
Proceedings of the
9th International Workshop on

Declarative Agent Languages and Technologies

Workshop Chairs:
Chiaki Sakama (Wakayama University, Japan)
Sebastian Sardina (RMIT University, Australia)

Wamberto Vasconcelos (University of Aberdeen, UK)
Michael Winikoff (University of Otago, New Zealand)

http://www.cs.rmit.edu.au/~ssardina/DALT2011

This page intentionally left blank.

Contents

•  Louise Dennis. Plan Indexing for State-Based Plans
•  Akin Gunay and Pinar Yolum. Detecting Conflicts in Commitments
•  Tran Cao Son, Enrico Pontelli and Chiaki Sakama. Formalizing

Commitments Using Action Languages
•  Michael Winikoff. A Formal Framework for Reasoning about Goal

Interactions
•  Ozgur Kafali and Pinar Yolum. A Distributed Treatment of Exceptions in

Multiagent Contracts (Preliminary Report)
•  Konstantin Vikhorev, Natasha Alechina, Rafael Bordini and Brian

Logan. Operational semantics for AgentSpeak(RT) (Preliminary Report)
•  Shahriar Bijani, David Robertson and David Aspinall. Probing Attacks

on Multi-agent Systems from Electronic Institutions (Preliminary Report)

3

Committees
Programme Committee

Thomas Agotnes, Bergen University College, Norway
Marco Alberti, Universidade Nova de Lisboa, Portugal
Natasha Alechina, University of Nottingham, UK
Cristina Baroglio, University of Torino, Italy
Rafael Bordini, Federal University of Rio Grande do Sul, Brazil
Jan Broersen, University of Utrecht, The Netherlands
Federico Chesani, University of Bologna, Italy
Amit Chopra, University of Trento, Italy
Francesco M. Donini, University of Tuscia, Italy
James Harland, RMIT University, Australia
Andreas Herzig, Paul Sabatier University, France
Koen Hindriks, Delft University of Technology, The Netherlands
Joao Leite, Universidade Nova de Lisboa, Portugal
Yves Lesperance, York University, Canada
Viviana Mascardi, University of Genova, Italy
Nicolas Maudet, University of Paris-Dauphine, France
John-Jules Meyer, University of Utrecht, The Netherlands
Peter Novak, Czech Technical University, Czech Republic
Fabio Patrizi, University of Rome, Italy,
Enrico Pontelli, New Mexico State University, USA
David Pym, University of Aberdeen, UK
Michael Rovatsos, University of Edinburgh, UK
Flavio Correa da Silva, Universidade de Sao Paulo, Brazil
Guillermo Simari, Universidad Nacional del Sur, Argentina
Tran Cao Son, New Mexico State University, USA
Marina De Vos, University of Bath, UK

Steering Committee

Matteo Baldoni (University of Torino, Italy)
Andrea Omicini (University of Bologna-Cesena, Italy)
M. Birna van Riemsdijk (Delft University of Technology, The Netherlands)
Tran Cao Son (New Mexico State University, USA)
Paolo Torroni (University of Bologna, Italy)
Pinar Yolum (Bogazici University, Turkey)
Michael Winikoff (University of Otago, New Zealand)

4

Plan Indexing for State-Based Plans

Louise A. Dennis1

Department of Computer Science, University of Liverpool, UK
L.A.Dennis@liverpool.ac.uk

Abstract. We consider the issue of indexing plans (or rules) in the
implementation of BDI languages. In particular we look at the issue of
plans which are not triggered by the occurence of specific events. The
selection of a plan from such a set represents one of the major bottle-
necks in the execution of BDI programs. This bottle-neck is particularly
obvious when attempting to use program model checkers to reason about
such languages.
This paper describes the problem and examines one possible indexing
scheme. It evaluates the scheme experimentally and concludes that it is
only of benefit in fairly specific circumstances. It then discusses ways the
indexing mechanism could be improved to provide wider benefits.

1 Introduction

The implementation of the theory of Beliefs, Desires and Intentions [10] as pro-
gramming languages has led to a family of languages with many similarities to
resolution based logic programming languages and resolution based first-order
theorem provers.

A key component of programs written in these languages is the plan or rule
base, consisting of programmer designed procedures for achieving intentions.
For simplicity we will here refer to these procedures as plans and the set of such
procedures as the plan library.

At given points in the execution of a BDI agent’s reasoning cycle the plan
library will be accessed in order to determine which plans are applicable given
the agent’s current set of beliefs and intentions. There are two types of plans
used in these languages: triggered plans are activated by the occurence of some
event (normally the acquisition of a belief or a goal) while state-based plans may
become active at any time a particular set of beliefs and goals are held. Both
types of plans typically have a guard – a set of beliefs and goals – that the
agent must either believe or intend before the plan is deemed applicable. Both
triggers and guards may (and indeed commonly do) contain free variables which
are instantiated by unification against the current events, beliefs and goals. A
naive implementation of plan selection involves accessing all the plans in the
library and then checking each one in turn to see if its trigger event has occurred
(in the case of triggered plans) and its guard is satisfied by the agent’s state.
The time involved in doing this, especially in the presence of large plan libraries,
represents a significant bottle-neck in agent execution.

5

This paper investigates an indexing mechanism for plans in the hope this will
reduce the time spent checking guards for applicability. A preliminary implemen-
tation is presented and the results of testing this implementation are discussed.
The results reveal that there are complex tradeoffs and attention needs to be
paid to the efficiency of retrieval from the index if the process is to be of use
outside a small number of situations.

1.1 Plans in BDI Languages

The design of plans in BDI languages owes much to logic programming and many
implementations are similar to guarded horn clauses. The guards on plans are
checked against the agent’s belief base, Σ, and, in some cases, also against the
goal base, Γ . In the tradition of logic programming these guards are expressed
as first-order predicates with free variables which are instantiated by unification
with the goal and belief bases.

In some languages the guards may also be more complex and contain logical
formulae constructed using negation, conjuction and disjunction. There may
even be deductive rules that operate on the belief and goal bases allowing the
agent to conclude that it has some derived belief or goal from the explicit ones
stored in its database.

Notation: In what follows we will write triggered plans as trigger : {guard} ←
body and state-based plans as {guard} ← body. We will refer to the individual
forumulae contained in guards as guard statements. Where a guard statement
states that something is not believed by the agent or is not a goal of the agent we
will refer to this as a negative guard statement. Where a guard statement can be
deduced using rules we will refer to it as a deductive guard statement. All other
guard statements, i.e. those that can be inferred directly by inspection of Σ or
Γ we will refer to as explicit guard statements. Our interest here is primarily in
the use of explicit guard statements as a filter on plan selection.

A naive implemention of plan selection retrieves all plans from the agent’s
plan library and then iterates over this set checking each trigger and guard in
turn for applicability. This involves the construction of unifiers and, in some
cases, logical deduction, typically in a Prolog-style. This represents a signifi-
cant bottle-neck in execution of the agent program. Figure 1 shows profile in-
formation generated using the JProfiler tool [1] from running a program written
in the GOAL language [5, 8] as implemented in the AIL toolkit [2]. The proce-
dure matchPlans selects all plans and then checks their guards in turn. In the
example shown, this procedure is taking up 40% of the execution time. Of the
constituent calls within matchPlans most are involved in the checking of guards
(ail .syntax.Guards$1.hasNext). We performed similar profiling on all the ex-
amples in the AIL GOAL distribution (fewer than half a dozen, sadly). The
percentage of time spent on plan selection shown in figure 1 is typical of the
programs we examined.

In many agent programs the time taken for plan selection is not of major con-
cern. It typically only becomes a problem in the presence of an extremely large
plan library and there are relatively few examples of the use of BDI-programs in

6

Fig. 1. Profiling the Execution of a GOAL Program

such cases. However there is considerable interest in the community in the use
of program model checking for BDI programs [9, 3]. A program model checker
uses the actual program as the model which is checked against some property.
This causes individual segments of code to be executed many times as the model
checker investigates all execution paths and exacerbates the effects of any inef-
ficiences in the program or the underlying language interpreter.

1.2 Indexing

An indexing system allows the fast retrieval of data from a large set by organising
the data in some way. For instance, the data can be stored in tuples where some
subset of the data is indexed by a key. Data is retrieved by deriving a query
key (or key set) from the current problem and using that to traverse the index,
returning only that data associated with the key in a tuple.

Clearly an index is only of value if the cost of storing data in the index,
computing query keys and retrieving data using those keys is lower than the
cost of examining the entire set of data and computing the relevance of each
item on the fly.

2 Related Work

2.1 Plan Indexing in Jason

The Jason implementation of AgentSpeak [4] uses triggered plans. Each event
is represented by a predicate and the Jason implementation generates a predi-

7

cate indicator from these predicates. The predicate indicator is the name of the
predicate plus the number of arguments it takes represented as a string.

Consider, for instance the plan: see(X) : {garbage(X)} ← remove(X). This
states that if an agent sees some garbage then it removes the garbage. This
plan would be indexed by the predicate indicator see/1 (predicate see with 1
argument). Jason stores all its plans in tuples of the trigger predicate indicator
and a list of all the plans with that trigger. When plans are retrieved the list of
predicate indicators alone is searched (using string matching) and then only the
plans in the associated tuple are returned.

By indexing plans by their triggers Jason is able to considerably speed up the
plan selection process. The guards are checked only for those plans whose trigger
matches the current event. In our example unifiers for X are only determined
and the plan’s guard checked, when the agent has just acquired a belief that it
can see something, not when any other event occurs.

Jason gains considerable speed up in the plan selection process by this means,
and this indexing style is used in many implementations of languages that have
triggered plans (e.g. Gwendolen [6]).

Unfortunately not all languages use triggered plans. GOAL, for instance, has
state-based plans, called conditional actions which have no trigger and consist of
a guard and a plan body alone. The absense of a trigger means that these can
not be indexed in the same way.

Aside: It is of note that Jason also indexes its belief base with predicate indi-
cators allowing the rapid filtering out of irrelevant beliefs during the checking of
plan guards. This technique is trivially applicable in the case of state-based plans
and, indeed, the implementation of GOAL discussed in section 4 uses indexing
of the belief base in this style.

2.2 Term Indexing

First order theorem provers have long investigated a similar problem, indexing
horn clauses for retrieval against a given literal in a variety of situations [11].
This is a similar problem to that addressed by Jason. Theorem provers typically
work with horn clauses with a single head literal which must be matched to a
single literal in the problem at hand.

In our case we are considering a set of literals (the guard) all of which need
to match a set of literals in the belief base, but the belief base may also contain
literals irrelevant to the current problem.

Theorem provers also deal with a far larger number of clauses which need
to be retrieved and much of the research in theorem proving has focused on
efficient term representations in order to minimize time searching the index. In
situations where we consider agents which may have plans numbering in the
tens of thousands the advanced techniques for term indexing developed in the
theorem proving field may have a contribution to make to the problem of plan
indexing, particularly in languages which have triggered plans.

8

3 Data Structures

We have chosen to index our plans using a tree-based indexing scheme. Plans
are stored as sets at the leaves of a tree data structure and the tree is traversed
with reference to the current agent state in order to retrieve plans.

We do not generate an explicit query key before traversing the tree but
instead refer to indexing information stored in the agent’s belief base. However
there is no reason why a query key should not be generated and, indeed, the
pseudo-code in the appendices assumes this.

3.1 Plan Keys

We slightly extend the notion of a predicate indicator from Jason’s plan indexing
algorithm to that of a plan key. A plan key is a tuple, (pi, τ) of a predicate
indicator, pi, and a type, τ , which refers to the type of entity the associated
guard refers to – in the examples we have considered these are either beliefs or
goals.

Plan guards are thus associated with a list of plan keys. This list contains
a plan key for each explicit guard statement. Negative and deductive guard
statements are ignored. We call this list the guard’s index list.

3.2 Plan Index Trees

We store all our plans in a tree data structure. Each node in the tree is labelled
with a plan key and has two subtrees. One subtree contains all plans which have
the plan key in their index list, the must have branch, and the other subtree
contains all the plans which do not, the don’t care branch. More complex logical
formulae and predicates which can be deduced are ignored1 partly for simplicity
and partly because plan keys alone do not provide sufficient information to tell
that some guard statement is not true in the current agent state. For ease of
indexing the plan keys are ordered as the levels in the tree descend 2. The leaves
of the tree are populated with the set of plans which exist on that tree branch.

Say for instance we have three plans:

plan1 : {Ba,Bb} ← body
plan2 : {Bb,Bc} ← body
plan3 : {Bc} ← body

Where a statement Bb means that the agent must believe b for the plan to apply.
These would be stored as shown in figure 2.

1 In the languages we consider deduction is performed by resolution using horn clauses
stored in a rule base so we simply exclude all predicates that appear in the head of
any of the listed horn clauses. It may be that in some languages it is harder to
identify and exclude these predicates.

2 Details of this are discussed in appendix A.

9

don’t care

c/0 c/0

b/0 b/0

a/0

plan2 plan3plan1

c/0 c/0

don’t caremust have

must have

must have must have must havemust have

must have

don’t care don’t care

don’t care don’t care don’t care

Fig. 2. Example of a Plan Tree

In order to select plans, the program traverses the tree. At each node it checks
Σ or Γ (as relevant) for the presence of the appropriate plan key. If it exists then
both plans that require that element and plans that do not require that element
may be applicable to the current state. As a result, the program searches both
sub-trees for relevant plans. If the plan key doesn’t exist in the relevant set then
only plans that do not require that guard statement will be applicable and the
program only searches the don’t care branch of that node.

So if the belief base contained both a and c then plan 3 would be returned
and the branches of the tree highlighted in figure 3 would be explored.

We include pseudo-code for the algorithms to insert plans into the tree and
look plans up from the tree in the appendices.

4 Results

We implemented two versions of our plan indexing algorithm in the AIL-based
implementation of the GOAL language3. The code used in the implementation
is available from the author and via the MCAPL sourceforge distribution 4.

The first version indexed by predicate indicators alone and considered only
guard statements that referred to beliefs. The second version used plan keys and
considered also guard statements referring to goals. We then conducted some
simple experiments with the system to see whether the overhead associated with
storing and accessing plans from the tree data structure was off-set by the gains
in time reduced spent checking the plan guards. In all the experiments the only

3
AIL is, among other things, a prototyping tool for BDI-languages [2]. The version
of GOAL used was based on the semantics described in [8].

4 http://mcapl.sourceforge.net

10

don’t care

c/0 c/0

b/0 b/0

a/0

plan2 plan3plan1

c/0 c/0

must have don’t care

must have must have

must have must have must have must have

don’t care don’t care

don’t care don’t care don’t care

Fig. 3. Example of a Plan Tree Lookup

differences between the code run was the way in which the plans in the library
were stored and retrieved, all other parts of the system were identical.

4.1 Experiment 1: Junk Code

In the first example we studied a simple program in which a lead agent communi-
cated with two others simply to ascertain their existence. When they received a
query they responded with a simple “ping” message and the program was done.
To this were added plans for a Dining Philosopher program which were irrel-
evant to achieving the goal at hand and these “junk” plans were duplicated n
times. The average run time of the system was then plotted against the number
of duplications of the redundant code in the system.

We ran each version of the code 100 times and averaged the time taken
in order to allow for differences in running time caused by different scheduling
behaviour between the agents.

Results The graph in figure 4 shows the result of running the program with up
to 24 duplications of the redundant code.

The graph shows that the fastest performance is achieved by the system
that organises its plan library as a tree indexed by plan keys that refer to both
beliefs and goals and that the performance gain increases as the number of plans
increase.

4.2 Experiment 2: Generic Contract Net with Many Goals

The second example we considered was a contract net style program with three
agents. One agent wished to achieve a number of goals, none of which it could

11

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0 5 10 15 20 25

T
im

e
 t

a
k
e

n

Copies of Junk Code

Average Time as code increases

No indexing
Belief indexing

Belief and Goal indexing

Fig. 4. Plan Indexing Performance in the presence of Redundant Plans

do on its own. The other two agents could both achieve these goals and would
“bid” for them. Whichever bid was received first was awarded the “contract” for
the goal.

Results Figure 5 shows the results, averaged over 100 runs of the program, as
the number of goals to be achieved increases.

In this case it can be seen that the traditional approach of testing all plans
is working considerably better than the plan indexing variety and indeed, that
as the number of goals increases the efficiency gap between the two methods is
going to get significantly worse. This result is obviously disappointing.

4.3 Discussion of the Results

The results are obviously disappointing but it is of interest to consider the dif-
ferences between the two experimental set ups. Clearly as the guards on plans
contain more statements, especially if those statements require further deduction
to check, then the system slows down. At the same time as the number of plan
keys in the plan tree increases5 the computation required to traverse the tree
also increases and, again, the system slows down.

5 by this we mean the size of the plan tree increases from experiment to experiment,
not within any particular run of the program. That said, if plans were to be added

12

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

T
im

e
 t

a
k
e

n

Number of Goals

Average Time as code increases

No indexing
Belief indexing

Belief and Goal indexing

Fig. 5. Plan Indexing Performance in the presence of Multiple Goals

In the first experiment the system contained an increasing number of plans
that were never applicable in the agent’s current state. Since the plans were
duplicated a relatively small number of plan keys were involved in the plan tree.
In the second example each new goal introduced into the problem introduced
a new plan key into the plan tree, and the increased traversal overhead clearly
more than offset any gains being made by filtering out the plans before the
guards were considered.

Tentatively, therefore, it seems that plan indexing in this style may be of
benefit in programs were there are a large number of plans which refer to a
comparatively small number of predicates.

5 Further Work

This paper represents a preliminary investigation into the indexing of state-based
plans.

The programs we investigated contained a number of the plan guards in-
volving negative and deductive guard statements. The plan index ignored such
guards when indexing the plans. It would be desirable to have a quick way to

dynamically to the agent then dynamic changes to the indexing tree would also be
necessary.

13

eliminate plans based on these types of guards, particularly because they are
more complex to check than explicit guard statements. Deductive rules require
the (sometimes recursive) checking of the truth of their bodies, while negative
guard statements require exhaustive checking of either Σ or Γ .

An obvious extension to the indexing proposed would be to investigate ways
to incorporate consideration of these guards into the indexing scheme. A problem
with both is that plan keys, alone, are in general not sufficient to provide a quick
check of the applicability of the guard. For instance in the case of negative guard
statements, simply knowing that there is a predicate in the belief base does not
necessarily imply for certain that the guard statement is true since there may
be no unifier that satisfies both it and any other guard statements with which
it shares free variables. However it might be possible to perform some limited
indexing of negative guards using predicate indicators so long as the guard, itself,
had no parameters. Similarly, in the case of ground guards, it might be possible
to match directly against the belief base.

Similarly it might be possible to represent belief rules in such a way (assuming
the rule bodies do not contain any negative literals) that a judgement could be
quickly drawn that the rule was not applicable (e.g. as a list of the plan keys
that referred to explicit predicates appearing within the rule and which would
need to hold for the rule to apply).

A further extension would be to look at techniques from term indexing for
sharing subterms and, in particular, free variables. Some of these techniques
allow unifiers to be constructed as part of the term lookup process. This would
allow plan trees to return only plans that matched, together with relevant unifiers
and so remove the need for checking the guards at all once the list were found.

Obviously all these approaches run the risk that the plan lookup process
becomes even more inefficient when compared to simply iterating over the list of
all plans in order to check the guards. Another important aspect of further work
is improving the data structure and lookup process currently used for storing the
plans. An adaptation of the RETE algorithm [7] would appear to be a promising
approach in this direction.

6 Conclusions

This work represents an initial approach to the indexing of plans for retrieval in
the plan selection phase of a BDI interpreter. The proposed scheme represents
efficiency gains in situations where an agent’s plan library contains a large num-
ber of plans referring to a small number of predicates. However the scheme is
less efficient in situations where many predicates are used. Therefore some care
should be taken before deciding to implement such an indexing method.

It seems plausible that the indexing of state-based plans can be improved,
even if the approach presented here has not yielded good result. Such improve-
ments would supply gains both in terms of the efficiency of BDI-programs in
large scale settings, and in terms of the model checking of such programs.

14

References

1. JProfiler. http://www.ej-technologies.com/products/jprofiler/overview.html.
2. R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification

of Multi-Agent Programs. In Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages 69–78, L’Aquila,
Italy, September 2008.

3. R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of
Multi-Agent Programs. In Proc. 23rd Int. Conf. Automated Software Engineering

(ASE), pages 69–78. IEEE CS Press, 2008.
4. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the Golden Fleece of

Agent-Oriented Programming. In R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni, editors,Multi-Agent Programming: Languages, Platforms and Ap-

plications, chapter 1, pages 3–37. Springer-Verlag, 2005.
5. F. S. de Boer, K. V. Hindriks, W. van der Hoek, and J.-J. C. Meyer. A Verification

Framework for Agent Programming with Declarative Goals. J. Applied Logic,
5(2):277–302, 2007.

6. L. A. Dennis and B. Farwer. Gwendolen: A BDI Language for Verifiable Agents. In
B. Löwe, editor, Logic and the Simulation of Interaction and Reasoning, Aberdeen,
2008. AISB. AISB’08 Workshop.

7. C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

8. K. V. Hindriks and M. B. van Riemsdijk. A computational semantics for commu-
nicating rational agents based on mental models. In L. Braubach, J.-P. Briot, and
J. Thangarajah, editors, Programming Multi-Agent Systems - 7th International

Workshop, ProMAS 2009, Budapest, Hungary, May 10-15, 2009. Revised Selected

Papers, volume 5919 of Lecture Notes in Computer Science. Springer, 2010.
9. S.-S. T. Q. Jongmans, K. V. Hindriks, and M. B. van Riemsdijk. Model Checking

Agent Programs by Using the Program Interpreter. In Proc. 11th International

Workshop on Computational Logic in Multi-Agent Systems (CLIMA), volume 6245
of LNCS, pages 219–237. Springer, 2010.

10. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings

of the First International Conference on Multi-Agent Systems (ICMAS), pages
312–319, San Francisco, USA, June 1995.

11. R. Sekar, I. V. Ramakrishnan, and A. Voronkov. Handbook of Automated Reason-

ing, volume 2, chapter Term Indexing, pages 1853–1964. North Holland, 2001.

A Insertion Code

Notation: Both the algorithms presented in these appendices recurse through a
tree structure. Each node in this tree contains a plan key and two subtrees, the
must have branch and the don’t care branch. The leaves of the plan tree contain
a list of plans. We will treat both nodes and leaves as plan trees. We abuse object
oriented notation and refer to the plan key of a plan tree, pt, as pt.pk, the must
have branch as pt.musthave, the don’t have branch as pt.donthave and the list
of plans as pt.plans.

The insertion code recurses through a list of plan keys generated from the
guard of a plan, p, and inserts the plan into a pre-existing plan tree (which could

15

be empty). However where the plan contains a plan key that does not already
exist in the tree the tree must be modified with new nodes for that plan key.

The algorithm takes as inputs the list of plan keys associated with the guard
of plan, p, and the pre-existing plan tree into which the plan is to be inserted.
Code fragment 1.1 Insert a Plan into an Index Tree

1addPlan (PlanKey L i s t pks , Plan p , PlanTree pt)
2i f (pks i s empty)
3i f (pt i s a l e a f)
4add p to pt . p lans
5re turn pt
6e l s e
7r ep l a c e pt . dontcare with addPlan (pks , p , pt . dontcare)
8re turn pt
9e l s e
10i f (pt i s a l e a f)
11c r e a t e a new plan t r e e node , n , where
12n . pk equa l s the head o f pks
13n . dontcare i s a p l an t r e e l e a f where
14n . p lans = pt . p lans
15n . musthave i s the r e s u l t o f
16addPlan (t a i l o f pks , p , new p l an t r e e l e a f)
17re turn n
18e l s e
19i f pt . pk equa l s the head o f pks
20r ep l a c e pt . musthave with
21addPlan (t a i l o f pks , p , pt . musthave)
22re turn pt
23e l s e i f the head o f pks i s ordered a f t e r pt . pk
24r ep l a c e pt . dontcare with
25addPlan (pks , p , pt . dontcare)
26re turn pt
27e l s e
28c r e a t e a new plan t r e e node , n , where
29n . pk equa l s the head o f pks
30n . dontcare i s pt
31n . musthave i s the r e s u l t o f
32addPlan (t a i l o f pks , p , pt . musthave)
33re turn n

B Lookup Code

Notation: The notation used in this code is explained in appendix A.
The algorithm takes a list of plan keys (generated from the agent’s belief and

goal bases) and which have been ordered according to some ordering on plan
keys. The algorithm recurses through the tree comparing the plan key at each
node against the supplied list of plan keys.
Code fragment 2.1 Look up plans in the Index

16

1lookup (PlanKey L i s t pks , Plan Tree pt)
2i f (pt i s a l e a f)
3re turn pt . p lans
4e l s e
5i f pt . pk i s in pks
6re turn
7lookup (pks , pt . musthave)
8AND
9lookup (pks , pt . dontcare)
10e l s e
11re turn lookup (pks , pt . dontcare)

17

Detecting Conflicts in Commitments

Akın Günay and Pınar Yolum

Department of Computer Engineering
Boğaziçi University

34342, Bebek, İstanbul, Turkey
[akin.gunay,pinar.yolum]@boun.edu.tr

Abstract. Commitments are being used widely to specify interaction
among autonomous agents in multiagent systems. While various formal-
izations for commitments and its life cycle exist, there has been little
work that studies commitments in relation to each other. However, in
many situations, the content and state of one commitment may render
another commitment useless or even worse create conflicts. This paper
studies commitments in relation to each other. Following and extending
an earlier formalization by Chesani et al., we identify key conflict rela-
tions among commitments. The conflict detection can be used to detect
violation of commitments before the actual violation occurs during agent
interaction (run-time) and this knowledge can be used to guide an agent
to avoid the violation. It can also be used during creation of multiagent
contracts to identify conflicts in the contracts (compile-time). We imple-
ment our method in REC and present a case study to demonstrate the
benefit of our method.

1 Introduction

A commitment is a contract from one agent to another to bring about a certain
property [2, 11]. For instance a merchant and a customer may have a contract,
in which the customer agrees to pay to the merchant in return of the delivery
of a good. This contract can be represented as a commitment, in which the
merchant will be committed to the customer to deliver a good, if it is paid. In this
commitment, the merchant is the debtor, the customer is the creditor, delivery
of the good is the property and payment is the condition of the commitment.

Commitments are dynamic entities and they evolve over time according to
the occurrence of events in the environment they exist. To represent the dy-
namic nature of a commitment, the commitment is associated with a state and
transitions between states are defined over a set of operations. These states and
operations are called the life cycle of a commitment. Previous work has studied
the life cycle of individual commitments in detail [5, 10, 12–14]. However, indi-
vidual life cycle of a commitment provides limited information to manage and
monitor commitments in a multiagent system.

Example 1 Consider the two commitments: The first commitment is between a
merchant and a customer, which states, if the customer pays for some goods, then

18

the merchant will be committed to deliver the goods within the next day. The
second commitment is between the merchant and a delivery company, which
states, if the merchant pays for the delivery of some goods, then the delivery
company will be committed to deliver these goods to the customer within three
to five days.

If we examine the commitments in Example 1 individually according to the
life cycle of a commitment, then we detect no problem, since both commitments
are valid. However if we examine the two commitments together, then it is ob-
vious that the first commitment is going to be violated. This is because the
merchant commits to the customer to deliver the goods in the next day, but
the commitment with the delivery company cannot deliver before three days.
This example demonstrates that if we examine commitments in a multiagent
system together, instead of examining them individually, we can detect possible
problems as early as the commitments created.

The above example demonstrates the benefit of examining commitments to-
gether in order to detect possible problems in advance at run-time. However, the
same idea can also be used in an offline manner to detect inconsistencies in mul-
tiagent contracts. A multiagent contract is simply a set of related commitments.
A major issue in a contract is the consistency between the commitments of the
contract. If there are inconsistencies between commitments, then one commit-
ment may not be satisfied without violating other commitment(s), which causes
a participating agent to find itself in a problematic situation. In order to avoid
such situations we should examine the commitments in a contract together and
eliminate the inconsistencies before creating the contract.

In this paper, we present a method that examines commitments in a mul-
tiagent system together in order to capture commitment pairs such that one
commitment cannot be satisfied without violating the other commitment. The
major benefit of our approach is capturing such situations in advance before a
commitment is actually violated. Hence, it makes it possible to take early action
to avoid future problems. We use an extended version of event calculus formaliza-
tion of commitments proposed by Chesani et al. [3]. We extend this formalization
by introducing the axioms for conditional commitments, which are essential to
fully model commitments. On top of this formalization, we identify and develop a
set of axioms to reason about inconsistencies between commitments. To achieve
this, we define a conflict relation between commitments. The conflict relation
indicates that a commitment cannot be satisfied without violating another. Our
formalism and approach to capture inconsistencies in contracts is executable in
REC [3], which is a tool for reasoning based on reactive event calculus.

Our major contributions in this paper are (1) extending the previous event
calculus formalization of commitments by introducing conditional commitments;
(2) introducing new axioms to define a conflict relation between commitments;
(3) use of conflicts of commitments to detect violation of a commitment in ad-
vance before the commitment is actually violated.

The rest of the paper is structured as follows. Section 2 reviews commitments
and describes the extended formal model of commitments in event calculus.

19

Section 3 describes the conflict relations of commitments and how they can be
used to capture inconsistencies in contracts. Section 4 examines our approach
over a running example. Finally, Section 5 concludes the paper with further
discussion.

2 Background: Commitments

A commitment is made from one agent to another to bring about a certain
property [2, 11]. By participating in a commitment, the participating agents put
themselves under the obligation to satisfy the requirements of the commitment.
A commitment is represented as C(x, y, q, p), which states that the debtor agent
x will be committed to the creditor agent y to bring about the property p, if the
condition q is satisfied.

In order to represent real world situations more precisely, the condition and
the property of a commitment may be associated with temporal quantifiers,
which defines when and how the condition and the property must be satisfied.
In general there are two types of temporal quantifiers [3, 7]. Existential temporal
quantifier states that the associated property must be satisfied at least at one
moment within a given interval of moments. Universal temporal quantifier states
that the associated property must be satisfied at all moments within a given
interval of moments.

null conditional expired

active violatedfulfilled

create(c, x, y, q, p) condExpire(c, q)

create(c, x, y,!, p) detach(c, q)

propExpire(c, p)discharge(c, p)

Fig. 1. Life cycle of a commitment.

A commitment is a dynamic entity and has a life cycle. Each commitment
has a state that evolves over time. The state of a commitment changes according
to a set of operations that can be performed by the participating agents of the
commitment. The state of a commitment also changes, when the condition or
the property of the commitment is not satisfied according to the associated
temporal quantifier. In this paper we use the commitment life cycle that we
present in Figure 1. In this life cycle we skip operations such as delegate and
cancel, which are used in previous work, for simplicity.

The following operations can be performed on a commitment.

20

– create(c, x, y, q, p): Creates a new commitment c, in which x is the debtor, y
is the creditor, q is the condition and p is the property of the commitment.
This operation can only be performed by the debtor x.

– detach(c, q): Detaches the condition q from the commitment c. This opera-
tion can only be performed by the creditor y.

– discharge(c, p): Discharges the commitment c, when the property p is satis-
fied. This operation can only be performed by the debtor x.

condExpire(c, q) and propExpire(c, p) are meta operations that show that
the condition q and property p of the commitment c are violated according to
the associated temporal quantifier, respectively. A commitment can be in one of
the following states.

– null: A dummy state, which is assigned to a commitment before its creation.
– conditional: The condition of the commitment is not satisfied yet. This is

like an offer and neither the debtor nor the creditor is under the obligation
of the commitment.

– expired: The condition of the commitment is violated considering to the
associated temporal quantifier. Hence, the commitment expires. This usually
corresponds to the rejection of an offer.

– active: The debtor is under the obligation of the commitment to satisfy
the property of the commitment. Otherwise, the debtor may be punished
depending on the properties of the underlying environment.

– fulfilled: The property of the commitment is satisfied and the debtor ful-
filled its commitment. The debtor is no more under the obligation of the
commitment.

– violated: The property of the commitment is not satisfied and the debtor
violates its commitment.

2.1 Event Calculus

Event calculus is a formalism to reason about events and their effects. An event
in event calculus initiates or terminates a fluent. A fluent is a property whose
value is subject to change over time. A fluent starts to hold after an event that
initiates it and ceases to hold after an event that terminates it. Event calculus
was introduced by Kowalski and Sergot [6] and extended by Shanahan [9].

In the following, E is a sort of events (variables E,E1, E2, ...), F is a sort of
fluents (variables F, F1, F2, ...) and T is a sort for integer time moments (vari-
ables T, T1, T2, ...), which are ordered by the < relation that is transitive and
asymmetric. Variables are universally quantified, unless otherwise specified.

The event calculus predicates are as follows [9].

– initiates(E,F, T): Fluent F starts to hold after event E at time T .
– terminates(E,F, T): Fluent F ceases to hold after event E at time T .
– initially(F): Fluent F holds from time 0.
– happens(E, T): Event E occurs at time T .

21

– holdsAt(F, T): Fluent F holds at time T .
– clipped(F, T1, T2): Fluent F is terminated between times T1 and T2.

In the following we present the axiomatisation of the event calculus predi-
cates.

Axiom 1

holdsAt(F, T) ←
initially(F) ∧ ¬clipped(F, 0, T)

Axiom 1 states that the fluent F holds at time T , if it held at time 0 and has
not been terminated between 0 and T .

Axiom 2

holdsAt(F, T2) ←
happens(E, T1) ∧ initiates(E,F, T1) ∧ ¬clipped(F, T1, T2) ∧ T1 < T2

Axiom 2 states that the fluent F holds at time T , if the fluent F is initiated by
an event E at some time T1 before T2 and the fluent F has not been terminated
between T1 and T2.

Axiom 3

clipped(F, T1, T2) ↔
∃E, T [happens(E, T) ∧ terminates(E,F, T) ∧ T1 < T < T2]

Axiom 3 states that fluent F is clipped between T1 and T2, if and only if
there is an event E happens between T1 and T2 and terminates the fluent F .

2.2 Formalizing Commitments in Event Calculus

In the rest of this section, we present the event calculus axioms that represent
the life cycle of a commitment. These axioms extend the axioms introduced
by Chesani et al. [3] by introducing the conditional commitment, which is not
present in the axioms of Chesani et al.. The conditional commitment is essential
to represent a complete life cycle of a commitment.

In the following, we use A as a sort of agents (variables A,A1, A2, ...), P as
the set of properties (variables P, P1, ..., Q,Q1, ...), C as the set of commitments
(variables C,C1, C2, ...) and S as the set of commitment states. We represent
an existentially quantified moment interval as e(T1, T2), a universally quan-
tified moment interval as u(T1, T2) and a property as prop(Q(T1, T2), F), in
which Q = {e, u}. We represent a commitment as comm(A1, A2, Q, P). The
state of a commitment is represented by the fluent status(C, S). We also use
predicates conditional(C, T), expired(C, T), active(C, T), violated(C, T) and
fulfilled(C, T) to represent that at moment T the commitment C is in con-
ditional, expired, active, violated and fulfilled state, respectively.

22

Axiom 4 (Creating active commitment)
The create(E,A,C, T) operation performed by the debtor A through the occur-
rence of event E at moment T creates the commitment C in active state.

initiates(E, status(comm(A1, A2,%, P), active), T) ←
create(E,A1, comm(A1, A2,%, P), T)

Axiom 5 (Creating conditional commitment)
The condCreate(E,A,C, T) operation performed by the debtor A through the
occurrence of event E at moment T creates the commitment C in conditional
state.

initiates(E, status(comm(A1, A2, Q, P), conditional), T) ←
condCreate(E,A1, comm(A1, A2, Q, P), T)

Note that, while creating a commitment in active state in Axiom 4, we use a
variable Q that corresponds to a condition. We use this variable just as a place
holder in order not to introduce a different syntax for active and conditional
commitments. This variable is not used by the axioms that deal with active
commitments, hence its value has no effect on the life cycle of the commitment.

Axiom 6 (Expiration of conditional commitment)
The state of a commitment changes from conditional to expired, when the condi-
tion of the commitment is not detached by the creditor within the corresponding
moment interval.

initiates(E, status(comm(A1, A2, Q, P), expired), T) ←
condExpire(E, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), conditional), T) ←
condExpire(E, comm(A1, A2, Q, P), T)

A commitment in conditional state with an existentially quantified condition
expires, when the commitment is still in conditional state after the correspond-
ing moment interval.

condExpire(E, comm(A1, A2, prop(e(T1, T2), F), P), T) ←
conditional(comm(A1, A2, prop(e(T1, T2), F), P), T) ∧ T > T2

A commitment in conditional state with a universally quantified condition ex-
pires, when the condition does not hold at any moment within the corresponding
moment interval.

condExpire(E, comm(A1, A2, prop(u(T1, T2), F), P), T) ←
conditional(comm(A1, A2, property(u(T1, T2), F), P), T)∧
¬holdsAt(F, T) ∧ T1 ≤ T ∧ T ≤ T2

23

Axiom 7 (Detaching conditional commitment)
The state of a commitment changes from conditional to active, when the commit-
ment is detached by the creditor through the occurrence of event E at moment T .

initiates(E, status(comm(A1, A2, Q, P), active), T) ←
detach(E,A2, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), conditional), T) ←
detach(E,A2, comm(A1, A2, Q, P), T)

A commitment in conditional state with an existentially quantified condition
is detached, when the event E initiates the fluent F of the condition within the
corresponding moment interval.

detach(E,A2, comm(A1, A2, prop(e(T1, T2), F), P), T) ←
conditional(comm(A1, A2, prop(e(T1, T2), F), P), T)∧
initiates(E,F, T) ∧ T1 ≤ T ∧ T ≤ T2

A commitment in conditional state with a universally quantified condition is
detached, when the commitment is still in conditional state after the end of the
corresponding moment interval of the condition.

detach(E,A2, comm(A1, A2, prop(u(T1, T2), F), P), T) ←
conditional(comm(A1, A2, prop(u(T1, T2), F), P), T) ∧ T > T2

Axiom 8 (Violating active commitment)
The state of a commitment changes from active to violated, when the property
of the commitment is not discharged by the debtor within the corresponding
time interval.

initiates(E, status(comm(A1, A2, Q, P), violated), T) ←
propExpire(E, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), active), T) ←
propExpire(E, comm(A1, A2, Q, P), T)

A commitment in active state with an existentially quantified property expires,
when the commitment is still in active state after the corresponding moment
interval.

propExpire(E, comm(A1, A2, Q, prop(e(T1, T2), F)), T) ←
active(comm(A1, A2, Q, prop(e(T1, T2), F)), T) ∧ T > T2

A commitment in conditional state with a universally quantified property ex-
pires, when the property does not hold at any moment within the corresponding
moment interval.

24

propExpire(E, comm(A1, A2, Q, prop(u(T1, T2), F)), T) ←
active(comm(A1, A2, Q, prop(u(T1, T2), F)), T)
¬holdsAt(F, T) ∧ T1 ≤ T ∧ T ≤ T2

Axiom 9 (Discharging active commitment)
The state of a commitment changes from active to fulfilled, when the commit-
ment is discharged by the debtor through the occurrence of event E at moment T .

initiates(E, status(comm(A1, A2, Q, P), fulfilled), T) ←
discharge(E,A1, comm(A1, A2, Q, P), T)

terminates(E, status(comm(A1, A2, Q, P), active), T) ←
discharge(E,A1, comm(A1, A2, Q, P), T)

A commitment in active state with an existentially quantified property is dis-
charged, when the event E initiates the fluent F of the property within the
corresponding moment interval.

discharge(E,A1, comm(A1, A2, Q, prop(e(T1, T2), F)), T) ←
active(comm(A1, A2, Q, prop(e(T1, T2), F)), T)∧
initiates(E,F, T) ∧ T1 ≤ T ∧ T ≤ T2

A commitment in active state with a universally quantified property is dis-
charged, when the commitment is still in active state after the end of the corre-
sponding moment interval of property.

discharge(E,A1, comm(A1, A2, Q, prop(u(T1, T2), F), T) ←
active(comm(A1, A2, Q, prop(u(T1, T2), F)), T) ∧ T > T2

3 Conflicting Commitments

Our aim in this paper is to develop a method to capture commitment pairs,
such that one of the commitments cannot be satisfied without violating the
other commitment. We call such commitment pairs as conflicting commitments.
Since satisfaction and violation of a commitment is determined according to
the satisfaction and violation of its committed property, in order to capture
conflicting commitments, we should first define conflicting properties. Similar to
the conflicting commitments, two properties conflict with each other if one of
the properties cannot be satisfied without violating the other. The idea of our
method is, if properties of two commitments conflict with each other, then the
commitments also conflict with each other.

3.1 Conflicting Properties

In order to define a conflict between two properties we have to know the mean-
ing of the fluents involved by these properties in the intended domain of the

25

underlying multiagent system. This is necessary since without such a domain
knowledge, fluents are meaningless. In order to formalize this situation, we use a
fluent conflict relation. Two fluents conflict with each other if it is not possible
to hold both fluents at the same time in a given domain.

Definition 1. Fluents F1 and F2 in a given domain D are in a fluent conflict, if
it is not possible to hold both fluents at the same moment in the domain D. The
predicate fluentConf(F1, F2,D) indicates the fluent conflict between the fluents
F1 and F2 in domain D.

Example 2 Consider the fluent carRented(C,P), which means the car C is
rented to the person P . Now consider the same fluent with two different set of
grounded values, carRented(herbie, sally) and carRented(herbie, linus). The
first fluent states that the car herbie is rented to sally and the second fluent
states that the car herbie is rented to linus. As a domain knowledge, we know
that the same car cannot be rented to two different person at the same time.
Hence, we also know carRented(herbie, sally) and carRented(herbie, linus) can-
not hold at the same moment. As result these two fluents conflict with each other.

The above case can be represented as the following rule in domain D.

fluentConf(carRented(C,P1), carRented(C,P2), D) ←
isCar(C) ∧ isPerson(P1) ∧ isPerson(P2) ∧ P1 '= P2

In the rest of the paper we assume that the domain dependent fluent conflict
knowledge is already present.

Definition 2. Properties P1 and P2 are in a property conflict relation if it is
not possible to satisfy one property without violating the other. The predicate
propConf(P1, P2) indicates a conflict between properties P1 and P2.

Occurrence of a property conflict depends on the existence of a fluent conflict
between the fluents of the properties as we discussed above and the temporal
quantifiers of the properties. There are three possible cases considering temporal
quantifiers of the properties as we present below.

Existential-Existential A property conflict relation between two existentially
quantified properties occurs if and only if fluents of these properties are in fluent
conflict relation and both properties must be satisfied at a common moment.

Axiom 10

propConf(prop(e, (T1, T2), F1), prop(e, (T3, T4), F2) ←
fluentConf(F1, F2, D) ∧ T1 = T2 = T3 = T4

Example 3 Consider the properties prop(e(1, 1), isRented(herbie, sally)) and
prop(e(1, 1), isRented(herbie, linus)). The first property is satisfied if the car

26

herbie is rented by sally exactly at moment 1 and the second property is satisfied
if the car herbie is rented by linus exactly at moment 1. As domain knowledge we
know that the fluents isRented(herbie, sally) and isRented(herbie, linus) have
a fluent conflict, which means the car herbie cannot be rented both by sally
and linus at moment 1. Thus, it is not possible to satisfy one of these proper-
ties without violating the other, therefore these two properties are in property
conflict.

Note that, in order to have a property conflict in the case of existentially
quantified properties, the moment intervals of the properties must refer exactly
to the same moment. If the moment interval is not just on a moment, it is
possible to satisfy both properties, even if the fluents of the properties have a
fluent conflict.

Existential-Universal A property conflict between an existentially and a uni-
versally quantified property occurs if there is a fluent conflict between the fluents
of the properties and the moment interval of the universally quantified property
covers the moment interval of the existentially quantified property.

Axiom 11

propConf(prop(e(T1, T2), F1), prop(u(T3, T4), F2) ←
fluentConf(F1, F2, D) ∧ T3 ≤ T1 ∧ T2 ≤ T4

Example 4 Consider the properties prop(e(1, 3), isRented(herbie, sally)) and
prop(u(1, 5), isRented(herbie, linus)). The first property is satisfied if the car
herbie is rented by sally at least at one moment between 1 and 3 and the second
property is satisfied if the car herbie is rented by linus at all moments between
1 and 5. As domain knowledge we know that the fluents isRented(herbie, sally)
and isRented(herbie, linus) have a fluent conflict, which means the car herbie
cannot be rented both by sally and linus between moments 1 and 3. If herbie is
rented to sally at any moment between 1 and 3 to satisfy the first property, then
it is not possible to satisfy the second property. If herbie is rented to linus at all
moment between 1 and 5 to satisfy the second property, then it is not possible to
satisfy the first property. Thus, it is not possible to satisfy one of these properties
without violating the other and these two properties are in property conflict.

Universal-Universal A property conflict between two universally quantified
properties occurs if there is a fluent conflict between the fluents of the properties
and the moment intervals of the properties overlap with each other.

Axiom 12

propConf(prop(u(T1, T2), F1), prop(u(T3, T4), F2)) ←
fluentConf(D,F1, F2)∧
[T1 ≤ T3 ∧ T3 ≤ T2 ∨ T3 ≤ T1 ∧ T1 ≤ T4]

27

Example 5 Consider the properties prop(u(1, 5), isRented(herbie, sally)) and
prop(u(3, 7), isRented(herbie, linus)). The first property is satisfied if the car
herbie is rented by sally at all moments between 1 and 5 and the second property
is satisfied if the car herbie is rented by linus at all moments between 3 and
7. As domain knowledge we know that the fluents isRented(herbie, sally) and
isRented(herbie, linus) have a fluent conflict, which means the car herbie cannot
be rented both by sally and linus between moments 3 and 5. If herbie is rented
to sally at all moments between 1 and 5 to satisfy the first property, then it
is not possible to satisfy the second property. If herbie is rented to linus at all
moment between 3 and 7 to satisfy the second property, then it is not possible to
satisfy the first property. Thus, it is not possible to satisfy one of these properties
without violating the other and these two properties are in property conflict.

3.2 Conflict Relations between Commitments

Now we define the first type of conflict relation between two commitments using
the property conflict relation that we defined before. A commitment conflict
relation may occur between two active commitments, which indicates that one
of the commitments cannot be satisfied without violating the other.

Definition 3. Given the two commitments C1 and C2 with properties P1 and
P2, respectively, there is a commitment conflict between commitments C1 and
C2, if the properties P1 and P2 have a property conflict and commitments C1

and C2 are in active state. The fluent commConf(C1, C2) indicates a conflict
between commitments C1 and C2.

Axiom 13 (Commitment conflict)

initiates(E, commConf(comm(, , Q1, P1), comm(, , Q2, P2)), T) ←
active(comm(, , Q1, P1), T) ∧ active(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Example 6 Consider the commitments comm(charlie, sally,%, prop(u(1, 5),
isRented(herbie, sally))) and comm(charlie, linus,%, prop(u(3, 7),
isRented(herbie, linus))). The first commitment states that charlie is commit-
ted to sally to rent herbie at all moments between 1 and 5 and the second
commitment states that charlie is committed to linus to rent herbie at all mo-
ments between 3 and 7. We know that there is a property conflict between the
properties of these two commitments. Hence it is not possible to satisfy both
properties. As result, it is also not possible to satisfy one commitment without
violating the other. If charlie rents herbie to sally and satisfies his commitment
to sally, then he violates his commitment to linus. On the other hand, if charlie
rents herbie to linus and satisfies his commitment to linus, then he violates his
commitment to sally.

Note that, the debtors and the creditors are actually irrelevant while cap-
turing commitment conflicts. The only relevant factors are the property conflict
between the properties of the commitments and the states of the commitments.

28

The commitment conflict relation that we discuss above points out to a def-
inite violation of at least one commitment. This happens, since both commit-
ments are in active state. However, this is not the case if at least one of the
commitments are not in active but conditional state. In this case, occurrence of
a commitment conflict and violation of the commitment depends on the satisfac-
tion of the condition(s) of the commitment(s). In the following we define another
relation, which we call conditional commitment conflict relation between com-
mitments to reflect such situations.

Definition 4. Given the two commitments C1 and C2 with conditions Q1 and
Q2, and properties P1 and P2, respectively, there is a conditional commitment
conflict between commitments C1 and C2 if the properties P1 and P2 have a
property conflict and at least one of the commitments C1 or C2 is in conditional
state, if not in active state. The fluent condCommConf(C1, C2) indicates a
conditional commitment conflict between commitments C1 and C2.

Axiom 14 defines the conditional commitment conflict, where one commit-
ment is in active state and the other commitment is in conditional state. Note
that, if the condition of the commitment in conditional state is satisfied, then
the conditional conflict relation between the commitments is terminated and the
commitment conflict relation is initiated.

Axiom 14 (Conditional commitment conflict (active-conditional))

initiates(E, condCommConf(comm(, , Q1, P1), comm(, , Q2, P2)), T) ←
active(comm(, , Q1, P1), T) ∧ conditional(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Axiom 15 defines the conditional commitment conflict, where both commit-
ments are in conditional state. Note that, if one of the conditions is satisfied,
then Axiom 14 applies.

Axiom 15 (Conditional commitment conflict (conditional-conditional))

initiates(E, condCommConf(comm(, , Q1, P1), comm(, , Q2, P2)), T) ←
conditional(comm(, , Q1, P1), T)∧conditional(comm(, , Q2, P2), T)∧
propConf(P1, P2)

Example 7 Consider the commitments comm(charlie, sally, prop(e(1, 3),
isPaid(sally)), prop(u(3, 5), isRented(herbie, sally))) and comm(charlie, linus
,%, prop(u(3, 7), isRented(herbie, linus))). The first commitment is in condi-
tional state, which means that charlie will be committed to sally to rent herbie
at all moments between 3 and 5, if sally pays the rent between moments 1 and
3 and the second commitment is in active state, which means that charlie is
committed to linus rent herbie at all moments between 3 and 7. We know that
there is a property conflict between the properties of these two commitments.
In this case, occurrence of a commitment conflict depends on the satisfaction
of the condition of the first commitment. If sally does not pay, then the first
commitment expires and the conflict is resolved automatically.

29

4 A Commitment Conflict Scenario

We present a scenario to demonstrate how the conflict relations that we define
can be used to capture violation of a commitment in a multiagent system, before
the violation actually occurs. We also implement this scenario in the REC tool
and we present the trace of the execution.

Scenario Description There are two customers Sally and Linus and a car rental
agent Charlie. Charlie has a commitment in conditional state to Sally, which
states, if Sally pays the rent between days one and three, then Charlie will be
committed to Sally to rent a car to her between days four and seven. Charlie
has also a commitment in conditional state to Linus, which states, if Linus uses
a promotion ticket between days one and five, then Charlie will be committed
to Linus to rent a car to him for days six and seven for a cheaper price. We also
know that Charlie has just one car, namely Herbie, available for rent for the
next seven days.

In this scenario, it is obvious that Charlie will get into trouble if both Sally
and Linus satisfy the conditions of their own commitments. If this happens,
Charlie will have active commitments to both of them to rent a car at the same
dates. However, Charlie has only one car to rent at that dates, hence he cannot
satisfy one of these commitments without violating the other. This situation
cannot be captured at run time by considering these two commitments individ-
ually, at least until one of the commitments is actually violated. However, if we
consider these commitments together, we can capture that there is a potential
problem, immediately when the two commitments are created.

Let us first define the fluents, the events and effects of the events on the
fluents in our scenario.

Fluents:
– rentPaid(C,Car,A): The customer C paid the rent for the car Car to the

agency A.
– promeUsed(C,Car,A): The customer C used a promotion ticket for the car

Car to the agency A.
– rented(Car,C): The car Car is rented to the customer C.

Events:
– payRent(C,Car,A): The customer C pays the rent for the car Car to the

agency A.
– usePromo(C,Car,A): The customer C gives the promotion ticket for the

car Car to the agency A.
– rent(A,Car, C): The agency A rents the car Car to the customer C.

Effects of events on fluents:
– initiates(payRent(C,Car,A), rentPaid(C,Car,A), T)
– initiates(usePromo(C,Car,A), promoUsed(C,Car,A), T)
– initiates(rent(A,Car, C), rented(Car,C), T)

30

Finally we define the creation of commitments as result of the event as follows.

ccreate(offer(A,Car, C)), A, comm(A,C,
prop(e(T, T2), rentPaid(C,Car,A)),
prop(u(T3, T4), rented(Car,C))), T) ←
T2 is T + 2 ∧ T3 is T + 3 ∧ T4 is T3 + 3

ccreate(promote(A,Car, C)), A, comm(A,C,
prop(e(T, T2), promoUsed(C,Car,A)),
prop(u(T3, T4), rented(Car,C))), T) ←
T2 is T + 4 ∧ T3 is T + 5 ∧ T4 is T3 + 1

Assume that the domain dependent fluent conflicts are already defined and fol-
lowing list of happens statement shows the execution of the system.

happens(offer(charlie, herbie, sally), 1)
happens(promote(charlie, herbie, linus), 1)
happens(payRent(sally, herbie, charlie), 2)
happens(rent(charlie, herbie, sally), 3)
happens(usePromo(linus, herbie, charlie), 4)

Let us trace the execution. At moment 1, charlie creates two conditional
commitments as described in the scenario. Let us call the commitment between
charlie and sally as CS and the commitment between charlie and linus as
CL. The property of the commitment CS is prop(u(4, 7), rented(herbie, sally))
and the property of the commitment CL is prop(u(6, 7), rented(herbie, linus)).
Assuming that there is a fluent conflict between the two grounded rented fluent,
by using the Axiom 12 we can conclude that there is a property conflict between
the properties of the commitment CS and CL. Detection of this property conflict
further causes the condition of the Axiom 15 to hold, which allows us to conclude
that there is a conditional commitment conflict between the commitments CS

and CL. Hence, we immediately capture that depending on the satisfaction of
the conditions of these two commitments CS and CL, one of these commitments
cannot be satisfied without violating the other. At moment 2, sally pays the
rent and satisfies the condition of her own commitment CS and the state of
CS changes to active. At that moment using the Axiom 14, we can deduce
that we have still a conditional commitment conflict, which depends on the
satisfaction of the condition of the commitment CL. At moment 3, charlie rents
herbie to sally to satisfy the commitment CS . Finally, at moment 4 by using
the promotion ticket, linus satisfies the condition of the commitment CL and
the state of this commitment changes to active. Accordingly the condition of the
Axiom 13 holds and we conclude that there is a commitment conflict. At that
moment, we definitely know that at least one of the commitments CS and CL is
going to be violated. Note that, if we examine the commitments using only the
life cycle axioms, we cannot capture the violation of one of these commitments
not before moment 6.

31

5 Discussion

In this paper we introduce the conflict relation between two commitments. A
conflict relation indicates one of the commitments in this relation cannot be satis-
fied without violating the other commitment. To formalize this conflict relation
we first extend the existing event calculus formalization of the commitments
with conditional commitments and then introduce a set of new axioms to cap-
ture conflicts between commitments. We implement our axioms using the REC
tool and evaluate them on a multiagent scenario. In our future work we plan to
apply our method to capture inconsistencies in multiagent contracts [4]. We also
left detection of conflicts between more than two commitments and handling of
conflicting commitments as future work.

The first formalization of commitments in event calculus is introduced by
Yolum and Singh [14]. In their formalization they do not use an explicit state
definition for commitments. They discuss how a multiagent protocol can be
represented in a flexible way by using the event calculus formalization of com-
mitments and they also show how agents can reason about commitments on
the execution of the protocol. In a series of papers Torroni and his colleagues
develop another event calculus based monitoring framework for commitments,
which uses SCIFF abductive logic programming proof-procedure [1, 3]. Their
framework is capable of efficiently monitoring evolution of commitments in a
multiagent system at run-time. We use their framework as a basis for our work.
We extend their commitment formalization with conditional commitments and
on top of this formalization we build our axioms to define conflict relation of
commitments.

Singh discusses semantics of dialectical and practical commitments [12]. In
his work, Singh provides a unified temporal logic based semantics for dialectical
and practical commitments. Our main motivation in this paper is to deal with
practical commitments and we do not discuss dialectical commitments. Singh
also provides some reasoning postulates related to the ones we discuss here.
These are named consistency and strong consistency, which states an agent can-
not commit to false and an agent cannot commit to a negation of previously
committed property, respectively. Especially, the strong consistency postulate
corresponds to our commitment conflict relation. However, the postulates intro-
duced by Singh acts as a constraint and restrict existence of such commitments.
We do not put any restrictions on commitments, instead our aim is to just detect
such situations and let dealing with the situation to the underlying multiagent
system.

Mallya et al. discuss resolvability of commitments [8]. They use a variant of
CTL to formalize commitments and provide a set of definitions about when a
commitment is resolvable using the same temporal quantifiers for properties of
commitments. Their discussion concentrates on the resolvability of individual
commitments. In our work we assume that all commitments are individually
resolvable as defined by Mallya et al.. However, our work can be used in order
to capture resolvability of multiple commitments, considering individual resolv-
ability.

32

Acknowledgment

This research is partially supported by Boğaziçi University Research Fund under
grant BAP5694, and the Turkish State Planning Organization (DPT) under
the TAM Project, number 2007K120610. Akın Günay is partially supported by
TÜBİTAK National PhD Scholarship (2211).

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifi-
able agent interaction in abductive logic programming: The sciff framework. ACM
Transactions on Computational Logic 9, 1–43 (August 2008)

2. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Orga-
nizations. In: Lesser, V.R., Gasser, L. (eds.) ICMAS. pp. 41–48. The MIT Press
(1995)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment Tracking via the
Reactive Event Calculus. In: Proceedings of the 21st International Joint Conference
on Artifical Intelligence. pp. 91–96. Morgan Kaufmann Publishers Inc. (2009)

4. Desai, N., Narendra, N.C., Singh, M.P.: Checking Correctness of Business Con-
tracts via Commitments. In: Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems - Volume 2. pp. 787–794. AAMAS
’08 (2008)

5. Fornara, N., Colombetti, M.: Operational Specification of a Commitment-Based
Agent Communication Language. In: AAMAS’02: Proceedings of the First Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems. pp.
536–542. ACM (2002)

6. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Com-
puting 4, 67–95 (January 1986)

7. Mallya, A.U., Huhns, M.N.: Commitments Among Agents. IEEE Internet Com-
puting 7, 90–93 (July 2003)

8. Mallya, A.U., Yolum, P., Singh, M.P.: Resolving Commitments Among Au-
tonomous Agents. In: Dignum, F. (ed.) Advances in Agent Communication. Lecture
Notes in Artificial Intelligence, vol. 2922, pp. 166–182. Springer-Verlag (2003)

9. Shanahan, M.: The Event Calculus Explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today, pp. 409–430. Springer-Verlag (1999)

10. Singh, M.P.: Agent Communication Languages: Rethinking the Principles. Com-
puter 31(12), 40–47 (1998)

11. Singh, M.P.: An Ontology for Commitments in Multiagent Systems. Artificial In-
telligence and Law 7(1), 97–113 (1999)

12. Singh, M.P.: Semantical Considerations on Dialectical and Practical Commitments.
In: AAAI’08: Proceedings of the 23rd International Conference on Artificial Intel-
ligence. pp. 176–181. AAAI Press (2008)

13. Winikoff, M., Liu, W., Harland, J.: Enhancing Commitment Machines. In: Leite, J.,
Omicini, A., Torroni, P., Yolum, P. (eds.) Declarative Agent Languages and Tech-
nologies II, Lecture Notes in Computer Science, vol. 3476, pp. 198–220. Springer
(2005)

14. Yolum, P., Singh, M.P.: Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. In: AAMAS ’02: Proceedings of
the first International Joint Conference on Autonomous Agents and Multiagent
Systems. pp. 527–534. ACM (2002)

33

Formalizing Commitments Using Action Languages

Tran Cao Son1, Enrico Pontelli1, and Chiaki Sakama2

1 Dept. Computer Science, New Mexico State University, tson|epontell@cs.nmsu.edu
2 Computer and Comm. Sciences, Wakayama Univ., sakama@sys.wakayama-u.ac.jp

Abstract. This paper investigates the use of high-level action languages for rep-
resenting and reasoning about commitments in multi-agent domains. We intro-
duce the language Lmt, an extension of the language L, with new features moti-
vated by the problem of representing and reasoning about commitments. The pa-
per demonstrates how features and properties of commitments can be described
in this action language. We show how Lmt can handle both simple commitment
actions as well as complex commitment protocols. Furthermore, the semantics of
Lmt provides a uniform solution to different problems in reasoning about com-
mitments such as the problem of (i) verifying whether an agent fails (or succeeds)
to deliver on its commitments; (ii) identifying pending commitments; and (iii)
suggesting ways to satisfy pending commitments.

1 Introduction and Motivation

Commitments are an integral part of societies of agents. Modeling commitments has
been an intensive topic of research in autonomous agents. The focus has often been
on the development of ontologies for commitments [6, 15], on the identification of re-
quirements for formalisms to represent commitments [13], and the development of for-
malisms for specifying and verifying protocols or tracking commitments [7, 18, 11].

Commitments are strongly related to agents’ behavior and capabilities, and they
are often associated with time constraints, such as a specific time (or time interval) in
the future. For example, a customer will not pay for the promised goods if the goods
have not been delivered; a client will have to wait for her cheque if the insurance agent
does not keep her promise of entering her claim into the system; or an on-line shopper
needs to pay for the order within 10 minutes after clicking the ‘Check Out’ button.
Thus, any formalization of commitments should be considered in conjunction with a
formalization of actions and changes, which allows us to reason about narratives in
presence of (quantitative) time constraints, actions with durations, etc.

Action languages (e.g., A, B, and C [10]), with their English like syntax and simple
transition function based semantics, provide an easy and compact way for describing
dynamic systems. Unlike event calculus —an action description formalism often used
in the literature for reasoning about commitments—action languages can elegantly deal
with indirect effects of actions and static laws. Furthermore, off-the-shelf implementa-
tions of various action languages are available. Research has provided various avenues
to extend the basic action languages with advanced features, such as resources, dead-
lines, and preferences. Existing action languages, on the other hand, do not provide
means for expressing statements like “I will make some sandwiches” or “I will come

at 7pm.” Both statements are about achieving a certain state of the world without spec-
ifying how. The first statement does not indicate a specific time in the future while the

34

second does. Moreover, with a few exceptions, action languages have been developed
mostly for single-agent environments. Action languages have been successfully used
in specifying and reasoning about narratives (e.g., [2, 4]). Some attempts to use action
languages in formalizing commitments have been made [8, 9]. However, these attempts
do not consider time constraints and actions with durations.

In this paper we answer the question of whether action languages, like B or L,
can be enriched with adequate features to enable the representation of domains where
agents can interact through commitments, maintaining the desirable features of having a
clear semantics and a declarative representation. In particular, we develop an action lan-
guage, called Lmt, to perform this activity. Lmt, an extension of the action language L
[2–4], is a language for multi-agent domains with features related to time, observations,
and delayed effects. We show that several tasks related to reasoning with commitments,
such as identifying satisfied, pending, and unsatisfied commitments, can be expressed as
queries in Lmt. Furthermore, the problem of finding a way to satisfy pending commit-
ments can be directly addressed using planning. The language also provides a natural
means for specifying, verifying, and reasoning about protocols among agents.

2 The Language Lmt

2.1 Lm
: Concurrency and Multi-agency

In this section, we introduce an action language which supports concurrency and multi-
agency; the language is an extension of the language L [3, 4].

The signature of the language is �AG, {Fi,Ai}i∈AG� where AG is a (finite) set of
agent identifiers and Fi and Ai are the sets of fluents and the set of actions of the agent
i, respectively. We assume that Ai ∩ Aj = ∅ for any two distinct i, j ∈ AG. Observe
also that

�
i∈S Fi may be not empty for some S ⊆ AG. This represents the fact that

fluents in
�

i∈S Fi are relevant to all the agents in S. A fluent literal (or literal) is either
a fluent or a fluent preceded by ¬. Given a literal �, we denote with �̄ its complement.
A fluent formula is a propositional formula constructed from literals.

A multi-agent domain specification is a set of axioms of the following forms:
a causes � if ψ (1) ϕ if ψ (2)
impossible A if ψ (3) initially � (4)

where a ∈
�

i∈AG Ai is an action, � is a fluent literal, ψ and ϕ are sets of fluent literals
(interpreted as conjunctions), and A ⊆

�
i∈AG Ai is a set of actions.

Axioms of type (1), (2), and (3) are referred to as dynamic laws, static laws (or
state constraints), and non-executability laws, respectively. Intuitively, a dynamic law
describes the direct effects of execution of one action (possibly concurrently to other
actions), static laws describe integrity constraints on states of the world, and non-
executability laws describe conditions that prevent the (concurrent) execution of groups
of actions. Statements of type (4) are employed to describe the initial state of the world.

The semantics of a multi-agent domain is defined by the transition function ΦD,
which maps a set of actions and a state to a set of states, where D =

�
i∈AG Di is

the domain description defined over the set of fluents
�

i∈AG Fi and the set of actions�
i∈AG Ai. For later use, we define an action snapshot as a set {ai}i∈AG where ai ∈

Ai∪{noop}. Intuitively, each action snapshot encodes the set of actions that the agents
in AG concurrently execute in a state. Intuitively, given an action snapshot A and a state

35

s, the transition function ΦD defines the set of states that may be reached after executing
A in state s. If ΦD(A, s) is the empty set, then A is not executable in s.

An interpretation I of the fluents in D is a maximal consistent set of fluent literals
drawn from F . A fluent f is said to be true (resp. false) in I iff f ∈ I (resp. ¬f ∈ I).
The truth value of a fluent formula in I is defined recursively over the propositional
connectives in the usual way. We say that I satisfies ϕ (I |= ϕ) if ϕ is true in I .

Let I be a set of fluent literals. We say that I is closed under D if for every rule
(ϕ if ψ) in D, if I |= ψ then I |= ϕ. By ClD(I) we denote the smallest superset of I
which is closed under D. A state of D is an interpretation that is closed under the set of
static causal laws of D.

A set of actions B is prohibited (not executable) in a state s if there exists an exe-
cutability condition of the form (3) in D such that A ⊆ B and s |= ψ.

The effect of an action a in a state s of D is the set of formulae eA(s) = {� | D
contains a law a causes � if ψ, a ∈ A, and s |= ψ}.

Given the domain description D, if A is prohibited in s, then ΦD(A, s) = ∅, other-
wise ΦD(A, s) = {s� | s� = ClD((s∩ s�)∪ eA(s)) and s� is a state}. The function ΦD

is extended to define �ΦD for reasoning about the effects of sequences of action snap-
shots as follows. For a state s and a sequence of action snapshots α = [A1, . . . , An], let
αn−1 = [A1, . . . , An−1], we define

�ΦD(α, s) =

{s} if n = 0

∅ if �ΦD(αn−1, s) = ∅ ∨ ∃s�.[s� ∈ �ΦD(αn−1, s) ∧ ΦD(An, s�) = ∅]�
s�∈�ΦD(αn−1,s)

ΦD(An, s�) otherwise

An initial state is a state s0 such that, for each statement of type (4) in D we have
that s0 |= �. We will assume from now on that there exists at least one initial state. A
trajectory is a sequence s0β0s1β1 . . .βn−1sn such that each βj is a snapshot, s0 is an
initial state, and si ∈ ΦD(si−1,βi−1) for 1 ≤ i ≤ n.

We allow queries to be composed, of the form: ϕ after α, where α is a sequence
of action snapshots. A query q is true w.r.t. an initial state s0, denoted s0 |= q, if
�ΦD(α, s0) �= ∅ and ∀s ∈ �ΦD(α, s0) we have that s |= ϕ. A query q is entailed by D
(D |= q) if for each initial state s0 of D we have s0 |= q.
2.2 Considering Time: The Action Language Lmt

The language proposed so far does not allow for the specification of durative actions. In
particular, we wish to be able to model actions with delayed effects and actions whose
effects can be overridden by the execution of another action. For example, pumping
gasoline into the tank causes the tank to be full after 5 minutes; drilling a hole in the
tank takes only 1 minute and will cause the tank never to be full. The execution of
drilling 1 minute after initiating the pumping action will cause the tank to never become
full. Thus, the execution of the action drill makes the tank no longer full and this effect
cannot be reversed by other actions. To address the first issue, we introduce the notion
of annotated fluents, i.e., fluents associated to relative time points, and use annotated
fluents in axioms of the form (1)-(3). To deal with the second issue, we introduce the
notions of irreversible and reversible processes.

The signature of Lmt extends the signature of Lm with a countable set of process

names P . An annotated literal is a formulae of the form �t, where � is a fluent literal and

36

t > 0 is an integer, representing a future point in time. We also allow annotations of the
form �∨[t1,t2], denoting �t1 ∨ · · ·∨�t2 for t1 ≤ t2. Annotated formulae are propositional
formulae that use annotated literals. Given a fluent formula ϕ (i.e., where fluents are not
annotated), ϕt (ϕ∨[t1,t2]) is the formula obtained by replacing each literal � in ϕ with
the annotated literal �t (�∨[t1,t2]). An annotated formula is single time if it is of the form
ϕ∨[t1,t2] for some non-annotated formula ϕ. An annotated formula is actual if no literal
in the formula is annotated. For an annotated formula ϕ, ϕ+t is the formula obtained
by replacing each �r in ϕ with �r+t.

A multi-agent domain specification is a collection of laws of the form (1)-(3) and
laws of following forms:

ϕ starts process id [reversible|irreversible] �t̂ (5)
ϕ stops process id (6)
a starts process id [reversible|irreversible] �r̂ if ϕ (7)
a stops process id if ϕ (8)

where the ϕ’s are sets of fluent literals, a ∈ ∪i∈AGAi, �t̂ and �r̂ are time annotated
literals, of the form ∨[t1, t2] with 1 ≤ t1 ≤ t2 and ∨[r1, r2] with 0 ≤ r1 ≤ r2,1
and process id belongs to P . The main novelty is the introduction of the notion of
process. A process is associate to a delayed effect, denoted by �t̂, and the time interval t̂
indicates when the process will produce its effect. A process can be started by an action
or a property. Each reversible process can be interrupted by a stops action/condition
before materializing its effects, while irreversible processes cannot be interrupted.

The notion of a state in an Lmt domain D is similar to a state in L domain, in that
it is an interpretation of the fluents in D and needs to satisfy the constraints imposed
by static laws in D. In presence of processes, a state of the world needs to account
for changes that will occur only in the future, when a process reaches its completion.
For example, an action sendPayment may state that the action starts a process named
payment process whose effect is to make paid true 3, 4, or 5 units of time after the
execution of the action. For this reason, we introduce the notion of an extended state as
a triple (s, IR,RE) where s is a state and IR and RE are sets of pairs of future effects,
each of the form (x : �t̂), where x is a process name and �t̂ is an annotated fluent. s
encodes the current state of the world, while IR and RE contain the irreversible and
reversible processes, respectively. (s, IR,RE) is complete if IR = ∅ and ER = ∅.

In presence of future effects encoded by the processes, the world changes due to
(i) the completion of a process; or (ii) action occurrences. Let us consider an extended
state (s, {(x : p1)}, ∅) with (x : p1) as a process whose effect is p. Intuitively, if nothing
happens, we would expect that p would be true in the world state one unit of time from
the current time. This results in the new extended state of the world (s\{¬p}∪{p}, ∅, ∅).
If instead we perform in the initial extended state an action a, whose effect is to make q
true in the next moment of time, then the next state will be (s\{¬p,¬q}∪{p, q}, ∅, ∅).
Thus, in order to define the semantics of Lmt domains, we need two steps. First, we
specify an update function, which computes the extended state which is t units of time
from the current state assuming that no action occurs during this time span. Second, we
define the transition function that takes into consideration the action occurrences.

1 For simplicity, we do not consider ∧[t1, t2]. This is because a law with the annotation ∧[t1, t2]
can be replaced by a set of laws whose annotation is ∨[ti, ti] for t1 ≤ ti ≤ t2.

37

The update of an extended state (s, IR,RE) is used to move forward by one time
step; the time of the annotated fluents is decreased by one. Fluents that have become
actual are used to update the state—in such a case we need to ensure that irreversible
changes prevail over reversible ones. Formally, for ŝ = (s, IR,RE), the set of literals
that should be used in updating s in the next moment of time is

τ(ŝ) = {� | (x : �1) ∈ IR} ∪ {� | (x : �1) ∈ RE such that � ∃(z : �̄1) ∈ IR}.
For a state s, the set of processes started and stopped by s in the next moment of time
is IR1(s) = {(process id : �t̂) | there exists a law of the form (5) with the option
irreversible such that s |= ϕ}, RE1(s) = {(process id : �t̂) | there exists a law of the
form (5) with the option reversible such that s |= ϕ}, and P2(s) = {process id | there
exists a law of the form (6) such that s |= ϕ}. For a set of process names N and a set
of future effects X , let X \N = X \ {(x : �t) | x ∈ N, (x : �t) ∈ X}).

The update of ŝ by one unit of time is a set of extended states defined as follows:
update(ŝ) = {(s�, I(IR, s�), R(ER, s�) | s� = ClD(τ(ŝ) ∪ (s ∩ s�)) and s� is a state}

where, I(IR, s�) = (IR−1)∪IR1(s�) and R(ER, s�) = ((RE−1)∪RE1(s�))\P2(s�),
and for a set of future effects X , we have X − d = {(x : �t−d) | (x : �t) ∈ X}.
Intuitively, s� is a state that satisfies the effects that need to be true one unit from the
current state. For t > 0, let ŝ+ t =

�
û∈update(ŝ+t−1) update(û) where ŝ+ 0 = ŝ.

Given an extended state ŝ = (s, IR,ER) and an annotated literal �t, we say that �t
holds in ŝ, denoted ŝ |= �t, if, for t = 0, ŝ |= �t if s |= �, and, for t > 0, ŝ |= �t if
û |= � for every û ∈ ŝ+ t.

Let us now consider the case where an action snapshot A = {ai}i∈AG is executed
in the extended state ŝ. Intuitively, there are two possible types of effects: the direct
effect of the actions (eA(s)) and the processes that are created by the actions. We know
that eA(s) must be satisfied in the next time point. The effects of the processes starting
by A in s, denoted by procsA(s), is a set of pairs (IR�, RE�) where:
• For each (ai starts pid irreversible �∨[t1,t2] if ϕ) in D, with ai ∈ A and s|=ϕ,

we have that IR� contains (pid : �t) for some t s.t. t1 ≤ t ≤ t2;
• For each (ai starts pid reversible �∨[t1,t2] if ϕ) in D, with ai ∈ A, and s|=ϕ, we

have that RE� contains (pid : �t) for some t s.t. t1 ≤ t ≤ t2.
In addition, the set of processes stopped by A in s is defined as stopA(s) = {pid |
(ai stops pid if ϕ) ∈ D, s |= ϕ}. Intuitively, each (IR�, RE�) encodes a possible
set of effects that the snapshot A can create given the current state of the world is s.
stopA(s) is the set of processes that need to be stopped.

We are now ready to define transition function Φt
D for Lmt domains which maps

extended states and action snapshots to sets of extended states. We assume that � is a
special process name in P that does not appear in any laws of D. For a set of literals
L, we define ⊕(L) = {(� : �1) | � ∈ L}. Given an extended state ŝ = (s, IR,RE), a
fluent literal � holds in ŝ if � holds in s. The notion of executability of a set of actions
can be carried over to Lmt domains without changes as it only considers the current
state of the world. The transition function Φt

D is:

Φt
D(A, ŝ) =

�

(I,R)∈procsA(s)

update((s, IR ∪ I ∪ ⊕(eA(s)), (RE ∪R) \ stopA(s))

38

if A is executable in s, and Φt
D(ŝ, A) = ∅ otherwise. Intuitively, Φt

D(ŝ, A) encodes the
possible trajectories of the world given that A is executed in ŝ. We extend Φt

D to �Φt
D

which operates on sequences of action snapshots in the same way as done for ΦD.
In presence of time, we might be interested in the states of the world given that A is

executed t units of time from the current state of the world. We overload Φt
D and define

Φt
D(ŝ, A, t) = �Φt

D(ŝ, [{noop}i∈AG , . . . , {noop}i∈AG� �� �
t

] ◦ [A])

We also write Φt
D(ŝ, A, t)+t1 to denote

Φt
D(ŝ, A, t) + t1 =

�
ŝ�∈Φt

D(ŝ,A,t)
�Φt
D(ŝ�, [{noop}i∈AG , . . . , {noop}i∈AG� �� �

t1

])

Intuitively, a member of Φt
D(ŝ, A, t)+ t1 is a possible extended state after t1 time steps

from the execution of A, which in turn was executed t time steps from ŝ.
Let us define a timed action snapshot to be a pair (A, t) where A is an action snap-

shot and t is a time reference. �Φt
D can also be extended to a transition function that

operates on sequences of timed action snapshots α = [(A1, t1), . . . , (An, tn)] where
t1 < t2 < . . . < tn and Ai’s are action snapshots as follows:
• For n = 0: �Φt

D(ŝ,α) = ŝ; and
• For n > 0: �Φt

D(ŝ,α) =
�

û∈Φt
D(ŝ,A1,t1)

�Φt
D(û,β)

where β=[(A2, t2−t1), . . . , (An, tn−t1)] if �Φt
D(û,β) �= ∅ for every û∈Φt

D(ŝ, A1, t1);
otherwise, �Φt

D(ŝ,α) = ∅.
For a state s and a sequence of timed action snapshot α, �Φt

D(s,α) = �Φt
D((s, ∅, ∅),α).

Example 1. Let us consider a slight modification of the the popular Netbill example
[13]. Let us assume that every action takes one day to complete but the action of sending
the payment might take 3 to 5 days for its effects to materialize. Also, as long as the
payment has not been made, the customer can still cancel the payment. We envision
AG = {merchant, customer}. Both the merchant and the customer use the set of fluents
F = {request, paid, goods, receipt, quote, accept}; the agents use the sets of actions:

Amerc = {sendQuote, sendGoods, sendReceipt}
Acust = {sendRequest, sendAccept, sendPayment}

The domain specification Dn consists of the following axioms (P = {pmt}):

Customer Merchant
sendRequest causes request sendGoods causes goods
sendAccept causes accept sendReceipt causes receipt
sendPayment starts pmt reversible paid∨[3,5]

sendQuote causes quote
cancelPayment stops pmt impossible {sendReceipt} if ¬paid
impossible {sendAccept} if ¬quote impossible {sendGoods} if ¬accept
impossible {cancelPayment} if paid

The last two laws state that the Merchant cannot execute the action sendReceipt if
¬paid is true (the Customer has not paid yet); he cannot execute the action sendGoods
if ¬accept is true (the Customer has not accepted the offer). On the other hand, the
Customer cannot execute the action sendAccept if he has not received the quote.

39

Let s0 = {request, quote, accept,¬paid,¬receipt,¬goods}, and α1 = {noop,
sendGoods}. α1 is executable in s0 and Φt

Dn
((s0, ∅, ∅),α1) = {(s�0, ∅, ∅)}, where

s�0 = {request, quote, accept,¬paid,¬receipt, goods}.
Let û = (s�0, ∅, ∅) and α2 = {sendPayment, noop}. It is easy to see that

Φt
D(û,α2) = {update((s�0, ∅, {(pmt : paidi)})) | i = 3, 4, 5}

Thus, Φt
D(û,α2) + 3 = {(u�, ∅, ∅)} ∪ {update((s�0, ∅, {(pmt : paidi)})) | i = 1, 2} where

u� = {request, quote, accept, paid,¬receipt, goods}. We can see that Φt
D(û,α2) +

5 = {(u�, ∅, ∅)}. ��

3 Basic Commitments in Lmt

We demonstrate that Lmt is adequate to encode commitments and their manipulation.
Commitments are encoded as a new class of fluents and are manipulated by commitment

actions. Due to the lack of space, we present our study on unconditional commitments
[15]. We observe that the treatment of conditional commitments can be done similarly.

A commitment is of the form c(x, y,ϕ, t1, t2), where x, y ∈ AG, 0 < t1 ≤ t2, and
ϕ is formula. This states that the debtor x agrees to establish ϕ between t1 and t2 for the
creditor y. For example, the statement “A commits to visit B in three hours,” conveys
the commitment c(A,B, arrived, 3, 3). A commitment where we do not care when the
property is made true can be expressed using a disjunctive annotation.

Observe that we can think of commitment fluents as propositions, i.e., c(x, y,ϕ) is
a syntactic sugar for c x y name(ϕ) where name(ϕ) is a propositional variable repre-
senting the name of the formula ϕ. We assume that the various propositions c(x, y,ϕ)
are in

�
i∈AG Fi. We also assume that, to enable communication, if c(x, y,ϕ) is a com-

mitment fluent, then ϕ is a fluent formula which uses fluents from Fx ∪ Fy .
The following operations are used to manipulate commitments:

• Creation: create(x, y,ϕ, t1, t2) describes the fact that agent x creates a commit-
ment towards agent y in the period between t1 and t2. We assume that each created
commitment is associated to a unique identifier;

• Discharge: discharge(x, y,ϕ) indicates that agent x discharges a commitment to-
wards agent y (by satisfying the request);

• Release: release(x, y,ϕ) indicates that agent y releases x from its obligation;
• Assignment: assign(x, y, k,ϕ, t1, t2) indicates that agent y transfers the commit-

ment to a different creditor (with a new time frame);
• Delegation: delegate(x, y, k,ϕ, t1, t2) indicates that agent x delegates the com-

mitment to another debtor (with a new time frame);
• Cancel: cancel(x, y,ϕ,ψ, t1, t2) indicates that x modifies the terms of the com-

mitment (by canceling the previous one and generating a new one).
These manipulations of commitments are the consequence of actions performed by the
agents or conditions occurring in the state of the world. We consider two types of en-
abling statements, called trigger statements, for commitment manipulation

[ϕ|a] triggers c activity
where ϕ is a fluent formula, a ∈ A, and c activity is one of the activities (or com-
mitment actions). They indicate that the commitment activity c activity should be ex-
ecuted whenever ϕ holds or a is executed. An example of the first type of statement is

paid triggers create(m, c, receipt, 1, 3) (9)

40

which encodes the fact that the merchant agrees to send the customer the receipt be-
tween 1 and 3 units of time since receiving the payment. The statement

sendAccept triggers create(c,m, paid, 1, 5) (10)
states that the customer agrees to pay for the goods between 1 to 5 units of time after
sending the acceptance notification. A more complicated trigger statement is the fol-
lowing, taken from an example in [7],

broken triggers create(s, c, (broken ⇒ paid 10), k, k)

for k ≥ 3, which represents the agreement between the service provider (s) and a cus-
tomer (c) that, if the printer is broken, the service provider needs to fix it within three
days or faces the consequence of paying $10 each day the printer is not fixed.

A domain with commitments is a pair (D,C) where D is a domain specification in
Lmt and C is a collection of trigger statements. Intuitively, a domain with commitments
is an action theory enriched with a set of (social or contractual) agreements between
agents in the domain which are expressed by the set of trigger statements.

In the following, we will define the semantics of a domain with commitments
(D,C) by translating it into a Lmt domain D� where D� consists of D and a collection
of dynamic laws and static laws originating from C.
Action Triggers: a triggers c activity belongs to C: in this case,

◦ if c activity = create(x, y,ϕ, t1, t2), then the laws
a causes c(x, y,ϕ) and a starts c(x, y,ϕ) reversible done(x, y,ϕ)∨[t1,t2]

are added to D�. The dynamic law records the fact that the commitment c(x, y,ϕ) has
been made by the execution of the action a. The second law starts a process which
indicates that the commitment must be satisfied between t1 and t2.

◦ if c activity = discharge(x, y,ϕ) then D� contains
a stops c(x, y,ϕ) if c(x, y,ϕ) a causes ¬c(x, y,ϕ) if c(x, y,ϕ)

a starts discharging(x, y,ϕ) irreversible ϕ if c(x, y,ϕ)

Here, the action a stops the commitment process c(x, y,ϕ) by starting a process of
achieving ϕ. It also records the fact that the commitment c(x, y,ϕ) has been satisfied.

◦ if c activity = release(x, y,ϕ) then
a stops c(x, y,ϕ) if c(x, y,ϕ) and a causes ¬c(x, y,ϕ) if c(x, y,ϕ)

belongs to D�. The action stops the commitment process and records that the com-
mitment has been removed.

◦ if c activity = assign(x, y, k,ϕ, t1, t2) then D� contains
a stops c(x, y,ϕ) if c(x, y,ϕ) a causes ¬c(x, y,ϕ) if c(x, y,ϕ)

a causes c(x, k,ϕ) a starts c(x, k,ϕ) reversible done(x, k,ϕ)∨[t1,t2]

The action stops the commitment process c(x, y,ϕ) and starts the commitment pro-
cess c(x, k,ϕ). It also releases the process c(x, y,ϕ).

◦ if c activity = delegate(x, y, k,ϕ, t1, t2) then D� contains
a stops c(x, y,ϕ) if c(x, y,ϕ) a causes ¬c(x, y,ϕ) if c(x, y,ϕ)

a causes c(k, y,ϕ) a starts c(k, y,ϕ) reversible done(k, y,ϕ)∨[t1,t2]

This is similar to the case of release, only with different debtor.
◦ if c activity = cancel(x, y,ϕ,ψ, t1, t2) then D� contains

a stops c(x, y,ϕ) if c(x, y,ϕ) a causes ¬c(x, y,ϕ) if c(x, y,ϕ)

a causes c(x, y,ψ) a starts c(x, y,ψ) reversible done(x, y,ψ)∨[t1,t2]

41

The action stops the commitment c(x, y,ϕ) and starts a new one c(x, y,ψ).
The translation of fluent triggers is similar. For each fluent trigger ψ triggers c activity,
the translation is obtained from the corresponding action trigger one by:
• replacing a dynamic law of the form (a causes ϕ if λ) with (ϕ if λ,ψ);
• replacing a law of the form (a starts pid [reversible|irreversible] ϕ if λ) with the

law (ψ starts pid [reversible|irreversible] ϕ if λ); and
• replacing a law of the form (a stops pid if λ) with the law (ψ stops pid if λ).

We further need to include some additional static laws: if c(x, y,ϕ) is present and
ϕ is true, then the commitment can be released: ¬c(x, y,ϕ) if ϕ, done(x, y,ϕ).

Let M = (D,C) be a domain with commitments. We denote with τ(C) the collec-
tion of axioms generated from the translation process mentioned above; with a slight
abuse of notation, we denote τ(M) = D ∪ τ(C). By definition, the domain τ(M) de-
fines a transition function Φt

τ(M) which determines the possible evolutions of the world
given a state and the sequence of timed action snapshots [(α1, t1), . . . , (αn, tn)]. The
function Φt

τ(M) can be used to specify the transition function for M, i.e., the transition
function ΦM for M is defined to be the function Φt

τ(M). Observe that each state of
τ(M) consists of fluent literals in D and commitments which appear in τ(C). In the
definition of Φt

τ(M), this is treated as any normal fluent. The presence of c(x, y,ϕ) in
a state indicates that the commitment c(x, y,ϕ) has been made. done(x, y,ϕ) encodes
the fact that the commitment c(x, y,ϕ) needs to be realized by the debtor.

Example 2. Consider the domain with commitments M1 = (Dn, C2), where Dn is the
domain description described in Example 1 and C2 is the set of statements consisting
of (9), (10), and the following statements
request triggers create(m, c, quote, 1, 1) accept triggers create(m, c, goods, 1, 1).
So, the set of fluents in τ(M1), denoted by F1, consists of F (the set of fluents of
D1) and the commitment fluents such as c(m, c, receipt), c(c,m, paid), c(m, c, quote),
and c(m, c, goods), and fluents of the form done(x, y,ϕ) which are introduced by the
translation from M1 to τ(M1). Let s0 = {¬f | f ∈ F1}, we have that

Φt
τ(M1)

(s0, {sendRequest}) = {[s0, u, v]}
where u = s0 \ {request, c(m, c, quote)} ∪ {request, c(m, c, quote)} and
v = u \ {done(m, c, quote)} ∪ {done(m, c, quote)}. The presence of c(m, c, quote)
and done(m, c, quote) in u and v is due to the laws c(x, y, quote) if request and

request starts c(x, y, quote) reversible done(x, y,ϕ)1

respectively, both are the result of the translation to laws in τ(M1) of the statement
request triggers create(m, c, quote, 1, 1). ✷

Let M = (D,C) be a domain with commitments and γ = [s0, . . . , sn] be a se-
quence of states in τ(M). Let c(x, y,ϕ) be a commitment fluent appearing in γ. We
say that c(x, y,ϕ) is
• satisfied in γ if sn |= ¬c(x, y,ϕ);
• violated in γ if sn |= c(x, y,ϕ) ∧ done(x, y,ϕ); or
• pending in γ if sn |= c(x, y,ϕ) and sn �|= done(x, y,ϕ).

The reasoning about commitments given the execution of a sequence of action snap-
shots can then be defined as follows. Let M = (D,C) be a domain with commitments,

42

s0 be a state in D, and A = [(α1, t1), . . . , (αn, tn)] be a sequence of timed action snap-
shots. We say that a commitment c(x, y,ϕ) is factual during the execution of A in s

if there exists a sequence of states γ = [s0, . . . , sm] in �Φt
τ(M)(s0, A) and c(x, y,ϕ)

appears in γ. A factual commitment c(x, y,ϕ) is
• satisfied after the execution of A in s0 if it is satisfied in every sequence of states

belonging to �Φt
τ(M)(s0, A).

• strongly violated after the execution of A in s0 if it is violated in every sequence of
states belonging to �Φt

τ(M)(s0, A).
• weakly violated after the execution of A in s0 if it is violated in some sequence of

states belonging to �Φt
τ(M)(s0, A).

• pending after the execution of A in s0 if it is not violated in any sequence of states
and not satisfied in some sequences of states belonging to �Φt

τ(M)(s0, A).

Example 3. Consider the domain M1 and the state s0 in Ex. 2. We have that c(m, c, quote)
is violated after the execution of sendRequest at s0, since Φt

τ(M1)
(s0, {sendRequest}) =

{[s0, u, v]}. It is easy to verify that for A = [(sendRequest, 0), (sendQuote, 1)],
Φt
τ(M1)

(s0, A) = {[s0, u, v�]} where v� = u\{¬done(m, c, quote),¬quote, c(m, c, quote)}∪
{done(m, c, quote), quote,¬c(m, c, quote)}. This implies that the commitment c(m, c, quote)
is satisfied after the execution of A in s0. ��

4 Observations and Narratives

4.1 Observation Language

We consider an extension of the action language by enabling the representation of ob-

servations. We extend the signature of the language Lmt with a set of situation con-

stants S, containing two special constants, s0 and sc, denoting the initial situation and
the current situation. Observations are axioms of the forms:

ϕ at s (11) α occurs at s (12) s at t (13)
α between s1, s2 (14) s1 ≺ s2 (15)

where ϕ is a fluent formula, α is a (possibly empty) sequence of timed action snapshots,
and s, s1, s2 are situation constants which differ from sc. Axioms of the forms (11) and
(15) are called fluent facts and precedence facts, respectively. (11) states that ϕ is true in
the situation s. (15) says that s1 occurs before s2. Axioms of the forms (14) and (12) are
referred to as occurrence facts. (12) indicates that α starts its execution in the situation
s. On the other hand, (14) states that α starts and completes its execution in s1 and s2,
respectively. Axioms of the form (13) link situations to time points.

A narrative of a multi-agent system (a narrative, for short) is a pair (D,Γ) where
D is a domain description and Γ is a set of observations of the form (11)-(15) such that
{s0 ≺ s, s ≺ sc | s ∈ S } ⊆ Γ .

Observations are interpreted with respect to a domain description. While a domain
description defines a transition function that characterizes what states may be reached
when an action is executed in a state, a narrative consisting of a domain description
together with a set of observations defines the possible situation histories of the system.
This characterization is achieved by two functions, Σ and Ψ . While Σ maps situation
constants to sequences of sets of actions, Ψ picks one among the various transitions
given by ΦD(A, s) and maps sequences of sets of actions to a unique state.

43

More formally, let (D,Γ) be a narrative. A causal interpretation of (D,Γ) is a par-
tial function Ψ from action snapshots sequences to extended states, whose domain is
nonempty and prefix-closed.2 By Dom(Ψ) we denote the domain of a causal interpre-
tation Ψ . Notice that [] ∈ Dom(Ψ) for every causal interpretation Ψ . A causal model of
D is a causal interpretation Ψ such that Ψ([]) is an extended state of D and, for every
α ◦ [A] ∈ Dom(Ψ), Ψ(α ◦ [A]) ∈ ΦD(A,Ψ(α)).

A situation assignment of S with respect to D is a mapping Σ from S into the set
of sequences of action snapshots of D that satisfy the following properties: Σ(s0) = []
and, for every s ∈ S, Σ(s) is a prefix of Σ(sc).

An interpretation M of (D,Γ) is a triple (Ψ,Σ,∆), where Ψ is a causal model of
D, Σ is a situation assignment of S such that and Σ(sc) belongs to the domain of Ψ ,
and ∆ is a time assignment which maps prefixes of Σ(sc) to the set of non-negative
numbers, with the following restrictions: ∆([]) = 0 and ∆(β) ≤ ∆(γ) for every
β � γ � Σ(sc). Additionally, for every α,β s.t. β ◦ α � Σ(sc), Ψ(β ◦ α) belongs to
�Φt
D(Ψ([]), (β, 0) ◦ (α,∆(β))).

For an interpretation M = (Ψ,Σ,∆) of (D,Γ):
(i) α occurs at s is true in M if the sequence Σ(s) ◦ α is a prefix of Σ(sc);

(ii) α between s1, s2 is true in M if Σ(s1) ◦ α = Σ(s2);
(iii) ϕ at s is true in M if ϕ holds in Ψ(Σ(s));
(iv) s1 ≺ s2 is true in M if Σ(s1) is a prefix of Σ(s2);
(v) s at t is true in M if ∆(Σ(s)) = t.
Given two sequences of sets of actions α = [A1, . . . , An] and α� = [B1, . . . , Bm], we
say that α is a subsequence of α�, denoted by α � α�, if α can be obtained from α� by
(i) deleting some Bi from α�; and (ii) replacing some action a ∈ A in the remaining Bi

by noop. An interpretation M = (Ψ,Σ,∆) is a model of a narrative (D,Γ) if all facts
in Γ are true in M , and there is no other interpretation M � = (Ψ,Σ�,∆�) such that M �

satisfies condition (i) above and Σ�(sc) is a subsequence of Σ(sc). These models are
minimal, as they exclude extraneous actions. A narrative is consistent if it has a model.

We can also envision an extension of the query language by allowing queries of
the form ϕ after α at s, where the testing of the entailment starts from the states in
Ψ(Σ(s)). In the presence of time, given a narrative (D,Γ) and a fluent formula ϕ, we
are also interested in knowing whether ϕt is true (resp. false) in a situation s for some
t1 ≤ t ≤ t2. This is expressed using a query of the form

ϕ∨[t1,t2] at s (16)
We say that a query q of form (16) holds w.r.t. (D,Γ) (i.e., (D,Γ) |= q) if, for every
model M = (Ψ,Σ,∆) of (D,Γ), there exists t1 ≤ t ≤ t2 s.t. ϕ is true in Ψ(Σ(s)) + t.
4.2 Narratives and Commitments

A narrative with commitments is a triple (D,Γ, C) where (D,C) is a domain with
commitments and Γ is a collection of observations. The semantics of a narrative with
commitments (D,Γ, C) is defined by (i) translating it to the narrative (τ(M),Γ) in
Lmt where M = (D,C); and (ii) specifying models of (τ(M),Γ) to be models of
(D,Γ, C). To save space, we omit the specific details on the semantics of narratives

2 A set X of action sequences is prefix-closed if for every sequence α ∈ X , every prefix of α is
also in X . The symbol ◦ denotes list concatenation.

44

with commitments. Let N = (D,Γ, C) be a narrative and M be a model of N . We say
that a commitment c(x, y,ϕ) is:
• satisfied by M if M |= ¬c(x, y,ϕ) at sc.

• violated by M if M |= (done(c, y,ϕ) ∧ c(x, y,ϕ)) at sc.
• pending w.r.t. M if M |= ¬done(c, y,ϕ) ∧ c(x, y,ϕ) at sc.

Given a narrative N , we will say that a commitment is satisfied if it is satisfied in all
models of N ; it is strongly violated if it is violated in all models of N ; and it is weakly
violated if it is violated in some models of N .

Example 4. Consider the narrative N1 = (Dn,Γ, C2) where M1 = (Dn, C2) is the
domain description in Ex. 2 and Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺
s3 ≺ sc and the following observations:

¬paid ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
sendRequest occurs at s0 and sendAccept occurs at s2

where s0, s1, s2, s3, sc are situation constants.
A model M = (Ψ,Σ,∆) for this narrative can be built as follows:

• The sequences of actions leading to the various situations are Σ(s0)=[],
Σ(s1)=[{sendRequest}], Σ(s2)=[{sendRequest}, {sendQuote}], and

Σ(s3)=Σ(sc)=[{sendRequest}, {sendQuote}, {sendAccept}].
• Ψ([]) is the state where all fluents are false and Ψ(si) = �ΦtM1(Σ(si),Ψ([])).
• The time assignment for situation constants is given by ∆(si) = i for each i and
∆(sc) = 3. This is because each action only takes one unit of time to accomplish.

The presence of the action sendQuote can be explained by the fact that quote is the
precondition for sendAccept. We can show that M is a model of the narrative N1.

The minimality condition of models of a narrative also allows us to prove that,
for every model (Ψ �,Σ�,∆�) of M1, the situation assignment Σ� is identical to Σ and
Ψ �([]) must satisfy {¬paid,¬accept,¬quote,¬goods}. This allows us to conclude that
N1 |= (¬paid at s) for s ∈ S and N1 |= c(c,m, paid)∧¬done(c,m, paid) at sc. We
can show that the commitment c(m, c, quote) is satisfied, the commitment c(c,m, paid)
is pending, and there are no violated commitments. ✷

5 Complex Commitments and Protocols

A basic commitment represents a promise made by an agent to another one, but without
specifying a precise procedure to accomplish the commitment. Basic commitments also
do not describe complex dependencies among “promises”.

A protocol is a pair (Pid, P) where Pid is a unique identifier and P is of the form:
1. a set {ai}i∈AG , where ai ∈ Ai ∪ {any};
2. ?ϕ where ϕ is a formula;
3. p1; . . . ; pn where pi’s are protocols;
4. p1| . . . |pn where pi’s are protocols;
5. if ϕ then p1 else p2 where p1, p2 are protocols and ϕ is a formula;
6. while ϕ do p where p is a protocol and ϕ is a formula;
7. p1 < p2 where p1 and p2 are protocols.

Intuitively, Case (1) describes a request for execution of certain specific actions by cer-
tain agents (any indicates that we do not care about what that agent is doing); Case (2)

45

is a test action, which tests for the condition ϕ in the world state; Case (3) sequentially
composes protocols, i.e., it requires first to meet the requirements of p1, then those of
p2, etc.; Case (4) requires any of the protocols p1, . . . , pn to be satisfied, i.e., it repre-
sents a non-deterministic choice; Cases (5) and (6) are the usual conditional selection
and iteration over protocols; Case (7) is a partial ordering among protocols, indicat-
ing that p1 must be completed sometime before the execution of p2. According to this
definition, (p0, sendGoods < sendPayment < sendReceipt) is a protocol.

The language can be extended to allow statements that trigger complex commit-
ments, analogously to the case of basic commitments:

[a | ϕ] triggers complex commitment

A narrative can be extended with the following type of observation:
Pid at s (17)

where Pid is a protocol identifier. This observation states that the protocol referred to
by Pid has started execution at situation s. A narrative is a triple (D,Γ, C) where Γ can
contain also protocol observations.

For a trajectory h = s0α1s1 . . .αksk, s0 is called the start of h and is denoted by
start(h). h[i, j] denotes the sub-trajectory siαi+1 . . .αjsj . For every state s, traj(s)
denotes a set of trajectories whose start state is s. Given a protocol P and a trajectory
h = s0α1 . . .αksk, we say that h is an instance of (Pid, P) if
• If P = {ai}i∈AG then k = 1 and, if α1 =

�
a1i
�
i∈AG , then for each ai �= any we

have ai = a1i .
• If P = ϕ then k = 0 and s0 |= ϕ.
• If P = p1; . . . ; pn then there exists some sequence of indices i0 = 0 ≤ i1 ≤ . . . ≤
in ≤ in+1 = k such that h[iit , iit+1] is an instance of pt.

• If P = p1| . . . |pn then there exists some 1 ≤ i ≤ n such that h is an instance of pi.
• If P = if ϕ then p1 else p2 and s0 |= ϕ then h is an instance of P if it is an

instance of p1; otherwise, h must be an instance of p2.
• If P = while ϕ do p and s0 �|= ϕ then h is an instance of P if k = 0; otherwise,

there is an index 0≤i≤k s.t. h[0, i] is an instance of p and h[i, k] is an instance of P .
• If P = p1 < p2 then there exists 0 ≤ i ≤ j ≤ k such that h[0, i] is an instance of p1

and h[j, k] is an instance of p2.
(Pid, P) |= h denotes that h is an instance of (Pid, P).

We will now complete the definition of a model of a narrative with protocols. The
notion of interpretation and the entailment relation between interpretations and obser-
vations, except for the observations of type (17), are defined as in the previous section.
For an interpretation M = (Ψ,Σ,∆) of a narrative (D,Γ, C) and a protocol obser-
vation (Pid at s) ∈ C, we say that M |= (Pid at s) if there exists some instance
s0α1s1 . . .αksk of (Pid, P) where: s0 = Ψ(Σ(s)), Σ(s) ◦ [α1, . . . ,αk] is a prefix of
Σ(sc);3 and For every 1 ≤ j ≤ k, Ψ(Σ(s) ◦ [α1, . . . ,αj]) = sj . The remaining defini-
tions related to narratives can be used unchanged for narratives with protocols.

Example 5. Let N2 = (Dn,Γ, C2) where Dn is defined as in Exp. 4, C2 is defined
as in Exp. 4 with the addition of the protocol (p0, sendGoods < sendPayment <

3 We use ◦ to denote concatenation of lists.

46

sendReceipt) and Γ consists of the precedence facts s0 ≺ sc and the single obser-
vation p0 at s0. Observe that any instance of p0 contains the actions sendGoods,
sendPayment, and sendReceipt, in this order. The executability condition of sendGoods

implies that accept has to be true at the time it is executed. Together with the minimal-
ity condition of models of N2, we have that for every model M = (Ψ,Σ,∆) of N2,
Ψ(s0) |= accept. We construct one model as follows:

• Σ(s0) = [] and Σ(sc) = [{sendGoods}, {sendPayment}, {sendReceipt}];
• Ψ(s0) = s0 where accept ∈ s0, and Ψ(sc) ∈ �Φt

τ(M2)
(s0,Σ(sc));

• ∆(s0) = 0 and ∆(sc) = 3.
Observe that we can also infer that, in the above model, the customer must have paid
right after he/she received the goods (at time 1), since (i) paid must be true for sendReceipt

to be executed; and (ii) sendReceipt is executed at time 2. ✷

6 Related Works

Our proposal is related to several works on reasoning with commitments. The main
differences between our work and previous works lie in our use of an action language
and in our formulation of various problems as a query in our language; this also allows
the use of planning to satisfy pending commitments. The treatment of commitments
and the ontology for commitments adopted in this paper is largely inspired by [13, 15].
Space limitations allow us to highlight only some representative cases.

With respect to [18], our formalization of basic commitments embedded in a do-
main with commitments and in a narrative of a multi-agent system allows also for a
protocol specification that subsumes that of [18]. Similar differences are present w.r.t.
[11], which builds on dynamic temporal logic.

Our approach has some relations to [7]; using a reactive event calculus, they provide
a notion similar to narratives. Besides being different from each other in the use of an
action language, our approach considers protocols and [7] does not. The same authors,
in [16], propose a new language for modeling commitments in which existential quan-
tifier of time points are used. The use of disjunctive time specification in annotating
fluent formulas in our work allows us to avoid the issues raised in [12, 16].

[8, 9] also makes use of an action language in dealing with commitments and pro-
tocols. While we focus on formalizing commitments, the works [8, 9] use C+ in speci-
fying protocols. A protocol in our definition is similar to a protocol defined in [8, 9] in
that it restricts the evolution of the system to a certain sets of trajectories. In this sense,
our definition of protocols provides the machineries for off-line verification of proper-
ties of protocols [17]. By introducing the observation of the from “Pid at s” we allow
for the possible executions of a protocol in different states and hence different contexts.
However, we do not have the notion of a transformer as in [8] and the ability to handle
nested commitments as in [9].

The use of complex protocols in commitments has also been explored in [1].
The language Lmt is an evolution of a classical action languages, drawing features

like static causal laws from B [10], narrative and observations from L [3, 4], and time
and deadlines from ADC [5]. To the best of our knowledge, Lmt is the first action lan-
guage with all these features, embedded in the context of modeling multi-agent domains.
Lmt has similarities to the language PDDL 2.1 in that it can describe systems with du-

47

rative actions and delayed effects. Lmt has a transition function based semantics and
considers observations, ir/reversible processes and multiple agents, while PDDL 2.1
does not. It should also be mentioned that Lmt differs from the event calculus in that
it allows representing and reasoning with static causal laws and considers ir/reversible
fluents while event calculus does not. These are also the differences between Lmt and
situation calculus based approaches to dealing with duration [14].

7 Discussion and Conclusion

In this paper, we show how various problems in reasoning about commitments can be
described by a suitable instantiation of commitment actions in the language Lmt. In
particular, we show how the problem of verifying commitments or identifying pending
commitments can be posed as queries to a narrative with commitments. We show how
the language can also be easily extended to consider commitment protocols.

Since our framework provides a way to identify pending, violated, and satisfiable
commitments given a narrative (D,Γ, C), a natural question that arises is what should
the agents do to satisfy the pending commitments. The semantics of domains with com-
mitments suggests that we can view the problem of identifying a possible course of
actions for the agents to satisfy the pending commitments as an instance of the plan-
ning problem and thus can be solved by planning techniques. An investigation of the
application of multi-agent planning techniques in generating plans to satisfy pending
commitments is one of our main goals in this research in the near future.

References

1. M. Baldoni et al. Commitment-based Protocols with Behavioral Rules and Correctness.
DALT, Springer, 2010.

2. M. Balduccini and M. Gelfond. Diagnostic Reasoning with A-Prolog. TPLP, 3(4,5), 2003.
3. C. Baral et al. Representing Actions: Laws, Observations and Hypothesis. JLP, 31(1-3).
4. C. Baral et al. Formulating diagnostic problem solving using an action language with narra-

tives and sensing. KR, 311–322, 2000.
5. C. Baral et al. A transition function based characterization of actions with delayed and

continuous effects. KR, 291–302. 2002.
6. C. Castelfranchi. Commitments: From individual intentions to groups and organizations. Int.

Conf. on Multiagent Systems, pages 41–48. The MIT Press, 1995.
7. F. Chesani et al. Commitment tracking via the reactive event calculus. IJCAI, 2009.
8. A.K. Chopra and M.P. Singh. Contextualizing commitment protocol. AAMAS, pages 1345–

1352. ACM, 2006.
9. N. Desai et al. Representing and reasoning about commitments in business processes. AAAI,

1328–1333. 2007.
10. M. Gelfond and V. Lifschitz. Action languages. ETAI, 3(6), 1998.
11. L. Giordano et al. Specifying and Verifying Interaction Protocols in a Temporal Action

Logic. Journal App. Logic, 5(2), 2007.
12. A. Mallya et al. Resolving Commitments Among Autonomous Agents. ACL, 2003.
13. A. Mallya and M. Huhns. Commitments among agents. IEEE Internet Comp., 7(4), 2003.
14. R. Reiter. Knowledge in Actions. MIT Press. 2001.
15. M.P. Singh. An ontology for commitments in multiagent systems. Artif. Int. Law, 7(1), 1999.
16. P. Torroni et al. Social Commitments in Time: Satisfied or Compensated. In DALT, 2009.
17. P. Torroni et al. Modelling interactions via commitments and expectations. Handbook of

Research on Multi-Agent Systems, 263–284. IGI Global, 2009.
18. P. Yolum and M.P. Singh. Flexible protocol specification and execution: applying event

calculus planning using commitments. AAMAS, pages 527–534. ACM, 2002.

48

An Integrated Formal Framework for Reasoning about

Goal Interactions

Michael Winikoff�

Department of Information Science
University of Otago

Dunedin, New Zealand
michael.winikoff@otago.ac.nz

Abstract. One of the defining characteristics of intelligent software agents is
their ability to pursue goals in a flexible and reliable manner, and many modern
agent platforms provide some form of goal construct. However, these platforms
are surprisingly naive in their handling of interactions between goals. Most pro-
vide no support for detecting that two goals interact, which allows an agent to
interfere with itself, for example by simultaneously pursuing conflicting goals.
Previous work has provided representations and reasoning mechanisms to iden-
tify and react appropriately to various sorts of interactions. However, previous
work has not provided a framework for reasoning about goal interactions that
is generic, extensible, formally described, and that covers a range of interaction
types. This paper provides such a framework.

1 Introduction

One of the defining characteristics of intelligent software agents is their ability to pur-
sue goals in a flexible and reliable manner, and many modern agent platforms provide
some form of goal construct [1]. However, these platforms are surprisingly naive in their
handling of interactions between goals in that few implemented agent platforms pro-
vide support for reasoning about interactions between goals. Platforms such as Jason,
JACK, 2APL and many others don’t make any attempt to detect interactions between
goals, which means that agents may behave irrationally. Empirical evaluation [2] has
shown that this can be a serious issue, and that the cost of introducing limited reason-
ing to prevent certain forms of irrational behaviour is low, and consistent with bounded
reasoning.

There has been work on providing means for an agent to detect various forms of
interaction between its goals, such as resource contention [3], and interactions involving
logical conditions, both positive and negative (e.g. [4]). However, this strand of work
has not integrated the various forms of reasoning into a single framework: each form
of interaction is treated separately. Although more recent work by Shaw and Bordini
[5] does integrate a range of interaction reasoning mechanisms, it does so indirectly, by
translation to Petri nets, which makes it difficult to extend, to determine whether the

� This work was partly done while the author was employed by RMIT University.

49

reasoning being done is correct, or to relate the reasoning back to the agent’s goals and
plans (traceability).

This paper provides a framework for extending BDI platforms with the ability to
reason about interactions between goals. The framework developed improves on previ-
ous work by being generic and by being formally presented. The sorts of goal interac-
tions that we want to be able to model and reason about include the following.

Resources: goals may have resource requirements, including both reusable resources
such as communication channels, and consumable resources such as fuel or money.
Given a number of goals it is possible that their combined resource requirements ex-
ceed the available resources. In this case the agent should realise this, and only commit
to pursuing some of its goals or, for reusable resources, schedule the goals so as to
use the resources appropriately (if possible). Furthermore, should there be a change in
either the available resources or the estimated resource requirements of its goals, the
agent should be able to respond by reconsidering its commitments. For example, if a
Mars rover updates its estimate of the fuel required to visit a site of interest (it may have
found a shorter route), then the rover should consider whether any of its suspended goals
may be reactivated.

Conditions: goals affect the state of the agent and of its environment, and may also
at various points require certain properties of the agent and/or its environment. An agent
should be aware of interactions between goals such as:

– After moving to a location in order to perform some experiment, avoid moving
elsewhere until the experiment has been completed.

– If two goals involve being at the same location, schedule them so as to avoid trav-
elling to the location twice.

In summary, the challenge is to provide mechanisms that allow for:

– Specification of the dependencies between goals/plans and resources/conditions. To
be practical, dependencies must be specified in a local and modular fashion where
each goal or plan only needs to specify the resources/conditions that it is directly
affected by.

– Reasoning about conditions and resources so as to detect situations where there is
interaction between goals.

– Having a means of specifying suitable responses to detected interactions. Possible
responses include suspending or aborting a goal, changing the means by which
a goal is achieved (e.g. travelling by train rather than plane to save money), and
scheduling goals (e.g. to avoid double-booking a reusable resource).

Section 2, reviews the goal framework and agent notation that we will build on.
Section 3 presents our framework for reasoning about goal interactions, and Section 4
completes the framework by extending the agent notation. We finally return to the mo-
tivating scenarios (Section 5) and then conclude (Section 6).

2 Conceptual Agent Notation with Generic Goals

We now briefly present the conceptual agent notation (CAN) [6]. CAN is used as a
representative for a whole class of BDI agent languages which define agent execution

50

in terms of event-triggered plans, where multiple plans may be relevant to handle a
given event. It is similar to AgentSpeak(L) [7], if somewhat more expressive (it provides
additional constructs).

In order to extend goals into “interaction-aware goals” that are able to detect and
respond to interactions with other goals we will use a variant of CAN which uses the
generic goal construct of van Riemsdijk et al. [1]. Their framework defines a goal type
with certain default life-cycle transitions, and provides a mechanism for adding ad-
ditional life-cycle transitions. A goal type is defined in terms of a set C of condition-
response pairs �c, S� where c is a condition to be checked that, if true, changes the goal’s
state to S. For example, a goal to achieve p includes �p, DROPPED� which specifies that
when p becomes true the goal should be dropped. Condition-response pairs come in two
flavours: “continuous”, checked at all times, and “end”, checked only at the start/end
of plan execution. A goal instance g(C,π0, S,π) specifies a set of condition-response
pairs C, an initial plan π0, a current state S (e.g. ACTIVE, DROPPED, SUSPENDED),
and a current plan π.

The default goal life-cycle of van Riemsdijk et al. [1] is that goals are adopted into
a suspended state, and they are then repeatedly activated and suspended until they are
dropped. Active goals are subjected to means-end reasoning to find an abstract plan for
pursuing the goal, and this plan is then executed (as long as the goal remains active).

We integrate this generic goal construct into CAN, replacing its more limited goal
construct. The resulting language defines an agent in terms of a set Π of plans of the
form e : c ← π where e is the triggering event, c is a context condition (a logical
formula over the agent’s beliefs), and π is a plan body (we will sometimes refer to plan
bodies as “plans”):

π ::= � | a | e | π1;π2 | π1�π2

We denote the empty plan body by �, and an event is written as e. For simplicity we
define a generic action construct, a, which has a pre condition prea and post-condition
defined in terms of non-overlapping addition and deletion sets adda and dela. A number
of previously defined CAN constructs can be viewed as special cases of this, for example
+b can be defined as an action with pre+b = true, add+b = {b} and del+b = ∅.
Similarly, −b has pre−b = {b}, add−b = ∅, del−b = {b} and ?c has pre?c = {c} and
add?c = del?c = ∅. We assume that events e and actions a can be distinguished. An
agent configuration is a pair �B,G� where B is the agent’s current beliefs, and G is a
set of goals.

Figures 1 and 2 provide formal semantics for this language (based on previously pre-
sented semantics for CAN [1, 6, 8]) in structured operational semantics style [9] where
the premise (above the line) gives the conditions under which the transition below the
line may take place. We define a number of different transition types. Firstly, → as be-
ing a transition over a set of goals (i.e. �B,G�), and ⇒ is defined as being a transition
over a single goal/plan (i.e. �B, g� where g ∈ G). Furthermore, we use letters to denote
particular transition types (e for execute, u for update) and a superscript asterisk (∗)
denotes “zero or more” as is usual. For conciseness we abbreviate �B, g� by just g, for
example the bottom of rule 9 abbreviates �B, e� e⇒ �B�, �Γ ��, and similarly for rules
1-3.

51

S = ACTIVE

g(C,π0, S, �)
e⇒ g(C,π0, S,π0)

1
π

e⇒ π� S = ACTIVE

g(C,π0, S,π)
e⇒ g(C,π0, S,π

�)
2

�c, S�, f� ∈ C B |= c S �= S� ok(f,π)

g(C,π0, S,π)
u⇒ g(C,π0, S

�,π)
3

g ∈ G �B, g� e⇒ �B�, g��
�B,G� e→ �B�, (G \ {g}) ∪ {g�}�

4
g ∈ G g

u⇒ g�

�B,G� u→ �B, (G \ {g}) ∪ {g�}�
5

�B,G� u→
∗
�B,G�� �B,G�� � u→ �B,G���

�B,G�
u� �B, {g|g ∈ G� ∧ g �= g(C,π0, DROPPED,π)}�

6

�B,G�
u� �B,G��� �B,G��� e→ �B�, G��

�B,G� → �B�, G��
7

Fig. 1. Formal semantics for CAN with generic goals

Figure 1 defines the semantics of goals. The first two rules specify that an active
goal can be executed by replacing an empty plan with the initial plan π0 (rule 1) or
by executing the goal’s plan (rule 2) which makes use of the rules for plan execution
(Figure 2). The next rule (3) defines a single goal update: if an update condition holds,
update the goal’s state, subject to two conditions: firstly, the new state should be dif-
ferent (S �= S�), secondly, the condition c should be active given the f tag1 and the
plan π; formally ok(f,π) ≡ ((f = end ∧ π = �) ∨ (f = mid ∧ π �= �) ∨ f = all).
Rules 4 and 5 define respectively execution (rule 4) and update (rule 5) of a set of goals
by selecting a single goal and respectively executing it or updating it. Rule 6 defines a
complete update cycle

u� which performs all possible updates, and deletes goals with a
state of “DROPPED”. Rule 7 defines a single top-level transition step of a set of goals:
first perform all possible updates (

u�) and then perform a single execution step (e→).
We require that all possible updates are done in order to avoid ever executing a goal that
has a pending update to a non-active state.

Figure 2 defines a single execution step (e⇒) for various CAN plan constructs. Rule
8 defines how an action a is executed in terms of its precondition and add/delete sets.
Rule 9 defines how an event is replaced by the set of guarded relevant plan instances
�Γ �. Rule 10 selects an applicable plan instance from a set of plans, using the auxiliary
construct � to indicate “try π, but if it fails, use the set of (remaining) relevant plans”.
Rule 11 simply defines the semantics of sequential execution “;”, rules 12 and 13 define
parallel execution “�”, and rules 14 and 15 define “try-else” (�). The function denoted
by an overline (e.g. π1;π2) cleans up by removing empty plan bodies: �;π = ��π =
π�� = π, and � � π = �, otherwise π = π.

1 We have compressed the two sets C and E of van Riemsdijk et al. [1] into a single set of
triples �c, S, f� where f is a flag specifying when the condition should be checked: when the
plan is empty (end), when the plan is non-empty, i.e. during execution (mid) or at all times
(all). E.g. �c, S� ∈ C in their framework translates to �c, S, all�.

52

B |= prea

�B, a� e⇒ �(B ∪ adda) \ dela, ��
8

Γ = {cθ:πθ | (e�:c←π) ∈ Π ∧ θ = mgu(e, e�)}
e

e⇒ �Γ �
9

(ci:πi) ∈ Γ B |= ciθ πiθ
e⇒ π�

�Γ � e⇒ πiθ � �Γ \ {ci:πi}�
10

P1
e⇒ P �

P1;P2
e⇒ P �;P2

11
P1

e⇒ P �

P1�P2
e⇒ P ��P2

12

P2
e⇒ P �

P1�P2
e⇒ P1�P �

13
P1

e⇒ P �

P1 � P2
e⇒ P � � P2

14
P1 � e⇒ P � P2

e⇒ P �
2

P1 � P2
e⇒ P2

15

Fig. 2. Formal semantics for CAN plan constructs

Note that the semantics model failure as an inability to progress, i.e. a failed plan
body π is one where π �⇒ π�. This simplifies the semantics at the cost of losing the dis-
tinction between failure and suspension, and creating a slight anomaly with parallelism
where given π1�π2 we can continue to execute π2 even if π1 has “failed”. Both these
issues are easily repaired by modelling failure separately (as is done by Winikoff et al.

[6]), but this makes the semantics considerably more verbose.
We can now define a (very!) simple Mars rover that performs a range of experiments

at different locations on the Martian surface. The first plan below for performing an
experiment of type X at location L firstly moves to the appropriate location L, then
collects a sample using the appropriate measuring apparatus.

exp(L,X) : ¬locn(L) ← goto(L) ; sample(X)
exp(L,X) : locn(L) ← sample(X)

We assume for simplicity of exposition that goto(L), and sample(X) are primitive
actions, but they could also be defined as events that trigger further plans. The action
goto(L) has precondition ¬locn(L) and add set {locn(L)} and delete set {locn(x)}
where x is the current location.

3 Reasoning about Interactions

We provide reasoning about interactions between goals by:

1. Extending the language to allow goal requirements (resources, conditions to be
maintained etc.) to be specified (Section 3.1).

2. Providing a mechanism to reason about these requirements, specifically by aggre-
gating requirements and propagating them (Section 3.2).

3. Defining new conditions that can be used to specify goal state transitions, and
adding additional state transition types that allow responses to detected interac-
tions to be specified. These are then used to extend CAN with interaction-aware
goals (Section 4).

53

3.1 Specifying Requirements

There are a number of ways of specifying requirements. Perhaps the simplest is to re-
quire each primitive action to specify its requirements. Unfortunately this is less flexible
since it does not allow the user to indicate that a plan, perhaps combining a number of
actions, has certain requirements. We thus extend the language with a construct τ(π, R)
which indicates that the plan π is tagged (“τ”) with requirements R. It is still possible to
annotate actions directly, τ(a,R), but it is no longer the only place where requirements
may be noted.

However, in some cases, the requirements of a goal or plan can only be determined
in context. For example, the fuel consumed in moving to a location depends on the
location, but also on the current location, which is not known ahead of time. We thus
provide a second mechanism for dynamic tagging where the requirements of a goal/plan
are provided in terms of a procedure that computes the requirements, and a condition
that indicates when the procedure should be re-run. This is denoted τ(π, f, c) where f
is a function that uses the agent’s beliefs to compute the requirements, and c is a re-
computation condition. Once the requirements have been propagated (see next section)
this becomes T (π, R, f, c) (the difference between τ and T is discussed in Section 3.2)
we need to retain f and c so the requirements can be re-computed (if c becomes true).
Otherwise T (π, R, f, c) behaves just like T (π, R).

We define R as being a pair of two sets, �L,U�, representing a lower and upper
bound. For convenience, where a requirement R is written as a set R = {. . .} then
it is taken to denote the pair �R,R�. Each of the sets can be defined in many ways,
depending on the needs of the domain and application. Here we define each set as
containing a number of the following requirement statements:

– re(r/c, t, n) where the first argument in the term is either r or c, denoting a reusable
or consumable resource, t is a type (e.g. fuel), and n is the required amount of the
resource.

– pr(c) where c is a condition that must be true at the start of execution (i.e. a pre-
condition)

– in(c) where c is a condition that must be true during the whole of execution (in-
cluding at the start). For the computation of summaries we also define a variant ins

which means that c must be true somewhere during the execution but not necessar-
ily during the whole execution.

In the Mars rover example we have the following requirements:

1. goto(L) computes its requirements based on the distance between the destination
and current location. This needs to be re-computed after each goto. We thus specify
the requirements of the goto(L) action as τ(goto(L), f(L), c) where f(L) looks up
the current location locn in the belief base, and then computes the distance between
it and L; and where c = ∆locn(x) (informally, ∆c means that the belief base has
changed in a way that affects the condition c; formally, if B is the old belief base
and B� the updated belief base, then ∆c ≡ ¬(B |= c ⇔ B� |= c));

2. sample(X) requires that the rover remains at the desired location, hence we specify
an in-condition (in) that the location (locn) remains L: τ(sample(X), {in(locn(L))}).

54

We thus provide requirements by specifying the following plan body (for the first plan):
τ(goto(L), f(L), c); τ(sample(X), {in(locn(L))})

3.2 Propagating Requirements

We define a function Σ that takes a plan body and tags it with requirements by propa-
gating and aggregating given requirements. We use ε to denote the empty requirement.
The function returns a modified plan which contains tags of the form T (π, R): this is
different from τ(π, R) in that τ is used by the user to provide requirements for a plan,
not including the requirements of the plan’s sub-plans, but T does include the require-
ments of sub-plans. Observe that Σ is defined compositionally over the plan, and that
computing it is not expensive in the absence of recursive plans [2].

Σ(�) = T (�, ε)
Σ(a) = T (a, {pr(prea)})
Σ(e) = T (e, �L1 � . . . � Ln, U1 � . . . � Un�), where T (π�

i, �Li, Ui�) = Σ(πi)
and π1 . . .πn are the plans relevant for e.

Σ(π1;π2) = T (π�
1;π

�
2, �L1 � L2, U1 � U2�), where T (π�

i, �Li, Ui�) = Σ(πi)
Σ(π1||π2) = T (π�

1||π�
2, �L1 � L2, U1 � U2�), where T (π�

i, �Li, Ui�) = Σ(πi)
Σ(π1 � π2) = T (π�

1 � π
�
2, �L1, U1 � U2�), where T (π�

i, �Li, Ui�) = Σ(πi)
Σ(�Γ �) = T (�Γ ��, �L1 � . . . � Ln, U1 � . . . � Un�), where T (π�

i, �Li, Ui�) = Σ(πi)
and Γ = {b1:π1, . . . , bn:πn} and Γ � = {b1:π�

1 . . . , bn:π
�
n}.

Σ(τ(π, �L,U�)) = T (π�, �L� ⊕ L,U � ⊕ U�), where T (π�, �L�, U ��) = Σ(π)
Σ(τ(π, f, c)) = Σ(T (π, f(B), f, c)), where B is the agent’s beliefs.
Σ(T (π, R)) = if π� = T (π��, ε) then T (π��, R) else π�, where π� = Σ(π)

The requirements of an action are simply its pre-condition. The requirements of an
event are computed by taking the requirements of the set of relevant plans and combin-
ing them: the best case is the minimum of the available plans (�), and in the worse case
(represented by the upper bound) we may need to execute all of the plans and so we take
the (unspecified sequential) maximum of the requirements of the available plans using
�. The requirements for π1;π2 and π1�π2 are determined by computing the require-
ments of π1 and of π2 and then combining them appropriately with auxiliary functions
� and � which are both variants on �: � treats pre-conditions of the first requirement
set as pre-conditions, since we do know that they occur at the start of execution; and �
is like � except that, because execution is in parallel, we cannot reuse resources. The
lower bound requirements for π1 � π2 are just the (lower bound) requirements for π1,
since, if all goes well, there will be no need to execute π2. However, in the worse case
(upper bound) both π1 and π2 will need to be executed (sequentially, hence �). The
requirements for a user-tagged plan, τ(π, R) are determined by computing the require-
ments of π and then adding (⊕) this to the provided R. Finally, when re-computing the
requirements of T (π, R) we simply replace R with the newly computed requirements.

The case for events (e) is interesting: in the worst case, we may need to execute
all of the available plans. In the best case, only one plan will be executed. However,
when computing the initial estimate of requirements we don’t know which plans are
applicable, so we overestimate by using all relevant plans, and later update the estimate
(see below).

55

The function Σ is defined in terms of a number of auxiliary functions: ⊕, �, �, �
and �. By defining what can appear in R as well as these functions the agent designer
can create their own types of reasoning. We have defined an example R in the previous
section, and briefly and informally given the intended meaning of the auxiliary functions
above. The appendix contains precise formal definitions of these auxiliary functions.

We integrate requirements propagation into the operational semantics of CAN by
defining operational semantics for the T (π, R) construct which captures the process of
updating requirements:

π ⇒ π� π �= � R �= ε

T (π, R) ⇒ Σ(π�)

π �= �

T (π, ε) ⇒ π T (�, R) ⇒ �

The first rule is the general case: if π executes one step to π� then T (π, R) can also
be stepped to Σ(π�). The next rule specifies that tagging with an empty requirement
set can be deleted. The final rule allows an empty plan body with requirements to be
resolved to the empty plan body. Finally, we modify the goal initialisation rule (first
rule in figure 1) to compute requirements by replacing the right-most π0 with Σ(π0):

S = ACTIVE

g(C,π0, S, �)
e⇒ g(C,π0, S,Σ(π0))

Alternatively, as is done by Thangarajah et al. [3], we could modify the agent’s plan set
by replacing π with Σ(π) at compile time.

Returning to the Mars rover, let π = τ(goto(L), f, c); τ(sample(X), {in(locn(L))})
then the following requirements are computed (recall that T (π, R) where R is a set is
short for T (π, �R,R�), and we assume that f returns 20 for the fuel requirement of
reaching L from the starting location):

Σ(π) = T (π2;π3, {re(c, fuel , 20), ins(locn(L)), ins(¬locn(L))})
π2 = T (goto(L), {re(c, fuel , 20), pr(¬locn(L))}, f, c)
π3 = T (sample(X), {in(locn(L))})

After the first action (π2) has completed we have:
Σ(π�) = T (π3, {in(locn(L)), pr(¬locn(L))}).

4 Using Requirements to Deal with Interactions

The work of the previous sections allows us to specify requirements, and to compute
and update them. In this section we consider how this information can be used to avoid
undesirable interactions and (attempt to) ensure desirable interactions. For goals, we
do this by defining a new goal type, an “interaction-aware goal”, which has additional
condition-response triples. But first, we define a number of new conditions, and new
responses.

56

4.1 Conditions

The language of conditions is extended with new constructs: rok (“resources are ok”),
culprit , and interfere

The new condition rok(G) means that there are enough resources for all of the
goals in G. Informally we define rok(G) by computing the resource requirements of
the active goals in G and comparing it with the available resources. If the available
resources exceed the resource requirements of the active goals, then clearly rok(G) is
true. If not, then we need to work out which goals should be suspended. We define the
condition culprit(g) to indicate that the goal g is responsible for a lack of sufficient
resources. Informally, culprit(g) is true if removing g from G makes things better2 i.e.,
culprit(g) ≡ rok(G \ {g}) ∧ ¬rok(G). See the appendix (definitions 4 and 5) for the
(correct) formal definitions of rok and culprit .

The new condition interfere(g) is true if g is about to do something that interferes
with another goal. Informally, this is the case if one of the actions that g may do next
(denoted na(g), defined in the appendix) has an effect that is inconsistent with another
goal’s in-condition (where both goals are active). Formally interfere(g) ≡ ∃g� ∈ (G \
{g}), c ∈ getin(g�), a ∈ na(g) . g.S = g�.S = ACTIVE ∧ eff a ⊃ ¬c where G is
the agent’s goals, we use g.S to refer to the state of the goal g, we use ⊃ to denote
logical implication (to avoid confusion with transitions), and we define getin to return
the in-conditions of a goal, plan or requirements set:

getin(g(C,π0, S,π)) = getin(π)

getin(T (π, �L,U�)) = {c | in(c) ∈ L}
getin(π) = getin(Σ(π)), if π �= T (π�, R)

We also define eff a to be a logical formula combining adda and dela as a conjunction
of atoms in adda and the negations of atoms in dela. For example, for goto(L) we have
eff goto(L) = locn(L) ∧ ¬locn(x).

We can also define a similar condition that detects interference with pre-conditions.
In order to avoid suspending goals unnecessarily, we only consider interference to be
real if the pre-condition being affected currently holds. In other words, if the precondi-
tion c of goal g� does not currently hold, then there is not a strong reason to suspend goal
g which makes c false because c is already false. This gives interferepre(g) ≡ ∃g� ∈
(G \ {g}), c ∈ getpre(g�), a ∈ na(g) . B |= c ∧ g.S = g�.S = ACTIVE ∧ eff a ⊃ ¬c
where getpre retrieves the pre-conditions, similarly to getin (see appendix definition
2).

4.2 Responses

Responses to interactions can be either “subtle”: influencing existing choices, but not
changing the semantics, i.e. “subtle” responses can be viewed as refining the semantics
by reducing non-determinism. Alternatively, responses can be “blunt” responses which
change the semantics.

2 In fact, as discussed in the appendix, this isn’t entirely correct.

57

So-called “subtle” responses apply where there is a choice to be made in the exe-
cution. This is the case in the following places: when selecting which (top-level) goal
to execute, when selecting which plan to use from a set of alternatives (�Γ �), and when
selecting which parallel plan to execute (π1�π2). Note that only the first case involves
goals: the second and third involve plan bodies.

Influencing the choice of goal can be done by a range of means, including suspend-
ing goals and giving certain goals higher priority. Suspending goals can be done using
the generic goal mechanism. In order to allow a goal to be given a higher priority we
define a new response (not goal state) PICKME (below).

Influencing the selection of a plan from a set of possible plans (�Γ �) can be done
by modifying the selection rule (it can’t be done using the generic goal mechanism
because plan selection occurs within a single goal). For example, we could require that
an applicable plan is not selected if a cheaper plan exists. This can be formalised by
adding to the rule for plan selection the following additional condition (the relation ≺
and function getres are defined in the appendix in definitions 1 and 3):

(ci:πi) ∈ Γ B |= ciθ ¬∃(cj :πj) ∈ Γ.getres(πj) ≺ getres(πi)

�Γ � e⇒ πiθ � �Γ \ {ci:πi}�

However, we do not consider plan selection to be particularly useful in preventing re-
source issues, because the set of applicable plans will typically not contain a wide range
of options.

The third case, influencing the scheduling of parallel plans (π1�π2) we consider to
be less useful and leave it for future work.

Turning now to the so-called “blunt” responses we have a number of possible re-
sponses including: (a) dropping a goal, and (b) adding a new goal. The former may be
used to permanently eliminate a goal that cannot be achieved (although suspension may
be a more sensible response). The second may be used to create a new goal (or plan),
for example, if a resource shortage is detected, a plan may be created to obtain more of
the resource (e.g. re-fuelling).

We thus define the following additional responses:

– !π which executes π (we can define synchronous and asynchronous variants of this)
– PICKME which specifies that this goal should be given priority when selecting

which goal to execute (but, since more than one goal may be flagged as PICKME,
cannot guarantee that the goal will be selected next). More generally, we could have
a priority mechanism and have responses that raise/lower the priority of the goal.

These are defined formally as follows. Although they appear in condition-response
triples, the semantics of these two constructs aren’t just changing the state of the goal,
and so we revise the existing rule so it does not apply to these two responses:

�c, S�, f� ∈ C S� ∈ asd B |= c S �= S� ok(f,π)

g(C,π0, S,π)
u⇒ g(C,π0, S�,π)

3�

where asd = {ACTIVE, SUSPENDED, DROPPED}.

58

Because we want a PICKME to only last while the corresponding condition is true,
we do not update the goal’s state to PICKME, but instead modify the selection rule (rule
4) by adding the following additional condition (premise, where we use ⊃ to denote
logical implication) which requires that if any active goals are prioritised, then the se-
lected goal must be a prioritised one: ((∃g(C �,π�

0, ACTIVE,π�) ∈ G . �c�, PICKME� ∈
C � ∧ B |= c�) ⊃ (�c, PICKME� ∈ g.C ∧B |= c)). Where g is the goal being selected,
and where we use g.C to denote the C set of g (i.e. g = g(C,π0, S,π)).

We now turn to !π. A response of the form !π transforms the goal from g(C,π0, S,π�)
to the variant gπ(C,π0, S,π�):

�c, !π� ∈ C B |= c

g(C,π0, S,π�)
u⇒ gπ(C,π0, S,π�)

16

We then define the semantics of this as follows:

π
e⇒ π1

gπ(C,π0, S,π�)
e⇒ gπ1

(C,π0, S,π�)
17

where g�(C,π0, S,π) = g(C,π0, S,π), and for g = gπ(. . .) with π �= � we have
g = g.

4.3 Interaction-Aware Goals

Finally, we are in a position to define a new goal type which uses the conditions and
responses defined, along with the underlying infrastructure for specifying and propagat-
ing requirements, in order to deal with interactions as part of the agent’s goal reasoning
process.

We extend goals into interaction-aware goals by simply adding to their C set the
following condition-response triples, where culprit is short for culprit(g) with g be-
ing the current goal, and similarly for interfere. The condition notculprit differs from
¬culprit in that it includes the current goal g in the computation of resources (whereas
culprit treats it as not having any resource requirements, since it is suspended). For-
mally notculprit(g(C,π0, SUSPENDED, π)) ≡ ¬culprit(g(C,π0, ACTIVE,π)).

I = {�culprit , SUSPENDED, all�, �notculprit , ACTIVE, all�,
�interfere, SUSPENDED, all�, �¬interfere, ACTIVE, all�}

An alternative, if there is a plan πr which obtains more of a needed resource, is to use
it instead of suspending: I � = {�culprit , !πr, all�, . . .}.

5 Motivating Scenarios Revisited

We now consider how the different forms of reasoning discussed at the outset can be
supported. We define

gexp(l, x) ≡ g(I ∪ {�locn(l), PICKME, all�}, exp(l, x))

59

that is, gexp(l, x) is an interaction-aware goal which uses the initial plan body (which
is actually just an event) exp(l, x). Finally, we suppose that the Mars rover has been
asked to perform three experiments: experiment 1 of type T1 at location LA (i.e. g1 =
gexp(LA, T1)) experiment 2 of type T1 at location LB (i.e. g2 = gexp(LB , T1)), and
experiment 3 of type T2 at location LA (i.e. g3 = gexp(LA, T2)).

Let us now briefly consider how the Mars rover deals with the following cases of
interaction:

1. A lack of resources causes a goal to be suspended, and, when resources are suf-

ficient, resumed: since the goals are interaction-aware, suspension and resumption
will occur as a result of the conditions-responses in I. Specifically, should the re-
sources available be insufficient to achieve all goals, then some of goals will be
suspended by the �culprit , SUSPENDED, all� condition-response triple. Note that
since updates are performed one at a time, this will only suspend as many goals as
are needed to resolve the resource issue.
If further resources are obtained, then the suspended goals will be re-activated
(�notculprit , ACTIVE, all�). In the case of reusable resources, the suspension/re-
sumption mechanism will realise scheduling of the reusable resources amongst
goals: once a goal has completed and releases the (reusable) resources it has been
using, another goal that requires these resources can then resume.

2. A lack of resources, instead of suspending, may trigger a plan to obtain more

resources: if the goals are defined using I � rather than I, then a lack of resources
will cause a plan body πr to be used to obtain more resources. In this domain,
where the main resource is fuel, a sensible choice for πr would be to re-fuel.

3. Once the Mars rover has moved to location LA, it avoids moving again until

the sampling at LA has completed: once goal g1 has executed goto(LA) then,
as discussed at the end of Section 3.2, its requirement is updated to include the
in-condition locn(LA). Should goal g2 get to the point of being about to exe-
cute its action goto(LB), then this next action interferes with the in-condition,
and goal g2 will then be suspended, using the condition-response triple �interfere,
SUSPENDED, all�, preventing the execution of goto(LB). Once g1 has concluded
the experiment, then it no longer has locn(LA) as an in-condition, and at this point
g2 will be re-activated (�¬interfere, ACTIVE, all�).

4. Once it has moved to location LA, the rover also performs g3 before moving

elsewhere: when it reaches LA the PICKME response of g3 (and g1) is triggered
which prioritises selecting these goals over g2, and thus the rover will remain at LA

until g1 and g3 are both completed.

As can be seen, interaction-aware goals — which are defined in terms of the addi-
tional condition and response types, which themselves rest on the resource specification
and propagation mechanism defined in Section 3 — are able to deal with a range of
goal-interaction scenarios.

6 Discussion

We have provided a framework for reasoning about goal interactions that is: generic,
i.e. can be customised to provide the reasoning that is needed for the application at hand;

60

presented formally, and hence precisely, avoiding the ambiguity of natural language;
and that integrates different reasoning types into one framework. We have also defined
a wider range of conditions and responses than previous work.

Our work can be seen as a rational reconstruction of earlier work [3, 4] which for-
malises and makes precise the English presentation in these papers. However, we do
more than just formalise existing work: we provide a generic framework that allows for
other forms of reasoning to be added, and for the existing forms to be integrated.

In addition to work on reasoning about interactions between an agent’s goals, there
has also been work on reasoning about interactions between the goals of different agents
[10, 11]. This work has a somewhat different flavour in that it is concerned with the cost
of communication between agents. However, in some other aspects, such as the use of
requirements summaries, it is similar to the single agent case.

Also related is the work by Horty and Pollack [12] which looked at the cost of
plans in context (i.e. taking into account the agent’s other plans). Although the paper
is ostensibly concerned with cost, they do also define various notions of compatibility
between plans. However, their plans are composed only of primitive actions.

Thangarajah et al. [13] consider the goal adoption part of goal deliberation: should a
candidate goal (roughly speaking, a desire) be added to the agent’s set of adopted goals?
They embed the goal adoption problem in a BDI setting into a soft constraint optimi-
sation problem model and discuss a range of factors that can be taken into account in
making decisions. However, while promising, this is early work: the presentation is in-
formal and a precise definition of the mapping to soft constraint optimisation problems
is not given.

There are three main directions for future work that we would like to pursue: im-
plementation, evaluation, and extending to further interaction scenarios.

What this paper presents can be seen as an extended BDI programming language
with interaction-aware goals. One area for future work is how to implement this ex-
tended language using a standard BDI platform (such as Jason, Jadex, JACK etc.) that
doesn’t have a generic goal construct, or resource/condition management. One possi-
bility is to transform the agent program, Π , into a variant that uses existing constructs
(such as maintenance goals) to realise the desired behaviour. Another possibility, if the
platform provides an API for manipulating the state of goals, is to realise generic goals
by two parallel goals: one that executes the plan π, and another (with higher priority)
that monitors for conditions and updates the first goal’s state. An implementation would
allow for an evaluation to be done in order to assess the benefits, and also the real prac-
tical computational cost.

An interesting scenario which we have not yet investigated is “achieve then main-
tain”, where a particular condition is achieved (e.g. booking a hotel), but then for some
period of time (e.g. until the travel dates) the condition is maintained and updated should
certain changes take place (e.g. budget reductions or changes to travel dates).

References

1. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: A unifying frame-
work. In: Proceedings of the Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS). (2008) 713–720

61

2. Thangarajah, J., Padgham, L.: Computationally effective reasoning about goal interactions.
Journal of Automated Reasoning (2010) 1–40

3. Thangarajah, J., Winikoff, M., Padgham, L., Fischer, K.: Avoiding resource conflicts in
intelligent agents. In van Harmelen, F., ed.: Proceedings of the 15th European Conference
on Artificial Intelligence, IOS Press (2002) 18–22

4. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference between
goals in intelligent agents. In: Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI). (2003) 721–726

5. Shaw, P.H., Bordini, R.H.: Towards alternative approaches to reasoning about goals. In Bal-
doni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M., eds.: Declarative Agent Languages
and Technologies (DALT). (2007) 164–181

6. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2002), Toulouse, France (2002) 470–
481

7. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In
de Velde, W.V., Perrame, J., eds.: Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAA-
MAW’96), Springer Verlag (1996) 42–55 LNAI, Volume 1038.

8. Sardina, S., Padgham, L.: Goals in the context of BDI plan failure and planning. In: Pro-
ceedings of the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS). (2007) 16–23

9. Plotkin, G.: Structural operational semantics (lecture notes). Technical Report DAIMI FN-
19, Aarhus University (1981 (reprinted 1991))

10. Clement, B.J., Durfee, E.H.: Identifying and resolving conflicts among agents with hierar-
chical plans. In: AAAI Workshop on Negotiation: Settling Conflicts and Identifying Oppor-
tunities, Technical Report WS-99-12. (1999)

11. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical planning agents
using summary information. In: Proceedings of the Sixteenth National Conference on Arti-
ficial Intelligence. (1999) 495–502

12. Horty, J.F., Pollack, M.E.: Evaluating new options in the context of existing plans. Artificial
Intelligence 127(2) (2001) 199–220

13. Thangarajah, J., Harland, J., Yorke-Smith, N.: A soft COP model for goal deliberation in
a BDI agent. In: Proceedings of the Sixth International Workshop on Constraint Modelling
and Reformulation (ModRef). (September 2007)

A Definitions

Definition 1 (≺). We define an ordering on requirement sets as follows. We say that R1

is less than R2 (R1 � R2) if, intuitively, R2 requires more than R1. Formally, we define

this by recognising that for a given condition c we have that ins(c) � pr(c) � in(c),
i.e. a requirement that a condition hold for some unspecified part of the execution is

less demanding than insisting that it hold at the start, which in turn is less demanding

than insisting that it hold during the whole of execution (including at the start). We thus

define R1 � R2 to hold iff:

– re(f, t, n1) ∈ R1 ⊃ (r(f, t, n2) ∈ R2 ∧ n1 ≤ n2)
– in(c) ∈ R1 ⊃ (in(c�) ∈ R2 ∧ c� ⊃ c)

62

– pr(c) ∈ R1 ⊃ ((pr(c�) ∈ R2 ∨ in(c�) ∈ R2) ∧ c� ⊃ c)
– ins(c) ∈ R1 ⊃ ((ins(c�) ∈ R2 ∨ pr(c�) ∈ R2 ∨ in(c�) ∈ R2) ∧ c� ⊃ c)

We next define na (“next action”) which takes a plan body and returns a set of
possible next actions. Note that na is an approximation: it doesn’t attempt to predict
which actions might result from a set of plans �Γ �. A more accurate approach is to wait
until an action is about to be executed before checking for interference.

na(a) = {a}
na(π1;π2) = na(π1)

na(π1�π2) = na(π1) ∪ na(π2)

na(π1 � π2) = na(π1)

na(e) = ∅
na(�Γ �) = ∅

Definition 2 (getpre). getpre returns the pre-condition of a goal/plan.

getpre(g(C,π0, S,π)) = getpre(π)

getpre(T (π, �L,U�)) = {c | pr(c) ∈ L}
getpre(π) = getpre(Σ(π)), if π �= T (π�, R)

Definition 3 (getres). Calculating resource requirements only uses active goals, we

ignore goals that are suspended or are executing responses triggered by !π.

getres(g(C,π0, S,π)) = getres(π), if S = ACTIVE

getres(g(C,π0, S,π)) = ε, if S �= ACTIVE

getres(gπ(C,π0, S,π)) = ε

getres(T (π, �L,U�)) = {re(f, t, n) | re(f, t, n) ∈ U}
getres(π) = getres(Σ(π)), if π �= T (π�, R)

Definition 4 (rok). In defining rok(G) we need to sum the resource requirements of the

set of goals, and then check whether the available resources are sufficient. As discussed

by Thangarajah et al. [3], there are actually a number of different cases. Here, for

illustrative purposes, we just consider the case where there are sufficient resources to

execute the goals freely as being an rok situation. We thus define the collected resource

requirements of a goal set G = {g1, . . . , gn} as being getres(G) = U1 � . . .�Un where

Ui = getres(gi). Finally, we define rok(G) ≡ getres(G) � R where R is the available

resources.

Definition 5 (culprit). In defining culprit(g) one situation to be aware of is where

removing a single goal is not enough. In this situation the definition given in the body

of the paper will fail to identify any goals to suspend. To cover this case we need a

slightly more complex definition. Informally, the previous definition is correct except

where there does not exist a single goal that can be removed to fix the resource issue

(¬∃g ∈ G.rok(G \ {g})). In this case we consider culprit(g) to be true if removing

g and one other goal will fix the problem. This generalises to the situation where one

must remove n goals to fix a resource issue:

63

culprit(g) ≡ ∃n . ((∃G� ⊆ G.|G�| = n ∧ rok(G \G�) ∧ ¬rok(G) ∧ g ∈ G�)
∧ (¬∃G�� ⊆ G.|G��| < n ∧ rok(G \G��) ∧ ¬rok(G)))

We now turn to defining the various auxiliary functions that are needed. We assume
that requirements definitions, Ri, are normalised, i.e. that they contain (a) exactly one
re(f, t, n) for each resource type t that is of interest (where n may be 0); and (b) exactly
one in, one ins and one pr. We also assume that resource reusability is consistent, i.e.
that a resource type t is not indicated in one place as being consumable and in another
as being reusable.

The intended meaning of the auxiliary functions (based on where they are used in
the definition of Σ) is as follows: ⊕ adds resources without changing the intervals; �
is used to collect the upper bound for a set of plans which are executed sequentially
in an unknown order; � computes the minimal (lower bound) requirements of a set of
alternative plans; � corresponds to a sequential join of two intervals, and � corresponds
to the parallel composition of two intervals. Formally, they are defined as follows:

R1 ⊕R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∧ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∧ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∧ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 �R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2

∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}

R1 �R2 =
{re(f, t,min(n1, n2)) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{in(c1 ∨ c2) | in(c1) ∈ R1 ∧ in(c2) ∈ R2} ∪
{ins(c1 ∨ c2) | ins(c1) ∈ R1 ∧ ins(c2) ∈ R2} ∪
{pr(c1 ∨ c2) | pr(c1) ∈ R1 ∧ pr(c2) ∈ R2}

R1 � R2 =
{re(r, t,max(n1, n2)) | re(r, t, n1) ∈ R1 ∧ re(r, t, n2) ∈ R2} ∪
{re(c, t, n1 + n2) | re(c, t, n1) ∈ R1 ∧ re(c, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5) | in(c1) ∈ R1 ∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1

∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R2} ∪ {pr(c) | pr(c) ∈ R1}

R1 � R2 =
{re(f, t, n1 + n2) | re(f, t, n1) ∈ R1 ∧ re(f, t, n2) ∈ R2} ∪
{ins(c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6) | in(c1) ∈ R1

∧ in(c2) ∈ R2 ∧ ins(c3) ∈ R1 ∧ ins(c4) ∈ R2 ∧ pr(c5) ∈ R1 ∧ pr(c6) ∈ R2}

64

A Distributed Treatment of Exceptions in Multiagent
Contracts (Preliminary Report)

Özgür Kafalı and Pınar Yolum

Department of Computer Engineering
Boğaziçi University

34342, Bebek, İstanbul, Turkey
ozgurkafali@gmail.com, pinar.yolum@boun.edu.tr

Abstract. Commitments are key to contract-based multiagent systems. When
agents enter a contract, they project the outcome of the contract based on its
content as well as their past experiences and the current world state. We model
an agent’s projections as individual world states, e.g., a satisfactory state. If the
contract is indeed executed to satisfy these projections, then the agent is said
to complete the contract successfully. If not, we expect the agent to take proper
action. This paper formalizes the notion of projection and its relations, to contract
execution. Accordingly, we propose a satisfiability relation to check if an agent’s
state complies with its projections. We then relate satisfiability to the occurrence
of exceptions.

1 Introduction

Business interactions among parties are governed by contracts. Contracts are (desirably)
unambiguous specifications that precisely define business rules among interacting par-
ties under different circumstances. Commitments [13, 18, 6, 16, 17] are proven to be a
significant element for modeling contracts among agents. When agents enter contracts,
they can make informed projections about the future. If interactions do not evolve as
projected, agents can go back to their commitments to examine what has gone wrong
and in principle find ways to correct the execution [2, 9].

We are interested in a distributed multiagent system, where each agent has a local
view of the environment. Each agent represents this local view through a state that cap-
tures the agent’s perception of its environment through commitments and propositions.
Similar to these local views, each agent has a projected state based on the commitments
it has as well as its local view of the world. These projected states represent an agent’s
expectations from the future. Given these representations, an immediate question is
whether it is possible to ever end up in these projected states. This question is important
because a negative answer to this question implies that the world cannot evolve as the
agent projects as it will, and hence an exception on the agent’s side will take place.
Example 1 demonstrates a common delivery scenario from e-commerce.

Example 1 Two agents, a customer and a merchant, have the following conditional
commitment; if the customer pays for an item, then the merchant will deliver the item
within three business days. Assume that the customer pays on Monday, so the merchant
is committed to deliver by Thursday.

65

Following this example, a typical understanding of an exception is that if by Thurs-
day the item is not delivered to the customer, an exception occurs. This typical in-
terpretation of an exception corresponds to contract violation. While this is certainly
important, an exception is not always a synonym for violation. Hence, there could be
other cases where the contract is not violated but an exception occurs and vice versa.
Let us illustrate these points following Example 1.

– Assume that there is a bad snow storm. The customer predicts that the roads will
be closed due to the storm and that the delivery will be late. Hence, even though it
is Friday (and the contract is violated), the customer does not signal an exception
and does not take any actions.

– Assume that the customer is well aware that the merchant always delivers one or
two days earlier than promised. Hence, even though it is only Wednesday (and the
contract is not violated), the customer signals an exception and takes an action to
handle the exception, e.g., contacts the merchant.

Hence, it is important to capture agents’ projections about the outcome of contracts
and to compare the reality to these projections. This paper develops a principled ap-
proach for verifying whether the commitments the agent is currently involved in satisfy
the agent’s projections about its future. In order to relate agents’ states with their projec-
tions, we propose a satisfiability relation. This relation compares states by comparing
its commitment and proposition elements pairwise. Consider the first case described in
the above examples: since there is a snow storm, and the customer learns about this,
she makes a projection (let us say on Thursday) that her contract for delivery will be
violated on Friday. When it is Friday, the customer will compare her state with her
projection. Although the contract is violated, her state will still satisfy her projection,
because, she was not expecting delivery anyway. Hence, even though there is a contract
violation, the customer will not immediately take action. A similar reasoning applies
for the second case. We show how this and other cases are handled in practice to check
whether the agent’s state is in compliance with its projections.

The rest of the paper is organized as follows: Section 2 describes our formal model.
Section 3 describes the satisfiability relation that is used to compare agent states. Sec-
tion 4 introduces exceptions in terms of satisfiability. Finally, Section 5 concludes the
paper.

2 Formal Model

Our formal model is based on the description of the world through states and the evo-
lution of the states through agents’ commitments.

2.1 Describing the World

We propose the multiagent system to progress as a set of states that describe the world
in different time points. Each agent views a part of the world since the execution of the
multiagent system is distributed among the agents. First, we define a time point.

66

Definition 1 A time point T is a discrete measure of time, which can be used to totally
order time; t2 < t3, t5 < t12, etc.

Throughout the paper, t1, t2, . . . , tn are used to denote time points. Next, we de-
scribe the agents’ world.

Definition 2 The real world is described by a global state ST
G = �ΦG, CG� that consists

of atomic propositions (ΦG) and commitments (CG) that hold at a time point. This
global state demonstrates a global view of the multiagent system.

The global state is not meant to be known or processed by any of the entities in the
multiagent system. Instead, each agent has a local state (i.e., its local world model). In a
distributed execution, agents perceive the real world from different view-points. Thus,
their states may differ from each other based on their observations.

Definition 3 A state ST
A = �Φ, C� for agent A at time T is a subset of the real world

(ST
G), which represents A’s view at T , where

– Φ is a finite set of atomic propositions that hold at T ,
– C is a finite set of commitments that exist at T .

Definition 3 describes the model of the agent’s world. It consists of propositions
that are known to be true at that time point and commitments that are represented via
their states. Propositions tell what has happened in the system so far (i.e., facts) to the
agent’s perception. Commitments, on the other hand, provide both facts and expecta-
tions about the agent’s future states1. Table 1(a) shows the state of the customer agent
from Example 1 at time t2, which includes one proposition.

Definition 4 A satisfactory state ESTi,Tj

A = �ΦE , CE� represents a projection of A for
the world at Tj projected as of time Ti, where

– ΦE is a finite set of atomic propositions that A projects at Ti to hold at Tj ,
– CE is a finite set of commitments that A projects at Ti to exist at Tj ,
– Ti < Tj .

Definition 4 describes a future projection of the agent. It is a representation of what
the agent will consider satisfactory when time has evolved to that point. Similar to the
real world model, it includes propositions and commitments. The propositions represent
the facts that are assumed to hold at that time point. The commitments represent the
states of the future contracts that the agent is assumed to be involved in. Recall that the
agent always makes the projection at an earlier time point (Ti < Tj). Table 1(b) shows
a satisfactory state of the customer agent for time t3 which includes one proposition.
Notice the projection is made at time t2.

A rational agent tries to perform actions that will enable the satisfactory state to be
reached (e.g., via a plan). However, note that a projected state may not be realized solely
by the agent itself since it may contain propositions or commitments that can only be
realized by others.

1 Commitments will be discussed in detail in Section 2.2.

67

(a) St2
customer = �{paid}, {}�

(b) ESt2,t3
customer = �{delivered}, {}�

Table 1. Examples of states

2.2 Formalizing the Interactions

We model the agents’ interactions via commitments [13, 18, 6]. A commitment repre-
sents a contract from a debtor agent towards a creditor agent about a specific property.
Definition 5 defines a commitment formally. Below, Ai and Aj denote agents; Ant and
Con are propositions.

Definition 5 A commitment CSt
Ai,Aj

(Ant, Con) denotes the commitment between the
agents Ai and Aj , with St being its state2. This is a conditional commitment; if the
antecedent Ant is satisfied, then the debtor Ai becomes committed to the creditor Aj

for satisfying the consequent Con. If Ant is True (denoted �), then this is a base-level
commitment; Ai is committed to Aj for satisfying Con unconditionally.

We follow the idea and notation of [14, 5, 3] to represent commitments (i.e., every
commitment is conditional). A base-level commitment is simply a commitment with its
condition being true. We also separate the agents from the commitment properties (i.e.,
the antecedent and the consequent). This way, we can omit the agents from the com-
mitment description whenever they are not significant. We have the following grammar
for the commitment properties:

– Ant, Con→ P .

– P → φ | P ∧ P .

Above, φ is an atomic proposition. Currently, we do not support negation or nested
commitments (e.g., commitments for the antecedent or the consequent).

Commitments are live objects; we always consider a commitment with its state [18,
6]. Next, we describe each commitment state with respect to the corresponding world
states and the transitions in between3.
Conditional: When the commitment CSt(Q, P) ∈ C for state ST = �Φ, C� is in
conditional commitment state, denoted Cc(Q, P), then Q, P �∈ Φ. In other words, the
commitment Cc(Q, P) cannot coexist in the same state with its antecedent or conse-
quent:

– If the commitment’s antecedent already holds, then the commitment is no longer
conditional (i.e., its condition is satisfied), and it will become active.

2 Note that the commitment’s state differs from the agent’s state as described in Definition 3.
3 We omit the agents both from the commitments and from the states.

68

Cc(Q, P)

conditional

Cf (Q, P), P

fulfilled

Ca(Q, P), Q

active

Cv(Q, P), Q

violated

Cf (Q, P), Q, P

fulfilled

(a) Conditional

Ca(�, P)

active

Cv(�, P)

violated

Cf (�, P), P

fulfilled

(b) Base-level

Fig. 1. Commitment states

– If the commitment’s consequent already holds, then the commitment is no longer
conditional, and it will become fulfilled. Afterwards, it is not significant whether
the antecedent is also satisfied or not.

Active: When the commitment CSt(�, P) ∈ C for state ST = �Φ, C� is in active
commitment state, denoted Ca(�, P), then P �∈ Φ. In other words, the commitment
Ca(�, P) cannot coexist in the same state with its consequent:

– If the commitment’s consequent already holds, then the commitment is no longer
active, and it will become fulfilled. Once the consequent is satisfied, then the com-
mitment’s life-cycle ends.

Additionally, a commitment can become active from its conditional state. CSt(�,
P) ∈ CT for state ST = �ΦT , CT � is active, when Cc(Q, P) ∈ CT−1 for state ST−1 =
�ΦT−1, CT−1� and Q ∈ ΦT . That is, if the state that includes the commitment Cc(Q,
P) makes a transition to a state where the commitment’s antecedent holds, then the
commitment will become active.

Fulfilled (conditional): The commitment CSt(Q, P) ∈ CT for state ST = �ΦT , CT �
is in fulfilled commitment state, denoted Cf (Q, P), when Cc(Q, P) ∈ CT−1 for state
ST−1 = �ΦT−1, CT−1� and P ∈ ΦT . That is, if the state that includes the commitment
Cc(Q, P) makes a transition to a state where the commitment’s consequent holds, then
the commitment will become fulfilled. The conditional commitment’s life-cycle ends
with this state.

Fulfilled (base-level): The commitment CSt(�, P) ∈ CT for state ST = �ΦT , CT �
is in fulfilled commitment state, denoted Cf (�, P), when Ca(�, P) ∈ CT−1 for state
ST−1 = �ΦT−1, CT−1� and P ∈ ΦT . That is, if the state that includes the commitment
Cc(�, P) makes a transition to a state where the commitment’s consequent holds, then

69

the commitment will be in the fulfilled state. The base-level commitment’s life-cycle
ends with this state.
Violated: When the commitment CSt(�, P) ∈ CT for state ST = �ΦT , CT � is in
violated commitment state, denoted Cv(�, P), then Ca(�, P) ∈ CTi for a state STi =
�ΦTi , CTi�, where Ti < T and P /∈ ΦT . That is, a violated commitment should be active
in a previous state. Again, the base-level commitment’s life-cycle ends with this state.

Figure 1 summarizes the commitment states; 1(a) for conditional commitments and
1(b) for base-level commitments.

3 Satisfiability
We capture the projections of an agent through satisfactory states. On one hand, a sat-
isfactory state is similar to a temporal achievement goal [12], where the agent plans to
reach some properties or be involved in some commitments at a certain time point. On
the other hand, satisfactory states do not necessarily represent goals. They also model
the agent’s expectations about the future. That is, the agent may assume certain proper-
ties to hold in the future even though it does not wish so, e.g., the customer may expect
a late delivery if she is informed of a traffic jam covering her territory.

It is important that an agent can compare its actual and satisfactory states. For that
purpose, we propose the satisfiability relation. It compares two states and tells if one
satisfies the other. This is a strong relation in the sense that once a state satisfies another,
then the two states are either equal or the former can replace the latter. This captures our
intuition that if the current state of the world is equivalent or better than the projected
world state, the execution is in order and no action needs to be taken. However, if the
comparison yields that the current state does not satisfy a projected state, then there is
an exception and it should be handled by the agent.

First, we make some preliminary definitions.

Definition 6 A term T is either an atomic proposition φ or a commitment C.

Definition 7 A formula F is a conjunction of atomic propositions φ1 ∧ φ2 ∧ ... ∧ φn.

Satisfiability, denoted by X �Y , is read as “Y is satisfiable by X”. Note that Y
here represents the minimum satisfactory condition. If X includes more than the neces-
sary propositions or more beneficial commitments than Y , then Y is again satisfiable.
We try to explain this in detail throughout the section via several axioms. We begin
by describing the preliminary axioms that are necessary to describe satisfiability over
states.

Axiom 1 Proposition φ is satisfiable by formula F , denoted F �φ, iff F |= φ.

Axiom 1 follows directly from logical entailment. Figure 2 summarizes the satisfi-
ability relation with two propositions; paid and delivered, together with their combina-
tion, as well as the base-level and conditional commitments that include them4. We will
refer to the figure while describing the axioms, whenever necessary. For example, paid
∧ delivered �paid is a trivial result of Axiom 1.

4 The agents are omitted from the commitments to simplify the demonstration. Arrows show the
direction of satisfiability.

70

paid delivered
paid ∧

delivered

Ca(�, paid) Cf (�, paid)

Cv(�, paid)

Ca(�, delivered)Cf (�, delivered)

Cv(�, delivered)

Cc(paid, delivered)

Ca(paid, delivered) Cf (paid, delivered)

Cv(paid, delivered)

Fig. 2. Satisfiability network

Axiom 2 Base-level commitment CS
Ai,Aj

(�, Con) is satisfiable by formula F , denoted
F �CS

Ai,Aj
(�, Con), iff F |= Con and S ∈ {fulfilled, active, violated}.

When commitments are involved, we are no longer limited with logic entailment.
According to Axiom 2, if the formula entails the commitment’s consequent, then the
commitment is satisfiable whatever its state is:

– A formula entailing a fulfilled commitment’s consequent is equivalent to the com-
mitment. For example, delivered �Cf (�, delivered). Assume that the customer
has a projection that her commitment towards delivery will be fulfilled. If the cus-
tomer perceives that the delivery is performed, then her projection is satisfied.

– A formula entailing an active commitment’s consequent is more beneficial than the
commitment itself. For example, delivered �Ca(�, delivered). Assume that the
customer now has a projection that her commitment will be active. However, the
customer perceives that the delivery is performed. This is indeed a better situation
for the customer.

– A formula entailing a violated commitment’s consequent is more beneficial than the
commitment itself. Similar to above, delivered �Cv(�, delivered). Now, if the
customer expects that her commitment will be violated, then she will be satisfied
when she actually sees that delivery is performed.

Axiom 3 Proposition φ is satisfiable by base-level commitment CS
Ai,Aj

(�, Con), de-
noted CS

Ai,Aj
(�, Con) �φ, iff Con |= φ and S ∈ {fulfilled}.

Similar to Axiom 2, Axiom 3 states that if the commitment’s consequent entails the
formula, then the proposition is only satisfiable if the commitment is fulfilled. For ex-
ample, Cf (�, delivered) �delivered. A fulfilled commitment towards delivery means
delivery has occurred. Indeed, this is equivalent to the proposition delivered.

71

Axiom 4 Base-level commitment CS2
Ak,Al

(�, Con2) is satisfiable by base-level com-
mitment CS1

Ai,Aj
(�, Con1), denoted CS1

Ai,Aj
(�, Con1) �CS2

Ak,Al
(�, Con2), iff

– Con1 |= Con2, S1 ∈ {fulfilled}, and S2 ∈ {fulfilled}, or

– Con1 |= Con2, S1 ∈ {fulfilled, active}, and S2 ∈ {active}, or

– Con1 |= Con2, S1 ∈ {fulfilled, violated}, and S2 ∈ {violated}.

Axiom 4 follows from Axioms 2 and 3. Let us review each case:

– A projection of a fulfilled commitment can only be satisfied by another fulfilled
commitment. If in reality, the commitment is active or violated, this will not be
good enough.

– A projection of an active commitment can be satisfied by another active or fulfilled
commitment. For example, Cf (�, delivered) �Ca(�, delivered).

– A projection of a violated commitment can be satisfied by another violated or ful-
filled commitment. For example, Cf (�, delivered) �Cv(�, delivered). That is, if
the expectation was that the commitment would have been violated, nothing worse
can happen. Hence, any commitment state is as good as the violated state.

Axiom 5 Proposition φ is satisfiable by conditional commitment CS
Ai,Aj

(Ant, Con),
denoted CS

Ai,Aj
(Ant, Con) �φ, iff Ant |= φ and S ∈ {fulfilled, active, violated}.

Axiom 6 Proposition φ is satisfiable by conditional commitment CS
Ai,Aj

(Ant, Con),
denoted CS

Ai,Aj
(Ant, Con) �φ, iff Con |= φ and S ∈ {fulfilled}.

Axiom 5 tells that a once activated conditional commitment (active, fulfilled or vi-
olated) satisfies its antecedent. The motivation for this is that if the commitment is
activated at one point, then its antecedent must have been true. Even if the consequent
never becomes true (i.e., the commitment is violated), the commitment would still sat-
isfy the antecedent; hence for example, Cv(paid, delivered) �paid. Similarly, Axiom
6 tells that a fulfilled conditional commitment satisfies its consequent. A similar exam-
ple would be Cf (paid, delivered) �delivered.

Axiom 7 Base-level commitment CS2
Ak,Al

(�, Con2) is satisfiable by conditional com-
mitment CS1

Ai,Aj
(Ant, Con1), denoted CS1

Ai,Aj
(Ant1, Con1) �CS2

Ak,Al
(�, Con2), iff

– Con1 |= Con2, S1 ∈ {fulfilled}, and S2 ∈ {fulfilled}, or

– Con1 |= Con2, S1 ∈ {fulfilled, active}, and S2 ∈ {active}, or

– Con1 |= Con2, S1 ∈ {fulfilled, violated}, and S2 ∈ {violated}.

72

Axiom 8 Conditional commitment CS2
Ak,Al

(Ant2, Con2) is satisfiable by conditional
commitment CS1

Ai,Aj
(Ant1, Con1), denoted CS1

Ai,Aj
(Ant1, Con1) �CS2

Ak,Al
(Ant2,

Con2), iff

– Ant1 |= Ant2, Con1 |= Con2, S1 ∈ {fulfilled}, and S2 ∈ {fulfilled}, or

– Ant1 |= Ant2, Con1 |= Con2, S1 ∈ {fulfilled, active}, and S2 ∈ {active}, or

– Ant1 |= Ant2, Con1 |= Con2, S1 ∈ {fulfilled, violated}, and S2 ∈ {violated},
or

– Ant1 |= Ant2, Con1 |= Con2, S1 ∈ {fulfilled, active, conditional}, and S2 ∈
{conditional}.

Axioms 7 and 8 apply a similar reasoning to Axiom 4 for conditional commitments.
For example, Cf (paid, delivered) �Cf (�, delivered). Here both commitments are
fulfilled, and the conditional commitment entails paid as well as delivered. Moreover,
Cf (paid, delivered) �Ca(paid, delivered). Here, the fulfilled commitment entails
both paid and delivered, whereas the active commitment only entails paid. Next, we
give some important remarks regarding the axioms above.

Remark 1. α �α (reflexive).

Remark 2. It is not necessarily true that β �α or β ��α if α �β (not symmetric).

It is trivial that �is reflexive and not symmetric.

Remark 3. α �γ if α �β and β �γ (transitive).

Proof. Assume α is a formula, β is an atomic proposition, and γ is a base-level commit-
ment. Other combinations follow similarly. Now, α entails β since α �β and β entails
the consequent of γ since β �γ. Using the fact that logic entailment is transitive, α
entails the consequent of γ. Thus, α �γ.

Now, we are ready to describe how a state is satisfiable by another state. We do this
transitively though a formula. That is, first we describe how a formula is satisfiable by
a state, then we describe state satisfiability via the formula.

Axiom 9 Formula F = φ1 ∧ φ2 ∧ . . .∧ φn is satisfiable by state ST
A , denoted ST

A �F ,
iff ∀ φi ∃ F � = T1 ∧ T2 ∧ . . .∧ Tn: Ti ∈ ST

A and F � �φi.

Axiom 9 tells that a formula is satisfiable by a state if every proposition in the
formula is satisfiable by a conjunction of terms that can be constructed from the state.

Axiom 10 Term T is satisfiable by state ST
A , denoted STk

Ai
�T , iff ∃ F : ST

A �F and
F �T .

Note that a term is satisfiable by a state via a formula according to Axiom 9.

73

– paid

– Cf
merchant,customer (�, delivered)

St3
customer

– paid
– delivered

ESt2,t3
customer

�

Fig. 3. State satisfiability

Definition 8 State STl
Aj

is satisfiable by state STk
Ai

, denoted STk
Ai

�STl
Aj

, iff ∀ T ∈ STl
Aj

:
STk
Ai

�T .

According to Definition 8, a state is satisfiable by another state if every term in the
former state is satisfiable by the latter5. Figure 3 shows an example; the term paid in
state ESt2,t3

customer is satisfiable by the formula F1 = paid, which is in turn satisfiable by
state St3

customer. Similarly, the term delivered in state ESt2,t3
customer is satisfiable by the

formula F2 = delivered which is satisfiable by state St3
customer.

4 Exceptions

Definition 9 describes an exception based on the satisfiability relation. If the agent’s
satisfactory state is not satisfiable by its corresponding state (i.e., for the same time
point), then there is an exception. Note that this definition of an exception is subjective
in the sense that one agent may identify a particular situation as an exception while
another agent might not.

Definition 9 An exception occurs for agent Ai iff ∃ satisfactory state ESTi,Tj

Ai
: STj

Ai

��ESTi,Tj

Ai
.

Now, let us review several cases to demonstrate the usage of the satisfiability relation
for detecting exceptions.

– paid

– Ca
merchant,customer (paid, delivered)

St4
customer

– delivered

ESt2,t4
customer

��

Fig. 4. Exception: merchant fails to deliver

Exception for customer: Figure 4 demonstrates a simple case. The left box shows the
customer’s state at time t4, while the right box shows her satisfactory state for the same

5 Note that the states in Definition 8 can also be satisfactory states.

74

time point. Here, the merchant currently has an active commitment to the customer
for delivery. However, the customer expects delivery to be completed. Recall that for
a state to be satisfiable, all its terms should be satisfiable (Definition 8). There is only
one term in state ESt2,t4

customer, which is the proposition delivered. However, none of the
Axioms for satisfiability (Section 3) can be applied to satisfy delivered from the terms
in state St4

customer. Thus, the customer’s satisfactory state is not satisfiable. This causes
an exception for the customer according to Definition 9.

– paid

– Ca
merchant,customer (paid, delivered)

St4
customer

– Ca
merchant,customer (�, delivered)

ESt2,t4
customer

�

Fig. 5. No exception: customer does not expect delivery!

No exception for customer: Figure 5 demonstrates a slightly different case. The
customer’s state is the same as before. However, this time, she does not expect delivery
to be fulfilled at time t4. According to Axiom 7, Ca

merchant,customer (�, delivered)
is satisfiable by Ca

merchant,customer (paid, delivered). Thus, no exception occurs for
the customer. Note that, we would normally signal an exception when a commitment is
still active when it should be fulfilled. However, by letting the satisfactory state to be
constructed according to the agent’s projections, an insignificant exception is avoided
(e.g., the customer is already aware that the delivery will be delayed).

– paid

– Ca
merchant,customer (paid, delivered)

St4
merchant

– Ca
courier,merchant (�, delivered)

ESt2,t4
merchant

�

Fig. 6. Customer and merchant’s projections do not match

Exception for customer, no exception for merchant: Consider Figures 4 and 6 to-
gether. There is an exception for the customer as she expects delivery at time t4. How-
ever, the merchant’s projection for t4 is that he has delegated its commitment to the
courier, and that commitment is still active. His satisfactory state is satisfiable by his
actual state. Thus, there is no exception for the merchant. Note that, in a centralized
environment, this would never happen. That is, a central monitor either signals an ex-
ception or not. Here, on the other hand, we allow autonomous agents to have their own

75

projections about the future. Accordingly, an exception for one agent might just be an
expected situation for another.

5 Discussion

Commitments and expectations are two well-structured ways of modeling multiagent
interactions [16, 1]. In this work, we use commitments since we take a state-oriented
perspective and try to capture the relations among agents’ states. Moreover, we cap-
ture an agent’s projections about the future using satisfactory states. This is somewhat
different from the concept of an expectation as described in the literature. We do not ex-
plicitly provide expected events. Rather, we model propositions and commitments that
are projected by the agent to hold at certain time points in the future. We are not con-
cerned with how those projections are formed. However, we use them to verify smooth
execution.

A variety of commitment types and relations among them have been proposed in the
literature [10, 9], as well as obligations and prohibitions that can also be related with
social commitments [7]. Here, we consider contract-based multiagent systems. Thus,
commitments that refer to achievement type goals or projections are more suitable for
our discussion. Indeed, commitments with achievement type properties can be mod-
eled with atomic or conjunctive propositions, while negated propositions can be used
to model maintenance type properties [8], e.g., a car rental company committing to a
customer for the car not breaking down during the rental period. We leave out mainte-
nance type (e.g., negated) commitment properties for this work. We plan to investigate
the relations among them in the future.

Previously, there has been work in the literature on comparing states. One similar
work is that of Mallya and Singh [11], which focuses on similarity relations for pro-
tocol runs. In parallel with our work, a state is described as a set of propositions and
commitments, and several similarity relations are given to compare states. The idea is to
compare protocol runs in terms of states. One major difference between their similarity
relations and our satisfiability relation is that their relations are equivalence relations
(e.g., supports symmetry) while ours is not. This is mainly related to the motivation
behind those relations. That is, they aim to merge smaller protocols into larger ones
by comparing protocol states. We, on the other hand, provide a one-way relation (e.g.,
not necessarily symmetric) to compare states. Because, our main motivation is to en-
sure that an agent’s state will comply with its projections, the inverse direction is not
significant at all (e.g., whether expectations support actual states). Moreover, it is not
necessary to ensure that both states are identical.

Commitments account for the constitutive specification of a protocol [4, 15]. They
provide flexible execution for the agents as long as their commitments are satisfied.
When an exception occurs, there may be several reasons behind it. One such reason for
exceptions in constitutively regulated protocols is the misalignment of agents’ commit-
ments. That is, the debtor and the creditor have different understandings for the same
commitment [5, 9]. The state satisfiability relation we have proposed helps detect such
exceptions.

76

In this paper, we have proposed a satisfiability relation that can be used to compare
agents’ states. When used to compare an agent’s state with its satisfactory state, the
outcome tells whether there is an exception for the agent or not. That is, if the agent’s
satisfactory state is not satisfiable by its current state, then the agent signals an excep-
tion. In addition, the agent may verify its compliance to the protocol it is executing by
consistently comparing its current state to its satisfactory states. This way, the agent can
identify at which point of the protocol, there has been a problem. Consider the merchant
in the delivery example. If he expects to receive the payment before he actually delivers
the item, then he will project payment in an earlier satisfactory state than delivery. Now,
if the latter is satisfied, but the former is not, he can conclude that there is a problem
with the customer’s side of the contract.

Apart from satisfiability, another relation among the agent’s states can be reacha-
bility, which is used to verify whether a state is reachable by another state. This relation
can be utilized in yet another phase of exception handling; prediction. In a smooth ex-
ecution, an agent should predict its current probability of facing an exception in the
future. The investigation of reachability relation is left for future work. We plan to con-
sider different levels of reachability, and connect them with satisfiability.

Acknowledgement

This research is supported by Boğaziçi University Research Fund under grant BAP5694,
and the Turkish State Planning Organization (DPT) under the TAM Project, number
2007K120610.

References

1. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent
interaction in abductive logic programming: The SCIFF framework. ACM Transactions on
Computational Logic 9(4), 1–43 (2008)

2. Chesani, F., Mello, P., Montali, M., Torroni, P.: Commitment tracking via the reactive event
calculus. In: IJCAI ’09: Proceedings of the 21st International Joint Conference on Artifical
Intelligence. pp. 91–96 (2009)

3. Chopra, A.K., Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Reasoning about agents and pro-
tocols via goals and commitments. In: AAMAS ’10: Proceedings of The 9th International
Conference on Autonomous Agents and Multiagent Systems. pp. 457–464 (2010)

4. Chopra, A.K., Singh, M.P.: Constitutive interoperability. In: AAMAS ’08: Proceedings of the
7th International Conference on Autonomous Agents and Multiagent Systems. pp. 797–804
(2008)

5. Chopra, A.K., Singh, M.P.: Multiagent commitment alignment. In: AAMAS ’09: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent Systems.
pp. 937–944 (2009)

6. Fornara, N., Colombetti, M.: Defining interaction protocols using a commitment-based agent
communication language. In: AAMAS ’03: Proceedings of the 2nd International Conference
on Autonomous agents and multiagent systems. pp. 520–527 (2003)

7. Fornara, N., Colombetti, M.: Ontology and time evolution of obligations and prohibitions
using semantic web technology. In: 7th International Workshop on Declarative Agent Lan-
guages and Technologies (DALT). pp. 101–118 (2009)

77

8. Hindriks, K.V., van Riemsdijk, M.B.: Satisfying maintenance goals. In: 6th International
Workshop on Declarative Agent Languages and Technologies (DALT). pp. 86–103 (2008)

9. Kafalı, Ö., Chesani, F., Torroni, P.: What happened to my commitment? Exception diagnosis
among misalignment and misbehavior. In: Computational Logic in Multi-Agent Systems.
Lecture Notes in Computer Science, vol. 6245, pp. 82–98 (2010)

10. Letia, I.A., Groza, A.: Agreeing on defeasible commitments. In: 4th International Workshop
on Declarative Agent Languages and Technologies (DALT). pp. 156–173 (2006)

11. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Autonomous Agents and
Multi-Agent Systems 14(2), 143–163 (2007)

12. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent systems: a unifying frame-
work. In: AAMAS ’08: Proceedings of the 7th International Conference on Autonomous
Agents and Multiagent Systems. pp. 713–720 (2008)

13. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of
normative concepts. Artificial Intelligence and Law 7, 97–113 (1999)

14. Singh, M.P.: Semantical considerations on dialectical and practical commitments. In:
AAAI’08: Proceedings of the 23rd National Conference on Artificial Intelligence. pp. 176–
181. AAAI Press (2008)

15. Singh, M.P., Chopra, A.K.: Correctness properties for multiagent systems. In: 7th Interna-
tional Workshop on Declarative Agent Languages and Technologies (DALT). pp. 192–207
(2009)

16. Torroni, P., Yolum, P., Singh, M.P., Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.,
Mello, P.: Modelling interactions via commitments and expectations. In: Handbook of Re-
search on Multi-Agent Systems: Semantics and Dynamics of Organizational Models. pp.
263–284 (2009)

17. Torroni, P., Chesani, F., Mello, P., Montali, M.: Social commitments in time: Satisfied
or compensated. In: DALT. Lecture Notes in Computer Science, vol. 5948, pp. 228–243.
Springer (2009)

18. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event cal-
culus planning using commitments. In: AAMAS ’02: Proceedings of the 1st International
Conference on Autonomous Agents and Multiagent Systems. pp. 527–534 (2002)

78

An Operational Semantics for AgentSpeak(RT)

(Preliminary Report)

Konstantin Vikhorev1, Natasha Alechina1, Rafael H. Bordini2, and Brian Logan1

1 School of Computer Science
University of Nottingham
Nottingham NG8 1BB UK

{kxv,nza,bsl}@cs.nott.ac.uk
2 Institute of Informatics

Federal University of Rio Grande do Sul
Porto Alegre, Brazil

r.bordini@inf.ufrgs.br

Abstract. In this paper we give an operational semantics for the real-time agent
programming language AgentSpeak(RT). AgentSpeak(RT) was introduced in [21],
and extends AgentSpeak(L) with deadlines and priorities for intentions. The ver-
sion of AgentSpeak(RT) presented in this paper differs in certain aspects from
that in [21], mainly to incorporate both hard and soft deadlines, and allow for the
concurrent execution of intentions.

1 Introduction

In this paper we give an operational semantics for the AgentSpeak(RT) real-time agent
programming language introduced in [21]. In AgentSpeak(RT), an agent’s intentions
have priorities and deadlines. In a dynamic environment, a real-time BDI agent that has
more tasks that it can feasibly accomplish by their deadlines should make a rational
choice regarding which tasks to commit to: that is, it should try to accomplish higher
priority tasks, but also try to execute tasks so that they are accomplished by their dead-
lines. An AgentSpeak(RT) agent commits to a set of intentions that are ‘maximally
feasible’: no more intentions can be added to the schedule if the scheduled intentions
are to remain feasible at the specified confidence level, and moreover, intentions which
are dropped are incompatible with some scheduled higher priority intention(s).

In the version of AgentSpeak(RT) introduced in [21], only hard deadlines were sup-
ported: that is, intentions were dropped if it was impossible to execute them by their
deadlines. This is reasonable for many tasks and environments, for example writing
conference papers, sending bids to auctions, or catching trains. However, some tasks
have soft deadlines: it may be desirable to finish a certain task by its deadline, but the
work still has to be done after the deadline has passed. For example, the agent may
need to charge its battery every 24 hours, but if it is delayed for some reason in reach-
ing the charging station and the time passed since the last charge is 24 hours and one
second, it is still important to reach the charging station. For this reason, we introduce
soft deadlines in the version of AgentSpeak(RT) we consider here. Another important
difference from [21] is that we assume that tasks may be executed concurrently. For

79

example, an agent may be simultaneously moving to a new location and communi-
cating with other agents. However, some intentions need to be executed atomically to
prevent undesired interactions between different actions. For this reason, in the version
of AgentSpeak(RT) we consider here, we introduce the notion of atomic plans (which
cannot be executed simultaneously with other atomic plans).

The rest of this paper is organised as follows. In section 2, we briefly describe the
AgentSpeak(RT) architecture and the modifications relative to [21]. In section 3, we
define the operational semantics of AgentSpeak(RT). We survey related work in section
4 and conclude in section 5.

2 The AgentSpeak(RT) Architecture

In this section we introduce the AgentSpeak(RT) agent programming language and its
associated interpreter. Note that the version of the language presented here differs from
the one in [21].

We assume that an AgentSpeak(RT) agent operates in a real-time task environment,
that is, top-level goals may optionally specify a deadline and/or a priority. An AgentS-
peak(RT) agent responds to events by adopting and executing intentions. A developer
can specify the required level of confidence for the successful execution of intentions in
terms of a probability α. An AgentSpeak(RT) agent should schedule its intentions so as
to ensure that the probability that intentions are completed by their deadlines is at least
α. If not all intentions can be executed with the required level of confidence due to lack
of time, the agent favours intentions responding to high priority events.

The syntax and semantics of AgentSpeak(RT) with various minor modifications
is based on AgentSpeak(L) [18]. To illustrate the syntax of AgentSpeak(RT) we use
a simple running example of an agent which removes litter from a parking lot. Each
evening, the agent is given a set of goals to achieve, each of which specifies the removal
of a particular item of litter from particular parking space. In addition, the agent may
detect additional litter while moving around the lot. There is a deadline for the removal
of litter e.g., before the barrier is opened in the morning (we assume the agent can’t
cope with parking cars), and it is more important to remove some types of litter (e.g.,
broken glass) than others (e.g., paper).

The AgentSpeak(RT) architecture consists of five main components: a belief base,
a set of events, a plan library, an intention structure, and an interpreter.

2.1 Beliefs and Goals

The agent’s beliefs represent the agent’s information about its environment, e.g., sen-
sory input, information about other agents, etc. Beliefs are represented as ground atomic
formulas. For example, the agent may believe that it is in space1 and there is some litter
in space2:

at(robot,space1)
litter(paper,space2)

80

A belief atom or its negation is called a belief literal. A ground belief atom is called a
base belief, and the agent’s belief base is a conjunction of base beliefs.

A goal is a state the agent wishes to bring about or a query to be evaluated. An
achievement goal, written !g(t1, . . . , tn) where ti, . . . , tn are terms, specifies that the
agent wishes to achieve a state in which g(t1, . . . , tn) is a true belief. A test goal, written
?g(t1, . . . , tn), specifies that the agent wishes to determine if g(t1, . . . , tn) is a true
belief. For example, the goals

!remove(paper,space2)
?parked(X,space2)

indicate that the agent wants to remove the paper in space2, and determine if there is a
car parked in space2.3

2.2 Events

Events correspond to changes in the agent’s beliefs or the acquisition of new achieve-
ment goals. An addition event, denoted by +, indicates the addition of a base belief or
an achievement goal. A deletion event, denoted by −, indicates the retraction of a base
belief.4 Events can be internal or external. External events originate outside the agent,
while internal events result from the execution of the agent’s program. As in AgentS-
peak(L), all belief change events are external (originating in the agent’s environment),
while goal change events may be external (goals originated by a user or another agent)
or internal (subgoals generated by the agent’s program in response to an external event).

To allow the specification of real-time tasks, external goal addition events may op-
tionally specify a deadline and a priority. A deadline specifies the time by which a goal
should be achieved. Deadlines are expressed as real time values in some appropriate
units, e.g, a user may specify a deadline for a goal as “4pm on Friday”. Deadlines in
AgentSpeak(RT) may be hard or soft. For a hard deadline it is assumed that there is
no value in achieving a goal after the deadline has passed. For a soft deadline, it may
still make sense to continue trying to achieve the goal after the deadline has passed,
provided that this does not interfere with higher priority goals. A priority specifies the
relative importance of achieving the goal. Priorities define a partial order over events
and are expressed as non-negative integer values, with larger values taken to indicate
higher priority. For example, the event

+!remove(paper,space2)[8am,10]

indicates the acquisition of a goal to remove some paper from space2 with deadline 8am
and priority 10. By default the deadline is equal to infinity and the priority is equal to
zero.

3 As in Prolog, constants are written in lower case and variables in upper case, and all negations
must be ground when evaluated.

4 In the interests of brevity, we do not consider goal deletion events.

81

2.3 Plans

Plans specify sequences of actions and subgoals an agent can use to achieve its goals or
respond to changes in its beliefs. The head of a plan consists of a triggering event which
specifies the kind of event the plan can be used to respond to, and a belief context which
specifies the beliefs that must be true for the plan to be applicable. The body of a plan
specifies a sequence of actions which need to be executed and subgoals which need to
be achieved in response to the triggering event.

Actions are the basic operations an agent can perform to change its environment
in order to achieve its goals. Actions are denoted by action symbols and are written
a(t1, . . . , tn) where a is an action symbol and t1, . . . , tn are the (ground) arguments to
the action. For example, the action

move(trashcan)

will cause the agent to move from a parking space to the trashcan.
Plans may also contain achievement and test (sub)goals. Achievement subgoals al-

low an agent to choose a course of action as part of a larger plan on the basis of its
current beliefs. An achievement subgoal !g(t1, . . . , tn) gives rise to a internal goal ad-
dition event +!g(t1, . . . , tn) which may in turn trigger subplans at the next execution
cycle. Test goals are evaluated against the agent’s belief base, possibly binding variables
in the plan. For example, the plan

+litter(L,S) : at(robot,S1) & not parked(C,S) <-
move(S); pickup(L); move(trashcan); deposit(L).

causes the agent to remove litter from the parking space the agent is in if there is no car
parked in the space.

The BNF for plans is given below:

belief-event ::= “+” atomic-formula | “-” atomic-formula
goal-event ::= “+!” atomic-formula [realtime-spec]
belief-plan ::= “@” label [“atomic”] belief-event [“:” context] “<-”

(body | “!” atomic-formula realtime-spec) “.”
goal-plan ::= “@” label [“atomic”] goal-event [“:” context] “<-” body “.”
context ::= true | literal (“&” literal)∗
literal ::= atomic-formula | “not” atomic-formula
atomic-formula ::= p(t1, . . . , tn)
realtime-spec ::= “[” ((hd(time) | sd(time)) “,” number) |

(hd(time) | sd(time)) | number “]”
body ::= true | step (“;” step)∗

step ::= a(t1, . . . , tn) | “!” atomic-formula | “?” atomic-formula

where label is a string uniquely identifying a plan, p and a are respectively predicate
and action symbols of arity n ≥ 0, and t1, . . . , tn are terms.

AgentSpeak(RT) allows a potentially unbounded number of plans to execute con-
currently (assuming actions are not executing on the same CPU as the interpreter).

82

However, plans may be declared as requiring exclusive access to a single ‘lock’. In-
tentions which do not contain an atomic plan may execute concurrently. If two plans
are mutually exclusive, the execution of the intentions containing the plans must be
serialised, as explained below.

The concurrent execution of intentions in AgentSpeak(RT) is similar to capabilities
provided by atomic plans in Jason [1] and 2APL [6]. An atomic plan is a plan which
should be executed ensuring that its execution is not interleaved with the execution of
the goals and actions of other plans of the same agent. The resulting agent system is
more expressive than Jason and 2APL in one sense, as Jason and 2APL cannot run non-
atomic plans in parallel with an atomic one. However, it is less expressive in another
sense, as in Jason and 2APL a non-atomic plan can have an atomic subplan.

In order to determine whether a plan can achieve a goal by a deadline with a given
level of confidence, each action and plan has an associated execution time profile which
specifies the probability that the action or plan will terminate successfully as a function
of execution time. The expected execution time for an action or plan φ at confidence
level α is given by et(φ,α). The execution time profile will typically be influenced by
the characteristics of the environment in which the agent will operate. For example, the
probability of a plan to move to a location terminating successfully within a given time
may be lower in environments with many obstacles than in environments with fewer
obstacles.

Execution time profiles can be derived from an analysis of the agent’s actions, plans
and environment, or using automated techniques, e.g., stochastic simulation. In the sim-
ple case of a plan consisting of a sequence of actions, the execution time profile for the
plan can computed from the execution time profiles of its constituent actions. However
for plans which contain subgoals, the execution time will depend on the relative fre-
quency with which the alternative plans for a subgoal are selected in the agent’s task
environment.

2.4 Intentions

Plans triggered by changes in beliefs or the acquisition of an external (top-level) achieve-
ment goal give rise to new intentions. Plans triggered by the processing of an achieve-
ment subgoal in an already intended plan are pushed onto the intention containing the
subgoal. Each intention consists of a stack of partially executed plans, a set of substi-
tutions for plan variables, a set of shared resources, a deadline and priority. The set
of variable substitutions for each plan in an intention results from matching the belief
context of the plan and any test goals it contains against the agent’s belief base. The
deadline and priority of an intention are determined by the triggering event of the root
plan.

Each intention can be in one of two states: executing and executable. An intention
is executing if the first action in the topmost plan in the stack of partially executed plans
which forms the intention is currently executing. If the first step in the topmost plan is a
goal or an action which is not currently executing, the intention is said to be executable.

83

Algorithm 1 AgentSpeak(RT) Interpreter Cycle
E := E ∪G ∪ belief -events(B,P)
B := update-beliefs(B,P)
for all (e, τ) ∈ E do

Oe := {πθ | θ is an applicable unifier for e and plan π}
πθ := SO(Oe)
if πθ �= ∅ and τ �∈ I then

I := I ∪ πθ
else if πθ �= ∅ and τ ∈ I then

I := (I \ τ) ∪ push(πθσ, τ) where σ is an mgu for πθ and τ
else if πθ = ∅ and τ ∈ I then

I := I \ τ
end if

end for

I := SCHEDULE(I)
for τ ∈ I do

if s(τ) = now ∧ executable(τ) then

if completed(first(body(top(τ)))) then

π := pop(τ)
push(head(π) ← rest(body(π)), τ)

end if

if first(body(top(τ))) = true then

πθ := pop(τ), π� := pop(τ)
push((head(π�) ← rest(body(π�)))θ�, τ)
where θ� is a restriction of θ to variables in head(π).

else if first(body(top(τ))) = !g(t1, . . . , tn) then

E := {(+!g(t1, . . . , tn), τ)}
else if first(body(top(τ))) = ?g(t1, . . . , tn) then

if ?g(t1, . . . , tn)θ is an answer substitution then

π := pop(τ)
push((head(π) ← rest(body(π)))θ, τ)

else

I := I \ τ
end if

else if first(body(top(τ))) = a(t1, . . . , tn) then

execute(a(t1, . . . , tn))
end if

break

end if

end for

84

2.5 The AgentSpeak(RT) Interpreter

The interpreter is the main component of the agent. It manipulates the agent’s belief
base, event queue and intention structure, deliberates about which plan to select in re-
sponse to belief and goal change events, and schedules and executes intentions.

The interpreter code is shown in Algorithm 1. B is the agent’s belief base, E is the
set of events, I is a partially ordered set of intentions. The functions head and body
return the head and body of an intended plan, and first and rest are used to return the
first and all but the first elements of a sequence. The function top returns the topmost
plan in an intention. The function pop removes and returns the topmost plan of an
intention and the function push takes a plan (and any substitution) and an intention and
pushes the plan onto the top of the intention. The function executable takes an intention
and returns true if the intention is executable and the function completed returns true if
the first step in an executable intention is an action that has completed execution. The
function execute initiates the execution of an action in a separate thread.

In contrast to AgentSpeak(L) which processes a single event at each interpreter
cycle, to ensure reactivity, AgentSpeak(RT) iterates through the set of events E, and,
for each event e ∈ E, generates a set of applicable plans Oe. A plan is relevant if
its triggering event can be unified with e and a relevant plan is applicable if its belief
context is true in B�. In general, there may be many applicable plans or options for each
event. A selection function SO chooses one of these plans for each event to give a set
of options O = {SO(Oe) | e ∈ E}. SO is a partial function, i.e., it is not defined if
Oe is empty. If the event was triggered by a subgoal of an existing intention, failure
to find a applicable plan for the subgoal, i.e., if Oe = ∅, aborts the intention which
posted the subgoal and the intention is removed from I . For each plan π in the set of
applicable plans, if the triggering event for π was internal, the plan is pushed on top of
the existing intention in I that generated the triggering event. If the triggering event for
π was external, a new intention τ is created and added to I .

The scheduling algorithm is applied to I and returns a priority-maximal set of fea-
sible intentions together with their start times. Finally, an executable intention is chosen
from I for execution. An intention is executable if the first step in the topmost plan in
the stack of partially executed plans that forms the intention is a goal or an action which
is not currently executing (i.e., it has either completed executing or has yet to begin
execution). If the first step in an executable intention is an action which has completed
execution, the completed action is removed from the plan. Execution then proceeds
from the next step of the topmost plan in the intention.

Executing an executable intention involves executing the first goal or action of the
body of the topmost plan in the stack of partially executed plans which forms the inten-
tion. Executing an achievement goal adds a corresponding internal goal addition event
to E�. Executing a test goal involves finding a unifying substitution for the goal and the
agent’s base beliefs. If a substitution is found, the test goal is removed from the body of
the plan and the substitution is applied to rest of the body of plan. If no such substitution
exists, the intention is dropped and removed from I . Executing an action results in the
invocation of the Java code that implements the action and changes the state of the in-
tention from executable to executing. We assume that action execution is performed in a
separate thread, and execution of the AgentSpeak(RT) interpreter resumes immediately

85

after initiating the action. Reaching the end of a plan (denoted by true below) causes
the plan to be popped from the intention and any substitutions for variables appearing
in the head of the popped plan are applied to the topmost plan in the intention.

The AgentSpeak(RT) Scheduler A schedule is a priority-maximal set of feasible in-
tentions together with their start times. A set of intentions {τ1, . . . , τn} is feasible if

1. each intention will complete execution before its deadline with probability at least
α, that is, for each scheduled intention τi

s(τi) + et(τi,α)− ex(τi) ≤ d(τi)

where s(τi) is the time at which τi will next execute, ex(τi) is the time τi has spent
executing up to this point, and d(τi) is the deadline for τi; and

2. if τi is an atomic intention, no intention τj scheduled to execute concurrently with
τi, namely no element of the set {τj | s(τi) < s(τj) + et(τj ,α) ∧ s(τj) < s(τi) +
et(τi,α)}, is atomic.

A set of intentions is priority-maximal if no more intentions can be added to the sched-
ule if the scheduled intentions are to remain feasible at the specified confidence level,
and intentions which are dropped are incompatible with some scheduled higher priority
intention(s).

Scheduling in AgentSpeak(RT) is pre-emptive in that the adoption of a new high-
priority intention τ may prevent previously scheduled intentions with priority lower
than τ (including currently executing intentions) being added to the new schedule. In-
tentions which exceed their expected execution time and/or their deadline may or may
not be dropped, depending on whether the deadline is hard or soft and the amount of
uncommitted or ‘slack’ time in the schedule. If an intention has a hard deadline that has
been exceeded, the intention is dropped. If an intention has a soft deadline that has been
exceeded, its deadline is reset to ∞ and its priority to 0. The agent will continue to purse
the intention if it can be executed concurrently with other, higher priority intentions.
However if the intention is atomic, it will be scheduled after all other atomic intentions.
An intention τ which has exceeded its expected execution time but not its deadline has
its priority reduced to 0 and its expected execution time reset to ex(τ) + δa, where δa
is the expected time required to execute the next step in the intention. τ will only be
scheduled if, after scheduling all higher priority intentions, there is sufficient slack in
the schedule to execute at least one step in τ before its deadline. Given sufficient slack
in the schedule, τ can therefore still complete successfully. It will be however dropped
if it exceeds its deadline

The scheduling algorithm is shown in Algorithm 2. We assume that the deadlines,
priorities and expected execution times of the input intentions I are adjusted as de-
scribed above. The set of candidate intentions is processed in descending order of pri-
ority. For each intention τ , if the intention is atomic it is added to the schedule if it can
be inserted into the schedule in deadline order while meeting its own and all currently
scheduled deadlines. If the intention is not atomic an attempt is made to schedule it at
s(τ) := now. Intentions which are not feasible in the context of the current schedule are
dropped. The resulting schedule can be computed in polynomial time (in fact, quadratic
time) in the size of the set I , and is priority-maximal (see [21]).

86

Algorithm 2 Scheduling Algorithm
function SCHEDULE(I)

Γs := ∅, Γp := ∅
for all τ ∈ I in descending order of priority do

if ¬atomic(τ) then

s(τ) := now
if Γp ∪ {τ} is feasible then

Γp := Γp ∪ {τ}
end if

else

t := now
Γ �
s := ∅

for all τ � ∈ Γs do

if d(τ �) ≤ d(τ) then

Γ �
s := Γ �

s ∪ {τ �}
t := s(τ �) + et(τ �

,α)− ex(τ �)
else

s(τ �) := s(τ �) + et(τ,α)− ex(τ)
Γ �
s := Γ �

s ∪ {τ �}
end if

end for

s(τ) := t

if Γ �
s ∪ {τ} is feasible then

Γs = Γ �
s ∪ {τ}

end if

end if

end for

return Γp ∪ Γs

end function

3 Operational Semantics

This section gives semantics to AgentSpeak(RT) based on the operational semantics for
AgentSpeak, by showing which rules have to be changed to new ones that are specific
to AgentSpeak(RT). An earlier version of the operational semantics for AgentSpeak
appeared in [4]. The semantic rules for communication appeared in [14] and were later
improved and extended in [19]. The latter version (but without communication rules)
forms the basis for this section.5

The operational semantics is given by a set of rules that define a transition relation
between configurations �ag, C, T, s� where:

– An agent program ag is formed by a set of beliefs bs and a set of plans ps (as
defined by the BNF in section 2.3 above).

– An agent’s circumstance C is a tuple �I, E,A� where:

5 Note that in the rules below, the notation for events, plans and intentions has been modified to
be consistent with that in [21].

87

• I is a set of intentions {τ, τ �, . . .}; each intention i is a stack of partially instan-
tiated plans.

• E is a set of events {(e, τ), (e�, τ �), . . .}. Each event is a pair (e, τ), where e is
a triggering event and τ is an intention (a stack of plans in case of an internal
event, or the empty intention T in case of an external event).

• A is a set of actions to be performed in the environment.
– T is a tuple �R,Ap, ι, ε, ρ� which keeps track of temporary information that is

required in subsequent stages within a single reasoning cycle. Note that structure
of each of these components has been changed from the original semantics because
AgentSpeak(RT) handles all outstanding events in a single reasoning cycle, which
is a significant change from original AgentSpeak. The components of T are:
• R for the mapping from each of the events to the set of its relevant plans.
• Ap for the sets of applicable plans (the relevant plans whose contexts are true),

again a set for each of the events currently in the set of events.
• ι, ε, and ρ record, in the original semantics, a particular intention, event, and

applicable plan (respectively) being considered along the execution of one rea-
soning cycle; ι is not used here, and ε and ρ have been changed to be respec-
tively a set rather than a single event and a mapping from each of the outstand-
ing events to the selected applicable plan (i.e., intended means) to handle it.

– The current step s within an agent’s reasoning cycle is symbolically annotated by
s ∈ {SelEv,RelPl,ApplPl, SelAppl,AddIM, SelInt,ExecInt,ClrInt}, which stands
for: selecting a set of events, retrieving all relevant plans, checking which of those
are applicable, selecting applicable plans (the intended means), adding the new in-
tended means to the set of intentions, selecting an intention, executing the selected
intention, and clearing an intention or intended means that may have finished in the
previous step.

In the interests of readability, we adopt the following notational conventions in our
semantic rules:

– If C is an AgentSpeak agent circumstance, we write CE to make reference to the
component E of C. Similarly for all the other components of a configuration.

– We write τ [π] to denote the intention that has plan π on top of intention τ .

New Rules for Event Selection

As AgentSpeak(RT) typically handles all outstanding events, the SelEv rules have been
changed as follows.

SE(CE) = SEs

�ag, C, T, SelEv� −→ �ag, C �, T �,RelPl�

where: C �
E
= CE \ SEs

T �
ε = SEs

(SelEv1)

Above, SEs is a set of events, those that have been selected by SE ; by default in
AgentSpeak(RT), SE selects all the events in the set of events.

88

Rule SelEv2 skips to the intention execution part of the cycle, in case there is no
event to handle. It is the same as in the original AgentSpeak semantics:

CE = {}
�ag, C, T, SelEv� −→ �ag, C, T, SelInt�

(SelEv2)

New Rules for Relevant Plans

In contrast to the original AgentSpeak, we now have to keep track of the set of relevant
plans not for one chosen event but for a set of events (typically all currently outstanding
events). Tε therefore keeps track of this set of events. For each of the events in Tε, we
find a set of relevant plans for it and keep track of that in TR.

Tε = {(e, τ)} ∪REs RelPlans(agps, e) �= {}
�ag, C, T,RelPl� −→ �ag, C, T �,RelPl�

where: T �
R
= TR ∪ {(e, τ) �→ RelPlans(agps, e)}

T �
ε = REs

(Rel1)

Events with no relevant plans are ignored, as shown in the rule below.

Tε = {(e, τ)} ∪REs RelPlans(agps, e) = {}
�ag, C, T,RelPl� −→ �ag, C, T �,RelPl�

where: T �
ε = REs

(Rel2)

Finally, we need an additional rule that is used to go to the next stage of the reason-
ing cycle when relevant plans have been found for all previously selected events.

Tε = {}
�ag, C, T,RelPl� −→ �ag, C, T,ApplPl�

(Rel3)

New Rules for Applicable Plans

Again we need a couple of rules to handle each of the mappings from events to a set
of relevant plans, filtering them to keep only the applicable ones (in TAp). Rule Appl1

handles the normal case (i.e., where applicable plans are found); Appl2 says that events
with no applicable plans are ignored;6 Appl3 deals with the case where we have updated
all mappings and there are events with sets of applicable plans for which intended means
need to be selected; finally, Appl4 handles the case where no new intended means will
result in this reasoning cycle.

6 Note that we do not consider here the plan failure handling mechanism introduced in some of
the extensions of AgentSpeak.

89

TR = {ev �→ RPs} ∪ ERs AppPlans(agbs, RPs) �= {}
�ag, C, T,ApplPl� −→ �ag, C, T �,ApplPl�

where: T �
Ap

= TAp ∪ {ev �→ AppPlans(agbs, ER)}
T �
R

= ERs

(Appl1)

TR = {ER} ∪ ERs AppPlans(agbs, ER) = {}
�ag, C, T,ApplPl� −→ �ag, C, T �,ApplPl�

where: T �
R
= ERs

(Appl2)

TR = {} TAp �= {}
�ag, C, T,ApplPl� −→ �ag, C, T, SelAppl�

(Appl3)

TR = {} TAp = {}
�ag, C, T,ApplPl� −→ �ag, C, T, SelInt�

(Appl4)

New Rules for Selecting an Applicable Plan

As before, we need two rules: one to handle a particular mapping from an event to
applicable plans and one for when all mappings have been processed.

TAp = {ev �→ APs} ∪ EAs SO(APs) = (π, θ)

�ag, C, T, SelAppl� −→ �ag, C, T �, SelAppl�

where: T �
ρ = Tρ ∪ {ev �→ (π, θ)}

T �
Ap

= EAs

(SelAppl1)

TAp = {}
�ag, C, T, SelAppl� −→ �ag, C, T,AddIM�

(SelAppl2)

New Rules for Adding an Intended Means to the Set of Intentions

For each mapping of an event to the chosen intended means, we need to move it to the
set of intentions; as before this requires two rules, depeding on whether the particular
event was internal or external. Then we need rule EndIM for when all mappings have
been processed.

It is important to note that the set CI updated here is subsequently ordered by the
scheduling algorithm presented in section 2, as stated in rules EndIM. In future work,
we aim to formalize the scheduling of intentions within the operational semantics, by
giving further rules that describe the schedulling of the intentions based on the real-time
criteria.

90

Tρ = {(e,T) �→ (π, θ)} ∪ EIs

�ag, C, T,AddIM� −→ �ag, C �, T �,AddIM�

where: C �
I
= CI ∪ { [πθ] }

T �
ρ = EIs

(ExtEv)

Tρ = {(e, τ) �→ (π, θ)} ∪ EIs

�ag, C, T,AddIM� −→ �ag, C �, T �,AddIM�

where: C �
I
= CI \ {τ} ∪ { τ [(πθ)] }

T �
ρ = EIs

(IntEv)

Tρ = {}
�ag, C, T,AddIM� −→ �ag, C �, T, SelInt�

where: C �
I
= SCHEDULE(CI)

(EndIM)

4 Related Work

Two strands of work on agent programming languages are related to work reported in
this paper.

One strand is work on agent programming languages designed for developing agents
with real-time capabilities. For example, the Procedural Reasoning System (PRS) [10]
and PRS-like systems, e.g., JAM [12] and SPARK [15], have features such as met-
alevel reasoning which facilitate the development of agents for real time environments.
However, to guarantee real time behaviour, these systems have to be programmed for
each particular task environment—there are no general methods or tools which allow
the agent developer to specify that a particular goal should be achieved by a speci-
fied time or that an action should be performed within a particular interval of an event
occurring. In contrast, AgentSpeak(RT) provides a high-level programmatic interface
to a standardised real-time reasoning mechanism for tasks with different priorities and
deadlines.

More closely related to real-time aspects of AgentSpeak(RT) are architectures such
as the Soft Real-Time Agent Architecture [22] and AgentSpeak(XL) [2]. These ar-
chitectures use the TÆMS (Task Analysis, Environment Modelling, and Simulation)
framework [7] together with Design-To-Criteria scheduling [23] to schedule intentions.
TÆMS provides a high-level framework for specifying the expected quality, cost and
duration of methods (actions) and relationships between tasks (plans). Like AgentS-
peak(RT), methods and tasks can have deadlines, and TÆMS assumes the availability
of probability distributions over expected execution times (and quality and costs). DTC
decides which tasks to perform, how to perform them, and the order in which they
should be performed, so as to satisfy hard constraints (e.g., deadlines) and maximise
the agent’s objective function. In comparison to AgentSpeak(RT), TÆMS allows the
specification of more complex interactions between tasks. However the view of ‘real-
time’ used in these systems is different from that taken by AgentSpeak(RT), for example
in considering only soft deadlines (all tasks still have value after their deadline).

91

As mentioned in the Introduction, AgentSpeak(RT) was first introduced in [21]. An
earlier version of this work (extending PRS rather than AgentSpeak with priorities and
deadlines) was reported in [20].

Another strand of related work is research on the formal semantics of agent pro-
gramming languages. Many agent-oriented programming languages have been formalised
using the operational semantics approach, for example, AgentSpeak[19], GOAL [11],
2APL [6], and CAN [24], as well as the AIL effort towards unifying semantics [8].
However, to the best of our knowledge this work has not dealt with issues relating
to real-time agency, and to this extent the work presented here is novel. There are,
of course, various other approaches in the literature that have logical semantics, for
example, MINERVA [13], and others, such as CLAIM [9] that have a formal model
based on process algebra, but the operational semantics approach seems more popular
in the agent programming language community. There are also important agent pro-
gramming languages and platforms that have no formal semantics, such as JADEX [17]
and SPARK [16], for example.

5 Conclusion

In this paper we described a modified version of AgentSpeak(RT) with parallel exe-
cution of intentions and with soft as well as hard deadlines. It is intended to be more
programmer-friendly and flexible compared to the original version introduced in [21]
which was designed to provide provable probabilistic guarantees of real-time behaviour.
We provide an operational semantics for the language in order to make it precise and
facilitate analysis of programs written in the language.

References

1. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented pro-
gramming. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchn, A.E.F. (eds.) Multi-agent
programming : languages, platforms and applications, pp. 3–37. Springer (2005)

2. Bordini, R., Bazzan, A.L.C., Jannone, R.d.O., Basso, D.M., Vicari, R.M., Lesser, V.R.:
AgentSpeak(XL): Efficient intention selection in BDI agents via decision-theoretic task
scheduling. In: Proceedings of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS’02). pp. 1294–1302 (2002)

3. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.): Multi-Agent Program-
ming: Languages, Platforms and Applications, Multiagent Systems, Artificial Societies, and
Simulated Organizations, vol. 15. Springer (2005)

4. Bordini, R.H., Moreira, Á.F.: Proving BDI properties of agent-oriented programming lan-
guages: The asymmetry thesis principles in AgentSpeak(L). Annals of Mathematics and Ar-
tificial Intelligence 42(1–3), 197–226 (Sep 2004), special Issue on Computational Logic in
Multi-Agent Systems

5. Dastani, M., Fallah-Seghrouchni, A.E., Ricci, A., Winikoff, M. (eds.): Programming Multi-
Agent Systems, 5th International Workshop, ProMAS 2007, Honolulu, HI, USA, May 15,
2007, Revised and Invited Papers, Lecture Notes in Computer Science, vol. 4908. Springer
(2008)

92

6. Dastani, M., Hobo, D., Meyer, J.J.C.: Practical Extensions in Agent Programming Lan-
guages. In: Proceedings of the 6th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS ’07). pp. 1–3. ACM, New York, NY, USA (2007),
www.cs.uu.nl/docs/vakken/map/2aplposter.pdf

7. Decker, K.S., Lesser, V.R.: Quantitative modeling of complex environments. International
Journal of Intelligent Systems in Accounting, Finance and Management 2, 215–234 (1993)

8. Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A common semantic
basis for BDI languages. In: Dastani et al. [5], pp. 124–139

9. Fallah-Seghrouchni, A.E., Suna, A.: Claim and sympa: A programming environment for
intelligent and mobile agents. In: Bordini et al. [3], pp. 95–122

10. Georgeff, M.P., Lansky, A.L.: Procedural knowledge. Proceedings of the IEEE, Special Issue
on Knowledge Representation 74(10), 1383–1398 (1986)

11. Hindriks, K.V.: Modules as policy-based intentions: Modular agent programming in goal. In:
Dastani et al. [5], pp. 156–171

12. Huber, M.J.: JAM: a BDI-theoretic mobile agent architecture. In: Proceedings of the Third
Annual Conference on Autonomous Agents (AGENTS’99). pp. 236–243 (1999)

13. Leite, J.A., Alferes, J.J., Pereira, L.M.: Minerva - a dynamic logic programming agent archi-
tecture. In: Meyer, J.J.C., Tambe, M. (eds.) ATAL. Lecture Notes in Computer Science, vol.
2333, pp. 141–157. Springer (2001)

14. Moreira, Á.F., Vieira, R., Bordini, R.H.: Extending the operational semantics of a BDI agent-
oriented programming language for introducing speech-act based communication. In: Leite,
J., Omicini, A., Sterling, L., Torroni, P. (eds.) Declarative Agent Languages and Technolo-
gies, Proc. of the First Int. Workshop (DALT-03), held with AAMAS-03, 15 July, 2003,
Melbourne, Australia. pp. 135–154. No. 2990 in LNAI, Springer-Verlag, Berlin (2004)

15. Morley, D., Myers, K.: The SPARK agent framework. In: Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’04). pp.
714–721 (2004)

16. Morley, D.N., Myers, K.L.: The spark agent framework. In: AAMAS. pp. 714–721. IEEE
Computer Society (2004)

17. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Bordini et al.
[3], pp. 149–174

18. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language. In: MAA-
MAW’96: Proceedings of the 7th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World: Agents Breaking Away. pp. 42–55 (1996)

19. Vieira, R., Moreira, Á.F., Wooldridge, M., Bordini, R.H.: On the formal semantics of speech-
act based communication in an agent-oriented programming language. J. Artif. Intell. Res.
(JAIR) 29, 221–267 (2007)

20. Vikhorev, K., Alechina, N., Logan, B.: The ARTS real-time agent architecture. In: Das-
tani, M., El Fallah Segrouchni, A., Leite, J., Torroni, P. (eds.) Languages, Methodolo-
gies, and Development Tools for Multi-Agent Systems, Second International Workshop,
LADS 2009, Torino, Italy, September 7-9, 2009, Revised Selected Papers, Lecture Notes
in Computer Science, vol. 6039, pp. 1–15. Springer Berlin / Heidelberg (2010), http:
//dx.doi.org/10.1007/978-3-642-13338-1_1

21. Vikhorev, K., Alechina, N., Logan, B.: Agent programming with priorities and deadlines. In:
Proceedings AAMAS 2011 (2011)

22. Vincent, R., Horling, B., Lesser, V., Wagner, T.: Implementing soft real-time agent
control. In: Proceedings of the Fifth International Conference on Autonomous Agents
(AGENTS’01). pp. 355–362 (2001)

23. Wagner, T., Garvey, A., Lesser, V.: Criteria-directed heuristic task scheduling. International
Journal of Approximate Reasoning 19, 91–118 (1998)

93

24. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative & procedural goals in
intelligent agent systems. In: Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR-02). pp. 470–481 (2002)

94

Probing Attacks on Multi-agent Systems using
Electronic Institutions

(Preliminary Report)

Shahriar Bijani 1,2, David Robertson1 and David Aspinall1

1 Informatics School, University of Edinburgh. 10 Crichton St. Edinburgh, UK.
2 Computer Science Dept., Shahed University, Persian Gulf Highway, Tehran, Iran.

S.Bijani@ed.ac.uk , dr@inf.ed.ac.uk, David.Aspinall@ed.ac.uk.

Abstract. In open multi-agent systems, electronic institutions are used to form
the interaction environment by defining social norms for group behaviour.
However, as this paper shows, electronic institutions can be turned against
agents to breach their security in a variety of ways. We focus our attention on
probing attacks using electronic institutions specified in the Lightweight
Coordination Calculus (LCC) language. LCC is an orchestration language used
to define electronic institutions in agent systems. A probing attack is an attack
against the confidentiality of information systems. In this paper, we redefine the
probing attack in conventional network security to be applicable in a multi-
agent system domain, governed by electronic institutions. We introduce
different probing attacks against LCC interaction models and suggest a secrecy
analysis framework for these interactions. We also propose some
countermeasures against probing attacks in LCC.

Keywords: Multi-Agent Systems, Electronic Institutions, Interaction Models,
Security, Probing Attack, Lightweight Coordination Calculus (LCC).

1 Introduction

One way to build large-scale multi-agent systems is to develop open architectures in
which agents are not pre-engineered to work together and in which agents themselves
determine the social norms that govern collective behaviour. Open multi-agent
systems have growing popularity in the Multi-agent Systems community and are
predicted to have many applications in the future [4]. A major practical limitation to
such systems is security because the openness of such systems negates many
traditional security solutions.

An electronic institution [10] is an organisation model for multi-agent systems that
provides a framework to describe, specify and deploy agents’ interaction
environments [15]. It is a formalism which defines agents’ interaction rules and their
permitted and prohibited actions. Lightweight Coordination Calculus, LCC [18;19], is
a declarative language to execute electronic institutions in a peer to peer style. In
LCC, electronic institutions are called interaction models. While electronic

95

institutions can be used to implement security requirements of a multi-agent system,
they also can be turned against agents to breach their security in a variety of ways, as
this paper shows.

Although openness in open multi-agent systems makes them attractive for
different new applications, new problems emerge, among which security is a key.
This is because we can make only minimum guarantees about identity and behaviour
of agents. The more these systems are used in the real world, the more the necessity
of their security will be obvious to users and system designers. Unfortunately there
remain many potential gaps in the security of open multi-agent systems and relying on
security of low level network communications is not enough to prevent many attacks
on multi-agent systems. Furthermore, traditional security mechanisms resist use in
multi-agent systems directly, because of the social nature of them. Confidentiality is
one of the main features of a secure system and there are various attacks against it. In
this paper, we focus our attention on probing attacks from agents on agents using
electronic institutions specified in the LCC language.

Most work on security of multi-agent systems directly or indirectly focus on
mobile agents and many of the solutions have been proposed for threats from agents
to hosts or from hosts to agents (e.g.[9;23;24]). But not much research has been done
on attacks from agents on agents in open multi-agent systems. A survey of possible
attacks on multi-agent systems and existing solutions for attack prevention and
detection can be found in [6]. None of these solutions address the probing attacks
introduced in this paper.

Xiao et al. [26] have proposed multilevel secure LCC interaction models for
health care multi-agent systems. A security architecture for the HealthAgents system
and a security policy set using LCC have been suggested in [25]. Hu et al. [13] have
developed a system to support data integration and decision making in the breast
cancer domain using LCC and briefly addressed some security issues. They have all
used constraints and message passing in LCC interaction models to implement
security solutions for access control and secure data transfer, but they have not
addressed inference of private data based on our defined probing attack.

In this paper we introduce a new attack against the confidentiality of agents’ local
knowledge, inspired by the concept of probing attack in conventional computer
networks. We introduce an attack detection method by proposing a conceptual
representation of LCC interaction models and adapting an inference system from
credential-based authorisation policies [5] to electronic institutions. We also suggest
countermeasures to prevent probing attacks on the systems using the LCC language.

2 Lightweight Coordination Calculus (LCC)

LCC is a compact executable specification to describe the notion of social norms [20].
It is a choreography language based on -calculus [17] and logic programming. We
use LCC to implement interaction models for agent communication. An interaction
model (an electronic institution) in LCC is defined as a set of clauses, each of which
specifies a role and its process of execution and message passing. The LCC syntax is
shown in Fig. 1.

96

Interaction Model := {Clause,...}

Clause := Role::Def

Role := a(Type, Id)

Def := Role | Message | Def then Def| Def or Def | null

Message:= M Role | M Role M Role |

 M Role

Constraint:= Constant | P(Term,...)| not(Constraint) | Constraint and

Constraint | Constraint or Constraint

Type := Term

Id := Constant | Variable

M := Term

Term := Constant | Variable | P(Term,...)

Constant := lower case character sequence or number

Variable := upper case character sequence or number

Fig. 1. LCC language syntax; principal operators are: outgoing and incoming messages (and
), conditional (), sequence (then) and committed choice (or). Variable names in a clause

are local.

An interaction model in LCC is a set of clauses each of the form Role :: Def,
where Role denotes the role in the interaction and Def is the definition of the role.
Roles are of the form a(Type, Id), where Type gives the type of role and Id is an
identifier for the individual peer undertaking that role. The definition of performance
of a role is constructed using combinations of the sequence operator (then) or choice
operator (or) to connect messages and changes of role. Messages are either outgoing
to another peer in a given role () or incoming from another peer in a given role ().
Message input/output or change of role can be governed by constraints (connected by
the “ ” operator) which may be conjunctive or disjunctive. Constraints can be
satisfied via shared components registered with a website (e.g. www.openk.org), so
that complex (possibly interactive) solving methods can be shared along with
interaction models; or they can be calls to services with private data and reasoning
methods. Variables begin with upper case characters.

Role definitions in LCC can be recursive and the language supports structured
terms in addition to variables and constants so that, although its syntax is simple, it
can represent sophisticated interactions. Notice also that role definitions are “stand
alone” in the sense that each role definition specifies all the information needed to
complete that role. This means that definitions for roles can be distributed across a
network of computers and (assuming the LCC definition is well engineered) will
synchronise through message passing while otherwise operating independently.
Matching of output messages from one peer to input messages of another is achieved
by simple pattern matching, since (although operating independently) the roles were
originally defined to work together. More sophisticated forms of input/output
matching have been defined for LCC (to allow for more sophisticated ontology

97

matching) but these are not the subject of this paper. For a more detailed introduction
to LCC, see [18].

For different applications, agents may use their own interaction model or
download an existing one. When an agent selects an interaction model and a role in it,
its behaviour in that interaction is then determined by the constraints attached to
message sending/receiving events specified in the definition of that role. Agents may
be involved in any number of interactions (specified by interaction models)
simultaneously.

Fig. 2. An example of an interaction model in LCC

Fig. 2 illustrates an example of an interaction model for a simple communication

in LCC. There are two roles (clauses) in this interaction model: requester and
informer. In the first clause, a requester asks about something from an informer, then
gets an answer from it and then continues as a requester. In the second clause, an
informer is asked by a requester and then it should tell the requester if it knows the
answer.

3 Probing Attack in Multi-agent Systems

We redefine the probing attack [3] in conventional network security to be applicable
in multi-agent systems. A probing attack in network security is an attack based on
injecting traffic into the victim’s network and analysing the results [28]. It is a sort of
active traffic analysis, which is a popular attack in cryptography [14;21] and is a basis
for other attacks in computer network systems {Ahmad, 2009 5 /id}.

In our case, an adversary, who plays a role in an interaction model, could infer
information not only from the interaction model itself, but also from the local
knowledge of other agents. An adversary could control other agents’ behaviour in an
interaction, by publishing a malicious interaction model. Furthermore, it could access
the private local knowledge (e.g. decision rules and policies) of the victim agents by
injection of facts to the agent knowledge-base, asking queries and analysing the
queries result.

We can define four types of probing attacks on open multi-agent systems: (1)
explicit query attack, (2) implicit query attack, (3) injection attack and (4) indirect
query. In explicit query probing attack, the idea is to make several direct queries to an
agent via messages (Fig. 3-a). It may seem an elementary attack, but there can be

98

sophisticated versions of it, such as gathering provenance information [7;27] by an
attacker or accessing all the information in a semi-open ontology by asking intelligent
questions from different parts of it. An example of a semi-open ontology is ontology
of a service provider company which is open to customer’s questions, but where
extensive knowledge of the whole ontology is a commercial confidential asset [6].

In Fig. 3, two simple examples, which are modified versions of a proteomics lab
[1] interaction model used in one of the testbeds of the OpenKowledge project [22],
illustrate the first type of probing attack. In these examples, an adversary (in the role
of researcher) could ask explicit and implicit queries from a proteomics lab agent
(omicslab). In Fig. 3-a, in the omicslab clause (lines 9 to 13), when a proteomics lab
agent O receives an ask(X) message, it directly sends X, which is a private annotation
of a specific protein, to the researcher.

1.a(researcher(LabList), R) ::
2.(ask(X)=>a(omicslab, H)<-
3. LabList=[H|T] then
4. tell(X)<=a(omicslab, H) then
5. null <- processResult(X, H)
6. then a(researcher(T), R)
7.) or
8. null <- LabList = []

9. a(omicslab, O) ::
10. ask(X)<= a(researcher,R) then
11. tell(X)=>a(researcher,R)
12. <-know(X)
13. then a(omicslab, O)

1.a(researcher(LabList), R) ::
2.(ask(X)=> a(omicslab, H) <-
3. LabList=[H|T] then
4. tell(Y)<= a(omicslab,H) then
5. null <- processResult(X,Y,H)
6. then a(researcher(T), R)
7.) or
8. null <- LabList = []

9.a(omicslab, O) ::
10.ask(X)<= a(researcher,R) then
11.tell(Y)=>a(researcher,R)<-
12. Combine(X,Y)
13. then a(omicslab, O)

(a) (b)

Fig. 3. Two examples of type 1 probing attack, in which a malicious researcher could ask
explicit and implicit queries from a proteomics lab agent (omicslab clause, lines 11,12). (a) A
direct query example asking X from the omicslab. (b) An indirect query, know(X), as a
constraint in the omicslab clause.

The second type of probing attack is asking an implicit query on confidential
information. An adversary often might not be interested ask a query explicitly, for
various reasons; e.g. a direct question from confidential information may be forbidden
or might attract the attention of the victim. An indirect query could be asked by
placing a query as a constraint in LCC, rather than sending a message. In other words,
an adversary could not only infer information from a received message, but also from
analysing the constraints in an interaction model. An example of confidential
information in proteomics lab could be the combination (binding potential) of two
publicly known proteins that activate a particular gene. In this example, the relation
between two pieces of public information is private. In Fig. 3-b, X and Y are not
confidential but a malicious researcher, R, could recognise whether proteins X and Y
could combine not by asking a direct question, but by putting a combine(X,Y)
constraint in line 12. When O sends the non-confidential tell(Y) message to R it will
indirectly inform R that X and Y could combine together because R knows that
combine(X, Y) had to be satisfied before the tell(Y) message could be sent.

99

The third type of probing attack happens by injection of some facts into the system
and asking queries before and after the injection. Arguably, the whole interaction
model that has been designed by an adversary could be considered as injected
information for agents using it. But the purpose of the injection is to introduce the
constraints in the victim’s interaction model. In this type of attack, the assumption is
that the injection affects decisions of the victim. This attack is similar to the implicit
query attack and in some cases might be considered as compound implicit queries.
We illustrate a sample attack in Fig. 4 and Fig. 5 inspired from an example of a
probing attack in authorisation languages by Gurevich and Neeman [12].

1. a(vendor, V)::
2. null <- ask(S)<= a(customer,C) then
3. null <- (not(want(C,S)) or payFor(C,S)) then /*injection */
4. null <- (not(SupplyFrom(X)) or want(C,S)) then /* injection */
5. ok => a(customer,C) <- agree(C,S) then /* implicit query */
6. ...
7. then a(vendor, V)

Fig. 4. A fragment of a selling interaction model shows an example of type three probing attack

Fig. 4 shows one clause of a selling interaction model that could be used for a

probing attack by injection. The attack begins when an agent selects a vendor role of
this malevolent interaction model, which has been created and published by an
adversary. The adversary (C) plays the role of customer and initiates the interaction
by sending the ask(S) message to the vendor. The goal of the adversary is to discover
the confidential fact whether X is the supplier of the vendor (SupplyFrom(X)). The
first two constraints (line 3) tell the vendor that the customer pays for S or does not
want S. The next two constraints (line 4) inject the facts that X is not the vendor’s
supplier or the customer wants S. In other words, these constraints are added
information to the knowledge-base of the vendor agent and could shape its decisions.
The subsequent implicit query asking if the vendor agrees with the deal is sent (line 5)
to signal to the attacker that the complex constraint was satisfied. These injections and
the agent’s response to the query are not still enough for the attacker to infer the
validity of SupplyFrom(X). Then the adversary terminates this interaction and initiates
two other interactions with the victim (Fig. 5).

1. a(vendor2, V)::
2. null<-want(C,S) then

 /*injection */
3. ok=> a(customer,C) <-

agree(C,S) /*query*/
 ...

1. a(vendor3, V)::
2. null <- payFor(C,S) then

 /*injection */
3. ok=> a(customer,C) <-

agree(C,S) /*query*/
 ...

(a) (b)

Fig. 5. Definitions of the vendor roles in two malicious interaction models as parts of a probing
attack scenario

Each new interaction model injects only one part of the previous injections and
asks the same implicit query. If the answer to the first query is positive (an ok

100

message) and to the next two queries are negative, after some analyses (see section 5),
the adversary could infer the confidential fact that X is the supplier of the vendor.

Indirect query is the fourth type of probing attack, in which an adversary tries to
access confidential information of the victim agent via a third party for reasons
similar to the implicit attack. Indirect attack is a modification of the explicit query
attack and could also be combined with the other types of probing attacks. A modified
fragment of an interaction model in MIAKT project [13], which aims to support
multidisciplinary meetings for the diagnosis and management of breast cancers, is
illustrated in Fig. 6. The dataHandler retrieves patient’s private data based on the
request submitted by an authorised domain specialist (Fig. 6-a: line 3), but an
illegitimate nurse has open access to without any authorisation check (Fig. 6-b: line
7).

1. a(dataHandler,H) ::
2. patient_record(Patient) <= a(specialist,E) then
3. inform(Patient) => a(specialist,E) <- is_authorised(E,ID)and

get_patient_id(Patient,ID) then
4. ...

(a)
1. a(specialist,E) ::
2. patient_record(Patient) => a(dataHandler,H) then
5. process(Patient) <- inform(Patient) <= a(dataHandler,H) then ...
6. patient_record(Patient) <= a(nurse, N) then
7. inform(Patient) => a(nurse, N)
3. ...

(b)

Fig. 6. A fragment of an interaction model to support multidisciplinary meetings for the
diagnosis and management of breast cancers. (a) the data handler role [13]. (b) the specialist
role.

4 Conceptual Representation of Interaction Models

The first step in our security analysis is converting interaction models to simpler
logical representations in order to illustrate only the related parts of the LCC code to
the security evaluation. Although LCC resembles a type of logic programming
language, conversion of an LCC specification to first order logic expressions is not
straightforward because its semantics must be understood in terms of temporal beliefs
assigned to agents. What we need for our conceptual representation is a more minimal
interpretation of LCC, which reflects information leaks or helps to find knowledge
leakage.

The conceptual representation links the notion of electronic institutions with the
idea of information flow analysis. It could vary in different scenarios and from
various stakeholders’ points of view. For example when an adversary has designed
and published the interaction model herself / himself, and plays one or more roles in
it, she/he might be only interested to analyse clauses related to other roles. We should
interpret interaction models for each scenario differently, to be able to discover
information leaks and consequently to achieve more accurate secrecy analyses.

101

We now introduce two conceptual representations of interaction models. They are
to some extent similar, but the main differences are derived from the way an
adversary exploits the interaction model and what the interaction model could add to
the knowledge of an agent. In both representations, if we use non-temporal logic for
the conceptual representations, the then operator in LCC will be equivalent to a
logical conjunction. That is because we analyse the interaction model ahead of time,
so we can ignore the effect of the actions’ sequence on the inferred information
inferred by the adversary. We also interpret the choice operator or in LCC as logical
disjunction and message passing operators as send and receive functions. We can
legitimately do this because we are not defining the semantics of the LCC
specification but, instead, we are describing the (constraint-based) information that
can be inferred to be true if the definition is satisfied (i.e. it has completed in the
interaction).

In the first version, the conditional operator () in LCC is interpreted as a
material conditional in logic. For example the informer clause in Fig. 3-a simply
could be represented by two first order logic expressions as:

receive(R,X),
know(X) send(R, X)

This representation could be used for analysing explicit or indirect query attacks, but
is not useful for implicit or injection probing attacks.

IM0 ={receive(R,X)}

q0 ={Combine(X,Y)}
Query result: send(R,Y)

IM1 ={
want(C,S) payFor(C,S),
SupplyFrom(X) want(C,S)
}
q1 ={agree(C,S)}
Query result: send(C)

(a) (b)

IM2 = {want(C,S)}

q2 ={ agree(C,S) }
Query result: send(C)

IM3 = {payFor(C,S)}

q3 ={ agree(C,S) }
Query result: send(C)

(c) (d)

Fig. 7. In these conceptual representations, q is a query. (a) Implicit query attack example in
Fig. 3-b. (b) Injection attack example in Fig. 4. (c) Injection attack example in Fig. 5-a. (d)
Injection attack example in Fig. 5-b.

In the second representation of interaction models, constraints are interpreted as
queries or injection from the counterpart agent (an adversary). Hence the conditional
operator (<-) does not mean a logical condition anymore and the sent message in the
left of <- (if it exists), is an answer to the query. The received message’s parameters
are also considered new information for the receiver agent. So the equivalent
representation of Fig. 3-b and Fig. 4 would be as shown in Fig. 7.

102

5 Attack Detection

After the conceptual representation of interaction models, in which injections and
queries are defined, we could analyse them to detect any possibility of a probing
attack. A probing attack happens when a malicious agent could infer anything about
its counterpart’s local knowledge. We use Becker’s inference system[5] to detect
probing attacks from interaction models’ conceptual representations. Becker has
introduced an inference system for detectability [8]1 of a specific property in Datalog-
based policy languages. Although this inference system has been created for
credential-based authorisation policies with some modifications it could also be used
to detect probing attacks on multi-agent systems. We want to know when an
adversary injects expressions into the agent’s private knowledge-base and asks a
query, what else the adversary could infer from the knowledge-base. To answer this
question we use the inference system in Fig. 8.

Fig. 8. The inference system of Becker [5] (with a few changes) to be used to detect
information leaks

In this inference system, IM is the set of injected predicates and q is the query in
the conceptual representation defined in the previous section. The inference system
assumes that the injection is ground and the query is monotonic (without negation).
A0 is the confidential local knowledge set of the under attack agent, P is the set of all
injections and queries in a probing attack and the probing environment is (A0, P).
IM' IM in the axiom (MONO1) means all facts that are entailed from IM S, could
also be entailed from IM' S where S is all sets of ground atoms. (DIFF) is the most
important part of the inference system and tells us what can be inferred from A0 when
we inject IM to A0.

The fired operator [5] in (DIFF) is ¬ , where S is a set of explanations
of why any ground atom f is inferred from the injection (IM) and it could be
computed by standard abduction [16] method. The intuition behind the fired operator
is that when an adversary injects some expressions into the agent’s knowledge-base

1 Detectability (or non-opacity) is an information flow property that shows the ability to infer a specific

predicate from a set of rules.

103

(A0) and receives a result, at least one of the injected expressions, which was not held
in A0, has the main role in shaping the result.

We must convert the injections and queries to ground expressions to be able to use
this inference system. Finding a ground substitution for these expressions is not hard
and does not cause loss of generality. So, we formulate the injection attack example in
Fig. 7-b to 7-d with the expressions in Fig. 9. Injections and queries in an interaction
model are illustrated as A0 IMi q. We assume that the adversary’s query is
successful the first time and unsuccessful the second and third times.

IM1 = {w 1= g: A0 IM1 g ,
IM2={w}, q2= g A0 IM2 g ,
IM3={p}, q3= g A0 IM3 g .
P = {(IM1,g), (IM2,g), (IM3,g)}

Fig. 9. The ground version of the probing attack example in Fig. 7-b to 3-d . w=want(C,S),
p=payFor(C,S), s=SupplyFrom(X) and g=agree(C,S).

The sequence of inference rules in Fig. 10shows what the adversary could infer
from the local knowledge of the victim agent. As a result of this analysis, the
adversary finds that the target agent knows: ¬ agree(C,S) ¬ want(C,S) ¬
payFor(C,S) SupplyFrom(X). All the inferred facts might be important but in this
example, the goal of the adversary was to find the private information about the
supplier of the target vendor, so it was a successful attack. In [5], it is shown that
ground finite detectability is fully decidable and this inference system is sound but it’s
completeness is still an open problem.

Fig. 10. Steps of using the inference system to detect the possibility of probing attack using the
example in Fig. 7-b to 7-d. It shows what an adversary could infer from the local knowledge
(A0) of the victim agent using those interaction models.

104

6 Countermeasures

Two reasons that security problems might lead to probing attacks are (1) no
distinguishing notion of private and public data in LCC and (2) no mechanism for
information leakage control in an interaction. Hence, two countermeasures to these
problems are adding some access control features in LCC and secrecy analysis of
interaction models. The first solution is to label information in LCC. Variables,
constants and constraints are ultimately the most elementary causes of the described
information leak, so when each peer receives an interaction model, it could annotate it
to reflect the confidentiality level of the information. Fig. 11 suggests an added syntax
for LCC with four levels of confidential terms.

Term := Constant | Variable | P(Term,...) | pTerm

pTerm := Term {Label}

Label := l | L | h | H

Fig. 11. Added LCC syntax to support private terms

The rules that the LCC interpreter should support to prevent explicit, implicit and

indirect probing attacks are:
 Terms without privacy labels are public,
 Labels of confidential levels are as follows: public < l < L < h < H,
 Sending messages containing higher level terms than the receiver’s level is

not allowed,
 Sending messages containing lower level terms than its corresponding

constraint is not allowed,
 The confidential level of a compound expression is the maximum level of all

parts.

As LCC can be interpreted and executed by agents in distributed peer to peer

networks and each clause of an interaction model might be run separately, considering
the above rules in one clause is not enough to prevent some probing attacks. So, all
clauses of an interaction model should be analysed together. Although labeling
information and considering the above rules are a solution for some probing attacks, it
cannot prevent or detect injecting attacks.

The second solution for probing attacks is secrecy analysis of interaction models
using techniques such as using the introduced inference system to detect injection
attacks. This analysis could be implemented a constraint at the beginning of each
interaction model, or as a separate interaction model that receives other interaction
models and after extracting the corresponding logical representation, check possibility
of information leak using the inference system.

Information flow analysis is one of the main techniques for studying
confidentiality [11]. The first solution uses non-interference and the second solution
exploits detectability and both properties are popular tools in information flow
analysis. Hence, the suggested countermeasures are promising enough to preserve the
secrecy of interaction models against many probing attacks.

105

7 Conclusion

In this paper, we have introduced probing attacks on multi-agent systems
governed by electronic institutions and developed a secrecy analysis model for the
interaction models used in LCC to describe electronic institutions. We have proposed
four types of probing attacks, namely, explicit query, implicit query, injection and
indirect query attacks on LCC interaction models. To analyse information leaks in
these agent systems, we have suggested two conceptual (logical) representations of
interaction models and adapted the Becker’s inference system, which shows the
possibility of private information disclosure by an adversary. Finally we have
presented two solutions to prevent and detect probing attacks in LCC interaction
models. The first solution adds a labelling capability to the LCC language to have
various levels of private information and the second solution analyses the secrecy of
the agent system at the interaction level. To generalise our work to other electronic
institution languages besides LCC, it is enough to adapt the conceptual representation
module for each language.

Acknowledgement
We would like to thank the anonymous reviewers for providing useful comments.
This work is supported under the ISPRF research funding, which is sponsored by the
Ministry of Science, Research and Technology of Iran.

References

 [1] J. Abian, M. Atencia, P. Besana, L. Bernacchioni, D. Gerloff, S. Leung, J.
Magasin, A.P. de Pinninck, X. Quan, D. Robertson. OpenKnowledge
Deliverable 6.3: Bioinformatics Interaction Models. 2008.

 [2] I. Ahmad, A.B. Abdullah, A.S. Alghamdi. Application of artificial neural
network in detection of probing attacks. Industrial Electronics & Applications,
2009. (ISIEA 2009), 557-562. 4-10-2009.

 [3] R. Anderson, M. Kuhn. Tamper Resistance: A Cautionary Note. Proceedings
of the Second USENIX Workshop on Electronic Commerce 2, 1-11. 1996.
USENIX Association.

 [4] A. Artikis, M. Sergot, J. Pitt, Specifying Norm-Governed Computational
Societies. Acm Transactions on Computational Logic 10 (2009).

 [5] M.Y. Becker. Information Flow in Credential Systems. Computer Security
Foundations Symposium (CSF), 2010 23rd IEEE , 171-185. 2010. IEEE.

 [6] S. Bijani, D. Robertson, A Review of Attacks and Security Approaches in
Open Multi-agent Systems. Artificial Intelligence Review2011).

 [7] U. Braun, A. Shinnar, M. Seltzer. Securing provenance. Proceedings of the 3rd
conference on Hot topics in security , 1-5. 2008. USENIX Association.

106

 [8] J.W. Bryans, M. Koutny, L. Mazare, P.Y.A. Ryan, Opacity generalised to
transition systems. International Journal of Information Security 7 (2008) 421-
435.

 [9] R. Endsuleit, A. Wagner. Possible attacks on and countermeasures for secure
multi-agent computation. Arabnia.H.R., Aissi, S., and Mun, Y. International
Conference on Security and Management (SAM '04) , 221-227. 2004. CSREA
Press.

 [10] M. Esteva, D. De La Cruz, B. Rosell, J.L. Arcos, J.A. Rodriguez-Aguilar, G.
Cuní. Engineering open multi-agent systems as electronic institutions.
Procedings of the National Conference on Artificial Intelligence (AAA '04) ,
1010-1011. 2004. AAAI Press.

 [11] R. Gorrieri, F. Martinelli, I. Matteucci, Towards information flow properties
for distributed systems. Electronic Notes in Theoretical Computer Science 236
(2009) 65-84.

 [12] Y. Gurevich, I. Neeman. DKAL: Distributed-knowledge authorization
language. Computer Security Foundations Symposium, 2008.CSF'08.IEEE
21st , 149-162. 2008. IEEE.

 [13] B. Hu, S. Dasmahapatra, P. Lewis, D. Dupplaw, N. Shadbolt, Facilitating
Knowledge Management in Pervasive Health Care Systems. Networked
Knowledge-Networked Media 221 (2009) 285-304.

 [14] Y. Ishai, A. Sahai, D. Wagner, Private circuits: Securing hardware against
probing attacks. Advances in Cryptology-Crypto 2003, Proceedings 2729
(2003) 463-481.

 [15] S. Joseph, A.P. de Pinninck, D. Robertson, C. Sierra, C. Walton.
OpenKnowledge Deliverable 1.1: Interaction Model Language Definition.
2006.

 [16] A.C. Kakas, R.A. Kowalski, F. Toni The Role of Abduction in Logic Pro-
gramming. in: D. M. Gabbay, C. J. Hogger, and J. A. Robinson (Eds.),
Handbook of Logic in Artificial Intelligence and Logic Programming: Logic
programming 5, Oxford University Press, USA, 1998, pp. 235-324.

 [17] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes .1.
Information and Computation 100 (1992) 1-40.

 [18] D. Robertson. Multi-agent coordination as distributed logic programming.
Logic Programming, Proceedings 3132, 416-430. 2004. Lecture Notes in
Computer Science.

 [19] D. Robertson. Multi-agent coordination as distributed logic programming.
International Conference on Logic Programming , 77-96. 2004. Springer.

 [20] D. Robertson, A lightweight coordination calculus for agent systems.
Declarative Agent Languages and Technologies Ii 3476 (2005) 183-197.

107

 [21] J.-M. Schmidt, C. Kim A Probing Attack on AES. in: K. I. Chung, K. Sohn,
and M. Yung (Eds.), Information Security Applications, Springer Berlin /
Heidelberg, 2009, pp. 256-265.

 [22] R. Siebes, D. Dupplaw, S. Kotoulas, A.P. de Pinninck, F. Van Harmelen, D.
Robertson. The openknowledge system: an interaction-centered approach to
knowledge sharing. Proceedings of the 15th International Conference on
Cooperative information systems (CoopIS) , 381-390. 2007. Springer-Verlag.

 [23] G.J. Van't Noordende, B.J. Overeinder, R.J. Timmer, F.M.T. Brazier,
Constructing secure mobile agent systems using the agent operating system.
International Journal of Intelligent Information and Database Systems 3 (2009)
363-381.

 [24] S. Venkatesan, C. Chellappan. Protection of Mobile Agent Platform through
Attack Identification Scanner (AIS) by Malicious Identification Police (MIP).
First International Conference on Emerging Trends in Engineering and
Technology , 1228-1231. 2008. IEEE.

 [25] L. Xiao, S. Dasmahapatra, P. Lewis, A. Peet, A. Gibb, D. Dupplaw, M.
Croitoru, B. Hu, F. Estanyol, J. Martinez-Miranda, H. Gonzalez-Velez, M.
Lluch i Ariet, The design and implementation of a novel security model for
HealthAgents. Knowledge Engineering Review 26 (2011).

 [26] L. Xiao, P. Lewis, S. Dasmahapatra. Secure Interaction Models for the
HealthAgents System. 27th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP). Lecture Notes in Computer Science
5219, 167-180. 2008. Springer.

 [27] S. Xu, Q. Ni, E. Bertino, R. Sandhu. A characterization of the problem of
secure provenance management. IEEE International Conference on Intelligence
and Security Informatics, ISI09. 310-314. 2009. IEEE.

 [28] J. Zheng, M.Z. Hu, Intrusion detection of DoS/DDoS and probing attacks for
web services. Advances in Web-Age Information Management, Proceedings
3739 (2005) 333-344.

108

