
Proceedings of the Fourth International workshop on

Optimisation in Multi-Agent Systems

3rd May 2011

(held in conjunction with AAMAS 2011)

Editors:

Alessandro Farinelli

Jesus Cerquides

Juan-Antonio Rodríguez-Aguilar

Sarvapali D. Ramchurn

Table of Contents

1 Elnaz Bigdeli, Maryam Rahmaninia and Mohsen Afsharchi.

 DGOPT: Dynamic Group Optimization to Find Better Group Formations in DCOPs

2 Hilla Peled and Roie Zivan.

Balanced Exploitation and Exploration for Max-sum Distributed Constraint

Optimization

3 Kathryn Macarthur, Meritxell Vinyals, Alessandro Farinelli, Sarvapali Ramchurn and

Nicholas Jennings.

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation

4 Tenda Okimoto, Yongjoon Joe, Atsushi Iwasaki and Makoto Yokoo.

Pseudo-tree-based Incomplete Algorithm for Distributed Constraint Optimization

with Quality Bounds

5 James Decraene, Mahinthan Chandramohan, Fanchao Zeng, Malcolm Yoke Hean

Low and Wentong Cai.

 Evolving Agent-Based Model Structures using Variable-Length Genomes

6 Meritxell Vinyals, Eric Shieh, Jesus Cerquides, Juan Antonio Rodriguez Aguilar,

Zhengyu Yin, Milind Tambe and Emma Bowring.

 Reward-based region optimal quality guarantees

7 Rong Yang, Christopher Kiekintveld, Fernando Ordonez, Milind Tambe and Richard

John. Including Human Behavior in Stackelberg Game for Security

8 Christopher Amato, Nathan Schurr and Paul Picciano.

 Towards Realistic Decentralized Modelling for Use in a Real-World Personal

Assistant Agent Scenario

Note: The following paper has been intentionally excluded to avoid copyright issues: Ruben

Stranders, Francesco Maria Delle Fave, Alex Rogers and Nicholas R. Jennings U-GDL: A decentralised

algorithm for DCOPs with uncertainty.

http://www.iasbs.ac.ir/
http://www.iasbs.ac.ir/
http://teamcore.usc.edu/tambe

Foreword

The number and variety of applications of multi-agent systems has increased significantly over the

last few years, ranging from online auction design, through multi-sensor networks, to scheduling of

tasks in multi-actor systems. In many cases, however, the systems designed for these applications

require some form of optimization in order to achieve their goals. Given this, a number of advances

have been made in the design of winner determination algorithms, coalition formation techniques,

and distributed constraint optimization algorithms, among others. Nevertheless, there are no

general principles guiding the design of such algorithms that would enable researchers to either

exploit solutions designed in other areas or to ensure that their algorithms conform to some level of

applicability to real problems.

 Against this background, we initiated the workshop on Optimisation in Multi-Agent Systems

(OPTMAS) in 2008 (and followed on every year till now) to bring together researchers from different

parts of the multi-agent systems research area, to present their work and discuss acceptable

solutions, benchmarks, and evaluation methods for generally researched optimization problems. In

2010 we collected all the best papers from previous editions of OPTMAS for a special issue of the

Journal of Autonomous Agents and Multi-Agent systems due to appear in 2011.

This year’s proceedings is composed of a number of contributions mainly focused on distributed

optimisation and human-agent collaboration optimisation. As will be noted, the community is

converging towards more realistic deployments of multi-agent systems, which is one of the main

goals we set out to achieve initially.

Alessandro Farinelli

Jesus Cerquides

Juan-Antonio Rodriguez

Sarvapali D. Ramchurn

DGOPT: Dynamic Group Optimization to Find
Better Group Formations in DCOPs

Elnaz Bigdeli, Maryam Rahmaninia, and Mohsen Afsharchi

Institute for Advanced Studies in Basic Sciences
Zanjan, Iran

{e_bigdeli,m_rahmani,afsharchim}@iasbs.ac.ir

Abstract. A substantial amount of study in multi-agent systems has fo-
cused on multi-agent coordination for over twenty years. Many challenges
in multi-agent coordination can be modeled as Distributed Constraint
Optimization (DCOP). Finding the optimal solution for a DCOP is NP-
hard, so using incomplete algorithms that are faster are more desirable.
Many incomplete algorithms decompose a DCOP to subgraphs to find
solutions to it and maintain the partitioning of the DCOP unchanged
during algorithm execution. These algorithms provide local optimal so-
lutions. Decomposition of a DCOP has direct influence on the quality
of solutions. With the popularity of incomplete algorithms, finding the
best decomposition of a DCOP becomes a major issue. In this paper, we
propose the first known learning algorithm by which the leader of each
group optimizes its group with the purpose of increasing total utility.
The leader agents learn to add/remove agents of their groups. This algo-
rithm works dynamically to optimize the existing groups and we call it
Dynamic Group Optimization algorithm (DGOPT). From quality, and
convergence time point of view, DGOPT outperforms recent algorithms.

Keywords: Multi Agent Systems, Distributed Constraint Optimization, t-distance
Optimality

1 Introduction

Multi-agent systems are a popular way to model complex interactions and co-
ordination required to solve distributed problems. A multi-agent system is a
network of agents used to perform distributed computation. Networks of agents
are heterogeneous and not all agents have direct communication link to one
another. Additionally, information is distributed throughout the network either
due to privacy concerns or impractically of centralizing. In this network each
agent is autonomous entity with local information and has ability to perform an
action in cooperative situations in which agents collaborate to achieve a common
goal.

Agents need to coordinate their activities to accomplish their collective goals.
Distributed Constraint Optimization (DCOP) is a common formalism to repre-
sent multi-agent systems in which agents cooperate to optimize a global objective

2 Authors Suppressed Due to Excessive Length

[10, 13]. DCOP has been applied to different domains. DCOPs are able to model
the task of scheduling meetings in large organizations, where privacy needs make
centralized constraint optimization difficult [9]. DCOPs are also able to model
the task of allocating sensor nodes to targets in sensor networks, where the lim-
ited communication and computation power of individual sensor nodes makes
centralized constraint optimization difficult [11]. Finally, DCOPs are able to
model the task of coordinating teams of unmanned vehicles in disaster response
scenarios, where the need for rapid local responses makes centralized constraint
optimization difficult [2].

There are two main categories for DCOP algorithms, complete and incom-
plete algorithms. Complete algorithms always find a configuration of variables
that maximizes the global objective function. Adopt (Asynchronous Distributed
OPTimization) [11] and DPOP (Dynamic Programming OPtimisation) [13] are
two well known complete algorithms. There are lots of works which try to extend
the ADOPT algorithm as a complete algorithm [4, 15]. The important point in
complete algorithms is that finding DCOP solutions which maximize the global
objective function is NP-hard. Some of recent works try to solve this problem
[16, 17].

In contrast, incomplete algorithms find semi optimal solutions and do not
guarantee to achieve global optimal solution. Algorithms such as Max-Sum [1],
Distributed Arc Consistency [3] and KOPT [7] are in this category.

In the most of incomplete algorithms a network of agents is divided to groups
in which a DCOP problem is solved locally [7, 10, 18]. The local attempt of agents
in groups to solve DCOP leads to solving it globally, but the solution found is
not the best.

KOPT and DALO algorithms are two examples of incomplete algorithms that
divide the network of agents to subgroups to solve DCOP. k-optimal algorithms
guarantee to provide solutions that cannot be improved by any group of k or
fewer agents changing their decision. KOPT algorithm is the only incomplete
algorithm which works for arbitrary k [7].

DALO is a novel asynchronous incomplete algorithm which works based on
t-distance optimality [8, 18]. In DALO algorithm groups are formed based on the
distance between nodes in the constraint graph instead of strict limits on group
size. There are lots of incomplete algorithms to solve DCOP. The main concern
in all of these algorithms is how to form groups because groups formation has
direct influence on the quality of solution which is gained. We try to find better
group formations through a dynamic approach. This approach works based on
the contribution of each agent in the reward of the group.

The structure of the paper is as follows: In section 2, formal definitions of
DCOP and t-distance optimality solutions are presented. Section 3, gives a gen-
eral view of different group formations. In section 4, DALO algorithm and its
main issues are described. The proposed algorithm is introduced in section 5.
Detail description of dynamic group optimization is given in section 5.1. DGOPT
algorithm is introduced in section 6. Experimental results of DGOPT algorithm

Dynamic Group Optimization 3

and its comparison with DALO algorithm are depicted in section 7. Finally,
conclusion and future work are presented in section 8.

2 Background

In this section, we will provide some basic definitions about DCOP and t-distance
optimality.

2.1 Distributed Constraint Optimization

A DCOP is defined by a set of variables V = {v1, . . . , vn}, a set of discrete finite
domains for each vi;D = {D1, . . . ,Dn}, and a set of constraints C = {c1, . . . , cq}.
Each variable is controlled by a separate agent capable of communicating with
other agents. A joint assignment A = {a1, . . . , an} specifies a value for each
variable, in which ai is the value of agent i. Each constraint includes a set of
variables. A constraint defines a real-valued cost based on the values which each
agent chooses for its variable. This paper holds in view binary constraints to
avoid complexity; that is to say each constraint includes two variables. Thus, for
each pair of variables (vi, vj), there is a cost function Fij : Di×Dj −→ R which
determines the value of a constraint. If there is no constraint between vi and vj ,
function Fij will be 0. A cost function takes values of variables as an input and
returns a value as a non-negative number for a given constraint. Utility of agent
i for assignment A is:

Ui(A) =
∑
vj∈V

Fij(ai, aj)

Where vi ← ai, vj ← aj , ai, aj ∈ A (1)

It means the utility of the ith agent is the sum of the cost functions of all the
constraints to which an agent belongs.

The goal is to choose values for variables such that a given objective function
is maximized. The objective function is described as the sum over a set of cost
functions, or valued constraints. As a result, the objective is to maximize:

R(A) =
∑

(vi,vj)∈V

Fij(ai, aj)

Where vi ← ai, vj ← aj , ai, aj ∈ A (2)

R(A) is a solution quality for an assignment A [11, 12].
Figure 1 shows an example of DCOP with 6 variables and 7 constraints

with the same cost function. The optimal assignment for this DCOP is A =
(1, 1, 1, 1, 1, 1).

4 Authors Suppressed Due to Excessive Length

Fi,j Vj Vi

0 0 0

1 1 0

0 0 1

2 1 1

4 5 6

3 2 1

Fig. 1. An example DCOP with six binary variables. Each constraint has the same
cost function.

2.2 t-distance Optimality

Definition 1 For two different assignments A and A′ :

D(A,A′) = {vi ∈ V ‖ ai 6= a′i , vi ← ai ∈ A, vi ← a′i ∈ A′} (3)

Put simply, D is a deviating group between two assignments A and A′.

Definition 2 For a pair of variables vi and vj, let T (vi, vj) be the shortest
distance between them in the constraint graph. Let Φt(vi) = {vj‖T (vi, vj) ≤
t, vi, vj ∈ V} denote a set of variables that can be reached from vi within t hops.

Definition 3 A DCOP assignment A is t-distance optimal if R(A) ≥ R(A′)
for all A′, where D(A,A′) ⊆ Φt(vi) for some vi ∈ V [8, 18].

Example: Consider the graph in Figure 2. Given t = 1, 1-distance groups for
all variables will be: Φ1(v1) = {v1, v2, v3}, Φ1(v2) = {v1, v2, v4, v5}, Φ1(v3) =
{v1, v3, v4}, Φ1(v4) = {v2, v3, v4, v5}, Φ1(v5) = {v2, v4, v5}.

Fi,j Vj Vi

1 0 0

0 1 0

0 0 1

2 1 1

1 2

3 4

5

Fig. 2. An example DCOP with five binary variables. Each constraint has the same
cost function.

Dynamic Group Optimization 5

3 Structures of Groups

In a DCOP, the problem is solved by dividing DCOP into groups, and then, all
the agents in a group cooperate to maximize the objective function. In other
words, they create a coalition in groups to maximize the objective function. A
group structure is a partition of the overall set of agents into sub groups. DCOP
division in section 2.2 with t = 1 for the graph in Figure 2, is a possible structure
for this network of agents. The structure of groups by this division is:

GS = {{v1, v2, v3}, {v1, v2, v4, v5}, {v1, v3, v4},
{v2, v3, v4, v5}, {v2, v4, v5}}

Obviously, by using different t for each group, other structures are gained.
Given a network of agents NET = (Ag,F) with a set of agents Ag and a set

of cost functions F , the optimal group structure GS∗ is given in the following
formula:

GS∗ = arg max
GS∈all possible group stuctures

U(GS) (4)

Where

U(GS) = RGS(A∗) (5)

It indicates U(GS) is the reward value for assignment A∗ which is the best
assignment reached by applying an incomplete algorithm for a DCOP.

Finding the best structure is impossible because the number of structures
that can be created in a graph is exponential.

4 DALO Algorithm and Issues

DALO algorithm, as an incomplete algorithm, was introduced by Yin [18]. It is
an asynchronous algorithm for DCOP based on t-distance optimality.

DALO algorithm has three phases. In phase one, each agent sends a message
containing all its constraints to agents in a distance of t hops. Then, it broadcasts
its initial value to a distance of t + 1 hops in a separate message. In phase two,
based on the information gathered in the previous phase, all the leaders compute
a new optimal assignment using a centralized variable elimination algorithm in
parallel. In phase three, if the new assignment improves the utility of a group,
the group leader attempts to set the new assignment. There might be conflicts
among overlapping groups while all leaders try to set their assignments. The
conflicts are resolved by an asynchronous locking and commitment protocol.

6 Authors Suppressed Due to Excessive Length

4.1 DALO Issues

Although DALO is an effective algorithm to solve DCOP problems, it suffers
from some drawbacks. In t-distance optimality, the number of optimization
groups is fixed, but the size of t-distance groups can be very large, particularly
in dense graphs [18]. Using distance as a criterion to create groups may produce
groups with large number of nodes; especially, when there are hub nodes with
many connections or subgraphs which are densely connected.

As it is explained in DALO algorithm in phase two, a complete algorithm
is used to solve DCOP. All group leaders compute new optimal assignments for
their groups in parallel. A leader node uses a centralized variable elimination
algorithm to find the best assignment for the local group. Variable elimination
algorithms are complete algorithms with exponential computational complexity
in the number of agents. By increasing t, the number of agents in a group will
increase and using a complete DCOP solver will not be tolerable from size and
space point of view. To solve this problem, instead of using a centralized variable
elimination algorithm, we use a genetic approach in phase two which is discussed
in [14].

One of the significant problems in DALO algorithm and some other incom-
plete algorithms is how to form groups to reach the highest utility. Groups for-
mation has direct influence on the quality of solutions for a given DCOP. Using
some formations, the algorithm cannot improve the quality through increasing
the number of rounds [7]. On the other hand, by changing the group formation
new values may be set and the quality may improve. This problem stems from
the conflicts among groups. The presence of some agents in some groups does
not let a group improve its local solution, since these agents are common agents
among different groups and some of them do not commit to the assignment of
many groups to which they belong.

Changing groups leads to solution variation. Finding the best group forma-
tion, which the best solution could gained from, is very difficult and in some cases
is impossible. With the purpose of finding the best group formation all possible
formation should be considered and after comparing the results the best one is
chosen. As it is clear, it is impossible in networks with large number of agents.

This paper introduces a distributed approach to improve groups formation.
This method works based on the contribution of each agent in the reward of the
group. To shed light on the problem an example is given in the next section.

Example Consider the graph in Figure 3. The cost function for each constraint
is given. Groups are formed using t = 1. Active agents are shown in bold and
passive agents are shown in italic. Here after we use the terms active and passive
agent more. Hence, it is worthwhile to define them here. Active agents are those
that can change their value to the value which leaders send to them. In contrast,
passive agent are those agents in the boundary of group whose values do not
change by the leader of group and their values remain constant during algorithm
execution.

Dynamic Group Optimization 7

G0 = {0,2, 1, 3},G1 = {1,2, 0, 3},G2 = {0,1,2,3, 4},G3 = {2,3,4, 0, 1, 5},G4 =
{3,4,5, 2},G5 = {4,5, 3}

F 4 3

0 0 0

0 1 0

8 0 1

0 1 1

F 5 4

8 0 0

0 1 0

0 0 1

0 1 1

F 2 1

0 0 0

8 1 0

0 0 1

0 1 1

F 3 2

2 0 0

0 1 0

2 0 1

0 1 1

F 2 0

10 0 0

0 1 0

0 0 1

0 1 1

0

5

4

3

2

1

Fig. 3. DCOP examples

All leaders L = {0, 1, 2, 3, 4, 5} compute the best assignment for their group
members by starting from initial value 1 for all agents. Among these leaders,
leader 4 can set its assignment. Since, leader 4 sets its assignment, the other
leaders cannot set their assignments. Therefore, DCOP assignment will be A =
(1, 1, 1, 1, 0, 0). The utility of DCOP will be U(A) = 16.

Agent 3 is the common agent in groups G2, G4 and also is the active agent
in these two groups. In computing the best assignment the value given to agent
3 by leader 2 is 0 but the value given by leader 4 to the same agent is 1. Based
on the rule in DALO algorithm, an agent is committed to the group which has
the highest utility. Hence, based on cost functions in Figure 3, agent 3 chooses
the value given by leader 4.

Among groups G0,G1,G2, without considering other groups of graph, group
G2 can set its assignment, but other groups cannot because all the common
agents in these groups commit to the values given by leader 2. On the other
side, due to the presence of agent 3 which commits to the value of leader 4,
leader 2 cannot set its assignment. Consequently, the presence of agent 3 makes
groups assignment stay unchanged. It is needless to say quality does not enhance
as result of this presence.

According to the description above among all groups, group G4 changes its
assignment and all other groups stay in their initial values. Consider agent 3 is
removed from group G2. This change having been incorporated, group G2 and
group G4 set their assignments simultaneously which leads to utility enhance-
ment.

This example clarifies the main problem in algorithms that use a fix group
formation in which the utility of the solution does not increases without chang-
ing group formation. Worded differently, it shows that the presence of some

8 Authors Suppressed Due to Excessive Length

active/passive agents creates problems in setting new assignments and adding
or removing them to or from some groups solves the problem.

For the above reasons, we focus on the impact of each agent in each group.
We use a novel algorithm which tries to estimate the impact of agents in groups.
This algorithm is an efficient and distributed method to change groups dynam-
ically. The algorithm considers the impact of active agents in a group as well
as passive agents. Moreover, each group leader keeps only the local group infor-
mation to run the algorithm which makes the communication bandwidth and
storage requirement low.

5 Embedding Group Optimization in Solution Procedure

The solution procedure starts from a random initial assignment and monotoni-
cally improves the solution quality. To have our discussion simple we divide the
procedure into four phases: initialization, groups optimization, computing the
best assignment and implementing assignments.

– Initialization: At first, every agent sends a message containing all its con-
straints to all agents in distance of t hops from it. Then, it chooses an initial
value from its domain and broadcasts it to agents in distance of t + 1 hops.
In this phase, a leader starts to construct its group. Given t, all agents whose
distance of center node are lower than t will be a member of the group. The
additional hop in sending a message is for boundary nodes. The nodes in the
boundary of a group are considered static in computing the best assignment.

– Groups optimization: In phase two, some leaders are selected and op-
timize their groups to facilitate the achievement of a better solution for a
DCOP problem. Detailed description of optimization algorithm is given in
section 5.1.

– Computing the best assignment: In this phase, all the leaders compute
a new optimal assignment using a centralized variable elimination algorithm
in parallel. A leader agent finds a new value for active agents in a group
considering the fact that passive agents stay unchanged.

– Implementing assignments: Each agent belongs to different groups and
receives various assignments from different leaders, and lastly every agent
commits to a group with the highest utility. To resolve the conflict among
overlapping groups, a method is used for resolving conflict described in
DALO algorithm [18].

Phase one is done just once. Since the computation complexity of phase two
is high, this phase is executed after each m rounds. The value of parameter m
depends on the size of graph and is specified through experiment. Optimizing
group is our main contribution in this paper and so we provide our deep discus-
sion about this issue in the next subsection. Phase three and four are executed in
each round in all groups in parallel. The algorithm stops running if it converges
to a value.

Dynamic Group Optimization 9

5.1 Optimizing Groups

As it is mentioned before, we try to find a group formation by which solutions
with higher quality are gained. To this end, a leader tries to change its group
by adding /removing some agents to/from its group. When a leader decides to
add a passive agent to the group, it changes it to an active one. In contrast, to
remove an agent a leader makes an active agent passive.

How to add or remove agents is the major problem. A criterion should be
introduced to use in adding or removing the agents. We utilize a marginal con-
tribution concept to change groups.

Definition 4 Let µi(G) be the marginal contribution of Agenti to the group G
which is computed by adding or removing it from G.

µi(G) = R(A′)−R(A) (6)

A′ is the best assignment of group G ⊆ all agent ∪ Agenti and A is the best
assignment of group G ⊆ all agent\Agenti.

We use this concept in group formation. In each group of a DCOP, utility
of a group before and after removing (adding) an agent is computed and if the
absence (presence) of an agent increases the local utility, we try to change the
group by removing (adding) an agent.

There are three main issues in groups optimization. The first one is that
the decision about any changes cannot be made through group information and
decision about the change should be made using the information of the whole
DCOP, but we do not have the global information of the graph in each group. The
second issue is about the method of group alternation as adding and removing an
agent causes some other agents to join or leave the group. Changing all groups is
not efficient which forces us to choose some leaders to change their groups. This
is the source for the third issue. All these problems and our proposed solutions
are discussed in the following sections in more detail. From now on, we call the
group which we try to change the target group.

Local View of the Leader Agent Changing a group has an effect on the whole
DCOP, because by removing (adding) agents the assignment for the members
changes. As a matter of fact, the new assignment of this group has direct influence
on other groups. The new values may or may not enable some other groups set
their assignments. For that reason, a leader agent should be aware of the status
of other groups and whether or not they set their new assignment through the
new change. A group leader can firmly claim that the change has positive effect
if it has global information about the graph. It is obvious that the leader does
not have such information.

Based on the description above, due to the connections among groups and
propagation of the change in the whole DCOP, to get the best decision, a leader
agent should be informed of their adjacent leaders and decide what happens in

10 Authors Suppressed Due to Excessive Length

the whole DCOP after the new change. But as we know, it is impossible to solve
a problem distributively.

We solve the problem by creating a local view for each leader. The local view
of the leader of target group is a subgraph consists of the target group and all
its adjacent groups. In the process of decision making about the new change in
the target group, the leader uses local view. There is no need to know all the
members of the adjacent groups. Because the leader of the target group should
only be in contact with the leaders of the adjacent groups. Finding the leader of
any of adjacent groups is very easy because these leaders are the active agents
of the target group.

When a leader changes its group, it computes a new assignment for the new
group and sends the new values to all group members. All agents in this group
receive new assignment and decide about commitment to the group again. Then,
all the groups in the local view of the leader of the target group use the new
assignment and decide about implementation of their assignments. Adjacent
groups do not compute new assignments and they just receive a message from
agents which commit to other groups. The leader of the target group sends a
message to its adjacent leaders to be aware of the utility of the adjacent groups.
All adjacent leaders send back their utilities to the central leader.

Add/Remove Agents of a Group A leader has information about its mem-
bers including active and passive agents. Because of the limited information of
the leader node, the agent we try to add to the group should be chosen from
passive agents of the target group. All agents with direct link to the added agent
and not belonging to the group will be considered as passive agents of the new
group.

In removing an agent from a group, we choose an active agent and make it
a passive one, but all passive agents which are connected to the removed agent
should be removed from the group as well. We cannot remove all of these agents
because there are some agents among these agents which are connected to the
group via other active agents. Therefore, in removing an agent from a group,
agents connected to a group just by the removed agent will be removed and all
other agents will remain by means of other active agents in the group.

Choosing Groups to be Optimized One of the main issues in this new
approach is to choose groups to be optimized. We can apply the new approach to
all groups, but it has some problems. The first is that using the new approach in
solving a DCOP, the computational cost increases and consequently optimizing
all groups is not tolerable from computational point of view. The second problem
is related to coordinating the decision of all leaders in changing their groups.
Since leaders do not have global information of a DCOP, their decision about
the changes in their groups may have conflicts and optimizing all groups will be
useless.
In line with aforementioned description, some leaders should be chosen to op-
timize their groups. Choosing groups optimizing of which provides us with the

Dynamic Group Optimization 11

best result is impossible. We use a simple and cost effective method to select
groups. This approach is derived from a partial approach introduced in [6]. Us-
ing this approach all leaders should try to change their groups, at least once,
during algorithm execution. As a matter of fact, the changes in a group forma-
tion influences the whole DCOP and increases the computational cost. Hence,
optimizing groups is done after each m rounds.

Consider there are n agents in a network. Consequently, there are n groups in
a network. We define the index set L = {1, 2, . . . , n}. The index set L is divided
into h subsets S = {S1, . . . , Sh}. Each subset contains leaders ID which should
optimize its groups. After each m rounds, a subset, Si, is selected and leaders in
this subset try to optimize their groups. The main problem is to assign leaders
to subsets. Finding the best division is not computable within limited time.

We use a simple approach called sequential approach. In sequential approach,
in the first round, S1 is selected, in round m subset S2, and in round mh subset
Sh is selected; in round m(h+1), subset S1 is selected again. So, after mh rounds,
all subsets will be selected only once.

To specify groups to be optimized, we use a simple rule. In round r, a leader
with ID ` checks if:

` % h = r % h , where r % m = 0 (7)

Then, this leader tries to optimize its group. The number of groups which
should be optimized and the rounds in which we optimize groups are found
through experiment. There is no specific rule to do so.

6 DGOPT Algorithm

In this section, we explain DGOPT in more detail. As it is obvious DGOPT adds
a new step to DALO. For the sake of simplicity we just emphasize on the new
step when we refer to DGOPT. We divide the algorithm into 3 steps to have more
concentration on our explanation. This algorithm is applied to groups which are
selected based on descriptions in the previous section. The following algorithm
represents the process of removing an agent. The process of adding is much the
same way.

– Local information gathering: At first, the leader node finds its adjacent
leaders which are the active agents of its group. The leader of target group
stores the utility of its adjacent groups which are computed before optimizing
its group. Since the leaders in the local view are the active agents of the
target groups, obtaining information about their groups is not very time-
consuming. Next few lines yield the justification of why this process is not
time-consuming. To commit to the new assignment, some messages pass
among leader and its active agents. We can include the utility of adjacent
groups in the messages by which active agents inform the leader whether or
not they have committed to the new assignment. Therefore, there is no need

12 Authors Suppressed Due to Excessive Length

to send and receive more messages and we can include the information for
decision making in messages which are exchanged among leader and active
agents to set the new assignment. Based on this information, we sum up the
utility of the target group and the groups in its local view in line 6 to have
the utility of groups in local view before changing the target group.

Algorithm 1
(∗ Remove an Agent From a Group ∗)
1. Target group G;
2. Create Local view();
3. Local Information Gathering();
4. R1 = 0;
5. for i← 1 to Number of Groups in Local View
6. do R1=R1+utility(group(i));
7. for i← 1 to some randomly chosen active agents
8. do R2 = 0;
9. Temporary Remove Agent(agent(i));
10. Compute Utility(G);
11. for j ← 1 to Number of Groups in Local View
12. do R2=R2+utility(group(j));
13. if (R2 −R1) > 0
14. then Remove Agent Permanently();
15. return G;

– Changing group temporarily and computing the new assignment:
The leader removes an active agent temporarily. The leader agent makes the
active agent a passive one and removes all agents connected to the group
by this agent. If the agent is connected to the group by other active agents,
we do not remove it. After removing an agent, the leader node re-computes
the best assignment in the new group. All leaders of adjacent groups just
decide about the implementation of their assignments by the new change
and they send the utility of their groups to the leader of the target group.
We emphasize that by the above justification the adjacent leaders are not
in need of sending new messages to inform the leader of the target group
of their utilities. The leader agent sums up its new utility and its adjacent
leaders’ utilities again in line 12.

– Computing marginal contribution: In this step, marginal contribution
of the removed agent is computed. The positive marginal contribution of the
removed agent shows that the new formation increases the utility, but if the
marginal contribution is negative, the change is not promising. If the change
is promising the group is changed permanently in line 14.

The first phase is executed just once. The other phases are repeated for all
selected active agents.

Dynamic Group Optimization 13

7 Experimental Results

In this section we put forward some experimentations to show the efficiency of
our DGOPT algorithm. We setup our experiments on some graphs with different
densities and the same size. Before presenting our results we introduce our three
evaluation metrics which the algorithms are compared based on them, namely,
quality of solution, number of rounds and (Gain,#Locked Variables).

– Quality of Solution: The primary aim of this paper is to construct groups
to reach the solution with higher quality. The quality of solution is computed
according to equation 2. Based on this definition, a solution with higher
reward is more qualified [5, 7, 12].

– Number of Rounds: A round is one unit of algorithm progress in which all
agents perform any required computation. After some rounds, the solution
reached by algorithm does not change. In this case, the algorithm converges
to the best possible solution. In the evaluation, we consider the number of
rounds required to converge. This metric is a convenient, standardized metric
for estimating the performance of a DCOP algorithm [5].

– (Gain,#Locked Variables): Versus to above mentioned metrics which are
used to evaluate the performance of DCOP algorithms in the whole DCOP,
tuple (Gain,#Locked V ariables) analyzes the performance of the algorithm
on local groups. The gain is the quality of group and the #Locked V ariables
is the number of variables that are locked to set the new assignment.

7.1 Results

The result that we are reporting is based on some random graphs with four
different densities D = {0.2, 0.4, , 0.6, 0.8}. All graphs used in our experiment
have the size 50 with different densities and structures. Variables have a binary
domain and rewards are integers drawn from [1, 500]. In the experiment we
generated 20 random graphs with different structures while kept the size and
density the same. The solution quality shown in the following figures are the
average quality that gained from these graphs.

Both algorithms start from a same random initial assignment. The stopping
criterion is also defined in a same for both algorithms. The algorithm stops
running whenever all groups do not tend to change their assignments because
there is no new assignment to increase the utility of groups.

We set parameter t to 2, h to 3, and m to 5 respectively. Determination of the
exact values of h and m is made just by experiment and we set the parameters
to the values which have the more desirable results. More discussion related to
determination of h and m can be found in [6].

In our first experiment we compare the solution quality of our DGOPT algo-
rithm and DALO. Obviously, algorithm that achieves a final solution of higher
quality in a lower number of rounds is more desirable. Figures 4 through 7
show that the solution quality increases by DGOPT algorithm in comparison
with DALO. For instance in Figure 4 the final solution quality for graphs with

14 Authors Suppressed Due to Excessive Length

0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 100 110 120

S
o
lu

ti
o
n

 Q
u

a
li

ty

Number of Rounds

DALO

DGOPT

Fig. 4. Solution quality: DGOPT vs DALO for graphs with density 0.2

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170

S
o

lu
ti

o
n

 Q
u

a
li

ty

Number Of Rounds

DALO

DGOPT

Fig. 5. Solution quality: DGOPT vs DALO for graphs with density 0.4

D = 0.2 using DALO is 65, but using DGOPT the quality in the same graphs
is 82. Moreover, after group alteration through DGOPT, there will be a boost
in the solution quality; these increases end in the algorithm convergence to a
higher solution quality in lower number of rounds in comparison with DALO.
As an example, consider the diagrams in Figure 6, DGOPT converges after 150
rounds and DALO converges after 195 rounds.

The results also show that the DGOPT algorithm is even more efficient on
dense graphs. For example, the maximum difference in solution quality for graphs
with D = 0.2 is almost 30, but the maximum difference for graphs with D = 0.4

Dynamic Group Optimization 15

0

200

400

600

800

1000

1200

1400

1600

1800

15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

S
o
lu

ti
o
n

 Q
u

a
li

ty

Number of Rounds

DALO

DGOPT

Fig. 6. Solution quality: DGOPT vs DALO for graphs with density 0.6

0

500

1000

1500

2000

2500

100 200 300 400 500 600 700 800 1000 1200 1400 1600

S
o

lu
ti

o
n

 Q
u

a
li

ty

Number of Rounds

DALO

DGOPT

Fig. 7. Solution quality: DGOPT vs DALO for graphs with density 0.8

is almost 300. It is clear that the groups in dense graphs have more number of
agents in comparison with sparse graphs. Accordingly the overlap among groups
increases and there will be more number of agents which are common among
groups. In this case, there will be more number of agents which do not allow
a leader to set its assignment by committing to other groups. Overally, the
results in our experiment show that the quality of solution increases 43% and
the number of round decreases 21%, on average. It can be concluded that using
DGOPT algorithm, solutions with higher quality are gained in a lower number
of rounds.

16 Authors Suppressed Due to Excessive Length

0

5

10

15

20

25

0 100 200 300 400 500 600

N
u

m
b

er
 o

f
V

ar
ia

b
le

s
Lo

ck
ed

Gain

Fig. 8. (Gain,#Locked Variables) for DALO

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

V
ar

ia
b

le
s

Lo
ck

ed

Gain

Fig. 9. (Gain,#Locked Variables) DGOPT

To further understand and compare the performance of DGOPT and DALO,
we provide an analysis on local group changes. In each group, the leader locks
some of the variables and if all group members commit to the new assignment,
it will be set. By setting the new assignment, the utility of group, which we call
it gain, will change. The (Gain, #Locked V ariables) pair is used as a metric to
compare DCOP algorithms in [18]. It is a proper metric to compare the effect
of different group formations in solving DCOPs. The more the number of locks,

Dynamic Group Optimization 17

the more the number of conflicts. Hence, groups with lower number of locks and
larger gain are more preferred.

To compare the algorithms, we depict the result for graphs with size 50 and
density 0.4. As it is declared in Figure 8 DALO never achieves a gain larger
than 500 and barely locks more than 20 variables. On the other hand, DGOPT
achieves gain 800 by locking more number of variables. For example as it is
specified in the Figures 8, 9 by locking 20 variables DALO achieves gain 500
while DGOPT can achieve gain 850.

In Figure 8, the congestion is on the value 18 which indicates that most of
groups locked 18 variables. On the contrary, as it is depicted in Figure 9, the
congestion is on the value 23. The difference in the number of locked variables
is not very much, but the quality improvement is considerable. Hence, by slight
increase in the number of variables better solutions are gained. Our experimen-
tations show hat DGOPT outperforms DALO both in term of solution quality
and the number of rounds that this quality is achieved.

8 Conclusion

As it is explained in this paper some group formations are not very efficient to
solve DCOP problems and lead to solution with lower quality. In this paper,
we proposed a distributed dynamic algorithm to optimize groups in a DCOP.
The purpose of this algorithm is to find better group formations to reach higher
solution quality. This algorithm achieves solutions with higher quality in low
number of rounds. Moreover, by slight increase in the number of locked variables
in groups, solution quality increases considerably. The proposed algorithm can
be applied to other incomplete DCOPs by slight modification. We are planning
to extend the algorithm by using agents previous interactions to improve groups.

References

1. Aji and R. McEliece. The generalized distributive law. ieee transactions on infor-
mation theory. IEEE Transactions on Information Theory, pages 325–343, 2000.

2. A. Chapman, R. A. Micillo, R. Kota, and N. Jennings. Decentralised dynamic
task allocation: A practical game-theoretic approach. the Eighth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09), pages
915–922, May 2009.

3. M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. In the Proceed-
ings of the 20th Internation Joint Conference on Artificial Intelligence (IJCAI-07),
pages 68–73, 2007.

4. J. Davin and P. Modi. Hierarchical variable ordering for multiagent agreement
problems. In the Proceedings of AAMAS, pages 1433–1435, 2006.

5. J. Davin and P. J. Modi. Impact of problem centralization in distributed con-
straint optimization algorithms. In the Proceedings of the fourth international
joint conference on Autonomous agents and multiagent systems, pages 1057–1063,
July 2005.

18 Authors Suppressed Due to Excessive Length

6. E.Bigdeli, M.Rahmaninia, and M.Afsharchi. Pkopt: Faster k-optimal solution for
dcop by improving group selection strategy. In the proceeding 22th international
conference on tools with Artificial Intelligence (ICTAI). October, July 2010.

7. H. Katagishi and J. P. Pearce. Distributed dcop algorithm for arbitrary k-optima
with monotonically increasing utility. In CP Workshop on Distributed Constraint
Reasoning, September 2007.

8. C. Kiekintveld, Z. Yin, A. Kumar, and M. Tambe. Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In the Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems, May 2010.

9. R. Maheswaran, E. Bowring, J. Pearce, P. Varakantham, and M.Tambe. Tak-
ing dcop to the real world: efficient complete solutions for distributed multi-event
scheduling. In the Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multi Agent Systems (AAMAS 2004), pages 310–317, 2004.

10. R. Mailler and V. Lesser. Solving distributed constraint optimization problems us-
ing cooperative mediation. In Proceedings of Third International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 438–445.
IEEE Computer Society, 2004.

11. P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:asynchronous distributed
constraint optimization with quality guarantees. ARTIFICIAL INTELLIGENCE,
16(1-2):149–180, 2005.

12. J. P. Pearce, M. Tambe, and R. T. Maheswaran. Solving multiagent networks using
distributed constraint optimization. AI Magazine, 28(3):47–66, September 2008.

13. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimiza-
tion. In the Proceedings of the International Joint Conference on Artificial Intelli-
gence, pages 266–271, aug 2005.

14. M. Rahmaninia, E. Bigdeli, and M. Afsharchi. Solving dstributed constraint opt-
mazation problem: An evalutionary approach. In the Proceedings of International
Conference on Agents and Artificial Intelligence (ICAART), January 2011.

15. M. Silaghi and M. Yokoo. Dynamic dfs tree in adopt-ing. In the Proceedings of
AAAI, pages 763–769, 2007.

16. W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: An asynchronous branch-and-
bound dcop algorithm. In the Proceedings of AAMAS, pages 591–598, 2008.

17. W. Yeoh, X. Sun, and S. Koenig. Trading off solution quality for faster computation
in dcop search algorithms. In the Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 354–360, 2009.

18. Z. Yin, C. Kiekintveld, A. Kumar, and M. Tambe. Local optimal solutions for dcop:
New criteria, bound, and algorithm. In AAMAS 2009 Workshop on Optimization
in Multi-Agent Systems, May 2009.

Balanced Exploitation and Exploration for Max-sum
Distributed Constraint Optimization

Hilla Peled and Roie Zivan,
Industrial Engineering and Management department,

Ben Gurion University of the Negev,
Beer-Sheva, Israel

{hillapel,zivanr}@bgu.ac.il

Abstract. Distributed Constraint Optimization Problems (DCOPs) are NP-hard
and therefore most recent studies consider incomplete (local) search algorithms
for solving them. Specifically, the Max-sum algorithm has drawn attention in
recent years and has been applied to a number of realistic applications. Unfortu-
nately, in many cases Max-sum does not converge. When problems include cycles
of various sizes in the factor graph upon which Max-sum performs, the algorithm
does not converge and the states that it visits are of low quality.
In this paper we advance the research on incomplete search for DCOPs by: (1)
Proposing a version of the Max-sum algorithm that operates on an alternating di-
rected acyclic graph (Max-sum AD), which guarantees convergence. (2) Propos-
ing exploration methods that allow the algorithm to escape the high quality state
to which it converges. Our empirical study reveals the improvement in perfor-
mance of the proposed exploitive algorithm when combined with exploration
methods, compared with the performance of the standard Max-sum algorithm.

1 Introduction

The Distributed Constraint Optimization Problem (DCOP) is a general model for dis-
tributed problem solving that has a wide range of applications in Multi-Agent Systems
and has generated significant interest from researchers [7, 8, 13, 10].

A number of studies on DCOPs presented complete algorithms [7, 8, 4]. However,
since DCOPs are NP-hard, there is a growing interest in the last few years in local
(incomplete) DCOP algorithms [6, 13, 14, 11, 12]. Although local search does not guar-
antee that the obtained solution is optimal, it is applicable for large problems and com-
patible with real time applications.

The general design of the state of the art local search algorithms for DCOPs is
synchronous. In each step of the algorithm an agent sends her assignment to all her
neighbors in the constraint network and receives the assignment of all her neighbors.
They differ in the method agents use to decide whether to replace their current value
assignments to their variables, e.g., in the max gain messages algorithm (MGM) [6],
the agent that can improve her state the most in her neighborhood replaces her assign-
ment. A stochastic decision whether to replace an assignment is made by agents in the
distributed stochastic algorithm (DSA) [13].

An incomplete algorithm that does not follow the standard structure of distributed
local search algorithms and has drawn much attention recently is the Max-sum algo-
rithm [3]. In contrast to standard local search algorithms, agents in Max-sum do not
propagate assignments but rather calculated utilities (or costs) for each possible value
assignment to their neighboring agents’ variables. The general structure of the algorithm
is exploitive, i.e., the agents attempt to compute the best costs/utilities for possible value
assignments according to their own problem data and recent information they received
via messages from their neighbors.

The growing interest in the Max-sum algorithm in recent years included its use for
solving DCOPs representing various multi-agent applications, e.g., sensor systems [11]
and task allocation for rescue teams in disaster areas [9]. In addition, a method for ap-
proximating the distance of the solution found by Max-sum from the optimal solution
for a given problem was proposed [2]. This version required the elimination of some
of the problem’s constraints in order to reduce the DCOP to a tree structured problem
which can be solved in polynomial time. Then, the sum of the worst costs for all elimi-
nated constraints serves as the bound on the approximation of the optimal solution.

Previous studies have revealed that Max-sum does not always converge to a solu-
tion [3]. In fact, in some of the cases where it does not converge, it traverses states with
low quality solutions and thus, at the end of the run the solution reported is of poor
quality. This pathology occurs when the constraint graph of the problem includes cy-
cles of various sizes. Unfortunately, many DCOPs which were investigated in previous
studies are dense and indeed include such cycles (e.g., [7, 4]). Our experimental study
revealed that for random problems, for a variety of density parameters from as low as
10%, Max-sum does not converge.

An attempt to cope with the in-convergence of Max-sum was proposed in [3]. It
included the union of groups of agents to clusters of adjacent agents represented by
a single agent in the cluster. The constraints between the agents in the cluster were
aggregated and held by the agent representing the cluster. Thus, it required that some
constraints would be revealed in a preprocessing phase to agents which are not included
in the constraints (the constraint between agents A1 and A2 is revealed to agent A3).
The amount of information that is aggregated is not limited and in dense problems
can result in a single agent holding a large part of the problem’s constraints (partial
centralization). In this work we avoid such an aggregation of the problem’s data in a
pre-processing phase and propose algorithms and methods that solve the original DCOP
(as the standard Max-sum algorithm does).

In this paper we contribute to the understanding of incomplete search for DCOPs
by:

1. Proposing a new version of the Max-sum algorithm which uses an alternating di-
rected acyclic graph (DAG). The proposed algorithm (Max-sum AD) avoids cycles
by performing iterations of the algorithm in which messages are sent according to a
predefined order. In order not to ignore constraints of the DCOP, after a number of
iterations which guarantees the convergence of the algorithm, the order from which
the direction of the DAG is derived is reversed. Then, the algorithm is performed
on the reversed DAG until it converges again. We prove that the maximal number
of iterations in a single direction required for the algorithm to converge is equal

to the longest path in the DAG, l (linear in the worst case). Thus, by performing
l iterations in each direction we converge to a solution after considering all the
constraints in the DCOP.

2. Proposing exploration heuristic methods for Max-sum AD. The proposed meth-
ods allow the algorithm to converge to different solutions of high quality. By using
the algorithm within the anytime framework, proposed for local search on DCOPs
in [14], we can select the best among these solutions to be reported by the algorithm
at the end of its run. To best of our knowledge, no exploration methods were pro-
posed for Max-sum to date. Thus, we are the first to balance between exploration
and exploitation of the Max-sum algorithm. Our empirical study demonstrates the
success of this balanced performance in comparison with the standard Max-sum
algorithm.

The rest of this paper is organized as follows: DCOPs are presented in Section 2.
Section 3 presents the standard Max-sum algorithm. The Max-sum AD algorithm is
presented in Section 4. Section 5 presents exploration methods for the Max-sum AD
algorithm. Section 6 includes an evaluation of the proposed algorithm and exploration
methods. Our conclusions are presented in Section 7.

2 Distributed Constraint Optimization

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set of agents A1, A2, ..., An. X is a
finite set of variables X1,X2,...,Xm. Each variable is held by a single agent (an agent
may hold more than one variable). D is a set of domains D1, D2,...,Dm. Each domain
Di contains the finite set of values which can be assigned to variable Xi. We denote an
assignment of value d ∈ Di to Xi by an ordered pair 〈Xi, d〉. R is a set of relations
(constraints). Each constraint C ∈ R defines a non-negative cost for every possible
value combination of a set of variables, and is of the form C : Di1 × Di2 × . . . ×
Dik → R+∪{0}. A binary constraint refers to exactly two variables and is of the form
Cij : Di ×Dj → R+ ∪ {0}. A binary DCOP is a DCOP in which all constraints are
binary. A partial assignment (PA) is a set of value assignments to variables, in which
each variable appears at most once. vars(PA) is the set of all variables that appear in
PA, vars(PA) = {Xi | ∃d ∈ Di ∧ 〈Xi, d〉 ∈ PA}. A constraint C ∈ R of the form
C : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0} is applicable to PA if Xi1 , Xi2 , . . . , Xik ∈
vars(PA). The cost of a partial assignment PA is the sum of all applicable constraints
to PA over the assignments in PA. A full assignment is a partial assignment that includes
all the variables (vars(PA) = X). A solution is a full assignment of minimal cost.

3 Standard Max-sum

The Max-Sum algorithm [3] operates on a factor graph which is a bipartite graph in
which the nodes represent variables and constraints 1. Each node representing a vari-
able of the original DCOP is connected to all function-nodes that represent constraints

1 We preserve the terminology of [3] and call constraint representing nodes in the factor graph
“function nodes”.

Fig. 1. Transformation of a DCOP to a factor graph

which it is involved in. Similarly, a function-node is connected to all variable-nodes
that represent variables in the original DCOP which are included in the constraint it
represents. Agents in Max-sum perform the roles of different nodes in the factor graph.
We will assume that each agent takes the role of the variable-nodes which represent her
own variables and for each function-node, one of the agents who’s variable is involved
in the constraint it represents, performs its role. Variable-nodes and function-nodes are
considered as “agents” in Max-sum, i.e., they can send messages, read messages and
perform computation.

Figure 1 demonstrates the transformation of a DCOP to a factor graph. On the top
we have a DCOP with three agents, each holding a single variable. All variables are
connected by binary constraints. On the bottom we have a factor graph. Each agent
takes the role of the node representing her own variable and the role of one of the
function-nodes representing a constraint it is involved in.

Figure 2 presents a sketch of the Max-sum algorithm. The code for variable-nodes
and function-nodes is similar apart from the computation of the content of messages to
be sent. For variable-nodes only data received from neighbors is considered. In mes-
sages sent by function-nodes the content is produced considering data received from
neighbors and the original constraint represented by the function-node.

It remains to describe the process of the production of messages by the factor graph
nodes. A message sent from a variable-node representing variable x to a function-node
f at iteration i includes for each of the values d ∈ Dx, the sum of costs/utilities for this
value she received from all function neighbors apart from f in iteration i− 1. Formally,

Max-sum (node n)
1. Nn ← all of n’s neighboring nodes
2. while (no termination condition is met)
3. collect messages from Nn

4. for each n′ ∈ Nn

5. if (n is a variable-node)
6. produce message mn′

using messages from Nn \ {n′}
7. if (n is a function-node)
8. produce message mn′

using constraint and messages from Nn \ {n′}
9. send mn′ to n′

Fig. 2. Standard Max-sum.

for value d ∈ Dx the message will include:
∑

f ′∈Fx,f ′ 6=f cost(f
′.d), where Fx is the

set of function-node neighbors of variable x and cost(f ′.d) is the cost/utility for value
d included in the message received from f ′ in iteration i− 1.

A message sent from a function-node f to a variable-node x in iteration i includes
for each possible value d ∈ Dx the best (minimal in a minimization problem, maximal
in a maximization problem) cost/utility that can be achieved from any combination of
assignments to the variables involved in f apart from x and the assignment of value d
to variable x. Formally, in a minimization problem, the message from f to x includes
for each value d ∈ Dx: minass−xcost(〈x, d〉, ass−x), where ass−x is a possible com-
bination of assignments to variables involved in f not including x. The cost of an as-
signment a = (〈x, d〉, ass−x) is: f(a) +

∑
x′∈Xf ,x′ 6=x cost(x

′.d′). Where f(a) is the
original cost in the constraint represented by f for the assignment a and cost(x′.d′) is
the cost which was received in the message sent from node-variable x′ in iteration i−1,
for the value d′ which is assigned to x′ in a.

While the selection of value assignments to variables is not a part of the Max-sum
algorithm, we need to describe how the solution is selected at the end of the run. Each
variable selects the value assignment which received the best (lowest for a minimization
problem and highest for a maximization problem) sum of costs/utilities included in
the messages which were received most recently from its neighboring function-nodes.
Formally, in a minimization problem, for variable x we select the value d̂ ∈ Dx as
follows: d̂ = mind∈Dx

∑
f∈Fx

cost(f.d). Notice that the same information used by
the variable-node to select the content of the messages it sends is used for selecting its
assignment.

4 Max-sum with an Alternating DAG (Max-sum AD)

In this section we propose a version of the Max-sum algorithm which guarantees con-
vergence without eliminating constraints of the original DCOP. We will discuss explo-
ration methods for this version of the algorithm in the next section.

In order to guarantee the convergence of the algorithm we need to avoid the pathol-
ogy described in [3], caused by cycles of various sizes in the factor graph. To this end
we select an order on all nodes in the factor graph. For example, we can order nodes

according to the indexes of agents performing their role in the algorithm. A node who’s
role is performed by agent Ai is ordered before a node who’s role is performed by agent
Aj if i < j. For variable and function nodes held by the same agent, we can determine
(without loss of generality) that a variable-node is ordered before function-nodes held
by the same agent (and not the other way around). Then, we perform the algorithm for
l iterations allowing nodes to send messages only to nodes which are “after” them ac-
cording to this order (in the case of ordering by indexes, send messages only to agents
with larger indexes than their own). After l iterations in this direction, the order is re-
versed and messages are sent for the next l iterations only in the opposite direction (e.g.,
to agents with lower indexes) . In each direction the Max-sum algorithm is performed
as described in Section3 with the exception of the restriction on the messages. Thus, in
every calculation of a message sent by, for example, variable-node x to function-node
f , all of the most recent messages x received from its neighboring functions f ′ ∈ Fx,
f ′ 6= f are considered. However, for neighbors which are before x according to the
current order, the most recent messages were received following the previous iteration,
while from neighboring function-nodes which are after x according to the current order,
the last messages were received before the last alternation of directions.

The resulting algorithm Max-sum AD has messages sent according to a directed
acyclic graph (DAG) which is determined by the current order. Each time the order
changes we get a DAG on which messages on each edge of the graph are sent only in a
single direction.

Max-sum AD (node n)
1. o← select an order on all nodes in the factor graph
2. direct changes← 0
3. Nn ← all of n’s neighboring nodes
4. while (no termination condition is met)
5. if (direct changes is even)
6. current order ← o
7. else
8. current order ← reverse(o)
9. Nprev n ← {n̂ ∈ Nn :

n̂ is before n in current order}
10. Nfollow n ← Nn \Nprev n

11. for(k iterations)
12. collect messages from Nprev n

13. for each n′ ∈ Nfollow n

14. if (n is a variable-node)
15. produce message m′

n using
messages from Nn \ {n′}

16. if (n is a function-node)
17. produce message mn′ using constraint

and messages received from Nn \ {n′}
18. send mn′ to n′

19. direct changes← direct changes+ 1

Fig. 3. Max-sum AD.

Figure 3 presents a sketch of the Max-sum AD algorithm. It deffer’s from standard
Max-sum in the selection of directions and the disjoint sets of neighbors from whom
the nodes receive messages and to whom they send messages (lines 5 - 10). Keeping
track of the number of direction changes allows us to determine the current direction
and act accordingly (lines 2, 5 and 19).
Next we prove the convergence of Max-sum AD.

Lemma 1 For any node n in the factor graph, if l′ is the longest path in the DAG from
some other node to n, then after l′ iterations in the same direction, the content of the
messages n receives does not change until the next change of direction.

Proof: We prove by induction on l′. For l′ = 0, node n does not receive messages from
any other node as long as the direction does not change. We assume the correction of
the Lemma for any length l′ of a path shorter than the longest path in the DAG, l. If
we denote the last node in the path whose length is equal to l by n′, then according to
the assumption, all the neighbors that are sending messages to n′ after l − 1 iterations
receive messages with the same content in all the following iterations with the same
current order. Thus, after l − 1 iterations the data they use to produce the content of
the messages they send is fixed. Therefore, in the following iterations they will send the
same messages to node n′. �.

An immediate corollary from Lemma 1 is that agents will not change their assign-
ment selection for their variable after l iterations in the same direction until the direction
is alternated, since the information used by variable-nodes for selecting an assignment
is the same information they use for generating messages to function-nodes (see Sec-
tion 3). Thus, the algorithm converges to a single complete assignment. The decision
to escape it by changing direction is an algorithmic decision. Notice that after the first
alternation of direction, although we send messages only in a single direction, the data
passed in the last messages which were received before the change in direction is used
for the calculation of the content of messages to be sent. Thus, all the constraints of the
problem are considered.

5 Exploration Methods for Max-sum AD

The Max-sum AD algorithm presented above converges in linear time. After perform-
ing l iterations in each direction (where l as before is the length of the longest path in
the DAG) we allow each of the constraints in the problem to be considered in the final
selection of assignments, i.e., the algorithm is completely exploitive and converges to
a solution after considering all the DCOP constraints . This process is deterministic.
If after the second direction change we set all costs/utilities in the messages received
most recently to zero, and perform l iterations according to the initial order and l in
the reversed order, we will converge to the same solution. We will refer to this ex-
ploitive version of Max-sum AD in which after every even change of directions we set
all costs/utilities to zero as plain. Next, we propose exploration methods which can
allow the Max-sum AD algorithm to continue the search for a better solution.

1. In the first, instead of setting the costs/utilities to zero after even direction changes
we continue to accumulate them as in standard Max-sum. We will refer to this
method as standard.

2. The second method selects a random number of iterations to be performed in each
direction. After each change of direction, a random number 1 ≤ l′ ≤ k is selected
uniformly and the algorithm is performed for l′ iterations in one direction before a
new l′ is selected for the number of iterations to be performed in the reversed di-
rection. We denote this method by Random Number of Iterations Selection (RNIS).
The range k should allow convergence in some cases and avoid them in others. In
our experiments we used k = n where n was the number of nodes in the factor
graph. There exists multiple methods for a random number selection in distributed
systems (e.g., [1]). Specifically in Max-sum AD we can have a single agent select
the random numbers of iterations for future rounds and propagate this selection to
all other agents via a BFS tree on the DAG as in the anytime framework proposed
in [14].

3. The third method handles an unlucky selection of the order on the factor graph
nodes which determines the DAG the algorithm uses. It selects a random order and
performs the algorithm in both directions on this order before selecting an order
again. We denote this method by Random Order Selection (ROS). In our imple-
mentation we selected an agent to be “first” in the order randomly and all the other
agents were ordered according to their indexes following this agent (e.g., in a prob-
lem with 10 agents, if agent A5 is selected to be first, the order is A5, A6, ..., A10, A1, ..., A4).
We determined that for nodes which their role is performed by the same agent,
variable-nodes come before function-nodes in the order.

6 Experimental Evaluation

We present a set of experiments that demonstrate the advantage of the proposed Max-
sum AD algorithm when combined with the proposed exploration methods, over the
Max-sum algorithm.

The experiments were performed on minimization random DCOPs in which each
agent holds a single variable. Each variable had five values in its domain. The network
of constraints in each of the experiments, was generated randomly by selecting the prob-
ability p1 of a constraint among any pair of agents/variables. The cost of any pair of as-
signments of values to a constrained pair of variables was selected uniformly between 1
and 10. Such uniform random DCOPs with constraint networks of n variables, k values
in each domain, a constraint density of p1 and a bounded range of costs/utilities are
commonly used in experimental evaluations of centralized and distributed algorithms
for solving constraint optimization problems [5, 4]. Other experimental evaluations of
DCOPs include random max graph coloring problems [7, 13, 3], which are a subclass
of random generated DCOPs.

Our experimental setup includes problems generated with 35 agents each. The factor
graph generated for all versions of the Max-sum algorithm had agents performing the
role of the variable-nodes representing their own variables, and for each constraint, we
had the agent with the smaller index involved in it perform the role of the corresponding

Fig. 4. Solution cost of Max-sum for every 10th iteration when solving problems with very low
density

function-node. Figure 4 presents results for the standard Max-sum algorithm solving
problems with very low density. Only for problems with extremely low density the
algorithm converges. Thus, for the comparison of Max-sum with Max-sum AD, we
generated problems with two density parameters p1 = 0.1 and p1 = 0.5. For both of
these density parameters Max-sum did not converge.

The Max-sum algorithm was compared with four versions of Max-sum AD: plain,
standard, RNIS and ROS (see Section 5 for their description). We generated 50 ran-
dom problems and ran the algorithms for 700 iterations on each of them. The results we
present are an average on those 50 runs. To make sure that the Max-sum AD algorithms
converge we changed directions every 70 iterations (except in the RNIS version) which
is the longest possible path in the DAG (in case the graph has a chain structure).

For each of the algorithms we present both the sum of the costs of constraints in
the assignment it would have selected in each iteration and the anytime value (the best
sum of costs found for some state visited up to this iteration). The framework proposed
in [14] enhances DCOP local search algorithms with the anytime property. It uses a
Breadth First Search (BFS) tree on the constraints graph in order to accumulate the
costs of agents’ states in the different steps during the execution of the algorithm. The
anytime property in this framework is achieved with a very low overhead in time, mem-
ory and communication. In addition, it preserves a higher level of privacy than other
DCOP algorithms which use tree structures [14].

Figure 5 presents for problems with constraint density p1 = 0.1, for every ten’th
iteration, the cost of the solution that would have been selected by the algorithm if the
run would terminate at this iteration (we do not present the cost at each iteration to pre-
vent the figure from being too dense). It is apparent that while Max-sum traverses states
of low quality (with high costs) and the plain version of Max-sum AD converges to the
same solution over and over again, the versions of Max-sum AD which are combined
with exploration methods traverse lower cost states. The performance of RNIS dete-

Fig. 5. Solution cost for every 10th iteration when solving problems with low density (p1 = 0.1)

Fig. 6. Anytime cost for every 10th iteration when solving problems with low density (p1 = 0.1)

riorates after the fourth change in direction and later the performance of the standard
heuristic deteriorates as well. On the other hand, the ROS heuristic continues to con-
verge to high quality states with low costs. An interesting phenomenon to point out is
that Max-sum visits relatively high quality states in the early iterations of the algorithm
before its deterioration to an unsteady traverse of states with low quality. It seems that

Fig. 7. Solution cost for every 10th iteration when solving problems with high density (p1 = 0.5)

Fig. 8. Anytime cost for every 10th iteration when solving problems with high density (p1 = 0.5)

it takes a number of iterations before the effect of the cycles on its performance begin.
The anytime results for this experiment are presented in Figure 6. Notice that the any-
time result selects the best among states in all the iterations and not only the ones which
their cost was presented in Figure 5.

Similar results are presented in Figures 7 and 8 for problems with constraint density
p1 = 0.5. On dense problem the advantage of the different versions of Max-sum AD
over the standard Max-sum is more apparent. In addition the plain version of the algo-
rithm converges to a solution of high quality and the advantage achieved by the explo-
ration methods is less apparent. Here, the exploitive performance which we observed

Fig. 9. A closer look at the anytime cost for every 10th iteration, starting after 140 iterations
(p1 = 0.5)

for Max-sum in the first iterations of Figure 5 does not appear. This is probably because
the size of the cycles is smaller, thus their destructive effect is instantaneous. A closer
look at the anytime result of the algorithms after the first 140 iterations is presented in
Figure 9. While the ROS method does not improve on the plain method, the standard
method and RNIS find solutions with lower costs. All the versions of Max-sum AD out-
perform Max-sum. It is important to notice that while the average cost in each iteration
as presented in Figure 7 does not reveal an advantage of the exploration methods the
anytime result does. This is because different iterations were successful when solving
different problems. Thus, the average in each iteration does not reveal this success.

Figure 10 demonstrates the balance between exploitation and exploration of the
proposed methods by presenting the states in the run of a single problem for ROS and
RNIS. It is apparent that after each change in direction there is an exploration phase and
a convergence to a solution. RNIS converges only when the random selected number of
iterations in the same direction is large enough while ROS converges after each change
in direction.

7 Conclusion

The Max-sum algorithm offers an innovative approach for solving DCOPs. Unfortu-
nately, when problems include cycles of various sizes in the factor graph, the algorithm
does not converge and the states it visits are of low quality.

In this paper we proposed a new version of the Max-sum algorithm, Max-sum AD,
which guarantees convergence. Max-sum AD uses an alternating DAG to avoid cycles.
We proved that the algorithm converges if the number of iterations it performs in a
single direction is equal to or larger than the longest path in the DAG.

Fig. 10. A single run of RNIS (left) and ROS (right)

The guaranteed convergence of the strictly exploitive (“plain”) algorithm serves as a
baseline on which we add exploration elements and allow the algorithm to continue the
search for a high quality solution. The use of the algorithm within the anytime frame-
work proposed in [14] allows the selection of the best among the complete assignments
it converges to as the algorithm’s outcome.

Our empirical study reveals the advantage of the Max-sum AD algorithm when
combined with exploration methods over Max-sum. In the future we intend to investi-
gate the compatibility of our exploration methods to realistic applications.

Acknowledgment: We thank Alessandro Farinelli for helping us understand the Max-
sum algorithm.

References

1. B. Awerbuch and C. Scheideler. obust random number generation for peer-to-peer systems.
Principles of Distributed Systems, Lecture Notes in Computer Science, 4305:275–289, 2006.

2. A. Farinelli, A. Rogers, and N. R. Jennings. Bounded approximate decentralised coordi-
nation using the max-sum algorithm. In Proc. 13th Workshop on Distributed Constraint
Reasoning (DCR) at IJCAI-09), pages 46–59, Pasadena, CA, July 2009.

3. A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In Proc. 7th International Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS-08), pages 639–646, 2008.

4. A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward bounding. J. of Artificial
Intelligence Research, 34:25–46, 2009.

5. J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency. Artificial
Intelligence, 159:1–26, 2004.

6. R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed algorithms for dcop: A graphical-
game-based approach. In Proc. Parallel and Distributed Computing Systems PDCS), pages
432–439, September 2004.

7. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous distributed constraints
optimizationwith quality guarantees. Artificial Intelligence, 161:1-2:149–180, January 2005.

8. A. Petcu and B. Faltings. A scalable method for multiagent constraint optimization. In
IJCAI, pages 266–271, 2005.

9. S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R. Jennings. Decentralized coordina-
tion in robocup rescue. Comput. J., 53(9):1447–1461, 2010.

10. M. E. Taylor, M. Jain, Y. Jin, M. Yokoo, and M. Tambe. When should there be a ”me” in
”team”?: distributed multi-agent optimization under uncertainty. In Proc. of the 9th confer-
ence on Autonomous Agents and Multi Agent Systems (AAMAS 2010), pages 109–116, May
2010.

11. W. T. L. Teacy, A. Farinelli, N. J. Grabham, P. Padhy, A. Rogers, and N. R. Jennings. Max-
sum decentralised coordination for sensor systems. In AAMAS ’08: Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems, pages 1697–
1698, 2008.

12. X. S. W. Yeoh and S. Koenig. Trading off solution quality for faster computation in dcop
search algorithms. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 354–360, July 2009.

13. W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed stochastic search and dis-
tributed breakout: properties, comparishon and applications to constraints optimization prob-
lems in sensor networks. Artificial Intelligence, 161:1-2:55–88, January 2005.

14. R. Zivan. Anytime local search for distributed constraint optimization. In AAAI, pages 393–
398, Chicago, IL, USA, 2008.

Decentralised Parallel Machine Scheduling for
Multi-Agent Task Allocation

Kathryn S. Macarthur1, Meritxell Vinyals2, Alessandro Farinelli3,
Sarvapali D. Ramchurn4, and Nicholas R. Jennings5

{ksm08r, sdr, nrj}@ecs.soton.ac.uk1,4,5, meritxell@iiia.csic.es2,

alessandro.farinelli@univr.it3

1,4,5 School of Electronics and Computer Science, University of Southampton, UK
2 IIIA, CSIC, Barcelona, Spain
3 University of Verona, Italy

Abstract. Multi-agent task allocation problems pervade a wide range
of real-world applications, such as search and rescue in disaster manage-
ment, or grid computing. In these applications, where agents are given
tasks to perform in parallel, it is often the case that the performance
of all agents is judged based on the time taken by the slowest agent
to complete its tasks. Hence, efficient distribution of tasks across het-
erogeneous agents is important to ensure a short completion time. An
equivalent problem to this can be found in operations research, and is
known as scheduling jobs on unrelated parallel machines (also known
as R||Cmax). In this paper, we draw parallels between unrelated parallel
machine scheduling and multi-agent task allocation problems, and, in so
doing, we present the decentralised task distribution algorithm (DTDA),
the first decentralised solution to R||Cmax. Empirical evaluation of the
DTDA is shown to generate solutions within 86–97% of the optimal on
sparse graphs, in the best case, whilst providing a very good estimate
(within 1%) of the global solution at each agent.

1 Introduction

Multi-agent task allocation problems pervade a wide range of real-world scenar-
ios, such as search and rescue in disaster management [10], and environmental
monitoring with mobile robots [12]. In such problems, a set of agents, such as
rescue agents in search and rescue, must work together to perform a set of tasks,
often within a set amount of time. In particular, agents are given tasks to per-
form in parallel, and the performance of the team is usually judged based on the
time taken by the slowest member of the team. For example, consider a team
of firefighters that must put out fires in a building before medical personnel can
enter and provide first aid for civilians — in this case, the medical personnel
can enter the building only when all fires have been extinguished. In this case,
the task allocation problem we focus on would consist of firefighter agents and
firefighting tasks. Each firefighter would be assigned a number of fires to put out,
and medical personnel would only be able to enter after the last fire has been

2 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

extinguished by the last firefighter. Thus, the performance of all the firefighters
(i.e., how early the medical personnel can enter the building) is judged on how
long the last firefighter has taken to finish. Hence, efficient distribution of tasks
across such heterogeneous agents is important to ensure an early completion
time. In more detail, in this context, agents must find a solution that ensures all
tasks are performed in the shortest amount of time.

Now, an analogue to this particular class of task allocation problems has been
widely studied in operations research and is known as scheduling on unrelated
parallel machines, or R||Cmax [4]. In this problem, there are a set of heteroge-
neous machines, and a set of tasks which must be performed by those machines
(equivalent to agents), potentially under some constraints (for example, where
a given machine cannot execute certain tasks), such that the maximum finish
time across machines, known as the makespan, is minimised. However, while
many algorithms (for example, [5,6,8], see [9] for a review) have been developed
to solve R||Cmax, they all require the existence of some central authority. How-
ever, this introduces a central point of failure: for example, if communication to
and from the central authority were to fail, then another authority would have
to be found so that it could re-compute the solution and try to communicate
it. In addition, in realistic large-scale environments, which can potentially have
hundreds of agents, there is a need for an algorithm that will scale well in terms
of communication and computation, which centralised algorithms are unable to
do. Hence, the challenge we face is to build decentralised algorithms that are
robust to failure, and so, there is a clear need for a multi-agent systems solution
to solve R||Cmax in our domains.

Against this background, in this paper, we develop a novel, decentralised,
approximate algorithm to solve the unrelated parallel machine scheduling prob-
lem, called the Decentralised Task Distribution algorithm (DTDA). DTDA uses
localised message passing through the min-max algorithm to find good quality,
per-instance bounded approximate solutions in a distributed, efficient manner.
In more detail, the min-max algorithm is a localised message passing algorithm
from the GDL (Generalised Distributive Law) family [1], which factorises the
global problem into local agent-level sub-problems, by exploiting possible in-
dependence among agents’ actions. For example, assume two firefighters are in
distant parts of a large building, and must decide which of the fires surrounding
them they must put out. In this situation, the two firefighters can avoid con-
sidering each others’ actions but should coordinate their own actions with any
firefighters which are close by, and therefore would be making their decisions
regarding some of the same fires.

This paper advances the state of the art in the following ways:

– First, we provide a novel representation of the R||Cmax problem, in terms
of a junction graph, which is a graphical model frequently used to represent
factored functions [7].

– Second, we show how we can simplify the min-max algorithm, and then run
it over this junction graph representation to generate approximate solutions
to the R||Cmax problem, with per-instance bounds, through decentralised

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 3

message passing between agents. To the best of our knowledge, this is the
first known application of min-max to the R||Cmax problem.

– Third, we empirically evaluate our approach, by comparing our performance
with two benchmark algorithms (optimal and greedy), on graphs with differ-
ing average degrees. We find that it produces solutions within 86–97% of the
optimal, in the best case, in sparse environments, and outperforms greedy
by up to 16%.

The rest of this paper is structured as follows. In Section 2, we formulate
R||Cmax. Next, we decompose the problem in Section 3 so that it can be dis-
tributed, and discuss how we simplify the min-max algorithm in Section 4. Then,
we present our decentralised algorithm in Section 5. Next, we empirically eval-
uate the quality of the solutions given by the DTDA in Section 6. Finally, in
Section 7, we conclude.

2 Problem Formulation

In this section, we formally describe the problem we introduced in Section 1.
In more detail, our problem consists of finding an allocation of tasks to agents
in order to to optimize overall execution performance in terms of the system’s
makespan. First, in Section 2.1, we provide the basic definitions of the environ-
ment. Then, in Section 2.2, we describe our objective function, which formalises
the analogy with the R||Cmax problem overviewed in Section 1.

2.1 Basic Definitions

Let the set of agents be denoted as A = {a1, a2, . . . , a|A|}, and the set of tasks to
be completed as T = {t1, t2, . . . , t|T |}. Each agent ai can perform a set of tasks
Ti ⊆ T . For each agent ai ∈ A we denote a cost function, χi : Ti → R+, that
returns the total run–time incurred at ai to perform some task t ∈ Ti. Thus,
χi(tk) returns the application-specific runtime required for agent ai to perform
task tk. A graphical representation of an example environment is given in Figure
1, in which there are 3 agents (circles) and 4 tasks (squares). Each agent is
connected to the tasks it can potentially perform by lines in the graph, and
edges are labelled with χi(tk). Thus, for example, agent a1 will incur a runtime
of 30 to perform task t2 whereas agent a2 will only incur a runtime of 20.

Given this, the problem is to schedule all of the tasks in T across the agents in
A such that all tasks are completed and the makespan is minimised. We formally
define this objective in the next section.

2.2 Objective Function

To show the analogy with R||Cmax, consider the set of jobs as the set of agents’
tasks and the set of machines as the set of agents. Specifically, the objective of
R||Cmax is to find a mapping m : A → 2T from tasks to agents, such that the

4 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

t1

a1

a2

a3

t2

t3

t4

20

30
80

70

10

60

50

Fig. 1. A graphical representation of a sample R||Cmax problem, in which agents are
represented by circles, and tasks by squares. Edges between agents and tasks indicate
an agent can perform a task, at a cost denoted on the edge.

makespan is minimized. In particular, we wish to find this mapping subject to
a number of constraints. First, each task must only be computed by one agent:

m(ai) ∩m(aj) = ∅,∀ai, aj ∈ A, i 6= j

and second, that all tasks must be computed:⋃
ai∈A

m(ai) = T

in which m(ai) denotes the set of tasks assigned to agent ai, under mapping m.
Given this, our objective is to find a mapping m∗ as follows:

m∗ = arg min
m∈M

max
ai∈A

∑
tk∈m(ai)

χi(tk) (1)

where M is the set of all possible mappings. For instance, Figure 2 depicts an
optimal mapping of the problem in Figure 1 where optimal assignments from
agents to tasks are shown with arrows. Thus, the optimal mapping m∗ is defined
as: m∗(a1) = {t1, t3}, m∗(a2) = {t2} and m∗(a3) = {t4} with a makespan value
of max(10 + 50, 20, 70) = 70.

80

60

t1

a2

a3

t3

t470

50

30
20

t2

a110

Fig. 2. An optimal mapping from agents to tasks, for the problem in Figure 1. Arrows
between agents and tasks depict an agent being assigned to a task.

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 5

Now, in order to solve the objective function given in Equation (1) in a
decentralised way, we first decompose the problem so that it can be modelled as
a junction graph, like that shown in Figure 3.

3 R||Cmax Representation

In more detail, a junction graph [7] is an undirected graph such that:

– each node i, known as a clique, represents a collection of variables, Xi.
– each clique node i in the junction graph has a potential, ψi : Xi → R+,

which is a function defined over the set of variables in the clique.
– two clique nodes i and j are joined by one edge that contains the intersection

of the variables they represent.

Using this representation allows us to explicitly represent the interactions be-
tween agents, in terms of the common tasks they can complete. To do this, we
represent each agent as a clique in the graph containing variables relating to
the tasks that agent can complete. In so doing, the representation facilitates the
application of a particular GDL [1] message-passing algorithm, called min-max,
which we can use to find a solution to Equation (1) in a decentralised manner.
We explain min-max in more detail in Section 4.

a1
x1,x2,x3

a2
x2,x3

a3
x3,x4

x2,x3 x3

x3

Fig. 3. The junction graph formulation of the scenario given in Figure 1. Large circles
are cliques, with the elements of the cliques listed. Edges are labelled with common
variables between cliques.

In order to apply min-max, we reformulate the objective function in Equation
(1) in terms of a junction graph. Figure 3 depicts the junction graph representing
the problem in Figure 1. We define the set of variables X = {x1, . . . , x|T |} to
include one variable xk for each task tk ∈ T . Thus, the junction graph in Figure
3 contains four variables, {x1, x2, x3, x4}, which correspond to the four tasks in
Figure 1. Each variable xk ∈ X takes a value from its domain, which contains

6 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

all of the IDs of agents that can complete task tk. Hence, if xk = i, then we
know that agent ai is allocated to tk. For instance, the domain of x2 in Figure
3 is composed of two values, 1 and 2, corresponding to the indices of the agents
that can perform task 2, a1 and a2. Notice that, in doing this, we enforce the
constraint that exactly one agent must perform every task.

Additionally, we use Xi = {xk|tk ∈ Ti} as the set of variables representing
the tasks agent ai can perform. With slight abuse of notation, we use Xi to
denote a configuration of the variables in Xi. Given this, in our formulation, an
agent ai’s clique will contain all variables in Xi (in Figure 3, labels within circles
denote agents’ cliques). Thus, in Figure 3, the set of variables corresponding to
agent a2’s clique, X2, is composed of x2 and x3, which are the two tasks that a2
can perform in Figure 1.

Finally, we encode the cost function of agent ai as a potential function,
ψi(Xi), representing the total time that ai will take to compute the configuration
Xi. Formally:

ψi(Xi) =
∑

xk∈Xi,xk=i

χi(tk) (2)

Thus, in Figure 3 the potential function of agent a2, ψ2, which is defined over
variables x2 and x3, returns a runtime of 60 for the configuration x2 = 1, x3 = 2,
which is the runtime incurred at a2 to complete task 3 in Figure 1.

By the definition of a junction graph, two agents, ai and aj , will be joined
by an edge in the junction graph if and only if Xi ∩Xj 6= ∅. In Figure 3 edges
are labelled with the intersection of two cliques. Thus, agent a2 is linked to a3
by an edge that contains the only common variable in their cliques: x3. Given
this, we denote agent ai’s neighbours, N (ai), as the set of agents with which ai
shares at least one variable, and therefore, are neighbours in the junction graph.

Given all this, the junction graph encodes our objective function (Equation
(1)) as follows:

X∗ = arg min
X

max
ai∈A

ψi(Xi) (3)

where Xi is the projection of X over variables Xi. In more detail, given two sets
of variables Xi, Xj ⊆ X, a projection of X over Xj contains the variable values
found in X for all xk ∈ Xi ∩Xj in Xj .

Now that we have a junction graph formulation of the problem, we can de-
compose our objective function amongst the agents. In order to do this, we
compute the marginal function zi(Xi) at each agent, which describes the de-
pendency of the global objective function (given in Equation (1)) on agent ai’s
clique variables. This is computed as follows:

zi(Xi) = min
X−i

max
aj∈A

ψj(Xj) (4)

where X−i is a configuration of X−i, where X−i = X \ Xi and Xj is the
projection of X−i over the variables in Xj .

Finally, in the presence of a unique solution, the optimal state of ai’s clique
variables is:

X∗i = arg min
Xi

zi(Xi) (5)

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 7

This decomposition facilitates the application of the min-max GDL algo-
rithm, as our operators here are min and max, to find a decentralised solution
to R||Cmax. Thus, in the next section, we introduce min-max, and prove its
most important property: that it will always converge within a finite number of
iterations.

4 The min-max Algorithm

The min-max algorithm is a member of the GDL framework [1], which is a
framework for localised message passing algorithms. We know from the literature
(for example, [3]) that GDL algorithms are efficient (particularly in sparse graphs
— in our case, where each agent can only perform a subset of the tasks), and
provide generally good solutions, so it fits to apply one here. In addition, GDL
algorithms are proven to converge to optimal solutions on acyclic graphs (which,
in our case, would be junction trees). In more detail, GDL based algorithms are
all based on a commutative semiring. Min-max is based on the commutative
semiring 〈R+,min,max,∞, 0〉 where min is the additive operator and max the
multiplicative operator.

Given a junction graph, the GDL approach consists of exchanging messages
between agents and their neighbours in the junction graph. Let Xij = Xi∩Xj be
the intersection of variables of two neighbours, ai and aj , and Xi\j = Xi \Xj . In
the GDL, agent ai exchanges messages with a neighbour aj ∈ N (ai) containing
the values of a function µi→j : Xij → R+.

Initially, all such functions are defined to be 0 (the semiring’s multiplicative
identity). Once messages have been received, the message is computed as follows:

µi→j(Xij) = min
Xi\j

max

[
ψi(Xi), max

ak∈N (ai)|k 6=j
µk→i(Xki)

]
(6)

where Xij is a configuration of Xij , Xi\j is a configuration of Xi\j , and Xi and
Xki stand for the projection of Xij ,Xi\j over variables in Xi and Xki respec-
tively.

Similarly, for each clique ai, GDL computes an approximation of the marginal
contribution of its variables, z̃i : Xi → R+, as:

z̃i(Xi) = max

[
ψi(Xi), max

aj∈N (ai)
µj→i(Xji)

]
(7)

Now, the idempotency of max, the multiplicative operator [11], allows us to
make a number of changes to the standard GDL formulation, which we explain
below.

Idempotency implies that, for all r ∈ R+, max(r, r) = r. Hence, the idempo-
tency of the multiplicative operator implies that repeatedly combining the same
information will not produce new information. Moreover, when an operator is
idempotent, it defines a partial ordering over the set R+. In our case, both op-
erations are idempotent. For the min operator, the order is the natural order of

8 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

real numbers: i.e., r ≤ s if and only if min(r, s) = r. Meanwhile, for the max
operator, the order is the inverse of the natural ordering of numbers: i.e., r ≥ s
if and only if max(r, s) = r. From these, we can deduce that, as min orders the
elements in exact inverse to max, min(r,max(r, s)) = r.

Given all this, due to the idempotency of the min-max commutative semiring,
the following equality holds for any X′i, Xi where X ′i ⊆ Xi:

max

[
ψi(Xi),min

X′i

ψi(X
′
i)

]
= ψi(Xi) (8)

This idempotency property is a feature we exploit in our implementation
of min-max, to improve efficiency. In more detail, the idempotency of the min-
max semiring, a property not shared with other non-idempotent GDL semirings,
allows us to simplify the GDL equations such that:

– in Equation (6), when an agent ai sends a message to a neighbour aj , it does
not need to marginalise out any previously received messages from aj , thus
reducing computation at agents.

– in Equation (7), the agent’s marginal contributions can be computed recur-
sively by combining messages from multiple iterations, which, again, reduces
computation at the agent. This is because repeatedly combining messages
from previous iterations will not change the approximate marginal contribu-
tion at an agent.

Thus, in the next section, we will introduce min-max based on these simplified
equations, instead of the original GDL Equations ((6) and (7)), allowing us to
simplify the computation at each agent when sending messages.

In addition to this, the idempotency property provides two further proper-
ties that make the min-max algorithm more efficient than non-idempotent GDL
algorithms: (1) it is guaranteed to converge, even in cyclic graphs (Theorem 1);
and (2) it provides an online per-instance bound on the optimal solution value
of the problem that it approximates (which we will discuss later on, in Section
5.3). In what follows, we provide the formal proof of convergence.

Theorem 1. The min-max algorithm is guaranteed to converge in a finite num-
ber of iterations.

Proof. [2] prove the termination of idempotent commutative semirings (Theo-
rem 8). Given the fact that min-max is an idempotent semiring, the min-max
algorithm must terminate.

Now that we have shown why the min-max algorithm carries useful proper-
ties, in the next section, we present our decentralised task distribution algorithm
(DTDA). Our algorithm consists of an algorithmic instantiation of the min-max
algorithm, which, when combined with a value propagation phase, allows online
per-instance bounds on solution quality to be obtained at each agent.

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 9

5 Decentralised Task Distribution Algorithm

Broadly speaking, the DTDA consists of two key steps: applying the min-max
algorithm to compute an allocation of tasks to agents, and value propagation to
ensure all agents choose the same assignment, and to compute the per-instance
bound.

In more detail, the first step of the min-max algorithm propagates informa-
tion across the agents to produce a set of solutions (we will explain how this can
be a set later on). In the second phase (value propagation), agents are arranged
in a tree structure, and one solution is chosen that is consistent with all other
agents’ solutions. We elaborate on these steps in what follows.

5.1 Applying min-max

In the first step of the DTDA, we apply the min-max algorithm over the junction
graph described in Section 3, in order to find a set of solutions (distributions of
tasks to agents).1

Algorithm 1 minmax() at agent ai.

1: procedure initialise

2: Initialize messages µi→j(Xij) = 0 ∀j ∈ N (i)
3: z̃i(Xi) = ψi(Xi) =

∑
xk∈Xi,xk=i χi(tk) // Intialise marginal contribution

4: Run procedure send messages.
5:
6: procedure received µj→i

7: if stored(j) 6= µj→i then // received different message

8: stored(j) = µj→i // update stored message

9: Run procedure update marginal contribution

10: Run procedure send messages.
11: end if
12:
13: procedure send messages

14: for j ∈ N (i) do
15: Send µi→j(Xij) to aj
16: end for
17:
18: procedure find solutions

19: X∗i = all states with value minXi z̃i(Xi)

We present the pseudocode for min-max in Algorithm 1. Now, an agent be-
gins by running the procedure initialise (lines 1–4). Each agent starts by

1 Note that we specify that a set of solutions is produced, because it is possible for
more than one solution to have the same value. This is because the solution value
is taken to be the largest makespan at one agent — therefore, many allocations of
tasks and agents could give the same makespan.

10 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

initialising its stored outgoing messages to 0 (line 2), and its marginal contri-
bution function, z̃i(Xi), to the agent’s potential, ψi, which encodes the agent’s
own cost function, computed as given in (2) (line 3).

After initialisation, each agent exchanges a message, µi→j , with each of its
neighbours, aj ∈ N (ai), in order to find out their approximated marginal con-
tribution for each configuration of the variables they share. This is done via the
procedure send messages (lines 13–16). The message µi→j(Xij) is sent over all
combinations of the variables in Xij (i.e., the intersection of Xi and Xj). The
content of the message from an agent ai to aj is, therefore, agent ai’s marginal
contribution function:

µi→j(Xij) = min
Xi\j

z̃i(Xi) (9)

When an agent ai receives a message, it runs the procedure received (lines
6–11), in which the agent checks if the message it has received differs from the
last message it received from that agent. This is important to ensure that the
messages stop being sent when they stop changing, so the algorithm converges
to a solution. If the message does differ (line 7), then the ai updates its stored
entry for the sending agent (line 8). Afterwards, the agent ai runs the procedure
update marginal contribution (line 9), which updates its marginal contribu-
tion values as follows:

z̃i(Xi) = max

{
z̃i(Xi), max

aj∈N (ai)
µj→i(Xji)

}
(10)

This marginal contribution is approximate because, as we said earlier, GDL
algorithms can only compute exact solutions on acyclic graphs (i.e., a junction
tree instead of a junction graph). Finally, agent ai re-sends all of its messages
(line 10) in case its marginal contribution value has changed (for example, if a
new maximum µj→i(Xij) has been found).

These messages are passed amongst agents until their content no longer
changes — at which point, the agent will ascertain the best states for its vari-
ables using the procedure find solutions (lines 18–19). In more detail, this is
done by assessing the configuration X∗i , with cost z̃∗i , that minimises the agent’s
marginal contribution (line 19):

X∗i = arg min
Xi

z̃i(Xi) (11)

Hence, this equation provides an approximation of (3). We show in our empir-
ical evaluation (in Section 6) that the solutions DTDA gives are of very good
quality on a general problem. Next, we describe our value propagation phase
which ensures that all agents apply the same solution and that computes the
online per-instance bound of the approximate solution.

5.2 Value Propagation

Once the messages amongst agents have converged, and no further messages
need to be sent, we introduce a two-part value propagation phase to ensure the

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 11

agents all set their values to produce a valid state, and are aware of the quality
of their bound. This is required in part due to the likelihood of multiple solutions
being present.

In the first part of this phase (see Algorithm 2, lines 1–10), we arrange the
agents into a Depth-First Search (DFS) tree using distributed DFS. In particular,
a DFS tree must always ensure that agents which are adjacent in the original
graph are in the same branch. This ensures relative independence of nodes in
different branches of the tree, allowing parallel search. For any given graph, our
DFS tree is considered ‘valid’ if no ties (variable overlaps) between agents in
different subtrees of the DFS tree exist. The outcome of this DFS is that each
agent has set the values of its parent and children variables shown in Algorithm
2. Once this has occurred, the root node decides on a configuration of its variables
to propagate, X∗i , as computed in (11), and sends this, along with vi = ψi(X

∗
i)

(the actual value of the current solution) and zi(X
∗
i) (the value of the current

solution as computed by min-max) to the node’s children. Each of these children
adds their own variables onto X∗i (line 2), takes the maximum of v and z with
what they have received (lines 3 and 4, respectively), and sends these new values
onto their own children (line 5).

Algorithm 2 valueprop at agent ai
Require: parent, children
1: procedure received(〈X∗p, vp, z̃∗p〉) from parent
2: X∗i = arg minXi\p z̃i(Xi\p;X∗p)
3: vi = max(vp, ψi(X

∗
i))

4: z̃∗i = max(z̃∗p , z̃i(X
∗
i))

5: Send 〈X∗i , vi, z̃∗i 〉 to all aj ∈ children
6: if children = ∅ then
7: Send 〈vi, z̃∗i 〉 to parent
8: end if
9:

10: procedure received(〈vp, z̃∗p〉) from child
11: if Received messages from all child ∈ children then
12: vi = max(vp, ψi(X

∗
i))

13: z̃∗i = max(z̃∗p , z̃i(X
∗
i))

14: ρ = z̃∗i /vi
15: Send 〈vi, z̃∗i 〉 to parent.
16: end if

Once this first phase is complete (i.e., the messages have reached the leaf
nodes), the leaf nodes pass their marginal contribution and makespan values
(the actual value of the solution) back up the tree (lines 6 and 7), to ensure
every agent can compute the quality of the solution. Then, when an agent has
received such a message from each of its children (line 11), it will update its v
and zi(X

∗
i) values (lines 12 and 13, respectively), calculate its approximation

ratio ρ (line 14) — which is the agent’s per-instance bound (this will be clarified

12 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

in the next section), and send the new v and zi(X
∗
i) values to its parent (line 15).

Once these messages have reached the root of the tree, the DTDA is complete,
all variables have values consistent across all agents, and all agents are aware of
the quality of their solution.

5.3 Proving the Per-instance Bound

Next, we prove that the maximum value of the solution that minimises the
approximate marginal contributions of the agents in min-max, or, more formally,
z̃ = maxai∈A minXi z̃i(Xi), is a lower bound on the cost of the optimal solution
of the R||Cmax problem, as formulated in Equation (3) (Theorem 2). This lower
bound can be used by agents to assess the quality of the min-max solution by
bounding its error.

Before proving Theorem 2, we define the relation of equivalence among two
functions.

Definition 1 (equivalence). Given two functions α(Xα) and β(Xβ) we say
they are equivalent if they: (1) are defined over the same set of variables Xα =
Xβ; and (2) return the same values for all possible configurations, α(X) = β(X).
We denote such relation of equivalence as α ≡ β.

Next, we prove two lemmas, that help to assess Theorem 2. First, in Lemma 1,
we state that, at any iteration of the min-max algorithm, the function that results
from the combination of the agents’ marginal contributions, namely Z̃(X) =
maxai∈A z̃i(Xi), is equivalent to the objective function to minimise in R||Cmax,
Ψ(X) = maxai∈A ψi(Xi). Thus, under Lemma 1, Z̃ ≡ Ψ . Second, in Lemma
2, we state that z̃, defined as the maximum of the individual agents’ marginal
solutions, is a lower bound on the value of the optimal value of function Z̃.

We provide formal proofs for these two lemmas below.

Lemma 1. At any iteration τ of the min-max algorithm, function Z̃τ (X) =
maxai∈A z̃

τ
i (Xi) is equivalent to the to the objective function to minimise in

R||Cmax, Ψ(X) = maxai∈A Ψi(Xi).

Proof. We prove this by induction on τ .
For τ = 0 the case is trivial, Z̃0(X) = maxai∈A z̃

0
i (Xi) = maxai∈A ψi(Xi) =

Ψ(X).
Then we prove τ = n+ 1: that is, that Zn+1 ≡ Zn, assuming that τ =

n holds. Z̃n+1(X) = maxai∈A max(z̃ni (X),maxaj∈N(ai) minXj\i z̃
n
j (Xj\i)). Since

the max operator is commutative and associative, Z̃n+1(X) can also be written
as maxai∈A max(z̃ni (Xi),maxaj∈N (ai) minXi\j z̃

n
i (Xi\j)). Then, by exploiting the

idempotency of the max operator (see Equation (8)), Z̃n+1(X) simplifies to
maxai∈A z̃

n
i (Xi) and Z̃n+1 ≡ Z̃n ≡ Ψ . ut

Lemma 2. Given Z̃(X) = maxai∈A z̃i(Xi), let z̃∗ be the value of the assignment
x∗ that minimises Z̃(X). Then, z̃ = maxai∈A minXi z̃i(Xi) is a lower bound on
z̃∗, z̃ ≤ z̃∗.

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 13

Proof. We prove this by contradiction. Assume that there is an assignment X
of X such that Z̃(X) ≤ maxai∈A minXi

z̃i(Xi). This leads to a contradiction,
because it implies that at least one function z̃i evaluated at x is lower than its
minimum, minXi

z̃i(Xi). ut

Finally, we combine these two lemmas to prove our main result, in Theorem
2.

Theorem 2. Let z̃τi (Xi) be agent ai’s marginal contribution function at itera-
tion τ of the min-max algorithm. Then, z̃ = maxai∈A minXi z̃

τ
i (Xi) is a lower

bound on the value of the optimal solution, namely z̃ ≤ minX Ψ(X), where
Ψ(X) = maxai∈A ψi(Xi).

Proof. Since the optimal solution of two equivalent functions is the same, the
result follows directly from Lemmas 1 and 2. ut

Therefore, under Theorem 2, at each iteration of the min-max algorithm, the
maximum of the agents’ marginal contributions, z̃ = maxai∈A minXi

z̃τi (Xi), is
a lower bound on the value of the optimal solution. Notice that, at each itera-
tion, the agents’ marginal contribution functions combine information from the
messages using the max operator, so minXi z̃

τ
i (Xi) ≤ minXi z̃

τ+1
i (Xi). There-

fore, the sequence of lower bounds is guaranteed to monotonically increase over
iterations of min-max, thus providing a better approximation of the value of the
optimal solution at each iteration. As shown in section 5.2, agents can, at the
end of the min-max algorithm, assess this lower bound value to bound the error
of the approximate solution found when running the min-max algorithm.

In the next section, we present our empirical evaluation of the DTDA. It is
necessary for us to do this to show our algorithm finds good solutions, as the
bound we provide on the quality of the approximations we give is per-instance,
as opposed to an overall offline bound.

6 Empirical Evaluation

In this section, we compare the approximation found by the DTDA to a num-
ber of other algorithms, thus establishing the first decentralised benchmark for
R||Cmax. Namely, we compare the DTDA against an optimal centralised algo-
rithm, and a greedy algorithm. In more detail, the optimal centralised algorithm
(CA) operates by solving a mixed integer program to find the optimal solution.
We formulate the problem as a binary integer program, and then use IBM ILOG
CPLEX2 to find an optimal solution assigning tasks to agents. Next, in the global
greedy algorithm (Greedy), tasks are allocated to the agent that can complete
them the fastest, and are considered in order of time required, from highest to
lowest. In both these cases, we consider exactly the same problem the DTDA
does — i.e., each agent can only perform a subset of the tasks. In addition, we
plot the maximum bound found at an agent after executing the DTDA, ρ, as

2 See www.ibm.com/software/integration/optimization/cplex-optimizer/

14 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

(a) σt = 2 (b) σt = 3

Fig. 4. Empirical Results: Utility gained for varying graph density.

computed in the value propagation phase, found in Section 5.2. Note that we
do not compare to any existing approximate algorithms for R||Cmax because,
as we said earlier, there exist no decentralised algorithms for R||Cmax. Hence,
our result establishes the first communication and computation benchmark for
distributing the solution of R||Cmax problems.

To evaluate the performance of DTDA, we plot the solutions obtained as a
mean percentage of the optimal centralised solution, with error bars represent-
ing 95% confidence intervals in the mean. We calculate the mean approximation
ratio of solutions obtained by each of these algorithms by dividing the achieved
makespan by the optimal makespan (i.e., those obtained by CA), over 100 ran-
dom scenarios, and use this to plot the percentage of the optimal obtained. In
addition, we plot the mean total number of messages sent by DTDA, and the
mean time taken to find a solution by DTDA.

We compare our algorithms in a number of average cases: specifically, sparse
random graphs, and dense random graphs. In more detail, we generated 500
random scenarios with |A| = 20, |T | = {20, 25, 30, 25, 40}, and σt ∈ {2, 3}, where
σt is the average degree of each task. The time taken for agent ai to perform
task tj was calculated as ci× cj , where ci ∈ {1, . . . , 100} and cj ∈ {0.1, . . . , 1.1},
where ci and cj are both taken from uniform distributions. We present the
utility results of these experiments in Figure 4, and the communication and
computation results in Figure 5.

Figure 4(a) shows the performance of the DTDA versus greedy in a sparse
environment, where each task can, on average, only be performed by two agents.
Conversely, in Figure 4(b), we have the performance of DTDA versus greedy in a
more dense environment, with an average of three agents being able to perform
each task. The DTDA clearly outperforms greedy in the sparse graph by up to
16%; however, in the more dense graph, it is clear that the performance of DTDA
does not warrant its application over greedy in this case. This shows that the
DTDA is best applied on sparse graphs, as we intended, and is consistent with

Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation 15

(a) Messages Sent. (b) Computation Time.

Fig. 5. Empirical Results: Communication and Computation used where σt = 2.

other GDL algorithms [1]. Nevertheless, the DTDA’s performance ranges from
97% of the optimal to 86% in the sparse graphs. In addition, the graphs show
that the bound produced by the DTDA provides a very accurate estimation of
the solution gained by the DTDA — so much so, that the two lines on the graph
are barely distinguishable. Finally, in terms of communication and computation,
Figure 5 (a) shows that the number of messages sent by DTDA increases almost
linearly as the number of tasks increases. In contrast, Figure 5 (b) shows that
the computation time increases exponentially in the number of tasks. Note that
in Figure 5 we only plot results for σt = 2, as σt = 3 gave similar results.

7 Conclusions and Future Work

We have presented the first decentralised algorithm for finding solutions to the
scheduling on unrelated parallel machines problem, known as R||Cmax. Our al-
gorithm (DTDA) is also the first known application of the min-max algorithm to
solve R||Cmax in the literature. In addition, we are able to provide a per-instance
bound on the quality of the solutions given, online. Empirically, we showed that
the bound we find provides an accurate estimation of the global solution value,
that the communication required by the DTDA scales linearly in the size of the
environment, and that DTDA is able to find good quality solutions in environ-
ments which can be formulated as a sparse graph (from 97–86% of the optimal).
In addition, we drew the parallel between R||Cmax and multi-agent task allo-
cation problems. However, we found that the DTDA holds no advantage over
a greedy algorithm in more dense environments, partly because the state space
explored at each agent in DTDA grows exponentially, and partly because the ap-
proximation given by using the min-max algorithm is not of high enough quality.
While using the algorithm makes sense in task allocation environments where an
agent only considers a limited number of tasks, the computation needed scales

16 Macarthur, Vinyals, Farinelli, Ramchurn, Jennings

exponentially in the size of the environment. Therefore, future work will focus on
reducing the state space at each agent (e.g., by using techniques such as branch
and bound), using spanning trees to improve solution quality on denser graphs,
so that we can successfully apply DTDA to a wider range of problems, and evalu-
ating DTDA’s performance on other graph topologies, such as scale-free graphs.

References

1. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Transactions on
Information Theory 46(2), 325–343 (2000)

2. Bistarelli, S., Gennari, R., Rossi, F.: Constraint propagation for soft constraints:
Generalization and termination conditions. In: CP. pp. 83–97 (2000)

3. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: Proc. AAMAS–08.
pp. 639–646 (2008)

4. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 5, 287–326 (1979)

5. Horowitz, E., Sahni, S.: Exact and approximate algorithms for scheduling noniden-
tical processors. Journal of the ACM 23, 317–327 (April 1976)

6. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM 24(2), 280–289 (1977)

7. Jensen, F.V.: An Introduction to Bayesian Networks. Springer-Verlag (1996)
8. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling

unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)
9. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: A survey of milestones.

Journal of the Operational Research Society 60, 41–68 (2009)
10. Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralised Co-

ordination in RobocupRescue. The Computer Journal 53(9), 1447–1461 (2010)
11. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Founda-

tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)
12. Stranders, R., Farinelli, A., Rogers, A., Jennings, N.: Decentralised coordination

of mobile sensors using the max-sum algorithm. In: Proc. IJCAI–09. pp. 299–304
(2009)

Pseudo-tree-based Incomplete Algorithm for
Distributed Constraint Optimization with

Quality Bounds

Tenda Okimoto, Yongjoon Joe, Atsushi Iwasaki, and Makoto Yokoo

Kyushu University, Fukuoka 8190395, Japan
{tenda@agent., yongjoon@agent., iwasaki@, yokoo@}is.kyushu-u.ac.jp

Abstract. A Distributed Constraint Optimization Problem (DCOP) is
a fundamental problem that can formalize various applications related to
multi-agent cooperation. Since it is NP-hard, considering faster incom-
plete algorithms is necessary for large-scale applications. Most incom-
plete algorithms generally do not provide any guarantees on the quality
of solutions. Some notable exceptions are DALO, the bounded max-sum
algorithm, and ADPOP.

In this paper, we develop a new solution criterion called p-optimality and
an incomplete algorithm for obtaining a p-optimal solution. The char-
acteristics of this algorithm are as follows: (i) it can provide the upper
bounds of the absolute/relative errors of the solution, which can be ob-
tained a priori/a posteriori, respectively, (ii) it is based on a pseudo-tree,
which is a widely used graph structure in complete DCOP algorithms,
(iii) it is a one-shot type algorithm, which runs in polynomial-time in
the number of agents n, and (iv) it has adjustable parameter p, so that
agents can trade-off better solution quality against computational over-
head. The evaluation results illustrate that this algorithm can obtain
better quality solutions and bounds compared to existing bounded in-
complete algorithms, while the run time of this algorithm is shorter.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) is a fundamental prob-
lem that can formalize various applications related to multi-agent cooperation.
A DCOP consists of a set of agents, each of which needs to decide the value as-
signment of its variables so that the sum of the resulting rewards is maximized.
Many application problems in multi-agent systems can be formalized as DCOPs,
in particular, distributed resource allocation problems including distributed sen-
sor networks [1] and meeting scheduling [2]. Various complete algorithms have
been developed for finding globally optimal solution to DCOPs, e.g., DPOP [2],
ADOPT [1], and OptAPO [3]. However, finding optimal DCOP solutions is NP-
hard, so considering faster incomplete algorithms is necessary for large-scale
applications. Various incomplete algorithms have been developed, e.g., DSA [4],
MGM/DBA [5, 6], and ALS-DisCOP [7].

Most incomplete algorithms generally do not provide any guarantees on the
quality of the solutions they compute. Notable exceptions are DALO [8], the
bounded max-sum algorithm [9], and ADPOP [10]. Among these algorithms,
DALO is unique since it can provide the bound of a solution a priori, i.e., the er-
ror bound is obtained before actually running the algorithm. Also, the obtained
bound is independent of problem instances. On the other hand, the bounded
max-sum algorithm and ADPOP can only provide the bound of a solution a
posteriori, i.e., the error bound is obtained only after we actually run the algo-
rithm and obtain an approximate solution. Having a priori bound is desirable,
but a posteriori bound is usually more accurate.

In this paper, we develop an incomplete algorithm based on a new solution
criterion called p-optimality. This algorithm can provide the upper bounds of the
absolute/relative errors of the solution, which can be obtained a priori/a poste-
riori, respectively. These bounds are based on the induced width of a constraint
graph and the maximal value of each reward function, but they are independent
of problem instances. Induced width is a parameter that determines the complex-
ity of many constraint optimization algorithms. This algorithm utilizes a graph
structure called a pseudo-tree, which is widely used in complete DCOP algo-
rithms such as ADOPT and DPOP. This algorithm can obtain an approximate
solution with reasonable quality, while it is a one-shot type algorithm and runs in
polynomial-time in the number of agents n. Thus, it is suitable for applications
that need to obtain reasonable quality solutions (with quality guarantees) very
quickly. Furthermore, in this algorithm, agents can adjust parameter p so that
they can trade-off better solution quality against computational overhead.

DALO is an anytime algorithm based on the criteria of local optimality called
k-size/t-distance optimality [8, 11] and has adjustable parameters k/t. Compared
to this algorithm, our algorithm is a one-shot type algorithm, while DALO is an
anytime algorithm, which repeatedly obtains new local optimal solutions until
the deadline and returns the best solution obtained so far. Also, our algorithm
can provide tighter bounds a priori. Furthermore, in our algorithm, the increase
of computation/communication costs by increasing parameter p is more gradual
compared to those for k-size/t-distance-optimality.

The bounded max-sum algorithm is a one-shot type algorithm. Compared to
this algorithm, our algorithm has adjustable parameter p, while this algorithm
has no adjustable parameter. Also, our algorithm can obtain a priori bound.
Thus, agents can adjust parameter p before actually running the algorithm to
obtain a solution with a desirable bound.

Our proposed algorithm is quite similar to ADPOP, which also eliminates
edges among variables to bound the size of messages. ADPOP is also one-
shot type algorithm and has an adjustable parameter. However, ADPOP uses a
heuristic method to determine which edges to eliminate. As a result, it cannot
obtain a priori bound. We can consider p-optimality gives a simple but theoret-
ically well-founded method to determine which edges to eliminate in ADPOP.

Another advantage of our algorithm is that it can be used for a preprocessing
phase before running a complete algorithm. Since our algorithm utilizes a pseudo-
tree, it would be well-suited with pseudo-tree based complete algorithms.

The rest of this paper is organized as follows. Section 2 formalizes DCOP and
provides basic terms related to the graphs. Section 3 introduces our incomplete
algorithm and provides methods for estimating the error bound obtained by our
algorithm. Section 4 evaluates the solution quality and the accuracy of the error
bounds obtained by our algorithm. Section 5 concludes this paper.

2 Preliminaries

In this section, we briefly describe the formalization of Distributed Constraint
Optimization Problems (DCOPs) and the basic terms for graphs.

Definition 1 (DCOP). A distributed constraint optimization problem is de-
fined by a set of agents S, a set of variables X, a set of binary constraint rela-
tions C, and a set of binary reward functions F . An agent i has its own variable
xi. A variable xi takes its value from a finite, discrete domain Di. A binary con-
straint relation (i, j) means there exists a constraint relation between xi and xj.
For xi and xj, which have a constraint relation, the reward for an assignment
{(xi, di), (xj , dj)} is defined by a binary reward function ri,j(di, dj) : Di ×Dj →
R. For a value assignment to all variables A, let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj).

Then, an optimal assignment A∗ is given as argmaxA R(A), i.e., A∗ is an as-
signment that maximizes the sum of the value of all reward functions.

Since there exists a one-to-one relationship between an agent and its vari-
able, for notation simplicity, we occasionally don’t distinguish an agent and
its variable. For example, we define a constraint optimization problem by a
tuple ⟨X,C, F ⟩, where X is a set of agents/variables. In this paper, we as-
sume all reward values are non-negative and that the maximal value of each
binary reward function is bounded, i.e., we assume ∀i, ∀j, where (i, j) ∈ C,
∀di ∈ Di, ∀dj ∈ Dj , 0 ≤ ri,j(di, dj) ≤ rmax holds.

A DCOP problem can be represented using a constraint graph, in which a
node represents an agent/variable and an edge represents a constraint.

Definition 2 (Constraint Graph). For a distributed constraint optimization
problem ⟨X,C, F ⟩, we say G = (X,C) as a constraint graph of ⟨X,C, F ⟩. More
specifically, a constraint graph is obtained by assuming each agent/variable as a
node, and each binary constraint relation as an edge.

In this paper, we consider subgraphs that are obtained by removing several
edges/constraints from the original DCOP/constraint graph. We define a reward
obtained in a subgraph as follows.

9

10

1

2

3

8

4

5

6

7

1

3

2

7

10

8

9

6

4

5

9

10

1

2

3

8

4

5

6

7

(a) (b) (c)

Fig. 1. (a) shows a constraint graph with ten nodes. (b) shows the induced chordal
graph of (a) based on o = 1 ≺ . . . ≺ 10. Induced width of (b) is three. (c) shows
the subgraph of (b) obtained by removing edges (1, 4) and (7, 10). This graph is not
chordal.

Definition 3 (Rewards in a subgraph). For a distributed constraint opti-
mization problem ⟨X,C, F ⟩, its constraint graph G = (X,C), and G′ = (X,C ′),
which is a subgraph of G, i.e., C ′ ⊆ C, we define the rewards of an assignment
A in subgraph G′ = (X,C ′) (denoted as RC′(A)) as

RC′(A) =
∑

(i,j)∈C′,{(xi,di),(xj ,dj)}⊆A

ri,j(di, dj).

Let us introduce several basic terms for graphs.

Definition 4 (Undirected graph). An undirected graph G = (V,E) consists
of a set of nodes V = {1, . . . , n} and a set of edges between nodes E. We denote
e ∈ E using nodes connected by the edge as e = (i, j).

Definition 5 (Connected graph). We say an undirected graph G = (V,E) is
connected if any two nodes i, j ∈ V are reachable via edges in E.

In the rest of this paper, we assume a graph is connected.

Definition 6 (Neighboring nodes). For a graph G = (V,E) and a node
i ∈ V , we call Nb(E, i) = {j | (i, j) ∈ E} as i’s neighboring nodes.

Definition 7 (Total ordering among nodes). A total ordering among nodes
o is a permutation of a sequence of nodes ⟨1, 2, . . . , n⟩. We say node i precedes

node j (denoted as i ≺ j), if i occurs before j in o. We also denote ord(i) for
the i-th node in a total ordering o.

Definition 8 (Ancestors). For a graph G = (V,E), a total ordering o, and a
node i ∈ V , we call A(E, o, i) = {j | (i, j) ∈ E ∧ j ≺ i} as i’s ancestors.

Definition 9 (Chordal graph based on total ordering). For a graph G =
(V,E) and a total ordering o, we say G is a chordal graph based on total ordering
o when the following condition holds:

– ∀i,∀j, ∀k ∈ V , if j, k ∈ A(E, o, i), then (j, k) ∈ E.

Definition 10 (Induced chordal graph based on total ordering). For a
graph G = (V,E) and a total ordering o, we say a chordal graph G′ = (V,E′)
based on total ordering o, which is obtained by the following procedure, as an
induced chordal graph 1 of G based on total ordering o.

1. Set E′ to E.
2. Choose each node i ∈ V from the last to the first based on o and apply the

following procedure.
– if ∃j,∃k ∈ A(E′, o, i) s.t. (j, k) ̸∈ E′, then set E′ to E′ ∪ {(j, k)}.

3. Return G′ = (V,E′).

Next, we introduce a parameter called induced width, which can be used as
a measure for checking how close a given graph is to a tree. For example, if
the induced width of a graph is one, it is a tree. Also, the induced width of a
complete graph with n variables is n− 1.

Definition 11 (Width based on total ordering). For a graph G = (V,E),
a total ordering o, and a node i ∈ V , we call |A(E, o, i)| as the width of node i
based on total ordering o. Furthermore, we call maxi∈V |A(E, o, i)| as the width
of graph G based on total ordering o and is denoted as w(G, o).

Definition 12 (Induced width based on total ordering). For a graph G =
(V,E) and a total ordering o, we call w(G′, o) as the induced width of G based
on total ordering o, where G′ = (V,E′) is the induced chordal graph of G based
on total ordering o.

We show a simple example of the induced chordal graph of a graph and its
induced width.

Example 1 (Induced width of induced chordal graph). Figure 1-(a) shows a con-
straint graph with ten nodes. (b) presents the induced chordal graph based on
total ordering o = 1 ≺ . . . ≺ 10. The ancestors of node 10 are nodes 7, 8, and 9.
Since no edge exists between ancestors 7 and 9, edge (7, 9) is added. Similarly,
several new edges are added (shown as broken lines). The induced width of (b)
is three.
1 In constraint reasoning literature [12], such a graph is simply called an induced graph.
However, the term induced is used in a more general meaning in graph theory. Thus,
we use a more specific term, i.e., induced chordal graph in this paper.

(a) (b)

k

j

i

k

j

i

l

Fig. 2. (a) presents a part of p-reduced graph G′′ = (V,E′′), where j, k ∈ A(E′′, o, i),
and (j, k) ̸∈ E′′. (b) presents a situation where (j, k) is not j’s first back-edge in G,
i.e., there exists node l s.t. l ≺ k, (j, l) ∈ E, and (j, l) ̸∈ E′′.

A pseudo-tree is a special graph structure, where a unique root node exists
and each non-root node has a parent node.

Definition 13 (Pseudo-tree representation of chordal graph based on
total ordering). A chordal graph G = (V,E) based on total ordering o can be
assumed as a pseudo-tree as follows: (i) the node that appears first in o is the root
node, and (ii) for each non-root node i, i’s parent is node j, where j ∈ A(E, o, i)
and ∀k ∈ A(E, o, i) and k ̸= j, k ≺ j holds.

Definition 14 (Back-edge). When assuming a chordal graph G = (V,E)
based on total ordering o as a pseudo-tree, we say an edge (i, j) is a back-edge
of i, if j ∈ A(E, o, i) and j is not i’s parent. Also, when (i, j1), (i, j2), . . . , (i, jk)
are all back-edges of i, and j1 ≺ j2 ≺ . . . ≺ jk holds, we call (i, j1), (i, j2), . . . ,
(i, jk) as first back-edge, second back-edge, . . ., k-th back-edge, respectively.

Clearly, a node has at most w(G, o)− 1 back-edges.

3 Bounded Incomplete Algorithm based on Induced
Width

In this section, we describe our new incomplete algorithm based on the induced
width of a constraint graph. The basic idea of this algorithm is that we remove
several edges from a constraint graph, so that the induced width of the remaining
graph is bounded. Then we compute the optimal solution of the remaining graph,
which is used as the approximate solution of the original graph.

3.1 Incomplete Algorithm and p-optimality

Our proposed incomplete algorithm has two phases:

Phase 1: Generate a subgraph from the induced chordal graph based on the
total ordering by removing several edges, so that the induced width of the
induced chordal graph obtained from the subgraph is bounded by parameter
p.

Phase 2: Find an optimal solution to the graph obtained in Phase 1 using any
complete DCOP algorithms.

First, let us describe Phase 1. Our goal is to obtain a subgraph so that the
induced width of the induced chordal graph obtained from the subgraph equals
p. At the same time, we want to bound the number of removed edges. This
is not easy. One might imagine that we can easily obtain such a subgraph by
just removing the back-edges so that all nodes have at most p − 1 back-edges.
However, by this simple method, we cannot guarantee that the remaining graph
is chordal and we might need to add some edges to make it chordal. As a result,
the induced width of the induced chordal graph can be more than p.

Let us show an example where the simple method does not work.

Example 2 (Simple method does not work). Figure 1-(c) presents the subgraph
of (b) in Example 1. If we simply remove edges (1, 4) and (7, 10), each node has
at most two edges with its ancestors (in (c)). However, the graph shown in (c) is
not chordal, i.e., edge (1, 4) is missing, while there exist edges (1, 6) and (4, 6).

We develop a method for Phase 1 as follows. We call the obtained subgraph
a p-reduced graph.

Definition 15 (p-reduced graph). For a induced chordal graph G = (V,E)
based on total ordering o, we say a graph G′ = (V,E′) obtained by the following
procedure as p-reduced graph of G (where 1 ≤ p ≤ w(G, o)):

1. Set E′ to E.
2. Repeat the following procedure w(G, o)− p times

– For each i ∈ V where p+ 1 ≤ ord(i) ≤ w(G, o)
remove the first back-edge in G′ = (V,E′) from E′ if there is one.

3. Return G′ = (V,E′).

Assuming that the agents know the pseudo-tree among them, running this
procedure by these agents is quite simple. For obtaining the p-reduced graph,
each agent i (p+1 ≤ ord(i) ≤ w(G, o)) simply removes its first back-edge, second
back-edge, . . . , (w(G, o)− p)-th back-edge.

Theorem 1. For a induced chordal graph G = (V,E) based on total ordering
o, for any 1 ≤ p ≤ w(G, o), and G’s p-reduced graph G′ = (V,E′), the following
conditions hold:

1. G′ is a chordal graph based on total ordering o.

2. w(G′, o) is p.

Proof. When obtaining p-reduced graph G′, for each node i (p + 1 ≤ ord(i) ≤
w(G, o)), its first back-edge is repeatedly removed w(G, o) − p times. Since the
number of back-edges is at most w(G, o)−1, the number of remaining back-edges
is at most p− 1. Also, there exists at least one node who has exactly w(G, o)− 1
back-edges. Thus, since the remaining back-edges for the node are p−1, w(G′, o),
i.e., the width of G′ based on o, is p.

Next, we show that G′ is a chordal graph based on total ordering o. Since
p-reduced graph G′ is obtained by repeatedly removing first back-edges for each
node, it suffices to show that graph G′′ = (V,E′′), which is obtained by removing
first back-edges for each node in G, is a chordal graph based on total ordering o.
We prove this fact by contradiction, i.e., we derive a contradiction by assuming
that ∃i ∈ V, ∃j, ∃k ∈ A(E′′, o, i), s.t., (j, k) ̸∈ E′′. Without loss of generality, we
can assume k ≺ j (Fig. 2-(a)).

Since G = (V,E) is a chordal graph based on total ordering o, (j, k) ∈ E
holds. Furthermore, since (j, k) ̸∈ E′′, (j, k) must be the first back-edge of j
in G. Also, since k ∈ A(E′′, o, i), (i, k) ∈ E′′ holds. Thus, there exists node l
s.t. l ≺ k, (i, l) ∈ E, and (i, l) ̸∈ E′′ holds, i.e., (i, l) is i’s first back-edge in G
and is removed in G′′. Furthermore, since G = (V,E) is a chordal graph based
on total ordering o, and (i, l) ∈ E and (i, j) ∈ E hold, (j, l) ∈ E must hold
(Fig. 2-(b)). However, since l ≺ k, (j, k) cannot be j’s first back-edge in G. This
is a contradiction. Thus, G′′ = (V,E′′) must be a chordal graph based on total
ordering o.

We introduce a new criterion for approximated solutions.

Definition 16 (p-optimality). We say an assignment A is p-optimal for a
distributed constraint optimization problem ⟨X,C, F ⟩ and a total ordering o,
when A maximizes the total rewards in G′′ = (X,C ′′), where G′ = (X,C ′) is an
induced chordal graph of G = (X,C) based on total ordering o, and G′′ = (X,C ′′)
is the p-reduced graph of G′. More specifically, ∀A′, RC′′(A) ≥ RC′′(A′) holds.

Next, let us describe Phase 2. To find a p-optimal solution, we can use any
complete DCOP algorithms. We use the obtained p-optimal solution as an ap-
proximate solution of the original graph. In particular, since we already obtained
a pseudo-tree whose induced width is bounded, using pseudo-tree-based DCOP
algorithms would be convenient.

3.2 Quality Guarantees

We provide two methods for estimating the error of the solution obtained by our
algorithm. One method estimates absolute error which can be obtained a priori,
i.e., agents can obtain the estimate before obtaining an approximate solution.
Thus, agents can choose parameter p based on the estimation before actually
obtaining an approximate solution.

Theorem 2. For a distributed constraint optimization problem ⟨X,C, F ⟩, its
constraint graph G = (X,C), and a total ordering o, if A is p-optimal, then
the following condition holds among R(A∗) and R(A), where A∗ is an optimal
assignment:

R(A∗)−R(A) ≤ rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1))

Proof. Since A is p-optimal, for G′ = (X,C ′), which is an induced chordal graph
of G based on total ordering o, and G′′ = (X,C ′′), which is a p-reduced graph
of G′, the following condition holds:

RC′′(A∗) ≤ RC′′(A).

Furthermore, C ′ is obtained by adding edges to C, and C ′′ is obtained from C ′

by removing at most
∑w(G,o)−p

k=1 (|X| − (k+1)) edges. Since the maximal reward
of each edge is bounded by rmax, the following condition holds:

R(A∗) ≤ RC′′(A∗) + rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1)).

Furthermore, it is clear that the following condition holds:

RC′′(A) ≤ R(A).

Thus, we obtain

R(A∗)−R(A) ≤ rmax ×
w(G,o)−p∑

k=1

(|X| − (k + 1)).

Intuitively, the absolute error is given by the product of rmax and the maximal
number of removed back-edges.

Furthermore, we can compute the upper bound of the relative error using
a method similar to ADPOP [10]. Note that this error bound can be obtained
only a posteriori, i.e., we first need to obtain an approximate solution, then, we
know the upper-bound of the relative error. Intuitively, if we remove a back-
edge connecting i and j, we add an edge that connects i and j′, where j′ is a
copy of j but it is connected only to i and has no unary reward. If we add an
equality constraint between j and j′, this problem is equivalent to the original
problem. By ignoring such a constraint, we obtain a relaxed problem. Note that
the induced width of this relaxed problem is p. This method, which ignores some
dependencies among variables, is similar to minibucket elimination scheme [12].

4 Experimental Evaluation

In this section, we evaluate the solution quality and the accuracy of the error
bounds obtained by our algorithm and show comparisons with DALO-t [13] and

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 3 4 5

N
o
rm

al
iz

ed
 Q

u
al

it
y

P

(a) solution quality

(c) absolute-error-based estimation
(b) relative-error-based estimation

Fig. 3. (a), (b), and (c) in p-optimal algorithm for graphs with 20 nodes, induced width
5, and density 0.4. Value closer to 1 is desirable.

the bounded max-sum algorithm [9]. In our evaluations, we use the following
problem instances. The domain size of each variable is three, and the reward
of each binary constraint is in the range [0,. . . ,99]. Each data point in a graph
represents an average of 30 problem instances. We generate random graphs with
a fixed induced width. For Phase 2 of our p-optimal algorithm, we use the DPOP
algorithm with FRODO [14](version 2.7.1). For comparison, we use the DALO-
t algorithm that obtains t-distance-optimal solutions, since [8] shows that the
error bounds for t-distance-optimality are usually better than that for k-size
optimality. In our comparison, we mostly use settings p=1 and t=1.

First, we show (a) the quality of an obtained solution, (b) the estimated
quality of an optimal solution based on the relative error bound, and (c) the
estimated quality of an optimal solution based on the absolute error bound for
the p-optimal algorithm. The results of (a), (b), and (c) are normalized by the
quality of an actual optimal solution, where (a) should be less than 1, and (b)
and (c) should be more than 1. For all of them, a value closer to 1 is desirable.
Figure 3 shows these values for graphs with 20 nodes, induced width 5, and the
density of the binary constraints 0.4. We vary parameter p from 1 to 5. Note
that when we set the number of nodes to 20 and the induced width to 5, we
cannot create a graph whose density is greater than 0.6. We can see that the
obtained solution quality and estimation are reasonable for most cases, except
that (c) becomes rather inaccurate when p = 1. This is because the number of
removed edges is large. In such a case, we need to increase p to obtain a better
estimation.

(a) p=1-solution quality
(a) t=1-solution quality

(b) p=1-relative-error
(b) t=1-relative-error

(c) p=1-absolute-error

 6.5

 7

 7.5

 8

 8.5

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.15 0.2 0.25 0.3

N
o
rm

al
iz

ed
 Q

u
al

it
y

Density

 (i)

 6.5

 7

 7.5

 8

 8.5

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 7 9 11 13 15 17 19

N
o
rm

al
iz

ed
 Q

u
al

it
y

Induced Width

 (ii)

 2

 4

 6

 8

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20

N
o

rm
al

iz
ed

 Q
u

al
it

y

Number of Nodes

 (iii)

Fig. 4. (a), (b), and (c) in p=1-optimal algorithm and DALO-t=1 for graphs with (i)
20 nodes, induced width 5, (ii) 20 nodes, density 0.3, and (iii) density 0.3, induced
width 3. Broken line indicates results for DALO-t=1. Value closer to 1 is desirable.

Next, we compare our algorithm for p=1-optimality and DALO-t=1 for t=1-
distance-optimality. Usually, DALO-t is used as an anytime algorithm, i.e., it
continuously obtains t-optimal solutions. In this paper, we stop DALO-t when
the first t-optimal solution is found. Figure 4(i) shows (a), (b), and (c) in the
p=1-optimal algorithm and in DALO-t=1 for graphs with 20 nodes and induced
width 5, varying the density. A value closer to 1 is desirable. The broken lines
indicate the results for DALO-t=1. We can see (a), (b), and (c) are better/more
accurate in the p=1-optimal algorithm compared with DALO-t=1. Results (b)
and (c) for the p=1-optimal algorithm become less accurate when the density
increases. This is because the number of removed edges becomes large in the
high density region. Figure 4(ii) shows the results for graphs with 20 nodes and
density 0.3, varying the induced width. We can see even the induced width is

R
ew

ar
d

s

 100000

 200000

 300000

 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Density

T
im

e
(m

s)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Density

p=1-run time t=1-run time

p=1-obtained reward
estimated optimal solution

t=1-obtained reward

Fig. 5. Obtained rewards (not normalized) and run time (ms) for graphs with 1000
nodes and induced width 5. Broken line indicates results for DALO-t=1.

increased, (a), (b), and (c) for p=1-optimal algorithm are better/more accurate
compared with DALO-t=1. Figure 4(iii) shows the results for graphs with density
0.3 and induced width 3, varying the number of nodes. The obtained results are
similar to Fig. 4(i), i.e., (b) and (c) for the p=1-optimal algorithm become less
accurate when the number of nodes increases.

Moreover, we show the results for large-scale problem instances. For them,
obtaining an optimal solution is infeasible. Figure 5 shows the results for graphs
with 1000 nodes and induced width 5, varying the density. Since we cannot
obtain optimal solutions for these problem instances, we show the values of the
obtained reward (which are not normalized). By setting the induced width to
5, we cannot create a graph whose density is greater than 0.01. We can see the

(a) p=1-solution quality
(b) p=1-relative-error
(c) p=1-absolute-error

(a) bmaxsum-solution quality
(b) bmaxsum-relative-error

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 15 20 25 30

N
o

rm
al

iz
ed

 Q
u
al

it
y

Number of Nodes

Fig. 6. (a), (b), and (c) in p=1-optimal algorithm and bounded max-sum algorithm
for graphs with induced width 2. Broken line indicates results for bounded max-sum
(bmaxsum) algorithm. Value closer to 1 is desirable.

rewards/run time for the p=1-optimal algorithm are greater/shorter compared
to those for DALO-t=1.

Finally, we compare our algorithm for p=1-optimality and the bounded max-
sum (bmaxsum) algorithm. We used graph coloring problems in the same settings
presented in [9], except that the reward of each binary constraint is in the range
[0,. . . ,6]. Figure 6 shows the results for graphs with induced width 2, varying
the number of nodes. A value closer to 1 is desirable. Broken lines indicate the
results for the bounded max-sum algorithm. We can see (a) and (b) (also (c))
are better in the p=1-optimal algorithm compared with the bounded max-sum
algorithm.

One might imagine that the relative error of bounded-max-sum can be higher
than the absolute error of p-optimality with p=1, since bounded max-sum al-
gorithm uses some information about the real cost of removed edges. Since our
algorithm and the bounded maxsum algorithm use different graph structures
(i.e., a standard constraint graph and a factor graph, respectively), we cannot
simply say that an informed/heuristic method for eliminating edges should work
better. Our speculation is that the set of eliminated edges chosen by the bounded
maxsum algorithm is somewhat far away from an optimal overall choice, since
the elimination method is greedy/local.

We show the results for large-scale problem instances (graphs with 1000 nodes
and induced width 2) in Fig. 7. Similar to the problem instances used in Fig. 5,
obtaining an optimal solution is infeasible for these problem instances. By setting

p=1-run time bmaxsum-run time
p=1-obtained reward
estimated optimal solution

bmaxsum-obtained reward

 100

 1000

 10000

 100000

 0.0025 0.003 0.0035 0.004

T
im

e
(m

s)

Density

R
ew

ar
d
s

 4000

 6000

 8000

 10000

 12000

 0.0025 0.003 0.0035 0.004

Density

Fig. 7. Obtained rewards (not normalized) and run time (ms) for graphs with 1000
nodes and induced width 2. Broken line indicates results for bounded max-sum (bmax-
sum) algorithm.

the induced width to 2, we cannot create a graph whose density is greater than
0.004. We show the values of the obtained reward (which are not normalized) as
in Fig. 5. We can see the rewards/run time for the p=1-optimal algorithm are
greater/shorter compared to those for the bounded max-sum algorithm.

In summary, these experimental results reveal that (i) the quality of the
obtained solution of the p=1-optimal algorithm is much better compared with
DALO-t=1 and bounded max-sum algorithms, (ii) the estimated quality of an
optimal solution based on the absolute/relative error bounds for the p=1-optimal
algorithm is more accurate than the other algorithms, and (iii) the run time of
our algorithm is much shorter.

Although we did not show the results of ADPOP, they are basically similar
to our algorithms, since these two algorithms differ only in the methods to de-

termine which edges to eliminate. The advantage of our algorithm is that it can
provide the bound of a solution a priori.

Let us speculate why our algorithm can obtain better results compared to
DALO-t and the bounded max-sum algorithm. These algorithms obtain approx-
imate solutions of the original problem, while our algorithm obtains an optimal
solution for a relaxed problem. If the relaxed problem is not so different from
the original problem (e.g., the induced width is small), our algorithm can find a
better solution quickly.

It must be mentioned that we require knowledge of the induced width and
rmax to obtain a priori bound based on p-optimality. On the other hand, the
error bound obtained by k/t-optimality is independent from problem instances.
If rmax can be extremely large, while the average of the binary rewards is rather
small compared to rmax, the absolute error bound of p-optimality becomes less
informative.

5 Conclusion

We developed a new solution criterion called p-optimality and an incomplete al-
gorithm for obtaining a p-optimal solution. This algorithm utilizes a graph struc-
ture called a pseudo-tree, which is widely used in complete DCOP algorithms.
We provided the upper bounds of the absolute/relative errors of the solution,
which can be obtained a priori/a posteriori, respectively. We showed that our
algorithm for p=1-optimality can obtain better quality solutions and estimate
more accurate error bounds compared with DALO-t for t=1-distance-optimality
and the bounded max-sum algorithm. Furthermore, we showed that the run time
for our algorithm for p=1-optimality is much shorter compared to these existing
algorithms. Our future works include developing an anytime/complete algorithm
that utilizes our algorithm as a preprocessing phase. A similar idea, i.e., using
ADPOP as a preprocessing for ADOPT, is presented in [15].

References

[1] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. ADOPT:
asynchronous distributed constraint optimization with quality guarantees. Arti-
ficial Intelligence, 161(1-2):149–180, 2005.

[2] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint opti-
mization. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence, pages 266–271, 2005.

[3] Roger Mailler and Victor Lesser. Using cooperative mediation to solve distributed
constraint satisfaction problems. In Proceedings of the 3rd International Confer-
ence on Autonomous Agents and Multiagent Systems, pages 446–453, 2004.

[4] Stephen Fitzpatrick and Lambert Meertens. Distributed coordination through
anarchic optimization. In Victor Lesser, Charles Ortiz, and Milind Tambe, editors,
Distributed Sensor Networks: A Multiagent Perspective, pages 257–295. Kluwer
Academic Publishers, 2003.

[5] Jonathan Pearce, Milind Tambe, and Rajiv Maheswaran. Solving multiagent
networks using distributed constraint optimization. In AI Magazine, 29(3), pages
47–66, 2008.

[6] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed
stochastic search and distributed breakout: properties, comparison and applica-
tions to constraint optimization problems in sensor networks. Artificial Intelli-
gence, 161(1-2):55–87, 2005.

[7] Roie Zivan. Anytime local search for distributed constraint optimization. In
Proceedings of the 7th International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 1449–1452, 2008.

[8] Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. Asyn-
chronous algorithms for approximate distributed constraint optimization with
quality bounds. In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems, pages 133–140, 2010.

[9] Alessandro Farinelli, Alex Rogers, and Nicholas Jennings. Bounded approximate
decentralised coordination using the max-sum algorithm. In Proceedings of the
12th International Workshop on Distributed Constraint Reasoning, pages 46–59,
2009.

[10] Adrian Petcu and Boi Faltings. Approximations in distributed optimization. In
Proceedings of the Proceedings of the 11th International Conference on Principles
and Practice of Constraint Programming, pages 802–806, 2005.

[11] Jonathan Pearce and Milind Tambe. Quality guarantees on k-optimal solutions
for distributed constraint optimization problems. In Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence, pages 1446–1451, 2007.

[12] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[13] Zhengyu Yin. USC dcop repository. University of Southern California, Depart-

ment of Computer Science, 2008.
[14] Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek. FRODO 2.0: An

open-source framework for distributed constraint optimization. In Proceedings
of the 12th International Workshop on Distributed Constraint Reasoning, pages
160–164, 2009.

[15] James Atlas, Matt Warner, and Keith Decker. A memory bounded hybrid ap-
proach to distributed constraint optimization. In Proceedings of the 11th Inter-
national Workshop on Distributed Constraint Reasoning, pages 37–51, 2008.

Evolving Agent-Based Model Structures

using Variable-Length Genomes

James Decraene, Mahinthan Chandramohan, Fanchao Zeng,
Malcolm Yoke Hean Low, and Wentong Cai

School of Computer Engineering,
Nanyang Technological University, Singapore 609479.

fjdecraene, chan0415, fczeng, yhlow, aswtcaig@ntu.edu.sg,
WWW home page: http://pdcc.ntu.edu.sg/EVOSIM/

Abstract. We present a novel evolutionary computation approach to
optimize agent based models using a variable-length genome represen-
tation. This evolutionary optimization technique is applied to Compu-
tational Red Teaming (CRT). CRT is a vulnerability assessment tool
which was originally proposed by the military operations research com-
munity to automatically uncover critical weaknesses of operational plans.
Using this agent-based simulation approach, defence analysts may sub-
sequently examine and resolve the identi�ed loopholes. In CRT experi-
ments, agent-based models of simpli�ed military scenarios are repeatedly
and automatically generated, varied and executed. To date, CRT studies
have used �xed-length genome representation where only a �xed set of
agent behavioural parameters was evolved. This may prevent the gen-
eration of potentially more optimized/interesting solutions. To address
this issue, we introduce the hybrid variable-length crossover to evolve
the structure of agent-based models. A maritime anchorage protection
scenario is examined in which the number of waypoints composing the
vessel's route is subjected to evolution. The experimental results demon-
strate the e�ectiveness of our proposed method and suggest promising
research avenues in complex agent-based model optimization.

Keywords: Agent-based simulation, multi-objective optimization, variable-
length genome

1 Introduction

Computational Red Teaming is an agent-based simulation method which aims at
identifying the critical weaknesses of military operational plans [16, 4]. A bottom-
up/agent-based approach is thus adopted to analyse the complex dynamics that
may emerge in combat systems. In CRT experiments, many agent-based model
variants are executed/evaluated where two teams (a defensive \Blue" and bel-
ligerent \Red") are opposed using di�erent tactical plans (as de�ned in the
agent-based model speci�cations). The modelling and analysis of these tactical
plans are automated and are conducted using evolutionary algorithms. The ob-
jectives of the evolutionary algorithms are, for instance, to generate Red tactical
plans to best defeat Blue.

Through the analysis of optimized agent-based simulation models, one may
identify Red tactical plans which may pose serious threats. Following on from
this, defence analysts may attempt to resolve the operational weaknesses exposed
through CRT. To our knowledge most CRT studies (see Section 2.2 for a brief
survey) have focused on the examination of the agents' behaviour (e.g., aggres-
siveness, cohesiveness, determination, etc.). Such properties were subjected to
evolutionary optimization. In these studies, the set of \evolvable model param-
eters" was �xed and commonly included less than 20 behavioural parameters.

We argue that such studies are limited when considering the optimization
of particular military operations. Indeed, one may be interested in examin-
ing/generating complex courses of actions which cannot be encoded/evolved
using a �xed set of behavioural parameter values. For instance, we may desire
to optimize the agents' operational route where the number of waypoints may
vary. Another example is the optimization of squad composition where both the
number of agents and associated pro�le (e.g. engineer, infantry, sniper, etc) could
be varied.

When considering the traditional �xed-length genome approach, one has to
pre-determine and �x the number of, e.g., waypoints or agents. If this parameter
is set too low, then this would prevent the emergence of optimal operational plans
as the evaluated solutions are not \complex" enough. On the contrary, if such
parameters are set too high, then this unnecessarily increases the complexity
(through augmenting the search space dimensionality) of the search process and
may prevent, as well, the �nding of optimal solutions. Our proposed method
attempts to deal with the optimization of such operational plans where a �xed-
length genome approach may lead to optimality issues.

Novel techniques are required where additional simulation model proper-
ties, including the simulation model structure, are to be dynamically varied (i.e.
added/removed) and evaluated. To extend and potentially enhance the CRT
methodology, we investigate the evolution of agent-based model structures using
variable-length genomes (through introducing a novel evolutionary computation
technique coined the hybrid variable length crossover), in which additional sim-
ulation model properties (e.g., the model or distinct agent's structure) can be
subjected to evolution.

To assist this research, we utilize a modular evolutionary framework coined
CASE (complex adaptive systems evolver). Multi-objective evolutionary compu-
tation techniques are utilized to optimize the agent-based models.

Background material on agent-based models for military applications and
CRT are �rst presented. A survey on variable length genome techniques for evo-
lutionary algorithms follows. The CASE framework is then detailed. Experiments,
using CASE and the agent-based platform MANA, are then conducted to evalu-
ate the application of variable length genomes for the evolution/optimization of
agent-based model structures. The experiments consider a simpli�ed CRT mar-
itime anchorage protection scenario. Finally, we conclude the paper and outline
future research directions which may merit investigations to develop this work.
This paper is a direct follow-up of the preliminary study reported in [8] where

agent-based model structures were evolved using a �xed -length genome repre-
sentation.

2 Background

We �rst briey describe some agent-based simulations that have been applied to
military operations research. Then the Computational Red Teaming concept is
presented.

2.1 Military Agent-Based Simulations

Agent Based Simulations have recently attracted signi�cant attention to model
the intricate and non-linear dynamics of warfare. Combat is thus here con-
ceptually regarded as a complex adaptive system which components (i.e. the
battle�eld, soldiers, vehicles, etc.) are modelled using a bottom-up agent-based
approach. The agents' computational methods may include stochastic processes
resulting in a stochastic behaviour at the system level. Examples of ABS applied
to Military Decision Making include: ISAAC/EINSTein [16], CROCADILE [12],
WISDOM [26], MANA [18] and Pythagoras [1]. A review of ABS applied to
various military applications is provided by Cioppa et al [6].

These systems have been speci�cally devised to simulate defence related sce-
narios in which the properties of the environment and the Red/Blue teams may
be speci�ed [20]. The level of representation/abstraction (e.g., number of spatial
dimensions, range of agents' properties, type of vehicles, etc.) varies among these
ABS systems. Although the level of accuracy in representing real world environ-
ments/individuals may not faithfully reect reality, it is argued that such ABS
models account for the key features (e.g., local interactions between agents) nec-
essary to exhibit complex emerging phenomena/behaviour at the system level
which are typical of real battle�elds [16]. Thus, these \distillation" models can
expose the emerging phenomena of interest without the burden of modelling and
simulating unnecessary complex features (e.g., gravity, wind, detailed physics of
distinct simulated agents/weapons/vehicles, etc.). Agent-based modelling is one
of the key technologies supporting Computational Red Teaming which is de-
scribed in the next section.

2.2 Computational Red Teaming

Computational Red Teaming (CRT) combines agent-based simulations and evo-
lutionary computation (EC) techniques as follows. CRT exploits EC techniques
to evolve simulation models to exhibit pre-speci�ed/desirable output behaviors
(i.e., when Red defeats Blue). To date, most CRT studies have only addressed
the evolution of a �xed set of agent parameters (e.g., troop clustering/cohesion,
response to injured teammates, aggressiveness, stealthiness, etc.), de�ning the
behaviour or personality of the Red team. These parameters are evolved to
optimize the Red agents collective e�ciency (e.g., maximize damage to target

facilities) against the Blue team. Example studies include: [16, 26, 4, 19]. These
studies demonstrated the promising potential of CRT systems to automatically
identify the Blue team's weaknesses.

Further CRT investigations adopted a co-evolutionary approach where the
set of behavioural parameter values of both teams are coevolved. This arms race
approach complements the previous one by automating the analysis required
to improve the Blue team's defence operational plan against the adaptive Red
team. Examples of co-evolutionary CRT studies can be found in [17, 22, 5]. This
approach enables one to generate operational tactics that are more e�cient and
robust against a larger range of scenarios. Nevertheless a trade-o� exists in terms
of robustness over e�ciency according to the range of confronted Red tactics
(i.e., the evolved tactics only yield average performances against multiple Red
tactics).

The extension of one-sided to co-evolutionary CRT signi�cantly increases
the search spaces allowing for the exploration of more diverse simulation mod-
els. As the diversity of evaluated simulation models is increased, a wider range of
potentially critical scenarios may be identi�ed. Exploring more diverse scenar-
ios enables one to devise more robust and e�ective defensive strategies against
potential threats and adaptive adversaries. Nevertheless, the expansion of this
search space is associated with a dramatic increase in computational cost. Also,
due to this high e�ect on computational complexity, no Pareto-based multi-
objective co-evolutionary approaches to CRT have been proposed to date. In
this paper, we focus on the multi-objective structural evolution of agent-based
models where only Red is evolved against Blue.

Finally, none of the above studies has attempted to evolve agent-based model
structures. We here propose a novel method to dynamically vary the range of
evolvable parameters through varying the candidate solutions' genome string
length. In the next section, we survey some related evolutionary computation
approaches which focused on variable-length genome techniques.

3 Survey of Variable Length Genome Techniques

Several studies have investigated variable-length genomes in the context of ge-
netic algorithms. None of these schemes has been applied, to the authors' knowl-
edge, to vary the structure of genomes which encode for agent-based model spec-
i�cations.

3.1 Messy Genetic Algorithm

An early attempt addressing variable-length genomes was proposed by the Messy
Genetic Algorithm (m-GA) [13]. In m-GA, the classical one-point crossover op-
erator is replaced by the \cut" and \splice" operators. The cut operator is �rst
applied upon each parent genome string where a locus point is selected at ran-
dom on each genome, cutting each string into two strings. The splice operator
is employed to rejoin the resulting four strings in a random order. The cut and

splice operators were applied upon bit strings and is thus not directly applicable
to the real-valued genomes used in Computational Red Teaming experiments.

This seminal work inspired the crossover techniques for variable-length genomes
presented in the next sections.

3.2 The Speciation Adaptation Genetic Algorithm

The Speciation Adaptation Genetic Algorithm (SAGA) was introduced by Har-
vey [14]. In m-GA, strings were recombined regardless of the strings' contents. In
contrast, SAGA was proposed to maximize the similarity between strings that
are recombined to diminish undesirable disruptive e�ects that may occur when
using a \blind" cut and splice method.

The similarity of the two parent genome strings is computed using the Longest
Common Subsequence (LCSS) metric. The LCSS is the longest uninterrupted
matching substring of gene values (alleles) found between two strings of arbitrary
length. In SAGA, a random crossover point is chosen on the �rst parent string,
then the algorithm tests every possible crossover point on the second string. For
each potential crossover point, the algorithm calculates the LCSS sum on both
the left and right regions of the genomes. The second parent string is cut at
the crossover point with the highest LCSS score. If multiple crossover points are
eligible, then one is selected at random.

3.3 Virtual Virus

Similarly to SAGA, the Virtual Virus (VIV) crossover [2] is based on the simi-
larity between parent genome strings. In contrast with SAGA, VIV can only be
applied upon similar sequences.

In VIV, the probability of crossover is governed by the level of similarity
between the parent genome strings. This level of similarity is determined by the
number of matched alleles between parent strings within a pre-speci�ed �xed
size window. As in SAGA, a random crossover locus point is selected on one of
the parent strings. VIV then compares the sequence of alleles (limited by the
window size) from this selected point with all possible substrings of the same
size on the other parent string. The substring position that includes the greatest
number of matched alleles is then recorded. The strings are then cut within the
matched substring given a similarity-based probability.

3.4 Synapsing Variable-Length Crossover

In both SAGA and VIV crossover operators, the crossover locus point was �rst
selected in one of the parent strings, then a relatively similar substring was
searched for in the second parent string. Thus the �rst selected string was utilized
as a template. In contrast, the Synapsing Variable-Length Crossover (SVLC) [15]
employs both parent strings as a template. The motivation is to preserve any
common sequences between the parent strings, where only di�erences are to be
exchanged during recombination.

In SVLC, the level of similarity between parent strings is computed using
a variant version of the LCSS (used in SAGA). A major di�erence with the
previous crossover techniques is that SVLC also includes mutation operators
(which are individually applied on children genome strings) which may a�ect
the genome length. These length varying mutation operators were implemented
in addition to the traditional point mutation operators. Four length varying mu-
tation operators are distinguished as follows: 1) A random sequence of alleles
is inserted at a random locus point on the genome string, 2) a genome sub-
string is selected/removed at random, 3) a substring is selected at random and
duplicated at a random locus point and 4) a substring is selected at random
and duplicated at the beginning or end of the genome string. Various proba-
bilities were pre-de�ned for each mutation operator (most disruptive operators,
such as the substring insertion, were assigned a signi�cantly lower probability of
occurring).

3.5 NeuroEvolution of Augmenting Topologies

In NeuroEvolution of Augmenting Topologies (NEAT) [23], the structural evo-
lution of arti�cial neural networks was investigated. NEAT included an evolu-
tionary scheme which accounted for a variable-length genome representation.
The key idea of NEAT is evolutionary complexi�cation where (initially simple)
structures/genome strings would incrementally complexify (as determined by
the number of network nodes/interactions) through evolution.

A bene�t of NEAT is to minimize the dimensionality (number of genes)
through complexi�cation. Indeed, the evolutionary process would evaluate genome
strings of higher dimensionality only if these structures yield higher �tness values.
This enables NEAT to search through a minimal number of genes, signi�cantly
reducing the number of generations necessary to �nd competitive solutions, and
ensuring that genome strings are not more complex than necessary.

A historical marking technique was implemented to identify the similarities
between genome strings. This marking was also used to perform the recombi-
nations. The mutation operators included a gene duplication method (a similar
length varying mutation operator was implemented in SAGA). In contrast with
the bitstring representation of genomes in the previous approaches, NEAT re-
lies on a real-valued genome representation. Alterations of the gene values were
conducted using the mutation operators and not through recombinations.

3.6 Summary

This section summarises the above techniques and attempts to identify the most
promising computational techniques. The latter will be then considered and
evaluated in our study on the evolution of agent-based models using variables
length genomes.

m-GA uses a simple cut and splice implementation which ignored any similar-
ities between parent genome strings. SAGA and VIV accounted for similarities
between the parent genome strings, however, recombinations were heavily based

on the �rst selected parent genome string (i.e. the template) where no appropri-
ate crossover points could be found in the second parent string. This may result
in disruptive outcomes (i.e. loss of information). SVLC resolved these issues
through considering both parent genome strings as templates. Moreover, SVLC
introduced length-varying mutation operators. NEAT is, to some extent, simi-
lar to SVLC but took an evolutionary complexi�cation approach where genome
strings progressively increase in complexity/length through evolution.

When evolving agent-based models, the model speci�cations are encoded as
real-valued genome strings (where each value encodes for a speci�c agent be-
havioural parameter). This conicts with the bitstring encoding representation
of m-GA/VIV/SAGA and SVLC. NEAT used a real-valued genome representa-
tion but the crossover operator does not directly modify the gene values through
recombinations. In real-valued �xed-length genome evolutionary algorithms, the
Simulated Binary Crossover [7] has long been established as an e�cient method
to recombine such genome strings encoded in continuous space. SBX will be
considered into the novel hybrid method proposed in Section 5.

Moreover, the varying length mutation operators proposed in SVLC and
NEAT presented promising outcomes to dynamically evolve the structure of
genome strings. Such operators will be examined in our hybrid crossover method.
Finally the evolutionary complexi�cation approach of NEAT may yield potential
bene�ts as it would avoid the exploration/evaluation of unnecessarily complex
genome strings (i.e. reducing computational e�orts). Nevertheless evolutionary
complexi�cation is not explored here but will be investigated in future work.

4 The Evolutionary Framework

A detailed description of the evolutionary framework, coined CASE (complex
adaptive systems evolver), is provided in this section. This framework was also
described and evaluated (against additional system features such as optimization
under constraint, multi-objective optimization and cloud computing) in [11, 10,
9].

The CASE framework was inspired by the Automated Red Teaming frame-
work [4] which was developed by the DSO National Laboratories of Singapore.
In contrast with DSO's system (which was dedicated to examining military sim-
ulation models), we aim at providing a relatively more exible and platform-
independent system capable of evolving simulation models for a wider variety of
application domains.

CASE is composed of three main components which are distinguished as
follows:

1. The model generator : This component takes as inputs a base simulation
model speci�ed in the eXtended Markup Language and a set of model spec-
i�cation text �les. According to these inputs, new XML simulation models
are generated and sent to the simulation engine for evaluation. Thus, as
currently devised, only simulation models speci�ed in XML are supported.
Moreover, the model generator may consider constraints over the evolvable

parameters (this feature is optional). These constraints are speci�ed in a text
�le by the user. These constraints (due for instance to interactions between
evolvable simulation parameters) aim at increasing the plausibility of gener-
ated simulation models (e.g., through introducing cost trade-o� for speci�c
parameter values).

2. The simulation engine: The set of XML simulation models is received and
executed by the stochastic simulation engine. Each simulation model is repli-
cated a number of times to account for statistical uctuations. A set of result
�les detailing the outcomes of the simulations (in the form of numerical val-
ues for instance) are generated. These measurements are used to evaluate
the generated models, i.e., these �gures are the �tness (or \cost") values
utilized by the evolutionary algorithm (EA) to direct the search.

3. The evolutionary algorithm: The set of simulation results and associated
model speci�cation �les are received by the evolutionary algorithm, which
in turns, processes the results and produce a new \generation" of model
speci�cation �les. The generation of these new model speci�cations is driven
by the user-speci�ed (multi)objectives (e.g., maximize/minimize some quan-
titative values capturing the target system behaviour). The algorithm itera-
tively generates models which would incrementally, through the evolutionary
search, best exhibit the desired outcome behaviour. The model speci�cation
�les are sent back to the model generator; this completes the search iteration.
This component is the key module responsible for the automated analysis
and modelling of simulations.

The above components are depicted in Figure 1 which presents the owchart
of an example experiment. Further details about the input �les settings can
be found in [9]. Finally, a demonstration video of CASE can be visualized at
http://www.youtube.com/watch?v=d2Day_MEruc.

5 Hybrid Variable Length Crossover

As discussed earlier (Section 3.6), we incorporate a number of existing evolution-
ary computation techniques to implement our crossover technique for variable-
length genomes. We propose the hybrid variable length crossover (HVLC), which
is a combination of both SBX and one point crossover (where similarities between
parent genome strings are considered).

In HVLC, two distinct regions within a genome string (Fig. 2) are distin-
guished: A static sequence of genes (which is located at the beginning of the
genome string) and dynamic sequence of genes which may vary in length.

The SBX crossover [7] was designed to recombine �xed-length genomes, thus
it cannot be directly used for variable-length genomes. SBX is here utilized to
recombine common substrings (which includes the static genome string region
and any other sequences, with equal sizes, of \matched" genes encoding for
identical model properties).

During the crossover operation, a crossover point is randomly selected (at a
valid locus point, so that no structures are broken, see Fig. 3) upon the common

Fig. 1. Flowchart of an example experiment. The dashed documents distinguish the
user inputs. Using the base XML model, a population of randomly generated model
variants is �rst created. The initial parameter values are randomly generated using a
uniform distribution and are bounded by the evolvable parameters setting �le provided
by the user. Both the simulation engine and evolutionary computation module call ex-
ternal libraries and/or binaries. The XML model generator employs the Libxml library
(http://libxml.rubyforge.org) to parse and generate XML models. The constraint
setting �le is utilized by the XML model generator to apply user-de�ned constraints
over the evolvable parameters.

Fig. 2. Variable Genome String Representation. This genome string illustrates the en-
coding of simulation models utilized in the experiments reported in Section 6. In this
example the waypoint structures (composed of a pair of genes encoding for spatial co-
ordinates) are dynamically varied (removed/added) during the evolutionary search, re-
ducing/expanding the length of the genome string. Double-linked genes indicate struc-
tures that cannot be broken through recombination.

genetic sequences of both parent genome strings. The genome strings are then
cut and spliced as in m-GA. Then the SBX operator is applied over the common
sequences of genes.

Fig. 3. Example HVLC crossover operation. Valid crossover points are distinguished
to disable the recombination of genetic sequences encoding structures. In this example,
waypoints are such \unbreakable" structures composed of two distinct genes encoding
for x; y spatial coordinates.

To vary the genome length, we propose a length varying mutation operator
in which two types of mutation can be distinguished (Fig. 4):

1. Deletion: A gene (or structure composed of multiple genes) is removed from
the end of the genome string (reducing the genome string length).

2. Duplication: A gene (or structure composed of multiple genes) is selected
and duplicated at the end of the genome string (increasing the genome string
length).

Fig. 4. Example HVLC mutation operations. In this example, the duplication and
deletion mutations are applied upon waypoint structures. As a result, the entire genetic
sequence representing these structures are dynamically duplicated/deleted within the
genome string.

The probability of each of these operators being applied to any children
genome string is 0.01. Finally, the polynomial mutation operator is also applied
to each gene, introducing further variations upon the gene values.

6 Experiments

We report a series of experiments using the CASE framework and the agent-
based simulation platform MANA [18]. A single case study is here examined in
which the agents' structure or more speci�cally the number of waypoints and
associated coordinates determining the agents' routes are subjected to the evo-
lutionary process. Although examining a unique case study considerably limits
the signi�cance of the experimental results (the authors acknowledge that fur-
ther case studies must be examined for a better appreciation of the results), we
limit the current investigation to a single case study as this particular scenario
was previously studied in multiple publications [24, 19, 25, 8]. This paper extends
the work that has been conducted in this well-studied model scenario. Future
work will include other case studies to complement our investigation and under-
standing on variable-length genomes for the structural evolution of simulation
models.

6.1 The model

The maritime anchorage protection scenario was originally proposed by a team
of defence analysts and academic researchers [24] and further developed in [19,
25, 8]. In this scenario, a Blue team (composed of 7 vessels) conducts patrols
to protect an anchorage (in which 20 Green commercial vessels are anchored)
against threats. Single Red vessel attempts to break Blues defence tactics and
inict damages to anchored vessels. The aim of the study is to discover Reds
strategies that are able to breach through Blues defensive tactic. Fig. 5 depicts
the scenario which was modelled using the ABS platform MANA.

In [8], a preliminary study on \evolvable simulation" (i.e. where the structure
of the model is evolved) was examined. In this work, a �xed-length genome was
employed, additional genes were introduced to control the number of waypoints
to be \switched on". Thus, the maximum number of waypoints that compose
the Red vessel route had to be pre-speci�ed (this determines the genome string
length). The current study extends this preliminary work through removing such
\control" genes and e�ectively vary dynamically the genome string length.

6.2 Experimental Setting

In CASE, each candidate solution (a distinct simulation model) is represented by
a vector of real values de�ning the di�erent evolvable Red behavioural param-
eters (Table 1). As the number of decision variables increases, the search space
becomes dramatically larger.

The selection scheme (based on the crowding distance and Pareto sorting)
of the Non-dominated Sorting Algorithm II (NSGAII) is employed to assist the
evolutionary search. This algorithm is executed using the following parameters:
population size = 100, number of search iterations = 200, mutation probability
= 0.1, mutation index = 20, crossover rate = 0.9 and crossover index = 20.
Such parameter values for NSGAII are commonly used in the literature to solve
two-objective optimization problems. The population size and number of search
iterations indicate that 20,000 distinct MANA simulation models are generated
and evaluated for each experimental run. Each individual simulation model is
executed/replicated 30 times to account for statistical uctuations (30 replica-
tions would approximately take 10 wallclock seconds to execute using an Intel
Dual Core CPU @ 2.66GHZ).

The e�ciency of the search is measured by the number of Green casual-
ties with respect to the number of Red casualties. In other words, the search
objectives are:

{ To minimize the number of Green (commercial) vessels \alive".
{ To minimize the number of Red casualties.

Considering the current scenario, these objectives are thus conicting. More-
over, the true Pareto front is here unknown. In the next section we report the
experimental results using the above model.

Fig. 5. Schematic overview of the case study . The map covers an area of 100 by 50
nautical miles (1 nm = 1.852km). 7 Blue vessels conduct patrols to protect an anchorage
of 20 Green commercial vessels against a single Red vessel. The Red vessel intends to
break the Blues defence, inict damages to the anchored Green vessels and �nally, to
escape to the Red vessel safety area. Left: The dashed lines depict the patrolling paths
of the di�erent Blue vessels. The Blue patrolling strategy is composed of two layers: an
outer (with respect to the anchorage area, 30 by 10 nm) and inner patrol. The outer
patrol consists of four smaller but faster boats. They provide the �rst layer of defence
whereas the larger and heavily armoured ships inside the anchorage are the second
defensive layer. The Red craft was set up to initiate its attack from the north. The initial
positions of Blue vessels are �xed. In contrast, the Green commercial vessels' initial
positions are randomly generated within the anchorage area at each MANA execution.
Right: Example Red route. Home waypoint (Home WP) is constrained to the distinct
agent's initial area. Similarly, the �nal waypoint is to be located in the opposite area.
Intermediate waypoints occur in the remaining middle area. Note that in the below
experiments, we dynamically evolve the number of intermediate waypoints. Whereas
the coordinates of all waypoints, including the home and �nal ones, are subjected to
evolution.

7 Results

To evaluate the quality of the (multi-objective) solutions through the evolution-
ary search, the hypervolume indicator [27] is utilized. This method is currently
considered as the state of the art technique to evaluate Pareto fronts. This indi-
cator measures the size of the objective space subset dominated by the Pareto
front approximation.

In Fig. 6, the HVLC is compared with the �xed-length genome approach
studied in [8] using NSGAII. Whereas the numerical values resulting from the
evolutionary experiments are shown in Table 2.

In Fig. 6 and Table 2, it can be observed that HVLC consistently outper-
formed its �xed-length genome counterpart. When comparing the best Pareto
set approximations (Fig. 7) resulting from both sets of evolutionary runs, compa-
rable results were achieved. HVLC was nevertheless more consistent throughout
the 10 distinct evolutionary runs (when considering the mean hypervolume in-
dicator value and standard deviation) in achieving competitive results.

(a) Fixed Blue parameters

Parameter Value

Detection range (nm) 24
hits to be killed 2
Weapon hit prob. 0.8
patrolling agents 7
Speed (unit) 100
Weapon range (nm) 8
Determination 50_0
Aggressiveness 0_100
Cohesiveness 0

(b) Fixed Red parameters

Parameter Value

Detection range (nm) 8
hits to be killed 1
Weapon hit prob. 0.8
agents 5
Speed (unit) 100
Weapon range (nm) 5

(c) Evolvable Red paramaters

Parameter Min Max

Vessel home position(x,y) (0,0) (399,39)
Intermediate waypoint position (x,y) (0,40) (399,159)
Vessel �nal position (x,y) (0,160) (399,199)
Determination 20 100
Aggressiveness -100 100
Cohesiveness -100 100

Table 1. (a): Fixed Blue parameters. Value pairs are speci�ed for the determination
and aggressiveness properties. In this model, Blue changes its behaviour upon detecting
Red, i.e., Blue \targets" Red, with aggressiveness being increased, when the latter is
within Blue's detection range. (b): Fixed Red parameters. The behavioural parameters
are not speci�ed as these parameters are subjected to evolution. (c): Evolvable Red
parameters: As mentioned earlier, the intermediate waypoint structures are dynami-
cally inserted/removed within the agent-based model during the evolutionary search.
The �nal positions of the Red craft is constrained to the opposite region (with respect
to initial area) to simulate escapes from the anchorage following successful attacks.
Behavioural or \psychological" elements are included in the evolvable decision vari-
ables. The aggressiveness determines the reaction of individual vessels upon detecting
an adversary. Cohesiveness inuences the propensity of vessels to maneuver as a group
or not, whereas determination stands for the agent's willingness to follow the de�ned
routes (go to next waypoint). The Red vessels' aggressiveness against the Blue pa-
trolling force are varied from unaggressive (-100) to very aggressive (100). Likewise,
the cohesiveness of the Red crafts are varied from independent (-100) to very cohesive
(100). Finally, a minimum value of 20 is set for determination to prevent inaction from
occurring.

Although the above preliminary results suggest a somewhat promising poten-
tial for the variable-length genome approach, only a single case study was here
considered. As mentioned in the introduction, we do expect that this method
may only bene�t scenarios in which the structural evolution of simulation mod-
els is relevant (i.e. where the evolutionary experiment is not constrained to a set
of evolvable parameters). Our future work will include a broader set of scenario

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0 50 100 150 200

H
y
p
e
rv

o
lu

m
e
 i
n
d
ic

a
to

r
v
a
lu

e

Generation

HVLC
NSGAII

Fig. 6. Hypervolume volume dynamics. The lines identify the hypervolume indicator
value averaged over 10 individual evolutionary runs using unique seeds. The error
bars stands for the con�dence interval (with � = 0:05). The negative value of the
hypervolume indicator is utilized for consistency with the cost minimization approach
used in the experiments.

Table 2. Pareto optimality performance

Algo. Best Mean

NSGAII -8.9249 -7.8211 � 0.36
HVLC -8.9995 -8.2854 � 0.25

The bold values identify the best overall Pareto optimal approximation sets (when
considering both the mean and a 95% con�dence interval).

to better evaluate HVLC against existing evolutionary computation techniques
such as the NSGAII.

In the remainder of this section, we discuss a potential explanation for the
dynamics observed in the experiments using the �xed-length genome approach:
A potential drawback of the �xed-length genome representation is the epista-

sis phenomenon. In biology, epistasis refers to non-linear interactions occurring
between genes. It is currently hypothesized that epistasis may emphasize the
\ruggedness" of the �tness landscape [3], leading to an increased level of di�-
culty for the evolutionary search. Note that epistasis may already occur implicitly

between genes (here simulation model parameters) according to their speci�c val-
ues. The speci�cation of control genes explicitly introduce epistatic interactions,
which may harden the search di�culty level.

Indeed, a slight mutation in the value of \control" or epistatic genes, us-
ing the �xed-length genome approach, would result in large phenotype changes,
where many waypoints may be turned o� or on simultaneously. This clearly in-
troduces non-linearities in the evolutionary search process. The level of epistatic

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
re

e
n
 A

liv
e
 (

m
in

im
iz

e
)

Red Killed (minimize)

hHVLC=-8.9995

hNSGAII=-8.9249

hexample=-7.931

HVLC
NSGAII

Example

Fig. 7. Best Pareto set approximations resulting from the 10 distinct evolutionary
runs conducted using NSGAII and HVLC. A third example Pareto front is shown to
illustrate how a di�erence of 1 in the hypervolume indicator value may a�ect the Pareto
front approximation quality.

interactions would moreover increase according to the pre-speci�ed maximum
number of waypoints. This ultimately limits the utilization of the �xed-length
genome representation for such agent-based model optimization applications.

The results suggest that the variable-length genome representation may po-
tentially alleviate this epistatic issue, leading to better Pareto optimality per-
formances. Although these results are promising, further experiments remain
required to investigate the potential bene�t of the variable-length genome rep-
resentation approach. Future work include the evolution of simulation models in
which a large number of model structures is evolved. We hypothesize that the
�xed-length genome approach would rapidly and signi�cantly be outperformed
by HVLC when tackling larger search problems including a relatively high level
of explicit epistatic interaction. Methods which may quantify epistasis (as used
in molecular biology research [21]) would also assist this future research.

Also the evolutionary complexi�cation concept proposed by Stanley and Mi-
ikkulainen [23] will be investigated as it may reduce the number of search gen-
erations (i.e. optimizing the search convergence speed) through avoiding the
evaluation of unnecessary complex simulation models.

8 Conclusions

The Computational Red Teaming methodology and related supporting tech-
nologies were �rst introduced. A survey on variable-genome length techniques
for evolutionary computation was then presented. The evolutionary framework
CASE was briey described and utilized using a novel variable-length compu-

tational technique coined the hybrid variable length crossover. A series of ex-
periments was conducted in which the structure of a simpli�ed military agent-
based model was evolved. HVLC was compared against a �xed-length genome
approach. The experimental results suggested that our variable-length genome
approach is a promising technique which, in overall, achieved better Pareto op-
timality performances than using �xed-length genomes. Nevertheless, this po-
tential bene�t must be further examined in future work where supplementary
evolutionary experiments of di�ering complexity will be conducted.

Acknowledgements

We would like to thank the Defence Research and Technology O�ce, Ministry of
Defence, Singapore, for sponsoring the Evolutionary Computing Based Method-

ologies for Modeling, Simulation and Analysis project which is part of the De-
fence Innovative Research Programme FY08.

References

1. Bitinas, E.J., Henscheid, Z.A., Truong, L.V.: Pythagoras: A New Agent-based Sim-
ulation System. Technology Review pp. 45{58 (2003)

2. Burke, D., De Jong, K., Grefenstette, J., Ramsey, C., Wu, A.: Putting More Ge-
netics Into Genetic Algorithms. Evolutionary Computation 6(4), 387{410 (1998)

3. Choi, S., Jung, K., Moon, B.: Lower and Upper Bounds for Linkage Discovery.
Evolutionary Computation, IEEE Transactions on 13(2009), 201{216 (2009)

4. Choo, C.S., Chua, C.L., Tay, S.H.V.: Automated Red Teaming: a Proposed Frame-
work for Military Application. In: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation. pp. 1936{1942. ACM (2007)

5. Choo, C.S., Chua, C.L., Low, K.M.S., Ong, W.S.D: A Co-evolutionary Ap-
proach for Military Operational Analysis. In: GEC '09: Proceedings of the �rst
ACM/SIGEVO Summit on Genetic and Evolutionary Computation. pp. 67{74.
ACM (2009)

6. Cioppa, T.M., Lucas, T.W., Sanchez, S.M.: Military Applications of Agent-based
Simulations. In: Proceedings of the 36th Winter Simulation Conference. pp. 171{
180. ACM (2004)

7. Deb, K., Agrawal, R.: Simulated Binary Crossover for Continuous Search Space.
Complex Systems 9(2), 115{148 (1995)

8. Decraene, J., Chandramohan, M., Low, M.Y.H., Choo, C.S.: Evolvable Simulations
Applied to Automated Red Teaming: A Preliminary Study. In: Proceedings of the
42th Winter Simulation Conference. pp. 1444{1455. ACM (2010)

9. Decraene, J., Low, M.Y.H., Zeng, F., Zhou, S., Cai, W.: Automated Modeling
and Analysis of Agent-based Simulations using the CASE Framework. In: In Pro-
ceedings of 11th International Conference on Control, Automation, Robotics and
Vision (ICARCV). pp. 346{351. IEEE (2010)

10. Decraene, J., Yong, Y.C., Low, M.Y.H., Zhou, S., Cai, W., Choo, C.S.: Evolv-
ing Agent-based Simulations in the Clouds. In: Third International Workshop on
Advanced Computational Intelligence (IWACI). pp. 244{249. IEEE (2010)

11. Decraene, J., Zeng, F., Low, M.Y.H., Zhou, S., Cai, W.: Research Advances in
Automated Red Teaming. In: Proceedings of the 2010 Spring Simulation Multi-
conference (SpringSim). pp. 47:1{47:8. ACM (2010)

12. Easton, A., Barlow, M.: CROCADILE: An Agent-based Distillation System Incor-
porating Aspects of Constructive Simulation. In: Proceedings of the SimTecT 2002
Conference. pp. 233{238 (2002)

13. Goldberg, D., Korb, B., Deb, K., et al.: Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex systems 3(5), 493{530 (1989)

14. Harvey, I.: The SAGA Cross: The Mechanics of Recombination for Species with
Variable Length Genotypes. In: M�anner, R., Manderick, B. (eds.) In Proceeding of
the Parallel Problem Solving from Nature 2. pp. 269{278. Elsevier (1992)

15. Hutt, B., Warwick, K.: Synapsing Variable-length Crossover: Meaningful Crossover
for Variable-length Genomes. IEEE transactions on evolutionary computation
11(1), 118{131 (2007)

16. Ilachinski, A.: Arti�cial war: Multiagent-based Simulation of Combat. World Sci-
enti�c Pub Co Inc (2004)

17. Kewley, R.H., Embrechts, M.J.: Computational Military Tactical Planning System.
IEEE Transactions on Systems, Man, and Cybernetics, Part C 32(2), 161{171
(2002)

18. Lauren, M., Stephen, R.: Map-aware Non-uniform Automata (MANA)-A New
Zealand Approach to Scenario Modelling. Journal of Battle�eld Technology 5, 27{
31 (2002)

19. Low, M.Y.H., Chandramohan, M., Choo, C.S.: Multi-Objective Bee Colony Op-
timization Algorithm to Automated Red Teaming. In: Proceedings of the 41th
Winter Simulation Conference. pp. 1798{1808. ACM (2009)

20. Lucas, T.W., Sanchez, S.M., Martinez, F., Sickinger, L.R., Roginski, J.W.: Defense
and Homeland Security Applications of Multi-agent Simulations. In: Proceedings
of the 39th Winter Simulation Conference. pp. 138{149. IEEE (2007)

21. Matsuura, T., Kazuta, Y., Aita, T., Adachi, J., Yomo, T.: Quantifying Epistatic
Interactions among the Components Constituting the Protein Translation System.
Molecular Systems Biology 5(297) (2009)

22. McDonald, M.L., Upton, S.C.: Investigating the Dynamics of Competition: Coe-
volving Red and Blue Simulation Parameters. In: Proceedings of the 37th Winter
Simulation Conference. pp. 1008{1012. ACM (2005)

23. Stanley, K., Miikkulainen, R.: Competitive Coevolution through Evolutionary
Complexi�cation. Journal of Arti�cial Intelligence Research 21(1), 63{100 (2004)

24. Wong, A.C.H., Chua, C.L., Lim, Y.K., Kang, S.C., Teo, C.L.J., Lampe, T.,
Hingston, P., Abbott, B.: Team 1: Applying Automated Red Teaming in a Mar-
itime Scenario. In: In Scythe 3: Proceedings and Bulletin of the International Data
Farming Community. pp. 3{5 (2007)

25. Xu, Y.L., Low, M.Y.H., Choo, C.S.: Enhancing Automated Red Teaming with
Evolvable Simulation. In: Proceedings of the �rst ACM/SIGEVO Summit on Ge-
netic and Evolutionary Computation. pp. 687{694. ACM (2009)

26. Yang, A., Abbass, H., Sarker, R.: Characterizing Warfare in Red Teaming. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 36(2), 268{285 (2006)

27. Zitzler, E., Brockho�, D., Thiele, L.: The Hypervolume Indicator Revisited: On the
Design of Pareto-compliant Indicators Via Weighted Integration. In: Proceedings
of The 4th International Conference on Evolutionary Multi-criterion Optimization,
Lecture notes in computer science. vol. 4403, pp. 862{876. Springer (2007)

Reward-based region optimal quality guarantees

Meritxell Vinyals1, Eric Shieh2, Jesus Cerquides1, Juan Antonio
Rodriguez-Aguilar1, Zhengyu Yin2, Milind Tambe2, and Emma Bowring3

1 Artificial Intelligence Research Institute (IIIA),
Campus UAB, Bellaterra, Spain

{meritxell, cerquide,jar}@iiia.csic.es
2 University of Southern California, Los Angeles, CA 90089

{eshieh, zhengyuy,tambe}@usc.edu
3 University of the Pacific, Stockton, CA 95211

ebowring@pacific.edu

Abstract. Distributed constraint optimization (DCOP) is a promising
approach to coordination, scheduling and task allocation in multi-agent
networks. DCOP is NP-hard [6], so an important line of work focuses on
developing fast incomplete solution algorithms that can provide guaran-
tees on the quality of their local optimal solutions.
Region optimality [11] is a promising approach along this line: it provides
quality guarantees for region optimal solutions, namely solutions that are
optimal in a specific region of the DCOP. Region optimality generalises
k- and t-optimality [7, 4] by allowing to explore the space of criteria that
define regions to look for solutions with better quality guarantees.
Unfortunately, previous work in region-optimal quality guarantees fail to
exploit any a-priori knowledge of the reward structure of the problem.
This paper addresses this shortcoming by defining reward-dependent re-
gion optimal quality guarantees that exploit two different levels of knowl-
edge about rewards, namely: (i) a ratio between the least minimum re-
ward to the maximum reward among relations; and (ii) the minimum
and maximum rewards per relation.

1 Introduction

Distributed Constraint Optimization (DCOP) is a popular framework for coop-
erative multi-agent decision making. It has been applied to real-world domains
such as sensor networks [12], traffic control [3], or meeting scheduling [8]. In
real-world domains, and particularly in large-scale applications, DCOP tech-
niques have to cope with limitations on resources and time available for reason-
ing. Because DCOP is NP-Hard [6], complete DCOP algorithms (e.g. Adopt [6],
OptAPO [5], DPOP [8]) that guarantee global optimality are unaffordable for
these domains due to their exponential costs. In contrast to complete algorithms,
incomplete algorithms [12, 2, 10, 7, 4] provide better scalability.

Unfortunately, an important limitation for the application of incomplete al-
gorithms is that they usually fail to provide quality guarantees on their solutions.

The importance of quality guarantees is twofold. First, they help guaran-
tee that agents do not converge to a solution whose quality is below a certain
fraction of the optimal solution (which can have catastrophic effects in certain
domains). Secondly, quality guarantees can aid in algorithm selection and net-
work structure selection in situations where the algorithmic cost of coordination
must be weighed up against solution quality (trade-off cost versus quality).

To the best of our knowledge, region optimal algorithms [11] are the only
incomplete DCOP algorithms that can provide guarantees on the worst-case so-
lution quality of their solutions at design time and exploit the available knowl-
edge, if any, about the DCOP(s) to solve regarding their graph structure. The
region optimal framework, that generalises the k- and t- optimal frameworks pro-
posed in [7, 4], defines quality guarantees for region optimal solutions, namely
solutions that are optimal in specific region of the DCOP. Thus, region opti-
mality allows to explore the space of local optimality criteria (beyond size and
distance) looking for those that lead to better solution qualities. To assess region
optimal quality guarantees, in our previous work [11] we propose two methods
with different computational costs: (1) a first one, based on solving an LP, that
guarantees tightness; and (2) a second one that requires linear time but does not
ensure tightness.

Unfortunately, previous work in region-optimal bounds fail to exploit some
a-priori knowledge of the reward structure of the DCOP problem, if available,
and only the knowledge of graph structure is exploited so far. As argued in
[1] for the particular case of k-optimality, this limits the applicability of these
approaches to many domains for which some information about the range of
rewards is available. For example, in sensor networks [12], we may know the
maximum reward of observing a phenomenon and the minimum reward when
we have no observations.

This is the shortcoming we address in this paper and at this aim we extend
the region optimal bounds to be able to exploit two different kinds of knowledge
about the reward structure. Concretely, we show how to tight region optimal
quality guarantees by assuming: (1) a ratio between the least minimum reward
to the maximum reward among relations, along the lines of [1] (e.g. the ratio
between the maximum reward of observing a phenomenon and the minimum
reward when no observation is known); and (2) that the minimum and maxi-
mum rewards per relation are known (e.g. the maximum reward of observing a
phenomenon and the minimum reward when no observation are known).

This paper is organised as follows. Section 2 provides some background on
DCOPs and on the region optimal framework. Section 3 extends region optimal
quality guarantees to exploit some a-priori knowledge about the reward struc-
ture. Section 4 analyses the tightness of the proposed reward-based guarantees
and the improvement with respect to the guarantees formulated in [11]. Finally,
section 5 draws conclusions.

x0 x1 x2

x3 x4 x5

(a)

x0 x1 x2

x3 x4 x5

(1)

x0 x1 x2

x3 x4 x5

(2)

x0 x1 x2

x3 x4 x5

(3)

x0 x1 x2

x3 x4 x5

(4)

x0 x1 x2

x3 x4 x5

(5)

x0 x1 x2

x3 x4 x5

(6)

(b)

x0 x1 x2

x3 x4 x5

(1)

x0 x1 x2

x3 x4 x5

(2)

x0 x1 x2

x3 x4 x5

(3)

x0 x1 x2

x3 x4 x5

(4)

x0 x1 x2

x3 x4 x5

(5)

x0 x1 x2

x3 x4 x5

(6)

(c)

x0 x1 x2

x3 x4 x5

(1)

x0 x1 x2

x3 x4 x5

(2)

x0 x1 x2

x3 x4 x5

(3)

x0 x1 x2

x3 x4 x5

(4)

x0 x1 x2

x3 x4 x5

(5)

x0 x1 x2

x3 x4 x5

(6)

(d)

Fig. 1. Example of (a) a DCOP graph, (b) its 1-distance region, (c) its 5-size region
and (d) its 5-size-distance-bounded region

2 Background

2.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) consists of a set of
variables, each assigned to an agent which must assign a discrete value to the
variable: these values correspond to individual actions that can be taken by
agents. Constraints exist between subsets of these variables that determine re-
wards to the agent team based on the combinations of values chosen by their
respective agents, namely relations. Let X = {x1, . . . , xn} be a set of variables
over domains D1, . . . ,Dn. A relation on a set of variables V ⊆ X is expressed
as a reward function SV : DV → R+, where DV is the joint domain over the
variables in V . This function represents the reward generated by the relation
over the variables in V when the variables take on an assignment in the joint
domain DV . Whenever there is no need to identify the domain, we simply use S
to note relations.expressed as negative rewards).

In a DCOP each agent knows all the relations that involve its variable(s). In
this work we assume that each agent is assigned a single variable, so we will use
the terms “agent” and “variable” interchangeably.

Formally, a DCOP is a tuple 〈X ,D,R〉, where: X is a set of variables (each
one assigned to a different agent); D is the joint domain space for all variables;
and R is a set of reward relations. The solution quality for an assignment d ∈ D
to the variables in X is the sum of the rewards for the assignment over all the
relations in the DCOP, namely:

R(d) =
∑
SV ∈R

SV (dV) (1)

where dV ∈ DV contains the values assigned by d to the variables in V . With
slight abuse of notation we allow to write equation 1 as R(d) =

∑
S∈R S(d).

Solving a DCOP amounts to choosing values for the variables in X such
that the solution quality is maximized. A binary DCOP (each relation involves
a maximum of two variables) is typically represented by its constraint graph,
whose vertexes stand for variables and whose edges link variables that have
some direct dependency (appear together in the domain of some relation). An
example of a constraint graph is depicted in figure 1(a).

2.2 Region optimality

In [11] we introduce region optimality, a framework that generalise the k- and
t-optimal frameworks [7, 4] by providing reward-independent quality guarantees
for optima in regions characterised by any arbitrary criterion. Region optimality
allows to explore the space of criteria (beyond size and distance) looking for
those that lead to better solution qualities. Next we give a brief overview of the
region optimal framework by defining the concepts of neighbourhood, region and
region optimal solution.

Formally, a neighbourhood, A, is a subset of variables of X . For instance, fig-
ure 1(b)(1) depicts a neighbourhood for the DCOP in figure 1(a) where boldfaced
nodes in the constraint graph stand for variables included in the neighbourhood,
namely {x0, x1, x3}. Given two assignments x and y, we define D(x, y) as the
set containing the variables whose values in x and y differ. Then given a neigh-
bourhood A, we say that x is a neighbour of y in A iff x differs from y only in
variables that are contained in A, thus D(x, y) ⊆ A.

Given some assignment x, we say that it is optimal in a neighbourhood A if
its reward cannot be improved by changing the values of some of the variables
in the neighbourhood. That is, for every assignment y such that x is a neighbour
of y in A, we have that R(x) ≥ R(y). Thus, an assignment x is optimal in
the neighbourhood of figure 1(b)(1) if any other assignment that maintains the
values of x2, x4 and x5 as in x receives at most the same reward as x.

Given two neighbourhoods A,B ⊆ X we say that B completely covers A if
A ⊆ B. We say that B does not cover A at all if A∩B = ∅. Otherwise, we say that
B covers A partially. For each neighbourhood A we can classify each relation SV

in a DCOP into one of three disjoint groups, depending on whether Cα covers V
completely (T (A)), partially (P (A)), or not at all (N(A)). For example, given the
neighbourhood {x0, x1, x3} in figure 1(b)(1) we can classify the relations of the
DCOP in figure 1(a) as : T ({x0, x1, x3}) = {S{x0,x3}, S{x0,x1}}, P ({x0, x1, x3}) =
{S{x1,x2}, S{x3,x4}, S{x1,x4}}, N({x0, x1, x3}) = {S{x2,x5}, S{x4,x5}}.

A region C is a multi-set1 of subsets of X , namely a multi-set of neighbour-
hoods of X . For instance, figure 1(b) show a region composed of six neighbour-
hoods (b)(1)-(b)(6). Given a region C, we say that x is inside region C of y iff x
differs from y only in variables that are contained in one of the neighbourhoods
in C, that is, if there is a neighborhood Cα ∈ C such that x is neighbour of y in
Cα. Then, we can claim optimality for x in a region C (noted as xC) whenever
it is optimal in each neighbourhood Cα ∈ C, that is if it cannot be improved
by any other assignment inside region C. For instance, an assignment x will be
optimal in the region depicted in figure 1(a) if it is optimal in each of its six
neighbourhoods.

Finally, for each relation SV ∈ R we define cc(SV , C) = |{Cα ∈ C s.t V ⊆
Cα}|, that is, the number of neighbourhoods in C that cover the domain of SV
completely. We also define nc(SV , C) = |{Cα ∈ C s.t V ∩ Cα = ∅}|, that is,
the number of neighbourhoods in C that do not cover the domain of SV at all.
For instance, in the region of figure 1(b) there are two neighbourhoods that
totally cover the relation S{x0,x1}, namely neighbourhoods (1) and (2). Thus,
cc(S{x0,x1}, C) = 2. Moreover, there is only one neighbourhood that do not cover
S{x0,x1} at all, namely neighbourhood (6). Thus, nc(S{x0,x1}, C) = 1.

In [11] we show how region optimality generalises k− and t−optimality by
observing that: (i) both criteria are based on the definition of a region over
the constraint graph; and (ii) given any assignment, checking for either k-size
or t-distance optimality amounts to checking for optimality in that region. For
example, figure 1(b) shows the neighbourhoods corresponding to the 1-distance
region of the DCOP in figure 1(a), where each neighbourhood corresponds to
one variable and its direct neighbours (e.g. neighbourhood (1) includes vari-
able x0 and its direct neighbours) whereas figure 1(c) shows the neighbourhoods
corresponding to the 5-size region of the DCOP in figure 1(a), where each neigh-
bourhood stands for a set of five connected variables.

Furthermore, region optimality allows to explore the space of arbitrary crite-
ria to generate regions that otherwise will never be explored by size or distance
criteria. For example, figure 1(d) shows a region created by the size-bounded-
distance criteria proposed in [11]. Observe that the 5-size-bounded-distance re-
gion will never be created by either size or distance criteria because: (1) regard-
ing size, it includes regions of size 4 and size 5; and (2) regarding distance, the
region includes neighbourhoods different from the 1-distance region (shown in
figure 1(b)) and from the 2-distance region which includes neighbourhoods that
contain all the variables in the DCOP.

1 A multi-set is a generalisation of a set that can hold multiple instances of the very
same element.

x0 x1

x2 x3

(a)

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

x0 x1

x2 x3

(b)

Fig. 2. Example of (a) a DCOP graph and (b) its 2-size region.

In the next section we describe the methods to calculate bounds for a C-
optimal assignment, namely an assignment that is optimal in an arbitrary region
C.

2.3 Region optimal reward-independent quality guarantees

In this section we review the methods proposed in [11] to calculate reward-
independent quality guarantees for any region optima. In [11] we propose two
methods to calculate region optimal reward-independent quality guarantees each
one with a different computational cost: (1) a first one, based on solving an LP,
that guarantees tightness; and (2) a second one, that requires linear time but
does not ensure tightness. Assuming no knowledge of reward structure (except
from they are non-negative) but exploiting the knowledge of the graph structure
when available, these methods provide worst case quality of a C-optimal solution
as a fraction of the global optimal, where C is an arbitrary region.

We say that we have a bound δ when we can state that the quality of any
C-optimal assignment xC is larger than δ times the quality of the optimal x∗.
Hence, having a bound δ means that for every xC we have that R(xC)

R(x∗) ≥ δ.

Tight region optima quality guarantees. For a given set of relations R,

let xC− be the C-optimal assignment with smallest reward, then R(xC−)

R(x∗) provides
a tight bound on the quality of any C-optimal for the specific rewards R.

In we show how to calculate a tight bound on a C-optimal assignment in-
dependently from the specific DCOP rewards by directly searching the space of

reward values to find the set of rewards R∗ that minimizes R∗(xC−)

R∗(x∗) .
The assessment of this bound involves to solve the following program:

Find R, xC and x∗ that
minimize R(xC)

R(x∗)

subject to xC being a C-optimal for R

Given the definition of region optimality, the condition of being a C-optimal
for R can be expressed as: for each x inside region C of xC we have that
R(xC) ≥ R(x). However, instead of considering all the assignments for which
xC is guaranteed to be optimal, we consider only the subset of assignments such
that the set of variables that deviate with respect to xC take the same value than
in the optimal assignment. If we restrict to this subset of assignments, then each
neighbourhood covers a 2|C

α| assignments, one for each subset of variables in the
neighbourhood. Let 2C

α

stand for the set of all subsets of the neighbourhood
Cα. Then for each Ak ∈ 2C

α

we can define an assignment xαk such that for
every variable xi in a relation completely covered by Ak we have that xαki = x∗i ,
and for every variable xi that is not covered at all by Ak we have that xαki = xCi .
Then, we can write the value of xαk as :

R(xαk) =
∑

S∈T (Ak)

S(x∗) +
∑

S∈P (Ak)

S(xαk) +
∑

S∈N(Ak)

S(xαk) (2)

Now, the definition of C-optimal can be expressed as:

R(xC) ≥
∑

S∈T (Ak)

S(x∗)+
∑

S∈P (Ak)

S(xαk)+
∑

S∈N(Ak)

S(xC) ∀Ak ∈ {2C
αk |Cαk ∈ C} (3)

that, by setting partially covered relations to the minimum possible reward (0
assuming non-negative rewards), results in:

R(xC) ≥
∑

S∈T (Ak)

S(x∗) +
∑

S∈N(Ak)

S(xC) ∀Ak ∈ {2C
αk |Cαk ∈ C} (4)

where T (Ak) is the set of completely covered relations, P (Ak) the set of partially
covered relations and N(Ak) the set of relations not covered at all.

Applying these transformations detailed in [9], we can simplify the initial
program into the following linear program (LP) with z and y being vectors of
positive real numbers:

minimize
∑
S∈R zS

subject to∑
S∈R yS = 1

and for each neighbourhood Ak ∈ {2Cαk |Cαk ∈ C} covered by C subject to∑
S∈R zS ≥

∑
S∈T (Ak) yS +

∑
S∈N(Ak) zS

where T (Ak) contains the relations completely covered by Ak and N(Ak) the
relations that are not covered by Ak at all.

As an example, consider the DCOP constraint graph in figure 2(a) and its
2-size region depicted in figure 2(b) for which we assess the LP region optimal

x0 x1

x2 x3

r12 0 1 . . .

0 1
3

0 0

1 0 1
3

0

. . . 0 0 0

r23 0 1 . . .

0 0 0 0

1 0 0 0

. . . 0 0 0

r02 0 1 . . .

0 0 0 0

1 0 1
3

0

. . . 0 0 0

r13 0 1 . . .

0 0 0 0

1 0 1
3

0

. . . 0 0 0

Fig. 3. Example of reward tables for which the 2-size region optimal bound for the
DCOP of figure 2(a) is tight

bound as follows. In this case, we assume xC− = 〈x0 = 0, x1 = 0, x2 = 0, x3 = 0〉
and x∗ = 〈x0 = 1, x1 = 1, x2 = 1, x3 = 1〉 where 0 and 1 stand for the first
and second value in each variable domain. First we create the real variables, two
for each of the four relations. Thus, given the relation Sx0x1 we create two real
variables: one representing the value of xC−, zx0x1 , and one representing the value
of x∗, yx0x1 . Finally, to guarantee the optimality of xC we add six constraints, one
for each neighbourhood that compose the 2-size region depicted in figure 2(b).
Thus, for the neighborhood depicted at the left of the figure 2(b) (composed
of variables x0, x1), we constraint via c0 that the value of xC− must be greater
than the sum of the values of totally covered relations for x∗ (yx0x1) plus the
values of non-covered relations for xC− (zx2x3). The resultant linear programming
formulation is:

minimize zx0x1 + zx1x3 + zx2x3 + zx0x2

subject to
yx0x1 + yx1x3 + yx2x3 + yx0x2 = 1

and subject to:
(c0) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x1 + zx2x3

(c1) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x2 + zx1x3

(c2) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ 0
(c3) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ 0
(c4) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx1x3 + zx0x2

(c5) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx2x3 + zx0x1

After solving this LP, δ =
∑
S∈R zS provides a tight bound on the quality of

a C-optimal solution for the graph structure represented by R. Thus, by solving
the LP for the 2-size optimal region in figure 2(b) we obtain a bound δ = 1

3 .
Moreover, we can use the values of the instantiated real variables, corresponding
to the relations rewards for xC− and x∗, to generate DCOPs for which the assessed

bound is tight. Figure 2.3 shows a DCOP with a reward structure for which the
2-size region optimal bound δ = 1

3 obtained for the constraint graph in figure
2(a) is tight. It is easy to see that value of the 2-size optimal xC− = 〈0, 0, 0, 0〉 is
1/3, higher than the value of any assignment inside the 2-size region, whereas
the value of the optimal assignment x∗ = 〈1, 1, 1, 1〉 is 1.

Let M be the number of variables of the largest neighbourhood in C. The LP
has 2 · |R| variables and O(2M · |C|) constraints, and hence it is solvable in time
polynomial in |R| and in 2M · |C|.

Faster quality guarantees for region optima. Because the computational
complexity of the LP method can be high as the number of relations |R|, the
number of neighbourhoods |C| or its size M grows in we propose a faster alterna-
tive method to compute region optimal bounds. This faster method can compute
a bound, by means of proposition 1, in time O(|R||C|) but, as a counterpart, we
lose the tightness of the bound.

Proposition 1. Let 〈X ,D,R〉 be a DCOP with non-negative rewards and C a
region. If xC is a C-optimal assignment then

R(xC) ≥ cc∗
|C| − nc∗

R(x∗) (5)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), and x∗ is the optimal
assignment.

Proposition 1 proved in [11] directly provides a simple algorithm to compute
a bound. Given a region C and a graph structure, we can directly assess cc∗ and
nc∗ by computing cc(S, C) and nc(S, C) for each relation S ∈ R and taking the
minimum. This will take time O(|R||C|), that is linear in the number of relations
of the DCOP and linear in the number of neighbourhoods in the region.

Despite its complexity improvements, the bound assessed by proposition 1
is not guaranteed to be tight and can return worse bounds than the ones pro-
vided by the LP-based mechanism. As an example, now we turn back to fig-
ure 2 to assess the bounds for the 2-size optimal region in figure 2(b) using
equation 5. Given the relation S{x0,x1}, we assess the number of neighbour-
hoods that completely cover {x0, x1} as cc(S{x0,x1}, C2) = 2 (the first neighbour-
hood) and the number of neighbourhoods that do not cover {x0, x1} at all as
nc(S{x0,x1}, C2) = 1 (the sixth neighbourhood). After repeating the process for
the rest of relations in the constraint graph, we obtain that cc∗ = 1 and nc∗ = 1,
and hence cc∗

|C1|−nc∗ = 2
6−2 = 1

2 and hence, this faster bound is not tight (compare
with the tight bound assessed above δ = 1

3).
Both the LP and proposition 1 assess bounds that depend on the graph

structure but are independent of the specific reward values. We can always use
them to assess bounds independently of the graph structure by assessing the
bound for the complete graph, since any other structure is a particular case of
the complete graph with some rewards set to zero.

3 Reward-based region optimal bounds

Previous section reviewed two methods that provide bounds on any C-optimal,
characterized by an arbitrary C criterion, that are independent of the specific
reward structure. However, as shown in [1] for the specific criterion of group size,
if some knowledge of the reward structure of the problem is available then it can
be exploited to assess more accurate bounds. Here we show how to incorporate
reward structure knowledge in the region optimality framework and formulate
two different improvements by assuming:

– a ratio between the least minimum reward to the maximum reward among
constraints, the so-called minimum fraction reward (section 3.1); and

– the knowledge of the minimum and maximum rewards per relation, the so-
called extreme relations rewards (section 3.2).

Finally, section 4 provides results to characterise the gain on tightness ob-
tained when exploiting the knowledge about these different reward structures.

3.1 Based on the minimum fraction reward

In this section we show how to tight the LP-based or the faster region optimal
bounds described in section 2.3 when we know that the minimum reward is a
certain factor β (0 < β ≤ 1) of the maximum reward on any relation. Thus, this
refinement is a generalization of the improvements in tightness for size-optimal
bounds proposed in [1].

Extending the LP-based mechanism to exploit knowledge of the min-
imum fraction reward First, we show how assuming a minimum fraction
reward of β we tight the quality guarantees obtained by means of the LP mech-
anism described in section 2.3. In order to obtain a tighter bound, we will employ
the set of partially covered relations.

In this case, instead of setting the values of all relations
∑
S∈P (Cα) S(xαk) to

0, as in equation 4, we can exploit the knowledge that S(xαk) ≥ β·S(x∗) ∀S ∈ R.
Then, ∀Ak ∈ {2Cαk |Cαk ∈ C}, the restriction for assignment xαk is rewritten as:∑

S∈R
S(xC) ≥

∑
S∈T (Cα)

S(x∗) +
∑

S∈P (Cα)

β · S(x∗) +
∑

S∈N(Cα)

S(xC) (6)

Notice that it is the only change we need to do to incorporate the knowledge
of the minimum fraction reward and that the program can be simplified to an
LP, following analogous operations as the ones detailed in [9], with the same
number of variables than in the reward independent case.

As an example, we turn back to figure 2 to assess the LP region optimal
bound for the 2-size region depicted in figure 2(b) when assuming a minimum
fraction reward β. With respect to the reward-independent LP formulation, the
right part of each constraint is modified to add the real variables related to the

values of x∗ for the partially covered relations multiplied by β. This results in
the following LP formulation:

minimize zx0x1 + zx1x3 + zx2x3 + zx0x2

subject to
yx0x1 + yx1x3 + yx2x3 + yx0x2 = 1

and subject to:
(c0) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x1 + β · (yx1x3 + yx0x2) + zx2x3

(c1) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x2 + β · (yx0x1 + yx2x3) + zx1x3

(c2) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ β · (yx0x1 + yx1x3 + yx2x3 + yx0x2)
(c3) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ β · (yx0x1 + yx1x3 + yx2x3 + yx0x2)
(c4) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx1x3 + β · (yx0x1 + yx2x3) + zx0x2

(c5) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx2x3 + β · (yx1x3 + yx0x2) + zx0x1

The solution of the LP defines a tight bound on the quality of a C-optimal
solution for the graph structure represented by R and rewards with a minimum
fraction reward of β. Thus, by solving the above LP with β set to 1

2 we assess
a C-optimal bound δ = 2

3 for DCOPs with rewards with a minimum fraction
reward of 1

2 . Notice that this per-reward bound provides a significant increment
with respect to the reward-independent bound assessed in section 2.3 and with
respect to the straightforward bound we can obtain by only taking into account
β, namely δ = 1

2 .

Extending the faster mechanism to exploit knowledge of the minimum
fraction reward Second, we show how assuming a minimum fraction reward
of β we can improve the faster C-optimal bounds, reviewed in section 2.3. Before
that we define, for each relation S ∈ R, pc(S, C) = |C|−nc(S, C)−cc(S, C) as the
number of neighbourhoods in region C that partially cover relation S. Then, the
following proposition shows how to exploit the minimum fraction reward along
with the partially covered relations to obtain a bound tighter than the one in
equation 5.

Proposition 2. Let 〈X ,D,R〉 be a DCOP, C a region and β the minimum
fraction reward. If xC is a C-optimal assignment then:

R(xC) ≥
(

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗

)
R(x∗) (7)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), pc∗ = minS∈R pc(S, C),
and x∗ is the optimal assignment.

Proposition 2 directly provides a simple algorithm to compute a bound. Given
a region C and a graph structure, we can directly assess cc∗, pc∗ and nc∗ by
computing cc(S, C), pc(S, C) and nc(S, C) for each relation S ∈ R and taking the
minimum. This will take time O(|R||C|), that is linear in the number of relations
of the DCOP and linear in the number of neighbourhoods in the region. As an

example, now we turn back to figure 2 to assess the bounds for the 2-size region
C2 in figure 2(b) when assuming a minimum fraction reward β = 1

2 . Given
the relation Sx0,x1 we assess the number of neighbourhoods that completely
cover {x0, x1} as cc(Sx0x1 , C2) = 1 (the first neighbourhood), the number of
neighbourhoods that partially cover {x0, x1} as pc(Sx0x1 , C2) = 4 (from the
second to the fifth neighborhoods) and the number of neighbourhoods that do
not cover {x0, x1} at all as nc(Sx0x1 , C2) = 1 (the sixth neighbourhood). After
repeating the process for the rest of relations in the constraint graph, we obtain
that cc∗ = 1, pc∗ = 4 and nc∗ = 1, and hence cc∗

|C|−nc∗+β pc∗
|C|−nc∗ = 1

6−1 + 1
2 ·

4
6−1 =

3
5 . Notice that this leads to a significant improvement with respect to the reward-
independent faster bound assessed in section 2.3 as δ = 1

5 although this bound
is also not tight (compare with the C-optimal bound δ = 2

3 assessed by means
of the LP).

Proof. The proof is analogous to the one for the general bound of equation 5
formulated in [11], but without disregarding partially covered relations. For every
Cα ∈ C, consider an assignment xα such that: xαi = xCi if xi 6∈ Cα, and xαi = x∗i
if xi ∈ Cα. Since xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα) holds, and
hence:

R(xC) ≥

∑
Cα∈C

(∑
S∈T (Cα)

S(x∗) +
∑

S∈N(Cα)

S(xC) +
∑

S∈P (Cα)

S(xα)

)
|C|

. (8)

Using β we can express the third term in equation 8 in terms of R(x∗)
considering that the knowledge for any relation S ∈ R satisfies S(xα) ≥ β ·S(x∗).
Therefore, the following inequalities hold:∑

Cα∈C

∑
S∈P (Cα)

S(xα) ≥
∑
S∈R

pc(S, C) · β · S(x∗) ≥ pc∗ · β · R(x∗) (9)

From the proof of the general bound of equation 5 in [11] we know that the
first and the second sets of relations of equation 8 can be also expressed in terms
of R(xC) and R(x∗). Therefore, after substituting these results in equation 8
and rearranging terms, we obtain equation 7.

3.2 Based on the extreme relation rewards

In this section we show how to tight the reward-independent C-optimal bound δ
for a DCOP problem when we know the values of the minimum and maximum
rewards for each relation S ∈ R, namely lS = mindV ∈DV S(dV) and uS =
maxdV ∈DV S(dV) respectively.

Proposition 3. Let 〈X ,D,R〉 be a DCOP and C a region. If xC is a C-optimal
assignment then:

R(xC) ≥ 1
U

((U − L) · δ + L) · R(x∗) (10)

where U =
∑
S∈R uS, L =

∑
S∈R lS.

Proposition 3 directly provides a constant-time method to tight any reward-
independent C-optimal bound δ by assuming that the extreme values of relations
are known. Because proposition 3 does not make any assumption about how
δ is calculated rather than it is reward-independent C-optimal bound for xC ,
this improvement applies to both mechanism reviewed in section 2.3: (i) to the
reward-independent C-optimal bounds obtained by means of the LP; and (ii) to
the faster reward-independent bounds of equation 8.

As an example we turn back to figure 2 to assess the bounds for the 2-size
region C2 in figure 2(b) when assuming some particular extreme rewards per
relation. First, assume a first scenario in which each relation of the DCOP in
figure 2(a) has a minimum reward of 2 and a maximum reward of 4. Thus, U = 16
and L = 8. In this scenario, when the reward-independent bound is assessed by
means of the LP method explained in section 2.3 δ = 1

3 , and hence the bound
of proposition 3 is 1

U ((U − L) · δ + L) = 1/16 · ((16− 8) · 1/3 + 8) = 2/3. In a
similar way, if δ is set to the faster reward-independent bound obtained by means
of equation 5 δ = 1/5, the bound of proposition 3 is 1/16·((16−8)· 15 +8) = 3/5. It
is worth noting that these bounds are the same than the bounds obtained in the
above section by the respective LP and the faster mechanisms when assuming a
minimum fraction reward of β = 1

2 . Thus, in this first scenario the two different
assumptions about the reward structure lead to the same bounds.

Now assume a second scenario in which the DCOP in figure 2(a) has two
relations with a minimum reward of 2 and a maximum of 4, and two relations
with a minimum reward of 3 and a maximum of 4. Thus, U = 16 and L = 10.
In this scenario, when reward-independent bound is assessed by means of the
LP method the bound of proposition 3 is 1/16 · ((16 − 10) · 1/3 + 10) = 3/4
whereas when it is assessed by means of the faster method is 1/16 · ((16− 10) ·
1
5 + 10) = 7/10. Therefore, in this second scenario, exploiting the knowledge
about the extreme rewards of relations leads to tighter bounds than exploiting
the knowledge about the minimum fraction reward.

Next we provide the proof for proposition 3.

Proof. Let R̂ be a distribution defined as R̂(x) = R(x)−L =
∑
S∈R(S(x)− lS).

Notice that the rewards of R̂ are non-negative because after substracting the
minimum of each non-negative relation of R we obtain new relations in which
the minimum value is 0. Moreover, because the value of any assignment in R̂ is
equal to the value in R plus a constant, any C-optimal xC in R is also C-optimal
in R̂. Thus, by definition of C-optimal bounds the following inequality holds:

R̂(xC) ≥ δ · R̂(x∗) (11)

Then by expressing R̂ in terms of R and isolating R(xC) we obtain:

R(xC) ≥ δ · R(x∗) + (1− δ) · L (12)

Now multiplying and dividing the right equation side by R(x∗):

R(xC) ≥
(
δ · R(x∗) + (1− δ) · L

R(x∗)

)
· R(x∗) (13)

Since the bound provided by equation 13 above increases as the value of
the optimum, R(x∗), decreases, we can get rid of R(x∗), which is in general
unknown, by replacing it with an upper bound. By definition, U is an upper
bound of R(x∗). Hence, we can substitute U for R(x∗) to obtain equation 10.

Equation 10 places the reward-independent bound in equation 5 within the
[L,U] scale, and subsequently assesses the fraction of upper bound U that it
represents.

4 Comparing reward-dependent bounds

Since the more knowledge quality guarantees exploit from the problem the
tighter they are likely to be, per-reward region optimal guarantees proposed in
the above sections are expected to be tighter than reward-independent bounds
of section 2.2. Furthermore, because not all the assumptions over the reward
structure have the same level of specificity, exploiting the knowledge about the
extreme rewards per relation is also expected to lead to tighter quality guarantees
than only assuming a ratio between them.

Hence, at the aim of illustrating the tightness of region optimal quality guar-
antees when exploiting different knowledge about the reward structure, we pro-
vide with: (i) empirical results that show the average-case improvement over
LP-based region optimal bounds; and (ii) theoretical results that characterise
the relations between faster region optimal bounds.

4.1 Comparing LP region optimal quality guarantees

Next we provide with results that illustrate the average-case region optimal
bounds assessed with the LP mechanism.

Figures 4(a)(b) show the values of the region optimal bounds, defined as a
percentage of the optimal, for random DCOPs with 100 agents and density 4
using as a criterion neighborhoods of size 3 and of distance 1 respectively. All
results are averaged over 50 sample instances. Bounds are calculated using the
LP method. Because, intuitively, the gain obtained by exploiting the knowledge
about the extreme rewards per relation with respect to the minimum fraction
reward varies with the heterogeneity of the reward structure, we generate DCOPs
with two types of relations: (1) type 1, relations whose rewards are integers
drawn from a uniform distribution U [2500, 10000] and (2) type 2, relations whose
rewards are integers drawn from a uniform distribution U [5000, 10000].

The dotted lines show the per-reward bounds when exploiting the knowledge
of the minimum fraction reward, the dashed lines when exploiting the knowledge
of the extreme relation rewards and the solid lines show the region optimal
bounds as presented in section 2.3, that apply to any reward structure. The x-axis
represents the fraction of the total relations of type 2 with respect to the default
relations of type 1. First of all observe that, independently of the particular
knowledge exploited, per-reward bounds provide significant improvements with

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Fraction of relations type 2

P
e
r
c
e
n
t
a
t
g
e

o
f

o
p
t
i
m
a
l

(b) Size 3 bounds

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Fraction of relations type 2

(c) Distance 1 bounds

Fig. 4. Reward-based bounds on 100 agent random DCOPs with density 4 using as a
criterion (a) node size 3 and (b) distance 1.

respect to the reward-independent bound. For example, in figure 4 (a) the reward
independent bound is around 12% whereas per-reward bounds are around 22%
when exclusively relations of type 1 (x-axis= 0) and around 60% when exclusively
using relations of type 2 (x-axis= 1). Moreover, it is worth noting that when
all relations are of the same type, independently of the knowledge exploited
about the reward, both per-reward bounds are very close. In contrast, in mixed
instances, when both type of relations are present, graphs show that minimum
fraction reward bounds can not improve the bound further by taking advantage
of relations of type 2. Indeed, when exploiting the minimum fraction reward the
LP mechanism does not get a significant improvement with the introduction
of relations of type 2 until relations of type 1 disappear. In contrast, when
exploiting the knowledge about the extreme relation rewards the region optimal
bound progressively increases with the fraction of relations of type 2.

In summary, these results show how exploiting more knowledge about the
reward structure, such as the extreme rewards per relation, help obtain tighter
bounds for a wider range of reward distributions, particularly in heterogeneous
distributions composed of rewards of different kind.

4.2 Comparing faster region optimal quality guarantees

In what follows we provide with some theoretical results on the improvement
on bound tightness of the faster region optimal quality guarantees under the
different reward structure assumptions.

On the one hand, it is easy to see that the faster per-reward region optimal
guarantees assessed by equation 7 and 10 are guaranteed to be greater or, in the

worst-case equal, than the faster reward-independent region optimal guarantees
assessed by means of equation 5.

On the other hand, we are interested in comparing per-reward faster quality
guarantees when exploiting different assumptions over the reward structure. At
this aim, next we prove that faster quality guarantees that exploit the knowledge
about the extreme rewards per relation are guarantee to be tighter than those
that exploit the minimum fraction bound.

Proposition 4. Let 〈X ,D,R〉 be a DCOP, C a region, β the minimum fraction
reward, where lSV = min

dV ∈DV
SV (dV), uSV = max

dV ∈DV
S(dV):

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗
≤ U − L

U

cc∗
|C| − nc∗

+
L

U
(14)

Proof. After rearranging terms and simplifying, we obtain that equation 14 is
equivalent to:

pc∗ · β ≤ (|C| − nc∗ − cc∗) ·
L

U
(15)

First, from the definition of partial covering, pc(S,C) = |C| − nc(S,C) −
cc(S,C), we observe that pc(S,C) increases as nc(S,C) and cc(S,C) decrease.
Since nc∗, cc∗ are the minimum values that functions nc, cc can take on respec-
tively, then pc∗ ≤ |C| − nc∗ − cc∗ holds. Therefore, proving that β ≤ L

U , namely

that minS∈R lS
uS
≤

P
S∈R lSP
S∈R uS

, is enough to prove that equation 15 holds. We build
the proof by induction of the number of relations n = |X |. Consider without loss
of generality a problem with n relations such that lr1

ur1
≤ . . . ≤ lrn−1

urn−1
≤ lrn

urn

holds. If n = 2, then min(lr1ur1 ,
lr2
ur2

) ≤ lr1+lr2
ur1+ur2

simplifies to lr1
ur1
≤ lr2

ur2
, which by

problem definition is true. When n > 2 we must prove that lr1
ur1
≤ lr1+

P
j≥2 lrj

ur1+
P
j≥2 urj

holds, or equivalently that lr1
ur1
≤

P
j≥2 lrjP
j≥2 urj

. By recursively applying the expres-

sion for n = 2 to
P
j≥2 lrjP
j≥2 urj

we obtain that:P
j≥2 lrjP
j≥2 urj

= lr2
ur2

+
P
j≥3 lrjP
j≥3 urj

≥ min(lr2ur2 ,
P
j≥3 lrjP
j≥3 urj

) ≥ . . .

≥ min(lr2ur2 ,min(lr3ur3 , . . . ,min(
lrn−1
urn−1

,min(lrnurn) . . .) = lr2
ur2

.

Thus,
P
j≥2 lrjP
j≥2 urj

≥ lr2
ur2

and consequently,
P
j≥2 lrjP
j≥2 urj

≥ lr1
ur1

holds.

5 Conclusions

In this paper we extended the region optimal region bounds in [11] to exploit
some a-priori knowledge of the reward structure of the problem, if available.
To that end, this paper provided reward-dependent bounds that incorporate as
available prior knowledge: (i) a ratio between the least minimum reward to the
maximum reward among relations; (ii) a minimum and maximum rewards per
relation.

References

1. Bowring, E., Pearce, J.P., Portway, C., Jain, M., Tambe, M.: On k -optimal dis-
tributed constraint optimization algorithms: new bounds and algorithms. In: AA-
MAS (2). pp. 607–614 (2008)

2. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: AAMAS (2). pp.
639–646 (2008)

3. Junges, R., Bazzan, A.L.C.: Evaluating the performance of DCOP algorithms in a
real world, dynamic problem. In: AAMAS. pp. 599–606 (2008)

4. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS.
pp. 133–140 (2010)

5. Mailler, R., Lesser, V.R.: Solving distributed constraint optimization problems
using cooperative mediation. In: AAMAS. pp. 438–445 (2004)

6. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1-2), 149–180
(2005)

7. Pearce, J.P., Tambe, M.: Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In: IJCAI. pp. 1446–1451 (2007)

8. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI. pp. 266–271 (2005)

9. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe,
M., Bowring, E.: LP formulation of regional-optimal bounds. Tech. Rep. TR-IIIA-
2011-01 (2011), at: http://www.iiia.csic.es/files/pdfs/TR201101.pdf

10. Vinyals, M., Pujol, M., Rodriguez-Aguilar, J., Cerquides, J.: Divide and Coordi-
nate: solving DCOPs by agreement. In: AAMAS. pp. 150–156 (2010)

11. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M.,
Bowring, E.: Quality guarantees for region optimal algorithms. In: AAMAS (2011)

12. Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraint
optimization problems in sensor networks. Artif. Intell. 161(1-2), 55–87 (2005)

Including Human Behavior
in Stackelberg Game for Security

Rong Yang1, Christopher Kiekintveld2,
Fernando Ordonez1, Milind Tambe1, and Richard John1

1 University of Southern California
2 University of Texas El Paso

Abstract. Recently, Stackelberg games have garnered significant atten-
tion given their deployment for real world security. However, a fundamen-
tal challenge of applying game-theoretic techniques to real-world secu-
rity problem is the standard assumption that the adversary is perfectly
rational in responding to security force’s strategy, which can be unreal-
istic for human adversaries. Previous work has presented COBRA as a
leading contender for accounting for the bounded rationality of human
adversaries in security games. This paper presents an advance over this
previous work by providing new algorithms based on two human behav-
ior theories: Prospect Theory (PT) and Quantal Response Equilibrium
(QRE). The paper’s key contributions include: (i) efficient algorithms for
computing optimal strategic solutions using PT and QRE; (ii) most com-
prehensive experiment to date on effectiveness of different models against
human subjects; (iii) new techniques for generating representative payoff
structures for behavioral experiments in generic classes of games. Our
results with human subjects show that our new strategies significantly
outperform COBRA.

Keywords: Human Behavior, Stackelberg Games, Decision-making

1 Introduction

Game-theoretic models have recently become important tools for analyzing real-
world security resource allocation problems. These models provide a sophisti-
cated approach for generating randomized strategies that mitigate attackers’
ability to find weaknesses using surveillance. The ARMOR system at LAX air-
port [9] and IRIS at the Federal Air Marshals Service [13] are notable real-world
deployments of this approach. One of the key sets of assumptions these systems
make is about how attackers choose attack strategies based on their knowl-
edge of the security policy. Typically, such systems have applied the standard
game-theoretic assumption that attackers are perfectly rational and will strictly
maximize their expected utility. This is a reasonable proxy for the worst case of
a highly intelligent attacker, but it leaves open the possibility that the defender’s
strategy is not robust against attackers using different decision procedures, and

2

it fails to exploit known weaknesses in the decision-making of human attack-
ers. Indeed, it is widely accepted that standard game-theoretic assumptions of
perfect rationality are not ideal for predicting the behavior of humans in multi-
agent decision problems [1]. In the multi-agent systems community there is a
growing interest in adopting these models to improve decisions in agents that
interact with humans or to provide better decision support in systems that use
multi-agent systems techniques to provide advice to human decision-makers [2,3].
Our work in this paper focuses on integrating more realistic models of human
behavior into the computational analysis of security problems.

There are several challenges in moving beyond perfect rationality assump-
tions to integrate more realistic models of human decision-making. First, the
literature has introduced a multitude of candidate models, but there is an im-
portant empirical question of which model best represents the salient features of
human behavior in applied security games. Second, integrating any of the pro-
posed models into a decision-support system (even for the purpose of empirically
evaluating the model) requires developing new methods for computing solutions
to security games, since the existing algorithms are based on mathematically
optimal attackers [6,8]. In this context, COBRA (Combined Observability and
Rationality Assumption), developed in most recent work [10] is the leading
contender that accounts for human behavior in security games. Thus, the open
question is whether there are other approaches that allow for fast solution and
yet outperform COBRA in addressing human behaviors.

This paper addresses the challenges and answers the open questions: it de-
velops two new methods for generating defender strategies in security games
based on using two well-known models of human behavior to model the at-
tacker’s decisions. The first is Prospect Theory (PT), which provides a descrip-
tive framework for decision-making under uncertainty that accounts for both
risk preferences and variations in how humans interpret probabilities through
a weighting function [5]. The second model is Quantal Response Equilibrium
(QRE). QRE adapts ideas from the literature on discrete choice problems to a
game-theoretic framework with the basic premise that humans will choose better
actions more frequently, but with some noise in the decision-making process that
leads to stochastic choice probabilities following a logit distribution. We develop
new techniques to compute optimal defender strategies in Stackelberg security
games under the assumption that the attacker will make choices according to
either the PT or QRE model.

To test these new methods we performed experiments with human subjects
using an online game called ‘The Guard and the Treasure’ designed to simulate
a security scenario similar to the ARMOR program for the Los Angeles Inter-
national (LAX) airport. Furthermore, we designed classification techniques to
select payoff structures for experiments such that the models are well separated
from each other and the payoff structures are representative of the game space.
We compare these models against both a perfect rationality baseline (DOBSS)
and COBRA. Our data shows that the new approaches yield statistically sig-
nificantly better strategies against human attackers than previous methods in-

3

cluding COBRA in most of the payoff structures, and comparable results in
others.

2 Stackelberg Security Game

We consider a Stackelberg game with a single leader and at least one follower.
The leader commits to a strategy first, taking into account the follower’s re-
sponse to her strategy. The followers decide their actions knowing the leader
strategy. Security games refer to a special class of attacker-defender Stackelberg
games, used in deployed applications mentioned earlier [9,13], where the defender
plays the role of leader and an adversary plays the role of follower. In these non
zero-sum games the attacker’s utility of attacking a target decreases as the de-
fender allocates more resources to protect it (and vice versa for the defender).
The defender (leader) first commits to a mixed strategy, assuming the attacker
(follower) decides on a pure strategy after observing the defender’s strategy.
This models the situation where an attacker conducts surveillance to learn the
defender’s mixed strategy and then launches an attack on a single target. In
this work, we constrain the adversary to select a pure strategy. Given that the
defender has limited resources (e.g., she may need to protect 8 targets with 3
guards), she must design her mixed strategy to optimize against the adversary’s
response to maximize effectiveness.

3 Related Work

Motivated by various applications, there have been many algorithms developed
to compute optimal defender strategies in Stackelberg games[6,8]. One leading
family of algorithms to compute such mixed strategies are DOBSS (Decomposed
Optimal Bayesian Stackelberg Solver) [8] and its successors [6,9], which are used
in the deployed ARMOR and IRIS applications. These algorithms formulate the
problem as a Mixed Integer Linear Program (MILP), and compute an optimal
mixed strategy for the defender assuming that the attacker responds optimally.
However, in many real world domains, agents face human adversaries whose
behavior may not be optimal under perfect rationality. Recent work [10] devel-
oped a new algorithm COBRA, which provided a solution for designing better
defender strategies against human adversaries by accounting for their bounded
rationality on computing the optimal strategy; and anchoring biases caused by
limited observation conditions of the defender’s strategy. COBRA outperforms
DOBSS with statistical significance in experiments using human subjects, and
represents the best available benchmark for how to determine defender strategies
in security games against human adversaries.

This paper introduces alternative methods for computing strategies to play
against human adversaries, based on two well-known theories from the behavioral
literature, Prospect Theory (PT) and Quantal Response Equilibrium (QRE).

Prospect Theory is the subject of a Nobel Prize winning work. It provides
a descriptive model of how humans make decisions among alternatives with risk.

4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

π
(p

)

π(p) = pγ

(pγ+(1−p)γ)
1
γ

(a) weighting function

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

C

V
(C

)

V (C) = Cα, C ≥ 0

V (C) = −θ · (−C)β , C < 0

(b) value function

Fig. 1. PT functions from Hastie et al.

The theory describes such a decision-making process as a process of maximizing
the so-called ‘prospect’. Prospect is defined as

∑
i π(pi) · V (Ci), where pi is the

probability of receiving Ci as the outcome. The weighting function π(·) describes
how probability pi is perceived by individuals.The key concepts of a weighting
function are that individuals overestimate low probability and underestimate
high probability [4,5], shown in Fig. 1(a). Also, π(·) is not consistent with the
definition of probability in the sense that π(p) + π(1 − p) ≤ 1 in general. The
value function V (Ci) reflects the value of the outcome Ci. PT indicates that
individuals are risk averse regarding gain but risk seeking regarding loss, imply-
ing an S-shaped value function [4,5], as shown in Fig. 1(b). A key component of
Prospect Theory is the reference point. Outcomes lower than the reference point
are considered as loss and higher as gain.

Quantal Response Equilibrium is an important model in behavior theory
[7] and is the baseline model of many studies [12,15]. It suggests that instead
of strictly maximizing utility, individuals respond stochastically in games: the
chance of selecting a non-optimal strategy increases as the cost of such an error
decreases. Recent work [15] shows Quantal Level-k3 [12] to be best suited for
predicting human behavior in simultaneous move games. However, the applica-
bility of QRE and PT to security games and their comparison with COBRA
remain open questions.

4 Defender Mixed-Strategy Computation

We now describe efficient computation of the optimal defender mixed strategy
assuming a human adversary’s response is based on either PT or QRE.

4.1 Methods for Computing PT

Best Response to Prospect Theory (BRPT) is a mixed integer programming
formulation for the optimal leader strategy against players whose response fol-

3 We applied QRE instead of Quantal Level-k because in Stackelberg security games
the attacker observes the defender’s strategy, so level-k reasoning is not applicable.

5

lows a PT model. Only the adversary is modeled using PT in this case, since the
defender’s actions are recommended by the decision aid. BRPT maximizes d,
the defender’s expected utility. The defender has a limited number of resources,
Υ , to protect the set of targets, ti ∈ T for i=1..n. The defender selects a mixed
strategy x that describes the probability that each target will be protected by
a resource; we denote these individual probabilities by xi. The attacker chooses
a target to attack after observing x. We denote the attacker’s choice using the
vector of binary variables qi, where qi=1 if ti is attacked and 0 otherwise.

max
x,q,a,d,z

d

s.t.

n∑
i=1

5∑
k=1

xik ≤ Υ (1)

5∑
k=1

(xik + x̄ik) = 1,∀i (2)

0 ≤ xik, x̄ik ≤ ck − ck−1,∀i, k = 1..5 (3)

zik · (ck − ck−1) ≤ xik,∀i, k = 1..4 (4)

z̄ik · (ck − ck−1) ≤ x̄ik,∀i, k = 1..4 (5)

xi(k+1) ≤ zik,∀i, k = 1..4 (6)

x̄i(k+1) ≤ z̄ik,∀i, k = 1..4 (7)

zik, z̄ik ∈ {0, 1},∀i, k = 1..4 (8)

x′i =

5∑
k=1

bkxik, x̄
′
i =

5∑
k=1

bkx̄ik,∀i (9)

n∑
i=1

qi = 1, qi ∈ {0, 1},∀i (10)

0 ≤ a− (x′i(P
a
i)′ + x̄′i(R

a
i)′) ≤M(1− qi),∀i (11)

M(1− qi) +

5∑
k=1

(xikR
d
i + x̄ikP

d
i) ≥ d,∀i (12)

The defender optimization problem is given in Equations (1)-(12). In security
games, the payoffs depend only on whether or not the attack was successful, so
given a target ti, the defender (resp., adversary) receives reward Rdi (penalty P ai)
if the adversary attacks the target and it is covered by the defender; otherwise,
the defender (adversary) receives penalty P di (reward Rai).

PT comes into the algorithm by adjusting the weighting and value func-
tions as described above. The benefit (prospect) perceived by the adversary
for attacking target ti if the defender plays the mixed strategy x is given by
π(xi)V (P ai) + π(1 − xi)V (Rai). Let (P ai)′ = V (P ai) and (Rai)′ = V (Rai) denote
the adversary’s value of penalty P ai and reward Rai . We use a piecewise linear
function π̃(·) to approximate the non-linear weighting function π(·) and empiri-

6

cally set 5 segments4 for π̃(·). This function is defined by {ck|c0 = 0, c5 = 1, ck <
ck+1, k = 0, ..., 5} that represent the endpoints of the linear segments and {bk|k =
1, . . . , 5} that represent the slope of each linear segment. Thus, each of the de-

fender’s xi=
∑5
k=1 xik; the follower will perceive this xi as x′i=π(xi)=

∑5
k=1 bk·xik

as discussed below.

In order to represent the piecewise linear function, we break xi (and 1− xi)
into five segments, denoted by variable xik (and x̄ik). We can enforce that such
breakup of xi (and 1 − xi) is correct if segment xik (and x̄ik) is positive only
if the previous segment is used completely, for which we need the auxiliary
integer variable zik (and z̄ik). This is enforced by Equations (3)∼(8). Equation
(9) defines x′i and x̄′i as the value of the piecewise linear approximation of xi and
1− xi: x′i=π̃(xi) and x̄′i=π̃(1− xi). Equations (10) and (11) define the optimal
adversary’s pure strategy. In particular, Equation (11) enforces that qi=1 for the
action that achieves maximal prospect for the adversary. Equation (12) enforces
that d is the defender’s expected utility on the target that is attacked by the
adversary (qi=1).

Robust-PT (RPT) modifies the base BRPT method to account for some
uncertainty about the adversaries choice, caused (for example) by imprecise com-
putations [11]. Similar to COBRA, RPT assumes that the adversary may choose
any strategy within ε of the best choice, defined here by the prospect of each
action. It optimizes the worst-case outcome for the defender among the set of
strategies that have prospect for the attacker within ε of the optimal prospect.
We modify the BRPT optimization problem as follows: the first 11 Equations are
equivalent to those in BRPT; in Equation (13), the binary variable hi indicates
all the ε−optimal strategies for the adversary; Equation (16) enforces that d is
the minimum expected utility of the defender against the ε−optimal strategies
of the adversary.

max
x,h,q,a,d,z

d

s.t. Equations (1)∼(11)
n∑
i=1

hi ≥ 1 (13)

hi ∈ {0, 1}, qi ≤ hi,∀i (14)

ε(1− hi) ≤ a− (x′i(P
a
i)′ + x̄′i(R

a
i)′) ≤M(1− hi),∀i (15)

M(1− hi) +

5∑
k=1

(xikR
d
i + x̄ikP

d
i) ≥ d, ∀i (16)

Runtime: We choose AMPL (http://www.ampl.com/) to solve the MILP
with CPLEX as the solver. Both BRPT and RPT take less than 1 second for up
to 10 targets.

4 This piecewise linear representation of π(·) can achieve a small approximation error:
supz∈[0,1] ‖π(z)− π̃(z)‖ ≤ 0.03.

7

4.2 Methods for Computing QRE

In applying the QRE model to our domain, we only add noise to the response
function for the adversary, so the defender computes an optimal strategy assum-
ing the attacker response with a noisy best-response. The parameter λ repre-
sents the amount of noise in the attacker’s response. Given λ and the defender’s
mixed-strategy x, the adversaries’ quantal response qi (i.e. probability of i) can
be written as

qi =
eλU

a
i (x)∑n

j=1 e
λUa

j (x)
(17)

where, Uai (x) = xiP
a
i +(1−xi)Rai is the adversary’s expected utility for attacking

ti and x is the defender’s strategy.

qi =
eλR

a
i e−λ(R

a
i−Pa

i)xi∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j)xj
(18)

The goal is to maximize the defender’s expected utility given qi, i.e.
∑n
i=1 qi(xiR

d
i+

(1− xi)P di). Combined with Equation (18), the problem of finding the optimal
mixed strategy for the defender can be formulated as

max
x

∑n
i=1 e

λRa
i e−λ(R

a
i−Pa

i)xi((Rdi − P di)xi + P di)∑n
j=1 e

λRa
j e−λ(R

a
j−Pa

j)xj
(19)

s.t.

n∑
i=1

xi ≤ Υ

0 ≤ xi ≤ 1, ∀i, j

Given that the objective function in Equation (19) is non-linear and non-
convex in its most general form, finding the global optimum is extremely dif-
ficult. Therefore, we focus on methods to find local optima. To compute an
approximately optimal QRE strategy efficiently, we develop the Best Response
to Quantal Response (BRQR) heuristic described in Algorithm 1. We first take
the negative of Equation (19), converting the maximization problem to a mini-
mization problem. In each iteration, we find the local minimum5 using a gradient
descent technique from the given starting point. If there are multiple local min-
ima, by randomly setting the starting point in each iteration, the algorithm will
reach different local minima with a non-zero probability. By increasing the iter-
ation number, IterN , the probability of reaching the global minimum increases.

Parameter Estimation: The parameter λ in the QRE model represents
the amount of noise in the best-response function. One extreme case is λ=0,
when play becomes uniformly random. The other extreme case is λ=∞, when
the quantal response is identical to the best response. λ is sensitive to game
payoff structure, so tuning λ is a crucial step in applying the QRE model. We
employed Maximum Likelihood Estimation (MLE) to fit λ using data from [10].

5 We use fmincon function in Matlab to find the local minimum.

8

Algorithm 1 BRQR

1: optg ← −∞; . Initialize the global optimum
2: for i← 1, ..., IterN do
3: x0 ← randomly generate a feasible starting point
4: (optl, x

∗)← FindLocalMinimum(x0)
5: if optg > optl then
6: optg ← optl, xopt ← x∗

7: end if
8: end for
9: return optg, xopt

Given the defender’s mixed strategy x and N samples of the players’ choices,
the logit likelihood of λ is

logL(λ | x) =

N∑
j=1

log qτ(j)(λ)

where τ(j) denotes the target attacked by the player in sample j. Let Ni be the
number of subjects attacking target i. Then, we have logL(λ | x)=

∑n
i=1Ni log qi(λ).

Combining with Equation (17),

logL(λ | x) = λ

n∑
i=1

NiU
a
i (x)−N · log(

n∑
i=1

eλU
a
i (x))

logL(λ | x) is a concave function6. Therefore, logL(λ | x) only has one local
maximum. The MLE of λ is 0.76 for the data used from [10].

Runtime: We implement BRQR in Matlab. With 10 targets and IterN=300,
the runtime of BRQR is less than 1 minute. In comparison, with only 4 tar-
gets, LINGO12 (http://www.lindo.com/) cannot compute the global optimum
of Equation (19) within one hour.

5 Payoff Structure Classification

One important property of payoff structures we want to examine is their influ-
ence on model performance. We certainly cannot test over all possible payoff
structures, so the challenges are: (i) the payoff structures we select should be
representative of the payoff structure space; (ii) the strategies generated from
different algorithms should be sufficiently separated. As we will discuss later, the
payoff structures used in [10] do not address these challenges.

6 The second order derivative of logL(λ | x) is

d2 logL

dλ2
=

∑
i<j −(Uai (x)− Uaj (x))2eλ(U

a
i (x)+Ua

j (x))

(
∑
i e
λUa

i (x))2
< 0

9

We address the first criterion by randomly sampling 1000 payoff structures,
each with 8 targets. Rai and Rdi are integers drawn from Z+[1, 10]; P ai and P di are
integers drawn from Z−[−10,−1]. This scale is similar to the payoff structures
used in [10]. We then clustered the 1000 payoff structures into four clusters
using k-means clustering based on eight features, which are defined in Table 1.
Intuitively, features 1 and 2 describe how ‘good’ the game is for the adversary,

Table 1. A-priori defined features

Feature 1 Feature 2 Feature 3 Feature 4

mean(|R
a
i

Pa
i
|) std(|R

a
i

Pa
i
|) mean(|R

d
i

Pd
i

|) std(|R
d
i

Pd
i

|)
Feature 5 Feature 6 Feature 7 Feature 8

mean(|R
a
i

Pd
i

|) std(|R
a
i

Pd
i

|) mean(|R
d
i

Pa
i
|) std(|R

d
i

Pa
i
|)

features 3 and 4 describe how ‘good’ the game is for the defender, and features
5∼8 reflect the level of ‘conflict’ between the two players in the sense that they
measure the ratio of one player’s gain over the other player’s loss. In Fig. 2,

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

1st PCA Component

2nd
 P

C
A

 C
om

po
ne

nt

cluster 1
cluster 2
cluster 3
cluster 4
Payoff 1
Payoff 2
Payoff 3
Payoff 4
Payoff 5,6,7

Fig. 2. Payoff Structure Clusters (color)

all 1000 payoff structures are projected onto the first two Principal Component
Analysis (PCA) dimensions for visualization. We select one payoff structure from
each cluster, following the criteria below to obtain sufficiently different strategies
for the different candidate algorithms:

– We define the distance between two mixed strategies, xk and xl, using the
Kullback-Leibler divergence:

D(xk, xl) = DKL(xk|xl) +DKL(xl|xk)

10

where, DKL(xk|xl) =
∑n
i=1 x

k
i log(xki /x

l
i).

– For each payoff structure, D(xk, xl) is measured for every pair of strategies.
With five strategies (discussed later), we have 10 such measurements.

– We remove payoff structures that have a mean or minimum of these 10
quantities below a given threshold. This gives us a subset of about 250 payoff
structures in each cluster. We then select one payoff structure closest to the
cluster center from the subset of each cluster .

The four payoff structures (payoffs 1-4) we selected from each cluster are marked
in Fig. 2, as are the three (payoffs 5-7) used in [10]. Fig. 2 shows that payoffs
5-7 all belong to cluster 3. Furthermore, Table 2 reports the strategy distances

Table 2. Strategy Distance

Payoff Structure 1 2 3 4 5 6 7

mean DKL 0.83 1.19 0.64 0.88 0.32 0.15 0.12

min DKL 0.26 0.25 0.21 0.25 0.07 0.02 0.04

in all seven payoff structures. The strategies are not as well separated in payoffs
5-7 as they are in payoffs 1-4. As we discuss in Section. 6.2, the performance of
different strategies is quite similar in payoffs 5-7.

6 Experiments

We conducted empirical tests with human subjects playing an online game to
evaluate the performances of leader strategies generated by five candidate algo-
rithms. We based our model on the LAX airport, which has eight terminals that
can be targeted in an attack [9]. Subjects play the role of followers and are able
to observe the leader’s mixed strategy (i.e., randomized allocation of security
resources).

6.1 Experimental Setup

Fig. 3 shows the interface of the web-based game we developed to present subject
with choice problems. Players were introduced to the game through a series of
explanatory screens describing how the game is played. In each game instance
a subject was asked to choose one of the eight gates to open (attack). They
knew that guards were protecting three of the eight gates, but not which ones.
Subjects were rewarded based on the reward/penalty shown for each gate and the
probability that a guard was behind the gate (i.e., the exact randomized strategy
of the defender). To motivate the subjects they would earn or lose money based
on whether or not they succeed in attacking a gate; if the subject opened a gate
not protected by the guards, they won; otherwise, they lost. Subjects start with
an endowment of $8 and each point won or lost in a game instance was worth
$0.1. On average, subjects earned about $14.1 in cash.

11

Fig. 3. Game Interface

We tested the seven different payoff structures from Fig. 2 (four new, three
from [10]). The seven payoff structures are displayed in Table 4. For each payoff
structure we tested the mixed strategies generated by five algorithms: BRPT,
RPT, BRQR, COBRA and DOBSS, which are reported in Table 5 and Table 6.
There were a total of 35 payoff structure/strategy combinations and each subject
played all 35 combinations. In order to mitigate the order effect on subject
responses, a total of 35 different orderings of the 35 combinations were generated
using Latin Square design. Every ordering contained each of the 35 combinations
exactly once, and each combination appeared exactly once in each of the 35
positions across all 35 orderings. The order played by each subject was drawn
uniformly randomly from the 35 possible orderings. To further mitigate learning,
no feedback on success or failure was given to the subjects until the end of the
experiment. A total of 40 human subjects played the game.

We could explore only a limited number of parameters for each algorithm,
which were selected following the best available information in the literature.
The parameter settings for each algorithm are reported in Table 3. DOBSS has

Table 3. Model Parameter

Payoff Structure 1 2 3 4 5 6 7

RPT-ε 2.4 3.0 2.1 2.75 1.9 1.5 1.5

COBRA-α 0.15 0.15 0.15 0.15 0.37 0 0.25

COBRA-ε 2.5 2.9 2.0 2.75 2.5 2.5 2.5

no parameters. The values of PT parameters are typical values reported in the
literature [4]. We set ε in RPT following two rules: (i) No more than half of
targets are in the ε−optimal set; (ii) ε ≤ 0.3Ramax, where Ramax is the maximum
potential reward for the adversary. The size of the ε−optimal set increases as
the value of ε increases. When ε is sufficiently large, the defender’s strategy
becomes maximin, since she believes that the adversary may attack any target.
The second rule limits the imprecision in the attacker’s choice. We empirically
set the limit to 0.3Ramax. For BRQR, we set λ using MLE with data reported

12

in [10] (see Section 4.2). For payoffs 1∼4, we set the parameters for COBRA
following the advices given by [10] as close as possible. In particular, the values
we set for α meet the entropy heuristic discussed in that work. For payoffs 5∼7,
we use the same parameter settings as in their work.

6.2 Experiment Result

Quality Comparison: We used the average expected defender’s utility to eval-
uate the performances of the strategies. Let Udi (x) = xiR

d
i + (1− xi)P di be the

defender’s expected utility for target ti if she plays mixed strategy x and the
subject selects target ti; Ni be the number of subjects that chose target ti. Then,
the average expected defender’s utility can is calculated as

Ūdexp(x) =
1

N

n∑
i=1

NiU
d
i (x)

Fig. 4 displays Ūdexp(x) for the different strategies in each payoff structure. The
performance of the strategies is closer in payoffs 5∼7 than in payoffs 1∼4. The
main reason is that strategies are not very different in payoffs 5∼7 (see Ta-
ble 2). We evaluate the statistical significance of our results using the bootstrap-t
method [14]. The comparison is summarized below:

– BRQR outperforms COBRA in all seven payoff structures. The result is
statistically significant in three cases (p<0.005) and borderline (p=0.05)
in payoff 3 (p<0.06). BRQR also outperforms DOBSS in all cases, with
statistical significance in five of them (p<0.02).

– RPT outperforms COBRA except in payoff 3. The difference is statistically
significant in payoff 4 (p<0.005). In payoff 3, COBRA outperforms RPT
(p>0.07). Meanwhile, RPT outperforms DOBSS in five payoff structures,
with statistical significance in four of them (p<0.05). In the other two cases,
DOBSS has better performance (p>0.08).

– BRQR outperforms RPT in three payoff structures with statistical signifi-
cance (p<0.005). They have very similar performance in the other four cases.

– BRPT is outperformed by BRQR in all cases with statistical significance
(p<0.03). It is also outperformed by RPT in all cases, with statistical signif-
icance in five of them (p<0.02) and one borderline (p<0.06). BRPT’s failure
to perform better (and even worse than COBRA) is a surprising outcome.

Overall, BRQR performs best, RPT outperforms COBRA in six of the seven
cases, and BRPT and DOBSS perform the worst.

Key Observations: BRPT and DOBSS are not robust against an adversary
that deviates from the optimal strategy. BRQR, RPT and COBRA all try to
be robust against such deviations. BRQR considers some (possibly very small)
probability of adversary attacking any target. In contrast, COBRA and RPT
separate the targets into two groups, the ε-optimal set and the non-ε-optimal
set, using a hard threshold. They then try to maximize the worst case for the

13

Payoff 1 Payoff 2 Payoff 3 Payoff 4

−3

−2

−1

0

1

2

A
ve

ra
ge

 D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

BRPT
RPT
BRQR
COBRA
DOBSS

(a) New Payoffs

Payoff 5 Payoff 6 Payoff 7

−3

−2

−1

0

A
ve

ra
ge

 D
ef

en
de

r
E

xp
ec

te
d

U
til

ity

(b) Payoffs from Pita et al.

Fig. 4. Average Expected Utility of Defender

defender assuming the response will be in the ε-optimal set, but assign less
resources to other targets. When the non-ε-optimal targets have high defender
penalties, COBRA and RPT become vulnerable, especially in the following two
cases:

– ‘Unattractive’ targets are those with small reward but large penalty for the
adversary. COBRA and RPT consider such targets as non-ε-optimal and
assign significantly less resources than BRQR on them. However, some sub-
jects would still select such targets and caused severe damage to COBRA and
RPT (e.g. about 30% subjects selected door 5 in payoff 4 against COBRA
strategy, as shown in Fig. 5(d)).

– ‘High-risk’ targets are those with large reward and large penalty for the
adversary. RPT considers such targets as non-ε-optimal and assigns far less
resources than other algorithms. This is caused by the assumptions made by
PT that people care more about loss than gain and that they overestimate
small probabilities. However, experiments show RPT gets hurt significantly
on such targets (e.g. more than 15% subjects select door 1 in payoff 2, as
shown in Fig. 5(b)).

14

7 Conclusions

There is a significant interest in game-theoretic techniques to solve security prob-
lems. However, current algorithms make perfect rationality assumption of the ad-
versaries, which is problematic in many real security domains when agents face
human adversaries. New methods need to be developed to compute defender
strategy against real human adversaries. This paper successfully integrates two
important human behavior theories, PT and QRE, into building more realistic
decision-support tool. To that end, the main contributions of this paper are,
(i) Developing efficient new algorithms based on PT and QRE models of human
behavior; (ii) Conducting the most comprehensive experiments to date with hu-
man subjects for security games (40 subjects, 5 strategies, 7 game structures);
(iii) Designing techniques for generating representative payoff structures for be-
havioral experiments in generic classes of games. By providing new algorithms
that outperform the leading competitor, this paper has advanced the state-of-
the-art.

References

1. C. F. Camerer, T. Ho, and J. Chongn. A congnitive hierarchy model of games.
QJE, 119(3):861–898, 2004.

2. S. Ficici and A. Pfeffer. Simultaneously modeling humans’ preferences and their
beliefs about others’ preferences. AAMAS, 2008.

3. Y. Gal and A. Pfeffer. Modeling reciprocal behavior in human bilateral negotiation.
AAMAS, 2007.

4. R. Hastie and R. M. Dawes. Rational Choice in an Uncertain World: the Psychology
of Judgement and Decision Making. Sage Publications, Thounds Oaks, 2001.

5. D. Kahneman and A. Tvesky. Prospect theory: An analysis of decision under risk.
Econometrica, 47(2):263–292, 1979.

6. C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordonez, and M. Tambe. Computing
optimal randomized resource allocations for massive security games. In AAMAS,
2009.

7. R. D. McKelvey and T. R. Palfrey. Quantal response equilibria for normal form
games. Games and Economic Behavior, 2:6–38, 1995.

8. P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and S. Kraus. Play-
ing games for security: An efficient exact algorithm for solving bayesian stackelberg
games. In AAMAS, 2008.

9. J. Pita, M. Jain, F. Ordonez, C. Portway, M. Tambe, C. Western, P. Paruchuri,
and S. Kraus. Deployed armor protection: The application of a game theoretic
model for security at the los angeles international airport. In AAMAS, 2008.

10. J. Pita, M. Jain, F. Ordonez, M. Tambe, and S. Kraus. Solving stackelberg games in
the real-world: Addressing bounded rationality and limited observations in human
preference models. Artificial Intelligence Journal, 174(15):1142–1171, 2010.

11. H. Simon. Rational choice and the structure of the environment. Psychological
Review, 63(2):129–138, 1956.

12. D. O. Stahl and P. W. Wilson. Experimental evidence on players’ models of other
players. JEBO, 25(3):309–327, 1994.

15

13. J. Tsai, S. Rathi, C. Kiekintveld, F. Ordonez, and M. Tambe. Iris - a tool for
strategic security allocation in transportation networks. In AAMAS, 2009.

14. R. R. Wilcox. Applying contemporary statistical techniques. Academic Press, 2003.

15. J. R. Wright and K. Leyton-Brown. Beyond equilibrium: Predicting human be-
havior in normal-form games. In AAAI, 2010.

A Payoff Structure Information

The four payoff structures selected from the four clustering groups are displayed
in Table 4.

Table 4. Payoff Structure

(a) Payoff Structure 1

Target 1 2 3 4 5 6 7 8

defender reward 2 6 7 7 8 8 6 9

defender penalty -8 -10 -3 -1 -10 -5 -2 -5

subject reward 10 8 3 7 6 7 8 2

subject penlaty -7 -4 -6 -8 -4 -2 -9 -3

(b) Payoff Structure 2

Target 1 2 3 4 5 6 7 8

defender reward 3 8 9 9 7 7 4 1

defender penalty -10 -2 -5 -1 -7 -6 -2 -1

subject reward 9 8 2 9 10 1 10 1

subject penlaty -10 -1 -10 -8 -4 -10 -5 -3

(c) Payoff Structure 3

Target 1 2 3 4 5 6 7 8

defender reward 5 3 8 3 3 4 3 6

defender penalty -2 -5 -4 -6 -3 -10 -7 -2

subject reward 8 6 1 3 1 7 3 5

subject penlaty -6 -9 -3 -7 -7 -2 -5 -2

(d) Payoff Structure 4

Target 1 2 3 4 5 6 7 8

defender reward 5 9 10 2 10 4 8 8

defender penalty -10 -4 -9 -3 -10 -10 -2 -5

subject reward 3 7 3 9 2 9 7 8

subject penlaty -4 -8 -5 -8 -9 -4 -1 -6

(e) Payoff Structure 5

Target 1 2 3 4 5 6 7 8

defender reward 1 4 2 3 4 1 5 2

defender penalty -5 -8 -1 -6 -5 -1 -7 -7

subject reward 1 9 5 6 7 1 10 3

subject penlaty -2 -4 -3 -3 -3 -2 -4 -3

(f) Payoff Structure 6

Target 1 2 3 4 5 6 7 8

defender reward 4 3 1 5 1 2 5 2

defender penalty -8 -10 -1 -8 -1 -3 -11 -5

subject reward 8 5 3 10 1 3 9 4

subject penlaty -3 -2 -3 -2 -3 -3 -2 -3

(g) Payoff Structure 7

Target 1 2 3 4 5 6 7 8

defender reward 4 3 1 5 1 2 5 2

defender penalty -8 -5 -1 -10 -5 -3 -9 -6

subject reward 8 5 2 10 1 3 9 4

subject penlaty -3 -3 -3 -3 -3 -3 -3 -3

16

B Defender Mixed-Strategy

The defender’s mixed-strategy from each algorithm in each payoff structures are
displayed in Table 5 and Table 6.

Table 5. Defender’s Mixed-strategy

(a) Payoff Structure 1

Target 1 2 3 4 5 6 7 8

BRPT 0.39 0.51 0.17 0.26 0.43 0.70 0.26 0.28

RPT 0.43 0.57 0.24 0.17 0.51 0.41 0.29 0.38

BRQR 0.57 0.58 0.18 0.21 0.51 0.47 0.30 0.18

COBRA 0.57 0.62 0.18 0.22 0.51 0.44 0.34 0.11

DOBSS 0.49 0.53 0.15 0.36 0.44 0.59 0.37 0.07

(b) Payoff Structure 2

Target 1 2 3 4 5 6 7 8

BRPT 0.28 0.93 0.07 0.34 0.59 0.05 0.52 0.23

RPT 0.32 0.54 0.10 0.39 0.65 0.07 0.57 0.37

BRQR 0.54 0.52 0.21 0.36 0.64 0.16 0.58 0.00

COBRA 0.48 0.53 0.09 0.43 0.74 0.00 0.70 0.02

DOBSS 0.42 0.78 0.08 0.47 0.64 0.00 0.60 0.00

(c) Payoff Structure 3

Target 1 2 3 4 5 6 7 8

BRPT 0.42 0.24 0.29 0.19 0.09 0.78 0.28 0.72

RPT 0.46 0.27 0.38 0.23 0.12 0.80 0.34 0.40

BRQR 0.36 0.43 0.20 0.36 0.13 0.72 0.43 0.37

COBRA 0.48 0.42 0.16 0.29 0.07 0.81 0.36 0.42

DOBSS 0.53 0.37 0.12 0.25 0.06 0.72 0.31 0.64

(d) Payoff Structure 4

Target 1 2 3 4 5 6 7 8

BRPT 0.28 0.27 0.22 0.33 0.08 0.54 0.90 0.38

RPT 0.37 0.32 0.30 0.37 0.10 0.61 0.49 0.44

BRQR 0.35 0.33 0.30 0.44 0.20 0.62 0.36 0.42

COBRA 0.24 0.42 0.21 0.50 0.04 0.66 0.39 0.53

DOBSS 0.22 0.37 0.19 0.44 0.05 0.58 0.69 0.47

C Histogram of Subjects’ Choices

The histograms of subjects’ choice in each game instance are displayed in Fig. 5
and Fig. 6.

17

Table 6. Defender’s Mixed-strategy

(a) Payoff Structure 5

Target 1 2 3 4 5 6 7 8

BRPT 0.16 0.49 0.41 0.46 0.51 0.16 0.52 0.28

RPT 0.23 0.52 0.17 0.50 0.50 0.23 0.54 0.32

BRQR 0.12 0.61 0.16 0.55 0.52 0.00 0.57 0.46

COBRA 0.00 0.64 0.23 0.63 0.52 0.00 0.55 0.40

DOBSS 0.00 0.59 0.45 0.51 0.56 0.00 0.62 0.27

(b) Payoff Structure 6

Target 1 2 3 4 5 6 7 8

BRPT 0.49 0.46 0.21 0.67 0.05 0.21 0.64 0.29

RPT 0.54 0.53 0.07 0.55 0.07 0.27 0.63 0.35

BRQR 0.58 0.59 0.00 0.60 0.00 0.19 0.66 0.38

COBRA 0.58 0.55 0.00 0.53 0.00 0.31 0.62 0.41

DOBSS 0.56 0.45 0.19 0.68 0.00 0.19 0.65 0.30

(c) Payoff Structure 7

Target 1 2 3 4 5 6 7 8

BRPT 0.54 0.41 0.19 0.60 0.09 0.27 0.57 0.35

RPT 0.56 0.43 0.03 0.60 0.12 0.31 0.58 0.38

BRQR 0.59 0.44 0.00 0.63 0.08 0.22 0.60 0.45

COBRA 0.57 0.48 0.00 0.59 0.00 0.33 0.56 0.47

DOBSS 0.59 0.44 0.10 0.65 0.00 0.25 0.62 0.36

18

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(a) Payoff Structure 1

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(b) Payoff Structure 2

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(c) Payoff Structure 3

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(d) Payoff Structure 4

Fig. 5. Histogram of Subjects’ Choices

19

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

50

60

70

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(a) Payoff Structure 5

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

50

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(b) Payoff Structure 6

door 1 door 2 door 3 door 4 door 5 door 6 door 7 door 8
0

10

20

30

40

50

60

P
er

ce
nt

ag
e

of
 S

ub
je

ct
s

BRPT
RPT
BRQR
COBRA
DOBSS

(c) Payoff Structure 7

Fig. 6. Histogram of Subjects’ Choices

Towards Realistic Decentralized Modeling for Use in a
Real-World Personal Assistant Agent Scenario

Christopher Amato, Nathan Schurr, and Paul Picciano

Aptima, Inc.
12 Gill Street, Suite 1400

Woburn, MA 01801
{camato,nschurr,ppicciano}@aptima.com

Abstract. Many approaches have been introduced for representing and solving
multiagent coordination problems. Unfortunately, these methods make assump-
tions that limit their usefulness when combined with human operators and real-
life hardware and software. In this paper, we discuss the problem of using agents
in conjunction with human operators to improve coordination as well as possible
models that could be used in these problems. Our approach – Space Collaboration
via an Agent Network (SCAN) – enables proxy agents to represent each of the
stakeholder agencies in a space setting and shows how the SCAN agent network
could facilitate collaboration by identifying opportunities and methods of collab-
oration. We discuss this approach as well as the challenges in extending models to
1) take advantage of human input, 2) deal with the limited and uncertain informa-
tion that will be present and 3) combat the scalability issues in solution methods
for a large number of decentralized agents. As a step toward dealing with limited
information, we propose the shared MDP model, which allows private and shared
information to be expressed separately.

1 Introduction

In today’s world, people are increasingly connected to many other people and many
sources of information, providing more opportunities than ever for tasks such as work-
ing more efficiently with others and discovering helpful information. Unfortunately, the
vast scale of information can be overwhelming. As computers become more powerful
and pervasive, software in the form of personal assistant agents can provide support in
many situations.

For example, with the increased deployment and use of space assets, a number of
interesting and challenging problems have come to the fore. The persistent nature of
space surveillance (i.e., 24/7 operations), the mass of data, the varied data sources, and
the heterogeneous needs of consumers and producers throughout the community all
point to a pressing need for an enhanced Space Situational Awareness (SSA) picture,
one that can only be achieved by a coordinated, collaborative approach to the collection,
dissemination and sharing of information.

For the foreseeable future, the challenges in the U.S. National Space Policy will
demand human-in-the-loop participation. This is particularly relevant given the amount
and importance of data and knowledge not held in any database, or streaming in bits

through the ionosphere, but that resides in the minds of individuals or the institutional
knowledge of a team. The criticality of an enhanced situational awareness and its sub-
sequent deployment suggests that we integrate these methods within the existing work-
flow, obviating the need to add additional tools.

The solution to this problem requires a coherent, integrated approach, viewing the
space domain as a socio-technical system, within which the human plays an integral
part. Several diverse agencies are stakeholders and produce and/or consume informa-
tion related to space. Each agency has its own organizational structure and protocols,
so the solution must be versatile enough to allow for effective inter-agency collabora-
tion while still maintaining the standard practices of each. Further, the human operator
network alone is not sufficient to create adequate SSA. There is an enormous amount
of data recorded from sensors on satellites, ground stations and other periodic collec-
tors. The human operator is overloaded by the transmission, capture, cataloging, and
sense making of these data. The optimal solution for enhanced SSA is a synergistic,
collaborative effort between networks of humans and automated agents.

The Space Collaboration via an Agent Network (SCAN) approach enables proxy
agents to represent each of the stakeholder agencies and facilitate collaboration by iden-
tifying opportunities and methods for collaboration. This allows humans to have access
to large amounts of data through their agents, while personalizing them given the users
specific preferences and capabilities. These agents can then communicate with each
other with varying levels of input from the user for tasks ranging from retrieving infor-
mation, securing the services of another agency or team formation for complex tasks.

Many models have been developed for solving decentralized problems requiring co-
operation. For SCAN, we assume a sequential problem in which a series of decisions
need to be made, each affecting the next. Limiting these models to those based on de-
cision theory, a large number of models can still be used [2, 4, 5, 10, 14]. Nevertheless,
each of these models makes assumptions that cause it to be inappropriate for a domain
such as SCAN. These assumptions include: a full model of the problem with the value
other agents derive from all actions or the results of these actions, perfect knowledge
of the current state of the system (or a common estimate), a shared objective function,
a centralized solution method. An ideal model for our domain would relax these as-
sumptions to permit only local knowledge and solution methods, self-interested agents,
model uncertainty and independence between groups of agents.

The remainder of this paper is organized as follows. We first discuss the SCAN
domain in more detail as well as the progress made to date. We also discuss several
models that could be used to represent this problem and their shortcomings. Finally,
we discuss key assumptions that we are interested in relaxing in these approaches and
the challenges involved in doing so. The goal in this project is to produce a system of
personal assistant agents with accompanying solution methods that maintain tractability
and high solution quality.

2 Overview of SCAN approach

The approach used in SCAN represents each of the stakeholder agencies for space with
proxy agents and facilitates collaboration by identifying opportunities and methods for

collaboration. It demonstrates the suitability of our human-agent solution to address
the three critical aspects above, that is: 1) Knowledge and mental models of human
operators, 2) Collaboration methods and barriers to collaboration and 3) Integrating
solutions that conform to preferred workflows.

A variety of factors shape the opportunities for collaboration and the constraints on
collaboration. The SCAN Agent architecture incorporates these components into the
SCAN Proxy Agent Architecture. The need to collaborate varies based on an interac-
tion of the demands of the mission, the architecture of the team and its resources, and
the distribution of expertise within the team. Collaboration becomes necessary when
mission-critical expertise is distributed among multiple people, and resources and re-
sponsibilities are likewise divided between people.

A team’s ability to collaborate depends on a number of factors, including avail-
able technology, team members collaboration skills, and team composition. The factors
affecting the ability to collaborate directly affect the products of collaboration (e.g.,
assessments and plans), as well as the apparent coordination of the team as a whole.
Collaborative critical thinking is intended to provide active support to teams above and
beyond the three factors affecting a team’s ability to collaborate. Figure 1 shows a top-
level diagram of our proposed solution: Space Collaboration via an Agent Network
(SCAN). It shows proxy agents, each of which represents a stakeholder for space. We
implemented an initial version of this infrastructure by developing agent interactions to
carry out the use case(s), and tested the resultant model by generating results to show
dynamic constraints, changing parameters, and making modifications to the use cases(s)
that show the benefit of agent use. This solution will fit integrally into the current work-
flow, without the need for additional tools for users to learn, and will make privacy
issues explicit.

Proxy
Agent

AFWANASIC

Proxy
Agent

Proxy
Agent

Proxy
Agent

JSpOC

NOAA

Proxy
Agent

NASA

Proxy
Agent

AFSPC

Fig. 1. Proxy agents being used to facilitate collaboration between heterogeneous stakeholders.

Note that our approach to SCAN is to have the human remain in control and drive
the collaboration. The proxy agent is designed to facilitate the human operators and
point them in the right direction to improve interagency collaboration. Human operators
will not be surprised or superseded by the SCAN proxy agent’s actions.

3 The SCAN framework

In conceiving an agent-based architecture, we identified the following benefits to indi-
vidual agencies of agent-based collaboration: 1) Fusion/Integration of agency plans, 2)
Locating potential collaboration opportunities, 3) Forewarning: An agency may antici-
pate future events based on an alert from another agency, 4) Increased Quality/Accuracy
of data, 5) Facilitating levels of automated collaboration, 6) Detecting collaboration fail-
ures, 7) Adjusting to realtime changes in policy/capabilities, 8) Learning preferences of
agencies, 9) Persuading agencies to cooperate through incentives. We selected areas 1),
2), and 7) as areas for further study.

3.1 Use case

In order to study the above, we constructed a working Use Case. The requirements for
the Use Case were: Scalability: The initial Use Case should describe a simple problem
that can easily scale to more complex problems. This allows us to demonstrate our
solution initially in an easily controllable environment, but also set the stage for our
solution to handle a larger set of more complex problems. Generalizability: The Use
Case should be representative of a general class of collaboration problems, so that the
solution will be applicable to the needs of other agencies as well as those mentioned
in the Use Case. The Use Case was based on interviews with space weather analysts
from the Air Force Weather Agency (AFWA), and their information needs as primary
producers of information on environmental effects to agencies such as the National Air
and Space Intelligence Center (NASIC), the Joint Space Operations Center (JSpOC),
and the Air Operations Center (AOC)

We identified two important facets to examine in developing the use case: (P1) How
does the SCAN agent know when to initiate collaboration? (P2) What is the message
structure necessary to handle collaboration? The message structure will be driven by
the type of collaboration, therefore (P1) must be considered before (P2). For (P1), the
following sequence of steps should take place in the Use Case: (S1) NASIC’s commu-
nication to the satellite goes down (S2) NASICs SCAN agent attempts to diagnose the
reasons (S3) Two causes are identified, a solar flare or a system problem (S4) Collab-
oration IDs are generated for each of the two causes (S5) NASICs SCAN agent sends
a query to the other agents to collaborate (S6) Agents on behalf of the other agencies
provide an affirmative response to the collaboration request (S7) The agencies are con-
nected.

This protocol is motivated by Signaling System 7 (SS7) of the telephone network
[13] which separates data from service. This property is particularly desirable, as it
allows an agency to limit the amount of data it discloses to non-collaborating agencies.
In the future, the topology of the SCAN agents will be further refined.

3.2 Basic model

From the perspective of a SCAN agent receiving collaboration requests, this agent is
called the Collaboration Facilitator (CF). The requesting agent is called the CR. As
stated previously, each SCAN agent will have a model of the other agents and agencies.
The model couldl be used to derive such information as an arrival rate of resource re-
quests. Based on the model of the requests coming in, the model couldl also predict a
service rate of these requests. The model will also predict the benefits of each collabo-
ration from each organization. Likewise, from the perspective of the CF, it is possible
that a collaboration initiated by another agency will require collaboration with a third
agency, and that only the CF and not the CR knows about this collaboration. In this
case, it will NOT be the role of the CF to request collaboration with the third agency.
This could reproduce the well-known “dining philosophers” problem from Operating
Systems literature which is essentially that a bottleneck results when multiple processes
compete for a limited set or resources. As a consequence of that bottleneck, system per-
formance is degraded. Instead, the CF agent passes the information about the 3rd party
back to the CR agent and the CR agent submits the request for collaboration to the third
agency.

The motivation behind this model is that a SCAN agent receiving a collaboration
request may be able to make decisions like: (1)“Well, technically I could collaborate
you; after all I have enough resources to do it. However I know I’m about to get some
high priority requests from important agencies soon, so... collaboration request denied.”
(2)“I can’t collaborate with you right now. But my model says I’ll be free in a few hours,
do you want to book my time in advance?”

4 Multiagent models of interest

To model the type of problems described above, we need to consider the following
requirements: sequential decisions, uncertainty regarding outcomes and other agents’
decisions and decentralized control. Sequential decisions are needed because agents’
decisions at the current time will affect the future outcomes. That is, suggesting to
collaborate with one agency rather than another may have consequences in terms of
time and resources required, affecting future collaboration possibilities. Uncertainty is
present in these scenarios as well considering that information may be unavailable or
outside forces could cause the situation to change. Also, users may decline collabora-
tion and the actions of the other agents are often unseen, causing uncertainty about the
other agents. The system must also be decentralized for similar reasons. Agents must
make choices based solely on local information due to the lack of updates from other
agents. This local information may also be uncertain or incomplete information about
the human user or other humans and agents in the system.

This type of modeling can be accomplished with decision-theoretic approaches. In
general, these representations have probabilities which represent the uncertainty in ac-
tion outcomes and seek to maximize an objective function in an attempt to optimize the
sequence of decisions by the agents. As agents are built for ever more complex envi-
ronments, methods that consider the uncertainty in the system have strong advantages.
Developing effective frameworks for reasoning under uncertainty is a thriving research

area in artificial intelligence and we discuss some of these approaches below. These
models are briefly discussed below and summarized in Table 1.

4.1 DEC-POMDPs

A decentralized partially observable Markov decision process (DEC-POMDP) [4] can
be defined with the tuple: 〈I, S, {Ai}, P,R, {Ωi}, O, T 〉with I , a finite set of agents, S,
a finite set of states with designated initial state distribution b0,Ai, a finite set of actions
for each agent, i P , a set of state transition probabilities: P (s′|s,a), the probability of
transitioning from state s to s′ when the set of actions a are taken by the agents, R, a
reward function: R(s,a), the immediate reward for being in state s and taking the set
of actions, a Ωi, a finite set of observations for each agent, i, O, a set of observation
probabilities: O(o|s′,a), the probability of seeing the set of observations o given the
set of actions a was taken which results in state s′, T , a horizon or number of steps after
which the problem terminates.

A DEC-POMDP involves multiple agents that operate under uncertainty based on
different streams of observations. At each step, every agent chooses an action based
on their local observation histories, resulting in a global immediate reward and a local
observation for each agent. Note that because the state is not directly observed, it may
be beneficial for the agent to remember its observation history. A local policy for an
agent is a mapping from local observation histories to actions while a joint policy is a
set of local policies, one for each agent in the problem. The goal is to maximize the
total cumulative reward until the horizon is reached, beginning at some initial distribu-
tion over states. In the infinite-horizon problem, T is infinity and the decision making
process unfolds over an infinite sequence of steps. In order to maintain a finite sum over
the infinite-horizon, in these cases a discount factor, 0 ≤ γ < 1, is employed.

The DEC-POMDP model is very general, but has a very high complexity (NEXP-
complete1). Algorithms for solving DEC-POMDPs also typically assume that all model
parameters are known in advance and the solution is found in a centralized manner, pro-
viding policies that each agent can implement in a decentralized way. This model also
assumes no communication (except as part of the observations) and full cooperation
between the agents. The high complexity and large number of assumptions make the
DEC-POMDP model currently inappropriate for the scenarios we are interested in for
SCAN with a large number of agents with limited knowledge of the full problem model.

Communication and learning have also been studied in the DEC-POMDP model.
Recent work has examined using communication for online planning in DEC-POMDPs
[18]. This type of work could be useful in our context because communication is used
when inconsistencies are detected between the agents. Unfortunately, it still requires
knowledge of the full model and a DEC-POMDP to be solved for some number of
steps. Rather than assuming the model is known, it can also be learned or policies can
be learned directly [7, 16]. Direct policy learning may be an appropriate approach in
that it does not require a model, but in order to calculate the gradient the model must be
sampled. This sampling requires many instances and still is not guaranteed to converge
to an equilibrium.

1 This results in doubly exponential complexity as long as P!=NP.

4.2 DEC-MDPs and MMDPs

We can restrict DEC-POMDPs in various ways to simplify solution calculations. For
instance, we can assume that each agent can fully observe its own local state, but not
the global state. This is a form of the DEC-MDP model [2], which has been shown to
have more efficient solutions in some cases, but in general has the same complexity as
the general model (NEXP-complete) [4]. If we consider problems in which the agents
have independent transitions and observations and a structured reward model (IT-IO
DEC-MDPs), the complexity drops to NP-complete [3]. Recent work has shown that
subclasses of DEC-POMDPs which have independent rewards, but dependent obser-
vations and transitions as well as those with certain structured actions retain the same
complexity as the general problem [1]. Some other modeling assumptions and the re-
sulting complexity are studied in [9], but none of these seems appropriate for our case
as they continue to assume centralized solution methods and knowledge of the model.

DEC-MDPs can be further simplified by assuming that the state of the problem
is fully observed by each agent, resulting in a multiagent MDP (MMDP) [5]. There
has been work on efficient planning solutions for these problems (modeled as fac-
tored MDPs) [10], which allow algorithms to exploit independence between agents.
While this is a useful quality (which is discussed in more detail in the context of ND-
POMDPs), centralized solution methods are used and full model knowledge is required,
limiting the applicability of these models to our scenario.

Model Pros Cons
DEC-POMDPs Very rich model of cooperative agents Assumes known model parameters,

fully cooperative, high complexity

IO-IT DEC-MDPs Somewhat rich, Limiting model assumptions
(interact only through rewards),

less complex than full model Assumes known model parameters
fully cooperative

MMDPs Low complexity Limiting model assumptions
(centralized knowledge),

Assumes known model parameters,
fully cooperative

ND-POMDPs Exploits locality, distributed solution, Limiting model assumptions
(very limited interaction),

less complex than full model Assumes some model parameters
fully cooperative

Graphical games Allows self interest, exploits locality Assumes some model parameters,
not sequential

I-POMDPs Allows self interest, exploits locality Assumes known model parameters,
high complexity

Table 1. Model pros and cons for distributed personal assistant domains.

4.3 ND-POMDPs

Another way of simplifying DEC-POMDPs is to assume agents interact in a limited
way based on locality. This assumption often considers agents that can only interact
with their neighbors and thus is more scalable in the number of agents in the problem.
This has been studied using the networked distributed POMDP (ND-POMDP) model
for the finite-horizon case [14] as well as a more general factored models [15, 17].

The ND-POMDP model is similar to the DEC-POMDP model except for the follow-
ing: states can be factored S = ×Si×Su for each set of states for each agent i and an un-
affected state set, actions and observations can be factored similarly withA = ×Ai and
Ω = ×Ωi for each agent, transition independence where the unaffected state and each
agent transition independently P (s′|s, a) = P (s′u|su)

∏
i P (s

′
i|si, ai) and observation

independence where O(o|s′, a) =
∏

iOi(o
′
i|si, ai). Also, rewards can be broken up

based on neighboring agents and summed asR(s, a) =
∑

l(sl1, . . . , slk, su, 〈al1, . . . , alk〉)
where l represents a group of k = |l| neighboring agents. The ND-POMDP model also
assumes that a the belief state (the state distribution estimate) is known by all agents.

A solution to an ND-POMDP can be computed in a distributed manner using mes-
sage passing to converge to a local optimum. This approach can be very efficient in
cases where the agents are only loosely connected. Nevertheless, strong assumptions
are still made such as knowing the model in the local neighborhood and additive re-
wards across neighborhoods.

4.4 Game theoretic representations

If we assume that agents may have different interests that may not necessarily align
perfectly (which is likely to be the case in many real-world scenarios), we could use
a game theoretic approach. A model that retains the idea of agents loosely connect
into neighborhoods is the graphical game [12]. This approach combats the tabular (and
thus exponential) representation of n-agent games by using an undirected graph where
two agents are connected if they can affect each others’ payoffs. Assumptions in this
model are that each agent can calculate a best response, which means that it knows
the payoffs for the different actions given the other agents’ choices. This is also not
a sequential model, so all possible horizon T policies would have to be considered as
actions, resulting in an exponential increase in action size and intractability to solve.

Sequential game theoretic models have also been studied. A generalization of DEC-
POMDPs to the case where agents may have different rewards results in a partially
observable stochastic game (POSG). Thus, if we assume POSGs with common pay-
offs for all agents, it is equivalent to the DEC-POMDP model [11]. This model relaxes
the assumption that all agents are fully cooperative, but retains the intractability and
knowledge of the model assumed by the DEC-POMDP. Another game theoretic view
of multiagent POMDPs from the Bayesian perspective is the interactive POMDP (I-
POMDP) model [8]. An extension of the I-POMDP model to graphical representations,
allowing agent independence to be exploited is the interactive dynamic influence dia-
gram (I-DIDs) [6]. While both of these models are interesting in that they can represent
problems with estimates of other agent behavior based on observations that are seen,
a full model is again assumed and complexity is at least as high as the corresponding
DEC-POMDP models.

5 Dealing with private information

One weakness of the decision-theoretic models discussed in the previous section is
the assumption that agents will have full knowledge of each others models. This is
somewhat mitigated when only local agents are considered (as in an ND-POMDP), but
even these local agents must share their information before a decentralized solution can
be found. In a real-world scenario, such as SCAN, we cannot assume the agents will
have knowledge of the other agent’s model: states, actions, observations, let alone their
transition and observation probabilities or rewards values.

There may be privacy or security reasons for not sharing this information. For in-
stance, individuals may not want to disclose their full schedules or preferences and
organizations do want to share proprietary information. More specifically, Chris may
have a preference for meeting with Paul over Nathan which he would rather not divulge
(especially to Nathan!). Also, there may be several other projects that a person is work-
ing on that have no direct relationship to a possible collaboration between entities, but
they be affected in some way. For example, I may not want to share my schedule for all
projects that I am working on, but I would consider changing my schedule to collabo-
rate on a particularly important or interesting project. This could change depending on
who is working on the project, when it is being scheduled, different travel locations etc.
Nevertheless, planning must be accomplished based on this limited model information.
To represent these problems, we describe a new model, the shared MDP, which is an
initial step towards dealing with shared and private information.

5.1 Shared MDP model

We present the shared MDP model, but this could be extended to the POMDP case. In
a shared MDP, each agent, i, consists of an MDP with Si, Ai, Pi, Ri and Ti, the states,
actions, transitions, rewards and horizon for agent i’s model. There may be some set
of states which are shared by a set of agents. For agent i, we denote the set of shared
states as Ss

i . In this case, the transitions and rewards for the shared states depend on all
agents that are in the shared states at that time.

More formally, we consider S = ∪iSi the full set of states for all agents, D(s) =
{i|s ∈ Si} the possible set of decision-makers at state s as well as joint rewardR(s,aD(s))
and transitions for each agent i Pi(s

′|s,aD(s)). We define a private state as an agent’s
state that is not shared by any other agent. That is, state s is private for agent i if
D(s) = i. Note that D(s) represents all agents that have state s in their MDP, but some
or all of these agents may be in a private state at the given time and therefore do not
affect the rewards and transitions of the other agents. In these cases, we can replace the
action of the agents in private states with a dummy action or omit them altogether.

Proposition 1. A shared MDP with no shared states is equivalent to a set of indepen-
dent MDPs.

Proof is straightforward and thus omitted.

Proposition 2. A shared MDP with no private states and common transition functions
is equivalent to an MMDP.

Proof is straightforward and again omitted. In general, agents will have full knowledge
of the (common) state of the system as well as the joint transitions and rewards. This is
also the case if agents’ MDPs are subsets of other agents’ MDPs.

The interesting (and realistic) case occurs when each agent has a set of private states
that are not shared with the others. A shared MDP could also be solved centrally as
one large MDP, but this requires sharing private and secure information with a central
agency (by communicating the details of the private model as well as the shared one).
A central approach would also introduce a single point of failure and make it more
difficult to add or remove agents over time. As a result, we explore fully decentralized
solution methods.

5.2 Example shared MDP

An example shared MDP with two agents is shown in Figure 2. Here, S1 = {s1, s2}
and S2 = {s2, s3}, resulting in shared state s2 and private states s1 and s3 for agents 1
and 2 respectively. We also assume A1 = A2 = {a1, a2}.

Fig. 2. Shared MDP with two agents. Agent 1 contains states 1 and 2, while agent 2 contains
states 2 and 3. State 2 is a shared state.

The dynamics for agent 1 in the private state will be that a1 causes the agent to stay
in the private state, P (s1|s1, a1) = 1, while a2 causes the agent to transition to the
shared state P (s2|s1, a2) = 1. Agent 2 has the same dynamics P (s3|s3, a1) = 1 and
P (s2|s3, a2) = 1. Note the agent subscript is omitted for private states. In the shared
state, if both agents take the same action, each agent transitions back to its private
state. That is, P1(s

1|s2, a11, a12) = 1, P1(s
2|s2, a11, a22) = 1, P1(s

2|s2, a21, a12) = 1,
P1(s

1|s2, a21, a22) = 1. The same can be written for agent 2’s P2. When only one
agent is in the shared state, its dynamics are the same as those for the private state,
P1(s

1|s2, a1) = 1, P1(s
2|s2, a2) = 1, P2(s

3|s2, a1) = 1 and P2(s
2|s2, a2) = 1.

If R1(s
1, a1) = R1(s

1, a2) = 10, R2(s
3, a1) = R2(s

3, a2) = −10 and for both
agents, R(s2, a11, a

1
2) = R(s2, a11, a

2
2) = R(s2, a21, a

1
2) = R(s2, a21, a

2
2) = 0, and when

only one agent is in s2 R(s2, a1) = R(s2, a2) = −2 then there is no cooperative
solution to this problem in which both agents attain their highest values. This is because
agent 1 will gain higher reward for being in its private state and thus will attempt to

coordinate with agent 2 to choose the same action to transition accordingly. On the
contrary, agent 2 will gain higher value for staying in the shared state and thus will
attempt to choose a different action than agent 1. These differences can be seen in
the optimal policies for each agent’s MDP. Assuming an infinite horizon problem with
discount of 0.9, agent 1 produces a value of 100 starting in s1 by always choosing action
a1, while if both agents start in s2 a value of 90 can be achieved if both agents choose
the same action on the first step and then agent 1 chooses a1 thereafter. For each step
that the same action is not chosen, value is lost by agent 1. This is in contrast to agent
2, who achieves at most -9 after starting in s2 and cooperating with agent 1 to choose
the same action, while it could attain a value of 0 if both agents always chose different
actions. Starting in s3, agent 2 can attain a value of -10 by choosing a2 and choosing
the opposite action as agent 1 if that agent is in the shared state s2. If agent 1 is not in
the shared state for any other step, a value of -28 can be attained by always choosing
a2.

5.3 Solutions for shared MDPs

It can be shown that in the shared MDP example above, starting from s2, agent 1 can
ensure that it receives at least 80 by randomly choosing either action in s2. A similar
worst case value can be found for agent 2, which again would randomly choose actions
in s2 when agent 1 is present to stay in that state as long as possible. This solution can be
found by transforming a shared MDP into a competitive problem. This is appropriate
since the presence of private states may cause each agent’s value to be different for
taking the same set of actions in the same state (since the value of an action in a state
depends on on all subsequent rewards that can be obtained, shared or private).

To produce a solution to any shared MDP, it is necessary to combine solutions for
the private and shared aspects of each agent’s MDP. Algorithm 1 shows how a policy
for agent i can be found. This algorithm constructs and solves a game (for the Nash
equilibria, NE) from solving MDPs that consider all possible policies for all agents for
shared states of the shared MDP. That is, it first constructs a PolicySet, which consists
of all mappings from shared states Ss

i of agent i to actions for all agents which also
contain that shared state. For each agent and each of these policy mappings, an MDP
is solved which consists of the private states of the agent’s MDP and the fixed policy
given by PolicySet for the shared states. These MDP values are then used to determine
a Nash equilibrium (if we assume a unique one is found) which serves as the policy for
agent i.

In the case that multiple equilibria are found, coordination mechanisms or equilibria
refinements can be used. In order to coordinate, the agents could share the equilibria
found for the shared states to determine a single one that can be played (ensuring that
policies for the shared states are known to all agents). Also, more efficient ways for
finding policies in Algorithm 1 can be utilized. This could include not considering all
possible policies for the other agents in PolicySet, but rather some subset, which could
be based on heuristic value. If matching equilibria cannot be found, the algorithm could
be repeated (with different parameters) until a solution is found.

In practice, we are interested in finding a pure strategy Nash equilibrium as a de-
terministic solution is preferred by our users. This will often allow us to determine a

Algorithm 1 SOLVESHAREDMDP(i)
1: PolicySet← {}
2: for all s,∈ Ss

i do
3: Policy(s)← null
4: for all j,∈ D(s) do
5: for all a,∈ Aj do
6: PolicySet.Add(sj ,a)
7: for all p,∈ PolicySet do
8: Value(Ss

i ,p)← SolvePrivateMDP(Ss
i , p)

9: Policy← SolveForNE(Value)
10: return Policy

solution to the problem much more quickly and only resort to using Algorithm 1 when
a pure strategy NE cannot be found. We will attempt to discover a NE with iterated best
response as shown in Algorithm 2. That is, each agent begins with a random policy (or
one previously found) for the shared states and, while keeping the other agents’ policies
fixed, an agent determines a best response for its MDP. This new best response policy
for the shared states is now fixed, along with other agents’ policies, while the next agent
determines a best response. This continues until no agent changes its policy, resulting
in a Nash equilibrium. Unfortunately, it might be the case that there are no pure strategy
NE in the given problem, causing the agent policies to continue changing forever. Cur-
rently, the algorithm checks for these oscillations by making sure the total number of
changes by the agents is less than the total number of possible policies (mn where m is
the number of strategies and n is the number of agents). More sophisticated analysis of
oscillation could also be used to determine when Algorithm 1 should be used to find a
mixed strategy. In practice, it will often be the case that several pure strategy NE exist,
allowing a solution to be found quickly.

Algorithm 2 SOLVESHAREDMDPDETERMINISTIC

1: Policies← RandomPols()
2: Converged← 0
3: Oscillate← false
4: while Converged < n− 1 or Oscillate < possSolutions do
5: for all i ∈ I do
6: Policies(i)← BestResponse(Policies(−i))
7: if IsChanged(Policies(i)) then
8: Converged← 0
9: else

10: Converged++
Oscillate++

11: if Converged=n-1 then
12: return Policies
13: else
14: return false

6 Conclusion

In this paper, we discussed a real-world domain for facilitating collaboration between
organizations and people, the SCAN proxy agents. We described the characteristics
of this domain which require sequential and decentralized decision-making. Various
decision-theoretic models for representing these problems are presented along with
their shortcomings in this domain. In order to begin to address these shortcomings,
we present one approach for representing and solving problems with private and shared
information as a shared MDP. This is an initial step towards providing decentralized
solutions to sequential collaboration problems with private information. In the future,
we are interested in further extending decision-theoretic models so they can be applied
in this context. This work will include other model assumptions that better fit the real-
world data that is generated during this project. These algorithms will be implemented
and tested in the SCAN domain.

References

1. Allen, M., Zilberstein, S.: Complexity of decentralized control: Special cases. In: Bengio,
Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural
Information Processing Systems, pp. 19–27. 22 (2009)

2. Becker, R., Lesser, V., Zilberstein, S.: Decentralized Markov Decision Processes with Event-
Driven Interactions. In: Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems. pp. 302–309. New York, NY (2004)

3. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Solving transition-independent decen-
tralized Markov decision processes. Journal of AI Research 22, 423–455 (2004)

4. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized
control of Markov decision processes. Mathematics of Operations Research 27(4), 819–840
(2002)

5. Boutilier, C.: Sequential optimality and coordination in multiagent systems. In: Proceed-
ings of the Sixteenth International Joint Conference on Artificial Intelligence. pp. 478–485.
Stockholm, Sweden (1999)

6. Doshi, P., Zeng, Y., Chen, Q.: Graphical models for interactive POMDPs: Representations
and solutions. Journal of Autonomous Agents and Multi-Agent Systems 18 (2009)

7. Dutech, A., Buffet, O., Charpillet, F.: Multi-agent systems by incremental gradient rein-
forcement learning. In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence. pp. 833–838 (2001)

8. Gmytrasiewicz, P.J., Doshi, P.: A framework for sequential planning in multi-agent settings.
Journal of Artificial Intelligence Research 24, 24–49 (2005)

9. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: Categorization
and complexity analysis. Journal of Artificial Intelligence Research 22, 143–174 (2004)

10. Guestrin, C., Koller, D., Parr, R.: Multiagent planning with factored MDPs. In: Advances in
Neural Information Processing Systems, pp. 1523–1530. 15 (2001)

11. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observ-
able stochastic games. In: Proceedings of the Nineteenth National Conference on Artificial
Intelligence. pp. 709–715. San Jose, CA (2004)

12. Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Proceedings of
the Seventeenth Conference on Uncertainty in Artificial Intelligence (2001)

13. Modarressi, A., Skoog, R.: Signalling system no. 7: A tutorial. IEEE Communications Mag-
azine July (1990)

14. Nair, R., Varakantham, P., Tambe, M., Yokoo, M.: Networked distributed POMDPs: a syn-
thesis of distributed constraint optimization and POMDPs. In: Proceedings of the Twentieth
National Conference on Artificial Intelligence (2005)

15. Oliehoek, F.A., Spaan, M.T.J., Whiteson, S., Vlassis, N.: Exploiting locality of interaction
in factored Dec-POMDPs. In: Proceedings of the Seventh International Joint Conference on
Autonomous Agents and Multiagent Systems. Estoril, Portugal (2008)

16. Peshkin, L., Kim, K.E., Meuleau, N., Kaelbling, L.P.: Learning to cooperate via policy
search. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence.
pp. 489–496 (2000)

17. Witwicki, S.J., Durfee, E.H.: Influence-based policy abstraction for weakly-coupled Dec-
POMDPs. In: Proceedings of the Twentieth International Conference on Automated Planning
and Scheduling. Toronto, Canada (2010)

18. Wu, F., Zilberstein, S., Chen, X.: Multi-agent online planning with communication. In: Pro-
ceedings of the Nineteenth International Conference on Automated Planning and Scheduling.
Thessaloniki, Greece (2009)

	Proceedings of the Fourth International workshop on
	Binder2.pdf
	1_optmas11_submission_1
	1_optmas11_submission_3
	1_optmas11_submission_5
	Decentralised Parallel Machine Scheduling for Multi-Agent Task Allocation
	1 Introduction
	2 Problem Formulation
	2.1 Basic Definitions
	2.2 Objective Function

	3 R||Cmax Representation
	4 The min-max Algorithm
	5 Decentralised Task Distribution Algorithm
	5.1 Applying min-max
	5.2 Value Propagation
	5.3 Proving the Per-instance Bound

	6 Empirical Evaluation
	7 Conclusions and Future Work

	2_optmas11_submission_2
	2_optmas11_submission_7
	2_optmas11_submission_8
	3_optmas11_submission_4
	Including Human Behavior in Stackelberg Game for Security
	Introduction
	Stackelberg Security Game
	Related Work
	Defender Mixed-Strategy Computation
	Methods for Computing PT
	Methods for Computing QRE

	Payoff Structure Classification
	Experiments
	Experimental Setup
	Experiment Result

	Conclusions
	Payoff Structure Information
	Defender Mixed-Strategy
	Histogram of Subjects' Choices

	3_optmas11_submission_9

