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Preface
The use of cooperative game theory to study how agents should cooperate and col-
laborate, along with the related topic of coalition formation, has received growing
attention from the multiagent systems, game theory, and electronic commerce com-
munities. The workshop is intended to focus on topics in cooperation in multi-agent
systems, cooperative game theory and cooperative solution concepts, formation of
coalitions, negotiation between agents, joint decision making, and voting. The
topics of interest of the workshop include:

• Cooperative game theory
• Coalition formation
• Joint decision making and voting
• Representation issues
• Negotiation
• Collaborative filtering
• Market and economics based cooperation
• Interact with humans (negotiation / collaboration)
The workshop should be of interest to researchers in cooperative game theory

and coalition formation, as well as to those who examine collaboration between
agents, cooperation in multiagent systems and design and implement collabo-
rating agents. We also welcome participants who are interested in applications
of cooperative game theory, which include trading agents, sponsored search and
recommender systems.

We would like to thank all the authors who submitted papers to the second
edition of this workshop as well as all the program committee members for their
usefull work. We thank the AAMAS conference for providing us a platform to hold
this event. We are thankful to the Easychair website to manage the submissions
and reviews. We look forward to a lively workshop with informative discussions
and constructive exchange of ideas.

Stéphane Airiau,
Yoram Bachrach,

and Michael Wooldridge
March 2011
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Hierarchical Simple Games: Representations and
Weightedness

Tatiana Gvozdeva1, Ali Hameed1 and Arkadii Slinko1

Department of Mathematics, The University of Auckland, Private Bag 92019,
Auckland, New Zealand

{t.gvozdeva,a.hameed,a.slinko}@auckland.ac.nz

Abstract. In both human and artificial societies some activities are
only allowed to coalitions that satisfy certain criteria, e.g., to sufficiently
large coalitions or coalitions which involve players of sufficient seniority.
Simmons (1988) formalised this idea in the context of secret sharing
schemes by defining the concept of a (disjunctive) hierarchical access
structure.
The mathematical concept which describe access structures of secret
sharing schemes is that of a simple game. In this paper we aim to start
a systematic study of hierarchical games, both disjunctive and conjunc-
tive, and our results show that they deserve such a treatment. We prove
the duality between disjunctive and conjunctive hierarchical games. We
introduce a canonical representation theorem for both and characterise
disjunctive hierarchical games as complete games with a unique shift-
maximal losing coalition. We give a short combinatorial proof of the
Beimel-Tassa-Weinreb characterisation theorem of weighted disjunctive
hierarchical games. By duality we get similar theorems for conjunctive
hierarchical games.

1 Introduction

In many situations cooperating agents have different status with respect to the
activity. In the theory of simple games developed by (Neumann & Morgenstern,
1944) seniority of players is modeled by giving them different weights. Such
situation, for example, arise in context of corporate voting when different share-
holders have different number of shares. The access structure in secret sharing
scheme (Simmons, 1990; Stinson, 1992) can also be modeled by a simple game
but in this theory a different approach in defining seniority is often used. To this
end (Simmons, 1990) introduced the concept of a hierarchical access structure.
Such access structure stipulates that agents are partitioned into m levels and
a sequence of thresholds k1 < k2 < . . . < km is set such that a coalition is
authorised if it has either k1 agents of the first level or k2 agents of the first
two levels or k3 agents of the first three levels etc. Consider, for example, the
situation of a money transfer from one bank to another. If the sum to be trans-
ferred is sufficiently large this transaction must be authorised by three senior
tellers or two vice-presidents. However, two senior tellers and a vice-president
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can also authorise the transaction. These hierarchical structures are called dis-
junctive since only one of the m conditions must be satisfied for a coalition to be
authorised. If all conditions must be satisfied, the hierarchical access structure
is called conjunctive.

It was shown that these two approaches are seldom equivalent since hierar-
chical access structures are seldom weighted. Both (Beimel, Tassa, & Weinreb,
2008) and (Farràs & Padró, 2010) characterised weighted disjunctive hierarchical
access structures as a part of their characterisation of weighted ideal access struc-
tures. They showed that beyond two levels disjunctive hierarchical structures are
normally non-weighted. This is extremely interesting from game-theoretic point
of view since we now have a natural class of non-weighted access structures
and hence simple games. However, the proof of this characterisation in both
papers was indirect. They used the fact that hierarchical access structures are
ideal (E. F. Brickell, 1990) and well-known relation between ideal secret sharing
schemes and matroids (E. Brickell & Davenport, 1990). Conjunctive hierarchical
access structures introduced in (Tassa, 2007) have got much less attention. We
will use the game-theory methods and terminology and will be talking about
hierarchical games, not access structures.

The progress in studying hierarchical games was hindered by absence of their
canonical representation which is needed since different values of parameters can
give us the same game. In this paper we introduce a canonical representation
of hierarchical games and give a short combinatorial proof of the Beimel-Tassa-
Weinreb characterisation theorem using the technique of trading transforms de-
veloped in (Taylor & Zwicker, 1999). Our statement is slightly more general as
it allows for existence of dummy players. We also characterise disjunctive hier-
archical games as complete games with a unique shift-maximal losing coalition.
Then we prove the duality between disjunctive and conjunctive games. This al-
lows us to characterise weighted conjunctive hierarchical games and obtain their
structural characterisation as complete games with a unique shift-minimal win-
ning coalition. The class of complete games with a unique shift-minimal winning
coalition was studied on its own right in (Freixas & Puente, 2008) however, they
did not notice that the games they study are hierarchical conjunctive games.

2 Preliminaries

The background material on simple games can be found in (Taylor & Zwicker,
1999).

Definition 1. Let P = [n] = {1, 2, . . . , n} be a set of players and let ∅ 6= W ⊆
2P be a collection of subsets of P that satisfies the following property:

if X ∈W and X ⊆ Y , then Y ∈W . (1)

In such case the pair G = (P,W ) is called a simple game and the set W is called
the set of winning coalitions of G. Coalitions that are not in W are called losing.

Hierarchical Simple Games: Representations and Weightedness
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Due to the monotonic property (1) the subset W is completely determined
by the set Wmin of minimal winning coalitions of G. A player who does not
belong to any minimal winning coalition is called a dummy. Such player can be
removed from any winning coalition without making it losing.

Definition 2. A simple game G = (P,W ) is called weighted majority game if
there exist nonnegative weights w1, . . . , wn and a threshold q such that

X ∈W ⇐⇒
∑

i∈X
wi ≥ q. (2)

In secret sharing weighted threshold access structures were introduced by (Shamir,
1979).

A distinctive feature of many games is that the set of players is partitioned
into subsets and players in each of the subsets have equal status. We suggest
analysing such games with the help of multisets. Given a simple game G we
define a relation ∼G on P by setting i ∼G j if for every set X ⊆ P not containing
i and j

X ∪ {i} ∈W ⇐⇒ X ∪ {j} ∈W. (3)

Lemma 1. ∼G is an equivalence relation.

Example 1. Suppose we have P = {a1, a2, b1, c1} as the full set of players with
weights as follows: a1 and a2 have weights 1, b1 has weight 2 and c1 has weight
3. Then the following is the set of minimal winning coalitions for the game with
q = 3.

Wmin = {{a1, b1}, {a2, b1}, {c1}}.
This gives a1 ∼G a2 and of course a2 ∼G a1 as ∼ is symmetric. Since ∼ is
reflexive, then ai ∼ ai for i = 1, 2, and also b1 ∼G b1. Similarly c1 ∼G c1. It
follows that our equivalence classes are {a1, a2}, {b1} and {c1}.

We need now the notion of a multiset.

Definition 3. A multiset on the set [m] is a mapping µ : [m]→ Z+ of [m] into
the set of non-negative integers. It is often written in the form

µ = {1k1 , 2k2 , . . . ,mkm},

where ki = µ(i) is called the multiplicity of i in µ.

A multiset ν = {1j1 , . . . ,mjm} is a submultiset of a multiset µ = {1k1 , . . . ,mkm},
iff ji ≤ ki for all i = 1, 2, . . . ,m. This is denoted as ν ⊆ µ.

The existence of large equivalence classes relative to ∼G allows us to com-
press the information about the game. This is done by the following construction.
Let now G = (P,W ) be a game and ∼G be its corresponding equivalence re-
lation. Then P can be partitioned into a finite number of equivalence classes
P = P1 ∪ P2 ∪ . . . ∪ Pm relative to ∼G and suppose |Pi| = ni. Then we put

Hierarchical Simple Games: Representations and Weightedness
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in correspondence to the set of agents P a multiset P̄ = {1n1 , 2n2 , . . . ,mnm}.
We take our base set P , identify those agents which are equivalent and do not
distinguish between them any further. We carry over the game structure to P̄ as
well by defining the set of submultisets W̄ ⊆ P̄ by assuming that a submultiset
Q = {1`1 , 2`2 , . . . ,m`m} is winning in Ḡ if a subset of P containing `i agents
from Pi (i = 1, 2, . . . ,m), is winning in G. This definition is correct since the
sets Pi are defined in such a way that it does not matter which `i players from
Pi are involved. We will call Ḡ = (P̄ , W̄ ) the canonical representation of G.

Definition 4. A pair Ḡ = (P̄ , W̄ ) where P̄ = {1n1 , 2n2 , . . . ,mnm} and W̄ is
a system of submultisets of the multiset P̄ is said to be a simple game on P̄ if
X ∈ W̄ and X ⊆ Y implies Y ∈ W̄ .

So the canonical representation of a simple game on a set of players P is
a simple game on the multiset P̄ . We will omit bars when this does not invite
confusion.

Given a game G on a set of players P we may also define a relation �G on
P by setting i �G j if for every set X ⊆ U not containing i and j

X ∪ {j} ∈W =⇒ X ∪ {i} ∈W. (4)

It is known as Isbel’s desirability relation (Taylor & Zwicker, 1999). The game is
called complete if �G is a total (weak) order. We also define the relation i �G j
as i �G j but not j �G i.

Definition 5. We say that Ḡ = (P̄ , W̄ ) is a weighted majority game if there ex-
ist non-negative weights w1, . . . , wm and q ≥ 0 such that Q = {1`1 , 2`2 , . . . ,m`m}
is winning iff

∑m
i=1 `iwi ≥ q.

If G is weighted, then it is well-known (see, e.g., (Taylor & Zwicker, 1999),
p.91) that equivalent players must have equal weights. Hence we obtain

Proposition 1. A simple game G = (P,W ) is a weighted majority game if and
only if the corresponding simple game Ḡ = (P̄ , W̄ ) is.

One of the most interesting classes of complete games are hierarchical games.
They can be of two types ((Beimel et al., 2008), (Tassa, 2007)) and will be
considered in the next section.

If a game G is complete, then we define shift-minimal (δ-minimal in (Carreras
& Freixas, 1996)) winning coalitions and shift-maximal losing coalitions. By a
shift we mean a replacement of a player of a coalition by a less desirable player
which did not belong to it. Formally, given a coalition X, player p ∈ X and
another player q /∈ X such that q ≺G p we say that the coalition (X \ {p})∪{q}
is obtained from X by a shift. A winning coalition X is shift-minimal if every
coalition contained in it and every coalition obtained from it by a shift are losing.
A losing coalition Y is said to be shift-maximal if every coalition that contains
it is winning and there does not exist another losing coalition from which Y can
be obtained by a shift.

The definition of a shift in the multiset context must be adapted as follows.

Hierarchical Simple Games: Representations and Weightedness
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Definition 6. Let G be a complete simple game on a multiset P = {1n1 , . . . ,mnm},
where 1 �G 2 �G . . . �G m. Suppose a submultiset

A′ = {. . . , i`i , . . . , j`j , . . .}

has `i ≥ 1 and `j < nj for some i < j. Then we will say that the submultiset

A′ = {. . . , i`i−1, . . . , j`j+1, . . .}

is obtained from A by a shift.

Shift-minimal winning and shift-maximal losing coalitions are then defined straight-
forwardly.

For X ⊂ P we will denote its complement P \X by Xc.

Definition 7. Let G = (P,W ) be a simple game and A ⊆ P . Let us define
subsets

Wsg = {X ⊆ Ac | X ∈W}, Wrg = {X ⊆ Ac | X ∪A ∈W}.

Then the game GA = (Ac,Wsg) is called a subgame of G and GA = (Ac,Wrg)
is called a reduced game of G.

Proposition 2. Every subgame and every reduced game of a weighted majority
game is also a weighted majority game.

Let us discuss briefly duality in games. The dual game of a game G = (P,W )
is defined as G∗ = (P,Lc). Equivalently, the winning coalitions of the game
G∗ dual to G are exactly the complements of losing coalitions of G. We have
G = G∗∗. We note also that, If A ⊆ P , then: (GA)∗ = (G∗)A and (GA)∗ = (G∗)A.
Moreover, the operation of taking the dual is known to preserve weightedness. We
will also use the fact that Isbel’s desirability relation is self-dual, that is x �G y
if and only if x �G∗ y. All these concepts can be immediately reformulated for
the games on multisets.

Let us remind the reader some more facts from the theory of simple games.
The sequence of coalitions

T = (X1, . . . , Xj ;Y1, . . . , Yj) (5)

is called a trading transform if the coalitions X1, . . . , Xj can be converted into
the coalitions Y1, . . . , Yj by rearranging players. In other words, for any player
p the cardinality of the set {i | p ∈ Xi} is the same as the cardinality of the set
{i | p ∈ Yi}. We say that the trading transform T has length j.

Theorem 1 ((Taylor & Zwicker, 1999)). A game G = (P,W ) is weighted
majority game if for no j does there exist a trading transform (5) such that
X1, . . . , Xj are winning and Y1, . . . , Yj are losing.

This theorem gives a combinatorial way to prove the existence of weights for
a given game.

Hierarchical Simple Games: Representations and Weightedness
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Definition 8. Let G = (P,W ) be a simple game. A trading transform (5) where
all X1, . . . , Xj are winning in G and all Y1, . . . , Yj are losing in G is called
certificate of non-weightedness for G.

For complete games the criterion can be made easier to check due to the
following result.

Theorem 2 ((Freixas & Molinero, 2009)). A complete game is weighted
majority game if and only if it does not have certificates of non-weightedness
(5) such that X1, . . . , Xj are shift-minimal winning coalitions and Y1, . . . , Yj are
losing coalitions.

3 Canonical Representations and Duality of Hierarchical
Games

Definition 9 (Disjunctive Hierarchical Game). Suppose the set of players
P is partitioned into m disjoint subsets P = ∪mi=1Pi and let k1 < k2 < . . . < km
be a sequence of positive integers. Then we define the game H = H∃(P,W ) by
setting

W = {X ∈ 2P | ∃i
(∣∣X ∩

(
∪ij=1Pi

)∣∣ ≥ ki
)
}.

From their definition it follows that any disjunctive hierarchical game H is
complete, moreover for any i ∈ [m] and u, v ∈ Pi we have u ∼H v. However, for
arbitrary values of parameters we cannot guarantee that the canonical represen-
tation H̄ of H will be defined on the multiset P̄ = {1n1 , 2n2 , . . . ,mnm} since it is
possible to have less than m equivalence classes. The next theorem shows when
this does not happen.

Theorem 3. Let H be a disjunctive hierarchical game defined on the set of
players P partitioned into m disjoint subsets P = ∪mi=1Pi, where ni = |Pi|,
by a sequence of positive thresholds k1 < k2 < . . . < km. Then the canonical
representation H̄ of H has m equivalence classes and, hence, is defined on P̄ =
{1n1 , 2n2 , . . . ,mnm} if and only if

(a) k1 ≤ n1, and
(b) ki < ki−1 + ni for every 1 < i < m.

When (a) and (b) hold the sequence (k1, . . . , km−1) is determined uniquely. More-
over, H does not have dummies if and only if km < km−1 + nm; in this case km
is determined uniquely as well. If km ≥ km−1 + nm the last mth level consists
entirely of dummies.

Proof. As we know players within each Pi are equivalent. We note that if k1 > n1,
then P1 ∼H P2. On the other hand, if k1 ≤ n1, then any k1 players from P1

form a winning coalition M1 which seize to be winning if we replace one of
them with a player of P2 yielding P1 6∼H P2. Suppose that we know already
that Pi−1 6∼ Pi for some i < m and that there is a minimal winning coalition

Hierarchical Simple Games: Representations and Weightedness
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Mi−1 contained in ∪i−1j=1Pj which intersects Pi−1 nontrivially and consists of ki−1
players. Then, if ki ≥ ki−1 + ni, and a coalition Q ⊆ ∪ij=1Pj is winning and has

a non-zero intersection with Pi, then we also have |Q ∩
(
∪i−1j=1Pj

)
| ≥ ki−1 and

hence Q∩
(
∪i−1j=1Pj

)
is also winning. Then any player of Pi in Q can be replaced

with any player of Pi+1 without Q becoming losing, i.e., Pi �H Pi+1. From the
definition of hierarchical game we have Pi �H Pi+1, this implies Pi ∼H Pi+1.
On the other hand, if ki < ki−1 +ni, we see that a minimal winning coalition in
∪ij=1Pi exists which intersects with Pi nontrivially and consists of ki players. For
constructing it we have to take ki players of the ith level (if they are available)
and, if their number is less than ki add ki−ni players from Mi−1. We note that
the number of players needed to be added is less than ki−1 which makes Mi

minimal. As above the existence of such coalition this implies Pi 6∼H Pi+1.
The uniqueness of (k1, . . . , km−1) (and also km in case km < km−1 + nm)

follows from the fact that these numbers are exactly the cardinalities of minimal
winning coalitions in H̄.

By H∃(n,k) we will denote the m-level disjunctive hierarchical game canon-
ically represented by n = (n1, . . . , nm) and k = (k1, . . . , km) with km = km−1 +
nm in case the last level consists of dummies. Every new level, except maybe the
last one adds a new class of minimal winning coalitions.

Corollary 1. Let G = H∃(n,k) be an m-level disjunctive hierarchical game.
Then we have ni > 1 for every 1 < i < m.

Proof. If ni = 1 for some 1 < i < m, then (b) cannot hold.

We note that the first and the last mth level are special, if k1 = 1, then
every user of the first level is self-sufficient (passer) and its presence makes any
coalition winning and if km ≥ km−1 + nm, then the mth level consists entirely
of dummies.

Definition 10 (Conjunctive Hierarchical Game). Suppose the set of agents
P is partitioned into m disjoint subsets P = ∪mi=1Pi and let k1 < . . . < km−1 ≤
km be a sequence of positive integers. Then we define the game H∀(P,W ) by
setting

W = {X ∈ 2P | ∀i
(∣∣X ∩

(
∪ij=1Pi

)∣∣ ≥ ki
)
}.

Theorem 4. Let n = (n1, . . . , nm) and k = (k1, . . . , km). Then for an m-level
hierarchical games H∃(n,k)∗ = H∀(n,k∗) and H∀(n,k)∗ = H∃(n,k∗), where

k∗ = (n1 − k1 + 1, n1 + n2 − k2 + 1, . . . ,
∑

i∈[m]

ni − km + 1).

Proof. We will prove only the first equality. As Isbel’s desirability relation is
self-dual, the canonical representation of H∃(n,k)∗ will involve the same equiv-
alence classes and hence it will be defined on the same multiset. Let k∗ =
(k∗1 , k

∗
2 , . . . , k

∗
m). It is easy to see that k∗i < k∗i+1 is equivalent to ki+1 < ki +ni+1

Hierarchical Simple Games: Representations and Weightedness
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so we have k∗1 < . . . < k∗m−1 ≤ k∗m and k∗m−1 = k∗m if and only if km = km−1+nm.
So k∗ is well-defined. Consider a losing in coalition X = {1`1 , 2`2 , . . . ,m`m} in
H∃(n,k). It satisfies

∑
j∈[i] `j < ki for all i ∈ [m]. Then

∑

j∈[i]
(nj − `j) >

∑

j∈[i]
nj − ki,

for all i ∈ [m], and the coalition Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} satisfies the
condition

∑
j∈[i](nj − `j) ≥

∑
j∈[i] nj − ki + 1 = k∗i , for all i ∈ [m]. Therefore,

Xc is winning in H∀(n,k∗).
We need also to show that the complement of every winning in H∃(n,k) coali-

tion is losing in H∀(n,k∗). Consider a coalition X = {1`1 , 2`2 , . . . ,m`m} which is
winning in H∃(n,k). It means that there is an i ∈ [m] such that

∑
j∈[i] `j ≥ ki.

But then the condition
∑

j∈[i]
(nj − `j) ≤

∑

j∈[i]
nj − ki <

∑

j∈[i]
nj − ki + 1 = k∗i

holds. Thus, the complement Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} is losing in
H∀(n,k∗).

We note a certain duality for the second parameter as k∗∗ = k.

Theorem 5. Let H be a conjunctive hierarchical game defined on the set of
agents P partitioned into m disjoint subsets P = ∪mi=1Pi, where ni = |Pi|, by
a sequence of positive thresholds k1 < . . . < km−1 ≤ km. Then the canonical
representation H̄ of H has m equivalence classes and, hence, is defined on P̄ =
{1n1 , 2n2 , . . . ,mnm} if and only if

(a) k1 ≤ n1, and
(b) ki < ki−1 + ni for every 1 < i ≤ m.

When (a) and (b) hold the sequence (k1, . . . , km) is determined uniquely. The
last mth level consists entirely of dummies if and only if km−1 = km.

Proof. This is a direct consequence of duality and Theorem 3. Indeed we have
k∗i < k∗i−1 + ni if and only if ki−1 < ki and k∗1 ≤ n1 is equivalent to k1 > 0,
k∗1 > 0 is equivalent to k1 ≤ n1 and k∗i−1 < k∗i is equivalent to ki < ki−1 + ni.

To prove the second statement we use duality and the fact that k∗∗ = k.

We will need the following two propositions.

Proposition 3. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∃(n,k). If
n′ = (n1, . . . , nm−1), k′ = (k1, . . . , km−1), then H(n′,k′) is a subgame GA of G
for A = {mnm}.

Proposition 4. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∀(n,k).
Suppose k1 = n1, n′ = (n1, . . . , nm), and k′ = (k2 − k1, . . . , km − k1). Then
H∀(n′,k′) is a reduced game GA, where A = {1n1}.

Hierarchical Simple Games: Representations and Weightedness
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4 Characterisations of Disjunctive Hierarchical Games

Firstly, we will obtain a structural characterisation of hierarchical disjunctive
games.

Theorem 6. The class of disjunctive hierarchical simple games are exactly the
class of complete games with a unique shift-maximal losing coalition.

Proof. Let G = H∃(n,k) be an m-level hierarchical game. If km < km−1 + nm,
then the following coalition is shift-maximal losing one:

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}. (6)

Indeed, for every i = 1, 2, . . . ,m it has ki − 1 players from the first i levels
so any replacement of a player with more influential one makes it winning. If
km ≥ km−1 + nm, then it has to be modified as

M = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2 ,mnm}. (7)

Suppose now that G is complete, has canonical multiset representation on a mul-
tiset P = {1n1 , 2n2 , . . . ,mnm} and has a unique shift-maximal losing coalition
M = {1`1 , 2`2 , . . . ,m`m}. We claim that `i < ni for all 1 ≤ i < m. Suppose not.
We know there exist a multiset X such that X ∪ {i} is winning but X ∪ {i+ 1}
is losing. We first take X to be of maximal possible cardinality first and then
shift-maximal with this property. This will make X∪{i+1} shift-maximal losing
coalition. Indeed, we cannot add any more elements to X and replacement any
element of it with the more influential one makes it winning. Since X ∪{i+1} is
not equal toM (the multiplicity of i is not at full capacity) we get a contradiction.
Hence `i < ni. Then {1`1 , . . . , (i − 1)`i−1 , i`i+1} must be winning. Then every
coalition with ki = `1 + . . .+ `i + 1 player from the first i levels is winning. Now
if `m = nm we set km = km−1 +nm, alternatively we set km = `1 + . . .+ `m + 1.
It is easy to see that G is in fact H∃(n,k).

(Beimel et al., 2008) characterised ideal weighted threshold secret sharing
schemes. As part of this characterisation they characterised hierarchical weighted
games. However, their proof is indirect and heavily relies upon the connection
between ideal secret sharing schemes and matroids. Here we will prove the follow-
ing theorem which is slightly more general than their Claim 6.5. In secret sharing
dummies are not allowed to be present so they get maximum three levels, not
four.

Theorem 7. Let G = H∃(n,k) be an m-level hierarchical simple game. Then
G is a weighted majority game iff one of the following conditions is satisfied:

(1) m = 1;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;

Hierarchical Simple Games: Representations and Weightedness
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(4) m ∈ {2, 3} and k1 = 1. When m = 3, G is weighted if and only if the
subgame H∃(n′,k′), where n′ = (n2, n3) and k′ = (k2, k3) falls under (2) or
(3);

(5) m ∈ {2, 3, 4}, km ≥ km−1 + nm, and the subgame H∃(n′,k′), where n′ =
(n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the (1) – (4);

Proof. We will prove this theorem using combinatorial technique of trading
transforms. If km ≥ km−1 + nm, then users of the last level are dummies and
never participate in any minimal winning coalition. As a result if there exists a
certificate of non-weightedness

T = (X1, . . . , Xj ;Y1, . . . , Yj) (8)

with minimal winning coalitions X1, . . . , Xj , which exist by Theorem 2, then no
dummies may be found in any of the X1, . . . , Xj , hence they are not participating
in this certificate. Hence G is weighted if and only if its subgame H∃(n′,k′),
where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) is weighted. So we reduced
our theorem to the case without dummies and in this case we have to prove that
G falls under the one of the cases (1)-(4). Let us assume that km < km−1 + nm.

If k1 = 1, then every user of the first level is self-sufficient (passer), that
is, any coalition with participation of this agent is winning. If a certificate of
non-weightedness (8) exists, then a 1 cannot be a member of any set X1, . . . , Xj

since then it will have to be also in one of the Y1, . . . , Yj and at least one of them
will not be losing. Hence G is weighted if and only if its subgame H∃(n′,k′),
where n′ = (n2, . . . , nm) and k′ = (k2, . . . , km) is weighted.

Now we assume k1 ≥ 2. The case m = 1 is trivial. Next we show that if we are
restricted to two levels such that condition (5) is not met but any one of the two
conditions (2) and (3) is met, then G is weighted. So we assume that m = 2 and
k1 ≥ 2. If k2 ≥ k1 +n2 we have case (5); so suppose k1 ≤ n1 and k2 < k1 +n2. If
k2 = k1+1 then this leads to weightedness. Indeed, suppose we have a certificate
of non-weightedness (8) with X1, . . . , Xj winning and Y1, . . . , Yj losing coalitions.
We have then |Xi| ≥ k1 and |Yi| < k2 for all i. Thus we have |Xi| = |Yj | = k1
for all i, j. Since |Xi| = k1 and winning, it must be Xi = {1k1} for all i. But this
will imply that Yi = {1k1} for all i which is an absurd as Yi must be losing.

Now we show that m = 2 together with n2 = k2 − k1 + 1 (we note that by
Theorem 3 this is the smallest value that n2 can take.) implies G is a weighted
majority game. Assume towards a contradiction that G is not weighted, then
there exists a certificate of non-weightedness (8). If k2 = k1 + 1, we know G is
weighted. So assume that k2 ≥ k1 + 2. The first shift-minimal winning coalition
is {1k1}. As k1 > 1, it follows that n2 < k2, which implies that {2k2} is not
a legitimate coalition. As k2 − n2 = k1 − 1, the second shift-minimal winning
coalition is therefore {1k2−n2 , 2n2} = {1k1−1, 2n2}. There are no other.

In the certificate of non-weightedness (8) we may assume that X1, . . . , Xj

are shift-minimal, that is of the two types described earlier. It is obvious that
no {1k1} can be among X1, . . . , Xj . Hence X1 = . . . = Xj = {1k1−1, 2n2}. It is
now clear that we cannot distribute all ones and twos among Y1, . . . , Yj so that
they are all losing.

Hierarchical Simple Games: Representations and Weightedness

CoopMAS 2011 10



Conversely, we show that if all conditions (1)-(3) fail, then G is not weighted.
If m = 2, this means that k2 ≥ k1 + 2 and n2 ≥ k2 − k1 + 2. In this case the
game possesses the following certificate of non-weightedness:

({1k1}, {1k1−2, 2k2−k1+2};
{1k1−1, 2b

k2−k1+2
2 c}, {1k1−1, 2d

k2−k1+2
2 e}).

Since n2 ≥ k2 − k1 + 2, all the coalitions are well-defined. Also, the restriction
k2 ≥ k1 + 2 secures that dk2−k1+2

2 e ≤ k2 − k1 and makes both multisets in the
right-hand-side of the trading transform losing.

Now suppose m ≥ 3, k1 ≥ 2 and the condition (5) is not applicable. We may
also assume that k1 ≤ n1, k2 < k1 + n2 and k3 < k2 + n3. Suppose first that
k3 ≤ n3. Then, since k3 ≥ k2 + 1 ≥ k1 + 2 ≥ 4, the following is a certificate of
non-weightedness.

({1k1}, {3k3}; {1k1−1, 32}, {1, 3k3−2}).

Suppose k3 > n3. If at the same time k3 ≤ n2 + n3, then since k3 − n3 < k2 we
have a legitimate certificate of non-weightedness

({1k1}, {2k3−n3 , 3n3}; {1k1−1, 2, 3}, {1, 2k3−n3−1, 3n3−1}).

Finally, if k3 > n3 and k3 > n2 + n3, then the certificate of non-weightedness
will be

({1k1}, {1k3−n2−n3 , 2n2 , 3n3};
{1k1−1, 2, 3}, {1k3−n2−n3+1, 2n2−1, 3n3−1}).

All we have to check is that the second coalition of the losing part is indeed losing.
To show this we note that k3−n3 < k2 and k3−n2−n3 + 1 < k2−n2 + 1 ≤ k1.
This shows that the second coalition of the losing part is indeed losing and proves
the theorem.

5 Characterisations of Conjunctive Hierarchical Games

First we obtain a structural characterization of conjunctive hierarchical games.

Theorem 8. The class of conjuctive hierarchical simple games is exactly the
class of complete games with a unique shift-minimal winning coalition.

Proof. Let H∀(n,k) be a conjunctive hierarchical game. By Theorem 4, the dual
game of H∀(n,k) is a disjunctive hierarchical game H∃(n,k∗). If we can prove
that the class of complete games with a unique shift-minimal winning coalition is
dual to the class of complete games with a unique shift-maximal losing coalition,
then by Theorem 6 this will be sufficient.

Hierarchical Simple Games: Representations and Weightedness
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Let G = (P,W ) be a simple game with the unique shift-maximal losing
coalition S. By definition, Sc is winning in G∗. Let us prove that it is shift-
minimal winning coalition. Consider any other coalition X that can be obtained
from Sc by a shift in G∗. It means there are players i ∈ X and j /∈ X such
that j ≺G∗ i and X = (Sc \ {i}) ∪ {j}. The complement of X is the set Xc =
(S \ {j}) ∪ {i}. Furthermore, j ≺G i. The coalition Xc is winning in G, because
there does not exist a losing coalition from which S can be obtained by a shift.
Therefore, X is losing in G∗ and Sc is shift-minimal. Consider now a subset X
of Sc. The complement Xc of X is a superset of S. Hence, Xc is winning in G
and X is losing in G∗. Thus, Sc is the shift-minimal winning coalition in G∗.

We claim that Sc is the unique shift-minimal winning coalition in G∗. As-
sume, to the contrary, there is another shift-minimal winning coalition X in G∗.
As we have seen above XcS would be shift-maximal losing coalition in G and it
is different from S, a contradiction.

It is interesting that the class of complete games with a unique shift-minimal
winning coalition was studied before (Freixas & Puente, 2008) without noticing
that this class is actually the class of conjunctive hierarchical games.

Theorem 9. Let G = H∀(n,k) be an m-level conjunctive hierarchical simple
game. Then G is a weighted majority game iff one of the following conditions is
satisfied:

(1) m = 1;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;
(4) m ∈ {2, 3} and k1 = n1. When m = 3, G is weighted if and only if the

reduced game H∀(n,k){1
n1} = H∀(n′,k′), where n′ = (n2, n3) and k′ =

(k2 − k1, k3 − k1) falls under (2) or (3);

(5) m ∈ {2, 3, 4}, km = km−1, and the reduced game H
{mnm}
∀ (n,k) = H∀(n′,k′),

where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the
(1) – (4);

Proof. Theorem straightforwardly follows from Theorem 7, the duality between
conjunctive hierarchical games and disjunctive hierarchical game and Proposi-
tion 4.

6 Further Research

An interesting question in relation to complete simple games is to find how
quickly can dimension grow depending on the number of players (for general
games this growth is exponential). Thus it will be of interest to find the dimension
of disjunctive hierarchical games or get an upper bound for their dimension. It
should be noted that the dimension of conjunctive hierarchical games, as it
follows from results of (Freixas & Puente, 2008) and Theorem 8, is rather well-
understood and has linear growth. There are a number of interesting algorithmic
questions as well.

Hierarchical Simple Games: Representations and Weightedness
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Abstract. Cooperation among automated agents is becoming increasingly im-
portant in various artificial intelligence applications. Coalitional (i.e., coopera-
tive) game theory supplies conceptual and mathematical tools useful in the anal-
ysis of such interactions, and in particular in the achievement of stable outcomes
among self-interested agents. Here, we study the minimal external subsidy re-
quired to stabilize the core of a coalitional game. Following theCost of Stability
(CoS) model introduced by Bachrach et al. [3], we give tight boundson the re-
quired subsidy under various restrictions on the social structure of the game. We
then compare the extended core induced by subsidies with the least core of the
game, proving tight bounds on the ratio between the minimal subsidy and the
minimal demand relaxation that each lead to stability.

1 Introduction

Transferable utility (TU) coalitional games are commonly used to model interactions
where groups of agents differ in the profits that they can guarantee to themselves. Given
that a particular coalition is formed (and specifically, thegrand coalitionof all agents),
a key question that arises is how to allocate payments.

Various solution concepts have been suggested in recent decades, specifying desired
allocations according to criteria of stability and fairness. Due to the increasing ubiquity
of automated agents, and in pursuit of cooperative behavioramong self-interested enti-
ties, such solutions are being studied and applied in multiple areas of AI research (for
several recent papers, see [6, 12, 7, 14]).

As a motivating example, consider three companies,A, B, andC, interested in a
cooperative advertising campaign. Expected profit increases as more companies coop-
erate (e.g., due to exposure in multiple media). A joint effort by all three companies
will result in a total profit of$12 Million (the valueof the coalition{A, B, C}). Al-
ternatively, the campaign can be carried out by justA andB (with profit of $10M), or
each company can choose to advertise alone (with profit of$4M). If companies are to
cooperate, they must decide how to share the resulting profits.

Thecore is one of the earliest and most attractive solution concepts, and it directly
addresses the issue of stability. The core contains all payment allocations (called im-
putations) that are stable, in the sense that no subgroup of agents could gain more by
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“breaking away” from the grand coalition; that is, the payment allocated to the agents
of every coalition is at least that coalition’s value.

Unfortunately, in many TU games (including our example above) the core is empty,
and the game is inherently unstable, as there is always a sub-coalition that is better off
apart. Several relaxations of the core have been proposed inorder to maintain stability
in games with empty cores. One prominent approach is to assume that departing from
the grand coalition incurs some cost to the deviating agents, i.e., that coalitions will be
satisfied with a payoff that is slightly lower than their value. Theleast coreaims to cap-
ture the minimal relaxation in coalitions’ demands that will enable a stable imputation.

An alternative assumption is that certain coalitions are unlikely to form due to social
reasons or other practical limitations (e.g., it may be difficult for a large coalition to
coordinate its deviation). Such restrictions can take manyforms, and generally make the
game more stable, as fewer coalitions are likely to deviate from a proposed allocation. If
companiesA andB cannot cooperate withoutC, then the core in our previous example
becomes non-empty (by allocating $4M to each of the companies).

Whereas the two previous relaxations depend on the environment or on the behavior
of the agents themselves, a different approach is to stabilize the game with an external
monetary intervention. By subsidizing particular outcomes of the game, for example the
formation of the grand coalition, an external authority caninduce stability. While the
injection of sufficiently large subsidies can always guarantee a non-empty core (e.g.,
if every agent gets more than the highest value in the game), one would naturally like
to minimize the intervention. The minimal subsidy that stabilizes the coalitional game
is known as itsCost of Stability(CoS) [3]. In our advertising example, a subsidy of
$2M allows us to allocate $5M to A, $5M to B, and $4M to C, thereby achieving full
cooperation with a stable allocation.

Our contribution. The value of the least core (i.e., the minimal demand relaxation)
and the cost of stability can both serve asmeasuresof the (in)stability of a given game.
This paper answers certain natural questions regarding theconceptual and quantitative
relationship between these measures. We prove tight boundson the ratio between the
minimal subsidy (the CoS) and the minimal demand relaxationthat each stabilizes the
game. In addition, we measure the amount by which several natural restrictions on
coalitions reduce the cost of stability.

1.1 Related work

Subsidies have been proposed by several researchers, usingdifferent models and names.
The reader is referred to the papers mentioned below for additional useful references
and motivating examples.

Our work follows the model suggested by Bachrach et al. [3], which studied bounds
and computational aspects of the CoS, focusing on the familyof weighted voting games.
That initial work has been extended by several other researchers [20, 15, 2], who ad-
dressed the computation of the CoS in various families of TU games, including Network
Flow games, Graph games, Connectivity games, Anonymous games, and others.

A model for subsidies was independently suggested by Bejan and Gómez [5], who
focused (as we do) on the relationship between subsidies andother solution concepts.

Subsidies, Stability, and Restricted Cooperation
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We adopt some of their notation, which is useful in our case aswell. However, in their
work the additional payment required to stabilize a game is gathered from the partici-
pating agents by means of a specifictaxationsystem, rather than injected into the game
by an external authority. We do not assume any form of taxation.

Particular attention has been devoted in Economics toexpense sharinggames, where
agents share thecostof a project, rather than its profits (see, for example, [17, 13, 9]). In
some of these papers there are additional requirements in addition to stability, whereas
we impose none.

Restrictions on the cooperation structure have also been studied extensively, where
the specific restriction may depend on the particular application (see [16, 10, 1, 19]).
While the interaction with many solution concepts has been explicitly addressed, we
are unaware of previous work that aims to quantify the affectof such restrictions on
stability.

1.2 Paper structure

Section 2 provides some notation, and gives the formal definition of the Cost of Stabil-
ity. In Section 3 we compute worst-case bounds on the CoS of TUgames with restricted
interactions. Our main results are in Section 4, where we study the relationship between
the extended core and the least core. We prove tight bounds onthe ratio between the
minimal subsidy and the minimal relaxation that are each sufficient to stabilize the
game, thereby improving on the results of Bachrach et al. [3]. In the final section, we
discuss the relationship to some other solution concepts, and propose future directions
for research.

This paper is currently under review for IJCAI-11.

2 Preliminaries

We briefly present the definitions required for our model. Formore background, see
for example [18]. Atransferable utility (TU) coalitional gameis defined by specifying
the collective utility that can be achieved by every coalition of agents. Formally,G =
〈N, v〉, whereN is a finite set of agentsN = {1, . . . , n}, andv is a functionv : 2N →
R. For a singletoni ∈ N , we writev(i) instead ofv({i}). The functionv is called the
characteristic functionof the game. We assume by convention thatv(∅) = 0. Also, we
restrict our attention in this paper to positive, monotone games unless explicitly stated
otherwise. That isv(S) ≥ 0 for all S, andv(S) ≥ v(S′) for all S′ ⊂ S.

A TU game is calledsimple if v(S) always equals either0 or 1. Coalitions with
v(S) = 1 are calledwinningcoalitions. A TU game issuperadditiveif for all S, T ∈ 2N

s.t.S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).
A payoff vectorx = (x1, . . . , xn) (also called a preimputation) divides the gains of

the grand coalition among its members, where
∑

i∈N xi = v(N). We callxi the payoff
of agenti, and denote the payoff of a coalitionS asx(S) =

∑
i∈S xi. We denote the

set of all preimputations inG by X(G).
A preimputationx ∈ X(G) is individually rational if no agenti can gain more than

xi by itself, i.e., if xi ≥ v(i) for all i ∈ N . Individually rational preimputations are
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called imputations. Similarly, a coalitionS ∈ 2N blocksx ∈ X(G), if x(S) < v(S).
Thecoreof G, denoted C(G), consists of all imputations that are not blocked by any
coalition.

2.1 The least core

Consider a gameG with an empty core, and a valueǫ > 0. We define theweakǫ-core
of G as

WCǫ(G) = {x ∈ X(G) : ∀S ∈ 2N , x(S) ≥ v(S)− ǫ|S|}.
Clearly for a large enoughǫ, WCǫ(G) in not empty. We denote byǫW(G) the smallest
ǫ s.t. WCǫ(G) 6= ∅. TheǫW-core ofG is referred to as theweak least core, and denoted
by WLC(G).

Thestrongǫ-core is defined as

SCǫ(G) = {x ∈ X(G) : ∀S ∈ 2N , x(S) ≥ v(S)− ǫ},

and we defineǫS(G) and thestrong least core(SLC) accordingly.

2.2 The cost of stability

Let ∆ ≥ 0 be a payment that an external authority is willing to pay the grand coalition,
in case such is formed. This induces a new gameG(∆) = 〈N, v∆〉, s.t. v∆(N) =
v(N) + ∆. The value of all other coalitions remains unchanged. Clearly if ∆ is large
enough, thenG(∆) has a non-empty core (e.g., if∆ = n · v(N)). TheCost of Stability
is defined as

CoS(G) = min{∆ ≥ 0 s.t. C(G(∆)) 6= ∅}.
The game induced by the minimal extra payment is denoted byG = G(CoS(G))

(which has a non-empty core).
A preimputation inG(∆) is called asuperimputationof G. A superimputationx′

is anextensionof the preimputationx (denotedx′ ≥ x), if x′
i ≥ xi for all i ∈ N .

Theextended coreconsists of all preimputations that can be extended to stable payoff
vectors with minimal subsidy. Formally,

EC(G) = {x ∈ X(G) s.t.∃x′ ≥ x,x′ ∈ C(G)}.

In general, we define for anyx ∈ X(G) its cost of stability, as the smallest payment
required to extendx to a stable payoff vector, i.e.,

CoS(x, G) = min{∆ ≥ 0 s.t.∃x′ ≥ x,x′ ∈ C(G(∆))}.
Clearly CoS(x, G)≥CoS(G), with equality iffx∈EC(G). The extended core in our

initial example containsp = (5, 5, 2), which can be extended to the (minimal) stable
superimputation(5, 5, 4). In contrast,p′ = (3, 4, 5) /∈ EC(G), as CoS(p′, G) = 3 >
2 = CoS(G).

Subsidies, Stability, and Restricted Cooperation
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2.3 Balanced collections and linear programs

The CoS can also be formulated in a closed form, using the Bondareva-Shapley charac-
terization of the core. We use a variant of the theorem that will be used later in Section 4.

Definition 1. LetD be a collection of coalitions, and denote byδS ∈ R+ the coefficient
of coalitionS. We say thatD is a balanced collectionif there are{δS}S∈D, such that
for every agenti,

∑
S∈D:i∈S δS = 1.

A balanced collectionD is calledminimal, if there is noD′ ( D s.t.D′ is balanced.

Theorem 1 (Bondareva-Shapley Theorem).The core ofG is non-empty iff all [min-
imal]3 balanced collections hold

∑
S∈D δSv(S) ≤ v(N).

By a simple continuity argument, it follows that inG there is at least one [minimal] col-
lection, for which the above holds with an equality. Such collections are calledsolutions
of G. It is easy to verify that for any gameG with empty core,

CoS(G) = max
balancedD

∑

S∈D

δSv(S)− v(N). (1)

Another way to define the gameG is by a linear program, where
∑

i∈N xi should be
minimized, and every constraint corresponds to a coalition(see [3]). The solutions of the
dual linear program (whose variables correspond to coefficients of coalitions), coincide
with the solutions ofG. See [11] for a detailed discussion on balanced collections, and
a proof of Theorem 1.

2.4 The relative CoS

It is sometimes convenient to treat the external payment as arelative fraction ofv(N)
(as we do in Section 3). We therefore define theRelative Cost of Stabilityas

RCoS(G) = min

{
v(N) + ∆

v(N)
≥ 0 s.t. C(G(∆)) 6= ∅

}
.

Note that the transformation is straightforward, as RCoS(G) = v(N)+CoS(G)
v(N) . Trivial

bounds on the RCoS are1 ≤ RCoS(G) ≤ n, and these are tight.

3 Games with Restricted Coalitions

Suppose that there is some given subset of coalitionsT ⊆ 2N that can deviate (we
assumeT contains all singletons). Given a gameG = 〈N, v〉 and a restrictionT , we
define the restricted gameG|T = 〈N, v|T 〉, wherev|T (S) = v(S) if S ∈ T , and 0
otherwise. We emphasize that the restrictions are given exogenously to the game, and
do not depend on the value function or the structure of the game.

Clearly, the more we restrict allowed coalitions, the fewerthe constraints on allowed
imputations, and therefore the core can only expand. This means that such restrictions
can only decrease the CoS of the game. We now consider how somenatural restrictions
affect the (relative) CoS of the game.

3 There are versions with and without the minimality requirement.
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1. Only coalitions of size at mostk are allowed, i.e.,T = {S ∈ 2N : |S| ≤ k}.
2. N is divided according to some fixed partitionP = {C1, C2, . . . , Ck}, andT =
{S ∈ 2N : S ⊆ Cj}.

3. Relations between agents are described by a (non-directed) communication graph
(N, E). A coalitionS is allowed only if the subgraph(S, E|S) is connected.

The third restriction was proposed by Myerson [16], motivated by the approach that
members of a coalition in a society are not allowed to communicate through non-
members. Note that the second restriction is a special case of the third, where the graph
is a block graph.

Without further assumptions on the game, restricting the coalition structure does
not give a better bound on the CoS (in the worst case): consider a simple gameG =
〈N, v〉where all nonempty coalitions win; then RCoS(G|T ) = n even if only singletons
are allowed inT . We therefore consider only superadditive games (i.e., theoriginal
value functionv is superadditive). Superadditivity is known to induce morestability.
For example, it has been shown by Demange that if a game is superadditiveand its
set of coalitionsT is restricted to an uncyclic communication graph, then its core is
non-empty [8] (i.e., it has RCoS of 1). Further, the following is known.

Theorem 2 (Bachrach et al., full version [4]).Let G be a superadditive TU game
(even without restrictions); then CoS(G) ≤ (

√
n− 1) v(N). Equivalently,

RCoS(G) ≤ √n, (2)

and this bound is tight (up to a small additive constant).

Proposition 1. For any superadditive TU gameG:

1. If T = {S∈ 2N : |S|≤k}, then RCoS(G|T )≤min{k,
√

n}. Also, fork=2 a stable
superimputation with cost 2 can be found using a greedy algorithm.

2. If T is restricted to subsets of a partitionP , then RCoS(G|T ) ≤ maxC∈P

√
|C|.

3. If T is restricted to a communication graph which has a single cycle, then
RCoS(G|T ) ≤ 2.

Moreover, all bounds are tight (up to a small additive constant in 1. and 2.).

Proof.We prove each case separately.

Bounded coalition size,k = 2. We construct a superimputationp using the following
algorithm.

Let S1={a1, a2} be the most expensive coalition inT .
Setp(a1) = v(S1).
for t = 2, 3, . . . , n do

find the most expensive coalition inT containingxt, i.e.,St = {at, b}
Setp(at) = v(St).
Setat+1 ← b.

end for
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First observe thatp is a stable superimputation. LetS = {a, b} be any coalition. IfS
was selected in some iteration, then eithera or b gets the value ofS and would therefore
not participate. IfS was not selected, then there is someSt with v(St) ≥ v(S), andSt

contains one ofa, b. Thus one of them is paidv(St) and would not participate inS.
It is left to prove thatp(N) ≤ 2v(N). Clearlyp(N) =

∑
i∈N p(i) =

∑n
t=1 v(St).

Think of {St}nt=1 as nodes in a graph, where an edge connects two coalitions if they
intersect. SinceSt is only connected toSt−1 and St+1 (when they exist) we get a
bipartite graph(L, R), whereL contains all coalitionsSt with oddt, andR with even
t. Coalitions insideL andR are pairwise disjoint. From superadditivity we have that
p(N) holds

n∑

t=1

v(St) =
∑

A

v(St) +
∑

B

v(St) ≤ v

(⋃

A

St

)
+ v

(⋃

B

St

)
,

i.e., at most2v(N).
While the greedy algorithm supplies us with a stable superimputation whose value

is at most2v(N), it is possible to do better (see next paragraph).

Bounded coalition size,k > 2. If k ≥ √n then by Theorem 2 we are done. Assume
thereforek <

√
n. Consider a balanced collectionD which is a solution ofG.

Lemma 1 (Bachrach et al. [3]).If G is superadditive, then there is a solutionD in
which any two setsS, S′ ∈ D with nonzero coefficients intersect.

Thus take any coalitionS ∈ D of size at mostk with a nonzero coefficientδS . There
must be such a set, otherwise all coefficients are 0 (which means we can find a better
solution to the dual program).

p(N) =
∑

j∈N

pj =
∑

S∈D

δSv(S) (by duality)

≤
∑

i∈S

∑

S:i∈S

δSv(S) ≤ v(N)
∑

i∈S

∑

S:i∈S

δS (Lemma 1)

= v(N)
∑

i∈S

1 = v(N)|S| ≤ kv(N).

For tightness, letq = k−1 andnq = k2−1 = q2 + q +1. Take a gameGq = 〈Nq, vq〉
s.t.|Nq| = nq, and CoS(Gq) >

√
nq−1 (such a game exists by the tightness example in

Theorem 2). We now embedGq in a gameG = 〈N, v〉, whereN = Nq ∪ {k2, . . . , n}.
Setv(N) = vq(Nq), v(S) = vq(S) if S ⊆ Nq, andv(S) = 0 otherwise. We thus have
CoS(G) = CoS(Gq) >

√
nq − 1 > k − 1.

Using Lemma 1, it can be shown that whenk = 2, CoS(G|T ) ≤ 1.5 (which is
tight).

Partitions. Take anyC ∈ P , and the linear constraints induced by its subcoalitions.
From Theorem 2 we can satisfy these constraints by paying at mostp(C) ≤

√
|C|v(C).
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We set the payoffs of each setC independently in the same manner. As there are no
further constraints,p is stable. Also

p(N) =
∑

C∈P

p(C) ≤
∑

C∈P

√
|C|v(C) ≤ max

C∈P

√
|C|v(N),

where the last inequality is due to superadditivity ofv.

A single cycle. We construct a stable superimputationp′, by payingv(N) to an ar-
bitrary node in the circle, and solve the remaining game as a tree (using Demange’s
algorithm [8]). While this solution is quite simple, for the worst case it is asymptoti-
cally tight:

Consider a simple anonymous game where a coalition wins iff its size is at least
⌈(n + 1)/2⌉, and a communication graph withn nodes connected in a circle. Since
the game is symmetric, we havepi = pj = p, and for smallest winning coalitionsS,
v(N) = v(S) ≤ p(S) = |S|p = ⌈(n + 1)/2⌉ p.
that is,p(N) = np, which equals either(2− 2

n+2 )v(N) (for oddn), or (2− 1
n+1 )v(N)

(for evenn). �
The lower bound example not only has coalitions of sizek, but can also be embed-

ded in a communication graph of degreek. We conjecture that this always holds, i.e.,
that RCoS(G|T ) ≤ d(T ), whered is the degree of the communication graph ofT .

4 CoS and the Least Core

We use the following lemma (for a proof, see Gilles [11]).

Lemma 2. Any minimal balanced collection has a size of at mostn, and a unique set
of balancing coefficients.

As an immediate corollary we get the following result, whichhas been indepen-
dently shown by Malizia et al. [14] using the geometric properties of the game.

Corollary 1. If the core ofG is empty, then there is a set of coalitions of size at mostn
that are sufficient to determine the emptiness of the core.

4.1 The strong least core

It trivially holds (see Bachrach et al. [3]) that

ǫS(G) ≤ CoS(G) ≤ n · ǫS(G). (3)

While the upper bound is tight (consider a game wherev(S) = 1 for all S 6= ∅), it can
be improved when the game is superadditive, as we will see next.

For the results in this section, we use the following construction. Given a game with
an empty coreG andǫ = ǫS(G), define a new gameGǫ = 〈N, vǫ〉, wherevǫ(S) =
v(S)− ǫ for all S ( N , andvǫ(N) = v(N). Clearly C(Gǫ) = SCǫ(G) = SLC(G).
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Theorem 3. For any superadditive gameG, CoS(G) ≤ √n · ǫS(G), and this is tight.

Our proof uses techniques similar to those used in [3]. Moreover, we can derive the
√

n
bound that appears in Theorem 2 (with a small additive factor), sinceǫS(G) ≤ v(N).

Proof of Theorem 3.From Lemma 1, there is a balanced collection〈D, {δS}S∈D〉 in
which any two setsS andS′ with δS 6= 0 andδS′ 6= 0 intersect, andv(N)+CoS(G) =∑

S∈D δSv(S).
SinceD is balanced, it must hold by Theorem 1 that

∑

S∈D

δS(v(S)− ǫ) =
∑

S∈D

δSvǫ(S) ≤ v(N),

and by combining the last equation and (1),

CoS(G) =
∑

S∈D

δSv(S)− v(N) ≤ ǫ
∑

S∈D

δS . (4)

Lemma 3.
∑

S∈D δS ≤
√

n.

Proof.Suppose first that there is a setT ∈ D with |T | ≤ √n, δT > 0. Any setS ∈ D
with δS > 0 contains one of the elements inT . Thus, we have

∑

S∈D

δS ≤
∑

i∈T

∑

S∈D:i∈S

δS =
∑

i∈T

1 = |T | ≤ √n.

On the other hand, if for anyS ∈ D with δS > 0 it holds that|S| > √n, we have

√
n
∑

S∈D

δS <
∑

S∈D

|S|δS ≤
∑

S∈D

∑

i∈S

δS

=
∑

i∈N

∑

S∈D:i∈S

δS =
∑

i∈N

1 = n,

which also means
∑

S∈D δS ≤
√

n. �
From (4) and the lemma,

CoS(G) ≤
∑

S∈D

δSǫ ≤ √nǫ =
√

nǫS(G).

The tightness follows from the tightness of Theorem 2. I.e.,there is a gameG in
which CoS(G) ≥ (

√
n−O(1)) v(N) ≥ (

√
n−O(1)) ǫS(G). �

Our main result is showing that the lower bound can be improved in the general
case. We begin with a simple example. Consider the case ofn = 2, and suppose there
is an empty core. This simply meansv(1) + v(2) > v(1, 2). If we definez = v(1, 2)−
(v(1) + v(2)), then we can easily see that CoS(G) = z = 2ǫW(G) = 2ǫS(G). With
more agents, this ratio is generalized as follows.

Theorem 4. Let G be a game with an empty core. CoS(G) ≥ n
n−1ǫS(G), and this

bound is tight.
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Proof. For tightness, it is sufficient to consider a simple game where all coalitions of
size at leastn− 1 win.

Let G be a game with an empty core. Consider the strong least core ofG, i.e.,
SLC(G). Let ǫ = ǫS(G).

Recall the gameGǫ. Similarly to the argument used in Section 2.3, there is a solution
of Gǫ (a minimal balanced collection)〈K, {δS}S∈K〉 s.t.

∑

S∈K

δSvǫ(S) = v(N). (5)

W.l.o.g.N /∈ K. Assume otherwise; then eitherK = {N} or {N} = K ′ ( K in
contradiction to the minimality ofK. However, ifK = {N} is the only balanced col-
lection with equality, thenG can be stabilized withǫ′ = 0 < ǫ, which is a contradiction
to the minimality ofǫ = ǫS(G).

For all i ∈ N , 1 =
∑

S∈K:i∈S δS . Summing overi ∈ N ,

n =
∑

i∈N

∑

S∈K:i∈S

δS =
∑

S∈K

∑

i∈S

δS =
∑

S∈K

|S|δS ≤(n− 1)
∑

S∈K

δS ,

thus
∑

S∈K

δS ≥
n

n− 1
. (6)

By definition,vǫ(S) = v(S)− ǫ, thus

v(N) =
∑

S∈K

δSvǫ(S) =
∑

S∈K

δS(v(S)− ǫ)

=
∑

S∈K

δSv(S)− ǫ
∑

S∈K

δS ≤
∑

S∈K

δSv(S)− ǫ
n

n− 1
.

By Equations (1) and (6),

CoS(G) ≥
∑

S∈K

δSv(S)− v(N) ≥ ǫ
n

n− 1
.

�
Theorem 4 establish a quantitative relationship between the CoS and the strong least

core. However, the relationship could be deeper.

Conjecture 1.For any gameG, SLC(G) ⊆ EC(G).

In other words, we conjecture that preimputations in the least core are the easiest to
stabilize: for anyx ∈ SLC(G), CoS(x, G) = CoS(G).

For small games, the conjecture indeed holds.

Proposition 2. If n ≤ 3, then SLC(G) ⊆ EC(G).

We have already seen that whenn = 2, SLC(G), WLC(G) coincide, and are contained
in EC(G). Forn = 3 there is only a small number of minimal balanced collections, and
we can simply go over all the possibilities. We omit the full proof.
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4.2 The weak least core

In the weakǫ-core, every agent in every coalition agrees to lower her demand byǫ.
Instead, we can increase the payoff of each agent by the same amount (see Bejan and
Gómez [5]); thus CoS(G) = n · ǫW(G).

Clearly, this means that WLC(G) ⊆ EC(G), as any preimputationz ∈ WLC(G)
can be extended to a stable superimputation by addingǫ to every coordinate.

Moreover, this tight relation allows us to conclude the following bounds from The-
orems 3 and 4.

Corollary 2. (n− 1)ǫW(G) ≥ ǫS(G).

Corollary 3. For any superadditive game,ǫS(G) ≥ √n · ǫW(G).

5 Discussion

We showed that various restrictions on the interaction of agents can significantly reduce
the cost of stability in (superadditive) TU games. While we focused on profit games,
we note that similar results hold when we impose restrictions onexpense sharinggames
(as in Meir et al. [15]).

We established a tight lower bound for the CoS, in terms of theminimal relaxation
that defines the least core. The upper bound is also improved,but only under conditions
of superadditivity. Indeed, superadditive games have manyattractive properties related
to stability and to its computational aspects (see [6, 3, 8]).

5.1 The nucleolus

One difficulty with solution concepts such as the core and itsvariations is that even
when they exist, they usually do not specify a unique imputation.

A unique solution that is highly motivated by the notion of stability is thenucleolus
(Schmeidler [21]) and its variations. Informally, the (pre)nucleolus is the preimputa-
tion that minimizes the dissatisfaction of all coalitions,sorted according to a certain
lexicographic order (see [5] for definitions of some variations). Like any other preim-
putation, we can always stabilize the nucleolus by extending it with sufficient subsidies
to a stable superimputation. Aziz et al. [2] offered an alternative way to achieve a stable
nucleolus: first extend the core, then compute the nucleolusin the extended game. For
the per-capita nucleolus, both solutions coincide, i.e., the per-capita nucleolus of the
extended gameG is an extension of the per-capita nucleolus ofG. This arises simply
by addingǫW(G) to every coordinate of the per-capita nucleolus, which is contained in
the WLC.

It is an open problem whether the (standard) nucleolus N(G) has similar properties.
Indeed, since it is contained in the SLC, we have that CoS(N(G), G) = CoS(G) in
every game for which Conjecture 1 holds. We further conjecture that N(G) is a minimal
extension of N(G), which is not entailed by the previous conjecture.
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5.2 Future directions

While our results indicate that there is a tight connection between the extended core
and other solution concepts, there are many open questions for future research. Beyond
the conjectures that we explicitly stated, it would be interesting to explore these rela-
tionships in specific families of TU games, such as those thatwere mentioned in the
introduction.

While in the general case (non-superadditive) restricted cooperation cannot guaran-
tee improved stability, it may dramatically reduce required subsidies in certain limited
families of TU games. Such combinations are worth studying.

Finally, the relation between the CoS and similar solution concepts in non-TU
games (such as the strong price of anarchy) should be studied.
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1. E. Algaba, J. Bilbao, and J. López. A unified approach to restricted games.Theory and
Decision, 50:330–345, 2001.

2. H. Aziz, F. Brandt, and P. Harrenstein. Monotone cooperative games and their threshold
versions. InAAMAS-10, pages 1117–1024, 2010.

3. Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J.Rothe, and J. Rosenschein.
The cost of stability in coalitional games. InSAGT-09, pages 122–134, 2009.

4. Y. Bachrach, E. Elkind, R. Meir, D. Pasechnik, M. Zuckerman, J.Rothe, and J. Rosenschein.
The cost of stability in coalitional games. Technical report, arXiv:0907.4385 [cs.GT], ACM
Comp. Research Repository, 2009.
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Abstract. Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). Thus, coalitional games, including
Coalition Structure Generation (CSG), have been attracting considerable
attention from the AI research community. Traditionally, the input of a
coalitional game is a black-box function called a characteristic function.
A range of previous studies have found that many problems in coali-
tional games tend to be computationally intractable when the input is a
black-box function. Recently, several concise representation schemes for
a characteristic function have been proposed. Although these schemes
are effective for reducing the representation size, most problems remain
computationally intractable.
In this paper, we develop a new concise representation scheme based on
the idea of agent types. Intuitively, a type represents a set of agents,
which are recognized as having the same contribution. This representa-
tion can be exponentially more concise than existing concise represen-
tation schemes. Furthermore, this idea can be used in conjunction with
existing schemes to further reduce the representation size. Moreover, we
show that most of the problems in coalitional games, including CSG,
can be solved in polynomial time in the number of agents, assuming the
number of possible types is fixed.

1 Introduction

Forming effective coalitions is a major research challenge in AI and multi-agent
systems (MAS). A coalition of agents can sometimes accomplish things that
individual agents cannot or can do things more efficiently. There are two ma-
jor research topics in coalitional games. The first topic involves partitioning a
set of agents into coalitions so that the sum of the rewards of all coalitions is
maximized. This problem is called the Coalition Structure Generation problem
(CSG) [7, 8]. The second topic involves how to divide the value of the coalition
among agents. The theory of coalitional games provides a number of solution
concepts, such as the core, the Shapley value, and the nucleolus.

A range of previous studies have found that many problems in coalitional
games, including CSG, tend to be computationally intractable. Traditionally,

CoopMAS 2011 27



Table 1. Computational complexities of coalition formation problems and CSG using
conventional representations

Representation schemes

Characteristic function SCG MC-nets

Core non-empty exponential NP-complete [3] co-NP-hard [4]

Core membership exponential linear1 [3] co-NP-complete [4]

The Shapley value exponential O(22n)2 linear1 [4]

CSG O(3n) [7] NP-hard [6] NP-hard [6]

Table 2. Computational complexities of coalition formation problems and CSG using
type-based representations

Type-based representation schemes

Characteristic function SCG MC-nets

Core non-empty polynomial (Thm. 2) polynomial (Thm. 8) polynomial (Thm. 13)

Core membership O(nt) (Thm. 3) O(n2t) (Thm. 9) O(n2t) (Thm. 13)

The Shapley value O(nt) (Thm. 4) O(n2t) (Thm. 10) O(|R| · n2t) (Thm. 14)

CSG O(n2t) (Thm. 5) O(n2t) (Thm. 11) O(n2t) (Thm. 15)

the input of a coalitional game is a black-box function called a characteristic
function, which takes a coalition as an input and returns the value of the coalition
(or a coalition structure as a whole). Recently, several concise representation
schemes for a characteristic function have been proposed, e.g., synergy coalition
group (SCG) [3] and marginal contribution nets (MC-nets) [4]. These schemes
represent a characteristic function as a set of rules rather than as a single black-
box function and can effectively reduce the representation size. However, most
problems are still computationally intractable (Table 1).

In this paper, we develop a new concise representation scheme for a charac-
teristic function, which is based on the idea of agent types. Intuitively, a type
represents a set of agents, which are recognized as having the same contribu-
tion. Most of the hardness results in Table 1 are obtained by assuming that
all agents are different types. In practice, however, in many MAS application
problems, while the number of agents grows, the number of different types of
agents remains small. This type-based representation can be exponentially more
concise than existing concise representation schemes. Furthermore, this idea can
be used in conjunction with existing schemes, i.e., SCG and MC-nets, for further
reducing the representation size. We show that most of the problems in coali-
tional games, including CSG, can be solved in polynomial time in the number of
participating agents, assuming the number of possible types t is fixed (Table 2).

1 These problems can be solved in linear time in the input size.
2 This bound is not tight. Examining a tight bound is an open problem.
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Our idea of using agent types is inspired by the recent innovative work of
Shrot et al. [9]. They assume that a game is already represented in some con-
cise representation, e.g., SCG. The goal of their work is first to identify agent
types and then to efficiently solve problems in coalitional games by utilizing the
knowledge of agent types. This approach becomes infeasible when a standard
characteristic function representation is used, since there exists no efficient way
for identifying agent types.

In contrast to their study, we assume that agent types are explicitly used
for describing a characteristic function in the first place. Also, we consider a
wider range of problems including CSG. As a result, the overlap between our
work and [9] is very small. In Table 2, only two entries, i.e., Core non-empty and
the Shapley value for SCG, might be considered as somewhat overlapping, while
other topics are not discussed in [9].

A similar representation to our work is introduced in [2]. However, they con-
sider only simple games, where the value of a characteristic function is either 0
or 1, while our work considers general representation schemes that can repre-
sent any characteristic function. Also, Bachrach and Rosenschein [1] introduce
coalitional skill games, where the capability of an agent is characterized by its
skills. We can consider such skills correspond to agent types. However, they do
not assume that the possible types/skills an agent can have are fixed (even if
the number of skills is fixed, the combinations of skills are exponential). Thus,
their algorithms and complexity results are quite different from ours.

The rest of this paper is organized as follows. First, we define the model of
a coalitional game including CSG and describe the notion of agent types intro-
duced by Shrot et al. (Section 2). Next, we introduce a new notion of agent
types, i.e., recognizable types, and type-based representation and examine the
computational complexity of the coalition formation problem (Section 3) and
CSG (Section 4). Then, we describe the extensions of the idea by simultaneously
using concise representation schemes (Section 5) and show experimental eval-
uation results (Section 6). Finally, we conclude this paper and describe future
works (Section 7).

2 Model

2.1 Coalitional Games and Coalition Structure Generation

Let A = {1, 2, . . . , n} be a set of all agents. The value of a coalition S is given by
a characteristic function v. A characteristic function v : 2A → R assigns a value
to each set of agents (coalition) S ⊆ A. We assume that each coalition’s value is
non-negative.

Let x = (x1, x2, . . . , xn) be a payoff vector. A solution concept assigns to
each coalitional game a set of reasonable payoff vectors. Two of the best-known
ones are the core and the Shapley value.

Definition 1. The core is the set of all payoff vectors x, which satisfy the
feasibility condition:

∑
i∈A xi = v(A), and the non-blocking condition: ∀S ⊆

A,
∑

i∈S xi ≥ v(S).
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If there exists a blocking coalition S such that
∑

i∈S xi < v(S) holds, then the
agents in S have an incentive to collectively deviate from the grand coalition
and divide v(S) themselves. In general, the core can be empty or contain a large
set of payoff vectors.

Definition 2. The Shapley value of agent i, ϕi, is defined as:

ϕi =
∑

S⊆A\{i}

|S|!(n − |S| − 1)!

n!
(v(S ∪ {i}) − v(S)).

One intuitive interpretation of the Shapley value is that it averages an agent’s
marginal contribution over all possible orders in which the agent may join the
coalition.

A coalition structure CS is a partition of A, into disjoint, exhaustive coali-
tions. More precisely, CS = {S1, S2, . . . } satisfies the following conditions:

∀i, j (i ̸= j), Si ∩ Sj = ϕ,
∪

Si∈CS

Si = A.

In other words, in CS, each agent belongs to exactly one coalition, and some
agents may be alone in their coalitions.

For example, if there exist three agents a, b, and c, then there are seven
possible coalitions: {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, and five possi-
ble coalition structures: {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}},
{{a, b, c}}.

The value of a coalition structure CS, denoted as V (CS), is given by:

V (CS) =
∑

Si∈CS

v(Si).

An optimal coalition structure CS∗ is a coalition structure that satisfies the
following condition:

∀CS, V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any disjoint sets Si, Sj ,
v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds. If the characteristic function is super-additive,
solving CSG becomes trivial, i.e., the grand coalition is optimal. In this paper,
we assume a characteristic function can be non-super-additive.

Example 1. Let there be four agents a, b, c, and d. The characteristic function
is given as follows:

v({a}) = 3, v({b}) = 3, v({c}) = 2,
v({d}) = 2, v({a, b}) = 6, v({a, c}) = 5,
v({a, d}) = 5, v({b, c}) = 5, v({b, d}) = 5,
v({c, d}) = 2, v({a, b, c}) = 8, v({a, b, d}) = 8,
v({a, c, d}) = 5, v({b, c, d}) = 5, v({a, b, c, d}) = 5.

In this case, there exist multiple optimal CSs. For example,
{{a, b, c}, {d}} and {{a, b, d}, {c}} are optimal CSs, and the value of these CSs
is 10.
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2.2 Agent Types

Shrot et al. [9] introduced the idea of using agent types to reduce the computa-
tional complexity of coalition formation problems. If two agents have the same
type, their marginal contributions are the same. They introduced two different
notions of agent types, i.e., strategic types and representational types. The former
defines types based on the strategic power of the agents, and the latter defines
them based on the representation of the game.

Strategic types are defined based on the strategic power (marginal contribu-
tion) of each agent, i.e., if two agents are strategically equivalent, they belong
to the same (strategic) type.

Definition 3 (Definition 2.1 in [9]). Agents i, j ∈ A are strategically equiv-
alent if for any coalition S, such that i, j /∈ S : v(S ∪ {i}) = v(S ∪ {j}).

The notion called representational type is introduced to check the equiva-
lence of agents more conveniently based on a concise representation. Agents are
representationally equivalent if they only differ in their identifier. If two agents
are representationally equivalent, they are also strategically equivalent, but not
vice versa.

Shrot et al. examined the computational complexity for determining strategic
or representational types for several concise representations. They further showed
that if the number of types is fixed in these representations, most intractable
problems in coalitional games become polynomial.

3 Type-based Characteristic Function Representation

We assume the person who is describing a game has some prior information about
the equivalence of agents. Then the person will describe the game by explicitly
using the information of the agent types of which he/she is aware. We need
another notion of agent types. This is because (i) the information of the person
can be partial and he/she is not necessarily aware of all strategic equivalence,
and (ii) the equivalence that he/she is aware of is representation-independent.
Therefore, we introduce another notion called recognizable types.

Definition 4. Agents i, j ∈ A are recognizably equivalent if the person who is
describing the game (either by a characteristic function or by a concise represen-
tation) knows that for any coalition S, such that i, j /∈ S : v(S∪{i}) = v(S∪{j}).

From this definition, if two agents are recognizably equivalent, they are also
strategically equivalent, but not vice versa. Furthermore, assuming appropriate
representation is chosen, if two agents are recognizably equivalent, they are very
likely to be representationally equivalent.

Let T = {1, 2, . . . , t} be the set of all recognizable types and ni
A be the number

of agents of type i ∈ T in the set of all agents A. Also, nA = ⟨n1
A, n2

A, . . . , nt
A⟩

denotes a vector, where each element represents the number of agents of each
type in A.

We represent a characteristic function as follows:
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Definition 5. For a coalition S, the coalition type of S is a vector
nS = ⟨n1

S , n2
S , . . . , nt

S⟩, where each ni
S is the number of type i agents in S. We

denote the set of all possible coalition types as At = {⟨n1, n2, . . . , nt⟩ | 0 ≤ ni ≤
ni

A}. A type-based characteristic function is defined as vt : At → R.

From the definition of recognizable equivalence, ∀S and its type nS , v(S) =
vt(nS) holds.

Theorem 1. A type-based characteristic function requires O(nt) space.

Proof. It is clear from the fact that |At| = (n1
A + 1) × . . . × (nt

A + 1) < nt. ⊓⊔

Example 2. Let agents a, b be type 1 and agents c, d be type 2 in Example 1.
A type-based characteristic function representation for Example 1 is given as
follows:

vt(⟨1, 0⟩) = 3, vt(⟨0, 1⟩) = 2, vt(⟨1, 1⟩) = 5,
vt(⟨2, 0⟩) = 6, vt(⟨0, 2⟩) = 2, vt(⟨2, 1⟩) = 8,
vt(⟨1, 2⟩) = 5, vt(⟨2, 2⟩) = 5.

For example, the type of coalition S = {a, b, c} is ⟨2, 1⟩ because S contains two
agents of type 1 and one agent of type 2. Thus, v(S) = 8. Here, the type-based
representation defines the value for each of eight possible coalition types, while
the standard representation needs to specify the value for each of fifteen possible
coalitions. In general, a type-based representation is exponentially more concise
than a standard representation.

We say a payoff vector is symmetric if all agents with the same type receive
an identical amount. We can restrict our attention to symmetric payoff vectors
without loss of generality (Lemma 3.2 in [9]). A symmetric payoff vector is
represented as ⟨x1, . . . , xt⟩, where all type i agents receive xi. We examine the
computational complexity of coalition formation problems in this restriction and
show that these problems can be solved in polynomial time in the number of
agents.

Theorem 2. If the number of agent types t is fixed, by using a type-based char-
acteristic function, determining whether the core is non-empty can be done in
polynomial time in the number of agents n.

Proof. To check whether the core is non-empty, it is sufficient to confirm whether
there exists a symmetric payoff vector that is feasible and not blocked by any
coalition. To this end, we construct the following linear programming formula
and check whether it has a solution. The variables of the linear program are
elements of a symmetric payoff vector x = ⟨x1, . . . , xt⟩. The program is as follows:

∑

1≤i≤t

ni
A · xi = vt(nA); ∀nS ∈ At,

∑

1≤i≤t

ni
S · xi ≥ vt(nS)

From Theorem 1, if the number of agent types t is fixed, the number of con-
straints in this linear programming formula is polynomial in the number of agents
n. Thus, this problem can be solved in polynomial time. ⊓⊔
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Theorem 3. By using a type-based characteristic function representation, de-
termining whether a symmetric payoff vector x is in the core can be done in
O(nt) time.

Proof. For a given symmetric payoff vector x = ⟨x1, . . . , xt⟩, we need to check
whether x is feasible, i.e.,

∑
1≤i≤t ni

A · xi ≥ vt(nA) holds, and ∀nS ∈ At, x

is not blocked by S, i.e.,
∑

1≤i≤t ni
S · xi ≥ vt(nS) holds. Since |At| = O(nt),

determining whether a symmetric payoff vector x is in the core can be done in
O(nt) time. ⊓⊔
Theorem 4. By using a type-based characteristic function representation, com-
puting the Shapley value of any agent can be done in O(nt) time.

Proof. The Shapley value averages an agent’s marginal contributions over all
possible orders in which the agents may join the coalition. Computing the Shap-
ley value for an agent requires the agent’s marginal contributions over all possible
coalitions that the agent may join. However, the Shapley value of agents with
the same type must be the same, since the Shapley value is symmetric. Also, if
two coalitions are the same type, the marginal contribution of an agent when
joining these coalitions is the same. Thus, we can obtain the Shapley value from
the marginal contribution of each type for each nS ∈ At, which can be done in
O(nt) time. ⊓⊔

4 Coalition Structure Generation with Agent Types

In this section, we develop an algorithm for the CSG problem based on knap-
sack problems [5]. A multidimensional unbounded knapsack problem (MUKP) is
the knapsack problem, where the knapsack has multidimensional constraint and
multiple copies exist for each item. For each item j, we denote the profit as pj ,
the weight of the i-th constraint as wij , and the number of copies packed in the
knapsack as qj . A MUKP with m items and t constraints of knapsack c1, . . . , ct

is formalized as follows:

maximize
∑

j pjqj

subject to
∑

j wijqj ≤ ci, i = 1, . . . , t

qj ≥ 0, j = 1, . . . , m

Theorem 5. By using a type-based characteristic function representation, find-
ing an optimal coalition structure can be done in O(n2t) time.

Proof. We show that a CSG problem with m = |At| coalition types and t possible
agent types can be formalized as a MUKP with m items and t constraints. Let
us assume that one possible coalition type nSj

∈ At corresponds to item j, where
its value pj is equal to vt(nSj ) and its weight for the i-th constraint is equal to
ni

Sj
. The capacity constraint of knapsack ci is determined by ni

A.

Let zj [d1] . . . [dt] be the optimal solution value for the knapsack problem
(CSG) with j coalition types {nS1 , . . . , nSj } and a capacity constraint of knap-
sack ci = di,∀i ∈ T . If zj−1[d1] . . . [dt] is known for all capacity values 0 ≤ di ≤
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ni
A, ∀i ∈ T , then we can include another coalition type nSj and compute the

corresponding solutions zj [d1] . . . [dt] using the following recursive formula:

zj [d1][d2] . . . [dt] =

max





zj [d1 − n1
Sj

][d2 − n2
Sj

] . . . [dt − nt
Sj

] + vt(nSj )

(if ∀i ∈ T, di ≥ ni
Sj

)

zj−1[d1][d2] . . . [dt]

We can construct a dynamic programming based algorithm from this recur-
sive formula, which takes O(nt × |At|) = O(n2t) steps (see Section 9.3.2 in [5]).
Thus, for any fixed t, finding an optimal coalition structure can be done in O(n2t)
time. ⊓⊔

A similar argument has been done for the winner determination problem in
combinatorial auctions with a fixed number of types of items [10]. In fact, a
CSG problem can be mapped into that problem by assuming each coalition type
corresponds to a bid and that each type of agent corresponds to a type of item.

5 Combining with Concise Representation Schemes

5.1 Type-based SCG

We first show the original definition of SCG [3].

Definition 6. An SCG consists of a set of pairs of the form: (S, v(S)). For any
coalition S, the value of the characteristic function is: v(S) = max{∑

Si∈pS
v(Si)},

where pS is a partition of S, i.e., all Si are disjoint and ∪Si∈pS
Si = S, and for

all the Si, (Si, v(Si)) ∈ SCG. To avoid senseless cases that have no feasible
partitions, we require that ({a}, 0) ∈ SCG whenever {a} does not receive a value
elsewhere in SCG.

Using this original definition, we can represent only super-additive character-
istic functions. To allow for characteristic functions that are not super-additive,
Ohta et al. [6] slightly modify the definition, i.e., they add the following require-
ment for partition pS : ∀p′

S ⊆ pS , where |p′
S | ≥ 2, (∪Si∈p′

S
Si, v(∪Si∈p′

S
Si)) is not

an element of SCG. We refer to this modified definition as a standard SCG.
Next, we introduce the definition of a type-based SCG.

Definition 7. A type-based SCG consists of a set of pairs of the form: (nS , vt(nS)).
For any coalition type nS, the value of the characteristic function is defined in
a similar way as a standard SCG.

Theorem 6. A type-based SCG can represent any characteristic function rep-
resented in a standard SCG using at most the same amount of space.

Proof. The worst case is the situation where recognizable types of all agents
are different, i.e., only agent i belongs to the i-th type. In such a case, for each
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element of a standard SCG (S, v(S)), we create an element of a type-based SCG
(nS , vt(nS)), where the i-th element of nS , i.e., ni

S , is 1 if i ∈ S, otherwise ni
S is

0. Clearly, this type-based SCG takes exactly the same amount of space as the
standard SCG. ⊓⊔

Theorem 7. A type-based characteristic function is exponentially more concise
than a standard SCG for certain games.

Proof. Let us consider a coalitional game with n agents, where all agents have an
identical type and n is even. Let us assume the type-based SCG consists of only
one element (⟨n/2⟩, α). In the coalitional game, v(S) = α if n/2 ≤ |S| < n, and
v(S) = 2α if |S| = n, otherwise, v(S) = 0. Let us represent this characteristic
function using a standard SCG. In this case, we need to include each coalition S
such that |S| = n/2 in an SCG. The number of all coalitions with a size of n/2
is given as

( n
n
2

)
= n!

( n
2 !)2 . Using Stirling’s approximation, i.e., n! ≈

√
2πnnn

en , we

obtain
( n

n
2

)
≈

√
2πn
πn 2n. Thus, the standard SCG representation requires O(2n)

space to specify this characteristic function. ⊓⊔

Example 3. A type-based SCG for Example 1 is given as follows:

(⟨1, 0⟩, 3), (⟨0, 1⟩, 2), (⟨0, 2⟩, 2), (⟨2, 2⟩, 5).

In this case, vt(⟨2, 1⟩) = vt(⟨1, 0⟩)+vt(⟨1, 0⟩)+vt(⟨0, 1⟩) = 8. Here, the type-based
SCG defines the value of four coalition types, while the type-based characteristic
function representation needs to describe eight possible coalition types.

Let us examine the complexity of coalition formation problems when we use
the type-based SCG representation. As discussed in [3], core-related coalition
formation problems remain hard in a standard SCG. However, this is due to the
fact that determining the value of the grand coalition is hard. If the value of
the grand coalition is given explicitly, these problems become tractable. We first
prove the following lemma.

Lemma 1. Translating a type-based SCG representation to a type-based charac-
teristic function representation (i.e., obtaining the values of characteristic func-
tion for all coalition types that are not explicitly described in SCG) can be done
in O(n2t) time.

Proof. Let us consider obtaining vt(nA), i.e., the value of the grand coalition.
It can be obtained using a method similar to the DP-based algorithm described
in Theorem 5. More precisely, we consider each coalition type described in the
type-based SCG as an item of the knapsack problem, where the capacity con-
straint of knapsack ci = ni

A for all i ∈ T . By running the DP-based algorithm,
for each possible coalition type nS , we obtain vt(nS), which is represented as
zm[n1

S ] . . . [nt
S ]. One slight difference with the DP-based algorithm described in

Theorem 5 is that, if vt(nS) is already described in the type-based SCG explic-
itly, we fix the value of zj [n

1
S ] . . . [nt

S ] to v(nS) and do not update. The algorithm
can be done in O(n2t) time. ⊓⊔
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Now, since the value of the grand coalition can be obtained in polynomial
time, it is straightforward to show that core-related coalition formation problems
are tractable.

Theorem 8. If the number of agent types t is fixed, by using a type-based SCG
representation, determining whether the core is non-empty can be done in poly-
nomial time in the number of agents n.

Proof. When confirming that a symmetric payoff vector x is not blocked by any
coalition type, it is sufficient to check against coalition types that are explicitly
described in the type-based SCG. Therefore, we construct the following linear
programming formula with the constraint of coalition types described in the
type-based SCG. The program is as follows:

∑

1≤i≤t

ni
A · xi = vt(nA); ∀(nS , vt) ∈ SCG,

∑

1≤i≤t

ni
S · xi ≥ vt(nS)

After we obtain vt(nA) (by Lemma 1, this can be done in polynomial time), the
above program can be solved in polynomial time in the number of agents n. ⊓⊔

Theorem 9. By using a type-based SCG representation, determining whether a
symmetric payoff vector x is in the core can be done in O(n2t) time. ⊓⊔

Proof. We first obtain vt(nA). By Lemma 1, this can be done in O(n2t) time.
Next, for a symmetric payoff vector x = ⟨x1, . . . , xt⟩, we check whether

∑
i∈T ni

A ·
xi = vt(nA) holds. Then, we confirm that this symmetric payoff vector is not
blocked by any coalition. It is sufficient to check against coalition types explicitly
described in the type-based SCG. Thus, determining whether a symmetric payoff
vector x is in the core can be done in O(n2t) time. ⊓⊔

Unfortunately, as far as the authors are aware, there is no efficient way to
compute Shapley values using SCG-based representations. However, we can use
a naive translation approach, which can be done in polynomial time.

Theorem 10. If the number of agent types t is fixed, by using a type-based SCG
representation, computing the Shapley value can be done in O(n2t) time.

Proof. From Lemma 1, we can compute the values of all coalition types in O(n2t)
time. Also, Theorem 4 shows that we can compute the Shapley value in O(nt)
time if we know the value of all coalitions. Thus, computing the Shapley value
can be solved in O(n2t) time. ⊓⊔

Theorem 11. By using a type-based SCG representation, finding an optimal
coalition structure can be done in O(n2t) time.

Proof. Ohta et al. showed that there exists a coalition structure CS such that
V (CS) = V (CS∗) and ∀S ∈ CS, (S, v(S)) ∈ SCG (see Theorem 3 in [6]). Using
a similar argument, we can show that when searching CS∗, we need to consider
only the coalition types that are explicitly provided in the type-based SCG. We
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can find an optimal coalition structure using the DP-based algorithm provided
in Theorem 5, where possible coalition types (or items of the knapsack problem)
are restricted to the elements appearing in the type-based SCG. This algorithm
also takes O(n2t) steps. Thus, finding an optimal coalition structure can be done
in O(n2t) time. ⊓⊔

5.2 Type-based MC-nets

We first show the original definition of MC-nets [4].

Definition 8. An MC-net consists of a set of rules R. Each rule r ∈ R is of
the form: (Pr, Nr) → vr, where Pr ⊆ A,Nr ⊆ A,Pr ∩ Nr = ∅, vr ∈ R. vr can
be either positive or negative. We say that rule r is applicable to coalition S if
Pr ⊆ S and Nr ∩ S = ∅, i.e., S contains all agents in Pr (positive literals) but
no agent in Nr (negative literals). For a coalition S, v(S) is given as

∑
r∈RS

vr,
where RS is the set of rules applicable to S.

Next, we introduce the definition of type-based MC-nets.

Definition 9. A type-based MC-net consists of a set of rules R. Each rule
r ∈ R is of the form: (Lr, Ur) → vr, where Lr = ⟨l1r , l2r , . . . , ltr⟩ and Ur =
⟨u1

r, u
2
r, . . . , u

t
r⟩. Each lir (and ui

r) represents the lower (upper) bound of the num-
ber of i-th type agents in a coalition so that this rule becomes effective. We say
that rule r is applicable to coalition S if ∀i ∈ T, lir ≤ ni

S ≤ ui
r. For a coalition S,

v(S) is given as
∑

r∈RS
vr, where RS is the set of rules applicable to S.

Theorem 12. A type-based MC-net can represent any characteristic function
represented in a standard MC-net using at most the same amount of space and
is exponentially more concise than a standard MC-net for certain games.

For space reasons, we omit the proof. We can prove the theorem using a
similar argument described in Theorems 6 and 7.

Example 4. A type-based MC-net for Example 1 is given as follows:

r1 : (⟨1, 0⟩, ⟨1, 2⟩) → 3, r2 : (⟨2, 0⟩, ⟨2, 1⟩) → 6,
r3 : (⟨0, 1⟩, ⟨2, 2⟩) → 2, r4 : (⟨2, 2⟩, ⟨2, 2⟩) → 3.

In this case, r2 and r3 are applicable to coalition type ⟨2, 1⟩, but r1 and r4 are
not. Thus, vt(⟨2, 1⟩) is equal to 6 + 2 = 8. Here, the type-based MC-net consists
of four rules, while the type-based characteristic function representation needs
to specify the value of eight possible coalition types.

Unfortunately, as far as the authors are aware, there is no efficient way to
solve core-related coalition formation problems using MC-net-based representa-
tions. However, we can use a naive translation approach, which can be done in
polynomial time. We first prove the following lemma.

Concise Characteristic Function Representations

CoopMAS 2011 37



Lemma 2. Translating a type-based MC-net representation to a type-based char-
acteristic function representation (i.e., obtaining the values of characteristic
function for all coalition types) can be done in O(n2t) time.

Proof. We can safely assume that the number of rules of a type-based MC-
net is O(nt). Otherwise, it’s better to use the type-based characteristic function
representation in the first place. For each nS ∈ At, we initialize vt(nS) to 0. Then,
for each rule r ∈ R, and for each coalition type nS , if the rule is applicable to
nS , we increment vt(nS) by the value of r. Since each rule is applicable to at
most nt coalition types, this procedure can be done in O(n2t) time. ⊓⊔

Theorem 13. If the number of agent types t is fixed, by using a type-based MC-
net representation, determining whether the core is non-empty can be done in
polynomial time in the number of agents n. Also, determining whether a sym-
metric payoff vector x is in the core can be done in O(n2t) time.

Proof. This is clear since by Lemma 2 we can transform a type-based MC-net
representation into a type-based characteristic function representation in O(n2t)
time. Then, from Theorem 2, we can determine whether the core is non-empty
in polynomial time. Also, from Theorem 3, whether a symmetric payoff vector
x is in the core can be checked in O(nt) time. Thus, the total required time is
polynomial in the number of agents n (in particular, O(n2t) for checking whether
x is in the core). ⊓⊔

In contrast to core-related coalition formation problems, the standard MC-
net representation is suitable for computing Shapley values. This is also true for
our type-based MC-net representation, i.e., the following theorem holds.

Theorem 14. If the number of agent types t is fixed, by using a type-based MC-
net representation, computing the Shapley value of any agent can be done in
O(|R| · n2t) time.

Proof. To compute the Shapley value of an agent, we can compute its Shapley
value for each rule and use the summation of these values (see Proposition 5
in [4]). Furthermore, we can decompose a rule into multiple rules, where each
decomposed rule has a form: (⟨y1, . . . , yt⟩, ⟨y1, . . . , yt⟩) → v, i.e., the rule is
applicable to exactly one coalition type. The Shapley value of type i agent for
rule r (denoted as ϕi,r) is computed by the following procedure:

ϕi,r =
v

n!
(f+

i (y1, . . . , yt) − f−
i (y1, . . . , yt)),

f+
i (y1, . . . , yt) ={

0 if yi = 0,

Πj ̸=i nj
A
Cyj · ni

A−1Cyi−1 · (sy − 1)!(n − sy)! otherwise.
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f−
i (y1, . . . , yt) ={

0 if yi = ni
A,

Πj ̸=i nj
A
Cyj · ni

A−1Cyi · (sy)!(n − sy − 1)! otherwise.

where sy =
∑

j∈T

yj , n =
∑

j∈T

nj
A.

Here, f+
i (y1, . . . , yt) represents the number of orderings where the marginal con-

tribution of one type i agent is v, and f−
i (y1, . . . , yt) represents the number

of orderings where the marginal contribution of one type i agent is −v. Thus,
v
n! (f

+
i (y1, . . . , yt) − f−

i (y1, . . . , yt)) represents the Shapley value of type i agent
for this rule. Using this procedure, the required time for computing the Shapley
value of an agent becomes O(|R| · n2t). ⊓⊔

Although Ohta et al. proposed an efficient method for solving CSG problems
based on the standard MC-net [6], we cannot apply this method straightfor-
wardly. Nevertheless, we can still rely on a naive approach that translates a
type-based MC-net representation into the corresponding type-based character-
istic function representation.

Theorem 15. If the number of agent types t is fixed, by using a type-based MC-
net representation, finding an optimal coalition structure can be done in O(n2t)
time.

Proof. This is clear since by Lemma 2 we can transform a type-based MC-net
representation into a type-based characteristic function representation in O(n2t)
time. Then, from Theorem 5, we can find an optimal coalition structure in O(n2t)
time. Thus, the total required time is O(n2t). ⊓⊔

6 Experimental Evaluations

In this section, we experimentally evaluate the performance of our proposed
methods. We concentrate on methods for type-based SCG, since we can control
the input size of a problem instance. In addition, the DP-based algorithm is also
used in other representations. All tests were run on a Core 2 Quad Q9650 3GHz
processor with 16GB RAM. The test machine runs Windows 7 Enterprise x64
Edition.

Let us consider a type-based SCG problem instance, where n agents have
one of five different types (t = 5). We vary n from 10 to 100 and set the number
of elements in a type-based SCG to n, (i.e., equal to the number of agents).
We generate each element using a decay distribution as follows. Initially, the
required number of agents in each type is set to zero. First, we randomly choose
one type and increment the required number of agents in the type by one. Then,
we repeatedly choose a type randomly and increment its required number of
agents with probability α, until a type is not chosen or the required number of
agents exceeds the limit. We choose the value of that coalition between 1 and
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Fig. 1. Experimental Results

10 × n uniformly at random and use α = 0.55. In this way, we generated 50
problem instances for each n.

We translate each generated problem instance represented by type-based
SCG into an equivalent problem instance represented by standard SCG. In Fig-
ure 1(a), the x-axis shows the number of elements in the type-based SCG rep-
resentation, and the y-axis shows the number of elements in the standard SCG
representation. Each data point shows the average of 50 problem instances. The
number of elements in the standard SCG grows exponentially compared to that
in the type-based SCG When the number of elements in the type-based SCG
representation exceeds 40, we cannot translate the problem instances due to in-
sufficient memory. This result illustrates that the type-based representation is
exponentially more concise than the standard representation.

We investigate the computation time of our DP-based algorithm. For com-
parison, we show the results of the MIP formulation in Ohta et al. [6], which uses
a standard SCG representation. To obtain this result, we used CPLEX version
12.1, a general-purpose mixed integer programming package.

Figure 1(b) illustrates the average computation times for solving the gener-
ated problem instances by our DP-based algorithm using the type-based SCG
(DP) and by CPLEX in the MIP formulation using the standard SCG (CPLEX).
The x-axis indicates the number of agents, and the y-axis shows the average com-
putation times. When n ≤ 20, CPLEX is faster than DP, while DP eventually
outperforms CPLEX for n > 20. CPLEX can reduce the search space efficiently
when the input size is relatively small. However, the input size for CPLEX grows
exponentially. Thus, its computation time increases very rapidly. When n > 40,
even generating problem instances becomes infeasible. On the other hand, the
computation time for DP grows more slowly than the exponential rate. This
result corresponds to the theoretical complexity presented in Theorem 11, i.e.,
finding an optimal coalition structure can be done in O(n2t) time. As shown in
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this result, the type-based SCG enables us to solve a CSG problem instance with
up to 100 agents in a reasonable amount of time.

7 Conclusion

In this paper, we developed a new concise representation scheme for a char-
acteristic function, which is based on the idea of agent types. The type-based
representation can be exponentially more concise than existing concise represen-
tation schemes. Furthermore, this idea can be used in conjunction with existing
schemes, i.e., MC-nets and SCG, for further reducing the representation size. We
showed that most problems in coalitional games, including CSG, can be solved
in polynomial time in the number of agents, assuming the number of types t
is fixed. We also experimentally showed that a type-based SCG enables us to
solve a CSG problem instance with up to 100 agents in a reasonable amount
of time. Our idea of using agent types is inspired by the recent work of Shrot
et al. [9]. However, in contrast to their study, our work introduced the idea of
describing a characteristic function explicitly using agent types in the first place,
and considered a wider range of problems in coalitional games including CSG.

Our future works include examining the complexity of solving other problems
in coalitional games, e.g., finding the nucleolus, and combining the idea of agent
types with other concise representation schemes such as [11].
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Abstract. In mechanism design, the goal is to create rules for making a decision
based on the preferences of multiple parties (agents), while taking into account
that agents may behave strategically. An emerging phenomenon is to run such
mechanisms on a social network; for example, Facebook recently allowed its
users to vote on its future terms of use. One significant complication for such
mechanisms is that it may be possible for a user to participate multiple times by
creating multiple identities. Prior work has investigated the design of false-name-
proof mechanisms, which guarantee that there is no incentive to use additional
identifiers. Arguably, this work has produced mostly negative results. In this pa-
per, we show that it is in fact possible to create good mechanisms that are robust
to false-name-manipulation, by taking the social network structure into account.
The basic idea is to exclude agents that are separated from trusted nodes by small
vertex cuts. We provide key results on the correctness, optimality, and computa-
tional tractability of this approach.

1 Introduction
Recently, Facebook, Inc. decided to allow its users to vote on its future terms of use [19].
While the result was not binding,4 this vote represents a new phenomenon that is likely
to become more prominent in the future: agents participating in an election or other
mechanism through a social networking site. Holding an election among the users of
a social networking site introduces some issues that do not appear in regular elections.
Perhaps the foremost such issue, and the one that we will focus on, is that it is generally
easy for a user to create additional accounts/identities, allowing her to vote multiple
times. This can compromise the legitimacy of the election and result in a suboptimal
alternative being chosen.

The topic of designing elections or other mechanisms for settings where it is easy
to create multiple identities and participate multiple times has already received some
attention. The primary approach has been to design mechanisms that are false-name-
proof [15, 16], meaning that an agent never benefits from participating more than once.
(This is analogous to the better-known concept of strategy-proofness, meaning that an
agent never benefits from misreporting her preferences. In fact, false-name-proofness
is often defined in a way that subsumes strategy-proofness.) Unfortunately, existing re-
sults on false-name-proofness are quite negative, especially in voting contexts. For the

4 The result would have been binding if at least 30% of all active users had voted, a seemingly
impossibly high turnout in this context.
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case where additional identities can be created at zero cost, a general characterization
of false-name-proof voting mechanisms has been given [5]; this characterization im-
plies that for the special case where there are only two alternatives, the best we can do
is the unanimity mechanism. This mechanism works as follows: if all voters agree on
which alternative is better, that alternative is chosen; but if there is any disagreement
(no matter in which proportions), then a fair coin is flipped to decide between the alter-
natives. This is an extremely negative result, since the mechanism is almost completely
unresponsive to the votes.5 Several ways to circumvent such negative results have been
proposed, such as assuming that creating additional identities comes at a small cost [14]
or considering a model in which it is possible to verify some of the identities [4].

These prior results do not consider any social network structure that may hold
among the identities. Rather, these earlier results can be thought of as applying to set-
tings where a user creates an account for the sole purpose of casting a vote (or bid,
etc.), so that no social network structure is specified. We will show in this paper that by
using the social network structure in the mechanism, it is possible to obtain much more
positive results, because fake identities will look suspect in the social network (graph)
structure. To give some intuition, consider John Doe, who has a legitimate account on
the social networking site. In order to cast more votes, he can create several other iden-
tities (false names), such as Jane Jones and Jimmy Smith. Among the accounts that he
controls, he can create any network structure by linking them to each other. However,
if the other users behave legitimately, then he will not be able to link his additional ac-
counts to any of the other users’ identities (since, after all, they have never heard of Jane
Jones or Jimmy Smith); he will only be able to get his friends to link to his legitimate
identity (John Doe). This results in an odd-looking social network structure, where his
legitimate identity constitutes a vertex cut in the graph, whose removal separates the
fake identities from the rest of the graph.

In the remainder of this paper, we generalize the intuition afforded in the above
scenario, giving a notion of when a node is “suspect” based on small vertex cuts that
separate it from the trusted nodes. In Section 2, we formally define the setting that we
will focus on. In Section 3, we discuss false-name-proofness and provide a sufficient
condition for guaranteeing it. In Section 4, we discuss how to find all suspect nodes
when trusted nodes are given exogenously to the algorithm. Then, in Section 5, we
extend our analysis to settings in which we do not have trusted nodes initially, but we
can actively verify nodes. We give both correctness and optimality results. Appendix A
contains simulation results for random graph models, in which we investigate how many
vertices will typically be regarded as suspect (exogenous case) or how many need to be
verified (endogenous case). The full version includes all the proofs and some additional
examples.

5 The literature on false-name-proof voting mechanisms is quite recent: earlier work on false-
name proofness considered other settings, such as combinatorial auction mechanisms, where
multiple items are for sale at the same time. Unfortunately, here, too, there are strong impossi-
bility results, including a result that states that under certain conditions, from the perspective of
a worst-case efficiency ratio, it is impossible to significantly outperform the simple mechanism
that sells all items as a single bundle [8].
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Related Work. The basic intuition that the creation of false identities in a social net-
work results in suspiciously small vertex cuts has previously been explored in several
papers, in peer-to-peer networks [18, 17] and web spam detection [2, 3, 6, 7, 13].

The work on fraud in peer-to-peer networks attempts to thwart Sybil attacks in
which one or more malicious users obtain multiple identities in order to out-vote legiti-
mate users in collaborative tasks like Byzantine failure defenses. These papers propose
protocols that ensure that not too many false identities are accepted. While this may
be sufficient to thwart certain Sybil attacks in decentralized distributed systems, it can
still leave incentives for an agent to create multiple identities, especially in applications
such as elections in which the electorate is about evenly divided. Furthermore, a major
hurdle in the Sybil attack research is that any protocol must be decentralized. In con-
trast, in this paper, we follow the stricter approach of guaranteeing that the creation of
false identities is always weakly suboptimal, corresponding to the standard approach
in the mechanism design literature. On the other hand, we allow our mechanisms to be
centralized, as we envision them being run by the proprietor of the social network who
has access to the network structure.

Fraud is also prevalent in the world wide web where users sometimes create fake
webpages and links with the sole intent of boosting the PageRank of given website(s).
Several researchers have considered using link structure to combat spam [2, 3, 6, 7, 13].
In SpamRank [2, 3], the authors assume that a node is suspect if the main contribu-
tion to its PageRank is generated from a small set of supporting nodes (see also [6]).
Our focus on small vertex cuts can be interpreted as an extreme version of the condi-
tions proposed in SpamRank. An alternative approach, as taken by TrustRank [7] and
Anti-TrustRank [13], assumes the existence of an oracle (e.g., a human being) which is
able to determine the legitimacy of any given website. Calls to the oracle are, however,
expensive, and so the main task in the protocol is to select a seed set of pages. The
protocol then guesses the legitimacy of the remaining pages based on their connectivity
to the seed set. In particular, the protocol assumes that legitimate pages rarely point
to illegitimate ones, and hence the illegitimate pages are those that are “approximately
isolated.” Again, this approach is similar to our approach at a high level; the selection
of the seed set corresponds to our verification policy (discussed later in the paper), and
the condition of approximate isolation corresponds to the condition of small vertex cuts
in our work. Despite these similarities, the particulars of the model and definitions are
quite different, as these protocols are designed to combat fraudulent attacks in PageR-
ank, whereas our goal is to prevent fraudulent attacks in voting or other mechanisms.

2 Setting

Our results can be applied to any mechanism design domain, but for the sake of con-
creteness, it may be helpful to think about the simple setting in which m agents must
select between two alternatives. Each agent has a strict preference for one alternative
over the other. The mechanism designer wishes to make a socially desirable choice,
i.e., select an alternative that is beneficial for society as a whole. The majority rule, in
which the alternative preferred by more voters wins, would be ideal; unfortunately, the
majority rule will result in incentives to create false names, if naı̈vely applied.
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Agents are arranged in a social network consisting of n nodes where m ≤ n. Each
agent i has a legitimate account in the social network, corresponding to a node vt

i ,
as well as a (possibly empty) set of illegitimate accounts V f

i . There is an arbitrary
graph structure among the legitimate nodes in the social network—that is, we impose
no structure on the subgraph induced by the legitimate nodes {vt

i}i∈{1,...,m}.
In the most basic version of our model, we assume that no two manipulating agents

can work together, so that an agent can only link her illegitmate nodes to each other
and to her own legitimate node. Hence, for any i 6= j, there are no edges between V f

i

and {vt
j} ∪ V f

j . However, for each agent i, we allow an arbitrary graph structure on
{vt

i} ∪ V f
i .

In the more general version of our model, we assume that up to k agents can collude
together. (The basic model is the special case where k = 1.) That is, the agents 1, . . . ,m
are partitioned into coalitions Sj ⊆ {1, . . . ,m}, with |Sj | ≤ k for each j. Let V f

Sj
be

the set of all illegitimate nodes used by Sj , that is, V f
Sj

=
⋃

i∈Sj
V f

i , and let V t
Sj

be
the set of all legitimate nodes used by Sj , that is, V t

Sj
=

⋃
i∈Sj
{vt

i}. Two distinct
coalitions cannot link their illegitimate nodes to each other, so that for any i 6= j, there
are no edges between V f

Si
and V t

Sj
∪ V f

Sj
. However, for each coalition Si, we allow an

arbitrary graph structure on V t
Si
∪ V f

Si
.

To summarize, our social network setting consists of

– a set of m agents denoted {1, . . . ,m},
– a set of m legitimate nodes, one for each agent, denoted V t = {vt

1, . . . , v
t
m},

– a collection of m (possibly empty) sets of illegitimate nodes, one for each agent,
denoted {V f

1 , . . . , V f
m},

– a partition of the agents {1, . . . ,m} into subsets Sj , where |Sj | ≤ k (the no-
collusion case corresponds to k = 1), such that for any i, j, there are no edges
between V f

Si
and V t

Sj
∪ V f

Sj
(apart from this, the graph structure can be arbitrary).

Some of the nodes in the graph will be trusted. For example, the mechanism de-
signer may personally know the agents corresponding to these nodes in the real world.
This is a case in which trust is exogenous, that is, we have no control over which agents
are trusted: the trusted agents are given as part of the input. Later in the paper, we will
consider settings where we can, with some effort, verify whether any particular node is
legitimate (for example, by asking the node for information that confirms that there is
a corresponding agent in the real world). Nodes that pass this verification step become
trusted nodes; this is a case of endogenous trust. It should be noted that, in either case,
we do not assume that a trusted node will refrain from creating additional identifiers.
That is, the only sense in which the node is trusted is that we know it corresponds to a
real agent.

The mechanisms that we consider in this paper operate as follows. A suspicion
policy is a function that takes as input the social network graph G = (V,E) as well
as a set T of trusted nodes, T ⊆ V t ⊆ V ; and as output labels every node in V as
either “deemed legitimate” or “suspect.” Generally, all the nodes in T will be deemed
legitimate, but others may be deemed legitimate as well based on the network structure.
Subsequently, all the nodes that have been deemed legitimate get to participate (e.g.,
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vote) in a standard mechanism f (e.g., the majority rule), and based on this an outcome
is chosen. (In this context, we only consider anonymous mechanisms that treat all nodes
that get to participate identically.) In the case where nodes become trusted through
verification, we also have a verification policy that takes G as input and determines
which nodes to verify.

We consider a game played between the mechanism designer and the agents (more
precisely, the coalitions Sj). First, the mechanism designer announces her mechanism,
consisting of f and the suspicion policy (and, in the case where trust is obtained through
verification, a verification policy). Then, each coalition Sj creates its illegitimate nodes
V f

Sj
, as well as the edges that include these nodes (they can only have edges to other

nodes in V f
Sj

, and to V t
Sj

). Note that the coalitions do not strategically determine edges
between legitimate nodes in this game: in order to focus on false-name manipulation,
only the creation of false nodes and their edges is modeled in the game. Also note that
the mechanism designer, when announcing her mechanism, is unaware of the true graph
as well as which agents are in coalitions together.

After obtaining the social network graph (and, possibly, some exogenously trusted
nodes), the mechanism designer runs (1) (possibly) the verification policy and (2) the
suspicion policy. The designer subsequently asks the nodes that have been deemed le-
gitimate to report their preferences, and then finally runs (3) the standard mechanism f
on these reported preferences, to obtain the outcome.

Whether this results in incentives for using false names depends on all of the com-
ponents (1), (2), and (3), and each one individually can be used to make the whole
mechanism false-name-proof. For example (for component 3), if f is by itself false-
name-proof, then even if we verify no nodes and deem every node legitimate, there is
still no incentive to engage in false-name manipulation. The downside of this approach
is that we run into all the impossibility results from the literature on designing false-
name-proof mechanisms. Similarly (for component 1), if we verify all nodes and then
only deem the trusted nodes (the ones that passed the verification step) legitimate, there
is no incentive to use false names. Of course, this generally results in far too much over-
head. In this paper, we will be interested in suspicion policies (component 2) that by
themselves guarantee that there is no incentive to use false names. For this, we heavily
rely on the social network structure. In the first part of the paper, we do not consider
verification policies—we take which nodes are trusted as given exogenously.

3 False-name-proofness
To define what it means for a suspicion policy to guarantee false-name-proofness, we
first need to define some other properties. The next two definitions assume that a coali-
tion can be thought of as a single player with coherent preferences; this is reasonable in
the sense that if there is internal disagreement within the coalition, this will only make
it more difficult for them to manipulate the mechanism.

Definition 1. A standard mechanism f is k-strategy-proof if it is a dominant strategy
for every coalition of size at most k to report truthfully.

Definition 2. A standard (anonymous) mechanism f satisfies k-voluntary participation
if it never helps a coalition of size at most k to use fewer identifiers.
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Because the coalitions play a game with multiple stages, it is important to specify
what we assume the coalitions learn about each other’s actions in earlier stages—that
is, what are the information sets in the extensive form of the game? Specifically, when
a coalition reports its preferences to f , what does the coalition know about the nodes
and edges created by other coalitions? We assume that a coalition learns nothing about
other coalitions’ actions, except that the coalition can (possibly) make inferences about
what others have done based on which of its own nodes have been deemed legitimate.
Thus, it is assumed that each coalition is rational and has perfect recall, but also that it
does not have any other way of observing what other coalitions have done.

Definition 3. We say that the Limited Information Assumption (LIA) holds if, for ev-
ery coalition Sj , for every two nodes6 ν1, ν2 in the extensive form of the game (where
Sj is about to report preferences to f ), the following holds. If Sj has taken the same
node-and-edge creation actions at ν1 and ν2, and the same nodes have been deemed
legitimate for Sj at ν1 and ν2, then these nodes are in the same information set—that
is, Sj cannot distinguish them.

It should be emphasized that LIA does not specify the information sets exactly—it
is merely an upper bound on how much the coalitions learn about each other’s actions.
Specifically, we can also require the coalitions to report preferences for nodes before in-
forming them exactly which of these nodes have been deemed legitimate. In an extreme
special case of this (for which our results still hold), we can consider the situation where
a coalition must create nodes and edges and report preferences for its nodes at the same
time, making the game a single-stage game. In this case, when a coalition is reporting
preferences, it clearly knows nothing about what the other coalitions have done at all,
since they are moving at the same time. This is equivalent to saying that a coalition
first creates nodes and edges, and then reports preferences for these nodes but without
learning anything (including which of these nodes have been deemed legitimate). This
is consistent with LIA: it just means that even more nodes in the game tree are in the
same information set than is strictly required by LIA.

We now define what it means for a suspicion policy to guarantee false-name-proofness.

Definition 4. A suspicion policy Π guarantees false-name-proofness for coalitions of
size at most k if, under the LIA assumption, the following holds. For any standard
(anonymous) mechanism f that is k-strategy-proof and satisfies k-voluntary participa-
tion, if we combine Π with f , then for any true social network structure on V t, for
any initial trusted nodes T ⊆ V t, and for any partition of V t into coalitions Sj of size
at most k each, it is a dominant strategy for each coalition to set V f

Sj
= ∅ and report

truthfully.

A Sufficient Condition for Guaranteeing False-Name-Proofness. We now provide a
sufficient condition for guaranteeing false-name-proofness.

Definition 5. A suspicion policy Π is k-robust if, for any true social network structure
on V t, for any initial trusted nodes T ⊆ V t, and for any partition of V t into coalitions
Sj of size at most k each, we have the following. For every coalition Sj , for every profile
of actions taken by the other coalitions:

6 These are not to be confused with the nodes in the network.
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1. The actions of Sj (in terms of creating new nodes and edges) do not affect which of
the other coalitions’ identifiers (V \ (V t

Sj
∪ V f

Sj
)) are deemed legitimate.

2. The number of identifiers in V t
Sj
∪ V f

Sj
that are deemed legitimate is maximized by

setting V f
Sj

= ∅.

Theorem 1. If a suspicion policy Π is k-robust, then it guarantees false-name-proofness
for coalitions of size at most k.

4 Exogenously Given Trusted Nodes

We begin by studying the case where the trusted nodes T are given exogenously. This
could correspond to the case where the mechanism designer personally knows the own-
ers of some of the nodes on the network, or perhaps these nodes have already been
successfully verified in an earlier stage. Later in the paper, we will study the case where
there are no exogenously given trusted nodes, so that we have to decide which nodes to
verify. Given G and T , the next step is to determine which nodes to label as “suspect,”
based on the fact that they are not well connected to trusted nodes. We will make our
suspicion policy precise shortly, but first we illustrate the basic idea on a small example.
We recall that k denotes the maximum size of a coalition of colluding agents. Figure 1
gives an example of a network with two exogenously given trusted nodes, for the case
where k = 1. As the figure illustrates, nodes that are separated from the trusted nodes

Fig. 1. Example network. The nodes correspond to identities (user accounts), and the edges corre-
spond to (say) friendship relations between the identities. The mechanism designer, at this point
for exogenous reasons, considers certain nodes “trusted” (marked by squares), that is, she is sure
that they are not false names. The nodes marked with triangles are separated from the trusted
nodes by a vertex cut of size one (indicated by the dotted ellipse). As a result, it is conceiv-
able that these nodes are false names, created by the agent corresponding to the vertex-cut node;
hence, they are labeled suspect. The remaining nodes are not separated from the trusted nodes by
a vertex cut of size one, and as a result they are deemed legitimate (marked by circles).
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by a vertex cut of size 1 could be false identities created by the node on the vertex cut
in order to manipulate the outcome of the mechanism. Hence, they are deemed suspect.

In the following subsections, we first define our suspicion policy precisely and prove
that it has several nice properties, including guaranteeing false-name-proofness. We
then prove that this policy is optimal in the sense that any other suspicion policy with
these properties would label more nodes as suspect. Finally, we give a polynomial-time
algorithm for determining whether nodes are deemed legitimate or not under this policy.
The Suspicion Policy. One natural approach is to label as suspect every node v that
is separated from all the trusted nodes by a vertex cut of size at most k (this cut may
include some of the trusted nodes). After all, such a node v may have been artificially
created by a coalition of nodes corresponding to its vertex cut. On the other hand, for a
node v that is not separated from the trusted nodes by any vertex cut of size at most k,
there is no coalition of nodes that could have artificially created v. While this reasoning
is correct, it turns out that, to guarantee false-name-proofness, it is not sufficient to
label only the nodes separated from the trusted nodes by a vertex cut of size at most k
as suspect. The reason is that this approach may still leave an incentive for a coalition to
create false nodes: not because these false nodes will be deemed legitimate, but rather
because it may prevent other nodes from being labeled as suspect. We first observe a
fundamental property of nodes being separated from the trusted nodes by a vertex cut
of size at most k.

Lemma 1 (cf. Menger [11]). For an initially untrusted node v, the following two state-
ments are equivalent.

1. v is not separated from the initially trusted nodes by a vertex cut of size at most k
(which may include initially trusted nodes).

2. There exist k + 1 vertex-disjoint paths from (distinct) initially trusted nodes to v.

The problem with the approach above is that a coalition may use false nodes that
will be labeled suspect, but that help create paths to other nodes that will be deemed
legitimate as a result. The solution is to apply the procedure iteratively, in each stage
removing the nodes that are separated from all the trusted nodes by a vertex cut of size
at most k, until convergence.

Definition 6. Let r take as input G = (V,E) and T ⊆ V , and as output produce the
subgraph G′ of G that results from removing those nodes in V − T that are separated
from the trusted nodes T by a vertex cut of size at most k (as well as removing the
edges associated with these nodes). These vertex cuts are allowed to include nodes
in T . Let G = G(0), G′ = G(1), G(2), . . . , G(nG,T ) be the sequence of graphs that
results from applying r iteratively on (G(i), T ), where nG,T is the smallest number
satisfying G(nG,T ) = G(nG,T −1) (note this sequence must converge as the set of nodes
in successive iterations is nonincreasing). Then our suspicion policy Π∗

k , when applied
to (G,T ), deems all the nodes in G(nG,T ) legitimate, and all the other nodes in G
suspect.

In each iteration, the procedure for computing Π∗
k removes all the nodes that are at

that point separated from all the trusted nodes by a vertex cut of size at most k. This
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corresponds to eliminating nodes in a particular order. One may wonder if the result
would be any different if we eliminated nodes in a different order, for example, in one
iteration removing only a subset of the nodes that are at that point separated from all the
trusted nodes by a vertex cut of size at most k, before continuing to the next iteration.
This is analogous to the notion of path independence of iterated strict dominance in
game theory: no matter in which order we eliminate strictly dominated strategies, in
the end we obtain the same set of remaining strategies [10]. (This is in contrast to
iterated weak dominance, where the order of elimination does affect the final remaining
strategies.) We will show a similar path independence result for removing nodes in our
setting. To do so, we first define the class of suspicion policies that correspond to some
order; then we show that the class has only one element, namely, Π∗

k .7

Definition 7. Let Πk be the class of all suspicion policies that correspond to a proce-
dure where:

– In each iteration, some subset of the nodes that are at that point separated from all
the trusted nodes by a vertex cut of size at most k is eliminated from the graph;

– This subset must be nonempty when possible;
– When no additional nodes can be eliminated, the remaining nodes are exactly the

ones deemed legitimate.

Lemma 2. The class Πk consists of a singleton element Π∗
k , i.e., Πk = {Π∗

k}.
We now show that our policy Π∗

k guarantees false-name-proofness for coalitions of
size at most k.

Lemma 3. Let G = (V,E) be a graph and let T ⊆ V be the trusted nodes. Let
G′ be a graph that is obtained from G by adding additional nodes V ′ and additional
edges E′ that each have at least one endpoint in V ′—in such a way that every node
in V ′ is separated from T by a vertex cut of size at most k. Then, applying Π∗

k to
G′ = (V ∪ V ′, E ∪ E′) and T results in the same nodes being deemed legitimate as
applying Π∗

k to G and T .

Theorem 2. Π∗
k is k-robust (and hence, by Theorem 1, guarantees false-name-proofness

for coalitions of size at most k). Moreover, under Π∗
k , a coalition Sj’s actions also do

not affect which of its own legitimate nodes V t
Sj

are deemed legitimate. Finally, Π∗
k is

guaranteed to label every illegitimate node as suspect.

Optimality. We now show that Π∗
k is the best possible suspicion policy in the sense

that any other policy satisfying the desirable properties in Theorem 2 must label more
nodes as suspect.

Theorem 3. Let Π ′ be a suspicion policy that (1) is k-robust, (2) is such that a coali-
tion Sj’s actions also do not affect which of its own legitimate nodes V t

Sj
are deemed

legitimate, and (3) is guaranteed to label every illegitimate node as suspect. Then, if
Π∗

k labels a node as suspect, then so must Π ′.

7 The different orders of course correspond to different procedures for computing which nodes
are deemed legitimate, but we will show that as a function that determines which nodes are
finally deemed legitimate, they are all the same.
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Polynomial-time Algorithm for Determining Whether a Node is Suspect. In this
subsection, we give a polynomial-time algorithm for determining whether nodes are
deemed legitimate or suspect according to Π∗

k . The key step is to find an algorithm for
figuring out which nodes are separated from the trusted nodes by a vertex cut of size at
most k; then we can simply iterate this in order to execute Π∗

k (and by Lemma 2 we do
not need to be careful about the order in which we eliminate nodes). It turns out that by
Lemma 1, we can do this by solving a sequence of maximum flow problem instances.

Theorem 4. Given G = (V,E) and T ⊆ V , we can determine in polynomial time
which nodes are not separated from T by a vertex cut of size at most k. As the number
of iterations of Π∗

k is bounded by |V |, we can run Π∗
k in polynomial time.

5 Choosing Nodes to Verify (Endogenous Trust)
Our methodology requires some nodes to be trusted. So far, we have considered settings
where some nodes are trusted for exogenous reasons (for example, the organizer’s own
friends may be the only trusted nodes). However, we can also endogenize which nodes
are trusted, by assuming that the organizer can invest some effort in verifying some
of the identities to establish their legitimacy (for example, by asking these identities
for information that identifies them in the real world). This is an approach that has been
considered before in the context of false-name-proofness [4], but that prior work paid no
regard to social network structure. The social network structure can drastically reduce
the amount of verification required, because, as we have seen earlier in this paper, once
we have some nodes that are trusted, we can infer that others are legitimate.

There are (at least) two approaches to consider here: verify enough nodes so that no
suspect nodes remain at all (and try to minimize the number of verified nodes under this
constraint), or try to maximize the number of nodes deemed legitimate, given a budget
of verifications (say, at most b verifications). In this paper, we focus on the former.

Technically, a verification policy consists of a contingency plan, where the next node
to verify depends on the results of earlier verifications of nodes (which can either fail or
succeed). If a node fails the verification, that node is classified as illegitimate, and the
verification continues. The verification continues until no nodes remain suspect (other
than ones that failed the verification step)—that is, until no unverified nodes are sepa-
rated by a vertex cut of size at most k from the nodes that were successfully verified.
(This vertex cut can include successfully verified nodes. We note that in this context
there is no longer a reason to iteratively remove nodes in the procedure that computes
the trust policy (Π∗

k ): because our goal is for all remaining nodes to be deemed legiti-
mate, we simply need to check whether any nodes are removed in the first iteration.)
Optimally Deciding Which Nodes to Verify. We now turn to the following optimiza-
tion problem: how do we minimize the number of nodes that we verify before reaching
the point where all the remaining nodes are deemed legitimate? To answer this ques-
tion, we first note that, since there will be no incentive to create illegitimate nodes, we
can assume that all nodes will in fact be legitimate. (This does not mean that we can
afford to not do the verification, because if we did not, then there would be incentives to
create illegitimate nodes again.) Hence, the problem becomes to find a minimum-size
subset of nodes so that no other node is separated from these nodes by a vertex cut of
size at most k (which may include nodes in this subset)—or, equivalently, by Lemma 1,
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to find a minimum-size subset of nodes so that every other node is connected by k + 1
vertex-disjoint paths to (distinct nodes in) this subset.

This problem is a special case of the source location problem. A polynomial-time
algorithm for this problem is given in a paper by Nagamochi et al. [12]. They show that
the problem has a matroidal property, as follows. Instead of thinking about minimizing
the number of verified nodes, we can think about maximizing the number of unverified
nodes. Say a subset U ⊆ V is feasible if, for every v ∈ U , there exist k + 1 vertex-
disjoint (apart from v) paths to (distinct) nodes in V \ U .

Theorem 5 ([12]). The feasible sets satisfy the independence axioms of a matroid.

Finding an independent set of maximum size in a matroid is easy: start with an
empty set, and attempt to include the elements one at a time, being careful not to violate
the independence property. In the context of trying to find a minimum-size set of nodes
to verify, this corresponds to starting with the set of all nodes, and attempting to exclude
the nodes one at a time, being careful that it will still result in all the excluded nodes
being deemed legitimate. To check the latter, we only need to consider the current node:

Lemma 4. Suppose S ⊆ V is such that from every u ∈ V −S, there exist k+1 vertex-
disjoint paths to (distinct nodes in) S, and suppose that for some v, S − {v} does not
have this property. Then, there do not exist k+1 vertex-disjoint paths from v to (distinct
nodes in) S − {v}.

This results in the following simple polynomial-time algorithm Φk for finding a
minimum-size set of nodes to verify.

Definition 8. Φk takes as input a graph G = (V,E) and proceeds as follows to deter-
mine the nodes S to verify:

1. Initialize S ← V .
2. For each node v ∈ S: if there are k + 1 vertex-disjoint paths from S − {v} to v,

then remove v from S.
3. Return S.

6 Conclusions and Future Research
From the above, it becomes clear that false-name-proofness, while achievable in social
networking settings, does not come for free: we either cannot let all agents participate,
or we must spend significant effort verifying identities. How severe these downsides are
depends on the exact structure of the social network. If we have a sufficiently densely
connected social network, then almost everyone can participate even when there are
relatively few trusted identities, or, alternatively, we only need to verify a small number
of identities to let everyone participate. But, is this likely to be the case in realistic social
networks? In the appendix, we provide some results based on experimental simulation;
future research may be devoted to obtaining analytical characterizations.

Future research may also be devoted to considering some changes in the basic model
and their effect on our results. What happens if agents can decide to drop edges (that
is, not declare friendships) for strategic reasons? What happens if agents can get other
agents to link to their fake identities at a cost? Results here may be reminiscent of those
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obtained in existing models where additional identifiers can be obtained at a cost [14].
What happens when we can only verify a limited number of nodes and try to maximize
the number of nodes deemed legitimate?
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A Experimental results

To evaluate how many nodes will be deemed legitimate, or how many nodes we need to
verify, in “typical” social networks, we conducted a series of experiments on randomly
generated graphs. To generate these graphs we used two models, Kleinberg’s model for
navigable small world networks [9] and the Barabási-Albert model [1] for generating
scale-free networks.

We construct random social networks with Kleinberg’s model as follows (labeled
“Klein” in the following graphs). Take a square grid and connect each node to its neigh-
bors. Next, for each node v, add one additional connection to a random node v′ (v′ 6= v)
in the graph, with probability proportional to 1/(distance(v,v′)).

We construct random social networks with the Barabási-Albert model as follows.
Start with a small seed graph (we start with a small grid of 9 nodes). We add the remain-
ing nodes one by one. For each node v we add, we connect it to 3 (BA-6) or 5 (BA-10)
of the existing nodes. To choose which nodes v will be connected to, we randomize
over the existing nodes, but the probablity of picking a specific node v′ is proportional
to the number of neighbors that v′ has (this means that nodes that already have a large
number of neighbors have a higher probability of receiving more neighbors).

We used the JUNG libary (Java Universal Network/Graph Framework) and CPLEX
in our implementation. Due to running time and memory constraints faced by this
methodology, the largest graphs we consider are of 2025 nodes (and in fact we will
only present results on graphs of 2025 nodes). In the results in the following two sub-
sections, the numbers are averages taken over 20 graphs.

A.1 Results for the exogenous case

In this subsection, we present our results when some nodes in the graph are chosen at
random to be trusted nodes. In our implementation, we took advantage of Lemma 2
to significantly reduce the running time of the experiment, based on the fact that if a
node is eliminated when only k + 1 vertex-disjoint paths are necessary for legitimacy,
it will still be eliminated when we require k+2 paths. Thus, we can start the step of the
experiment where k + 2 paths are necessary by removing all of the nodes eliminated at
the end of of the step where k + 1 paths are necessary, and still get the same solution
that we would have obtained by running the algorithm from the begining.

As shown in Figure 2, for small k the number of nodes deemed legitimate is very
high, but as k grows there is eventually a sharp dropoff for every one of the random
graph generation models (though at different points for the different models). This
dropoff can be partially explained by the fact that eventually, there will be many nodes
that have fewer than k + 1 neighbors (as shown in Figure 2(c)), and these nodes will
be considered suspect unless they happen to be trusted themselves. However, the num-
ber of nodes deemed legitimate does drop faster than the number of nodes with at least
k+1 neighbors. This could be due to, for example, the iterated removal of nodes—once
some nodes are removed, others may start to be removed as well.
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(a) Number of nodes deemed legitimate
with 16 random trusted nodes.
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(b) Number of nodes deemed legitimate
with 128 random trusted nodes.
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(c) Number of nodes with degree > x

Fig. 2. Results for exogenously trusted nodes.

A.2 Results for the endogenous case

In this subsection, we present our results for the case where no nodes are initially
trusted, and we choose a subset of nodes to verify so that all nodes will be deemed
legitimate. Of course, every node with degree lower than k + 1 must be verified. Our
results in Figure 3 show that that is basically all we need to do: in this case, the number
of nodes that need to be verified very closely matches the number of nodes with degree
≤ k for both types of social network. (Though it is difficult to see, the graphs are in fact
very slightly different.)

False-Name-Proofness in Social Networks

CoopMAS 2011 55



 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1  2  3  4  5  6  7

N
um

be
r o

f s
ou

rc
es

k

BA6
BA10
Klein

(a) Number of nodes that must be veri-
fied for all nodes to be deemed legitimate

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 1  2  3  4  5  6  7  8

N
um

be
r o

f n
od

es

x

BA6
BA10
Klein

(b) Number of nodes with degree ≤ x

Fig. 3. Results for verification (endogenous trust).
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Abstract. We model stable and fair resource allocations in networks via
path coalitional games. In these games, a coalition of edges or vertices
is successful if it can enable an s-t path. We present polynomial-time
algorithms to compute and verify least core payoffs of cost-based gen-
eralizations of path coalitional games and their duals, thereby settling
a number of open problems. The least core payoffs of path coalitional
games are completely characterized and a polynomial-time algorithm for
computing the nucleolus of edge path coalitional games on undirected
series-parallel graphs is presented.

1 Introduction

We consider simple coalitional games called path coalitional games, in particu-
lar Edge Path Coalitional Games (EPCGs) and Vertex Path Coalitional Games
(VPCGs). In these games, the players control the edges and the vertices re-
spectively, and a coalition of players wins if enables a path from the source s
to the sink t and loses otherwise. Both of these coalitional games are natural
representations, for which solution concepts such as the Shapley value or the
nucleolus represent the amount of payoff the respective edges or vertices deserve
for enabling a path from s to t. The payoff can indicate the importance of the
players or the proportional resource, profit, maintenance or security allocation
required at the respective nodes and vertices. This kind of stability analysis is
especially crucial if the underlying graph represents a logistics, communication,
military, supply-chain or information network [2, 11]. We study the computa-
tional complexity of computing important cooperative game theoretic solutions
of path coalitional games.

Path coalitional games also have a natural correspondence with two-person
zero-sum noncooperative games. In such games, which we term as path intercept
games, there are two players, the interceptor and the path-chooser. The problem
is to maximize the probability of intercepting a strategically chosen path in an
undirected graph. We refer to the path intercept games as Edge Path Nonco-
operative Games (EPNGs) and Vertex Path Noncooperative Games (VPNGs).
The pure strategies of the interceptor are the edges E (or vertices V ) and the
pure strategies of the path-chooser is set P which contains all paths from vertex
s to vertex t. If the edge (or vertex) used by the interceptor intersects with the
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chosen path, then the interceptor wins and gets payoff 1. Otherwise it loses and
gets payoff 0. Thus, the value of the game is the greatest probability that the
interceptor can guarantee for successfully intercepting the chosen path.

The area of algorithmic cooperative game theory is beset with negative com-
putational results (see e.g., [4, 6, 9]). In this paper, we present positive algo-
rithmic results for cost-based generalizations of path coalitional games and their
duals. The cost-based generalization of a simple game is a rich and widely-
applicable model. For example in the case of edge path coalitional games, each
edge charges a certain cost for its services being utilized. A coalition of edges
gets a fixed reward for enabling an s-t path. It is then natural to examine payoffs
which are fair and stable and also manage to transport goods from s to t [7]. The
cost-based generalizations of path coalitional games have significance in logis-
tics, planning and operations research. Similarly, the cost-based generalizations
of duals of path coalitional games have natural importance in proposing stable
reward schemes to protect strategic assets or blocking intruders in a network.

Contribution:

– We use dualization and cost-based generalization to provide a unifying frame-
work to model s-t connectivity. The framework also covers some previously
studied cooperative and non-cooperative games.

– For the cost-based generalization of path coalitional games and their duals
we present the first polynomial-time algorithms to compute and verify least
core payoffs. The results are some what surprising because the problem of
computing the least core of the dual of vertex path coalitional game (without
costs) was claimed to be NP-hard [2] and the problem of computing the
least core of cost-based generalization of edge path coalitional game was
conjectured to be NP-hard (page 65, [11]).

– We also present an insight that the least core payoffs can be computed for the
cost-based generalization of a simple game, as long as the same can be done
for the underlying simple game and the game representation is as compact
as the representation of the cost function. As a corollary, we show that there
exist polynomial-time algorithms to compute the least core payoffs of cost-
based generalizations of spanning connectivity games and weighted voting
games with bounded weights and costs.

– The least core payoffs of simple path coalitional games are characterized.
– A polynomial-time algorithm to compute the nucleolus of edge path coali-

tional games for undirected series-parallel graphs is presented.

2 Literature

Network interdiction is the general framework in which weakening of a network
by an adversary or fortification of a network by defenders is considered [17].
Within this body of literature, shortest path interdiction (in which an adversary
wants to maximize the s-t shortest path in a directed network) is related to our

2
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setting of s-t path coalitional games. Whereas all the variants of shortest path
interdiction problem are NP-hard [9], we present positive computational results.

We note that within the interdiction literature, whereas Vertex Path Non-
cooperative Game (VPNG) has not been considered in the literature (to the
best of our knowledge), Edge Path Noncooperative Game (EPNG) is equiva-
lent to the two player zero sum games considered in [19]. Washburn and Wood
[19] studied maxmin strategies in EPNG. Our cooperative game formulation
helps us in proposing equilibrium refinements such as the nucleolus (which cor-
responds to a unique refinement of the maxmin strategy of the corresponding
path intercept games) and other cooperative-game solution concepts such as the
Shapley value. The coalitional model, especially the cost-based generalizations
helps reason about more elaborate security settings in which incentives, money
and cooperation of agents is involved. The comparison between a simple coali-
tional game and its natural noncooperative version is similar in spirit to [1] where
spanning trees are considered.

The general definition of cost-based generalization of a simple game is in-
spired by Fragnelli et al. [7] and Bachrach and Porat [2] where cost based ver-
sions of specific graphs-based simple games are considered. Different variants of
EPCGs were considered under the umbrella of ‘shortest path games’ in [11] but
either the complexity of core-based relaxations is not examined or the complex-
ity of computing least core solutions was left open and in fact conjectured to be
computationally hard (page 65, [11]). Similarly, Bachrach and Porat [2] claimed
that the least core of dual of VPCGs is NP-hard to compute and that it can be
efficiently computed for trees. We present a polynomial-time algorithm to solve
a generalization of the same problem for this game as well as three other games
on any graph. A variant of EPCGs was also considered in [12] but the focus
was on strategy-proof mechanisms rather than stability issues. Deng et al. [5]
considers a different type of s-t connectivity game which is balanced.

The s-t path connectivity setting also has natural links with network relia-
bility where the goal is to compute the probability that there exists a connected
path. However the network reliability literature does not consider strategic set-
tings and certainly has no equivalent concepts such as the least core and the
nucleolus etc.

3 Preliminaries

In this section, we first define the path coalitional games and path intercept
games and then consider game theoretic solution.

3.1 Games

We begin with the formal definition of a coalitional game.

Definition 1 (Coalitional games). A coalitional game is a pair (N, v) where
N = {1, . . . , n} is a set of players and v : 2N → R is a characteristic or valuation
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function that associates with each coalition S ⊆ N a payoff v(S) where v(∅) =
0.3 A coalitional game (N, v) is monotonic when it satisfies the property that
v(S) ≤ v(T ) if S ⊆ T .

Throughout the paper, when we refer to a coalitional game, we assume such a
coalitional game with transferable utility. For the sake of brevity, we will some-
times refer to the game (N, v) as simply v.

Definition 2 (Simple game). A simple game is a monotonic coalitional game
(N, v) with v : 2N → {0, 1} such that v(∅) = 0 and v(N) = 1. A coalition
S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0. A minimal winning
coalition (MWC) of a simple game v is a winning coalition in which defection
of any player makes the coalition losing.

We now define the following two path coalitional games.

Definition 3 (Path Coalitional Games). For an unweighted di-
rected/undirected graph, G = (V ∪ {s, t}, E),

– the corresponding Edge Path Coalitional Game (EPCG) is a simple coop-
erative game (N, v) such that N = E and for any S ⊆ N , v(S) = 1 if and
only if S admits an s-t path.

– the corresponding Vertex Path Coalitional Game (VPCG) is a simple coop-
erative game (N, v) such that N = E and for any S ⊆ N , v(S) = 1 if and
only if S admits an s-t path.

We recall that for a game G = (N, v), the corresponding dual game GD =
(N, vD) can be defined in the following way: vD(S) = v(N) − v(N \ S) for all
S ⊆ N . For both EPCG and VPCG, and the corresponding duals EPCGD and
V PCGD can be defined.

For any simple game, we can define a game which is the ‘cost-based general-
ization’.

Definition 4 (Cost-based generalization). For any given simple game G =
(N, v) we can define a cost-based generalization C-G = (N, vc) based on cost
vector c = (c1, . . . , c|N |) and reward r ∈ N+. For a coalition S ⊆ N , the value
of the vc(S) = r−minS′⊆S,v(S′)=1(c(S′)) if v(S) = 1 and vc(S) = 0 if v(S) = 1.

The idea of a cost-based generalization is that each player demands some
cost for its services being utilized and a coalition of a players get a reward r only
if it is winning and gets the job done. Based on this formulation, we can define
Edge Path Coalitional Games with costs C-EPCG and Vertex Path coalitional
games with costs, C-VPCG. It is easy to see that for a game C-G, if r = 1 and
the costs are all zero, then C-G is equivalent to G.

Observation 1. C-ESPG is equivalent to the value shortest path game (VSPG)
in [11]. V PCGD is equivalent to the simple path disruption game in [2].

3 Throughout the paper, we assume 0 ∈ R+.
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We now define the following two path intercept games.

Definition 5 (Path intercept games). For an unweighted directed graph,
G = (V ∪{s, t}, E), the corresponding Edge Path Noncooperative Game (EPNG)
is a noncooperative game with two players, the interceptor and the passer. The
pure strategies of the interceptor are the edges E and the pure strategies of the
path-chooser is set P which contains all paths from vertex s to vertex t. If the
edge used by the interceptor intersects with the chosen path, then the interceptor
wins and gets payoff 1. Otherwise it loses and gets payoff 0.

Vertex Path Noncooperative Games (VPNGs) has an analogous definition to
EPNGs except that the pure strategies of the interceptor are the vertices V and
that if the vertex used by the interceptor intersects with the chosen path, then
the interceptor wins and gets payoff 1.

Both EPCG and VPNG can be generalized to the case with detection prob-
abilities where the probability that the passer moving through edge e (or vertex
v) will be detected if the interceptor inspects e (or v) is pe (or pv respectively).

3.2 Cooperative Solutions

A solution for a cooperative game consists of a distribution of the values of the
coalitions that form. In this paper, we assume that the grand coalition con-
sisting of all players always forms. Accordingly, a solution consists of a distri-
bution of the value of the grand coalition over the players. Formally speaking,
a solution associates with each cooperative game (N, v) a set of payoff vectors
(x1, . . . , xn) ∈ RN such that

∑
i∈N xi = v(N), where xi denotes player i’s share

of v(N). Such efficient payoff vectors are also called preimputations. As such,
solution concepts formalize the notions of fair and stable payoff vectors. In what
follows, we use notation similar to that of Elkind et al. [6].

Given a cooperative game (N, v) and payoff vector x = (x1, ..., xn), the excess
of a coalition S under x is defined by

e(x, S) = x(S)− v(S),

where x(S) =
∑

i∈S xi. We are now in a position to define one of the most
fundamental solution concepts of cooperative game theory, viz., the core.

Definition 6 (Core). A payoff vector x = (x1, . . . , xn) is in the core of a
cooperative game (N, v) if and only for all S ⊂ N , e(x, S) ≥ 0.

A core payoff vector guarantees that each coalition gets at least what it could
gain on its own. The core is a desirable solution concept, but, unfortunately it is
empty for many games. Games which have a non-empty core are called balanced.
The possibility of the core being empty led to the development of the ε-core [16]
and the least core [10].

The excess vector of a payoff vector x, is the vector (e(x, S1), ..., e(x, S2n))
where e(x, S1) ≤ e(x, S2) ≤ e(x, S2n). We denote the distinct values in the
excess vector by −ε1(x, v),−ε2(x, v), . . . ,−εm(x, v), where −εi(x, v) < −εj(x, v)
for i < j.
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Definition 7 (Least core). For ε > 0, a payoff vector vector x is in the ε-core
if for all S ⊂ N , e(x, S) ≥ −ε. The payoff vector x is in the least core if it is in
the ε-core for the smallest ε for which the ε-core is non-empty. We will denote
by −ε1(v), the minimum excess of any least core payoff vector of (N, v).

It is easy to see from the definition of the least core, that it is the solution
of the following linear program (LP):

min ε
s.t. x(S) ≥ v(S)− ε for all S ⊂ N,

ε ≥ 0, xi ≥ 0 for all i ∈ N,∑
i=1,...,n xi = v(N) .

(1)

The nucleolus is a special payoff vector which is in the core if the core exists
and is otherwise a member of the least core.

Definition 8 (Nucleolus). A payoff vector x such that xi ≥ v({i}) for all
i ∈ N and x has lexicographically the largest excess vector is called the nucleolus.

The nucleolus is unique and always exists as long as v(S) = 0 for all singleton
coalitions [14].

3.3 Noncooperative solutions

Let ∆(A) be the set of mixed strategies (probability distributions) on a finite
set A. We assume the author is familiar with the concept of a Nash equilibria,
and the fact that in two-player zero-sum noncooperative games, the maxmin
strategies are equivalent to the Nash strategies. If such games are represented in
normal-form, then it is well-known that a linear program formulation can help
solve the game in polynomial time. However, this may not be the case for other
representations for which the size of the linear program is exponential in the size
of the input.

4 Least core of path coalitional game variants

Before considering other computational issues, we notice that the value of a
coalition in EPCG and VPCG can be computed in polynomial time. For a coali-
tion S in a EPCG/C-VPCG, use Depth First Search to check whether s and t
are connected in a graph restricted to S. If not, then v(S) = 0. Otherwise, v(S)
is equal to 1.

Our first observation is that in all games EPCG, VPCG, EPCGD and
V PCGD, the core can be empty. In fact, the following proposition characterizes
when the core of these games is non-empty:

Proposition 1. The core of

– EPCG is non-empty if and only if there exists a s-t cut edge..
– VPCG is non-empty if and only if there exists a s-t cut vertex.
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– EPCGD is non-empty if and only if there exists an edge (s, t) edge.
– (Bachrach and Porat [2]) V PCGD is non-empty if and only if there exists

a vertex x such that (s, x) and (x, t) are edges in the graph.

Proof. All cases follow directly from the fact that in a simple monotone game,
the core is non-empty if and only if there exists a vetoer, i.e., a player i ∈ N
such that v(N \ {i}) = 0. For the dual games, note the following. Let (N, vd)
be the dual game and let x be a player such that v(x) = 1. We want to show
that player x is a vetoer in (N, vd) i.e., vd(N \ x) = 0. We know that v(N) = 1.
Then, by definition of dual, vd(N \ x) = v(N) − v(x) = 1 − 1 = 0. Thus x is a
vetoer in (N, vd).

ut
Since the core can be empty, the least core payoff assumes more importance.

We will first present a general positive result (Theorem 1) regarding the com-
putation of least core payoff for cost-based generalizations of simple games. To
prove Theorem 1, we first require the following lemma:

Lemma 1. Let x = (x1, . . . , x|N |) be an preimputation of a C-G with an empty
core. Then construct a weight function x′ such that for each player i, x′(i) =
ci + xi. Then, a minimal winning coalition S∗ which minimizes total weight
x′(S∗) has the minimum excess with respect to payoff x.

Proof. Assume for the sake of contradiction that S∗ is not a minimum excess
coalition and there exists a minimum excess coalition S which is not a minimum
winning coalition which minimizes total weight x′(S). We know that S is win-
ning. If this were not the case, then the value of S is zero and the minimum
excess is e(x, S) ≥ 0. Without loss of generality there exists another winning
coalition S′ which is a minimum excess coalition. There may be a non-minimal
winning coalition which is a minimum excess coalition but it will contain a
minimal winning coalition which also has the minimum excess. We know that
x′(S′) > x′(S∗) because if this were not the case, then S′ would be a mini-
mal winning coalition which minimizes total weight according to weighting x′.
This means that x(S′) + c(S′) > x(S∗) + c(S∗) which implies that e(x, S′) =
x(S′)− (r − c(S′)) = x(S′) + c(S′)− r = x′(S′)− r > x(S∗)− r = e(x, S∗). ut
Theorem 1. Let G = (N, v) be the underlying simple game and C−G = (N, vc)
be the cost-based generalization of (N, v). Assume that the representation of
(N, v) is as compact as the cost function c. Then, if there exists a polynomial-
time separation oracle for the least core LP of the underlying simple game, then
a least core payoff of the cost-based generalization may be computed and verified
in polynomial time.

Proof. We first describe the least core LP for (N, v) as follows:.

min ε
s.t. x(S)− v(S) ≥ −ε for all S ⊆ E

ε ≥ 0, xi ≥ 0 for all i ∈ N,∑
i=1,...,n xi = 1 .

(2)
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Our first claim is as follows: Let x = (x1, . . . , x|N |) be a preimputation of
G. Then, the minimum excess and the minimum excess coalition can be com-
puted in polynomial time. This follows from the assumption that there exists a
polynomial-time separation oracle for the least core LP of the underlying sim-
ple game which computes the minimum excess and also computes the minimum
excess coalition which signifies a violated constrain of the LP. Since G = (N, v)
is a simple game, therefore it follows that if each player i ∈ N is given a weight
x′(i) = xi, then there exists a polynomial-time algorithm (let us call it Al-
gorithm A) to compute a (minimal) winning coalition with the smallest total
weight. The implicit assumption here is of course is that the weight function x′

is non-negative.
The size of the linear program (1) is exponential in the size of game C-G, with

an inequality for every subset of players. However, this linear program can be
solved using the ellipsoid method and a separation oracle, which verifies in poly-
nomial time whether a solution is feasible or returns a violated constraint [15].
We now demonstrate how algorithm A can be used to construct the separation
oracle for the least core LP of C-G.

For a candidate solution x = (x1, . . . , x|N |), where x(N) = r, construct the
weighted function x′ = xi + ci. From Lemma 1, we know that we only need
to consider the set of minimal winning coalitions to find the coalition which
gets the minimum excess. To do so, we require a polynomial-time algorithm to
compute a (minimal) winning coalition which minimizes the weight x′(S). Note
that weights x′(i) of all players i ∈ N are non-negative. Since ci ≥ 0 and xi ≥ 0
for all i ∈ N , therefore, x′(i) = ci + xi ≥ 0 for all i ∈ N . We already know that
there exists a polynomial-time algorithm A which if given a non-negative weight
vector x′ for the players, can compute a winning coalition with the minimum
total weight. The total weight of that coalition can be computed trivially. Use
the known algorithm A to compute the winning coalition S∗ with the smallest
total weight x′(S∗). Since the representation of (N, v) is as compact as the cost
function c, we know that algorithm A still runs in polynomial-time. If we have
x(S∗)) + c(S∗) − r ≥ −ε, then x(S) − v(S) ≥ −ε for all S ⊆ N . Therefore, x
is feasible. Otherwise, the constraint x(S∗) + c(S∗) − r ≥ −ε is violated. This
completes our argument that a polynomial-time separation oracle for the least
core LP of the C-G can be constructed.

A payoff x = (x1, . . . , x|N |) can be verified if it is in the ε-core by using the
separation oracle. Since the minimum excess −ε1 of the least core payoff can be
computed, therefore the separation oracle can also be used directly to check if
the given payoff is in the least core. ut

The assumption that the representation of (N, v) is as compact as the
cost function c is crucial. One has to tread carefully in modifying the known
polynomial-time separation oracle of the underlying simple game to the separa-
tion oracle for the cost-based generalization. For example, for weighted voting
games with bounded weights, there exists a polynomial-time separation oracle
for the least core LP [6]. However, it does not follow that the least core of a
weighted voting game with small weights but large costs can be computed in
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polynomial time. Based on this rule of thumb, we see that the least core can be
computed for cost-based generalizations of the following games: spanning con-
nectivity games [1] and weighted voting games with bounded weights and also
bounded costs. Secondly, the success of the reduction crucially depends on the
fact that the new weight function x′ is non-negative. If this is not that case,
then there is no guarantee whether algorithm A still works efficiently or works
correctly at all. For example, in Theorem 2, if x′(i) = xi− ci for all i ∈ N , there
is a possibility of having negative weights and the computation of the shortest
path becomes NP-hard. We now apply Theorem 1 to path coalitional games.

Theorem 2. There exist polynomial-time algorithms to compute and verify least
core payoffs of an cost-based generalizations of Edge Path Coalitional Game (C-
EPCGs) and Edge Path Coalitional Game (C-EPCGs) for both directed and
undirected graphs.

Proof. We utilize Theorem 1 to prove the statement.

C-EPCGs: It is sufficient to show that for any preimputation, x = (x1, . . . , x|E|)
where x(N) = 1, can we compute the minimum excess coalition. Each player
(edge) i has a weight xi and the minimum excess coalition is an s-t simple path
P with the smallest weight, that is the shortest s-t path. Use Dijkstra’s Shortest
Path Algorithm to compute the shortest path P from s to t in graph Gx and
and then the minimum excess coalition is E(P ).

C-VPCGs: It is sufficient to show that for any preimputation, x = (x1, . . . , x|V |)
where x(N) = 1, can we compute the minimum excess coalition. Each player
(node) i has a weight xi and the minimum excess coalition is an s-t simple path
P with the smallest weight, that is the shortest vertex s-t path. Then compute
the shortest vertex weighted path P from s to t in graph Gx and then the
minimum excess coalition is V (P ). Dijkstra’s Shortest Path Algorithm can be
used to compute the shortest vertex weighted path as following. The problem can
be reduced to the classic shortest path problem in the following way: duplicate
each vertex (apart from s and t) with one getting all ingoing edges, and the
other getting all the outgoing edges, and an internal edge between them with
the node weight as the edge weight. Use the algorithm to compute the shortest
vertex path P from s to t in graph Gx. ut

The least core of the game may not also be the least core payoff of the dual
game. Therefore, we require new algorithms to compute the least core of dual
coalitional path games.

Theorem 3. The least core payoffs of C-EPCGD can be computed and verified
in polynomial time for both directed and undirected graphs.

Proof. We utilize Theorem 1 to prove the statement.

C-EPCGD: It is sufficient to show that for any preimputation, x = (x1, . . . , x|E|)
where x(N) = 1, can we compute the minimum excess coalition. Each player
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(edge) i has a weight xi and the minimum excess coalition is an s-t cut P with
the smallest weight, that is the minimum weight s-t path. Use the maximum
network flow algorithm (Chapter 27, [3]) to compute the minimum weight edge
s-t cut C in graph Gx. This gives us the minimal winning coalition S with the
minimum payoff and thereby the minimum excess.

C-V PCGD: It is sufficient to show that for any preimputation, x = (x1, . . . , x|V |)
where x(N) = 1, can we compute the minimum excess coalition. Each player
(node) i has a weight xi and the minimum excess coalition is an s-t vertex cut
P with the smallest weight, that is a minimum weight s-t vertex cut. Then
compute the minimum weight s-t vertex cut in graph Gx and then the minimum
excess coalition is V (P ). It is known that the minimum weight vertex s-t cut can
be computed in polynomial time for directed graphs by standard network-flow
methods. The network flow method to compute the minimum edge s-t cut can
be used to compute the minimum vertex s-t cut as following. The problem can
be reduced to the problem of min weight s-t edge cut of an edge weight directed
graph in the following way: duplicate each vertex (apart from s and t) with one
getting all ingoing edges, and the other getting all the outgoing edges, and an
internal edge between them with the node weight as the edge weight. Set the
weight of all original edges as infinite. We use existing algorithms to compute
the minimum weight vertex s-t cut to construct the separation oracle for the
C-V PCGD least core LP. ut

We note that if instead of using s-t connectivity settings, we consider more
than two terminals then some problems such as In-ε-Core become NP-hard.
This follows from the fact that computing a min cut for more than two terminals
is NP-hard.

5 A closer look at path coalitional games without costs

In this section, we take a closer look at simple path coalitional games without
costs. We will refer to the minimum size of an s-t cut of a unweighted graph as
cE if we refer to edge cuts and as (cV ) if we refer to vertex cuts. Then we have
the following theorem:

Theorem 4. Consider an EPCG GEPCG and VPCG GV PCG. Then
ε1(GEPCG) = 1− 1/cE and ε1(GV PCG) = 1− 1/cv.

Proof. Consider an EPNG based on graph G with detection probabilities
(p1, . . . , p|E|). The equilibrium or maxmin strategies of the interceptor are the
solutions {x ∈ ∆(E) | ∑v∈P xe · pe ≥ val(G) for all P ∈ P} to the following
linear program, which has the optimal value val(G).

max α
s.t.

∑
e∈P xe · pe ≥ α for all P ∈ P ,

x ∈ ∆(E) .
(3)
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We notice that if pe = 1 for e ∈ E, then LP (3) is equivalent to LP (2). It is
clear that maxmin strategy x of EPNG where pe = 1 for all e ∈ E is equivalent
to the least core payoff of EPCG corresponding to G.

LP (3) is equivalent to LP 1 in [19] if pe is set to 1 for each edge in both
LPs. Washburn and Wood [19] conclude that maxmin strategy is obtained by
constructing a graph Gc′ where c′e = 1/pe and then computing the minimum
weight s-t cut S. Each edge e ∈ S is then given interdiction probability propor-
tional to ce = 1/pe. It follows that if pe = 1 for all e ∈ E, then c′e = 1/pe, and
the minimum weight s-t cut S of Gc′ is simply the min cardinality s-t cut S
of G. A maxmin strategy x of the interceptor, each edge in S is inspected with
probability 1/|S| = 1/cE . Therefore for EPCG corresponding to G, the payoff of
each simple s-t path or equivalently minimum winning coalition has payoff 1/cE
and the minimum excess −ε1 of the ESPG is 1/cE − 1.

We note that a similar analysis holds for VPCGs. ut

Theorem 4 helps give a correspondence between EPCG and EPNG and also
between VPCG and VPNG. We note that there is no such correspondence be-
tween, for example EPNG with detection probabilities and C-EPCG. Theorem 4
helps us formulate combinatorial algorithms to compute the least core of EPCGs
and VPCGs (without costs). The problem of computing the least core reduces
to computing a minimum cardinality edge cut (or vertex cut) of the graph and
uniformly distributing the probability over the minimum cut. Such least core
payoffs are the extreme points of the least core convex polytope and in fact any
other least core payoff is a convex combination of the extreme points.

Our demonstrated connection of EPNGs to the corresponding coalitional
EPCG helps examine refinements of the maxmin strategies such as the nucleolus.
We will discuss this connection in further detail in this section.

The nucleolus of a coalitional game is arguably the unique and fairest solution
concept which is guaranteed to lie in the core if the core is non-empty. The
interpretation of the nucleolus in the non-cooperative setting is the maxmin
strategy which maximizes the potential extra payoff if the path-chooser does
not choose the optimal strategy. We observe that the nucleolus strategy is a
refinement of the proper equilibrium strategy,

We will show that for certain graph classes like series-parallel graphs, the
nucleolus strategy can be computed in polynomial time (Theorem 5).

Definition 9 (Series-parallel graph). Let G = (V,E) be a graph with source
s and sink t. Then G is a series-parallel graph if it may be reduced to K2 by a
sequence of the following operations:

1. replacement of a pair of parallel edges by a single edge that connects their
common endpoints;

2. replacement of a pair of edges incident to a vertex of degree 2 other than s
or t by a single edge so that 2 degree vertices get removed.

Denote the set of edge mincuts of a graph G by C(G). Denote by Ce(G) the
following value {S ∈ C(G) | e′ ∈ S}.
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Lemma 2. For an undirected series-parallel graph G = (V ∪ {s, t}, E), let x
be a least core payoff of the corresponding EPCG and let e ∈ E be such that
Ce(G) = ∅. Then xe = 0.

Proof. Let e = (a, b) ∈ E be such that Ce(G) = ∅ and assume for contradiction
that there is a least core payoff of EPCG for G such that xe > 0. Let the graph
component in series with and left of e be G1, the graph component in series with
and right of e be G2, the graph component in parallel and above e be G3 and
the graph component in parallel below e be G4. Since Ce(G) = ∅ there exists no
edge e′ ∈ G3 ∪G4 such that C ′e(G) > 0. Now assume that the mincut value of G
is c∗. The mincut C with size c∗ must either be in G1 or G2. We also know that
since x is a least core payoff, the length of the shortest s-t path in G is 1/c∗. We
show that if xe > 0, then a transfer of payoff from certain edge in G3 ∪G4 ∪{e}
increases the minimum excess, thereby showing that x is not a least core payoff.

If there exists no shortest a-b path which includes e, then we know that e is
present in no coalition which gets the minimum excess. Therefore e can donate its
payoff uniformly to C and increase the minimum excess by xe/c

∗. Now assume
that e is in one of the shortest a-b paths. Clearly, this is not the only simple
a-b paths because if this were the case then e would be a bridge be one of the
mincuts. We know that mincut value of G3 ∪G4 ∪{e} is more than c∗. Let S be
the minimum cut of G3 ∪G4 ∪ {e}. We know that |S| > |C| = c∗. Then, we can
show that the minimum excess of x increases if x(S) is distributed uniformly
over C. Each shortest s-t path if Gx has to pass one edge in C and one edge in
S. The the weight of each edge in C has increased by x(S)/|S| and the length
of the shortest a-b has decreased by x(S)/|S|, the excess increases exactly by
positive value x(s)/|C| − x(S)/|S| without decreasing any other excesses. ut

Theorem 5. The nucleolus of EPCGs for undirected series-parallel graphs can
be computed in polynomial time.

Proof. We show that the problem of computing the nucleolus of EPCGs of undi-
rected series-parallel graphs reduces to computing the parallel-series decomposi-
tion of the graph. There are known standard algorithms to identify and decom-
pose series-parallel graphs (see e.g., [8]). The reduction is based on an inductive
argument in which if we know the nucleolus of two graphs G′ and G′′, then
we can also compute in polynomial time the nucleolus of the graph made by
connecting G′ and G′′ in series or parallel. The proof by induction is as follows:

Base case: The base case if trivial. In any graphG with a single edge e connecting
s and t, the (pre)nucleolus x gives payoff 1 to e.

Induction: Our induction involves two case: attaching two graph components
in series and parallel. Consider two series-parallel undirected graphs G′ and G′′

and assume we already know that their nucleolus is x′ and x′′ respectively. We
will show that computing the nucleolus of G formed by joining G′ and G′′ in
series and parallel is polynomial-time easy.
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Graph Game LC nucleolus
general C-EPCG P (Th. 2) ?
general C-VPCG P (Th. 2) ?
general C-EPCGD P (Th. 3) ?
general C-V PCGD P (Th. 3) ?

series-parallel EPCG P (Th. 2) P (Th. 5)

Table 1. Summary of results

1. Assume we attach G′ and G′′ in series to obtain G. Let the size of any edge
mincut be c′ and any edge mincut be c′′. If c′ < c′′, then by Lemma 2, there
is no advantage of giving payoff to any edges in G′′. Therefore, the nucleolus
of G′ is equal to the nucleolus of G and we are done. Assume that c′ = c′′. We
recall that the nucleolus satisfies anonymity and covariance [13, 18]. Then
due to Lemma 2 and covariance and anonymity property of the nucleolus,
we have x = (αx′, (1 − α)x′′) where 0 < α < 1. Let m′ and m′′ be the
smallest non-zero payoff of a player in x′ and x′′ respectively. We then show
that x = (αx′, (1 − α)x′′) is the nucleolus if α has the unique value for
which m′(α) = m′′(1 − α) i.e., α = m′′/(m′ + m′′). If this were true, then
x = (m′′/(m′ + m′′)x′, (1 −m′′/(m′ + m′′))x′′). In this case, the minimum
excess for x is 1/c′ − 1 and the number of coalition achieving this in G is
|A| × 2|B| where A is the set number of simple paths in Gx and B = {e ∈
E(G) | Ce(G) = ∅}. We also know that the value of the second minimum
excess is 1/c′−1+(m′ ·m′′)/(m′+m′′). Now assume that there exists another
payoff y = (αx′, (1 − α)x′′) for some α 6= m′′/(m′ + m′′) such that y has a
lexicographically greater excess vector than x. Clearly y is a least core payoff
of G. Then the minimum excess for x is 1/c′−1 and the number of coalition
achieving this in G is still |A| × 2|B|. However the second minimum excess
for y is less than 1/c′ − 1 + (m′ ·m′′)/(m′ +m′′). Therefore, y has a smaller
lexicographical excess vector than x which is a contradiction.

2. Consider two series-parallel undirected graphs G′ and G′′ and assume we
attach them in parallel to obtain G. Let the size of any edge mincut of G′ be
c′ and the size of edge mincut of G′′ be c′′. Both the mincut values can be
computed in polynomial time for any graph. We know that the size of mincut
of G is c′+c′′. Then due to Lemma 2 and covariance and anonymity property
of the nucleolus, we know that x = (αx′, (1 − α)x′′) where 0 < α < 1. We
then show that x = (αx′, (1− α)x′′) is the nucleolus if alpha has the unique
value c′/(c′ + c′′). Since the size of a mincut of G is c′ + c′′, every least core
payoff y of is such that Gy has shortest path 1/(c′+ c′′). We want that every
shortest s-t path which passes from G to have length 1/(c′+c′′). This is only
possible if α = c′/(c′ + c′′).

ut

We conjecture that a similar approach may help construct a polynomial-time
algorithm to compute the nucleolus of VPCGs for series-parallel graphs.

13

Path coalitional games

CoopMAS 2011 69



6 Conclusion

Path coalitional games provide a simple yet rich framework to model strategic
settings in the area of network security and logistics. In this paper we analyzed
different generalizations and variants of path coalitional games and classified
the computational complexity of computing different cooperative and noncoop-
erative game solutions. One key conclusion is the following insight: under very
weak conditions, linear programming techniques to compute least core payoffs
of the underlying simple game can be used to compute the least core payoffs of
cost-based generalization of the simple game. Many of our positive results are
based on separation oracles and linear programs. It will be interesting to see if
there are purely combinatorial algorithms for the same problems. Apart from the
EPCGs on series-parallel graphs, the complexity of computing the nucleolus is
open for all other games. For all variants of path coalitional games, we assumed
that each edge/vertex is owned by a separate player. It will be interesting to
see if our positive results can be extended to the more general scenario where a
single player may own more than one edge or vertex.
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Abstract. Sensor networks (SN) have arisen as one of the most promis-
ing monitoring technologies. So far the majority of SN deployments have
assumed that sensors can be configured prior to their deployment be-
cause the area and events to monitor are well known at design time.
Nevertheless, when the purpose of an SN is to monitor an environment
such that the distribution and nature of its events is uncertain, we can-
not longer assume that sensors can be configured at design time. Instead,
sensors must be endowed with the capacity of autonomously reconfigur-
ing and coordinating in order to maximize the amount of information
they perceive over time. In this paper, we propose a low cost (in terms of
energy and computation) collective distributed algorithm, which allows
the sensors in an SN to collaboratively search for the configurations that
maximise the information that they perceive based only on their local
knowledge. We empirically show that the proposed algorithm helps an
SN efficiently monitor environments where various dynamic events occur
while showing high degrees of resilience to sensor failures.

1 Introduction

As technology continuously improves, it is becoming apparent that sensor net-
works (SN) are a powerful and versatile tool [1]. They have been employed by
numerous applications on domains of a wide range of characteristics [2, 3]. Many
of these applications rely on static sensor configurations (i.e pre-configured at
design time), which can be detrimental. It has been argued that in real-world de-
ployments the complexity, diversity, and dynamicity of the sensing requirements
is a major issue that cannot be tackled through static configurations.

In particular, many of the events to sense have a dynamic nature. They may
continuously expand or shrink (diffuse events), or move over the environment
(moving events) [4]. Examples of these events are wildfires, glacier movements,
gas plumes, and warm water currents, among others. Within such dynamic set-
tings, it is necessary that sensors are configurable. Thus, sensors must adapt
their configurations to vary the content, resolution and accuracy of their ob-
servations to maximize, in an energy-efficient manner, the information gathered
over time. Therefore, an SN must count on active sensing capabilities[1]: “the
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capacity of autonomously reconfiguring and coordinating its sensors in order
to maximize the amount of information perceived over time”. Henceforth, we
consider a sensor’s configuration as a schedule of (parameterized) actions the
sensor must take to monitor/control/track some particular event. For instance,
to monitor a wildfire, a sensor needs to measure the heat levels, humidity, look
for carbon monoxide, and/or detect smoke.

Moreover, in large environments various distinct events are prone to occur
at once (i.e., there is a spatial distribution of concurrent events). Hence, a sen-
sor’s configuration depends on the event(s) present on its geographic location (a
sensor must be able to adopt as many configurations as events are possible). In
these cases, it is likely that neighboring (close-by) sensors experience the same
event(s), consequently making them require similar (the same) configurations.
Collective active sensing [1] strategies are investigated for SNs whose sensors
need to coordinate to collectively perform some sensing task. Regarding the set-
tings above, a collective sensing strategy would be necessary to have sensors
requiring similar configurations coordinate and cooperate towards a common
goal (discovering the most useful configuration).

Collective active sensing strategies in dynamic environments have recently
spurred research. On the one hand, according to the dynamic region theory
(DRT) [5] sensors can select their configurations from a pre-defined set of con-
figurations by identifying their spatial locations (regions) and their neighbors.
Notice that this approach relies on the fact that the sensing requirements of each
possible event and location are known at design time. In other words, it requires
a thorough study of the deployment environment and a deep knowledge of its
possible events. On the other hand, coalition formation based approaches have
been also employed for active sensing. Sims et al [6] attempt to find the coali-
tion of sensors to perform each task out of a set of available (sub)tasks in such
a manner that some utility is maximized. Likewise DRT, this coalition-based
approach also depends on a through knowledge (at design time) of the tasks or
subtasks to perform. Additionally, the approach assumes that the sensors have
(near-) complete information of the other sensors (or at least of a subgroup).

To summarize, the common assumption of previous works in the literature
is that the deployment environment has been well studied, and thus that the
sensor designers and the sensors themselves can make use of the available domain
knowledge for configuration purposes. Nevertheless, this may not always be the
case. It has been argued that sensor networks can be particularly useful in remote
or hostile environments that have rarely been studied due to their inaccessibility
[7]. Therefore, how to employ some collective active sensing in these uncharted
environments remains an open issue that we address in this paper.

We propose a collective approach to monitor uncharted environments by
embedding in an SN a distributed algorithm that: i) has a low computational
overhead and a low energy consumption; ii) employs diffusion search to collec-
tively find the most useful sensor configurations for the occurring events; iii)
promptly reconfigures the sensors in response to dynamicity of the events; and
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Fig. 1. a) Distribution of four different events in an environment; b) state of the envi-
ronment after the (diffuse) events expand and/or shrink; c) state of the environment
if all previous events disappear, and new distinct ones take their place.

iv) works when the sensor cannot rely on the available domain knowledge (un-
charted environment).

2 Problem description

Our objective is to employ an SN to act in an uncharted environment, where
acting refers to monitoring, controlling or tracking events. By uncharted envi-
ronment we mean a location of which we only have partial domain knowledge.
In other words, unlike in most current SN applications, we are not aware of the
kind of events that may occur, nor of their possible locations in the environment.

An event stands as some phenomenon (of interest) that occurs in some geo-
graphic area of the environment. Moreover, various distinct events are likely to
occur at the same time in different areas. Figure 1.a illustrates an environment
where four different events occur simultaneously (each color represents a distinct
event). Observe that the presence of multiple, spatially-distributed events has
the effect of partitioning the environment. However, in uncharted environments
the events (and thus its partitioning) may not be known at design time. There-
fore, sensors need to be capable of configuring themselves according to events
occurring in each location in such a manner that their selected configurations
allow each of them to efficiently monitor/control/track the events.

Furthermore, in real-world situations, events usually change over time (i.e
they are dynamic, with a diffuse or moving nature). For example, figures 1.a
and 1.b depict the transition of four diffuse events (by expanding or shrinking);
whereas the differences between figures 1.a and 1.c show a harsher transition
in which the four events disappear and five new ones take their place (the new
colors in figure 1 represent the new events). Hence, the sensors also need to adapt
their configuration to cope with changes.

We assume that a large number of sensors may be deployed in a non-determi-
nistic manner (e.g they are dropped from a helicopter) over a large environment.
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Thus, only those events that are geographically available to the sensors’ loca-
tions will be monitored [6]. We also assume that the sensors are technologically
capable of monitoring many different types of events (i.e for any event there
exists a sensor configuration capable of monitoring it). Following [5], we con-
sider that collections of neighboring sensors are likely to reside on the same
environment partition. Hence, experiencing the same event for periods of time
during the operation of an SN. Therefore, they are also likely to require similar
configurations.

Moreover, the uncharted nature of the environment means that the possible
events are not cataloged (identified). Neither are the geographic areas where
events may occur. In other words, a mapping between regions (locations) and
events is not available. Consequently, the sensors need to have at their disposal
a large set of possible configurations to cope with a large variety of possible
dynamic events (i.e the sensors are highly configurable).

Moreover, we assume that each sensor has a preference structure [8] that ex-
presses the satisfaction of any particular configuration when faced with a choice
between different alternatives. Thus, a preference structure brings together all
possible alternatives and represents a sensor’s preferences over the set of possible
configurations. In order to value a configuration, we assume that each sensor can
measure the value of the information (observations) collected. This approach is
similar to the one taken in [9], and in general it is a common in the data fusion
and the tracking literature. Finally, the sensors may need to be some period
of time in the environment to find their proper configurations. Therefore, even
though sensors can be added or removed at any point in time, the sensor popu-
lation does not fluctuate wildly [6].

The main challenges of the problem originate from the lack of a priori in-
formation in an uncharted environment. Because neither the possible events nor
the environment characteristics are known beforehand (at design time), a region
identification algorithm cannot be used to select the appropriate configurations
(unlike [5]). Hence, the sensors must search for their proper configurations in a
likely large configuration space. Additionally, although we assume that neigh-
boring sensors are likely to experience the same event (thus requiring similar
configurations), this may not always be the case. Sensors close to the frontier
of two (or more) different events can have neighbors that require completely
different configurations.

Moreover, there are also challenges related to the (technological) capabilities
of sensors. Even though sensors are becoming more and more computationally
powerful they are still somewhat limited. Therefore, any approach used to solve
the problem should not take a significant amount of processing power away from
the sensor duties. In other words, a low computational overhead is desired. Fur-
thermore, it is well known that sensors are quite restricted energy-wise. Hence,
the algorithms employed by the sensors must be as energy efficient as possible.
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Fig. 2. Diffusion state transition.

3 A Collective Approach

In this section we propose an approach to solve the problem described in section
2, namely for sensors to dynamically find the most useful configurations required
to monitor the dynamic events occurring in their geographical location. The
proposed approach is designed to function in uncharted environments (where
only partial domain knowledge is available) using the sensors’ local feedback.

As stated before, it has been argued [5] that in environments with spatial
events (e.g diffuse events) it is safe to assume that neighboring sensors may re-
quire the same (or a similar) configuration since they are prone to be monitoring
the same event. Therefore, it is reasonable for sensors to collectively coordinate
and cooperate to discover the most useful configurations.

In situations where the sensors are deployed to an uncharted environment, it
may be the case that the only available useful information is the one provided
by the sensors’ own feedback function. Under such circumstances, cooperation
becomes necessary since sensors can improve their partial domain knowledge
(regarding the configurations) by sharing their local experiences. Moreover, the
number of possible configurations may be very large, thus it may be unfeasible
for the sensors to individually search for their configurations. Furthermore, co-
operation and coordination are also useful computationally speaking, because
even though sensors are becoming more powerful, their resources (e.g CPU) are
still constrained. Hence, if multiple sensors search for the same configuration,
they can save time and power by searching together. Once a sensor finds a good
configuration, it can be promptly shared with its searching peers.

To that aim, we designed the collective diffusion search (CDS) as an al-
gorithm based on the collective sharing of configurations amongst neighboring
sensors. The state machine of the CDS (as implemented by each sensor) is shown
in figure 2. In what follows we describe the main components of CDS and their
rationale.

Diffusion We opt to employ diffusion as the component in charge of sharing the
configurations since we regard it as an efficient (computation-wise) mechanism.
In a sensor, diffusion consists in a broadcast (to its close-range neighbors) of
its configuration. However, sending a broadcast (message) requires energy con-
sumption. Hence, if a sensor’s priority was to save as much energy as possible,
then it is in its best interest to reduce its number of broadcasts. With that aim, a
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sensor’s likelihood of sending a broadcast can be regulated through a probability
of diffusion (pdiffusion). The higher the value of this probability, the most likely
a sensor is to broadcast its configuration. From a computational perspective,
diffusion has a low overhead on the transmitting (sensor) side, since it amounts
to sending a message without caring who will receive it. Nonetheless, receiving
various broadcasts raises an issue, because a receiving sensor needs to decide
what to do with these received configurations

Culling Attaching in each broadcast the utility of a configuration effectively
provides a receiving sensor with the means to decide how to deal with multi-
ple incoming configurations. This new information allows each receiving sensor
to implement a culling component to dismiss useless (received) configurations.
For instance, we implement this through a filter that selects the best received
configuration (in a time window) and only if it is better than the sensors own.

Through diffusion and culling, groups of sensors that are close by and that
experience the same event will adopt the same configuration. What is more, this
has the effect of emerging of a common configuration per event partition, since
a configuration is only diffused to where it is useful. For example, imagine an
environment partitioned by two different events (e1 and e2) and consider a sensor,
s1, located on the e1 partition but with at least a neighbor, s2, on the e2 side. Now
assume that sensor s1 knows the best configuration for its event (it has a high
utility), which it will broadcast to its neighbors. Sensor s2 on the e2 partition
receives the broadcast containing this highly valuated configuration, thus its
culling will make the sensor adopt it. Nonetheless, since this configuration is not
useful for event e2, when employed by s2 it will be valuated poorly. Therefore,
even though sensor s2 will still broadcast it to its neighbors in the e2 partition,
their culling filter will dispose it, halting the diffusion of the configuration on
that side.

Intermixing. Notice that diffusion and culling do not have searching capabil-
ities, at most they will establish the best configuration known by any of the
sensors (per event). Thus, some searching needs to be incorporated since its un-
likely to expect that some sensor knows its most useful configuration a priori.
A low-overhead search method, consists in intermixing (combining) two config-
urations (the selected through culling and the sensor’s current one) to create
a new one. This can be regarded as using someone else’s experience without
completely forgetting your own. For instance, we implement this by combining
a part of selected configuration with part of the sensor’s current one (the parts
are randomly decided), in such a manner that new configuration is constructed.
Nevertheless, sensors cannot always depend on the usefulness of their neighbors
configurations (e.g if all the neighboring sensors have the same configuration and
it is not useful).

Local improvement This component makes each sensor capable of searching
for new configurations without depending on its neighbors. Moreover, this not
only helps to improve the existing configurations, it is particularly necessary
in environments with dynamic events since the events can disappear or appear
unexpectedly. Local improvement can be accomplished (without expending much
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processing power) by introducing a random change to a sensor’s configuration
with some probability (pimprovement). Various disciplines have shown this to be
effective [10].

3.1 Collective Diffusion Search

Altogether, in collective diffusion search each sensor continuously attempts to
propagate its configuration while trying to improve it at the same time. The
sensor receives some broadcasts which are then filtered through culling in an
attempt to determine if there is a better configuration. In case there is, the
sensor’s configuration and the selected one are combined in an attempt to create
a new (and ideally better) configuration. Afterwards (or if culling fails to select
a configuration), local improvement can be used to continue the search for the
best configuration. Once this is over, the sensors configuration is used and its
utility valuated (act and evaluate in figure 2) through the feedback generated by
the performed actions. Lastly (is a matter of perspective) the sensor wraps its
configuration along with its utility into a message for broadcasting. An execution
of the state machine shall hereafter be referred as a communication cycle.

Overall, this approach can be regarded as a distributed evolutionary process,
since configurations evolve through time as a consequence of the constant appli-
cation of diffusion, combination and local improvements. Once the configurations
cannot evolve anymore, the end result is a stabilized set of useful configurations.

To summarize, collective diffusion search is a low overhead, but powerful dis-
tributed algorithm that when embedded in each sensor empowers them to dy-
namically find the most useful (utility-wise) configurations even when only par-
tial domain knowledge is available (uncharted environments). The algorithm can
be easily implemented in a sensor, since its formed of four lightweight/low over-
head components: diffusion, culling, intermixing, and local improvement.

4 Experimental Results

The aim of our experiments is to verify two hypotheses, if through collective
diffusion search: i) the sensors can find the configurations that maximize their
utility according to the events that occur in their location; and ii) the sensors
can reconfigure themselves in the response to dynamic events.

To that end, we designed three types of experiments: 1) event recognition
(figure 1.a): recently deployed sensors must find the configurations needed to
monitor the events in the environment; 2) sensor reconfiguration against smooth
event changes (transition from figure 1.a to 1.b): the existing events’ area of
covering changes over time (diffuse events); and 3) sensor reconfiguration against
bold event changes (transition from figure 1.a to 1.c): existing events disappear
and completely new events (different covering and features) take their place.

It is important to understand that in real-like situations dynamic events
may change slowly through time. However, in our experiments we opt to make it
harder for the sensors by introducing the changes in a more abrupt manner. In a
real deployment such abruptness may actually occur from a sensor’s perspective,

Self-Conguring Sensors for Uncharted Environments

CoopMAS 2011 78



 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0  50  100  150  200  250  300S
e
n
s
o
rs

 w
it
h
 t
h
e
 S

a
m

e
 C

o
n
fi
g
u
ra

ti
o
n

Communication Cycles

Configuration 1
Configuration 2
Configuration 3
Configuration 4

Fig. 3. Results of convergence after the
initial deployment. The black dots mark
when the best configurations were found.
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since the sensors may sleep for long intervals. Thus, every time a sensor awakens
the events may have different features.

Each of our experiments consists of 50 discrete event simulations, each one up
to 5000 ticks. Our simulation environment is formed by a 100 x 100 grid initially
covered by four distinct events. Figure 1.a depicts with different colors the form
of each event at start up. Observe that all events are different from each other in
area, shape, and borders. During a simulation a set of 1500 sensors is randomly
deployed unto this environment. However, because we are evaluating their self-
configuration capability in an uncharted environment, none of the sensors is
aware of the environment partitioning nor of the possible dynamic events. Hence,
each sensor starts with a random configuration.

A sensor configuration is given by an ordered sequence of 5 actions selected
from a pool of 20 possible actions ( i.e ‖K‖ = 205). Following the assumption
in section 2, our environmental feedback function valuates if the actions in the
configuration are useful or not. The parameters for the CDS were set to (unless
otherwise indicated): a broadcast range of 4 cell and ∼ 20% likelihood of broad-
cast per sensors at a given point in time (pdiffusion = 0.20); the sensor’s culling
occurs once during each tick; and a local improvement probability of 0.0008.

To measure the usefulness of the CDS approach described in section 3, we
counted the number of sensors that found the configuration needed to monitor
the event in their location. The counts of each simulation in the experiment
were then aggregated using the inter-quartile mean. From here on, configuration
1,2,3... refers to configuration employed by the majority of the sensors located
in the area of event 1,2,3.... Furthermore we used communication cycles (also
defined in section 3) as a time scale for the measurements.

4.1 Initial Deployment

The event recognition experiments aim to verify if CDS allows recently deployed
sensors to find and adopt their most useful (utility-wise) configurations required
by their location. Moreover, we are interested in measuring: i) how fast these
configurations are found and adopted by sensors; and ii) how much energy (as a
consequence of the transmitted messages) it requires.

Figure 3 shows that CDS is quite effective in finding the most useful configu-
rations for almost all the sensors. Observe that once the configurations are found
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(black dots in the figure) the sensors promptly adopt them. These configurations
are found at ∼ 20,∼ 30,∼ 40 and ∼ 60 communication cycles for each of the
four events respectively. Figure 4 shows in more detail (for a single simulation
and for the sensors in event 3) the search and adoption of the most useful con-
figuration. Firstly, there is an initial variety of different configurations (initial
spike in the standard deviation ). Next, as a result of the diffusion and culling
components collectives of sensors adopt similar (not so bad) configurations. The
adopted configuration is then improved (through intermixing and local improve-
ment) at each communication cycle, and with each improvement (observable in
the average utility) more sensors start to adopt it (shown by the decrease in
the deviation). This continues until the configuration that provides the highest
utility is found and consequently adopted by most of the sensors.

However, observe that even though the average utility stabilizes (∼ 1.0), the
standard deviation still indicates that not all sensors adopt same configuration.
On the one hand, this occurs because at any point in time the local improvement
component causes a small number of sensors to try new configurations. On the
other hand, because a sensor broadcasts its configuration to all its neighbors,
the sensors in the frontiers (near the geographic border of two or more different
events) may receive conflicting configurations from their neighbors (similar to
the example in section 3).

Moreover, notice that depending on features of the event, some configurations
require more time to be adopted by sensors. This appears to be related to the
dimension of the area occupied by the event, and thus by the number of sensors
that require the same configuration. Event 4 is a particularly pronounced ex-
ample of this effect (sensors localized in the region of this event take the longest
to find the best configuration and thus to adopt it: ∼ 60). Event 4 encompasses
the smallest area and has the lowest number of sensors by far, which seem to
give empirically credence to the idea that the number of sensors influence how
fast a configuration can be found and adopted. From the algorithmic point of
view, this is reasonable in a collective approach because fewer sensors are looking
for the same configuration. Although there may be another factor to consider,
the location of the event. Observe that event 4 is completely surrounded by
the other events, which means that sensors in that area are constantly receiving
conflicting configurations from their neighbors. Additionally, because of its small
dimensions a broadcast originated in its frontiers may cover a significant area of
the event. In other words, sensors as far as the center of the event may receive
conflicting configurations.

The previous results have shown that collective search is an effective self-
configuration approach. However, it is not clear if our approach provides an
advantage against individual search. Therefore, we performed experiments with
sensors employing an individual search mechanism instead of a collective one.
CDS shares various similarities with evolutionary algorithms (EAs)[11], to the
point that it could be considered a distributed EA. Hence, we employ a classic
EA as the individual search approach to compare with. Specifically, we endowed
each sensor with an EA to help it find its best configuration. The chosen EA
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Fig. 5. Communication cycles required by sensors to adopt the best configuration using
different diffusion probabilities.

was a classic genetic algorithm [12] with a population of 20 configuration (per
sensor). In other words, to complete an iteration of the algorithm each sensor
needs to evaluate 20 configurations. This is significantly higher from the CDS
which only requires one evaluation per iteration.

As to the actual results of the experiments, each sensor needs around 2000
iterations to individually find its best configuration. In other words, 4 × 105

configurations are evaluated per sensor. This is extremely high when compared to
the CDS, which needs around 60 (in the worst case) to find the best configuration
for all sensors. Hence, we can conclude that collective search can be considered
as the more appropriate choice for sensors self-configuration.

4.2 The Role of Diffusion

In section 3, it was stated that a sensor can save energy by reducing its number of
broadcasts, and that this is regulated by the probability of diffusion. Moreover,
the experiments in the previous subsection showed that even though at any given
time only ∼ 20% of the sensors were broadcasting the best configuration was still
found and shared in a reasonable amount of time (∼ 70 communication cycles).
Therefore, next we study how different probability values affect the CDS.

To that end we repeated the previous experiment with different diffusion
probabilities. Figure 5 summarizes the experimental results by showing the num-
ber of communication cycles required for the sensors (at least 90%) to find and
adopt the most useful configuration (according to their localization).

Observe that for most events the higher the diffusion probability (the larger
the number of sensors broadcasting) the faster the most useful configurations
are adopted. However, small (area-wise) events do not follow this trend. With a
high diffusion probability, sensors also require more time to find and adopt the
most useful configuration. Such effect occurs because (almost) constant diffusion
diminishes the search capabilities of the CDS in small areas, which were already
reduced because of the low number of sensors in the event.

Although, at first glance it may appear desirable to use a somewhat high
probability of diffusion, such probability means energy-wise. When sensors broad-
cast configurations at every communication cycle, the number of transmitted
messages used by the sensors to reach their best configurations (for the four
events) is of ∼ 167500 (or ∼ 110 messages per sensor). Whereas using a low
value (0.2) may slightly increase the number of communication cycles needed by
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Fig. 6. Reconfiguration after smooth environmental change (at 300 cycles).

most sensors to adopt their configuration but the reduction in the number of
messages is quite significative (∼ 18000 overall, or ∼ 12 per sensor).

Then, we can conclude that the probability of diffusion represents a straight-
forward parameter that controls the trade off between the time needed to find
the proper configurations and the energetic consumption.

4.3 Dynamic Events

The previous experiments have shown that CDS allows sensors to configure
themselves according to the existing environmental events. However, as stated
in section 2 events are usually dynamic, i.e they change over time. Therefore, the
purpose of this section is to verify if sensors with CDS can reconfigure themselves
in response to dynamic events. In what follows, we present the two different types
of dynamic events against which we tested the CDS.

Smooth event changes In these experiments some time (300 cycles) after the
initial deployment, the area covered by each of the events expands or shrinks,
but the configuration required by each event stays the same (transition between
figures 1.a and 1.b). In such situations the sensors should reconfigure themselves
by redistributing the existing configurations without requiring to search for new
configurations (through the diffusion and culling components). Figure 6 shows
that through CDS sensors respond promptly to changes in the environment
(marked by the vertical line). The sensors, for which the event in their location
changes, smoothly transition to their newly required configurations by adopting
them from their stable neighbors. For instance, the sensors monitoring event
1 (configuration 1) suffer the most complicated transition since the region of
the event shrinks from one side and expands from another. The configuration
redistribution for these events is observable in figure 6 (between the 300 − 400
communication cycles) by the sudden decline of the sensors with configuration
1 followed by a sudden increment. Since events may be very dynamic and thus
change continuously, we conducted experiments in an scenario that continuously
transition back and forth between figures 1.a and 1.b. Experiments showed that
every time a smooth change occurred the sensors reacted promptly to adopt
their new configuration (∼ 30 communication cycles).

Bold event changes For these experiments we model a more extreme dynamic
event: the sudden disappearance of the existing events and the sudden appear-
ance of completely new ones (transition between figures 1.a and 1.c). Thus, unlike

Self-Conguring Sensors for Uncharted Environments

CoopMAS 2011 82



 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800

 0  200  400  600  800  1000  1200  1400S
en

so
rs

 w
ith

 th
e 

S
am

e 
C

on
fig

ur
at

io
n

Time steps

Configuration 1
Configuration 2
Configuration 3
Configuration 4
Configuration 5

Fig. 7. Reconfiguration after a bold environmental change (at 300 cycles).

in the smooth change, sensors must search (again) for the most useful configu-
rations required by the new events. Furthermore, since most of the sensors had
(previously) stable configurations (that now are completely useless) there is an
overall lack of configurations diversity. Hence, during this stage diffusion and
intermixing does not provide much help, and its up to the local improvement
component to increase the configuration diversity.

Figure 7 shows that after the bold change (the vertical line at 300 cycles),
the sensors start to diversify their configurations (the number of sensors with
the same configuration declines). Once some sensor(s) find some useful configu-
rations they begin to collectively improve it until the most useful ones are found.
However, unlike during the initial deployment, it takes longer (∼ 600 cycles) to
find the most useful configurations for all the five events. The first cause is the
above-mentioned lack of diversity. The second, like the experiments in subsection
4.1, is the size and frontiers of the events that affect how fast configurations are
found and adopted. For instance, after the bold change four of the five regions
are considerably small (with a low number of sensors located in events), which
slows down the search. Furthermore, even though the new event 1 covers a large
area and its configuration is promptly found (∼ 100 cycles) it take some time for
most sensors located on the event to adopt it (∼ 200 cycles) because the region
of event 1 has a lot of frontiers which affect the effectiveness of diffusion.

To summarize, from these experiments we conclude that: i) through CDS
sensors can reconfigure themselves in response to both smooth and bold en-
vironmental changes; ii) the diffusion component makes the CDS particularly
effective against smooth changes; iii) local improvement is a key component to
accomplish reconfiguration if a sudden event where to appear; and iv) the speed
of the search and adoption of configurations are indeed affected by the dimen-
sions and frontiers of the events.

4.4 Fault Resilience

The experimental results so far have shown that CDS allows a collective of
sensors to successfully (re)configure themselves over uncharted environments.
However, our experiments ignored that hazardous conditions are frequently a
reason why such environments are uncharted. Thus, sensors may be more prone
to failures, e.g because of the deployment impact (sensors may be thrown from
an helicopter), fire or extreme heat and animal or vehicular accidents [13]. There-
fore, in this section we show the fault-resilience capabilities of the CDS.
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Failure Working sensors in the Best Configuration
Probability Event 3 Event 1 Event 2 Event 4

None 98.54 % / 291 99.42 % / 540 98.28 % / 535 98.47 % / 133
Medium 96.66 % / 236 99.54 % / 429 97.57 % / 428 94.03 % / 106

High 85.84 % / 147 84.29 % / 270 91.87 % / 271 62.43 % / 66
Very High 19.64 % / 87 22.05 % / 165 19.74 % / 159 19.37 % / 39

Table 1. Percentage of working sensors when failures on reception.

Failure probability Event 3 Event 1 Event 2 Event 4
None 52 54 46 70

Medium 79 79 66 148
High 321 347 154 >350

Table 2. Communication cycles needed for different reception failure probabilities.

One could naively assume that the worst failure case would be if some sen-
sors cease to function completely. Nonetheless, this type of failure is meaningless
for CDS, since it is a collective approach that relies on the existence of multi-
ple sensors. The actual worst failure cases are malfunctioning reception and/or
malfunctioning sensing (measuring). The former, mainly refers to a lack of capa-
bility in receiving communications from other sensors, whereas the latter refers
to measuring errors resulting from either damaged or badly calibrated equip-
ment. Therefore, we can say that the CDS is fault resilient if it is capable of
dealing with such kind of (worst case scenario) failures. To that end we designed
two sets of failure experiments to evaluate the CDS: a malfunctioning reception
scenario; and a malfunctioning reception and sensing scenario.

Malfunctioning Reception These experiments model a scenario where during
the initial deployment some sensors (with probability pfailure) become incapable
of receiving communications, thus making them incapable of actually adopting
their proper configuration. However, since they are still capable of transmitting
they will constantly send useless communications (their initial random config-
uration) to their neighboring sensors. We ran experiments where the failure
probability was medium (∼ 20% of the sensors fail), high medium (∼ 50% of
the sensors fail) and very high (∼ 70% of the sensors fail). Table 1 shows the
percentage of the functioning sensors that found the best configuration for their
event. Observe that even when around 20% of the sensors fail, almost all of
the remaining functional ones are able to find and adopt the best configuration.
However, as the number of sensors that fail increases the number of sensors that
can establish the best configuration decreases. For instance, in the unrealistic
case of 70% failure probability, very few of the remaining functional sensors can
establish their needed configuration. This is to be expected since the number of
failing sensors sending useless configurations is very high. Moreover, from the
event 4 results we can once again observe that the size of the event (specifically
the number of sensors in the event) can affect the CDS. Nevertheless, overall the
level of resilience shown by the CDS for this type of failure is very high.

Regarding how failure affects the convergence time, table 2 shows the number
of communication cycles needed so that 90% of the sensors establish the best
configuration. As expected, the higher the failure probability the more commu-
nication cycles that are needed.
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Failure Working sensors in the Best Configuration
probability Event 3 Event 1 Event 2 Event 4

None 98.54 % / 291 99.42 % / 540 98.28 % / 536 98.47 % / 132
Low 97.68 % / 262 97.81 % / 486 97.81 % / 481 90.33 % / 120

Medium 93.33 % / 235 90.71 % / 429 96.59 % / 428 25.13 % / 106
High 03.43 % / 202 11.90 % / 378 04.26 % / 375 05.57 % / 93

Table 3. Percentage of working sensors when failures on sensing and reception.

Failure probability Event 3 Event 1 Event 2 Event 4
none 52 54 46 70
low 92 103 89 291

medium 266 299 215 0

Table 4. Convergence time when failures on sensing and reception.

Malfunctioning Sensing and Reception Next we model a more extreme
failure situation. Besides being incapable of receiving incoming communications,
failing sensors also suffer from sensing errors. Moreover, for our experiments we
specifically model the worst kind of sensing error. That is, that a failing sensor
will always valuate its configuration as the best, regardless of its actual use-
fulness. In other words, these sensors will constantly mislead their non-failing
neighbors by broadcasting their configurations as if it were the best. The exper-
iments were ran with a duration of 400 communication cycles and the following
failure probabilities where employed: low (∼ 10% of the sensors fail), medium
(∼ 20% of the sensors fail) and high (∼ 30% of the sensors fail). Notice that
these probabilities are lower that those in the previous section because this type
of failure is considerably worst than the one employed there.

We observe from table 3 that the CDS has a good resilience against a failure
probability of 10%. For almost all events more than 97% of the sensors reach
their best configurations, and it is only event 4 (the event with the smallest
region) the one that reaches just 90%. Furthermore, sensors sensing event 4 are
those that suffer the most when the failure rate increases. This is not surprising
since its low number of sensors makes the non-failing sensors more prone to
succumb to the misleading configurations broadcasted from the failing sensors.
Nevertheless, the resilience shown by the CDS for the other event regions is very
good (∼ 90 %), specially for this kind of failure.

As for the convergence time (see table 4) it is not surprising to observe that
more communication cycles are needed for this type of failure. However, the
number of cycles is still low enough to make the CDS practical (in particular
when compared to an individual search). Overall, the experiments show that the
collective diffusion search mechanism has a considerable good resilience against
sensor failures. These results are encouraging since failures are more prone to
occur in uncharted environments.

5 Conclusions

In this paper we presented collective diffusion search (CDS) as a low overhead
distributed algorithm that empowers sensors in a sensor network to collectively
find the configurations needed to monitor the events occurring in an uncharted
environment. Moreover, our empirical experiments showed that through this

Self-Conguring Sensors for Uncharted Environments

CoopMAS 2011 85



algorithm sensors not only are capable of configuring themselves, they can also
reconfigure themselves in response to various levels of dynamic changes in the
events. Furthermore, our results indicate that CDS is quite efficient energy-
wise since the number of message transmissions required by the sensors’ self-
configuration is quite low. Additionally, the CDS has shown to be considerably
resilient against sensors failures. These are all highly desirable properties for any
sensor’s algorithm.

Finally, even though CDS accomplished its purpose in all of our experimen-
tal scenarios, we observed that the number of sensors, and the dimensions and
locations (frontiers) of the event affect the speed of the sensors’ re-configurations.
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Coalitional Voting Manipulation: A
Game-Theoretic Perspective

Yoram Bachrach, Edith Elkind, Piotr Faliszewski

Abstract

The computational social choice literature has successfully studied the com-
plexity of manipulation in various voting systems. However, the existing models
of coalitional manipulation view the manipulating coalition as an exogenous in-
put, ignoring the question of the coalition formation process. While such analysis
is useful as a first approximation, a richer framework is required to model voting
manipulation in the real world more accurately, and, in particular, to explain how a
manipulating coalition arises and chooses its action. In this paper, we apply tools
from cooperative game theory to develop a model that considers the coalition for-
mation process and determines which coalitions are likely to form and what actions
they are likely to take. We explore the computational complexity of several stan-
dard coalitional game theory solution concepts in our setting, and investigate the
relationship between our model and the classic coalitional manipulation problem
as well as the now-standard bribery model.

1 Introduction

Voting is a standard method of preference aggregation in multi-agent environments. It
allows the agents (voters) to make joint decisions by selecting the most suitable alterna-
tive from a given set. However, in settings where voters are selfish and aim to optimize
their individual utility, voting suffers from a serious problem: essentially all voting
rules are manipulable, i.e., a voter may benefit from misrepresenting her preferences
over the alternatives [Gibbard1973, Satterthwaite1975]. Consequently, classifying vot-
ing rules according to their resistance to manipulation has been an active research topic
in the last decade (see [Faliszewski and Procaccia2010] for an overview)

While the possibility of manipulation by a single voter presents a grave concern
from a theoretical perspective, in real-life elections this issue does not usually play
a significant role: typically, the outcome of a popular vote is not close enough to be
influenced by a single voter. Indeed, a more significant problem is that of coalitional
manipulation, where a group of voters coordinates their actions in order to affect the
election outcome. The problem of coalitional manipulation was first explicitly intro-
duced by [Conitzeret al.2007], where the authors also initiated its analysis from the
computational perspective. Since then, a number of results on the computational com-
plexity of coalitional manipulation for a variety of voting rules have been obtained (see
the Related Work section below).
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However, the model of coalitional manipulation proposed in [Conitzeret al.2007]
abstracts away some of the issues that are crucial for realistic modeling of coalitional
manipulation scenarios. Specifically, this model assumes that the set of all voters is
partitioned into two groups: the honest voters and the manipulators. The honest voters
have preferences over the candidates, while the manipulators are single-minded: they
simply want to get a specific candidate elected. Thus, the set of manipulators is anex-
ogenousvariable, given as a part of the input. This definition does notexplainhow the
manipulating coalition forms or how it decides which candidate to promote. Arguably,
this provides an overly simplistic view of reality: it is natural to expect that the would-
be manipulators start out by having preferences over the entire set of candidates, but
then decide to cooperate with each other, as they are not satisfied with the outcome of
truthful voting.

Against this background, our goal in this paper is to provide anendogenousmodel
of coalitional manipulation that is based on coalitional game theory. We assume that all
agents have preferences over the set of candidates; we make the standard assumption
that these preferences are common knowledge. In addition, a subset of the agents are
strategic and would consider forming a manipulating coalition if they can profit by do-
ing so. Given this setup, each voting rule induces a coalitional game, where the players
are the strategic agents (we will refer to them ascolluders), and the set of outcomes
that are feasible for a coalition is determined by the set of candidates that the players in
that coalition can turn into election winners. We consider atransferable utilitymodel,
where the colluders have comparable utilities (given in a “common currency”) for each
candidate and that they can commit to making payments to each other.

We study several natural computational problems regarding the coalitional game
induced by the voting domain, such as finding the optimal action a coalition can take,
identifying coalitions whose optimal action is to support a certain candidate, calculat-
ing a player’s power in the game and testing whether an outcome is in the core. While
exploring these issues, we also examine the relation between our model and the classic
coalitional manipulation model and the voting bribery model [Faliszewskiet al.2009].
Our contributions fall into two main categories. First, we introduce a cooperative game-
theoretic model of voting manipulation, and study the complexity of natural solution
concepts in this model. Second, and on a more fundamental level, even though our
work is motivated by a critique of the standard framework of voting manipulation, we
show that many classic computational social choice results have natural interpretations
in our game-theoretic model. For example, results on the complexity of coalitional
manipulation—as defined in [Conitzeret al.2007]—translate into results on the com-
plexity of computing coalition values, and results on the complexity of bribery—as
defined in [Faliszewskiet al.2009]—translate into, e.g., results on the complexity of
testing whether a given coalition is stable. We believe that our model is a useful for-
malism that captures many aspects of coalition formation in voting.

Related work The complexity of coalitional manipulation, as defined in [Conitzeret al.2007],
received a lot of attention in the recent literature (see, e.g., [Hemaspaandra and Hemaspaandra2007,
Faliszewskiet al.2010, Xiaet al.2009, Walsh2009, Xiaet al.2010]; a more exhaustive
list is provided in [Faliszewski and Procaccia2010]). However, none of these papers
discusses the issue of manipulating coalition formation. A recently proposed model
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of safe strategic voting [Slinko and White2008] addresses this issue using an approach
that is different from ours: specifically, under this model a single voter announces a
manipulative vote, and may be followed by other voters with the same preferences (see
also [Hazon and Elkind2010] for the algorithmic analysis and extensions of the model
of [Slinko and White2008]). While the approach of [Slinko and White2008] is more
suitable when it is difficult for the manipulators to coordinate, our model is more ap-
propriate when coordination is not an issue; thus, the two approaches complement each
other. There is also a number of very recent papers that analyze strategic behavior in
voting using the tools ofnon-cooperativegame theory (see [Desmedt and Elkind2010,
Xia and Conitzer2010, Meiret al.2010] and the references therein).

Organization of the paper The paper is organized as follows. Section 2 provides
background on (computational) social choice and coalitional game theory. In Section 3
we formally introduce our model. Section 4 focuses on the problem of computing
coalitional values. In Section 5 we study the complexity of testing if there is a ma-
nipulating coalition supporting a given candidate. Section 6 considers players’ power
in the game, and, in particular, computing the Shapley values. Section 7 investigates
coalitional stability. We conclude in Section 8. We omit most proof due to space con-
straints.

2 Preliminaries

We writeN = {0, 1, 2, . . . }, and given a vectorx ∈ Rn and a setS ⊆ {1, . . . , n}, we
setx(S) =

∑
i∈S xi.

Voting. An electionE = (C, V,P) is given by a setC = {c1, . . . , cm} of candidates,
a setV = {1, . . . , n} of voters, and apreference profileP = (P1, . . . , Pn), where each
Pi, i ∈ V , is a linear order overC. The orderPi represents the preferences of thei-th
voter; for readability, we sometimes write�i instead ofPi. We denote the set of all
linear orders overC by L(C); thus, for any electionE = (C, V,P) with |V | = n we
haveP ∈ L(C)n. For anyU ⊆ V , we writePU = (Pi)i∈U andP−U = (Pi)i 6∈U ; we
haveP = (PU ,P−U ).

A voting ruleR is a mapping that given an electionE = (C, V,P) outputs a candi-
datec = R(E), which is called thewinnerofE. When the setsC andV are clear from
the context, we will sometimes omit them from the notation and writeR(P) instead of
R(E). Note that we require that each election has a unique winner. Many classic voting
rules are, in fact, voting correspondences, i.e., they may output multiple winners. We
assume that whenever this is the case, the resulting tie is broken lexicographically. We
restrict our attention to voting rules with a poly-time winner determination algorithm.

Manipulation and Bribery. Two well-studied forms of dishonest behavior in elections
are manipulation, i.e., cheating by voters, andbribery, i.e., cheating by an external
party that wants to influence the outcome of the election. Below, we define the variants
of these problems that are relevant to our work, namely,coalitional manipulationand
priced bribery.

Definition 2.1 ([Conitzer et al.2007]). For a voting ruleR, an instanceI = (E,S, c)
ofR-COALITIONAL MANIPULATION problem is given by an electionE = (C, V,P),
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a set ofmanipulatorsS, S ∩ V = ∅, and the manipulators’ preferred candidatec ∈
C. It is a “yes”-instance if there is a vectorPS = (Pi)i∈S ∈ (L(C))|S| such that
R(P,PS) = c; otherwise, it is a “no”-instance.

Observe that in the traditional definition of coalitional manipulation the manipu-
lators, unlike honest voters, do not have preferences over the candidates: they simply
want to get a particular candidate elected. This definition is convenient because it elim-
inates the problem of deciding which candidates the manipulators should support.

Definition 2.2 ([Faliszewskiet al.2009]). For a voting ruleR, an instanceI = (E,b, B, c)
ofR-$BRIBERY problem is given by an electionE = (C, V,P) with |V | = n, a vector
of pricesb = (b1, . . . , bn) ∈ Nn, a budgetB ∈ N, and the briber’s preferred candi-
datec ∈ C. It is a “yes”-instance if there is a vectorP ′ = (P ′

1, . . . , P
′
n) overC and a

set of votersS such thatPi = P ′
i for i 6∈ S, R(P ′) = c, andb(S) ≤ B; otherwise, it

is a “no”-instance.

We will also consider settings with weighted voters, where each voteri ∈ V has
a non-negative integer weightwi; we denote the weight vector byw = (w1, . . . , wn).
To apply a voting ruleR to a weighted election, we replace each voteri with wi voters
whose preferences are identical to those ofi. The definitions of coalitional manip-
ulation and $bribery can be adapted to this setting in a straightforward manner; in
particular, when a voter of weightwi is bribed or participates in a manipulation, we
require that allwi “copies” of this voter vote in the same way.

Computational Complexity. We assume familiarity with basic notions of computa-
tional complexity, such as polynomial-time algorithms and classes NP and coNP. A
somewhat less standard notion is that ofstrongNP-hardness: a problem is said to be
strongly NP-hard if it remains NP-hard even if all numbers in the input (such as, e.g.,
bribery prices) are given in unary. A related notion is that of apseudopolynomialalgo-
rithm: an algorithm is said to be pseudopolynomial if its running time is polynomial in
the numeric value of the input.

Coalitional Games. Coalitional games model settings where players form coalitions
and derive benefits from collaboration. We assumetransferable utilitymodel, that is,
the members of a coalition can freely distribute the benefits they obtain by working
together. It is convenient to think of these benefits as monetary. Formally, a coalitional
gameG = (N, v) is given by a set ofplayersN = {1, . . . , |N |} and a characteristic
function v : 2N → R+ ∪ {0}, which for eachcoalition of playersS ⊆ N outputs
the total amount of money that the players inS can earn by working together. It is
standard to normalize the characteristic function by requiringv(∅) = 0. A game is
calledmonotoneif v(S) ≤ v(T ) for anyS, T ⊆ N such thatS ⊆ T . A playeri ∈ N
is called adummyif v(S) = v(S \ {i}) for all S ⊆ N .

An outcomeof a gameG is a vectorx = (x1, . . . , x|N |) that satisfiesxi ≥ 0 for all
i ∈ N andx(N) = v(N). An outcomex is said to bestableif x(S) ≥ v(S) for any
S ⊆ N ; the set of all stable outcomes of a game is called thecore.

Another useful solution concept is that of Shapley value, which measures players’
average marginal contributions in the game. Given a set of playersN , by Π(N) we
mean the set of all permutations ofN and for a permutationπ ∈ Π(N) we writeNπ

i
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to mean the set of players precedingi with respect to permutationπ (not includingi).
Shapley value of playeri in gameG = (N, v) is defined as

φi(G) =
1

|N |!
∑

π∈Π(N)

(v(Nπ
i ∪ {i})− v(Nπ

i )) .

3 Voting Manipulation Games

We consider the scenario where in a given electionE = (C, V,P) a subset of voters
M ⊆ V have an established communication channel and can agree to act jointly if this
can be beneficial for all of them. The two most important issues here are (1) whether
the players in a group have a course of action that is more beneficial for them than
truthful voting, and (2) whether the players can agree on such a course of action so that
no subgroup of players can benefit by deviating from it.

To formally model this scenario, we need to define what actions are considered
feasible for a coalition and how the players outside of the coalition are expected to
behave.

Definition 3.1. Given an electionE = (C, V,P), a setM ⊆ V and a voting rule
R, we say that a candidatec ∈ C is feasiblefor a coalition S ⊆ M if there is a
preference profileP ′

S such thatR(P ′
S ,P−S) = c. We denote the set of all candidates

that are feasible forS byF (S). When the voters inS vote according to a profileP ′
S

andR(P ′
S ,P−S) = c, we say thatS manipulates in favor ofc, or supportsc.

Note that the winner ofE is feasible for any coalitionS ⊆ M , i.e., we have
R(E) ∈ F (S). Also, we emphasize that when the voters inS are trying to decide
which candidates are feasible for them, they assume that all other voters (including the
remaining voters inM \ S) vote truthfully. We believe that this assumption is appro-
priate for the following reasons. First, the issue that we are most interested in in this
paper is the process of forming a manipulating coalition. We view this problem from
the perspective of a voter that wants to initiate a manipulation. His primary concern is
whether he can find partners who are willing to engage in a mutually beneficial collab-
oration with him. Once he has found such a group of like-minded voters, it is plausible
that other potential manipulators—who were not invited to join the coalition—will not
notice that a manipulating coalition has been formed, or will decide not to react, e.g.,
because, unless they coordinate among themselves, the consequences of such a reac-
tion are uncertain. One could, of course, posit that the remaining potential manipulators
will respond by forming one or more manipulating coalitions among themselves, and
try to counteract the actions of the original manipulator. However, to study the resulting
model, one needs to resort to non-cooperative game theory, and non-cooperative game
theory models of voting appear to be hard to analyze in all but a handful of settings
(see, e.g., [Desmedt and Elkind2010, Xia and Conitzer2010, Meiret al.2010]). An ad-
versarial model, where the players in a coalition assume the worst about the actions of
other players, suffers from some difficulties of its own. Thus, we decided to employ
the current model because it gives a good approximation of the issues we want to focus
on in this paper.
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We consider the case where colluders, i.e., members of the setM in Definition 3.1,
have cardinal utilities for all candidates. and can make side payments to each other.
Formally, any voteri ∈ M has autility functionui : C → R+ ∪ {0}, which satisfies
ui(c) ≥ ui(c

′) if and only if c �i c
′. This definition can be extended to coalitions

by settinguS(c) =
∑

i∈S ui(c) for anyS ⊆ M and anyc ∈ C. Note that we allow
agents to assign the same utility to two different candidates. Indeed, in many voting
scenarios a voter may be indifferent between some of the candidates. While the voting
rule usually requires voters to provide total orders, there is no need to impose such
requirements on utility functions.

Under these assumptions, a coalitionS ⊆ M can benefit from manipulating in
favor of a candidatec ∈ C if and only if uS(c) > uS(R(E)). Indeed, if this holds,
the voters inS who preferc to R(E) can compensate the other voters inS by making
side payments to them. Thus, a manipulating coalition should aim to elect a feasible
candidate that maximizes its total utility. Formally, for anyS ⊆M we set

opt(S) = {c ∈ F (S) | uS(c) ≥ uS(c
′) for all c′ ∈ F (S)}.

Since we haveR(E) ∈ F (S) for anyS ⊆ M , it follows thatopt(S) 6= ∅ for any
S ⊆ M . In what follows, we assume that if|opt(S)| > 1, then the manipulators in
S agree on a unique alternative inS using some commonly known tie-breaking rule;
therefore, abusing notation, we will treatopt(S) as an element ofC (rather than as an
element of2C).

We are now ready to define the (transferable utility) coalitional game that can be
associated with this setting.

Definition 3.2 (Voting Manipulation Game). Given an electionE = (C, V,P), a
setM ⊆ V , a vectoru = (ui)i∈M of utility functions and a voting ruleR, a voting
manipulation gameR-GE,M,u is a coalitional game with a set of playersM and a
characteristic functionv given byv(S) = uS(opt(S))− uS(R(E)) for anyS ⊆M .

For weighted voters, the description of the game needs to be augmented with a
weight vectorw = (w1, . . . , w|V |); we denote the resulting game byR-GE,M,u,w.

Informally, the value of a coalitionS is the maximum joint improvement over the
status quothat the member ofS can achieve, assuming that all other voters vote truth-
fully. Note that we do not normalize the utility functions. Indeed, some voters may
be essentially indifferent to the election outcome, whereas others have strong prefer-
ences over outcomes. For computational reasons, we rescale all utilities so that they
are nonnegative integers.

4 Computing Coalition Values

As argued above, we always haveR(E) ∈ F (S), and thereforev(S) ≥ 0 for any
S ⊆ M . However, a voting manipulation game is not necessarily monotone. For
example, it may happen thatopt(S) = opt(S ∪ {i}) = c for somei ∈ M \ S, but
R(E) �i c. That is, the new voteri does not share the coalition’s goal but is too
insignificant to affect the action chosen by the coalition. Of course, this does not mean
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thati is unwilling to take part in the manipulation: the monetary transfer he gets from
other manipulators induces him to participate. However, the remaining players inS
may be unwilling to accept him: indeed, they can manipulate in favor ofc even if i
does not join, and they would have to make transfers toi to keep him happy. Thus,
the grand coalitionM does not necessarily have a higher value than its proper subsets.
Therefore, it is natural to ask if we can identify coalitions with the highest value. An
even more basic question is whether we can compute the value of a given coalition. It
turns out that the complexity of these questions is closely related to the complexity of,
respectively, $bribery and coalitional manipulation for the underlying voting rule.

Theorem 4.1.LetR be a voting rule. There exists a poly-time algorithm for computing
the characteristic function of the voting manipulation gameR-GE,M,u if and only if
R-COALITIONAL MANIPULATION is poly-time solvable.

Proof sketch.For the “if” direction, given a coalitionS, we check, for eachc ∈ C,
if S can makec the winner, and choose the best feasible candidate. For the “only if”
direction, we setui(c) = 1, ui(x) = 0 for x ∈ C \ {c} for all i ∈ M , wherec is the
manipulator’s preferred candidate.

Theorem 4.2. Let R be a voting rule. IfR-$BRIBERY is poly-time solvable, then
there exists a poly-time algorithm that given a voting manipulation gameR-GE,M,u

computes a coalitionS such thatv(S) ≥ v(T ) for anyT ⊆M .

Proof sketch.Given a voting manipulation gameR-GE,M,u with E = (C, V,P), for
eachc ∈ C we construct an instanceIc = (E,bc, Bc, c) of R-$BRIBERY as follows.
We setw = R(E), U = max{ui(a) | i ∈ M,a ∈ C}. For eachi ∈ V , we set
bci = (n+ 1)U . Further, we setMc = {i ∈ M | ui(c) > ui(w)} and for eachi ∈ Mc

we setbci = 0. Finally, for eachi ∈ Qc = M \Mc we setbci = ui(w) − ui(c), and
Bc =

∑
i∈Mc

(ui(c)− ui(w)).
If Ic is a “no”-instance ofR-$BRIBERY, we discard this value ofc. Otherwise, we

use binary search to identify the smallest valueB̂c such that̂Ic = (E,bc, B̂c, c) is still
a “yes”-instance ofR-$BRIBERY. Finally, we pick the candidatec that corresponds
to the maximum value ofuMc(c)− uMc(w)− B̂c, over all non-discarded candidates,
and letS be the coalition that consists of all voters inMc together with all voters that
receive non-zero bribes in̂Ic. Observe that we havev(S) ≥ uMc

(c)− uMc
(w)− B̂c.

Clearly, our algorithm runs in polynomial time. To see thatS is a coalition with the
maximum value of the characteristic function, observe that our bribery instances can
be interpreted as follows: the colluders that benefit from gettingc elected pool their
profits from makingc the winner and use them to bribe other colluders; the cheapest
successful bribery corresponds to a coalition that minimizes the disutility of the col-
luders who preferw to c, and therefore maximizes the total utility, among all coalitions
that manipulate in favor ofc. We omit the formal proof due to space constraints.

5 Manipulating in Favor of a Given Candidate

From a candidate’s perspective, a natural question is whether there exists a coalition
that is willing to manipulate in her favor. One might think that the answer to this
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question is given by the proof of Theorem 4.2: indeed, in this proof we determine, for
each candidatec, if there is a coalition that can profit from manipulating in favor of
c. However, this does not necessarily answer the question above: it may happen that
any coalition thatcan manipulate in favor ofc would in fact prefer to manipulate in
favor of some other candidatea. Indeed, it turns out that finding a coalitionS such that
opt(S) = c for a given candidatec is hard even for Plurality, and even if the number
of candidates is bounded by a small constant.

Theorem 5.1.Given a voting manipulation gamePlurality-GE,M,u withE = (C, V,P)
and a candidatec ∈ C, it is NP-complete to decide if there exists a setS ⊆ M such
thatopt(S) = c. The hardness result holds even if|C| = 5.

The proof of Theorem 5.1 proceeds by a reduction from the classic PARTITION

problem, and uses the fact that the players’ utilities are given in binary. However, if the
number of candidates is non-constant, finding a coalition that manipulates in favor of a
given candidate is hard even if all utilities are given in unary.

Theorem 5.2.Given a voting manipulation gamePlurality-GE,M,u withE = (C, V,P)
and a candidatec ∈ C, deciding whether there exists a setS ⊆M such thatopt(S) =
c is stronglyNP-complete.

Under Plurality—as well as under many other rules—if both the number of can-
didates is bounded by a constant and the utilities are given in unary then finding a
coalition that is willing to manipulate in favor of a particular candidate (or, determin-
ing if one exists) is easy. We postpone a formal statement of this fact till the next
section, as it is closely related to the results presented there.

6 Computing Players’ Power

We now explore the role of individual players in voting manipulation games. We first
consider the complexity of determining whether a player is a dummy. It turns out that
this problem is hard even for Plurality if the number of candidates is constant, or if the
utilities are given in unary (but not both). The following two results follow from the
proofs of Theorems 5.1 and 5.2, respectively.

Theorem 6.1.Given a voting manipulation gamePlurality-GE,M,u withE = (C, V,P)
and a playerj ∈M , it is coNP-complete to decide whetherj is a dummy inPlurality-
GE,M,u. The hardness result holds even if|C| = 5.

Theorem 6.2.Given a voting manipulation gamePlurality-GE,M,u withE = (C, V,P)
and a utility vector(ui)i∈M , and a playerj ∈ M , it is stronglycoNP-complete to de-
cide whetherj is a dummy inPlurality-GE,M,u.

However, for a constant number of candidates we can check if a player is a dummy
in pseudopolynomial time. Moreover, we can extend this result to the problem of
computing a player’s Shapley value (observe that since our game is not monotone, a
player may have Shapley value of0 without being a dummy).
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Theorem 6.3. Given a voting manipulation gameR-GE,M,u with E = (C, V,P)
and a playeri ∈ M , we can test ifi is a dummy and computei’s Shapley value in
pseudopolynomial time as long as|C| is bounded by a constant.

This algorithm can be adapted to check if there exists a coalition that supports a
given candidate.

Corollary 6.4. Given a voting manipulation gameR-GE,M,u withE = (C, V,P) and
a candidatec ∈ C, we can test if there exists a coalitionS such thatopt(S) = c and if
so, to compute this coalition in pseudopolynomial time as long as|C| is bounded by a
constant.

We remark that if a player is a dummy in a voting manipulation game, it does not
mean that he does not influence the outcome of the election. Indeed, by adding a player
to a coalition we can change the identity of the candidate promoted by this coalition,
without changing its total payoff.

Example 6.5. Suppose that our voting rule is Plurality combined with the lexico-
graphic tie-breaking rule,C = {a, b, c}, the honest voters grant1 point toa, 2 points
to b, and2 points toc, M = {1, 2}. Suppose thatu1(a) = 3, u1(b) = 2, u1(c) = 0
andu2(c) = 2, u2(a) = 1, u2(b) = 0, and hencea �1 b �1 c, c �2 a �2 b. Under
truthful voting, c wins. On her own, player1 cannot change the election outcome to
a, but she can change it tob, so we havev({1}) = u1(b) − u1(c) = 2. On the other
hand,1 and2 together can change the outcome toa. However, since2 prefersc to a, he
would have to be compensated. Indeed, we haveuM (a) = 4, uM (b) = 2, uM (c) = 2,
soopt({1, 2}) = a andv({1, 2}) = 2 = v({1}). Also, it is clear thatv({2}) = 0,
since2 does not want to change the election outcome. Thus, player2 is a dummy in
our voting manipulation game, yet when he joins a coalition, the coalition changes its
behavior.

Conversely, a player can change the value of a coalition without changing the can-
didate that this coalition supports.

Example 6.6.Consider again Plurality with lexicographic tie-breaking andC = {a, b, c}.
Suppose there are10 honest voters who vote fora and 8 honest voters who vote
for c, as well as four manipulators{1, 2, 3, 4} who strictly preferb to c to a. Set
S = {1, 2, 3}. We haveopt(S) = c, opt(S ∪ {4}) = c, and hencev(S ∪ {4}) =
v(S) + u4(c) − u4(a) > v(S), i.e., 4 is not a dummy. However,4 does not have to
change his vote when he joins the manipulating coalition, and neither do the voters in
S. That is,4 simply free-rides onS.

These two examples motivate the following definition.

Definition 6.7. We say that a playeri is powerlessin a voting manipulation game
R-GE,M,u if for anyS ⊆M \ {i} we haveopt(S) = opt(S ∪ {i}).

Intuitively, a player is powerless if whenever he joins a coalition neither himself nor
the players already in the coalition can benefit from changing their vote. The discussion
above illustrates that a player can be a dummy without being powerless (Example 6.5)
and vice versa (Example 6.6). However, it turns out that checking whether a player is
powerless has the same complexity as checking whether it is a dummy.
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Corollary 6.8. Given a voting manipulation gamePlurality-GE,M,u withE = (C, V,P),
it is coNP-complete to decide if a player is powerless. This holds even if|C| = 5 or
if all utilities are given in unary. However, this problem is pseudopolynomial time-
solvable if|C| is bounded by a constant.

7 Coalitional Stability

From game-theoretic perspective, a very important question is whether the collabora-
tion among the colluders can be sustained, i.e., whether the core of the corresponding
voting manipulation game is non-empty. We will now show that this problem is easy
whenever $bribery is easy.

Theorem 7.1. If R-$BRIBERY is in P, then there exists a poly-time algorithm that
given a gameR-GE,M,u with E = (C, V,P) and a vectorx decides whetherx is in
the core ofR-GE,M,u.

Moreover, wheneverR-$BRIBERY is in P, we can check if the core ofR-GE,M,u is
non-empty by formulating the core nonemptiness problem as a linear program and us-
ing the algorithm from Theorem 7.1 as a separation oracle (see, e.g., [Elkindet al.2009]
for an exposition of this technique).

It is not clear if the converse of Theorem 7.1 also holds. However, we will now
present a construction that allows us to reduce a wide class ofR-$BRIBERY instances
to testing nonmembership of an imputationx in the core of anR-GE,M,u voting game.
Whenever the bribery problem isNP-hard, our construction may be used to proveNP-
hardness of testing core nonmembership.

We start with anR-$BRIBERY instanceI = (E,b, B, c), whereE = (C, V,P)
and where we assume the following:

(a) At least one voter has bribery cost0.

(b) There are at least two candidates andw = R(E) 6= c.

(c) The sum of the bribery prices is greater thanB.

We form a voting manipulation gameR-GE,M,u, whereM = V (we rename voters
so thatM = {1, . . . , n+1} and so that the bribery price of votern+1 is 0). We setu
and the imputationx as follows. For each voteri ∈ M \ {n + 1} we setui(w) = bi,
xi = 0, andui(d) = 0 for each candidated ∈ C \{w}. Also, we setun+1(c) = B+1,
xn+1 = 0 andun+1(d) = 0 for eachd ∈ C \ {c}. We see that under truthful voting
uM (w) = b(M) and thatv(M) = 0 (recall that by our assumption,b(M) > B). We
also see thatx is unstable if and only if there is a coalitionS such thatc ∈ F (S) and
uS ≤ B. Such a coalition exists if and only if our inputR-$BRIBERY instance is a
“yes”-instance.

The above construction is particularly useful ifR-$BRIBERY is NP-hard, and the
proof of its NP-hardness can easily be adapted to output instances that satisfy our
requirements. In particular, our requirements are satisfied if theNP-hardness ofR-
$BRIBERY is derived by combining Theorem 4.6 of [Faliszewskiet al.2009] (a general
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reduction from the coalitional manipulation problem to the $bribery problem) and the
fact thatR-COALITIONAL MANIPULATION is NP-hard (even if there are at least two
truthful voters). Thus, we have the following corollary.

Corollary 7.2. Suppose thatR-COALITIONAL MANIPULATION is NP-hard even if
there are at least two nonmanipulators. Then given a gameR-GE,M,u and an imputa-
tion x it is NP-hard to decide ifx is not in the core ofR-GE,M,u.

We stress that our construction is more general and can be used, e.g., if either we
do not have a complexity result for coalitional manipulation but we do have one for
$bribery, or when coalitional manipulation is easy yet $bribery isNP-hard. As an
example, we show that testing core nonmembership for an imputation isNP-hard for
weighted Plurality.

Theorem 7.3. Given a game Plurality-GE,Mu,w withE = (C, V,P,w) and a vector
x, it is NP-hard to check whetherx is not in the core of Plurality-GE,Mu,w.

8 Conclusion

We have proposed a model for collusion in voting settings that takes into account the
process of forming the manipulative coalition. Our model is based on cooperative game
theory and predicts which coalitions and agreements are likely to occur in such set-
tings. In addition, our research shows that computational problems previously studied
in the context of voting manipulation, COALITIONAL MANIPULATION and $BRIBERY,
which are non-game-theoretic in nature, nevertheless constitute very important build-
ing blocks in the cooperative game-theoretic study of election manipulation.

Several questions remain open for future research. First, a key assumption of our
model is that agents have comparable utilities (given in a common currency) and that
they can make monetary transfers.What happens when monetary transfers are not al-
lowed? Second, regarding solution concepts, we focused on the core and the Shapley
value, but other interesting solutions concepts, such as, e.g., theε-core or the nucleolus,
remain to be studied. Finally, it would be interesting to examine the relation between
our model and noncooperative models for voting domains, using solution concepts such
as strong Nash equilibrium.
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The Shapley Value as a Function of the Quota in
Weighted Voting Games

Yair Zick, Alexander Skopalik, and Edith Elkind

School of Physical and Mathematical Sciences
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Abstract. In weighted voting games, each agent has a weight, and a
coalition of players is deemed to be winning if its weight meets or exceeds
the given quota. An agent’s power in such games is usually measured by
her Shapley value, which depends both on the agent’s weight and the
quota. [20] show that one can alter a player’s power significantly by
modifying the quota, and investigate some of the related algorithmic
issues. In this paper, we answer a number of questions that were left
open by [20]: we show that, while deciding whether a quota maximizes
or minimizes an agent’s Shapley value is coNP-hard, finding a quota
that maximizes a player’s Shapley value is easy. Minimizing a player’s
power appears to be more difficult. However, we propose and evaluate a
heuristic for this problem, which takes into account the voter’s ranking
and the overall weight distribution. We also explore a number of other
algorithmic issues related to quota manipulation.

1 Introduction

Collective decision making is a crucial component of multi-agent interaction.
Consequently, assessing the power of individual voters in decision-making bodies
is an important concern in the analysis of multi-agent systems. This issue is often
studied within the framework of weighted voting games, where each player is
associated with a weight; to win, a coalition needs to amass a weight that meets
or exceeds a given threshold, or quota. Usually, the voter’s power in such games is
associated with her Shapley value [18], which in the context of weighted voting
games is also known as the Shapley–Shubik power index [19]. This quantity
depends on both the players’ weights and the quota of the game.

Now, in a weighted voting game, each voter’s weight is determined either by
his contribution to the system (money, shares, etc.) or the size of the electorate
that he represents. In either case, the voters’ weights are usually hard to alter. In
contrast, the quota of the game can easily be modified by the entity in charge of
the decision-making process: for instance, a legislative body may raise the quota
for decisions on certain issues from 51% of all votes to 66%. However, changing
the quota can have a profound effect on players’ power. This phenomenon has
been observed in real-life voting systems [11–13], and recently [20] embarked on
a systematic study of this issue from the algorithmic perspective. Specifically,
[20] show that one can determine in polynomial time if a player’s power can be
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reduced to 0 by changing the quota; however, deciding which of the two given
values of the quota is preferable for a given player is computationally hard.

In this paper, we continue to study the dependence between the players’
power and the quota in weighted voting games. We focus on finding values of
the quota that maximize/minimize the power of a given player. This is perhaps
the most important problem from the perspective of a manipulator who cares
about the impact of a certain agent in a decision-making body; however, it has
not been addressed by the previous work.

First, we show that if arbitrary values of the quota are allowed, a player’s
power can be maximized by setting the quota to that player’s weight. In contrast,
the associated decision problem, i.e., determining whether the current value of
the quota is already optimal for a given player, is computationally hard. Thus, if
the manipulation is costly, it is hard for the manipulator to determine whether
it is worth the effort.

If the goal is to minimize the player’s power rather than to maximize it, then
the respective decision problem remains hard, but the status of the optimization
problem (finding a value of the quota that minimizes the player’s power) is
unclear. However, we identify two values of the quota that are very likely to be
good choices. The first of them is q = 1 (assuming integer weights): when the
quota is small enough, all players have the same power, which is likely to be a bad
deal for larger players. The second candidate is q = w+ 1, where w is the target
player’s weight. This quota is more likely to be harmful for smaller players. We
perform empirical analysis, drawing the players’ weights from uniform, normal,
and Poisson distributions, and show that with high probability one of these
values of the quota minimizes the target player’s power, with q = w + 1 usually
being the right choice for the smaller players and q = 1 being the right choice for
the larger players. We provide a (partial) analytic explanation of these results,
by showing that for the bottom half of the voters (with respect to the weight)
the quota q = w + 1 is strictly worse than q = 1.

While it is hard to determine whether a given value of the quota is opti-
mal/pessimal for a given player, there are interesting special cases of this problem
that admit an efficient algorithm, namely, checking if a given quota maximizes
the power of the smallest player or minimizes the power of the largest player.
Both questions can be reduced to deciding whether all players are equally pow-
erful, and this problem turns out to be polynomial-time solvable.

The rest of the paper is structured as follows. We give a brief overview of
related work in Section 1.1. Section 2 introduces the necessary terminology.
Section 3 provides several examples that illustrate the behavior of the Shapley
value as a function of the quota. Section 4 details the main theoretical results
of our work, and Section 5 complements them by empirical analysis. Section 6
presents our conclusions and suggests directions for future research.
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The Shapley Value as a Function of the Quota in Weighted Voting Games 3

1.1 Related Work

We have already mentioned several papers that are relevant to the topic of our
research, with [20] being the direct precursor of this work. In this section we
survey a number of papers on closely related topics.

The complexity of computing the Shapley–Shubik index is well understood:
[4, 15, 17] show that even deciding whether a player has zero power is hard (and
hence computing the exact value of the index is hard, too). We remark that
these hardness results do not preclude the existence of efficient algorithms for
manipulating the quota: it might be possible to change a player’s power in the
desired direction even without knowing the exact value of his power before and
after the change. Further, there are a number of heuristic and approximation
algorithms for power computation [14, 10, 5, 2, 7, 16]. [1] study a different form
of manipulation in weighted voting games, namely, players splitting their weight
among several identities, or, conversely, merging into a single identity. [6] consider
the complexity of comparing the players’ power across different weighted voting
games. An alternative approach to measuring a player’s power is by means of
the Banzhaf power index [3]. The behavior of this index as a function of the
quota has been studied in [5, 10, 16]; the results of this analysis have been used
in developing approximation algorithms for this index [7].

2 Preliminaries

A weighted voting game G = (w, q) is given by a vector w = (w1, . . . , wn) of
non-negative integer weights and a non-negative integer quota q ∈ Z+. It is
associated with a set of players N = {1, ..., n}, where the i-th player has weight
wi. We order the players so that w1 ≤ w2 ≤ . . . ≤ wn. A subset, or coalition,
S ⊆ N is called winning if w(S) :=

∑
j∈S wj ≥ q, and losing otherwise. We

write v(S) = 1 if S is winning and v(S) = 0 if S is losing. It is usually stipulated
that v(N) = 1, i.e., q ≤ w(N). A player i is called q-pivotal for S ⊆ N \ {i} if
q − wi ≤ w(S) < q, or, equivalently, if v(S) = 0, but v(S ∪ {i}) = 1. When q is
clear from the context, we will simply say that i is pivotal for S. A player i is
called a dummy if he is not pivotal for any coalition, i.e, v(S) = v(S ∪ {i}) for
any S ⊆ N .

Let Π(N) be the set of permutations over N , and let Pi(σ) ⊆ N denote the
set of all predecessors of player i in a permutation σ ∈ Π(N), i.e., Pi(σ) = {j ∈
N | σ(j) < σ(i)}. We say that i is q-pivotal for σ if i is q-pivotal for Pi(σ).
The set of all permutations for which a player i ∈ N is q-pivotal is denoted
by Πi(q). The Shapley value, or Shapley–Shubik power index, [18, 19] of player

i in a game with quota q is φi(q) = |Πi(q)|
n! . This power index has a number of

very attractive properties; it is efficient, i.e.,
∑n
i=1 φi(q) = 1, symmetric, i.e., if

v(A∪{i}) = v(A∪{j}) for all A ⊆ N \{i, j}, then φi(q) = φj(q), and monotone,
i.e., wi ≤ wj implies φi(q) ≤ φj(q).

As we vary the quota q, φi(q) becomes a function from N to [0, 1]. Note,
however, that we require q ≤ w(N) to ensure v(N) = 1. Also, if q ≤ 0, all
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coalitions are winning and hence by symmetry and efficiency we have φi(q) = 1/n
for all i = 1, . . . , n. Thus, we limit our analysis to the values of q in the interval
[1, w(N)] ∩ N. Note also that there is no loss of generality is assuming q ∈ N:
while φi(q) is well-defined for any real q ∈ [1, w(N)], all players’ weights are
integer, so a game (w, q) with q ∈ R is equivalent to the game (w, bqc). We
set opt(φi) = {q ∈ N | φi(q) ≥ φi(q

′) for all q′ ∈ N} and pess(φi) = {q ∈ N |
φi(q) ≤ φi(q′) for all q′ ∈ N}; these are the sets of quota values that, respectively,
maximize and minimize the power of player i.

3 Examples

We start by providing several examples of weighted voting games, and investigate
the behavior of a given player’s power as a function of the quota in these games.

Example 1. We construct a 20-player game by drawing weights uniformly at
random from [1, 40]; the resulting weight vector is w1 = (1, 2, 4, 5, 16, 17, 20,
21, 21, 23, 24, 24, 27, 28, 28, 33, 33, 36, 36, 40). Figure 1 shows the Shapley
value of player 10 with weight 23 in games of the form (w, q), where q varies
from 1 to w(N). We note several interesting properties of this graph. First, φi(q)
is symmetric; this is a well-known property of the Shapley value, referred to
as self-duality [8]. Second, the graph has two distinct peaks at w10 = 23 and
w(N) − w10 + 1 = 417. This observation is in line with our theoretical results:
Section 4.1 shows that φi(q) always peaks at q = wi. Third, φ10(q) has a global
minimum at q = 24 = w10 + 1; Section 5 demonstrates that q = wi + 1 is often
(though not always) the worst possible value of the quota for player i. Finally,

the graph plateaus at w10/w(N) ≈ 0.052 as the quota goes to w(N)+1
2 ; this

phenomenon has been observed (and explained) in [12, 13].

Example 2. This time, we construct a 20-player game by drawing the players’
weights from the Poisson distribution with mean 30, obtaining weight vector
w2 = (23, 24, 24, 25, 25, 25, 25, 27, 28, 28, 29, 30, 30, 32, 32, 33, 34, 34, 35,
36); we focus on the 2-nd largest player. In this case, we observe a high degree
of fluctuation in the player’s Shapley value.

Example 3. Finally, consider a weight vector of the form 1, 2, . . . , 2n. The graphs
for n = 7 and players with weights 4, 16 and 64 are given in Figure 3. A re-
markable property of this set of weights is the abundance of local minima and
maxima; φ1 has a local maximum at any even quota and a minimum at any odd
quota, and φ4(q) = 0 for q = 16, 32, 48, . . . . This is true in general for weight
vectors of this form.

Proposition 1. If q = 2kr for some r ∈ N, then φk(q) = 0. Further, φk(q) has a
local maximum at q = 2k−1(2r−1), for all r ∈ N such that 2k−1(2r−1) ≤ w(N).

The intuition behind Proposition 1 is that for k to be 2kr-pivotal for a coali-
tion S, it must be the case that 2kr−2k−1 ≤ w(S) < 2kr. But then the (k−1)-st
digit of w(S) is set to 1, i.e., k ∈ S, a contradiction.
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Fig. 1: The Shapley value of player 10 (weight 23) for weight vector w1 (Exam-
ple 1)

Examples 2 and 3 show that φi(q) may be highly non-monotone: thus, if we
are only allowed to change the quota within a given (small) interval, the best
value of the quota is not necessarily at an endpoint of this interval.

4 Theoretical Results

In this section, we provide algorithms and hardness results for a number of
problems related to maximizing or minimizing the power of a given player.

4.1 Maximizing the Shapley Value

Before we formally state the main result of this section, let us prove the following
useful lemma. We define Ti(x) = {σ ∈ Π(N) | w(Pi(σ)) < x} for all x > 0.

Lemma 1. |Ti(a)|+ |Ti(b)| ≥ |Ti(a+ b)| for any a, b ∈ N.

Proof. Without loss of generality, we assume a ≥ b. Set Ti(a, a + b) = {σ ∈
Π(N) | a ≤ w(Pi(σ)) < a + b}; since Ti(a) ⊆ Ti(a + b), we have |Ti(a + b)| −
|Ti(a)| = |Ti(a, a+ b)|. Thus, it suffices to show that |Ti(b)| ≥ |Ti(a, a+ b)|.
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Fig. 2: The Shapley value of player 19 (weight 35) for weight vector w2 (Exam-
ple 2)

We construct a injective mapping ψ : Ti(a, a + b) → Ti(b) as follows. If
σ ∈ Ti(a, a+b) is a permutation of the form σ = (x1, ..., xk, y1, ..., y`, i, z1, ..., zr),

where k is the first index for which
∑k
j=1 w(xj) ≥ a, then we set ψ(σ) =

(y1, . . . , y`, i, x1, . . . , xk, z1, . . . , zr). Note that since i and a are given, ψ is invert-
ible and hence injective. We denote X = {x1, . . . , xk} and Y = {y1, . . . , y`}; it is
possible that Y = ∅, but this does not affect our analysis. Since σ ∈ Ti(a, a+ b),
we have w(X ∪ Y ) < a+ b. However, w(X) ≥ a, so w(Y ) < b. This means that
ψ(σ) ∈ Ti(b). Thus, there exists an injective mapping from Ti(a, a+ b) to Ti(b),
and hence |Ti(b)| ≥ |Ti(a, a+ b)|.

Theorem 1. For any weight vector w, a quota of wi maximizes the Shapley
value of player i; that is, wi ∈ opt(φi).

Proof. We differentiate between the following two cases:

q ≤ wi: For any σ ∈ Πi(q), w(Pi(σ)) < q ≤ wi and w(Pi(σ)) + wi ≥ wi, hence
σ ∈ Πi(wi). Therefore, for all q ≤ wi it holds that Πi(q) ⊆ Πi(wi), and
hence φi(q) ≤ φi(wi).

CoopMAS 2011 104



The Shapley Value as a Function of the Quota in Weighted Voting Games 7

0 32 64 96 128 160 192 224 255
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Quota

S
h
a
p
le

y
–

S
h
u
b
ik

P
o
w

e
r

In
d
e
x

 

 
Weight = 4
Weight = 16
Weight = 64

Fig. 3: The Shapley values of players 3, 5, 7 (weights 4, 16, 64) for weight vector
w3 = (1, 2, . . . , 128) (Example 3)

q > wi: Note that Πi(q) = Ti(q) \ Ti(q − wi) and Πi(wi) = Ti(wi). By Lemma
1 we have |Ti(wi)|+ |Ti(q − wi)| ≥ |Ti(q)|. Thus, we obtain

|Πi(wi)| = |Ti(wi)| ≥ |Ti(q)| − |Ti(q − wi)|
= |Ti(q) \ Ti(q − wi)| = |Πi(q)|,

and hence φi(wi) ≥ φi(q). ut

Theorem 1 provides a simple recipe for the manipulator who favors player i;
note also that by self-duality the manipulator may also use q = w(N)− wi + 1.
However, even if the manipulator has the ability to set the quota wherever it
pleases, such changes might be costly. Thus, she might want to know whether
the current quota is already optimal. Since we already know that wi ∈ opt(φi),
this is equivalent to asking whether φi(q) = φi(wi); we call this decision problem
MaxSV. MaxSV can be viewed as a special case of the Quota problem consid-
ered in [20], where we are given w, i, q, and q′, and the goal is to check whether
φi(q) > φi(q

′). [20] prove that Quota is computationally hard; however, this
does not imply that MaxSV is hard, since in MaxSV one of the candidate quo-
tas is fixed to be wi, which potentially could make MaxSV an easier problem.
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Nevertheless, we can show that MaxSV is hard, too; the proof proceeds by a
reduction from SubsetSum [9], and is omitted due to space constraints.

Theorem 2. MaxSV is coNP-hard.

4.2 Minimizing the Shapley Value

So far we focused on maximizing an agent’s Shapley value. However, the ma-
nipulator may wish to minimize the power of a player by changing the quota.
We first establish that, just as in the case of maximization, the corresponding
decision problem is hard. Specifically, we define the problem MinSV as follows:
given a weighted voting game G = (w, q), and a player i ∈ N , is it the case that
q ∈ pess(φi)? We have the following result (proof omitted).

Theorem 3. MinSV is coNP-hard.

For the rest of this section, we focus on finding a quota in pess(φi). This
task appears to be more challenging than finding a maximizing quota. Indeed,
the graphs in Section 3 suggest that a suitable value of the quota may be q =
wi + 1. However, our experiments (see Section 5) show that for many games
wi + 1 6∈ pess(φi). In particular, it is often the case for relatively large players.
For such players it is often a good solution to set q = 1: this ensures that these
players are no more powerful than smaller players. Indeed, for the largest player,
q = 1 is clearly the worst possible quota, since φn(q) ≥ 1

n for any q ∈ [1, w(N)].
This intuition is consistent with the empirical results of Section 5. However,
this approach only works for above-median players: for below-median players
q = wi + 1 turns out to be strictly better than q = 1.

Theorem 4. If i ≤ n
2 and wi+1 > wi, then φi(wi + 1) < 1

n .

Proof. If player i is pivotal for a set S ⊆ N \ {i}, and the quota is wi + 1,
then S ⊆ {1, . . . , i− 1}. Let us denote by Ak the sets of size k for which player
i is pivotal. For any 1 ≤ k ≤ i − 1, we have |Ak| ≤

(
i−1
k

)
. Note also that

the contribution of a set of size k to the Shapley value of player i equals to
k!(n−k−1)!

n! = 1
n · 1

(n−1
k )

. The total contribution from Ak is at most 1
n ·

(i−1
k )

(n−1
k )

.

Therefore,

φi(wi + 1) ≤ 1

n

i−1∑

k=1

(
i−1
k

)
(
n−1
k

) ≤ 1

n

i−1∑

k=1

(
1

2

)k
<

1

n
.

Theorem 4 shows that if there are at most n
2 − 1 players with weight at most

wi, the quota wi + 1 will always be worse for player i than the quota 1.
As Theorems 3 and 2 show, deciding whether a given quota q is in opt(φi) or

pess(φi) is coNP-hard. However, there are certain values of i for which these prob-
lems become easy. Specifically, consider the problem of checking if q ∈ opt(φ1).
By monotonicity, we have φ1(q) ≤ · · · ≤ φn(q); thus, φ1(q) ≤ 1

n and, moreover,
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φ1(q) = 1
n if and only if φ1(q) = . . . = φn(q), which happens, e.g., if q = 1. Thus,

q ∈ opt(φ1) if and only if φ1(q) = . . . = φn(q). Similarly, q ∈ pess(φn) if and
only if φ1(q) = . . . = φn(q). It turns out that deciding whether all players have
the same Shapley value (or, equivalently, whether φn(q) = φ1(q)) is easy.

Theorem 5. There exists a poly-time algorithm that checks whether φn(q) =
φ1(q).

Algorithm 1: Find-Set(w, q)

for k = 1 to n− 2 do
A← {2, . . . , k + 1}, B ← N\(A ∪ {1, n});
while B 6= ∅ do

if q − wn ≤ w(A) < q − w1 then
return A;

i← min(A), j ← min(B) ;
A← A \ {i} ∪ {i}, B ← B \ {j} ;

return “no”;

Proof. Observe that φn(q) > φ1(q) if and only if there is a set A ⊆ N \ {i, j}
for which player n is pivotal but player 1 is not, i.e., q − wn ≤ w(A) < q − w1.
Algorithm 1 finds such a set if it exists, and returns “no” otherwise. It iteratively
tries to find such a set of size 1 ≤ k ≤ n−2 as follows. It starts with a set of size
k that minimizes w(A) and repeatedly (i) removes the smallest element and (ii)
adds the smallest yet unused element. Each swap does not decrease the weight
of set A and increases it by at most wn−1 − w2 ≤ wn − w1. This process stops
if it either finds a set with the desired weight or if there a no elements left to
swap in. Note that in the latter case the last set to be considered contained the
k largest elements. This guarantees that this process finds a set of size k with
q − wn ≤ w(A) < q − w1, if such a set exists. There are at most n− 2 swaps in
each of the n− 2 iterations, which guarantees polynomial running time.

Algorithm 1 gives rise to an even simpler method of deciding whether φn(q) >
φ1(q). An iteration for a size of k is guaranteed to return a set A if and only it
starts with a sufficiently small set and the largest set of size k is large enough.

Corollary 1. φn(q) > φ1(q) if and only there exist a k ∈ [1, n−2] with
∑k+1
i=2 wi <

q − w1 and
∑n−1
i=n−k wi ≥ q − wn.

Corollary 2. There exist poly-time algorithms for checking whether q ∈ opt(φ1)
and whether q ∈ pess(φn).
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Fig. 4: The X-axis is the rank of the player. In the first row of graphs, the bar in
position i indicates the difference between min(φi(wi + 1), φi(1)) and minφi(q).
In the second row of graphs, the Y -axis indicates the number of times (out of
100 trials) that, respectively, 1 ∈ pess(φi) and wi + 1 ∈ pess(φi). The graphs
show the results for weights drawn according to the uniform (top left), normal
(top right) and Poisson (bottom) distributions
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5 Empirical Results

We have conjectured that two values of the quota that are likely to minimize the
Shapley value of player i are the quotas 1 and wi+1. To verify this empirically, we
considered three different distributions of weights: uniform on [1, 40], normal with
µ = 30, σ2 = 15 (negative weights were corrected by increasing µ appropriately)
and Poisson distribution with mean 20. For each distribution, we conducted 100
tests. In each test, we generated 30 weights according to the given distribution,
and checked whether the Shapley value of player i ∈ [1, 30] is minimized at
q ∈ {1, wi + 1}. The results are graphed in Figure 4.

It appears that for the uniform distribution, the likelihood of the global
minimum being at wi + 1 is relatively low. However, when the weights are dis-
tributed according to the normal or Poisson distributions, the likelihood of this
event increases dramatically. Moreover, in all 100 experiments for the Poisson
distribution the minimum occurred at wi + 1 or 1, i.e., pess(φi) ⊆ {1, wi} (and
therefore in the rightmost graph on top all bars are of 0 height). In contrast, for
the uniform distribution, it is often the case that 1, wi + 1 6∈ pess(φi), especially
for small values of i. Even when the global minimum was not at wi + 1 or 1,
the average difference between a value in pess(φi) and min(φi(wi + 1), φi(1)) is
small. The bars in Figure 4 show the average difference between the minimum
of φi(q) and min(φi(wi + 1), φi(1)) We see that our heuristic produces results
that are very close (or equal) to optimal, especially for bigger players.

We conclude that when the players’ weights are tightly clustered (as it typi-
cally happens for normal and Poisson distribution) either q = wi + 1 or q = 1 is
likely to minimize player i’s power. When choosing between these two options,
the rule of thumb is to set q = wi + 1 for the bottom 70–80% of all voters, and
q = 1 for all other voters.

Another interesting question that merits empirical investigation is whether
the manipulator can incur significant changes of the players’ Shapley values if
the quota is required to be reasonably close to 50% of the total weight, since such
constraints on the quota are very common in practice. Now, in Example 1 any
choice of quota between—roughly—25% and 75% of the total weight results in
the player’s power being very close to his relative weight, i.e., w10/wN , whereas
in Example 2 this is not the case. Our next experiment aims to establish which
of these scenarios is more frequent.

To do so, we generate a 30-player game with weights coming either from the
uniform distribution on [1, 40] or the Poisson distribution with mean 30. For
each player i, we measure the length r of the longest contiguous interval of the
quota values (normalized by w(N)) for which i’s Shapley value is within ε from
wi/w(N), for ε = 0.0001, 0.00025, 0.001. For instance, if r = 0.7 for ε = 0.001,
then for quotas between 0.15w(N) and 0.85w(N) player i’s Shapley value lies in
the interval [wi/w(N)− 0.001, wi/w(N) + 0.001]. We average over 50 trials. The
results are presented in Figure 5 (uniform) and Figure 6 (Poisson).

We observe that, under both distributions, for most players their power is
very close to their relative weight for a significant proportion of the quotas.
However, for very large players this is less likely to be the case, as illustrated
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by Example 2. Interestingly, for different values of ε the graphs are shaped
differently; in particular, for very small values of ε the graphs peak around
player 20, with the position of the peak being different for the two distributions.
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Fig. 5: Length of the interval {q : |φi(q)− wi

w(N) | < ε} (normalized) for the uniform

distribution on [1 : 40] and ε = 0.0001, 0.00025, 0.001

6 Conclusions and Future Work

We explored the behavior of the Shapley value as a function of the quota in
weighted voting games. We viewed this problem from the position of a manip-
ulator who aims to maximize/minimize a given player’s power. We have shown
that, despite a number of hardness results for related problems, maximizing a
player’s power is easy. While we do not have a polynomial-time algorithm for the
minimization problem, our heuristic approach works extremely well, especially
for large players. However, in a more realistic scenario where the quota is not
allowed to stray too far from 50%, the manipulator cannot do much, especially
for smaller players: for a large, centrally symmetric range of quotas the small
players’ power is fairly close to their weight. In summary, it appears that it is
the large players who are most vulnerable to quota manipulation: small changes
of the quota may be sufficient to change their power significantly. However, to
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Fig. 6: Length of the interval {q : |φi(q)− wi

w(N) | < ε} (normalized) for the Poisson

distribution with mean 20 and ε = 0.0001, 0.00025, 0.001

change the power of small players in a measurable way, one may need the ability
to choose very high/low quota values.

Perhaps the most interesting open question inspired by this work is whether
one can find a power-minimizing quota efficiently. A related question is whether
there exists a polynomial-time algorithm for maximizing the total power of a set
of players: indeed, φi(q) is minimal if and only if

∑
j∈N\{i} φj(q) is maximal.
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