈〈B〉〉θ′iK), and

– `1, . . . , `m are literals, i.e. atomic propositions or negations of atomic propo-
sitions.

1) For all i ∈ {1, . . . , n} do:
i) Set Wi := label(θi,≡θi).
ii) Set S := S(wi,Wi), i.e. S is from now on viewed as a pseudo-MIS, a

new global proposition wi is introduced in S and it is labeled exactly in
the states in Wi.

2) If S, s |= λ(w1, . . . , wn, `1, . . . , `m) for all s ∈ init then return true. Otherwise
return unknown.
Note that for this step the algorithm only has to locally check the labeling
of the states s ∈ init as λ(w1, . . . , wn, `1, . . . , `m) is an entirely propositional
formula.

Algorithm label(ψ,≡):
Let ψ = ¬ψ〈〈A〉〉Yλ(θ1, . . . , θn, `1, . . . , `m) where
– ¬ψ is ¬ if ψ begins with a negation and it is the empty string elsewise,
– Y ∈ {X,G,U},
– λ is a monotone Boolean formula,
– θ1, . . . , θn are arbitrary ATL formulae each beginning with a quantifier or a

negation directly followed by a quantifier, and
– `1, . . . , `m are literals.

1) Construct the abstraction

S′ :=

{
S

JψK
≡ if ψ does not begin with a negation
S

Agt\JψK
≡ if ψ does begin with a negation

We will view S′ as a pseudo-MIS in the following steps.
2) For all i ∈ {1, . . . , n} do:

i) Set Wi := {[q]≡ | ∀q′ ∈ [q]≡ : q′ ∈ label(θi,≡θi)}.
ii) Set S′ := S′(wi,Wi).

3) Compute the set W ′ of global states of S′ (note that these are global states
of the system abstracted with ≡) satisfying ψ, i.e. W ′ :=

{[q]≡ | S′, [q]≡ |= ¬ψ〈〈A〉〉Yλ(w1, . . . , wn, `1, . . . , `m)},

by translating S′ to a non-deterministic CGS and then using the ATL model
checking algorithm from [1, Chapter 4.1]. As already pointed out in Section

132



12 Michael Köster and Peter Lohmann

3.1 their algorithm is only given for deterministic CGS but can be easily
adapted to also handle non-deterministic systems.
There is, however, a caveat here. Because additional non-determinism might
be introduced by abstracting the system we have to make sure that the non-
determinism works “against the formula” because we want to avoid false
positive outputs of our algorithm. This is the reason why we have to interpret
the non-determinism as working for the agents in A if ¬ψ = ¬ and working
against them otherwise. If we always had it working against them (which
seems natural as argued in Section 3.1) then in the former case it could
happen that the algorithm comes to the conclusion that S′, [q]≡ |= ψ although
S, q 6|= ψ – a false positive. The reason for this would be non-determinism
present in S′ and absent in S that would presumably prevent agents A to
have a winning strategy in S′ although they do have one in S.

4) Return W := {q ∈ St | [q]≡ ∈W ′}.

6 Complexity and Soundness of the Algorithm

The following theorem shows that our model checking algorithm runs in time
linear in the size of a succinct representation of the concrete system as well as
linear in the length of the formula and exponential in the sum of the sizes of
the abstract systems. Now, since there is a special abstraction for each modal-
ity, the abstractions should be very small and therefore this should be a huge
improvement over the EXPTIME-completeness of model checking MIS without
abstractions.

Theorem 11. Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init|+ |S| · |ϕ|) · 2
O

 P
ψ∈qsf(ϕ)

˛̨̨
S

JψK
≡ψ

˛̨̨!

where |S| denotes the size of the MIS S in a compact representation. The car-
dinality of the global state space of S may then be upto 2Θ(|S|).

For a proof see Theorem 13 in the appendix.
The following theorem shows that our algorithm is sound. It is, however, not

complete because, as usual for abstraction techniques, the capability of the algo-
rithm to show the truth of a formula depends on choosing a suitable abstraction.
It should, anyhow, be possible to find good abstractions since it is possible to
define a specific abstraction for each strategic operator. Of course that problem
could be overcome by an automatic abstraction refinement technique but this,
on the other hand, would make a provable upper bound on the runtime in the
form of Theorem 11 impossible.

Theorem 12. Algorithm modelcheck is sound, i.e. if modelcheck(S, init, ϕ,
(≡ψ)ψ∈qsf(ϕ)) outputs true then S, q |= ϕ for all q ∈ init.

For a proof see Theorem 14 in the appendix.

133



Abstraction for Model Checking Modular Interpreted Systems over ATL 13

7 Communicating Agents Example

Consider the example of the six agents again (Example 2 and Example 6). We
will now apply the model checking algorithm to the example using the formula

S, q |= 〈〈A〉〉(>Uknowna4)

with A = {a1, a2, a3, a4} and q is the global state in which only a1 knows the
message (cf. Example 6). The formula ϕ describes the following question: “Is it
possible for team A to always ensure that a4 will know the message eventually?”
The algorithm takes the formula ϕ and constructs for all quantifier subformulae
an abstract system by using the specific abstraction relation for that quantifier.
The multiset qsf(ϕ) of quantified subformulae consists just of the formula ϕ.
Therefore, we have to define only one abstraction for ϕ.

Before we give the abstraction relation we note that b2 is not necessary for
the property we want to verify and therefore we can temporarily delete it from
the system. As abstraction for ϕ we do not abstract the agents ai at all and for
agent b1 we use the equivalence relation given by the following partition of its
local state space:

Si := {(R,N) | ∅ 6= R ⊆ {r1, . . . , ri}, ni ∈ N} \
⋃i−1
j=1 Sj for i = 1, . . . , 3

Srest := {(R,N) | (R,N) /∈ S1 ∪ · · · ∪ S3}

Now, the agents ai remain unchanged and the abstracted agent b1 looks like the
following:

b′1 = (St′b1 , d
′
b1 , out

′
b1 , inb1 , o

′
b1 ,Πb1 , π

′
b1)

where
– St′b1 = {S1, S2, S3, Srest}
– π′b1 : Si 7→ {knownb1} for i = 1, . . . , 3

Srest 7→ {knownb1 , unknownb1}
– d′b1(Si) = {sendx | x ∈ {ai+1, . . . , a4}} for i = 1, . . . , 3
d′b1(Srest) = {sendx | x ∈ {a1, . . . , a4}} ∪ {noop}

– out′b1 : (Srest,noop) 7→ {nothing}
(s, senda1) 7→ {mb1a1}
(s, senda2) 7→ {mb1a2}
(s, senda3) 7→ {mb1a3}
(s, senda4) 7→ {mb1a4}

for all s ∈ St′b1 ,
– o′b1 : (Srest, α,nothing) 7→ {Srest}

(Srest, α, {majb1}) 7→ {Srest, Sj}
(Si, sendaj ,nothing) 7→ {Srest}
(Si, sendaj , {maj′b1}) 7→ {Sj′}
(Si, sendaj , {ma4b1}) 7→ {Srest}

for all α ∈ Act , γ ∈ In, i, j′ ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4}.

134



14 Michael Köster and Peter Lohmann

Now, everything is specified so that the algorithm
modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) can be started. S is the MIS mentioned in
Section 2, init = {q}, ϕ as above and (≡ψ)ψ∈qsf(ϕ) contains all abstraction
relations for the quantified subformulae. Since the formula ϕ only consists of
one quantifier, by invoking the algorithm modelcheck() we get the quantifier
subformulae θ1 := ϕ. The algorithm takes then ϕ and computes W1 by exe-
cuting the labeling algorithm label(ϕ,≡ϕ). Now, we construct the pseudo-MIS

S′ϕ := S
JϕK
≡ϕ for the favored agents a1, a2, a3, a4. Step 2i) of the labeling algo-

rithm is skipped since there is no further quantified subformula for ϕ. This
is the moment when the recursion stops and we start to label the states in a
bottom-up order. W1 := {[q]≡ϕ | S′ϕ, [q]≡ϕ |= ϕ} is computed by creating the
non-deterministic CGS and apply the model checking algorithm for ATL.

Now we are almost finished. In the modelcheck() algorithm we set S′ :=
S′(w1,W1). The last step is to evaluate whether S, s |= ϕ holds and we therefore
answer with true.

8 Conclusion and Future Work

While in the MAS community model checking agent systems already has at-
tracted some attention there has not been much work on abstraction techniques
for reducing the state space. In this paper, we presented a technique to cope
with the state explosion problem which opens the way to reduce the state space
of a MAS so that model checking might get tractable. Clearly, there cannot be
a generic automatizable abstraction technique: Model checking ATL for MIS is
EXPTIME-complete, therefore in the worst case, there are instances where no
abstraction technique at all is applicable.

Consequently we focused on handcrafted abstraction relations and proved
that the presented model checking algorithm is sound, i.e., if the algorithm claims
that a property holds then it really does. Of course, using abstraction always
leads to losing completeness. However, abstraction still has its benefits because
without reducing the state space many problems could not be model checked at
all. Defining different abstraction relations for each quantifier allows to shrink the
state space as needed for each subformula. Usually a MAS consists of more than
two teams and the agents are more complex than in our example which increases
our speedup factor significantly. In fact, we believe that most real problems
carry with them a rich structure which allows the abstraction technique to be
successfully applied, especially when using the possibility to use more than one
abstraction for a single formula.

We decided to take MIS as the modelling framework and argued that for any
framework the modularity is important not only because of the nature of MAS
but also due to the ability of reducing the state space by replacing or removing
agents that are not necessary when checking a certain property. We therefore
introduced a modified version of a MIS and defined an abstraction over it.

The need to have a compact, modular and ground representation was moti-
vated by the idea of an IT ecosystem, i.e., a system composed of a large number

135



Abstraction for Model Checking Modular Interpreted Systems over ATL 15

of distributed, decentralized, autonomous, interacting, cooperating, organically
grown, heterogeneous, and continually evolving subsystems. An example for such
a system is a smart city that contains agents for cars, traffic lights, cameras, etc.
In such an IT ecosystem, new agents are introduced, other agents are removed
and others again are modified. If we nevertheless want to ensure some safety,
liveness or fairness properties we need a framework that on the one hand enables
theoretical analysis and on the other hand supports modularity.

An IT ecosystem in general is the topic of a large research project consisting of
17 professors and 33 scientists in total collecting knowledge in different research
areas: multi-agent systems, organic computing, ambient intelligence, software
engineering and embedded systems. Together we try to solve the contradiction
of having a continually evolving and highly heterogeneous system on the one
side and still controlling this system by ensuring some properties on the other
side.

We are currently implementing our abstraction technique in a first prototype
and will use it for a concrete, non-trivial demonstrator scenario [9]. The applica-
tion will run on a smartphone and will send properties to be checked to a server
that will then model check it. Users will get feedback if the formula holds or if
it is unknown and can then decide whether they want to take part in the IT
ecosystem. For this implementation it will, of course, be very useful to develop
some heuristics and automatic refinement methods to generate abstractions.

For the future, we plan to put some effort in developing parallel model check-
ing methods for this system and using a logic that facilitates the use of proba-
bilities.

9 Acknowledgments

This work was funded by the NTH Focused Research School for IT Ecosystems.
NTH (Niedersächsische Technische Hochschule) is a joint university consisting
of Technische Universität Braunschweig, Technische Universität Clausthal, and
Leibniz Universität Hannover.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Ball, T., Rajamani, S.: Boolean programs: A model and process for software anal-
ysis. Tech. Rep. 2010-14 (2000)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

4. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

5. Clarke, E., Grumberg, O., Peled, D.: Model checking. Springer (1999)

6. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking
multi-agent systems. In: AAMAS (2). pp. 945–952 (2009)

136



16 Michael Köster and Peter Lohmann

7. Das, S., Dill, D.: Successive approximation of abstract transition relations. In:
Logic in Computer Science, 2001. Proceedings. 16th Annual IEEE Symposium on.
pp. 51–58. IEEE (2002)

8. Dechesne, F., Orzan, S., Wang, Y.: Refinement of kripke models for dynam-
ics. In: Fitzgerald, J., Haxthausen, A., Yenigun, H. (eds.) Theoretical Aspects
of Computing - ICTAC 2008, Lecture Notes in Computer Science, vol. 5160,
pp. 111–125. Springer Berlin / Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-85762-4 8

9. Deiters, C., Köster, M., Lange, S., Lützel, S., Mokbel, B., Mumme, C., (eds.), D.N.:
DemSy - A Scenario for an Integrated Demonstrator in a SmartCity. Tech. Rep.
2010/01, NTH Focused Research School for IT Ecosystems, Clausthal University
of Technology (May 2010), http://www.gbv.de/dms/clausthal/H BIB/IfI/NTH

CompSciRep/2010-01.pdf

10. Emerson, E., Halpern, J.: ”Sometimes” and ”not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM (JACM) 33(1), 151–178
(1986)

11. Enea, C., Dima, C.: Abstractions of multi-agent systems. In: Burkhard, H.D., Lin-
demann, G., Verbrugge, R., Varga, L. (eds.) Multi-Agent Systems and Applications
V, Lecture Notes in Computer Science, vol. 4696, pp. 11–21. Springer Berlin / Hei-
delberg (2007), http://dx.doi.org/10.1007/978-3-540-75254-7 2

12. Halpern, J., Fagin, R.: Modelling knowledge and action in distributed systems.
Distributed computing 3(4), 159–177 (1989)

13. Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about knowledge. Hand-
book of Logic in Artificial Intelligence and Logic Programming 4 (1995)

14. Henzinger, T.A., Jhala, R., Majumdar, R.: Counterexample-guided control. In:
ICALP. Lecture Notes in Computer Science, vol. 2719, pp. 886–902. Springer-
Verlag (2003)

15. Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin, J.F.: Abstract interpre-
tation of game properties. In: Proceedings of the 7th International Symposium
on Static Analysis. pp. 220–239. SAS ’00, Springer-Verlag, London, UK (2000),
http://portal.acm.org/citation.cfm?id=647169.718154

16. Jamroga, W., Ågotnes, T.: Modular interpreted systems: A preliminary report.
Tech. Rep. IfI-06-15, Clausthal University of Technology (2006)

17. Jamroga, W., Ågotnes, T.: Modular interpreted systems. In: Durfee, E.H., Yokoo,
M., Huhns, M.N., Shehory, O. (eds.) AAMAS. p. 131. IFAAMAS (2007)

18. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM Trans. Program. Lang. Syst. 22, 87–128 (January 2000), http:

//doi.acm.org/10.1145/345099.345104

19. Kurshan, R.: Computer-aided verification of coordinating processes: the automata-
theoretic approach. Princeton Univ Press (1994)

20. McMillan, K.: Applying sat methods in unbounded symbolic model checking. In:
Brinksma, E., Larsen, K. (eds.) Computer Aided Verification, Lecture Notes in
Computer Science, vol. 2404, pp. 303–323. Springer Berlin / Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-45657-0 19

21. McMillan, K.: Symbolic model checking: An Approach to the State Explosion
Problem. Kluwer Academic Publishers Norwell, MA, USA (1993)

22. Wooldridge, M.: Computationally grounded theories of agency. Multi-Agent Sys-
tems, International Conference on 0, 0013 (2000)

137



Abstraction for Model Checking Modular Interpreted Systems over ATL 17

10 Appendix

10.1 Figures

a1

a2

a3

a4

b1 b2

Fig. 1. Communication graph of the six agents

Abstraction for Model Checking Modular Interpreted Systems over ATL 17

10 Appendix

10.1 Figures

a1

a2

a3

a4

b1 b2

Fig. 1. Communication graph of the six agents

u k
noop,ma1

noop,nothing
sendb1 , γ
sendb2 , γ
noop, γ

Fig. 2. Graph of agent a1

10.2 Proofs

Theorem 13. Algorithm modelcheck(S, init,ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init| + |S| · |ϕ|) · 2
O

 
P

ψ∈qsf(ϕ)

˛̨
˛S!ψ"
≡ψ

˛̨
˛

!

where |S| denotes the size of the MIS S in a compact representation. The car-
dinality of the global state space of S may then be upto 2Θ(|S|).

Proof. The crucial implementation detail is that it is not possible to explicitly
enumerate the set returned in step 4 of label() because the set may be as large
as the global state space St of S. Instead, both label() and modelcheck() have to
save and pass on computed sets of global states in a symbolic way, i.e. by refer-
ing to the modular structure of S and to the abstraction relation’s equivalence

Fig. 2. Graph of agent a1

10.2 Proofs

Theorem 13. Algorithm modelcheck(S, init, ϕ, (≡ψ)ψ∈qsf(ϕ)) runs in time

O (|init|+ |S| · |ϕ|) · 2
O

 P
ψ∈qsf(ϕ)

˛̨̨
S

JψK
≡ψ

˛̨̨!

where |S| denotes the size of the MIS S in a compact representation. The car-
dinality of the global state space of S may then be upto 2Θ(|S|).

Proof. The crucial implementation detail is that it is not possible to explicitly
enumerate the set returned in step 4 of label() because the set may be as large
as the global state space St of S. Instead, both label() and modelcheck() have to
save and pass on computed sets of global states in a symbolic way, i.e. by refer-
ing to the modular structure of S and to the abstraction relation’s equivalence

138



18 Michael Köster and Peter Lohmann

classes. This technique is needed in step 1 of modelcheck() and in steps 2i and
4 of label().

Also, in step 2i of label() it is not possible to check the condition for each
[q]≡ ∈ St′ by enumerating through all q′ ∈ [q]≡ because a single equivalence
class may already be as large as the global state space. Hence, the algorithm
has to construct the equivalence relation ≡′ := ≡ ∩ ≡θi (which is a refinement
of both ≡ and ≡θi) and compute Wi as the set {[q]≡ | ∀[q′]≡′ ⊆ [q]≡ : [q′]≡′ ⊆
label(θi,≡θi)}. This can be done in time O(|SJψK

≡ | · |SJθiK
≡θi |).

Step 3 of label() runs in time 2O
“
|SJψK
≡ |

”
·O(|ψ|) because the translation to a

CGS may involve an exponential blow-up in the system size. All other steps are
easy to implement – when keeping in mind the symbolic handling of state sets.

Finally, label() is executed at most |ϕ| times. Altogether this gives the claimed
upper bound on the runtime.

Theorem 14. Algorithm modelcheck is sound, i.e. if modelcheck(S, init, ϕ,
(≡ψ)ψ∈qsf(ϕ)) outputs true then S, q |= ϕ for all q ∈ init.

Proof. (Sketch) First note that if we skipped step 1 of the label() algorithm
and simply ran the algorithm without constructing any abstractions we would
exactly run the bottom-up, subformula labeling, model checking algorithm from
[1, Chapter 4.1].

Hence we only have to argue why the abstractions do not lead the algorithm
to produce more positive answers than without them. The crucial observation
is that for each modality 〈〈A〉〉Y the aspects which are of an existentially quan-
tifying nature, i.e. the actions available to agents A, can only be restricted by
an abstraction but never extended and for the aspects of universally quantifying
nature, i.e. the actions available to agents Agt\A as well as the non-deterministic
branching of the system, it is the other way around. Thus it is ensured that if a
formula 〈〈A〉〉Yϕ is true in an abstraction it is also true in the original system.

Furthermore, for formulae of the form ¬〈〈A〉〉Yϕ the abstraction is con-
structed the other way around, i.e. extended choices for A and restricted choices
for Agt \A, to ensure that if the agents A do not have a winning strategy in the
abstraction then neither do they have one in the original system.

The non-determinism, however, is extended even in this case. As already dis-
cussed in step 3 of the algorithm we therefore have to change the meaning of the
non-determinism to be of existential rather than of universal nature. The sacri-
fice we have to make is that if the original system is already non-deterministic
and this non-determinism ensures some property ¬〈〈A〉〉Yϕ then the algorithm
will return unknown.

139





MAS: Qualitative and Quantitative Reasoning

Ammar Mohammed and Ulrich Furbach

Universität Koblenz-Landau, Artificial Intelligence Research Group,
D-56070 Koblenz, {ammar,uli}@uni-koblenz.de

Abstract. In a former work, we have presented/implemented a frame-
work for modeling and verifying multi-agent systems, using hybrid au-
tomata. To specify properties of those systems, one needs a specification
language that brings, at the same level of specification, both the quali-
tative and quantitative requirements. For this aim, there have been pro-
posed several temporal logics with either event or state based approach.
Both approaches have their pros and cons which should not be played off
against each other. This paper contributes to present a variant of tempo-
ral logics which combines the expressiveness of both approaches. Using
this proposed logic, we are able reason about many properties in a con-
cise and intuitive manner. In particular, we concentrate on those types
of properties that can be verified using reachability analysis. Hence these
properties can be verified directly within our implemented framework.

1 Introduction

A great deal of research has made the concept of Multi-Agent Systems (MAS)
more precise by means of logical systems, particularly modal logics [33], which
has contributed to develop several programming and verification tools to reason
about MAS. Temporal logic, LTL or CTL [30, 9], is as a subclass of model logics
which is able to reason about the evolving of systems in time. An important
advantage of the use of temporal logics is that they verify systems by means
of model checking. The latter is one of the approaches that is recently used in
automated planning [28, 16]. Several work has integrated temporal logic on the
top of certain modal logic to be able to reason about actions with temporal
properties (cf. [22, 7]).

Temporal logics basically allow us to express and reason about those quali-
tative properties of systems which focus on the temporal order of the occurrence
of events. An example of these properties is to specify that a certain property
of interest may eventually occur, or in other words the formula is reached in the
model. Temporal logics, however, are insufficient to specify those quantitative
temporal requirements which put timing deadlines on the behaviors of specified
systems. For example, temporal logic can specify that the action1 is always fol-
lowed by action2, but it can not reveal how long the period between the two
action takes place. Because of their inability to specify such quantitative prop-
erties, temporal logics have to incorporate explicitly the notation of time. For
this aim, there have been proposed several extensions to temporal logics that

141



bind the notation of time to formulas (see [4, 8] for a survey). The underlying
models of these logics are represented as state transition graphs annotated with
time constraints, using either event or state based approach. The former ap-
proach uses the discrete time model of the occurrence of events to reason about
systems, while the latter approach uses continuous time model that records the
state changes of systems at each point of time. Each approach has advantages
over the other. The main advantage of event based approach together with its
underlying discrete time model, is its simplicity to express quantitative proper-
ties by abstracting lots of details within a model of a system. Intuitively most of
the quantitative requirements often occur at the discrete changes of the behav-
ior of systems and hence these requirements can reason about agents carrying
out actions in time. This approach, however, can not reason about quantitative
properties, which may occur within a particular time interval. For example, it
might be desirable to reason about the satisfaction of a certain property of in-
terest within an interval of time, say 10 ≤ t ≤ 20. This can not be expressed
with events unless the time interval coincides with events on the boundaries
of the interval. This limitation can be coped with using the expressive power
of state based approach. The latter approach, however, can not directly reason
about events, which are used to reason about actions of MAS. Converting from
the state based to the event based representation often leads to a significant
enlargement of the state space. To specify and hence verify a property based
on the occurrence of events, it should be converted into an appropriate state
base representation before it is checked by state based quantitative temporal
logics tools [34, 10]. For example, to specify and verify that it is always the case
that event1 is followed by event2 within t time unit— this property is called a
bounded response property— a traditional solution to verify this within a model
M of a multi-agent system is to translate this specification to a testing transition
model A, and then check whether the parallel model of A and M can reach a
designated state of A.

Usually any quantitative temporal logic needs an interpretation models of
the form labeled timed graph or even more general structure like timed au-
tomata [2]. A general model of timed automata is hybrid automata [18] in which
one can reason not only about quantitative time requirements, but also about
quantitative behaviors of systems raised from evolution of continuous actions.

The main contribution of this paper is to propose a novel variant of CTL
called Region Computation Tree Logic( RCTL) that extends CTL by incorpo-
rating time on states and events in order to reason about both qualitative and
quantitative requirements of systems particularly MAS. RCTL encompasses, in
the same framework, the expressive power of event and state based approach.The
formulas of RCTL are interpreted on tree of regions generated from the transi-
tion system of hybrid automata presented in a former work [27]. For the purpose
of model checking, we concentrate on those quantitative properties that can
be verified using reachability analysis. Hence, we will be able to use a former
constraint logic programming approach presented in [27, 32]. In this approach, a
model of MAS described as hybrid automata is converted to an equivalent model

142



of constraint logic program. Then requirements are converted to suitable queries
that are checked within the constraint logic program.

The rest of this paper is organized as follows. Sec. 2 introduces hybrid au-
tomata, which constitute the interpretation model of RCTL. Then syntax and
semantics of RCTL are discussed in Sec. 3. Specifications of properties that can
be verified by means of reachability analysis are discussed in Sec. 4, before we
end up with the conclusion and related work in Sec. 5.

2 Hybrid Automata:Perliminaries

In this section we briefly review our labeled hybrid automata, in which we admit
the existance of events on transitions (see [27] for details with an example).
But first we need to define those constraints which may appear as guards on
transitions and invariants of hybrid automata. Then, we define the constraints
that define the possible dynamics in our model.

Definition 1 (Linear Constraints) Let X be set of n real variables and ω =∑n
i=1

ai · xi, with xi ∈ X, be a linear combination of variables from X, where
1 ≤ i ≤ n, ai ∈ R. A set Φ(X) of linear constraints over X, with a typical
elements ϕ, is defined by the following syntax:

ϕ ::= ω ∼ b | ϕ1 ∧ ϕ2 | true

where b ∈ R, ∼∈ {<,≤, =, >,≥}, and ϕ1, ϕ2 ∈ Φ(X).

The continuous behaviors of MAS show how physical quantities, e.g. position,
temperature and humidity, evolve with respect to time. Those behaviors are
usually described by differential equations whose solutions can be described as
continuous functions in time. In the following, we define the basic constraints
that constitute the continuous dynamics of the variables.

Definition 2 (Dynamical Constraints) Let X be a set of n real variables,
with a typical element x ∈ X, and Ẋ be set of first derivatives of the variables of
X with a typical element ẋ ∈ Ẋ. A set D(X ∪ Ẋ) of dynamical constraints over
X ∪ Ẋ with typical element d, is defined inductively by the following syntax:

d ::= ẋ ∼ c | ẋ + a · x = c | d1 ∧ d2 | true

where a '= 0, c ∈ R, ∼∈ {=,≤,≥}, d1, d2 ∈ D(X ∪ Ẋ).

Having defined the linear and dynamical constraints, we are ready to intro-
duce a hybrid automaton1.

1 Each automaton represents an agent

143



listen
help

idle
move2firemove2supply

refill

extinguish

FirebrigadeMain

FirebrigadeAgent

FirebrigadeRSS

i: true

civ > 0/
civ′ = civ− 1

i:m2ftime ≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i:m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i:wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax ∧ neededw > 0 /
m2ftime′ = tSupply

i:wLevel ≥ 0

f: ˙wLevel = −rExt
˙neededw = −rExt

wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported

emergency

true /m2ftime′ = 3

wLevel = wlMax ∧ neededw = 0

neededw = 0 ∧ wLevel > 0

i: true true /civ′ = civ + 1

Fig. 1. A simple fire brigade agent [15].

2.1 Syntax

Definition 3 (basic components) A hybrid automaton is a tuple
H = (Q, X, Inv, F low, E, Jump, Reset, Event, EventH, q0, v0) where:

– Q is a finite set of control locations.
– X is an ordered set of n real variables.
– Inv : Q → Φ(X) is a function that assigns a linear constraint Inv(q) to each

location q ∈ Q.
– Flow : Q → D(X ∪ Ẋ) is a function that assigns a dynamical constraints

Flow(q) to each control location q ∈ Q.
– E ⊆ Q×Q is a finite set of transitions among control locations.
– Jump : E → Φ(X) is a function that assigns to each transition e ∈ E a

constraints jump(e), which must hold to fire e.
– Reset : E × X → R is a mapping, which assigns a real value to each variable

on each transition e ∈ E. A reset of a variable x ∈ X on a transition e ∈ E
is denoted as x′ = Reset(e, x). Conveniently, we write Reset(e, X) to denote
the reset of all variables.

– EventH is a finite set of events.
– Event : E → EventH is a function that assigns an event to each transition

e ∈ E from a set of events EventH .
– q0 ∈ Q defines the initial location of the automaton.
– v0 defines the initial values of the variables X.

An example of a MAS described as hybrid automata is shown in Fig. 1, which
describes a fire brigade agents in a Robobcup rescue scenario (cf. [15] for details)

144



2.2 Semantics

A hybrid automaton can exactly be in one of its control locations at each stage
of its computation. But knowing the present control location is not enough to
determine which of the outgoing transitions can be taken next, at all. A snapshot
of the current state of the computation should also keep in mind the present
valuation of the continuous variables. To begin formalizing the semantics of
a hybrid automaton, we need to define the concept of a state and to show
how control evolves from one state to another. But first we need to define how
continuous variables evolve.

Definition 4 (Evaluation of Linear Constraints) Let ϕ ∈ φ(X) be a con-
straints and v ∈ Rn be the valuation of the variables X, then we write

v |= ϕ,

if v satisfies the constraint ϕ, which is defined inductively as

ϕ = true.
ϕ =

∑n
i=1

ai · xi ∼ c iff
∑n

i=1
ai · vi ∼ c holds.

ϕ1 ∧ ϕ2 iff v |= ϕ1 and v |= ϕ2.

where vi is the valuation of the ith components of v

Definition 5 (Evaluation of Dynamical Constraints) Let d ∈ D(X ∪ Ẋ)
be a dynamical constriants and f : R≥0 → Rn be a differentiable function, then
we write

f !∗ d

if f satisfies the dynamical constraint d, which is defined inductively as

d = true.
d = ẋ ∼ c iff f ′(t) ∼ c holds.
d = ẋ + a · x = c iff f ′(t) + a · f(t) ∼ c holds.
d = d1 ∧ d2 iff f !∗ d1 and f !∗ d2.

where f ′(t) is the differentiation of the function f for t ∈ R≥0.

Definition 6 (State) At any instant of time t ∈ R≥0, a state of a hybrid au-
tomaton is given by σi = 〈qi, v, t〉, where qi ∈ Q is a control location, v is the
valuation of the real variables. A state σi = 〈qi, v, t〉 is admissible iff v |= Inv(qi).

The semantics of a hybrid automaton is defined in terms of a labeled transition
system between states. Transitions between states are generally categorized into
two kinds of transitions: continuous transitions, capturing the continuous evo-
lution of states, and discrete transitions, capturing the changes of location. We
will define the semantics of hybrid automaton more formally.

Definition 7 (Operational Semantics) A transition rule between two admis-
sible states σ1 = 〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 is

145



Discrete transition iff e = (q1, q2) ∈ E, t1 = t2 and v1 |= Jump(e), and
v2 |= Inv(q2), such that v2 is the valuations coming from Reset(e, X). In
this case an event a ∈ EventH occurs. Conventionally, we write this as
σ1

a
−→
t1

σ2.

Continuous(Delay) transition iff q1 = q2, (t2 − t1) > 0 is the duration of
time passed at location q1, there exists a differentiable function f with f !∗

Flow(q1) and f(t1) = v1 and f(t2) = v2, and for all t ∈ [t1, t2], f(t) |=
Inv(q1).

An execution of a hybrid automaton corresponds to a sequence of transitions
from one state to another. For this purpose, we define the valid run as follows:

Definition 8 (Run: micro level) A path ρ = σ1σ2σ3, . . . , of a hybrid au-
tomaton H is a finite or infinite sequence of admissible states, where the transi-
tion from a state σi to a state σi+1, for all i ≥ 1, is related either by a discrete
or continuous transition. A set of all possible paths of A is denoted as Π(H). A
run of H is a path ρ starting with the initial state σ0.

It should be noted that the continuous change of states in a path ρ gener-
ates an infinite number of reachable states. Therefore, state-space exploration
techniques require a symbolic representation way for representing these infinite
states appropriately. One way to do so is to use mathematical intervals. We call
this symbolic mathematical interval region, which is defined as follows:

Definition 9 (Region) Given a path ρ ∈ Π(H), a sub-sequence of admissi-
ble states Γ = (σi+1 · · ·σi+m) ⊆ ρ is called a region, if for all states σi+j with
1 ≤ j ≤ m, it holds qi+j = q and for the states σi and σi+m+1 with respective lo-
cations qi and qi+m+1, then it must hold qi '= q and qi+m+1 '= q. Conventionally,
a region Γ is written as Γ = 〈q, V, T 〉, where ti+1 ≤ T ≤ ti+m is the interval
of continuous time, and V is the tuple of intervals valuations of the variables
during the time interval T .

A run of a hybrid automaton can be re-phrased in terms of reached regions,
where the change from one region to another is fired by using a discrete step.

Definition 10 (Run: macro level) A run of hybrid automaton H is ρH =
Γ0, a1,Γ1, a2, ..., a sequence of (possibly infinite) regions, where a transition from

a region Γi to a region Γi+1, written as Γi
ai+1

−−−→
ti+1

Γi+1, is enabled, if there is

σi
ai+1

−−−→
ti+1

σi+1, where σi ∈ Γi, σi+1 ∈ Γi+1 and ai+1 ∈ Event is the generated

event before the control goes to the region Γi+1. Γ0 is the initial region obtained
from a start state σ0 by means of continuous transitions.

The operational semantics are the basis for verification of a hybrid automa-
ton. In particular, model checking of a hybrid automaton is defined as the reach-
ability analysis of its underlying transition system. The most useful question to
ask about hybrid automata is the reachability of a given state. We define the
reachability of a region and state as follows.

146



Definition 11 (Reachability) A region Γi is called reachable in a run ρH , if
Γi ∈ ρH . Consequently, a state σj is called reachable, if there is a reached region
Γi such that σj ∈ Γi

2.3 Parallel Composition

The parallel composition of hybrid automata can be used to specify larger sys-
tems (MAS), where a hybrid automaton is given for each part of the system
and communication between the different parts may occur via shared variables
and synchronization labels. The transitions from the different automata are in-
terleaved, unless they share the same synchronization label. In this case, they
are synchronized on transitions. As a result of the parallel composition, a new
automaton called composed automaton is created which captures the behavior
of the entire system. The composed automaton is, in turn, given to a model
checker that checks the reachability of a certain state. In [27], we showed how to
construct the composition on-the-fly— i.e., during the verification phase—, in
which the composition of hybrid automata H1 and H2 can be defined in terms of
synchronized or interleaved regions of the regions produced from run of both H1

and H2. As a result of the composition procedure, compound regions are con-
structed, which consist of a conjunction of a region Γ1 = 〈q1, V1, T 〉 from H1 and
another region Γ2 = 〈q2, V2, T 〉 from H2. Therefore, each compound region takes
the form Λ = 〈(q1, V1), (q2, V2), T 〉 (shortly written as Λ = 〈Γ1,Γ2, T 〉), which
represents the reached region at both control locations q1 and q2 the during a
time interval T .

Definition 12 (Composed Run) A run of composed automata is the se-
quence

∑
H1◦H2

= Λ0, a1,Λ1, a2, ... of compound regions, where a transition
between compound regions Λ1 = 〈Γ1, γ1, T1〉 and Λ2 = 〈Γ2, γ2, T2〉 (written as
Λ1

a
−→
t

Λ2) is enabled, if one of the following holds:

– a ∈ EventH1
∩ EventH2

is a joint event, Γ1
a
−→
t

Γ2, and γ1
a
−→
t

γ2. In this

case , we say that the region Γ1 is synchronized with the region γ1.
– a ∈ EventH1

\ EventH2
(respectively a ∈ EventH2

\ EventH1
), Γ1

a
−→
t

Γ2

and γ1 → γ2, such that both γ1 and γ2 have the same control location—i.e.
they relate to each other using a continuous transition.

3 Region Computation Tree Logic (RCTL)

This section primarily focuses on the definition of the region computation tree
logic (RCTL), which extends the qualitative temporal logic of CTL with time
on states, events, and constraints of variables. RCTL combines, in the same
level of specifications, qualitative together with quantitative requirements. The
formulas of RCTL are interpreted over the possible regions obtained from the
run of hybrid automata. As described previously, a region can be seen as a
sequence of states separated by transition points. Each transition point marks

147



the instantaneous exit from region Γi−1 and the entrance into region Γi, and
corresponds to the occurrence of a particular event. Therefore, we see regions
constituting the essence of RCTL, such that RCTL can be viewed as a state based
quantitative temporal logics in a sense that regions capture the changes of states,
and as event based quantitative temporal logics in a sense that events mark the
instantaneous exist from region to another. Thus, RCTL brings together, in the
same framework, the advantages of both approaches. In the following we show
the syntax and semantics of RCTL, but first we define timed variables and its
valuation function.

Definition 13 (Timed-variables) Let T be a set of non-negative real vari-
ables called timed-variables, and Φ(T) be a set of linear constraints over T. The
valuation ξ of the timed-variables T is a function ξ : T → R≥0. Given π ∈ Φ(T),
we write ξ |= π, if ξ satisfies the constraint π.

3.1 Syntax of RCTL

Let X be a set of real variables, T be a set of non-negative real variables disjoint
from X, Φ(X) and Φ(T) be two sets of linear constraints with free variables from
X and T respectively, L be a set of atomic propositions denoting the locations,
and Event be a set of atomic propositions denoting events disjoint from L.

Definition 14 (Formulas of RCTL) The formula Ψ of RCTL are inductively
defined as

Ψ ::= p | a | φ | y.Ψ | π | ¬Ψ | Ψ1 ∧ Ψ2 | ∃(Ψ1UΨ2)| ∀(Ψ1UΨ2)

for y ∈ T, p ∈ L, a ∈ Event, φ ∈ Φ(X), π ∈ Φ(T), and Ψ1, Ψ2 are RCTL
formulas.

Before giving the semantics of RCTL, we introduce some common notations.
∃♦Ψ is equivalent to ∃(true UΨ), ∀♦Ψ is eqivalent to ∀(true UΨ), ∃♦Ψ is
equivalent to ∃(true UΨ), and ∀♦Ψ is equivalent to ∀(true UΨ)

3.2 Semantics of RCTL

We will interpret the formulas of RCTL over the set of all possible regions
generated from possible runs of hybrid automata. Let a region Γ take the form
Γ = (q, V, T ), with δ(Γ ) = q is its location, and V and T are the interval of
valuations and time respectively, in which the region is admissible. If there is
a transition from a region Γ1 to a region Γ2, then an event a occurs at some
timing point t, written as Γ1

a
−→
t

Γ2. A sub-region β ⊆ Γ , with β '= ∅ means that

β = (q, V
′

, T
′

) with T
′

⊆ T and V
′

⊆ V . A state σ ∈ Γ means that σ = (q, v, t),
with v ∈ V and t ∈ T . σ satisfies a constraint φ ∈ Φ(X), written as σ |= ϕ, iff
v |= ϕ. In the following, we show the semantics of RCTL formulas on the set of
all possible runs ΠH .

148



Definition 15 (Semantics) Let Ψ is a RCTL formula, H be a hybrid automa-
ton, ΠH be the possible runs of H with a region Γ = (q, V, T ) ∈ ΠH , and ξ is

a valuation function of timed-variables. The satisfaction relation 〈ΠH ,Γ 〉
T

!
ξ
Ψ ,

which means that Ψ is satisfied in the region Γ within the time interval (duration)
T for some valuation function ξ, is defined inductively as follows:

- 〈ΠH ,Γ 〉
T

!
ξ

p iff p = δ(Γ ).

- 〈ΠH ,Γ 〉
T

!
ξ

a iff there is t′ ∈ T with Γ
a
−→
t′

Γ ′.

- 〈ΠH ,Γ 〉
T

!
ξ
φ iff there is β ⊆ Γ , for each σk ∈ β,σk ! φ.

- 〈ΠH ,Γ 〉
T

!
ξ

y.Ψ iff there is t ∈ T such that ξ(y) = t and 〈ΠH ,Γ 〉
T :=t

!
ξ

Ψ .

- 〈ΠH ,Γ 〉
T

!
ξ
π iff ξ ! π.

- 〈ΠH ,Γ 〉
T

!
ξ
¬Ψ iff 〈ΠH ,Γ 〉

T

!
ξ
Ψ .

- 〈ΠH ,Γ 〉
T

!
ξ
Ψ1 ∧ Ψ2 iff 〈ΠH ,Γ 〉

T

!
ξ
Ψ1 and (ΠH ,Γ )

T

!
ξ
Ψ2.

- 〈ΠH ,Γ 〉
T

!
ξ
∃(Ψ1UΨ2) iff there is a run Π ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ=Γ0,

for some j ≥ 0, 〈ΠH ,Γj〉
Tj

!
ξ

Ψ2, and 〈ΠH ,Γk〉
Tk

!
ξ

Ψ1 for 0 ≤ k < j.

- 〈ΠH ,Γ 〉
T

!
ξ
∀(Ψ1UΨ2) iff for every run Π ∈ ΠH ,Π = Γ0,Γ1, · · · , with Γ=Γ0,

for some j ≥ 0, 〈ΠH ,Γj〉
Tj

!
ξ

Ψ2, and 〈ΠH ,Γk〉
Tk

!
ξ

Ψ1 for 0 ≤ k < j.

The quantifiers ∀, and ∃, in the previous semantics, are called paths quantifiers.
The variable y in the formula y.Ψ holds the time at which Ψ is satisfied. y := t

means that the variable y is set to the value t. 〈ΠH ,Γ 〉
T :=t

!
ξ

Ψ means that the

formula Ψ is satisfied in the region Γ when the time T is restricted to the time
point t. In case Ψ represents an atomic proposition from the set Events, then
y.Ψ binds the time at which the event has occurred. This can be used to specify
various quantitative properties, such as time bound response properties as we
will see in what follows. However, if Ψ represents a constraint formula, then y.Ψ
evaluates the time interval at which the constraint Ψ is satisfied. This allows to
specify quantitative properties, which could not be specified using events.

Definition 16 (Satisfiability) Let H be hybrid automaton with initial state
init and ΠH as its possible runs. We say that H satisfies the RCTL formula
Ψ from init, written as (H, init) ! Ψ , iff (ΠH ,Γ0) ! Ψ , where Γ0 is the initial
region of ΠH .

149



4 Model Checking as Reachability

For the purpose of verification by means of model checking, we need to de-
scribe the properties. Generally, the qualitative properties are often classified
into reachability, safety and liveness properties. However, when the time be-
comes a critical factor to react in the environment, then the concept of safety
and liveness properties should be refined. In what follows these types of proper-
ties will be reviewed with their specifications by means of RCTL. For the purpose
of model checking, these properties will be encoded into suitable queries in Con-
straint logic program (CLP), which follow the outline of CLP model presented in
[27]. However, in order to put model checking within our framework, we will con-
centrate only the reachability requirements. Indeed, many properties of interest
can be specified as a form of reachability, as we will see in the sequel.

4.1 Reachability Requirements

The reachability of a property Ψ means that there is a possibility to reach a
state where Ψ holds. In other words, the reachability of the property Ψ asserts
that starting from an initial state, is there a region along a run in which Ψ is sat-
isfiable. This can be specified in RCTL as follows init → ∃♦Ψ , where init is the
predicate characterizing the set of initial states and is defined as conjunctions of
atomic propositions from L and constraints from Φ(X). It is worth mentioning
that checking reachability for hybrid automata is generally undecidable. How-
ever, under various constraints of hybrid automata the reachability is decidable.
In particular, the decidability result has been proven for for certain classes of
hybrid automata including timed and initialized rectangular automata [20].

In terms of the CLP, the reachability of a certain region that satisfies the
formula Ψ is done by performing forward reachability analysis from the system’s
initial state, and then checking whether the conjunction of Ψ with the possible
reached regions is satisfied. Assuming for example init has been assigned to
the set of initial states, the following is the CLP query to check the safety
requirements (see [27] for a concrete example).

?- reachable(init,Reached),
member(Ψ1,Reached),φ.

In the previous query, the formula Ψ is rewritten as a conjunction of two formulas
Ψ1 and φ, where φ ∈ (Φ(X) ∪Φ(T)) is an atomic the constraint appearing in the
formula Ψ . Indeed, any RCTL formula can be rewritten as Ψ = Ψ1∧φ, if necessary
φ can be set to true making that conjuct trivial.

A safety property states that something bad must never happen. The bad
thing represents a critical property that should never occur. Let Ψ represent this
critical property, then the safety property is specified as init :→ ∀"¬Ψ . A safety
property can be reduced to a reachability property, which can be specified as

150



init :→ ¬∃♦Ψ . The previous specification asserts that after executing the initial
state init, the requirement characterized by Ψ will not be reached.

init :→ ¬∃♦Ψ.

It is often that in certain cases we may be interested in the reachability of a
certain property either before or after a time deadline has expired called Time
bounded reachability. For example, the possibility of a formula Ψ to be reached
within the bounded time α is specified in RCTL as init → ∃♦ (t.Ψ ∧ t ≤ α).

4.2 Quantitative Requirements

As it is known that a safety property asserts what may or may not occur, but do
not require that anything ever does happen. In the train gate example described
in [27], closing the gate permanently can maintain the safety of the system, but
it is unacceptable for the waiting cars or pedestrians in front of the gate. For
this reason, the liveness property is needed to specify such requirements, which
asserts that some property of interest will always occur. It should be noted that
these type of properties can not be falsified in bounded time. Since the occurrence
of some state does not say how long it will take for this state to occur, we can
not sure that the liveness property is violated. For this reason, these types of
properties are not strong enough in the context of quantitative time properties.
Here one would like to see a time bound when the good state occurs. This leads
to the next kind of properties.

Bounded Response Properties A bounded response property is one of the
most important classes of quantitative requirements used to specify many im-
portant applications. It asserts that something will happen within a certain limit
of time. A typical application of bounded response property is the specification
of worst case performance; that is the specification of an upper bound α on the
termination of a system S: if started at time t, then S is guaranteed to reach
a final state no later than α + t unit time. For example, specifying that every
request will be acknowledged within 3 seconds in communication protocols.

A bounded response property between two events event1 and event2 is speci-
fied in RCTL as the formula init → ∀"(t1.event1 → ∀♦(t2.event2∧t2 ≤ α+t1)).
This formula states that whenever there is a request event1 occurs at time t1,
then it is followed by a response event2, at time t2, such that t2 is at most α+t1.

It should be mentioned that this property can be falsified within time bound.
Therefore this property can be specified as a kind of safety requirement repre-
sented as reachability. For this reason, proving the previous property means
proving that it is not possible to reach a state where event2 is not reached
from event1 within t2 ≤ α + t1. In other words, starting from event1, finding a
reachable state satisfies event2, within α time bound, is sufficient to check the
reachability of the property. In terms of the CLP, the previous property can be
encoded into the following steps: First, we get all possible reachable states from
event1 within t1 + α as L. Second, we check that reachability of event2 has not

151



been occurred. A positive answer of the reachability indicates a negative answer
to the original problem, and vice versa. The following is a CLP query encoding
the previous specification:

?- reachable(Ψ0,Reached),
reached_from(L,event1,Reached),

reached_within(Target, α,L),
\+ member((_,..,_,event2),Target)

We should say that the traditional way to verify this kind of properties using
any quantitative time model- checkers—like UPPAAL [10] and Hytech [21]–is
to translate that property to what is called a testing automata A, and then
check whether the parallel composition of the underlying model together with
A can reach a designated violation state. As we said earlier, the reason behind
this translation is that there is no direct use of events in the model. The use
of events is limited to construct only the parallel composition of automata. In
contrast to our adopted approach, the direct use of events with the model allows
us to avoid this translation process.

Specifying quantitative properties by means of time of events are not satis-
factory in some cases. Suppose for example that one needs to specify that a part
of a certain region can be reached in a particular time bound interval. To do so,
we present the bounded invariance properties.

Bounded invariance Properties Like the bounded response property,
bounded invariance property is one of the most important classes of quantitative
timing requirements. It asserts that once an event has been triggered, a certain
condition will continuously hold for a certain amount of time. It is often used to
specify that something will not happen for a certain period of time. In RCTL
this can be specified formally as init → ∀"(t1.event → ∀"(t2.Ψ ∧ t2 ≤ α + t1)),
where α is the duration at which the formula Ψ must be continuously held.

The bounded invariance property can be checked as a safety property. Start-
ing from the time t1 of the occurence of event , finding a non-reachable violating
state for the formula Ψ , within α time bound is sufficient to check the reachability
of the property. This can be encoded into CLP as the following

?- reachable(Ψ0,Reached),

reached_from(L,event,Reached),
reached_within(Target, α,L),
member((_,..,X,_,Target), X$≤100.

A satisfactory solution to the previous query violates the original property.
The way used to specify the bounded invariance properties can be used to

specify what is the so-called minimal event separation [19] too, i.e no event2 can
occur earlier than α time units after an occurrence of event1. This property can
be specified as

init → ∀"(t1.event1 → ∀"(t2 < t1 + α → ¬t2.event2)).

152



5 Conclusion and Related Work

This paper introduced the quantitative temporal logic RCTL that extends the
well known temporal logic CTL in order to reason about those qualitative and
quantitative properties of MAS that occurs as a result of performing continuous
actions over time. We used hybrid automata as interpretation model of RCTL.
The formulas of RCTL are interpreted on the possible regions produced form the
run of hybrid automata. With regions, RCTL combines the expressive power of
both state based and event based quantitative temporal logics, which have been
proposed already to extend the qualitative temporal logics. The paper showed
how to specify and reason about important properties that can be automatically
verified by means of reachability analysis. Furthermore, the paper showed how
to encode these properties into suitable queries implemented with constraints
logic programming.

Reasoning about MAS by means of hybrid automata or timed automata have
been approached by several works, for example [12, 13, 15, 26, 23]. These works,
however, provide no mean to reason about the quantitative properties in terms
of any quantitative temporal logic.

There exist several quantitative temporal logics that can be used to reason
about MAS. One can distinguish those temporal logics based on various parame-
ters including the type of computational models; that is linear or computational
view of time, the type of accessibility of time; that is whether the time is im-
plicit or explicit in the temporal logics. We classify those works into event or
based approach. Examples, of those works, which follow the event based ap-
proach, are are Timed Propositional Temporal Logic (TPTL) [5], and Explicit
Clock Temporal Logic [17, 31, 29] for linear time logics, and Real-Time Computa-
tion Tree Logic (RTCTL) [14] for computation tree time logic. Examples of state
based logics are Metric Temporal logic (MTL) [25] and Metric Interval Temporal
Logic (MITL)[3] for linear time with dense semantics, and Timed Computation
Tree Logic (TCTL) [1], and Integrator Computation Tree Logic (ICTL) [6] for
computation tree time. The proposed RCTL in this paper tries to combine the
expressiveness of both approaches

The idea of combining event based and state based approach is certainly not
new. Several works, like [11, 24], motivated their approach by arguing, as we do,
that pure state-based or event-based formalisms lack expressiveness in important
respects. These works however do not take in consideration the quantitative
aspects systems.

As ongoing works, we are currently investigating the complexity of RCTL.
We will study the undecidability result of RCTL and try to provide fragments
of RCTL which are decidable.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inf.
Comput., 104(1):2–34, 1993.

153



2. R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J.
ACM, 43(1):116–146, 1996.

4. R. Alur and T. Henzinger. Logics and models of real time: A survey. Real Time:
Theory in Practice, Lecture Notes in Computer Science, 600:74–106, 1992.

5. R. Alur and T. Henzinger. A really temporal logic. Journal of the ACM (JACM),
41(1):203, 1994.

6. R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embed-
ded systems. IEEE Transactions on Software Engineering, 22(3):181–201, 1996.

7. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116(1-2):123 – 191, 2000.

8. P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specifi-
cation. ACM Comput. Surv., 32(1):12–42, 2000.

9. M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching time. Acta
Informatica, 20(3):207–226, 1983.

10. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal—a tool
suite for automatic verification of real-time systems. In Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verification and control, pages
232–243, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

11. S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and N. Sinha. Concurrent software
verification with states, events, and deadlocks. Formal Aspects of Computing,
17:461–483, 2005. 10.1007/s00165-005-0071-z.

12. M. Egerstedt. Behavior Based Robotics Using Hybrid Automata. LECTURE
NOTES IN COMPUTER SCIENCE, pages 103–116, 2000.

13. A. El Fallah-Seghrouchni, I. Degirmenciyan-Cartault, and F. Marc. Framework
for Multi-agent Planning Based on Hybrid Automata. LECTURE NOTES IN
COMPUTER SCIENCE, pages 226–235, 2003.

14. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. Real-Time Syst., 4(4):331–352, 1992.

15. U. Furbach, J. Murray, F. Schmidsberger, and F. Stolzenburg. Hybrid multia-
gent systems with timed synchronization – specification and model checking. In
M. Dastani, A. El Fallah Seghrouchni, A. Ricci, and M. Winikoff, editors, Post-
Proceedings of 5th International Workshop on Programming Multi-Agent Systems
at 6th International Joint Conference on Autonomous Agents & Multi-Agent Sys-
tems, LNAI 4908, pages 205–220. Springer, 2008.

16. F. Giunchiglia and P. Traverso. Planning as Model Checking. LECTURE NOTES
IN COMPUTER SCIENCE, pages 1–20, 2000.

17. E. Harel, O. Lichtenstein, and A. Pnueli. Explicit clock temporal logic. In Pro-
ceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, 4-7 June
1990, Philadelphia, Pennsylvania, USA, pages 402–413. IEEE Computer Society,
1990.

18. T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278–292, New Brunswick, NJ,
1996. IEEE Computer Society Press.

19. T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In Proceed-
ings of International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 1019, pages 41–71. Springer, Berlin,
Heidelberg, New York, 1995.

20. T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about Hybrid
Automata? Journal of Computer and System Sciences, 57(1):94–124, 1998.

154



21. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In CAV ’97: Proceedings of the 9th International Conference on Computer
Aided Verification, pages 460–463, London, UK, 1997. Springer-Verlag.

22. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent program-
ming with temporally extended goals. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS
’09, pages 137–144, Richland, SC, 2009. International Foundation for Autonomous
Agents and Multiagent Systems.

23. G. Hutzler, H. Klaudel, and D. Y. Wang. Towards timed automata and multi-agent
systems. In Formal Approaches to Agent-Based Systems, Third InternationalWork-
shop, FAABS 2004, Greenbelt, MD, USA, April 26-27, 2004, Revised Selected Pa-
pers, volume 3228 of Lecture Notes in Computer Science, pages 161–172. Springer,
2005.

24. E. Kindler and T. Vesper. Estl: A temporal logic for events and states. In Pro-
ceedings of the 19th International Conference on Application and Theory of Petri
Nets, ICATPN ’98, pages 365–384, London, UK, 1998. Springer-Verlag.

25. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

26. A. Mohammed and U. Furbach. Modeling multi-agent logistic process system us-
ing hybrid automata. In U. Ultes-Nitsche, D. Moldt, and J. C. Augusto, editors,
In Proceedings of the 7th International Workshop on Modelling, Simulation, Veri-
fication and Validation of Enterprise Information Systems, MSVVEIS 2008, pages
141–149, Barcelona, Spain, 2008. INSTICC PRESS. Held in conjunction with 10th
International Conference on Enterprise Information Systems (ICEIS 2008).

27. A. Mohammed and U. Furbach. Multi-agent systems: Modeling and verification
using hybrid automata. In J.-P. B. Lars Braubach and J. Thangarajah, editors,
Programming Multi-Agent Systems:7th International Workshop,ProMAS2009, Bu-
dapest, Hungary, May 2009, Revised Selected Papers, LNAI 5919, pages 49–66.
Springer, Berlin, Heidelberg, 2010.

28. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

29. J. Ostroff and W. Wonham. A framework for real-time discrete event control.
IEEE Transactions on Automatic Control, 35(4):386–397, 1990.

30. A. Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46–57, 1977.

31. A. Pnueli and E. Harel. Applications of temporal logic to the specification of real-
time systems. In Systems, Proceedings of a Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, pages 84–98, London, UK, 1988. Springer-
Verlag.

32. C. Schwarz, A. Mohammed, and F. Stolzenburg. A tool environment for specifying
and verifying multi-agent systems. In J. Filipe, A. Fred, and B. Sharp, editors, Pro-
ceedings of the 2nd International Conference on Agents and Artificial Intelligence,
volume 2, pages 323–326. INSTICC Press, 2010.

33. J. Van Benthem and A. ter Meulen, editors. Handbook of Logic and language.
Elsevier, 1997.

34. S. Yovine. Kronos: A verification tool for real-time systems. International Journal
on Software Tools for Technology Transfer (STTT), 1(1):123–133, 1997.

155





State Space Reduction for
Model Checking Agent Programs

Sung-Shik T.Q. Jongmans1, Koen V. Hindriks2, and M. Birna van Riemsdijk2

1 Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
2 Delft University of Technology, Delft, the Netherlands

Abstract. State space reduction techniques have been developed to in-
crease the efficiency of model checking in the context of imperative pro-
gramming languages. Unfortunately, these techniques cannot straightfor-
wardly be applied to agents: the nature of states in the two programming
paradigms differs too much for this to be possible. To resolve this, we
adapt core definitions on which existing reduction algorithms are based to
agents. Moreover, the framework that we introduce is such that different
reduction algorithms can be defined in terms of the same relations. This
is beneficial because it enables the reuse of code and reduces computation
time when different techniques are used simultaneously. Specifically, we
adapt and combine two known techniques: property-based slicing and
partial order reduction. We exemplify our work with the Goal agent
programming language, and implement the theory that we present for
Goal. Several experiments with this implementation show that perfor-
mance is in line with known results from traditional model checking.

1 Introduction

Model checking techniques for the verification of programs have traditionally
been developed in the context of imperative programming languages (IPL).
Ideally, for model checking programs written in agent programming languages
(APL), one would take the technology and tools developed for IPLs, and ap-
ply them to agent programs without too much alteration. Unfortunately, this is
sometimes an inefficient solution, and sometimes even impossible:

inefficient — In [11], we show that it can be beneficial to develop new model
checkers tailored to the verification of an APL rather than reusing existing
tools for agent verification. The reason is that APL-tailored model checkers
can reuse the APL’s standard interpreter for fast generation of states. Con-
sequently, there is no need to encode the agent program to lower-level code
serving as input to an existing tool, which typically blows up the state space.

impossible — In this paper, we argue that state space reduction techniques,3
henceforth simply reduction techniques, known from traditional model check-

3 State space reduction techniques combat the state space explosion problem (common
to both IPL and APL model checking). This is the problem that systems to be
verified are typically huge in terms of their state space, rendering model checking such
systems often beyond our reach: it takes too many resources to finish verification.

157



ing cannot be applied directly in an agent context. The reason is that (de-
pendencies between) states and transitions in the transition system of an
imperative program differ fundamentally from those of an agent program.

Our main contribution is the redefinition, for agents, of concepts at the heart
of existing reduction algorithms with a novel framework that brings together
different techniques in a unifying way: we show that both property-based slicing
(PBS) and partial order reduction (POR) can be defined in terms of the same
relations using our framework. This enables a shared code base and runtime
synergy: computations carried out for one algorithm can be reused by the other.
We use the Goal agent language [6] as running example throughout the paper.

The remainder is organised as follows. Section 2 provides background on
model checking and Goal. In Sect. 3, we argue why existing reduction techniques
cannot straightforwardly be applied to agents, and introduce our framework. In
Sect. 4, we define PBS and POR algorithms in terms of this framework. Section 5
discusses our implementation. Finally, Sect. 6 discusses related work with respect
to reduction techniques in agent verification, and concludes the paper.

2 Preliminaries

Model checking Model checking [4] is a technique for automatically estab-
lishing whether a program P satisfies a property ϕ. Usually, ϕ is expressed in
a temporal logic, a formalism for describing change over time. In this paper, we
consider linear temporal logic (LTL) [4]. An LTL formula, denoted by φ or ϕ (if
ϕ is a property to be model checked), is built from a set of propositions P, the
boolean connectives, and the temporal operators © (next), U (weak until), and
R (strong release). We denote the set of all LTL formulas by L. An LTL formula
is interpreted over an infinite sequence of states, which we call a computation,
denoted by π. Let i ≥ 0 be an index of π, and let |= be LTL’s entailment relation.
Purely propositional (sub)formulas are interpreted with respect to the i-th state
on π, denoted by πi, using a valuation function V. Such a function maps a state
to the set of propositions in P that are true in it. Temporal (sub)formulas are
interpreted with respect to the (infinite) postfix of π starting in the i-th state:

π, i |= © φ iff π, i + 1 |= φ
π, i |= φ U φ′ iff ∃k≥i(π, k |= φ′ and ∀i≤j<k(π, j |= φ))
π, i |= φR φ′ iff π, i |= ¬(¬φ U¬φ′) (note that R is the dual of U)

In model checking, the program P is represented by its transition system
T = 〈M,µ0,−→〉 in which M is a finite set of states, µ0 ∈ M is the initial state,
and −→ ⊆ M ×M is a transition relation connecting states. A path π through T
is an infinite sequence of states π0π1 · · · such that for all i ≥ 0: πi,πi+1 ∈ M and
πi −→ πi+1. A computation π of P is a path through its transition system that
starts in µ0, i.e. π0 = µ0. We denote the set of all computations of P by Π. The
model checking problem for P and ϕ, given a valuation function V, can now be
formulated more formally as follows: determine for all π ∈ Π whether π, 0 |= ϕ.

158



In that case, we say that P satisfies ϕ. Otherwise, if there exists a π ∈ Π such
that π, 0 |= ¬ϕ, P is said to violate ϕ, and π is called a counterexample.

Various approaches to model checking exist. In this paper, we assume NDFS
explicit-state automata-theoretic LTL model checking [4], because the implemen-
tation we discuss in Sect. 5 extends [11] in which this approach is also taken.4 In
this approach, every π ∈ Π is checked for satisfaction of ¬ϕ in negation normal
form (NNF). If such a computation is found, the model checker immediately
halts, and reports it as a counterexample. Otherwise, the model checker termi-
nates after investigating all computations, reporting that ¬ϕ is not satisfied by
any computation, i.e. ϕ is satisfied by all computations. Thus, instead of deter-
mining if all computations satisfy ϕ, in fact one determines whether there exists
a counterexample. Henceforth, we assume all LTL formulas in NNF.

An important optimisation that the sketched approach allows for is on-the-
fly exploration: the transition system of the program under investigation is gen-
erated during execution of the model checking algorithm instead of before it.
Consequently, if a counterexample is quickly found and the model checker ter-
minates, no resources have been spent on the generation of parts of the transition
system whose inspection has turned out unnecessary. Importantly, the reduction
algorithms discussed next are compatible with on-the-fly model checking.

GOAL The Goal agent programming language [6] facilitates programming
of rational agents (i.e. agents that pursue their goals) at the cognitive level:
agents choose their actions by reasoning about their beliefs and goals, which
are expressed in some knowledge representation language LX (e.g. Prolog). The
beliefs that a Goal agent has at some point in time are stored in its belief base,
denoted by Σ. Similarly, the goals of a Goal agent are stored in its goal base,
denoted by Γ . Goals are declarative: they specify what the desired state of the
world is instead of how this state may be brought about. Together, the belief
and goal base of an agent constitute its mental state, denoted by µ = 〈Σ,Γ 〉.5

A Goal agent derives its choice of action from its mental state, hence it needs
a mechanism to inspect it. To this end, agents evaluate mental state conditions
(MSC). An MSC, denoted by ψ, is a boolean expression about the beliefs and
goals of an agent, according to the following syntax:

χ ::= any well-formed formula from LX

ψ ::= bel(χ) | goal(χ) | ¬ψ | ψ ∧ ψ

The semantics of MSCs is defined by the entailment relation |=
ms

[6]. Informally,
if µ is a mental state then µ |=

ms
bel(χ) is true if χ is believed by the agent;

4 Another well-known approach is symbolic model checking using binary decision di-
agrams (BDD) [4, 13]. This approach is based on an abstraction technique different
from the techniques discussed here and is out of scope of this work.

5 Although we do not discuss knowledge, our implementation is able to deal with this;
in contrast, modules [6], percepts, and beliefs about dynamic environments that
evolve independently of the agent’s acting are at present beyond our scope.

159



similarly, µ |=
ms

goal(χ) is true if χ is a goal of the agent. The set of all MSCs,
denoted by Lms, is called the language of mental state conditions.

MSCs are used in the definition of action rules. An action rule, denoted by
ρ, is a statement of the form if ψ then α in which α is an action. An action
rule may be read as “if ψ is true, then the agent may consider performing α”. In
that case, the action rule is said to be applicable. The effects that performance
of an action have on the mental state of an agent are formalised by the mental
state transformer, denoted by M. The mental state transformer maps an action
and a mental state to a successor mental state. M need not be defined for all
mental state–action pairs 〈µ,α〉: if M is undefined for µ and α, this means that
α cannot be performed in µ. A precise definition of M is given in [6].

Let µ be a mental state, and let ρ = if ψ then α be an action rule. If ρ is
applicable in µ (i.e. µ |=

ms
ψ) and M(α, µ) is defined, then α is called an option

in µ. During each reasoning cycle, a Goal agent determines its options given
its current mental state and set of action rules, and chooses and performs one of
them non-deterministically. This is formalised by an operational semantics. Let
if ψ then α be an action rule, and let µ be a mental state. Then, the transition
relation −→ is the smallest relation induced by the following transition rule:

µ |=
ms
ψ M(α, µ) is defined

µ −→ M(α, µ)

The transition relation −→ is subsequently used to define the transition system
T = 〈M, µ0,−→〉 of a Goal agent, in which we assume that M is a finite6 set
of mental states and that µ0 is the initial mental state of the agent.

Example 1. The source code and transition system of a simple example Goal
agent, whose task is to put on two socks, appears in Fig. 1. We use this agent,
called socksAgent, as a running example throughout this paper.

For model checking Goal agents, we instantiate the set of LTL propositions
P with the language of mental state conditions Lms. The valuation function V
in this case maps every mental state µ to the MSCs that are true in it, i.e.
V(µ) = {ψ ∈ Lms | µ |=

ms
ψ}. This allows us to formulate and verify properties

about the evolution of beliefs and goals of a Goal agent during its execution.
A final remark on terminology. Although we illustrate our techniques with

Goal, they can be applied to other agent languages as well. Therefore, when we
write “mental state” in what follows, we do not refer exclusively to a state of a
Goal agent, but rather to a state of an agent written in some BDI-based APL.

3 Operations on Mental States

The aim of reduction techniques is to remove sets of transitions from the tran-
sition system that do not affect the truth value of the property under investiga-
tion. In our framework, we identify such sets of transitions by classifying them
6 Finiteness is not imposed by Goal, but a model checking termination requirement.

160



1. main: socksAgent{
2. beliefs{
3. bothSocksOn :- wearing(sock,left),
4. wearing(sock,right).
5. }
6. goals{
7. wearing(sock,left).
8. wearing(sock,right).
9. }

10. program{
11. if goal(wearing(sock,left))
12. then putOn(sock,left).
13. %
14. if goal(wearing(sock,right))
15. then putOn(sock,right).
16. }
17. action-specs{
18. putOn(S,X){
19. pre{ not(wearing(S,X)) }
20. post{ wearing(S,X) }
21. } } }

µ0 µ1

µ2 µ3

t0

t1t2

t3

µ0 =

fi
∅ ,


wearing(sock,left),
wearing(sock,right)

fffl

µ1 =

fi
{wearing(sock,left)} ,
{wearing(sock,right)}

fl

µ2 =

fi
{wearing(sock,right)} ,
{wearing(sock,left)}

fl

µ0 =

fi
wearing(sock,left),
wearing(sock,right)

ff
, ∅
fl

Fig. 1. Example agent. On the left, its source code; on the right, its transition system.

in terms of operations. Informally, we may think of an operation, denoted by τ ,
as a function that transforms states µ to other states µ′. In that case, τ is said
to be applied to µ. More specifically, we characterise an operation in terms of
the changes that it brings about, and the statement in the source code from
which it can be induced. Below, let T = 〈M, µ0,−→〉 be the transition system
of some agent program P , and let t = 〈µ, µ′〉 ∈ −→ be a transition.

changes — Grouping individual transitions in T according to the changes that
they bring about enables us to express that the order in which two operations
can be applied is without consequence (relevant in POR). To formalise this
notion, let Ch(t) denote the change between µ and µ′.

statement — Characterising operations by statements allows us to remove
sets of transitions from T by deleting statements from P ’s source code. This
enables us, for instance, to reduce T by performing static analysis of the
program text alone (relevant in PBS). To formalise this notion, let St(t)
denote the set of statements in P ’s source code from which t can be induced.

Example 2. In case of Goal, Ch(t) denotes the beliefs and goals to be added
and deleted to get from µ to µ′, and St(t) denotes the action rules that induce t.
Applied, for instance, to transition t0 = 〈µ0, µ1〉 of socksAgent in Fig. 1 yields:
Ch(t0) = 〈Σ + {wearing(sock,left)}− ∅,Γ + ∅ − {wearing(sock,left))}〉
and St(t0) = {if goal(wearing(sock,left)) then putOn(sock,left)}.

We now define an operation τ formally.

Definition 1. An operation is a pair τ = 〈T, s〉 in which s is a statement and
T ⊆ −→ is the largest set such that for all t, t′ ∈ T : Ch(t) = Ch(t′) and s ∈ St(t).

161



Example 3. We identify the following operations of socksAgent in Fig. 1:

τ0 = 〈{t0, t3 }, if goal(wearing(sock,left)) then putOn(sock,left)〉
τ1 = 〈{t1, t2 }, if goal(wearing(sock,right)) then putOn(sock,right)〉

We use the following notation and definitions. The set of all possible operations
is denoted by Ωτ . If τ = 〈T, s〉 is an operation, then we use Tran(τ) and Stat(τ)
as a shorthand for, respectively, T and s. We call Stat(τ) the statement that
induces τ , and say that τ is enabled in a state µ if there exists a µ′ such that
〈µ, µ′〉 ∈ Tran(τ); we write τ(µ) as a shorthand for µ′. The set of all enabled
operations in µ is denoted by En(µ), i.e. En(µ) = {τ ∈ Ωτ | τ is enabled in µ}.
The set of all operations Ops(s) that a statement s can induce is called its
operation class, defined as Ops(s) = {τ ∈ Ωτ | Stat(τ) = s}. Finally, for brevity,
we write Ch(τ) to denote the change brought about by any t ∈ Tran(τ), and
write Ch(s) to denote the set at least having

⋃
τ∈Ops(s) Ch(τ) as a subset.

3.1 Variable Assignments versus Mental States

State space reduction techniques have originally been developed for use with
transition systems whose states are characterised by variables and their values,
henceforth called variable assignment. By carefully analysing which variables
change by applying operations on states (i.e. when moving from one state to the
next), relations on operations essential to the application of reduction algorithms
can be computed. For instance, one can determine whether enabledness of an
operation τ ′ is affected by the application of an operation τ , by comparing the
variables that τ mutates and τ ′ accesses. We call the sets of variables an operation
τ accesses and mutates its read set, denoted by Read(τ), and its write set, denoted
by Write(τ), respectively. These sets are not used only for determining whether
enabledness of operations depends on the application of (other) operations, but
also to determine if the application of an operation influences the truth value of
LTL formulas. Importantly, analyses based on read and write sets can be done
by inspection of the source code alone: the read and write set of an operation τ
can be determined straightforwardly by inspecting the variables occurring in the
statement that induces τ , i.e. Stat(τ). This is of great value, because it allows for
off-line computation of (most of the) reduction algorithms, meaning that their
computation does not depend on information that is available only during model
checking, and reducing their overhead at runtime to a minimum as a result.

Example 4. Suppose two operations τ, τ ′ ∈ Ωτ such that Stat(τ) = [x := x +
1] and Stat(τ ′) = [y := z + 42] are enabled simultaneously in some variable
assignment ν, e.g. because they belong to different concurrent processes (and
x, y, z are shared variables). Then: Read(τ) = Write(τ) = {x} and Read(τ ′) = {z}
and Write(τ ′) = {y}. Because Read(τ) ∩ Write(τ ′) = Write(τ) ∩ Read(τ ′) = ∅,
application of τ cannot cause τ ′ to become disabled and vice versa.

When model checking agent programs, however, states are not characterised by
variable–value pairs, but by mental attitudes, which are very different: how and

162



which mental attitudes change over time is not stated explicitly in the program
text, e.g. due to underspecification. We elaborate on this in Sect. 3.2. Hence, in
agent verification, we cannot use directly the analysis techniques known from
traditional model checking to compute the relations essential to the application
of reduction algorithms: the gap between variable assignments and mental states
need be bridged. Specifically, to be able to reuse existing reduction algorithms
for agents, we need to answer (in the next subsection) the following questions:

1. What are the elements constituting read and write sets when dealing with
mental states of agents, which are not composed of variable–value pairs?

2. Given a definition of read and write sets for mental states of agents, can we
still compute them off-line?

3.2 Read Sets and Write Sets for Mental States

Ad 1. We aim at a definition of read and write sets for mental states that
is sufficiently generic in the sense that these definitions should accommodate
multiple APLs. This is nontrivial, because mental states look different in each
APL, i.e. the mental attitudes constituting a mental state vary between different
languages. To this end, we introduce the notion of an APL-specific condition lan-
guage, denoted by LK , whose elements are conditions, denoted by κ. Informally,
the idea is that the read set of an operation τ contains those conditions that
must be true for τ to be enabled, while τ ’s write set contains those conditions
whose truth value changes due to application of τ . Thus, Read(τ) ⊆ LK and
Write(τ) ⊆ LK . The only requirement that LK must satisfy is that it should
have the set of propositions P as a subset, i.e. P ⊆ LK : this allows us to deter-
mine, by means of write set analysis, whether a transition can affect the truth
value of a property. Apart from that, LK can be tailored completely to the needs
of the APL.

Example 5. In the context of Goal, the condition language equals the language
of MSCs, i.e. LK = Lms (recall that P = Lms for Goal).

Next, to accommodate formal definitions, we assume an entailment relation |=K ,
relating (mental) states to conditions that are true in them, and a function I
mapping a mental state µ to the subset of LK that is true in µ, i.e. I(µ) = {κ ∈
LK | µ |=K κ}. Read and write sets are then defined formally as follows.

Definition 2. Let τ be an operation. Then:

Read(τ) = {κ ∈ LK | there exist states µ, µ′ s.t. τ ∈ En(µ), τ /∈ En(µ′)
and κ ∈ I(µ) and I(µ′) = I(µ)\{κ} }

Write+(τ) =
⋃
〈µ,µ′〉∈Tran(τ) I(µ′)\I(µ)

Write−(τ) =
⋃
〈µ,µ′〉∈Tran(τ) I(µ)\I(µ′)

Write(τ) = Write+(τ) ∪ Write−(τ)

We call Write+(τ) and Write−(τ) the positive and negative write sets of τ ;
Write(τ) is sometimes referred to as τ ’s total write set.

163



We use the distinction between positive and negative write sets in Sect. 3.3. The
distinction is important, because it allows us, for instance, to state that some
transition τ can enable a transition τ ′: in that case, the positive write set of τ
coincides with the read set of τ ′. Conversely, if τ ’s negative write set does not
coincide with the read set of τ ′, τ cannot disable τ ′. Note that “not disabling” is
different from “enabling”, and in general, Write+ and Write− are not each other’s
complement: LK \Write+(τ) 0= Write−(τ) and LK \Write−(τ) 0= Write+(τ).

Example 6. Consider operation τ0 of socksAgent, defined in Ex. 3. For conve-
nience, we restrict this example to the MSC set {goal(wearing(sock,left)),
goal(wearing(sock,right)), bel(bothSocksOn)} ⊂ Lms. Now, the positive
write set of τ0 equals {bel(bothSocksOn)}, while both its read set and nega-
tive write set equal {goal(wearing(sock,left))}. From this, we can deduce
that τ0 disables itself, while it has no effect on enabledness or disabledness of τ1.

Ad 2. As outlined in Sect. 3.1, off-line computation of read and write sets is
important, because it reduces the resource consumption of reduction algorithms
at runtime. For imperative programming languages, as shown in Ex. 4, this can
be done easily. Unfortunately, in case of agent programs, the situation is more
complex: conditions from LK often do not occur explicitly in the agent’s source
code, and cannot be simply extracted from it without further analysis.

Example 7. Consider the read and write sets of operation τ0 of socksAgent
given in Ex. 6. While τ0’s read set can be determined straightforwardly from
the action rule if goal(wearing(sock,left)) then putOn(sock,left), this
is not the case for its write set for two reasons. First, the removal of the goal
wearing(sock,left) occurs automatically due to Goal’s semantics, and is not
specified explicitly in the program text. Second, the derivation of bothSocksOn
using the Prolog rule in the belief base (see Fig. 1) cannot be detected by in-
spection of this action rule alone.

Switching to a more general perspective, we must deal with two issues when
computing read and write sets for Goal agents. First, not all beliefs and goals
that an operation adds or deletes can be derived from the source code of a
Goal agent, making it difficult to determine which MSCs incur a change of
truth value. Second, as changing the belief base by an operation also changes
the consequences that can be derived from Prolog rules, we need an algorithm to
approximate these. The issue is that this algorithm must run on only the source
code and that the content of the belief base at runtime is unknown.

Thus, we may need to derive read and write sets with more complex analysis
techniques. Unfortunately, it may be impossible to compute precise read and
write sets using the source code alone due to underspecification of the agent or
the occurrences of uninstantiated variables combined with Prolog-style reasoning
as sketched in the previous example. There are two ways to resolve these issues:
acquire sufficient information by generating the entire transition system, or use
approximation techniques. We prefer the latter, because the former is incompati-
ble with on-the-fly model checking. We stress that approximation is unnecessary

164



Table 1. Formal definition of relations on operations and statements.

Relation Precise (for operations τ, τ ′) Approximate (for statements s, s′)

Visibility Vis(τ, φ) iff Vis(s, φ) iff
Props(φ) ∩Write(τ) "= ∅ Props(φ) ∩Write(s) "= ∅

Enables Enables(τ, τ ′) iff Enables(s, s′) iff
Read(τ ′) ∩Write+(τ) "= ∅ Read(s′) ∩Write+(s) "= ∅

Independence Indep(τ, τ ′) iff Indep(s, s′) iff
Hen

Indep(τ, τ ′) and Hcomm
Indep (τ, τ ′) Hen

Indep(s, s′) and Hcomm
Indep (s, s′)

in an IPL context, because there, read and write sets can be obtained with
straightforward source code inspection.

The key property any approximation technique for read and write sets must
satisfy is that of over -approximation: to ensure that model checking with reduc-
tion algorithms yields the same results as without, approximate read and write
sets (denoted here in font) need to over-approximate the precise sets. Formally:

Property 1. Let s be a statement. For all τ ∈ Ops(s): Read(τ) ⊆ Read(s) and
Write+(τ) ⊆ Write+(s) and Write−(τ) ⊆ Write−(s) and Write(τ) ⊆ Write(s).

Intuitively, over-approximation of read and write sets is required because these
sets are used to determine dependencies between operations: the less dependen-
cies present, the more reduction can be obtained. Thus, if all operations depend
on each other, no reduction is gained. By over-approximating, dependencies that
actually do not exist are nevertheless assumed. Although this may cause reduc-
tion algorithms to be less effective, correctness is assured. Henceforth, we assume
all sets Read and Write to satisfy Property 1 (e.g. in the proof of Lemma 1).

3.3 Relations on Operations

Next, we use read and write sets to define relations on operations known from
existing literature [4] on reduction techniques (see Table 1), and used by the
algorithms in Sect. 4. Our contribution is that we define each relation not only
in terms of precise read and write sets, but also in terms of their approximate
counterparts. The resulting approximate relations can be computed before the
transition system is generated (instead of during its generation), i.e. off-line.
This reduces computational overhead of reduction algorithms at runtime to a
minimum, and ensures compatibility with on-the-fly model checking. We prove
lemmas to show how the precise and approximate relations relate to each other.

The first relation we discuss is the visibility relation Vis. Let τ be an opera-
tion, and let φ be an LTL formula. Then, Vis(τ,φ) states that application of τ
can affect the truth value of φ; the formal definition can be found in Table 1.
Because Vis is defined in terms of precise write sets, which typically cannot be
computed off-line (see Sect. 3.2), we introduce the approximate visibility relation
Vis, which is an approximation of Vis defined in terms of approximate write sets
(see Table 1). Relations Vis and Vis are related by the following lemma.

165



Table 2. Independence conditions, definitions, and heuristics.

Condition Heuristic Approximate heuristic

enabledness : Hen
Indep(τ, τ ′) : Hen

Indep(s, s′) :
τ ∈ En(τ ′(µ)) Read(τ ′) ∩Write−(τ) = ∅ Read(s′) ∩Write−(s) = ∅

commutativity : Hcomm
Indep (τ, τ ′) : Hcomm

Indep (s, s′) :
τ(τ ′(µ)) = τ ′(τ(µ)) Ch(τ) ∩ Ch(τ ′) = ∅ Ch(s) ∩ Ch(s′) = ∅

Lemma 1. Let s be statement, let τ be an operation such that Stat(τ) = s, and
let φ be an LTL formula. If Vis(τ,φ), then Vis(s,φ).

Proof. By definition of Vis in Table 1, Props(φ) ∩ Write(τ) 0= ∅. Also, because
Write satisfies Property 1, Write(s) ⊆ Write(τ). Hence, Props(φ)∩Write(s) 0= ∅.
The lemma then follows from the definition of Vis in Table 1. 23

Thus, Vis(s,φ) is true if s induces an operation τ whose application affects the
truth value of φ, as such over-approximating the relation Vis.

The second relation we discuss is the enables relation Enables. Let τ, τ ′ be
operations. Then, Enables(τ, τ ′) states that application of τ to some state µ can
cause τ ′ to become enabled, i.e. τ is enabled in µ while τ ′ is not, but in the state
that results from applying τ to µ, τ ′ is enabled. The formal definition (in terms
of precise read and write sets) occurs in Table 1, together with the definition
of the approximate enables relation Enables (in terms of approximate read and
write sets). Relations Enables and Enables are related by the following lemma,
whose proof is analogous to that of Lemma 1 (omitted for reasons of space).

Lemma 2. Let s, s′ be statements, and let τ, τ ′ be operations such that Stat(τ) =
s and Stat(τ ′) = s′. If Enables(τ, τ ′), then Enables(s, s′).

Thus, Enables(s, s′) is true if s induces an operation τ whose application can
enable an operation τ ′ induced by s′, over-approximating the relation Enables.

The third relation we discuss is the independence relation Indep. Let τ, τ ′ be
operations. Then, Indep(τ, τ ′) is true if the independence conditions in the left
column of Table 2 hold for each state µ of the transition system: enabledness
states that independent operations cannot disable each other, while commuta-
tivity states that applying independent operations in either order results in
the same state. In practice, checking the independence conditions in each state
would be too much a computational burden. Therefore, as usual [4], Indep is
defined heuristically (see Table 1 and the middle column of Table 2).

We approximate enabledness with condition Hen
Indep given in Table 2, which

is guaranteed to be true if enabledness is true. The intuition behind it is that
if an operation τ does not disable an operation τ ′, then τ cannot make a con-
dition κ on which enabledness of τ ′ depends (i.e. κ ∈ Read(τ ′)) false. Similarly,
commutativity is approximated with Hcomm

Indep in Table 2. The intuition behind
Hcomm

Indep is that if the orders in which operations τ and τ ′ can be applied both
lead to the same state, the changes that they bring about are disjoint, i.e. τ does
not (partially) undo changes brought about by τ ′ and vice versa.

166



Definitions of Hen
Indep and Hcomm

Indep (similar to those in [4]) are in terms of
operations instead of statements: to be able to compute independences before
actual model checking, we require the latter. Therefore, as before, we introduce
the approximate independence relation Indep, in whose definition (see Table
1) the precise heuristics have been replaced by their approximate counterparts
Hen

Indep and Hcomm
Indep (see the right column of Table 2). Relations Indep and Indep

are related by the following lemma; its proof is analogous to that of Lemma 1.

Lemma 3. Let s, s′ be statements, and let τ, τ ′ be operations such that Stat(τ) =
s and Stat(τ ′) = s′. If Indep(s, s′), then Indep(τ, τ ′).

We use Dep(τ, τ ′) (and Dep(s, s′)) as a shorthand for “Indep(τ, τ ′) is false” (and
“Indep(s, s′) is false”), and call τ, τ ′ (and s, s′) dependent.

4 State Space Reduction

In a nutshell, the idea of state space reduction is as follows. Let T = 〈M,µ0,−→〉
be the complete transition system. The aim of reduction techniques is to find a
reduced transition system T̂ = 〈M̂, µ0, −̂→〉 such that M̂ ⊆ M and −̂→ ⊆ −→.
The idea is that M̂ and −̂→ may be significantly smaller than M and −→,
and that investigating T̂ will require less resources (time and memory) than
inspection of T would. To ensure that model checking T̂ for ϕ yields the same
results as model checking T , henceforth referred to as correctness, T̂ should be
both sound and complete with respect to T and ϕ [7]. Let Π be the set of
computations in T , and let Π̂ be the set of computations in T̂ . Then:

sound — If π ∈ Π s.t. π |= ¬ϕ, then there exists a π̂ ∈ Π̂ s.t. π̂ |= ¬ϕ.
complete — If π̂ ∈ Π̂ s.t. π̂ |= ¬ϕ, then there exists a π ∈ Π s.t. π |= ¬ϕ.

In the remainder, we describe and define two reduction techniques, PBS and
POR, in terms of the relations given in Sect. 3.3. We stress that these techniques
by themselves and the ideas behind them are not new: both have extensively
been studied in the context of imperative languages. Their coherent definition
for agents in terms of the same relations, however, is a contribution of ours. This
requires the following efforts. With respect to PBS, we redefine data structures
used in traditional PBS in terms of relations given in Sect. 3.3. With respect
to POR, we can straightforwardly apply the existing ample set method, which
is already defined in terms of relations similar to those of Sect. 3.3; a novelty,
however, is the introduction of a heuristic that generalises SPIN’s [4].

4.1 Property-Based Slicing

The aim of property-based slicing (PBS) is to remove statements from the source
code of the system to be verified that do not influence the (negated) property
¬ϕ. Removal of such statements may cause certain states and transitions to
be eliminated from the transition system, thus yielding a reduction. A PBS

167



algorithm is run before generation of the transition system commences (and
without the need for generation of the complete transition system). The challenge
of PBS is to remove as much code as possible while preserving correctness.

PBS algorithms represent the source code of the system under verification as
a graph [15]. Such a graph makes explicit how execution of one statement can
influence the execution of other statements as well as the property to be checked.
Moreover, it enables the formulation of the PBS problem as a graph reachability
problem. In our PBS algorithm, we use influence graphs. Informally, the influence
graph with respect to a set of statements S (by which some program P is defined)
and a (negated) property ¬ϕ is a graph whose vertices are statements and ¬ϕ,
and whose edges are elements of the visibility and enables relation.

Definition 3. Let S be the set of statements by which some program P is de-
fined, and let ¬ϕ be a negated property. The influence graph G(S,¬ϕ) = 〈N , E〉
is a digraph with N = S ∪ {¬ϕ} and E = {〈s,¬ϕ〉 ∈ S × {¬ϕ} |Vis(s,¬ϕ)} ∪
{〈s, s′〉 ∈ S × S | Enables(s, s′)}.

The first line of the definition of E represents the notion of direct influence on ¬ϕ:
every edge 〈s,¬ϕ〉 indicates that there exists an operation τ ∈ Ops(s) that can
influence the truth value of a proposition in ¬ϕ. The second line of E ’s definition
represents the notion of indirect influence on ¬ϕ: every edge 〈s, s′〉 indicates that
there exist operations τ ∈ Ops(s) and τ ′ ∈ Ops(s′) such that τ can enable τ ′. If
s′ influences ¬ϕ (directly or indirectly), s influences ¬ϕ indirectly.

Closely related to influence is the notion of routes. A route through an in-
fluence graph is a finite sequence of vertices s0 · · · sn¬ϕ, abbreviated s0 ! ¬ϕ,
such that every statement occurs only once on a route, i.e. if i 0= j then si 0= sj

for all 0 ≤ i, j ≤ n, and every route ends in ¬ϕ. The set of all routes through
an influence graph G(S,¬ϕ) is denoted by Routes(G(S,¬ϕ)). The idea central
to our PBS algorithm is that every statement that is not on any route through
the influence graph G(S,¬ϕ) can safely be removed from the source code: these
statements have no influence on the truth value of ¬ϕ. The algorithm takes a
set of statements S as input, and computes a reduced set of statements Ŝ by
constructing an influence graph and computing routes. To determine if a route
exists, the algorithm starts at a vertex s, and explores the influence graph until
the vertex ¬ϕ is reached, or no more reachable yet unexplored vertices are left.7

Existing PBS algorithms work in roughly the same way: the program is rep-
resented as a graph, reducing the PBS problem to graph reachability analysis.
A key difference is that in our approach, the connection between operations and
statements is made very explicit,8 allowing for a rigid proof of correctness. We
have not found similar explicit connections in the existing literature on PBS.
7 Several optimisations may be implemented. For instance, if a depth-first exploration

strategy is applied, all vertices on the depth-first stack at the moment ¬ϕ is reached
also have a route to ¬ϕ, making additional searches for these statements unnecessary.

8 The visibility and enables relations (Vis and Enables) are defined in terms of read
and write sets on statements (Read and Write), which are related to read and write
sets on operations (Read and Write) by Property 1, which are defined in terms of
individual transitions of the transition system.

168



Theorem 1. Our PBS algorithm preserves soundness and completeness.

Proof (Sketch). We adopt the premise that if a computation π satisfies ¬ϕ, i.e.
π |= ¬ϕ, then an operation that influences ¬ϕ is applied during π’s generation.

soundness If π |= ¬ϕ and by our premise, there exists a computation π′ such
that π′ |= ¬ϕ and that is generated exclusively by applying influential oper-
ations. Hence, as the algorithm retains all statements that can induce influ-
ential operations, π′ is also a computation in the reduced transition system.

completeness Because the algorithm does not introduce new statements to the
set S, no new transitions are introduced either. 23

We note that the adopted premise in the previous proof is false if ¬ϕ (in NNF)
contains © or R operators: © φ can be true without application of an influential
operation if φ is already true in the current state, while φR φ′ can be true if φ′ is
true from the current state onwards without an influential operation ever being
applied (i.e. φ never becomes true). Thus, the PBS algorithm is only applicable
if ¬ϕ is in the {©,R}-free fragment of LTL.

4.2 Partial Order Reduction

Next, we present a partial order reduction (POR) algorithm in terms of the
relations of Sect. 3.3. POR algorithms try to exploit the observation that the
various orders in which certain events can take place are irrelevant with respect
to a certain property. Once such a situation is identified, a POR algorithm forces
the model checker to choose only one representative order and to disregard all
the others. While a PBS algorithm is applied prior to the generation of the
reduced transition system, a POR algorithm is run during its generation (and
without the need for generation of the complete transition system first).

There are various approaches to POR. Here, we focus on the ample set method
[4] as it fits the relations of Sect. 3.3 seamlessly. The idea is to construct a reduced
transition system by selecting only a subset of all enabled operations in each state
(and disregarding the other enabled operations). To preserve correctness, such a
subset, called an ample set and denoted by Ample(µ), must satisfy the following:

C0 (Emptiness) Ample(µ) = ∅ iff En(µ) = ∅.
C1 (Ample Decomposition) In the complete transition system, on any path

starting from some state µ, an operation dependent on an operation from
Ample(µ) cannot appear before some operation from Ample(µ) is executed.

C2 (Invisibility) If En(µ) 0= Ample(µ), all operations in Ample(µ) are visible.
C3 (Cycle Closing) If a cycle contains a state in which an operation τ is

enabled, then it also contains a state µ such that τ ∈ Ample(µ).

Details about these conditions are given in [4].
Let µ be a state. A naive implementation of the ample set method would be

to check for all subsets of En(µ) whether the four conditions are satisfied, and
then pick one such subset as ample set. The problem with such an implementa-
tion, however, is that checking C1 is computationally just as hard as the model

169



checking problem for the complete transition system [4]. Therefore, in practice,
rather than checking C1 for an arbitrary subset of enabled operations, a heuris-
tic approach that finds a set of operations that is guaranteed to satisfy C1 is
used. We call such a set a candidate set. Such an approach does not always lead
to an ample set that yields the greatest reduction possible, but can be effective
nevertheless. Once candidate sets are chosen, they need only be checked for C0,
C2, and C3, which are easy to compute. Our idea for choosing candidate sets
is to first select a subset of S, denoted by Ŝ, which satisfies the following:

Property 2. Let S be the set of statements defining a program. Then, for all
s′ ∈ Ŝ, there does not exist a s ∈ S \ Ŝ s.t. (i) Dep(s, s′) and (ii) Enables(s, s′).

Once a set Ŝ satisfying Property 2 is found, the set of all enabled operations in
a state µ that can be induced by a statement s ∈ Ŝ is selected as a candidate
set C, i.e. C = En(µ) ∩

⋃
s∈bS Ops(s). It is guaranteed that C satisfies C1.

Lemma 4. If Ŝ satisfies Property 2, C = En(µ) ∩
⋃

s∈bS Ops(s) satisfies C1.

Proof (Sketch). There are two situations in which C1 may be violated, which
differ by whether τ is induced by a statement s′ outside Ŝ or in it. In the former
case, if s′ /∈ Ŝ, there exists a statement in Ŝ on which s′ depends (because τ is
dependent on an operation in C). This situation is covered by condition (i) of
Property 2. In the latter case, if s′ ∈ Ŝ, then τ is not enabled in the current state
(because τ /∈ C). Hence, there exists another statement s that enables s′. If s /∈ Ŝ,
then Enables(s, s′), hence this situation is covered by condition (ii) of Property
2. Otherwise, if s ∈ Ŝ, the previous argument can be applied inductively. 23

In practice, the challenge is finding suitable sets Ŝ as efficiently as possible. A
straightforward approach is iterating over all elements in the power set of S, and
checking Property 2 for each Ŝ ∈ 2S . However, as this requires time exponential
in the number of statements, this is not a good idea. Instead, we let the search
for sets Ŝ be guided by the definition of Dep: we search for sets Ŝ that are
guaranteed to satisfy (i) of Property 2. This search can be done in time linear in
the number of statements |S| and the size of Dep, and yields at most |S| sets Ŝ
instead of 2|S| for which (ii) of Property 2 need be checked. The idea is to regard
the relation Dep as a graph whose vertices are statements and whose edges are
elements of the relation. Because every edge is an element of Dep, each statement
belonging to a set Ŝ cannot have edges to statements outside Ŝ: a set Ŝ satisfying
(i) of Property 2 corresponds to a connected component in the graph, which can
be found with a depth-first search [9]. Such a search runs in time linear in the
number of vertices and edges. As there cannot be more connected components
than vertices, this approach yields at most |S| sets Ŝ. The previous comprises
the key difference with SPIN’s POR implementation: in SPIN, sets Ŝ satisfying
Property 2 are always singletons. We have generalised this with an approach that
reduces the problem to finding connected components. Note that our approach’s
applicability is not limited to agents, but extends to, for instance, SPIN as well.

The POR algorithm is run each time successors of a state µ are required
during model checking. It first computes sets of operations satisfying C1 as

170



outlined above and then performs simple checks for C0, C2 (using Vis), and
C3. If no set satisfying all conditions can be found, all successors in µ are
returned. Like all POR algorithms, the algorithm described is applicable only
if the property under investigation is in the stuttering invariant subset of LTL:
it may not contain © operators. Also, it is compatible with on-the-fly model
checking, provided the remarks made in [8] are taken into account.

Theorem 2. Our POR algorithm preserves soundness and completeness.

Proof (Sketch). The algorithm is, essentially, the algorithm in [4] with a different
approach to generating C1. Soundness and completeness thus follow from the
ample set method’s correctness as proven in Sect. 10.6 of [4] and Lemma 4. 23

5 Implementation & Experience

We have implemented the algorithms discussed in the previous section as exten-
sions to the interpreter-based Goal model checker introduced in [11]. The idea
of the interpreter-based approach to agent verification is to implement model
checking algorithms on top of an existing agent interpreter. An alternative ap-
proach is to encode the semantics of the agent language in a format that an
existing model checker can process and to use this existing model checker for
actual verification. Interpreter-based model checking, however, has been shown
to consume less resources and offers immediate language support without the
need for complex translations [11].

With respect to the implementation of reduction techniques, the interpreter-
based approach has another benefit: the model checking algorithms implemented
on top of the existing agent interpreter can easily be extended with implemen-
tations of reduction algorithms. In contrast, if existing model checkers are used
for agent verification, such extensions are likely to be less straightforward to
implement. As a result, one is bound to use reduction techniques that ship with
the existing model checker, but that are not tailored to the agent language that
the agent program is written in. It has been shown [2] that generic reduction
algorithms may not work well on translated agent programs.

The PBS and POR algorithm discussed are defined in terms of the same re-
lations on operations. From a software engineering point of view, the implemen-
tation of these techniques benefits from this in two ways: shared-code-base
and runtime-synergy.9

shared-code-base — We implemented a library for analysis of action rules
and computation of the visibility, enables, and (in)dependence relation. The
implementations of the PBS and POR algorithms both use this library.

runtime-synergy — Computation of the visibility, enables, and dependence
relation occurs at most once each verification run. Subsequently, the PBS
and POR implementations can both use the results of these computations;
no duplicate calculations are performed.

9 Note we address the recommendation of [14] that research in state space reduction
should not only focus on new techniques, but also on combining existing ones.

171



To investigate whether our PBS and POR algorithms are able to signifi-
cantly reduce resource consumption, we have carried out several small exper-
iments involving non-deterministic single-agent systems. In what we call the
blender experiments, we have investigated an agent whose task is to put bananas
and oranges into a blender to make juice. In the blocks counter experiments,
the subject of verification is an agent that breaks down towers of blocks, while
counting to some natural number. Finally, in the wumpus experiments, we have
model checked agents that must navigate through an unknown maze in search
of a heap of gold, while avoiding bottomless pits and a vicious cave animal: the
wumpus. With these experiments, we aim at investigating whether PBS and
POR algorithms for agent languages like Goal have the same potential as in
traditional model checking. Below, we give a synopsis; details appear in [10].

With respect to PBS, the blender and blocks counter experiments show that
the reduction can be significant: the measured decrease of the state space ranged
from 75% to 99%, the reduction in runtime (including PBS computation) ranged
from 43% to 97%, and the measured reduction in memory consumption (includ-
ing PBS computation) ranged from 25% to 88%. However, in the wumpus exper-
iment, a reduction in resource consumption was not achieved: in fact, the entire
verification procedure took longer to finish with PBS enabled than without PBS,
although the difference was less than three seconds for the most complex wumpus
agent. The reason is that a wumpus agent’s tasks (exploring the cave, grabbing
the gold, hunting the wumpus) all influence each other, i.e. all action rules are
on a route in the influence graph. Consequently, no action rules are removed
by the PBS algorithm, hence no reduction is obtained, despite the spending of
resources on its computation. A prerequisite for the PBS algorithm to yield a
reduction is, thus, that the property under investigation concerns a task of the
agent that is not influenced by its other tasks. This prerequisite is satisfied by
the agents in the other two experiments: putting bananas in a blender does not
influence putting oranges in a blender (and vice versa), and deconstructing a
tower does not influence counting (and vice versa).

Similar to the PBS results, our blender and blocks counter experiments with
POR show that this technique can yield significant reductions, particularly if the
agent under consideration is (i) loosely coupled, meaning that there are few de-
pendencies between the different tasks that it needs to carry out (the case in the
blocks counter experiments),10 or (ii) significantly underspecified (the case in the
blender experiments). While the former has already been pointed out in existing
POR literature, the latter seems specific to the application of POR to agents,
as underspecification in imperative languages is rare. Using POR, the measured
reduction of the state space ranged from 59% to over 99%, the reduction in run-
time (including POR computation) ranged from 34% to 98%, and the measured
reduction in memory consumption (including POR computation) ranged from
8% to 50%. As the agents in the wumpus experiments are neither loosely coupled

10 This is a stronger requirement than the PBS prerequisite regarding influence, because
influence is a directed relation (e.g. A can influence B, while B does not influence
A), while dependence is undirected (e.g. A depends on B iff B depends on A).

172



nor underspecified, no reduction is obtained using POR. We speculate that non-
deterministic agent programs are, in general, tighter coupled than concurrent
imperative systems. Therefore, POR may be less often applicable in an agent
context than in traditional model checking. Further investigations are, however,
necessary to confirm or disprove this conjecture.

6 Related Work & Conclusion

Related work Both PBS and POR have extensively been studied in traditional
model checking. An extensive survey with many references is given in [14]. Here,
we focus on state space reduction techniques for agent model checking.

To the best of our knowledge, PBS has been studied in an agent context
only by Bordini et al. [2, 3], who have designed a PBS algorithm for AgentSpeak
systems. Their algorithm is based on earlier work on slicing logic programs [16],
because plans in AgentSpeak are similar to guarded clauses in logic program-
ming. The algorithm of Bordini et al. slices AgentSpeak programs by removing
such plans from agents, and is, like other PBS algorithms, based on a graph rep-
resentation of the program. An important difference between Bordini et al. and
our work is that we have defined our PBS algorithm generically, i.e. not tailored
to any specific APL. We do not, however, think of our effort as a generalisation
of Bordini et al., because we have not based our PBS algorithm on [16] or [2, 3].
Instead, we see our work as a second and independent attempt to applying PBS
to agents; it would be interesting to instantiate our framework for AgentSpeak,
and compare the performance of the algorithm of Bordini et al. to ours.

To the best of our knowledge, POR has only been studied in an agent context
by Lomuscio et al. [12]. While both our work and the work of Lomuscio et al.
are based on the ample set method and applied in a context in which a depth-
first strategy is used for the generation of the transition system, our approach
differs in a number of ways. Most notably, [12] focuses on the verification of
models of agent-based systems, while we consider verification of actual agent
programs. Other work in the latter direction is the AIL framework [5] and its
model checker AJPF [1]; a comparison between the aforementioned interpreter-
based model checker for Goal and AJPF appears in [11].

Conclusion We have introduced a framework, based on operations on mental
states of agents, that facilitates the definition and implementation of the exist-
ing PBS and POR techniques in a unifying way. We have argued that existing
state space reduction algorithms do not fit agent programs seamlessly due to
the different nature of mental states (compared to variable assignments), and
proposed a solution. The resulting definition of read and write sets for agents
is the heart of our framework. With these and the relations defined in terms
of them, in principle, we can readily reuse existing reduction algorithms. Nev-
ertheless, we have also advanced the theory of PBS and POR to some extent:
with respect to PBS, we have a very explicit connection between the algorithm
and the transition system (absent in previous contributions), while with respect

173



to POR, we have introduced an alternative heuristic to be used for ample set
computation (Property 2). Finally, by defining two different techniques in terms
of the same relations, we gain implementation benefits: shared code-base and
runtime synergy.

We identify three directions for future work: (i) expanding our experience
with both techniques to gain a better understanding of when their application
can be beneficial and to what extent, (ii) instantiating the framework for multi-
agent systems, and (iii) extending the framework to open systems.

References

1. R. Bordini, L. Dennis, B. Farwer, and M. Fisher. Automated verification of multi-
agent programs. In Proc. of ASE, pages 69–78, 2008.

2. R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction tech-
niques in agent verification. In Proc. of AAMAS, pages 896–903, 2004.

3. R. Bordini, M. Fisher, M. Wooldridge, and W. Visser. Property-based slicing for
agent verification. Journal of Logic and Computation, 19(6):1385–1425, 2009.

4. E. Clarke, O. Grumberg, and D. Peled. Model checking. The MIT Press, 2000.
5. L. Dennis, B. Farwer, R. Bordini, M. Fisher, and M. Wooldridge. A common

semantic basis for BDI languages. In M. Dastani, A. E. F. Seghrouchni, A. Ricci,
and M. Winikoff, editors, Programming Multi-Agent Systems, volume 4908/2008
of LNCS, pages 124–139. 2008.

6. K. Hindriks. Programming rational agents in Goal. In A. Seghrouchni, J. Dix,
M. Dastani, and R. Bordini, editors, Multi-Agent Programming, chapter 4, pages
119–157. 2009.

7. G. Holzmann. The SPIN model checker. Addison-Wesley, September 2003.
8. G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In The

SPIN Verification Systems, volume 32 of DIMACS, pages 23–31. 1997.
9. J. Hopcroft and R. Tarjan. Efficient algorithms for graph manipulation. Technical

Report STAN-CS-71-207, Stanford University, March 1971.
10. S.-S. Jongmans. Model checking Goal agents. Master’s thesis, Delft University of

Technology, August 2010. Available at http://repository.tudelft.nl.
11. S.-S. Jongmans, K. Hindriks, and M. van Riemsdijk. Model checking agent pro-

grams by using the program interpreter. In J. Dix, J. Leite, G. Governatori, and
W. Jamroga, editors, CLIMA, volume 6245/2010 of LNCS, pages 219–237. 2010.

12. A. Lomuscio, W. Penczek, and H. Qu. Partial order reductions for model check-
ing temporal epistemic logics over interleaved multi-agent systems. Fundamenta
Informaticae, 101(1-2):71–90, 2010.

13. A. Lomuscio and F. Raimondi. Mcmas: A model checker for multi-agent systems.
In H. Hermanns and J. Palsberg, editors, TACAS, volume 3920/2006 of LNCS,
pages 450–454. 2006.

14. R. Pelanek. Fighting state space explosion: review and evaluation. In D. Cofer
and A. Fantechi, editors, Formal Methods for Industrial Critical Systems, volume
5596/2009 of LNCS, pages 37–52. 2009.

15. F. Tip. A survey of program slicing techniques. Technical Report CS-R9438 1994,
CWI, 1994.

16. J. Zhao, J. Cheng, and K. Ushjima. Literal dependence net and its use in concur-
rent logic programming environment. In Proc. of the Workshop on Parallel Logic
Programming, pages 127–141, 1994.

174





Index of Authors

Natasha Alechina, 72

Rafael H. Bordini, 39
Cyril Brom, 55

Omar Chiotti, 39
Stephen Cranefield, 105

Thu Trang Doan, 72

Ulrich Furbach, 141

Maŕıa R. Galli, 39
Jakub Gemrot, 55

Koen V. Hindriks, 157

Sung-Shik T. Q. Jongmans, 157

Michael Köster, 122
Shakil M. Khan, 2

Yves Lespérance, 2
Brian Logan, 72
Peter Lohmann, 122
Carlos J. P. de Lucena, 88
Michael Luck, 88

Ammar Mohammed, 141

Peter Novák, 55
Ingrid Nunes, 88

Radek Pibil, 55
Martin Purvis, 105

Surangika Ranathunga, 105
M. Birna van Riemsdijk, 157

Munindar P. Singh, 21

Pankaj R. Telang, 21
Carlos M. Toledo, 39

Neil Yorke-Smith, 21

176


