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Abstract. Recent years have seen a rise of interest in the deployment of mul-
tiagent systems in energy domains that inherently have uncertain and dynamic
environments with limited resources. In such domains, the key challenge is to
minimize the energy consumption while satisfying the comfort level of occu-
pants in the buildings under uncertainty (regarding agent negotiation actions). As
human agents begin to interact with complex building systems as a collaborative
team, it becomes crucial that the resulting multiagent teams reason about coordi-
nation under such uncertainty to optimize multiple metrics, which have not been
systematically considered in previous literature. This paper presents a novel mul-
tiagent system based on distributed coordination reasoning under uncertainty for
sustainability called SAVES. There are three key ideas in SAVES: (i) it explicitly
considers uncertainty while reasoning about coordination in a distributed man-
ner relying on MDPs; (ii) human behaviors and their occupancy preferences are
incorporated into planning and modeled as part of the system; and (iii) various
control strategies for multiagent teams are evaluated on an existing university
building as the practical research testbed with actual energy consumption data.
We empirically show the preliminary results that our intelligent control strate-
gies substantially reduce the overall energy consumption in the actual simulation
testbed compared to the existing control means while achieving comparable av-
erage satisfaction level of occupants.

1 Introduction

Over the decades, energy issues have been getting more important. In the U.S., 48%
of energy consumption is from buildings, of which 25% is associated with heating and
cooling [12] at an annual cost of $40 billion [12]. Furthermore, on an annual basis,
buildings in the United States consume 73% of its electricity. Recent developments
in multiagent systems are opening up the possibility of deploying multiagent teams
to achieve complex goals in such energy domains that inherently have uncertain and
dynamic environments with limited resources.

This paper focuses on a novel planning method for distributed coordination under
uncertainty (regarding agent negotiation actions) to optimize multiple competitive ob-
jectives: i) amount of energy used in the buildings; ii) occupant’s comfort level; and iii)
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practical usage considerations. There have been some trials to balance energy consump-
tion and enhancement of building services and comfort levels [7, 11] and to monitor and
collect energy consumption data [7, 8] in energy domains. Other works have explicitly
focused on design optimization and use of multiagent systems [5, 9] in different do-
mains. In addition, some multiagent systems [3, 4, 13] have been employed to model
home automation systems. Unfortunately, past work in the energy domain has three key
weaknesses. First, they do not consider uncertainty while reasoning about coordination
and mostly rely on deterministic plans. Second, they limitedly incorporate intelligence
of occupancy or occupancy preferences into the system and thus occupants are not ex-
plicitly modeled as agents in the system. Third, they are mostly evaluated in their own
simulation environments, which are not constructed on the actual energy data and oc-
cupants’ responses in the buildings. Thus, their assumptions may not be realized in
real-world problems.

This paper presents a novel multiagent system based on distributed coordination
reasoning under uncertainty for sustainability called SAVES (Sustainable multi-Agent
systems for optimizing Variable objectives including Energy and Satisfaction). SAVES
provides three key contributions to overcome limitations in past work. First, we explic-
itly consider uncertainty while reasoning about coordination in a distributed manner. In
particular, we rely on MDPs (Markov Decision Problems) to model agent interactions,
specifically focusing on rescheduling meetings, which will be extended to decentralized
MDPs. Second, human behaviors and their occupancy preferences are incorporated into
planning and modeled as part of the system. As a result, SAVES is capable of generating
an optimal plan not only for building usage but also for occupants. Third, the influence
of various control strategies for multiagent teams is evaluated on an existing university
building as the practical research testbed with actual energy consumption data in the
simulation. Since the simulation environment is based on actual data, this result can be
easily deployed into the real-world. Preliminary results show that our intelligent control
strategies substantially reduce the overall energy consumption in the actual simulation
testbed compared to the existing control means while achieving comparable average
satisfaction level of occupants.

2 Related Work

With rising energy costs, the need to design and integrate scalable energy consump-
tion reduction strategies in buildings calls for novel approaches. There are numerous
challenges associated with energy resources such as supply and depletion of energy re-
sources and heavy environmental impacts [11] (ozone layer depletion, global warming,
climate change, etc.). The rise in energy consumption in buildings can be attributed
to several factors such as enhancement of building services and comfort levels [7, 11],
through heating, cooling and lighting needs and increased time spent indoors [11].

To model and optimize buildings’ energy consumption, building owners and facil-
ity managers are demanding robust, intelligent and adaptable performance monitoring
techniques. These techniques are important in energy consumption data collection [7,
8] and ambient environmental conditions control [7]. Existing heating, cooling, ven-
tilation, and lighting systems generally operate with no intelligence of occupancy or
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occupancy preferences and therefore are unable to optimize operations. Even more, no
feedback is available to occupants about how their actions and schedules impact build-
ing energy consumption. To realize both tangible benefits such as energy and operation
savings, value property, reduction in occupant complaints as well as the intangible ben-
efits such as occupant comfort and satisfaction, designers must develop energy adaptive
capabilities within the building environmental control systems.

Abras et al. [3], Conte et al. [4] and Roy et al. [13] have employed multiagent
systems to model home automation systems (or smart homes) and simulating control
algorithms to evaluate performance. While there is relevance in terms of the problem
domain and employing multiagent systems, our representation and approaches are dif-
ferent in having to account for human preferences and decisions directly.

Research by Fahrioglu et al. [6] and Mohsenian-Rad et al. [10] provide incentive
compatible mechanisms for distribution of energy among interested parties. This thread
of research is complementary, especially in designing incentives for humans to reveal
their true energy preferences. However, these approaches assume a centralized con-
troller with whom all the members interact, which is not present in our domain. Instead,
there are peer-to-peer negotiations between humans regarding their energy consumption
and comfort level.

3 Design Decisions

Fig. 1. Overall System Design

The SAVES system consists of a sim-
ulation module, an input/output module
to communicate with agents, and an un-
derlying reasoning and planning module.
Figure 1 shows a generic loop of the sys-
tem. In particular, the input/output mod-
ule first collects data and constructs the
world model. Given the world model,
the reasoning and planning module gen-
erates policies to achieve the given ob-
jectives in the context of coordination.
With these world model and generated
policies, the simulation module models
agents’ physical and behavioral interac-
tions in the system and realize the coor-
dination in the actual world via the in-
put/output module. We now describe the
modules as well as the particular instantiations of these modules in the energy domain.

The simulation module provides a 2D, OpenGL environment based on the open-
source project OpenSteer 3 as shown in Figure 2. The simulation module consists of
two different types of agents as described below, modeling their physical and behavioral
interactions. It can be used for efficient statistical analysis of different control strategies

3 http://opensteer.sourceforge.net/
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(a) (b)

Fig. 2. Screen capture

in buildings before deploying the system to an actual physical world. The input/output
module makes a connection among different modules in the system by collecting actual
data in the domain, transferring data to the reasoning module, sending output results
to the simulation or deployed module in the world to represent outputs, and providing
means to communicate with agents via proxy and handheld devices. The coordination
and planning module generates optimal policies to achieve the given team missions con-
sidering multiagent interactions in the context of coordination in the mutiagent setup.

Here we describe the design issues regarding agents, first introducing building com-
ponent agents and human agents, then detailing the method to calculate the properties of
agents, and finally discussing different control strategies considering agent interactions.

3.1 Building Component Agents

We consider three building component agent categories: a HVAC (Heating, Ventilating,
and Air Conditioning) agent, a lighting agent, and an appliance agent. The HVAC agent
is modeled based on the principles of thermodynamics, fluid mechanics, and heat trans-
fer. We assume that this agent mainly controls the temperature of the assigned zone.
The lighting agent controls the lighting level of the room. For the appliance agent, we
only include the computer device including the desktop and laptop computers in this
work. These agents have two possible actions: “on” and “standby”. When the lighting
or appliance agents are “on”, they consume some fixed amount of energy. We measure
the average amount of energy used by these agents, which will be detailed in Section 5.

Since the energy consumption of HVAC agents relies on a set of parameters
including the temperature change in the space, air flow, and number of people, etc., the
average value cannot be simply measured. Instead, we describe how to compute the
energy use by HVAC agents below.

Calculating Total Energy Consumption: Since the building is composed of a large
number of HVACs and they are the main consumers of the energy, it is important to
choose the right set of parameters and reasonable values for them. In particular, the
energy consumption of HVAC agents is calculated as following [2] mainly based on
changes in air temperature and airflow speeds:

Q =
1.1× CFM ×∆T

3412.3
, ∆T = log(

CFM

C
),
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where Q is the amount of energy used (kWh), CFM is an air volume flow rate (ft3/min),
which is typically ranged between 500–1500 (ft3/min), ∆T is the temperature change
in a zone (◦F), and C is a scale factor.

3.2 Human Agents

There are four different types of human agents such as a faculty, staff, graduate student,
and undergraduate student. Each agent has access to a subset of the six available
behaviors according to their types — wander, attend the class, go to the meeting, teach,
study, and perform research, any one of which may be active at a given time, where
the behavior is selected via the given class and meeting schedules. During execution
of these behaviors, individual travelers may move at integer speeds from 0 to 3. Each
agent also has specific levels of emotions and information about the environment.
Specifically, every agent has a property about the satisfaction level based on the current
environmental condition and knows his or her current location without any noise. A
more extended discussion of the satisfaction property will take place below.

Calculating Satisfaction Level: The satisfaction level (SL) of an individual human
agent is modeled as a percentage value between 0 and 100 (0 is fully unsatisfied, 100 is
fully satisfied). SL of the individual occupant is calculated as following:

SL = 100.0− PPD,

PPD = 100.0− 95.0 · exp−(0.03353·PMV 4+0.2179·PMV 2),

where SL is the satisfaction level (%), PPD is the Predicted Percent Dissatisfied (%) [1],
PMV is the Predicted Mean Vote. The PMV index is calculated from an equation of
thermal balance for the human body in ASHRAE Standard [1].

4 Control Strategies

In a given scenario, all agents within the simulation will use the same strategy. Possible
strategies include: i) manual control strategy, ii) reactive control strategy, iii) proactive
control strategy, and iv) proactive control strategy based on multiagent coordination.

4.1 Manual Control

The manual control strategy simulates the current building control method maintained
by USC facility managers. Specifically, we assume that HVAC agents are not controlled
by human agents and that appropriate temperature points are centrally set by facility
managers. For HVAC agents, the CFM values are fixed throughout the simulation. In
this control setting, HVAC agents always attempt to reach the pre-set temperature using
the fixed CFM value regardless of the presence of human agents and their preferences
in terms of temperature. Lighting agents are controlled by only human agents. Con-
trol actions (i.e., turning on/off the light) of human agents are either deterministic or
stochastic according to the type of action. In particular, when human agents enter the
space, they always turn on the light. When they leave the space, they stochastically turn
off the light. For appliance agents, we simply assume that they are always on.
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4.2 Reactive Control

Since the manual control strategy simply follows the pre-defined policy provided by
the facility managers, it is fairly easy to come up with action plans of building compo-
nent agents. However, it does not adapt the given policies based on actual schedules or
preferences of occupants in the building, and thus the building component agents are
limited to adapt their control policies appropriately according to the dynamic changes.
Particularly, HVAC agents keep operating to reach the desired point, even though the
space is empty, which ends-up wasting energy. At the same time, since they do not
consider occupants’ preferences in the space and instead prioritize the pre-determined
points, the average satisfaction level of occupants can decrease.

Here we discuss about another control strategy that building component agents reac-
tively respond to the behaviors of human agents. In this setting, we assume that HVAC
agents are not controlled by human agents and that appropriate temperature points are
measured based on the average preference of human agents in the specific space. HVAC
agents automatically turn on and off according to the presence of people and temper-
ature set points, and the CFM values are adjusted accordingly. In the reactive control
strategy, the lighting and appliance agents are now automatically controlled. In par-
ticular, they are turned on and off according to the presence of people. For instance,
when people enter the specific room, the lighting and appliance agents are automati-
cally turned on, and when people leave the room, they are turned off. While human
agents follow their given schedules, with the reactive setting, the building component
agents can act more intelligently than the manual policy as they operate based on human
agents’ actual needs. As a result, we can reduce the cases where the energy is wasted
for unnecessary spaces, which will contribute to the reduction of the overall energy
consumption.

4.3 Proactive Control

Although the reactive control strategy can adapt their policies based on actual needs
of occupants in the building, this approach is still limited in a sense of optimality. In
practice, there is a delayed effect in changing temperature. In other words, HVAC agents
can only change a certain amount of degree in temperature per hour. This property
exposes the weakness of the reactive control strategy. Although HVAC agents know the
desired temperature of human agents at a specific time point, it takes a certain amount
of time to reach the desired temperature point from the current air temperature, and the
satisfaction level of occupants in the space will decrease during that time.

To overcome limitations of the reactive setting, we suggest a third strategy con-
trolled in a proactive manner. Given the meeting and class schedules of human agents,
the building component agents can predict: i) what their preferences are in terms of
temperature, ii) how long it will take to reach the preferred temperature point from
the current condition, iii) what CFM value is required, etc. In this setting, the building
component agents can access the meeting/class schedules of human agents. Based on
that prior knowledge, they now generate more optimal policies to reduce the overall en-
ergy consumption while maximizing the average satisfaction level of occupants in the
building. For instance, since the HVAC agent knows the desired temperature points in
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advance based on the given schedules of human agents, it can generate plans to control
temperature with less power. At the same time, when human agents get to the space, the
current air temperature is already met with their preferences, and thus their satisfaction
level increases.

4.4 Modeling Multiagent Coordination: MDP representation

With the existence of human agents, agent interactions are a fundamental aspect of
our energy simulation. In SAVES , all agents share a common architecture based on
MDP (Markov Decision Problem) frameworks, possessing varying degrees of knowl-
edge about the world and other building agents (i.e., local knowledge).

Fig. 3. Simplified MDP — d: disagree, a: agree

This section describes our MDP rep-
resentation in the energy domain for il-
lustration. The MDP model represents
a class of MDPs covering all types of
meetings for which the agent may take
rescheduling actions. In our work, we
construct a MDP for each meeting as
shown in Figure 3. Alternatively, we can
model all meetings in the building as a
single MDP. However, if we consider a
gigantic MDP model for rescheduling all
meetings together, the number of states
and actions exponentially explodes as the
number of agents increases. In addition,
the complexity to handle all possible coordinations among agents significantly in-
creases, which is burdensome to handle within a reasonable amount of time.

As preliminary work, we construct a simplified MDP model for rescheduling meet-
ings. For each meeting, a meeting agent can perform any of three actions — reschedule,
find another slot, and ask. For the “ask” action, an agent can autonomously reduce its
own autonomy and ask a human agent whether he or she agrees with rescheduling the
meeting. The human agent can respond to the meeting agent with “agree” or “disagree”.

The agent may choose to perform any of these actions in various states of the
world. State is composed of three features: 〈f1, f2, f3〉, where f1 is the status whether
meeting location and time is changed (i.e., pending or changed), f2 is the number of
“ask” actions invoked so far, and f3 is a set of responses from all meeting attendees:
〈rpi,1, rpi,2, ..., rpi,n〉, where n is the number of attendees of meeting i and rpi,k is a
response of agent k to rescheduling meeting i (i.e., agree or disagree).

The MDP’s reward function has its maximum value when the meeting agent invokes
the “reschedule” action in the state where all meeting attendees agreed to resched-
ule. We denote the component of the reward function that focuses on the expected
energy gain by rescheduling the meeting as renergy. However, there is clearly a high
team cost incurred by forcing all of the attendees to rearrange their schedules. This
team cost is incorporated into the MDP’s reward function by adding a negative re-
ward, rrearrange. The magnitude is also an increasing function in the number of atten-
dees (e.g., rescheduling a meeting of a large group is more costly than rescheduling a
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Table 1. Parameter Values for the Satisfaction Level Calculation

Parameter Value Range from [1] Value
Clothing 0.5–1.0 (light to heavy clothing) 1.0

Metabolic Rate 1.0–2.0 (low to high activity) 1.2
External Work 0 0

Air Temperature 20–28 (◦C) Zone temperature
Radiant Temperature 20–28 (◦C) 70◦F

Air Velocity 0–0.2 m/s 0.1 m/s
Relative Humidity 30–60 % 40 %

one-on-one meeting). The overall reward function for taking the “reschedule” action,
areschedule, in a state s is a weighted sum of these components:

R(areschedule, s) = α · renergy + (1− α) · rrearrange
, where 0 ≤ α ≤ 1. In addition, a small amount of cost is incurred to invoke actions of
“ask” and “find another slot”.

The MDP’s transition probabilities represent the likelihood over possible action out-
comes. Specifically, the transition function is defined considering four factors: i) meet-
ing constraints of attendees; ii) level of energy consciousness, which determines how
much they care about energy; iii) degree of intimacy among occupants; and iv) the cur-
rent status of responses, which can be related to emotional contagion within the group.
Since we store the current set of responses from individual agents and number of “ask”
actions called so far, the repeated “ask” action may result in different transitions. In
particular, the “ask” action, by which the agent queries the human agent, has 2ni + 1
possible outcomes, where n is the number of attendees of the meeting i. First, the hu-
man agent may not respond at all, in which case, the agent is performing the equivalent
of a “wait” action for a given timeout. Other set of possible outcomes are decided de-
pending on responses of meeting attendees as illustrated in Figure 3. We assume that
the “find” action reset values of features in the state.

5 Empirical Validation

We evaluate the performance of SAVES in our energy domain and compare four dif-
ferent control techniques: 1) manual control, 2) reactive control, 3) proactive control,
and 4) proactive control with MDP. We focus on measuring two different criteria —
total energy consumption (kWh) and average satisfaction level of occupants (%). For
the HVAC agent, in the manual setting, 65–70◦F was set to the desired temperature by
facility managers, and in other control strategies, the desired temperature was decided
based on the average preference values of building occupants. In the manual setting,
the likelihood value for human agents to “turn off” lights was 50% and CFM was set
to 1500.0. To calculate the energy consumption by the HVAC agent, we set the scale
factor to 100.0. For the satisfaction calculation, we used the same parameter values
in Table 1 (column 3) while performing the experiments across four different control
strategies. The experiments were run on Intel Core2 Quadcore 2.4GHz CPU with 3GB
main memory. All techniques were evaluated for 100 independent trials throughout this
section. We report the average values.
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(a) Total Energy Consumption (b) Average Satisfaction Level

Fig. 4. Comparison

5.1 Experimental Domain Description

We have identified an educational building in conjunction with USC Facilities Man-
agement Services, as our practical testbed. This campus building is composed of class-
rooms, offices for faculty and staff, and conference rooms for meetings. Specifically, we
use one floor of the actual university building in the experiments, which has 18 zones
and 33 rooms. There is one HVAC agent for each zone, and one lighting agent for each
room. We also assume that each person in the office has either one desktop or laptop
computer, and conference room and class room has two computers, respectively. There
are four human agent categories: faculty, staff, graduate student and undergraduate stu-
dent. Throughout the entire simulation, we consider a typical winter season in southern
California (i.e., starting indoor temperature is 55◦F in the simulation). During the sim-
ulation, indoor temperature goes down by -1◦F per 30 minutes. Possible temperature
range in the building is between 50 and 90◦F. Students follow 2010 Fall class schedule,
and we generated the arbitrary meeting schedules for faculty, staff, and student agents.
The measurement is performed during the working hour (i.e., 8:00am–7:00pm), and the
preference value of each occupant in temperature is randomly drawn between 60–70◦F.
To calculate the energy consumption of the lighting and appliance agents, we collected
actual energy consumption data in the testbed building and obtained the average val-
ues. In particular, when the lighting agents are on, we use 0.128 kW/h for the office,
0.192 kW/h for the conference room, and 0.768 kW/h for the classroom. When they
are off, they do not spend the energy. For the appliance agents, the desktop computer
spends 0.150 kW/h and 0.010 kW/h when it is on and standby, respectively. The laptop
computer spends 0.050 kW/h when it is on and 0.005 kW/h when it is on standby.

5.2 Comparison: Total Energy Consumption

We compared the cumulative total energy consumptions measured during work hours
for all control strategies in the energy domain. Figure 4(a) shows the cumulative total
energy consumption on the y-axis in kWh and the time step on the x-axis. Time step 1
indicates 8:00am and each time step increases by 30 minutes. As shown in the figure,
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the manual control strategy showed the worst result since it does not take into account
behaviors or schedules of human agents and building component agents simply fol-
low the predefined policies. The reactive and proactive control strategies showed lower
energy consumptions than the manual setting by 43.0% and 55.6%, respectively. The
proactive control strategy with the MDP model showed the best results among all dif-
ferent control strategies and statistically significant improvements (via t-tests) in terms
of energy used in the testbed building, relative to other control strategies. Specifically,
the proactive control with MDP reduced the energy consumption by 59.9% than the
manual control strategy. Although we did not tune the parameter values and only ap-
plied the simplified MDP model, with considering multiagent coordination in SAVES,
we could achieve significant improvements. These outcomes are still preliminary re-
sults and yet only tested in the simulation environment, all experimental results were
measured based on the actual data and testbed. Later, we will be able to show even more
improvement with the optimally tuned parameters and extend our work to deploy it into
the actual building with proxy agents. Furthermore, as we revise the equations shown
in Section 3.1, we will be able to get more exact results for analysis.

Fig. 5. Energy Consumption Distribution

Now, we analyze how various
control strategies can cause differ-
ent results. Figure 5 shows the en-
ergy consumption distribution over
zones for all control strategies. In the
figures, the x-axis shows the group
number of data obtained by each
control strategy and the y-axis dis-
plays the total energy consumption
for each zone in kWh. The floor
plan we used in the simulation has
four different types of zones, which
decides the total energy consump-
tions. Specifically, zones 1–4 (blue),
9 (green), and 12 (yellow) have two
offices per zone, zones 5–7 (light
blue or cyan) are class rooms, zones
13–15 (orange or red) are conference rooms, and zones 11 (yellow), 16 (light red),
and 17 (red) have three offices per zone. As shown in the first group of Figure 5, the
manual control strategy results in the similar level of energy consumptions according
to the different types of zones. This result clearly indicates that the manual setting is
only impacted by the physical constraints of the building space itself, which never con-
siders the interactions among agents. The normalized standard deviation was 0.134. In
the reactive (the second group in Figure 5) and proactive setting (the third group in
Figure 5), it now started showing the difference in terms of the amount of energy used
even within the same type of zones since those methods consider the actual behavioral
patterns and schedules of human agents, and building component agents respond and
adapt their policies based on them. Their normalized standard deviations are 0.205 and
0.312, respectively, which are higher than the value of the manual setting. Lastly, the



11

proactive control strategy with the MDP model considers rescheduling of meetings. The
target meetings to reschedule are ones with less than 4 people in the conference rooms
in zones 13–15. We only considered the location reallocation and did not assume the
meeting time can be also changed. New candidate locations are small faculty offices
in zones 1–4. As shown in the fourth group of Figure 5, it showed increased energy
consumptions in zones 1–4 due to the reallocated meetings, but simultaneously showed
much more reduction in zones 13–15, as a result the overall energy consumption de-
creased. The normalized standard deviation was 0.313, which was the highest among
different control strategies. These results give us a lesson that multiagent coordina-
tion/negotiation can benefit our model in SAVES, and by considering higher degree of
coordination among agents, we will be able to achieve the significant energy reduction
in this domain.

5.3 Comparison: Average Satisfaction Level

Here, we compare the average satisfaction level of human agents under different control
strategies in the simulation. We used the equations discussed in Section 3.2.

Figure 4(b) shows the average satisfaction level in percentage on the y-axis and time
step on the x-axis, which are the same as mentioned in the previous section.4 As shown
in the results, all methods were able to achieve at least 80% or higher results on aver-
age, and the manual and proactive with MDP settings showed the best results among
them. Note that the equations to calculate the individual satisfaction level are based on
the average model about the responses according to different environmental conditions,
which is mostly related to air temperature, and they do not consider individual prefer-
ences. Thus, although the reactive and proactive control strategies act more intelligently
by additionally considering the preferences of human occupants, we could not obtain
explicit benefits to improve the satisfaction level and even in some cases, the solution
quality may be harmed. On the other hand, the manual setting just make HVAC agents
attempt to reach the desired temperature set point over time. Once HVAC agents get to
the desired point, they are turned off, which will decrease the satisfaction level. If the
temperature is again away from the scope of desired temperature point, HVAC agents
are turned on and the satisfaction level increases. As a result, the manual setting shows
a race condition in the graph, which means it eventually cannot go over a certain point
in terms of the satisfaction level. With revised equations considering more factors from
the coordination perspective such as preferences, energy awareness, emotional conta-
gion effect, etc., we expect significant improvements in terms of the satisfaction level.

In our work, we still only separately consider two different optimization criteria —
the energy consumption and the satisfaction level since this is still preliminary work.
However, as we will eventually optimize multiple objectives in SAVES, we will be
able to achieve effective multiagent team coordinations to minimize the total energy
consumption while maximizing occupant’s comfort level.

4 Note that the starting indoor temperature of the building is 55◦F in the simulation, which
causes the low average satisfaction level for a while.
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6 Conclusion

This paper aims to open a new area of research for multiagent systems: in many real-
world problems, specifically in energy domains, we see many different levels of agent
interactions and coordinations involved, and hence multiagent systems must address
such complex situations to achieve the given objectives under uncertainty. In this work,
we presented a new framework called SAVES based on distributed coordination reason-
ing for sustainability. There are three major new ideas in SAVES. SAVES: (i) explicitly
considers uncertainty while reasoning about coordination in a distributed manner rely-
ing on MDPs; (ii) incorporates human behaviors and their occupancy preferences into
planning and models them as part of the system; and (iii) evaluates various control
strategies for multiagent teams on an existing university building as the practical re-
search testbed with actual energy consumption data. We justified our design decisions
in SAVES through a preliminary empirical evaluation and showed that SAVES can
provide solutions to significantly reduce the energy consumption while achieving the
comparable satisfaction level of building occupants. For future work, we will consider
opportunities for direct occupant participation and incentivization via handheld devices
and deploy our system to the real-world.
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Abstract. By 2020, chronic disease will be the cause for approximately
75% of all deaths worldwide [?]. chronic diseases, once diagnosed, persist
through life and require adequate management. Members of the iCare
group at EBTIC and at Monash University are investigating Intelligent
Collaborative Care Management (ICCM) [?,?] for chronic diseasesto co-
ordinate the are for patients with chronic disease.
ICCM has been compared to Customer Life Cycle Management (CLCM)
[?], where it is of critical importance to monitor the patient’s behaviour
for the occurrence or absence of key events. This article argues for the
adaption of an existing approach (used to enable psychological evalua-
tion of game playing behaviour) into the ICCM framework. It draws on
models from behavioural psychology, relies on standard formalisms and
proposes an automated process to monitor patient’s behaviour with the
aim to facilitate a timely and appropriate intervention.

1 Introduction

The World Health Organisation (WHO) has released statistics, indicating that
by the year 2020, chronic disease will be the cause for approximately 75% of all
deaths worldwide [?]. Chronic diseases persist through life and require adequate
management. Members of the iCare group at EBTIC in Abu Dhabi, United Arab
Emirates and Monash University in Melbourne, Australia have previously been
working on an Intelligent Collaborative Care Management (ICCM) project [?,?],
focusing on heath care plans for patients with chronic diseases in Australia.

In this context ICCM has been used as Customer Life Cycle Management
(CLCM) [?], and it has been pointed out to be of critical importance to monitor
the patient’s behaviour to recognise the occurrence or absence of key events. 4
Issues have been identified: Monitoring, Recognition, Intervention and the asso-
ciated Cost [?]. Within the domain of health care, the aspects of recognition and
intervention are left to the medical experts, and the matter of cost is not consid-
ered at this stage. It should be noted that the people involved in the process of
recognition and intervention (i.e. observing and enforcing behaviour change in a
health plan) are ranging from doctors, dentists, nurses, nutritionists, dieticians
and physiotherapists to health visitors, health promotion practitioners, psychol-
ogists and psychiatrists, counselors, health educators and fitness instructors [?].



The formalism we propose is aiming to provide the means to monitor patients
and is supposed to be useful to all of the above listed practitioners. Due to this it
has to be of broad applicability. The presented formalism for the definition of be-
haviour is based on accepted standards from the field of behavioural psychology.
Implementing it will enable a practitioner to monitor the behaviour of individual
patients as well as all patients in a database on the basis of precisely defined
behaviour patterns. It will also require the practitioner to adhere to a structure
which will allow the cross evaluation and comparison of the defined behaviour
by other practitioners who may or may not share the same background.

2 Self management of health and disease

The models presented in this chapter have either been frequently referred to in
the literature (specifically: HBM, ToRA, ToPB, [?,?,?,?,?]) or have been used
in the ICCM and iCARE project as well as in the health care literature before
(mainly: BDI [?,?,?,?]). In what follows we introduce these models and relate
them to adherence in self management of health and disease.

2.1 Adherence and non-adherence to health regimens

A study on the adherance rates in (all) published empirical studies from 1948
to 1998 reported on adherence to medical treatment (prescribed by a non-
psychiatrist). The study found that the average non-adherence rate was 24.8
% [?]. Roughly a third of scheduled appointments are missed and the deviation
from instructions regarding the taking of prescribed medicine is significant [?].

In recent years the investigation of patient’s compliance has been widened
to encompass an increasing number of activities and actions preformed by the
patient. This is because research suggests that the number of factors that play
into the decision to follow some self managed health plan is much larger than
previously thought and that the scope of the relevant activities does not just
restrict itself to the domain of the actual health care or the disease [?].

What drives patients to adhere to some regimen is a complex combination
of factors, references to behavioural psychology (which is traditional concerned
with the behaviour of ill people) are drawn and this article briefly introduces a
number of increasingly complex behavioural models.

One of the important considerations for the suggested approach is to include
the influence of peers, a community and the tailored interaction with heath care
professionals into the model. A recent study [?] has been dedicated to investigate
the inter-group behaviour with respect to health care. While the main focus on
the study was on surveying the existing literature and conducted studies with
respect to gaps between social groups, its findings include that groups and group
behaviour is an important (and well studied) aspect when considering human
behaviour with respect to their health care.

The reasons why humans engage in health related activities have been long since
classified to belong to one of three categories [?]:



1. Prevention: before there is any symptoms, to avoid health problems at all.
2. Diagnosis: when there are (real or perceived) indications or symptoms for

an illness but the actual cause is yet unknown.
3. Treatment: for existing and diagnosed issues.

The first two of the above categories are referring to (potential) patients who are
not yet certain about their health problems and the resulting implications for
them. In this article, we are only considering the behaviour of patients who have
already been diagnosed with a (chronic) disease and who have been provided
with a health care plan to assist them in the struggle, i.e. patients who are
aware of having an illness which is going to impact their life increasingly; and
increasing inversely proportionally to their adherence to a health plan at that.

2.2 The Health Belief Model (HBM) [?]

The Health Belief Model (HBM) shown in Figures 1 and 2 was developed by the
US Public health Service in the 1950s [?]. Its initial aim was to understand the
non rational, but very common failure of people to partake in early screening
tests and undergo preventive treatments for diseases.
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Fig. 1. The Health Belief Model [?] (simplified illustration)

Subsequently it was used to understand the patients’ responses to symptoms
and to following (prescribed) health plans. In this model, only two considerations
(or beliefs) are assumed to be forming the basis for human decision making: the
subjective value of the outcome of some action A and the belief whether A will
bring about that outcome (compare to Figure 3, showing another model). The
HBM model does not consider the environment of the patient and does not the
actions of others (as mentioned above) other than to the extent of others having
an impact by changing these two beliefs. The HBM has been shown to be able
to predict patient behaviour reasonable well for a number of behaviours and
actions, yet comes short and is inconsistent in the prediction of others [?].

It should be noted that in the domain of health services not all actions
can be traced back to attitudes and beliefs, as habitual (e.g. drug abuse) and
instinctive (e.g. competing for sexual partners) behaviours can not be modeled



in these terms, and are thus not represented in the HBM. These behaviours are
generally omitted in the models presented here and the justification for this is
the fact that those behaviours are excluded as their recognition is part of the
practitioners fields of expertise, which the approach is not aiming to model.
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Fig. 2. The Health Belief Model [?] (adopted from [?])

2.3 Belief, Desire and Intentions (BDI) [?]

The above mentioned HBM was developed by social psychologists and draws on
a well established body of psychological and behavioural theory. It uses two con-
cepts which are difficult to define: Intention and Belief. These terms do appear
in this article with a number of interpretations. The reader is advised that the
use of these terms is to be understood in the context of the respective section.

In this section we briefly outline another paradigm, namely the BDI para-
digm [?], deriving its acronym from the triplet of concepts Belief, Desire and
Intention. BDI is based on folk psychology, in the sense that it is based on
higher level concepts which we as humans consciously recognise. It is not based
on unambiguous definitions nor on rigorously gathered empirical evidence; it
considers a simplified view on the problem of decision making and behaviour.

This not withstanding, the BDI approach has found merit in computer sci-
ence (where it is used very successfully as a model for computer agent’s future
planning) as well as child psychology (especially for work related to autistic
children [?] lacking recognition of even these simplified concepts in others).

BDI is mentioned here for two reasons: Firstly, because it has been used in
work directly related to the Health Care Plan project currently being under-
taken by the iCARE group at EBTIC [?,?], in the context of which the reported
research is being undertaken. Reviewing it here and putting it in context with



some more developed theories from the fields of social and behavioural psychol-
ogy seems recommendable to avoid later confusion.

Secondly, and equally important, it does offer a very useful first level of
conceptual distinction of aspects related to the process of decision making and
behaviour. The Theory of Reasoned Action (ToRA) [?,?,?] and later the Theory
of Planned Behaviour (ToPB) [?] (which will provide the core of the formalism)
both consider beliefs and intentions, and, to some extent, desires. These theories
are far more elaborate, but, previous research [?] (taking the same approach
as the one presented here) has found that the level of detail often exceeds the
level required. Therefore, and because the proposed approach is to be applied by
experts in a practical manner, specific implementations might find that reducing
the level of complexity or even reverting to the simplified model of BDI will yield
acceptable results and be preferable over the complex models.

As evident from the name, BDI distinguishes 3 concepts:

1. Beliefs: The informational state of the agent i.e. the model of the world
as maintained by the software agent as well as how the world evolves and
functions (i.e. inference rules).

2. Desires: In case of software agents desires are the states of the world the
agent is designed to bring about. Traditionally these include a subset of the
desires which at a given moment of time is being considered the priority of
the desires (and might contradict other desires). These are called goals.

3. Intentions: As the agent is considered to operate in an environment which
is not totally under the agent’s control the difference between a desire and
an intention needs to be made. An agent which has committed to pursue a
specific desire. This requires a plan which the agent has already initiated.

In addition to the above the model recognises are so-called events, i.e. changes
in the environment or the state of the agent itself which force the modification
of a goal or cause a plan to be executed.

2.4 The Theory of Planned Behaviour (ToPB) [?]

In the previous section we have mentioned Bratman’s [?] folk psychology, which
is sufficient to model software agent’s desired (by the programmer) behaviour.
We will now discuss monitoring the human patient on the basis of their behaviour
and as such we need a more detailed model for human decision making.

In the section below we will briefly outline theories and well-established mod-
els for human decision making from the field of behavioural psychology that are
considered for our approach.

The theory of Planned Behaviour in psychology, i.e. a theory regarding the
link between attitudes and behaviour (proposed by Ajzen in 1985 [?,?]) provides
a model for human behaviour that treats the attitude a person has towards some
action as a relevant factor in the decision making process whether to execute this
action. This theory implies that the attitude someone has towards a certain be-
haviour influences that persons likeliness to subsequently exhibit that behaviour.
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Fig. 3. The Theory of Planned Behaviour (simplified illustration) [?,?]

According to ToPB and with respect to actions and behaviour, human deci-
sion making is guided by three different considerations and beliefs:

1. Behavioural beliefs: Someone’s expectations about the likely outcome of ac-
tions, paired with the subjective view on these outcomes.

2. Normative beliefs: Commonly known as peer pressure, normative beliefs are
the opinion of others regarding the outcomes of actions, the personal inten-
tion to adhere to these peer standards as well as the desire of the individual
to live up to these expectations of ones peers.

3. Control beliefs: The confidence towards having control over all relevant fac-
tors required to bring about an outcome.

Figure 3 (page 6) illustrates this model and how the mentioned beliefs and
considerations influence ones intentions and subsequently ones behaviour. This
theory has formed the basis for the previous work on the evaluation and the as-
sessment of human game playing behaviour [?,?,?,?,?] referenced in this article.

3 Intelligent Collaborative Care Management (ICCM)

Intelligent collaborative care management aims to provide a unified model for
the composition, and management of patient care services. This encompasses 4
phases, namely the design of the health care composition system, the composi-
tion of a health plan for an individual patient, the distribution of the elements
of that plan to a number of individual service providers and, ultimately, the
implementation and management of this plan.

The composition of the health plan for an individual can be done by a human
and it can be supported by an expert system / decision support system. Such a
system can be checking for consistencies and or used to verify the plan against



a legal database (e.g. checking for medication the patient is not be allowed to
posses or verifying whether the patient is entitled to certain procedures).

The distribution of the services to the relevant practitioners can be done
by software agents [?] with minimal human supervision. When it comes to the
management of the health plan, specifically the monitoring of the adherence to
the health plan, this process should be automated, i.e. done by a machine and
only supervised by a human. The machine will be in charge of the rigorous and
complete monitoring, the human expert tasked with intervention planning will
be alerted if flags are raised. This however requires a well designed monitoring
process, which will depend on the unambiguous definition of critical behaviour,
as defined by the human expert for the specific case of an individual patient.

3.1 Backgound: Intelligent collaborative care management

The Intelligent Collaborative Care Management (ICCM) project [?,?] investi-
gates Customer Life Cycle Management (CLCM) settings , focusing on BDI (see
Section 2.3) agents that are not always following their designed behaviour. The
Intelligent Collaborative Care Management architecture consists of three stages
to address the functionalities of customer life cycle management:

1. Care plan design: Developing a care plan by selecting services intended to
realise the objectives of service providers and customers;

2. Care plan distribution: Managing contractual relationships between practi-
tioners (service providers) and patients (service customers);

3. Care plan management: Managing the execution of contractual obligations
by practitioners and monitoring the care plan adherence of the patients.

The three stages are implemented using two specification layers: a coordination
and a task layer. These specification layers define the properties of a CLCM
domain. The coordination layer specifies the domain information shared among
all the three stages (post-condition of delivering a specific service). The task
layer specifies the domain information associated to each stage.

The architectural design for these stages is a non trivial undertaking. We
start by providing the specification for a basic customer care model. This model
makes some simplifying assumptions and aims to provide a view on the complete
set of interactions occurring in the scenario.

This basic model is then extended to remove the mentioned simplifications,
thereby increasing in complexity and allowing for advanced concepts:

– Basic Model of Customer Care. This model specifies a complete world
and system with no uncertainty, incompleteness, and unbounded computa-
tional resources. Building this model is complex as it captures interaction
and negotiation protocols among diverse types of service providers and cus-
tomers, as well as constraints during the contractual commitments and ser-
vice delivery.

– Extended Model of Customer Care. This model addresses even greater
complexities, where a world is associated with uncertainty, incompleteness,



and bounded resources. It offers recognition and intervention support spec-
ifications that are not captured by the basic model. A special case of this
model is a world where humans are involved with their own mental attitudes.
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Fig. 4. ICCM architecture: The extended model of customer care with adherence and
variation support to cope with uncertainty, incompleteness and bounded resources

3.2 Monitoring, adherence and intervention

The level of complexity varies with the problem and the care plan. While some
can be modeled easily, the example given in [?] refers to cardiovascular disease
and lists disease related factors, the patient, the practitioner, the health service,
the policies and the social context as relevant factors, all contributing to the
success or the failure of the health plan. It further states that success on one
level can be canceled out by failure on another.

Examples of aspects which can be monitored include the consistency which
which appointments are made and followed up, which medications are purchased,
and of course measurements recorded by the practitioners. Generally, a moni-
toring system should be able:

1. to monitor providers (automatic).
2. to monitor the patient’s adherence to the health plan (automated)
3. to monitor and adapt / amend the plan (partly automated, at least the

flagging when thresholds are passed (up or down), also requires a human
with access to the health plan and expert knowledge)

4. to monitor for problems unknown to the experts. This can mean:
– problems of which the individual expert has no knowledge (dentist might

not know about stomach problems, a well designed monitoring process
would watch out for that),

– problems resulting from two experts not having access to their respec-
tive databases (legal constraints, however a software agent could check
without breaching this legal constraint) or

– problems with a whole population of patients, of which the data would
simply be too much to be monitored by a single person (outbreak of some
disease, some medication provoking alergic reactions in combination with
some medication which has never been observed before, ect)



As pointed out above in Section 1 there is a number of people from a variety
of backgrounds which can be involved in an intervention. A viable approach
must provide sufficient freedom to all of them if it is expected to be accepted
by the practitioners in the field. As far as interventions to behaviour deviating
from the prescribed health care plan are concerned, there are more than one
theory on how to successfully implement an intervention (cf. e.g. [?]) and it
is not our aim to suggest one over the other. In the following section we will
outline a formalism to state behaviour in the context of a health care plan.
Such a formalism will enable a practitioners from a variety of backgrounds to
define behaviour which they consider warning signs for insufficient adherence
to a health plan. The system we propose is purely aiming at the automated
monitoring of patient behaviour coupled with a mechanism to alert the right
experts, who will then be tasked with the implementation of an intervention.

4 Defining, evaluating and monitoring behaviour

The caretaker’s ability to monitor the patient’s behaviour is an important ele-
ment in the diagnosis of the patient and supervision of any rehabilitation pro-
cess. One of the drawbacks of using questionnaires when investigating human
behaviour is the subjective nature of introspective statements [?].

4.1 Defining behaviour

With respect to observable aspects of behaviour we continue [?,?,?] to use the
works of Ajzen as reference point, specifically the TACT (Target, Action, Con-
text and Time) paradigm that was suggested for the design and the evaluation
of questionnaires (within the context of ToPB related research). We motivate
our choice by the fact that the ToPB has been “the explicit theoretical basis for
222 studies published in the Medline database, and 610 studies published in the
PsycINFO database, from 1985 to January 2004.” [?].

In his work [?] Ajzen argues that in order to define behaviour sufficiently
the above mentioned four aspects have to be distinguished and identified in
(introspective) statements regarding behaviour. His running example is “walking
on a treadmill in a physical fitness centre for at least 30 minutes each day in
the forthcoming month”. It is not always clear how to distinguish between the
four aspects, a matter to which we will return further below. The labelling of
behaviour as well as the distinction of which of the four aspects to assign to a
part of a statement describing behaviour is subjective and therefore has to be
decided upon by a medical expert during the composition phase.On a higher level
abstract behavioural monitoring plans can be designed in advance and offered
to the expert during the composition level.

The subjectivity of defining which behaviour should be observed, and how
(and to which extend) opens the door for ambiguity. However, we are not making
any claims towards providing an objective way to assess behaviour and, as a
matter of fact, do not intend this to be understood as a subjective means to



monitor all patients. The medical expert composing the health care plan should
be familiar with the patient. Consider the case where the patient is known to be
someone who has in the past strictly followed a health regimen, but happens to
live in the outback or has a job that will make regular attendance of monitored
events at fixed times impossible or unlikely. Such a person would not be checked
for attending rehabilitation regularly. However, a patient with a known strong
tendency to drop out of health care plans should be monitored very closely on
regular attendance. In this example the requirement for the second subject to
be on time might actually be seen as another, additional, treatment. Generally,
heath care is always to a certain extend a subjective matter, as it is based on
the subjective impression of the provider and the subject under consideration.

However, in the context of this paper this is not of much relevance. We
merely provide well-defined and consistent means to the assess behaviour. The
classification, just like the eventual interpretation of the collected data, will
remain the task of the person investigating the behaviour. Ajzen himself points
out that there is this ambiguity and that there are many possible additions
to the basic TACT paradigm as proposed by him originally (e.g. “within next
month” can include “next Tuesday”). Within the scope of this paper the 4 TACT
aspects suffice, however, we point out that we neither expect these 4 nor the
TACT approach itself to be the optimal solution to all monitoring requirements
possible. As mentioned above, there are a number of theories in the field of health
care related psychology (some of which we mentioned) and the adopted theory
and paradigm will depend on the specific focus of the application, the Theory of
Planned Behaviour is our personally preferred choice, but it can be replaced by
the one the experts prefer. We pointed out earlier in Section 2.3 that the model
chosen should only be as complex as required by the application. If the experts
can agree on a simpler model than this is the one which should be selected. It is
important to have a solid basis for the proposed description of behaviour, which
specific theory is chosen is open for discussion.

The specifics of the project for which the formalism is eventually used will
determine the extent to which a finer grained distinction if TACT (or indeed
a different paradigm) is required; one of the first tasks in the design stage of
a project is for the designed, the expert composing the health plan and the
practitioner in the field to liaise on that matter and to reach a consensus. Fur-
thermore, complicated extensions will complicate the formalism presented in
this paper without adding value to the conceptual approach and are therefore
omitted here. For demonstration purposes the presented level will suffice and for
more demanding requirements the extensions might become very specific and
complex, but not conceptually different. Therefore we argue that the extend of
the presented material suffices for this article.

4.2 Formally stating and evaluating behaviour

Propositional logic (PL) is the logic of propositions, meaning it is only concerned
with statements and facts which can be decided to be either true or false. In our
context these are entries in the database. Using the usual [?] connectives not,



and, or, if . . . then and if, and only if we define a language that allows us the
expression of complex statements over these entries in a database.

On a relational model we have a succession of states, each representing a
set of propositional statements and thus model temporal statements . In the
context of a health care database we can then make statement relating to both
a temporal ordering of events (on the basis of the time stamp of an entry) as
well as to frequency and spread of events (on the basis of the date of the entry).

As far as the usability of such a formal basis is concerned it should be noted
that there is an algorithm which automatically translates the formal statement
into natural language (and vice versa). There is of course a limit on how com-
plex these sentences can be before they become very hard to read [?] but this
limitation is not imposed by the algorithm.

With respect to the monitoring of behaviour through a database, i.e. the
verification process of a formula under a specific valuation the following can be
said: The process of investigating whether a statement about a patient is true,
given a database, can be automated. The time this will take increases linearly
with the length of the statement [?], however the time it takes to check whether
a specific statement does make sense at all increases exponentially (worst case)
with the length of the statement. The latter will not be of importance to us and
used, if at all, only during the generation of a monitoring event. This indicates
that the complexity of the approach is well within the feasible limits.

4.3 Automating the monitoring of patient behaviour

The justification to formalise behaviour with respect to health care is on the basis
of two considerations: Firstly, there is a subjective bias, which the individual
patient will inevitably exhibit (being an individual with his / her own view on
the world). It does not matter whether the patient is actively trying to deceive
the health care official or whether it is happening subconsciously, if the patient
is asked to report on his or her behaviour a certain degree of subjective bias has
to be assumed. The second reason for investigating a formalism to describe and
subsequently assess human behaviour is the fact that a health plan will include
a number of practitioners which means that the patient’s behaviour, even if
it was observed, would be observed by a number of practitioners who can not
be burdened to report and collaborate on their personal experiences with each
individual patient. The traces a patient leaves when executing a health care plan
can be used as basis for the evaluation of his / her behaviour.

Observing patient behaviour The Intelligent Collaborative Care Manage-
ment (ICCM) project [?,?] calls for a central database to which all practitioners
involved in an individual patient’s care plan submit certain updates. We as-
sume therefore that the relevant aspects of the patient’s behaviour are already
recorded in a database and can be subjected to queries.

With respect to these queries two tasks can be distinguished:

1. To define which behaviour we are interested in, and



2. to enable the translation of such a behavioural statement into a query.

In addition, we add another requirement to the two tasks above, namely that
the described behaviour is stated in a manner that will allow a precise and
unambiguous evaluation. The person in charge of describing the behaviour might
not have received formal psychological training or might not be aware of the
underlying theory used in our approach. As a matter of fact it will have to be
expected that a number of people tasked with the design of monitoring queries
will have different views on the matter of how to describe behaviour.

Therefore, we will reference to one of the aforementioned theories from be-
havioural psychology, namely the theory of planned behaviour [?] (see Section
2.4), and use it as the basis for our formalism. The claim made here is not that
this is indeed the only right theory, but only that this is a theory which has been
investigated extensively in the field (cf. [?,?,?,?,?,?]) and as such can be used
as an example here. it will eventually be up to the practitioners tasked with the
design of this system to make the final decision on which theory they want to
base their monitoring processes on.

Using the work of Ajzen, we then can make use of the same author’s work on
questionnaire design [?] and adopt his TACT paradigm mentioned in Section 4.1.
As detailed in [?] (for the evaluation of cooperative versus competitive behaviour,
see below), complex behaviour statements can be formulated such that they can
be broken down to individual boolean queries, i.e. atomic statements which can
be verified to be either true or false. The process can be implemented efficiently
enough to be used by applications running on mobile phones [?,?] and thus lends
itself for the use as a server side based monitoring system.

3 exemplary scenarios We briefly outline 3 possible scenarios where the ap-
proach could be used. These are contrived but realistic, for more specific exam-
ples, including the seperation of high level / low level behaviours and the infinite
nesting of statements the reader is referred to [?,?].

1. A patient X in a rehabilitation center. In this setting the patient is in a
clinic for a duration of time during which he / she is expected to partake
in a number of exercises. These are staged and supervised by a number
of practitioners which may not have the access rights to few each others
files on the patient. The files are considered to be stored in some central
database which can be accessed by the monitoring system controlled by a
different practitioner, tasked with the organising of interventions. Exemplary
behaviours which could be expressed in the formalism are (e.g.):

– A: X has reported to the exercises (action) for cardiac monitoring
(context) for at least 2 sessions per day (target) in the last week (time).

– B: X has completed at least 4 (target) swimming exercises (action)
under supervision (context) in the last week (time).

– C: X has exhibited behaviour (action) A or B (target) in clinic
(context) this each week (time).



2. A patient Y is monitored for general aversion to adhere to health care ap-
pointments, maybe because the insurance suspects Y to be skiving or maybe
because his / her GP is worried about some general aversion to health care
exercises.
– D: Y has realised (action) his dentist appointment (target) on wednes-

day (time) to have plaque removed (context).
– E: Y was present (action) during doctor’s visit (target) for checkup

(context) on monday (time).
– F: Y has had an ECG (context) done (action) in GP’s clinic (target)

on a day last week (time).
– G: Y has exhibited (action) at least 2 (target) of the behaviours D

or E or F (context) in the last week (time).
3. An elderly patient Z is partaking in a trial for which an application is in-

stalled in his mobile phone (e.g. iPhone). There is some central care unit
which is enabled to monitor the overall day to day behaviour of Z :
– H: Z has been active (moving) action) for at least 30 minutes (target)

in the morning (0500h-1200h) (context) and in the afternoon (1201h-
2030h) (context).

– I: Z has been active outside (action) the apartment (target) for a total
of at least 120 minutes (context) today (time).

– J: Z has done either H or J (action) on at least 6 days (target) per
week (context) during the last month (time).

Proof of concept: investigating human behaviour in computer games
The proposed formalism has previously been investigated in the context of se-
rious games [?] where a prototype computer game has been used to show the
computational feasibility of the approach. The prototype implementation (for
mobile devices) produced data which was meeting the requirements set out in
[?] and could be evaluated completely automatically. As a side result it was
shown that the approach did not just enable the evaluation of individual be-
haviour but that overlapping behaviours patterns could be identified for large
groups of participants. The drawback of the proof of concept application is that
it was implemented to show the feasibility of the approach from a computational
point of view, for a proper psychological investigation the participation of ex-
perts from that field would be required. Analogously, this articles suggestion to
use the formalism in the monitoring of patient behaviour can only be shown
to be computationally feasible and according to standards in the field of health
care. The actual use and thus verification is a matter that relies on the inclusion
of the ongoing ICCM project.

5 Conclusion

This article argues for the adaption of an existing approach (used to enable
psychological evaluation of game playing behaviour) into the ICCM framework.
We have provided an argument for the need for intervention and supported the



claim that intervention can only be on the basis of monitoring the patient’s be-
haviour. We have provided the reader with a brief overview of models used in
the health care and behavioural psychology literature. We have referenced to
the formal definition of behaviour given in the context of our preferred model
and subsequently used it for a formalism which can be applied to a health care
database. The claim that this can be implemented has been supported by pre-
vious research into a similar application using the same formalism. Finally we
have provided the reader with examples of scenarios where such a monitoring
would be of use and have given exemplary behaviour within these scenarios.



A Delegation-Based Collaborative Robotic Framework ?

Patrick Doherty, Fredrik Heintz, and David Landén
Dept. of Computer and Information Science, Linköping University,
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Abstract. Collaborative robotic systems, such as unmanned aircraft systems,
are becoming technologically mature enough to be integrated into civil society.
To gain practical use and acceptance, a verifiable, principled and well-defined
foundation for interactions between human operators and autonomous systems is
needed. In this paper, we propose and specify such a formally grounded collab-
oration framework. Collaboration is formalized in terms of the concept of del-
egation and delegation is instantiated as a speech act. Task Specification Trees
are introduced as both a formal and pragmatic characterization of tasks and tasks
are recursively delegated through a delegation process. The delegation speech act
is formally grounded in the implementation using Task Specification Trees, task
allocation via auctions and distributed constraint solving. The system is imple-
mented as a prototype on Unmanned Aerial Vehicle systems and a case study
targeting emergency service applications is presented.

1 Introduction

Collaborative robotic systems, such as unmanned aircraft systems, are becoming tech-
nologically mature enough to be integrated into civil society. To gain practical use and
acceptance, a verifiable, principled and well-defined foundation for interactions be-
tween human operators and autonomous systems is needed. This interaction is going
to be mixed-initiative in nature. Humans will request help from robotic systems and
robotic systems will request help from humans when collaborating to achieve com-
plex missions in unstructured and challenging environments. In developing a princi-
pled framework for such sophisticated interactions, many interdependent conceptual
and pragmatic issues arise and need clarification both theoretically and pragmatically.

The complexity of developing deployed architectures for realistic collaborative ac-
tivities among robots that operate in the real world under time and space constraints is
very high. We tackle this complexity by working both abstractly at a formal logical level
and concretely at a systems building level. More importantly, the two approaches are
related to each other by grounding the formal abstractions into actual software imple-
mentations. This guarantees the fidelity of the actual system to the formal specification.

This paper presents a principled formal framework for collaborative robotic systems
based on delegation. The basis for the principled framework for interaction between
? This work is partially supported by grants from the Swedish Research Council (VR) Linnaeus
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human operators and robotic systems is a triad of fundamental, interdependent con-
ceptual issues: delegation, mixed-initiative interaction and adjustable autonomy. These
concepts are used to clarify, validate and verify different types of interaction between
robotic platforms and human operators. The concept of delegation is particularly impor-
tant and provides in a sense a bridge between mixed-initiative interaction and adjustable
autonomy.

Delegation – In any mixed-initiative interaction, humans may request help from
robotic systems and robotic systems may request help from humans. One can model
such requests as a form of delegation, Delegate(A,B, task, constraints), where A is
the delegating agent, B is the contractor, task is the task being delegated which consists
of a goal and possibly a plan to achieve the goal, and constraints represents a context
in which the request is made and the task should be carried out.

Adjustable Autonomy – In solving tasks in a mixed-initiative setting, the robotic
systems involved will have a potentially wide spectrum of autonomy, yet should only
use as much autonomy as is required for a task and should not violate the degree
of autonomy mandated by a human operator. One can begin to develop a principled
means of adjusting autonomy through the use of the task and constraint parameters
in Delegate. A task delegated with only a goal and no plan, with few constraints, al-
lows the robot to use much of its autonomy in solving the task, whereas a task specified
as a sequence of actions and many constraints allows only limited autonomy.

Mixed-Initiative Interaction – By mixed-initiative, we mean that interaction and
negotiation between a robotic system, such as a UAV, and a human will take advan-
tage of each of their skills, capacities and knowledge in developing a mission plan,
executing the plan and adapting to contingencies during the execution of the plan.
Mixed-initiative interaction involves a very broad set of issues, both theoretical and
pragmatic. One central part of such interaction is the ability of a ground operator (GOP)
to be able to delegate tasks to a UAV, Delegate(GOP,UAV, task, constraints) and
in a symmetric manner, the ability of a UAV to be able to delegate tasks to a GOP,
Delegate(UAV,GOP, task, constraints). Issues pertaining to safety, security, trust,
etc., have to be dealt with in the interaction process and can be formalized as particular
types of constraints associated with a delegated task.

2 Delegation as a Speech Act

Delegation is central to the conceptual and architectural framework we propose. Conse-
quently, formulating an abstraction of the concept with a formal specification amenable
to pragmatic grounding and implementation in a software system is paramount. As a
starting point, Falcone & Castelfranchi provide an illuminating, but informal discussion
about delegation as a concept from a social perspective [4, 10]. Their approach to dele-
gation builds on a BDI model of agents, that is, agents having beliefs, goals, intentions,
and plans [5]. However, their specification lacks a formal semantics for the operators
used. Based on intuitions from their work, we have previously provided a formal charac-
terization of their concept of strong delegation using a communicative speech act with
pre- and post-conditions which update the belief states associated with the delegator
and contractor, respectively [9]. Strong delegation means that the delegation is explicit.



The formal characterization of the speech act is expressed in KARO [12]. The KARO
formalism is an amalgam of dynamic logic and epistemic/doxastic logic, augmented
with additional modal operators to deal with the motivational aspects of agents.

The target for delegation is a task. The Merriam-Webster dictionary definition of
a task is ”a usually assigned piece of work often to be finished within a certain time”.
Assigning a piece of work to someone by someone is in fact what delegation is about. In
computer science, a piece of work in this context is generally represented as a composite
action. There is also often a purpose to assigning a piece of work to be done. This
purpose is generally represented as a goal, where the intended meaning is that a task is a
means of achieving a goal. We will require both a formal specification of a task at a high-
level of abstraction in addition to a more data-structural specification flexible enough to
be used pragmatically in an implementation. For the formal specification, the definition
provided by Falcone & Castelfranchi will be used. For the data-structure specification
used in the implementation, Task Specification Trees will be defined in a Section 3.

Falcone & Castelfranchi define a task as a pair τ = (α, φ) consisting of a goal φ,
and a plan α for that goal, or rather, a plan and the goal associated with that plan. Con-
ceptually, a plan is a composite action. At this abstraction level, the definition of a task
is purposely left general. For instance, timing and resource issues are abstracted away
although they will be dealt with explicitly in the implementation.

From the perspective of adjustable autonomy, the task definition is quite flexible. If
α is a single elementary action with the goal φ implicit and correlated with the post-
condition of the action, the contractor has little flexibility as to how the task will be
achieved. On the other hand, if the goal φ is specified and the plan α is not provided,
then the contractor has a great deal of flexibility in achieving the goal. There are many
variations between these two extremes and these variations capture the different levels
of autonomy and trust exchanged between two agents.

Paraphrasing Falcone & Castelfranchi into KARO terms, we consider a notion of
strong delegation represented by a speech act S −Delegate(A, B, τ ) of A delegating
a task τ = (α, φ) to B, where α is a possible plan and φ is a goal.

Preconditions:
(1) GoalA(φ)
(2) BelACanB(τ) (Note that this implies BelABelB(CanB(τ)))
(3) BelA(Dependent(A,B, τ))
(4) BelBCanB(τ)

Postconditions:
(1) GoalB(φ) and BelBGoalB(φ)
(2) CommittedB(α) (also written CommittedB(τ))
(3) BelBGoalA(φ)
(4) CanB(τ) (and hence BelBCanB(τ), and by (1) also IntendB(τ))
(5) IntendA(doB(α))
(6) MutualBelAB(”the statements above” ∧ SociallyCommitted(B,A, τ))1

This particular characterization of delegation follows Falcone & Castelfranchi closely.
One can easily foresee other constraints one might add or relax in respect to the basic
specification resulting in other variants of delegation [6, 7].

1 A discussion pertaining to the semantics of non-KARO modal operators may be found in [9].



3 Task Specification Trees

Both the declarative and procedural representation and semantics of tasks are central to
the delegation process. The relation between the two representations is also essential if
one has the goal of formally grounding the delegation process in the system implemen-
tation. A task was previously defined abstractly as a pair (α, φ) consisting of a com-
posite action α and a goal φ. In this section, we introduce a formal task specification
language which allows us to represent tasks as Task Specification Trees (TST’s).

For our purposes, the task representation must be highly flexible, sharable, dynam-
ically extendible, and distributed in nature. Tasks need to be delegated at varying levels
of abstraction and also expanded and modified because parts of complex tasks can be
recursively delegated to different robotic agents which are in turn expanded or modified.
Consequently, the structure must also be distributable. Additionally, a task structure is
a form of compromise between an explicit plan in a plan library at one end of the spec-
trum and a plan generated through an automated planner [15, 14] at the other end of the
spectrum. The task representation and semantics must seamlessly accommodate plan
representations and their compilation into the task structure. Finally, the task represen-
tation should support the adjustment of autonomy through the addition of constraints or
parameters by agents and human resources.

The task specification formalism should allow for the specification of various types
of task compositions, including sequential and concurrent, in addition to more general
constructs such as loops and conditionals. The task specification should also provide a
clear separation between tasks and platform specific details for handling the tasks. The
specification should focus on what should be done and hide the details about how it
could be done by different platforms.

In the general case, A TST is a declarative representation of a complex multi-agent
task. In the architecture realizing the delegation framework a TST is also a distributed
data structure. Each node in a TST corresponds to a task that should be performed.
There are six types of nodes: sequence, concurrent, loop, select, goal, and elementary
action. All nodes are directly executable except goal nodes which requires some form
of expansion or planning to generate a plan for achieving the goal.

Each node has a node interface containing a set of parameters, called node param-
eters, that can be specified for the node. The node interface always contains a platform
assignment parameter and parameters for the start and end times of the task, usually
called P , TS and TE . These parameters can be part of the constraints associated with the
node called node constraints. A TST also has tree constraints, expressing precedence
and organizational relations between the nodes in the TST. Together the constraints
form a constraint network covering the TST. In fact, the node parameters function as
constraint variables in a constraint network, and setting the value of a node parameter
constrains not only the network, but implicitly, the degree of autonomy of an agent.

Consider a small scenario where the mission is to first scan AreaA and AreaB, and
then fly to Dest4. A TST describing this mission is shown in Figure 1. Nodes N0 and
N1 are composite action nodes, sequential and concurrent, respectively. Nodes N2, N3

and N4 are elementary action nodes. Each node specifies a task and has a node inter-
face containing node parameters and a platform assignment parameter. In this case only
temporal parameters are shown representing the intervals tasks should be completed in.



Fig. 1. An example TST.

3.1 TST Syntax

The syntax of a TST specification has the following BNF:
TST ::= NAME (’(’ VARS ’)’)? ’=’ (with VARS)? TASK (where CONS)?
TSTS ::= TST | TST ’;’ TSTS
TASK ::= <elementary action> | <goal> | sequence TSTS | concurrent TSTS

while <cond> TST | if <cond> then TST else TST
VAR ::= <var name> | <var name> ’.’ <var name>
VARS ::= VAR | VAR ’,’ VARS
CONSTRAINT ::= <constraint>
CONS ::= CONSTRAINT | CONSTRAINT and CONS
ARG ::= VAR | <value>
ARGS ::= ARG | ARG ’,’ ARGS
NAME ::= <node name>

Where <elementary action> is an elementary action name(p0, ..., pN ), <goal> is
a goal name(p0, ..., pN ), p0, ..., pN are parameters, and <cond> is a FIPA ACL query
message requesting the value of a boolean expression..

The TST clause introduces the main recursive pattern. The right hand side of the
equality provides the general pattern of providing a variable context for a task (using
with) and a set of constraints (using where) over the variables previously introduced.
Example: Consider the TST depicted in Figure 1. The nodes N0 to N4 have the task
names τ0 to τ4 associated with them. This TST contains two composite actions, se-
quence (τ0) and concurrent (τ1), and two elementary actions, scan (τ2, τ3) and flyto (τ4).

τ0(TS0 ,TE0) =
with TS1 , TE1 , TS4 , TE4 sequence
τ1(TS1 ,TE1) =

with TS2 , TE2 , TS3 , TE3 concurrent
τ2(TS2 ,TE2) = scan(TS2 ,TE2 ,Speed2,AreaA);



τ3(TS3 ,TE3) = scan(TS3 ,TE3 ,Speed3,AreaB)
where consτ1 ;

τ4(TS4 ,TE4) = flyto(TS4 ,TE4 ,Speed4,Dest4)
where consτ0

consτ0 = TS0 ≤ TS1 ∧ TS1 < TE1 ∧ TE1 ≤ TS4 ∧ TS4 < TE4 ∧ TE4 ≤ TE0

consτ1 = TS1 ≤ TS2∧TS2 < TE2∧TE2 ≤ TE1∧TS1 ≤ TS3∧TS3 < TE3∧TE3 ≤ TE1

3.2 TST Semantics

A TST specifies a complex task (composite action) under a set of tree-specific and
node-specific constraints which together are intended to represent the context in which
a task should be executed in order to meet the task’s intrinsic requirements, in addition
to contingent requirements demanded by a particular mission. The leaf nodes of a TST
represent elementary actions used in the definition of the composite action the TST rep-
resents and the non-leaf nodes essentially represent control structures for the ordering
and execution of the elementary actions. The semantic meaning of non-leaf nodes is
essentially application independent, whereas the semantic meaning of the leaf nodes
are highly domain dependent. They represent the specific actions or processes that an
agent will in fact execute. The procedural correlate of a TST is a program.

During the delegation process, a TST is either provided or generated to achieve a
specific set of goals, and if the delegation process is successful, each node is associated
with an agent responsible for the execution of that node.

Informally, the semantics of a TST node will be characterized in terms of whether
an agent believes it can successfully execute the task associated with the node in a given
context represented by constraints, given its capabilities and resources. This can only be
a belief because the task will be executed in the future and even under the best of con-
ditions, real-world contingencies may arise which prevent the agent from successfully
completing the task. The formal semantics for TST nodes will be given in terms of the
logical predicate Can() which we have used previously in the formal definition of the
S-Delegate speech act, although in this case, we will add additional arguments. This is
not a coincidence since our goal is to ground the formal specification of the S-Delegate
speech act into the implementation in a very direct manner.

Recall that in the formal semantics for the speech act S-Delegate (described in Sec-
tion 2), the logical predicate CanX(τ) is used to state that an agent X has the capa-
bilities and resources to achieve task τ . An important precondition for the successful
application of the speech act is that the delegator (A)believes in the contractor’s (B)
ability to achieve the task τ , (2): BelACanB(τ). Additionally, an important result of
the successful application of the speech act is that the contractor actually has the capa-
bilities and resources to achieve the task τ , (4): CanB(τ). In order to directly couple
the semantic characterization of the S-Delegate speech act to the semantic characteriza-
tion of TST’s, we will assume that a task τ = (α, φ) in the speech act characterization
corresponds to a TST. Additionally, the TST semantics will be characterized in terms
of a Can predicate with additional parameters to incorporate constraints.

In this case, the Can predicate is extended to include as arguments a list [p1, . . . , pk]
denoting all node parameters in the node interface together with other parameters pro-



vided in the (with VARS) construct2 and an argument for an additional constraint set
cons provided in the (where CONS) construct.3 Observe that cons can be formed incre-
mentally and may in fact contain constraints inherited or passed to it through a recursive
delegation process. The formula Can(B, τ, [ts, te, . . .], cons) then asserts that an agent
B has the capabilities and resources for achieving task τ if cons, which also contains
node constraints for τ , is consistent. The temporal variables ts and te associated with
the task τ are part of the node interface which may also contain other variables which
are often related to the constraints in cons.

Determining whether a fully instantiated TST satisfies its specification, will now be
equivalent to the successful solution of a constraint problem in the formal logical sense.
The constraint problem in fact provides the formal semantics for a TST. Constraints
associated with a TST are derived from a reduction process associated with the Can()
predicate for each node in the TST. The generation and solution of constraints will oc-
cur on-line during the delegation process. Let us provide some more specific details.
In particular, we will show the very tight coupling between the TST’s and their logical
semantics.

The basic structure of a Task Specification Tree is:

TST ::= NAME (’(’ VARS1 ’)’)? ’=’ (with VARS2)? TASK (where CONS)?

where VARS1 denotes node parameters, VARS2 denotes additional variables used in the
constraint context for a TST node, and CONS denotes the constraints associated with a
TST node. Additionally, TASK denotes the specific type of TST node. In specifying a
logical semantics for a TST node, we would like to map these arguments directly over
to arguments of the predicate Can(). Informally, an abstraction of the mapping is

Can(agent1, TASK, V ARS1 ∪ V ARS2, CONS) (1)

The idea is that for any fully allocated TST, the meaning of each allocated TST node
in the tree is the meaning of the associated Can() predicate instantiated with the TST
specific parameters and constraints. The meaning of the instantiated Can() predicate
can then be associated with an equivalent Constraint Satisfaction Problem (CSP) which
turns out to be true or false dependent upon whether that CSP can be satisfied or not.
The meaning of the fully allocated TST is then the aggregation of the meanings of each
individual TST node associated with the TST, in other words, a conjunction of CSP’s.

One would also like to capture the meaning of partial TST’s. The idea is that as
the delegation process unfolds, a TST is incrementally expanded with additional TST
nodes. At each step, a partial TST may contain a number of fully expanded and allo-
cated nodes in addition to other nodes which remain to be delegated. In order to capture
this process semantically, one extends the semantics by providing meaning for an unal-
located TST node in terms of both a Can() predicate and a Delegate() predicate:

∃agent2 Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (2)

2 For reasons of clarity, we only list the node parameters for the start and end times for a task,
[ts, te, . . .], in this article.

3 For pedagogical expediency, we can assume that there is a constraint language which is reified
in the logic and is used in the CONS constructs.



Either agent1 can achieve a task, or (exclusively) it can find an agent, agent2, to which
the task can be delegated. In fact, it may need to find one or more agents if the task to
be delegated is a composite action.

Given the S-Delegate(agent1, agent2, TASK) speech act semantics, we know
that if delegation is successful then as one of the postconditions of the speech act,
agent2 can in fact achieve TASK (assuming no additional contingencies):

Delegate(agent1, agent2, TASK, V ARS1 ∪ V ARS2, CONS) (3)
→ Can(agent2, TASK, V ARS1 ∪ V ARS2, CONS)

Consequently, during the computational process associated with delegation, as the
TST expands through delegation where previously unallocated nodes become allocated,
each instance of the Delegate() predicate associated with an unallocated node is re-
placed with an instance of the Can() predicate. This recursive process preserves the
meaning of a TST as a conjunction of instances of the Can() predicate which in turn
are compiled into a (interdependent) set of CSPs and which are checked for satisfaction
using distributed constraint solving algorithms.
Sequence Node For a sequence node, the child nodes should be executed in sequence,
from left to right, during the execution time of the sequence node.
Can(B,S(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)4

where cons = {ts ≤ t1∧(
∧n

i=1 t2i−1 < t2i)∧(
∧n−1

i=1 t2i ≤ t2i+1)∧ t2n ≤ te}∪cons′

Concurrent Node For a concurrent node, the child nodes should be executed during
the time interval of the concurrent node.
Can(B,C(α1, ..., αn), [ts, te, . . .], cons) ↔
∃t1, . . . , t2n, . . .

∧n
k=1(Can(B,αk, [t2k−1, t2k, . . .], consk)

∨ ∃akDelegate(B, ak, αk, [t2k−1, t2k, . . .], consk))
∧ consistent(cons)
where cons = {

∧n
i=1 ts ≤ t2i−1 < t2i ≤ te} ∪ cons′.

Observe that the constraint sets consk in the semantics for the concurrent and se-
quential nodes are simply the constraint sets defined in the (where CONS) constructs
for the child nodes included with the sequential or concurrent nodes, respectively. Ad-
ditionally, the definition of the constraint set cons in the semantics for the concurrent
and sequential nodes contains the structural temporal constraints which define sequence
and concurrency, respectively, together with possibly additional constraints, denoted by
cons′ that one may want to include in the constraint set. Note also, that we are assuming
that scoping and overloading issues for variables in embedded TST structures are dealt
with appropriately in the recursive expansion of the Can() predicates in the definitions.
Selector Node Compared to a sequence or concurrent node, only one of the selector
node’s children will be executed, which one is determined by a test condition in the se-
lector node. The child node should be executed during the time interval of the selector

4 The predicate consistent() has the standard logical meaning and checking for consistency
would be done through a call to a constraint solver which is part of the architecture.



node. A selector node is used to postpone a choice which can not be known when the
TST is specified. When expanded at runtime, the net result can be any of the node types.

Loop Node A loop node will add a child node for each iteration the loop condition al-
lows. In this way the loop node works as a sequence node but with an increasing number
of child nodes which are dynamically added. Loop nodes are similar to selector nodes,
they describe additions to the TST that can not be known when the TST is specified.
When expanded at runtime, the net result is a sequence node.

Goal A goal node is a leaf node which can not be directly executed. Instead it has
to be expanded by using an automated planner or related planning functionality. After
expansion, a TST branch representing the generated plan is added to the original TST.

Can(B,Goal(φ), [ts, te, . . .], cons) ↔
∃α (GenerateP lan(B,α, φ, [ts, te, . . .], cons) ∧ Can(B,α, [ts, te, . . .], cons))
∧ consistent(cons)

Observe that the agent B can generate a partial or complete plan α and then further
delegate execution or completion of the plan recursively via the Can() statement in the
second conjunct.

Elementary Action An elementary action node is a leaf node that specifies a domain-
dependent action. The semantics of Can for an elementary action is platform depen-
dent.

Can(B, τ, [ts, te, . . .], cons, . . .) ↔
Capabilities(B, τ, [ts, te, . . .], cons) ∧Resources(B, τ, [ts, te, . . .], cons)
∧ consistent(cons)

There are two parts to the definition of Can for an elementary action node. These
are defined in terms of a platform specification which is assumed to exist for each agent
potentially involved in a collaborative mission. The platform specification has two com-
ponents.

The first, specified by the predicate Capabilities(B, τ, [ts, te, . . .], cons) is intended
to characterize all static capabilities associated with platform B that are required as
capabilities for the successful execution of τ . If platform B has the necessary static
capabilities for executing task τ in the interval [ts, te] with constraints cons, then this
predicate will be true.

The second, specified by the predicate Resources(B, τ, [ts, te, . . .], cons) is in-
tended to characterize dynamic resources such as fuel and battery power, which are con-
sumable, or cameras and other sensors which are borrowable. Since resources generally
vary through time, the semantic meaning of the predicate is temporally dependent.

Resources for an agent are represented as a set of parameterized resource constraint
predicates, one per task. The parameters to the predicate are the task’s parameters, in
addition to the start time and the end time for the task. For example, assume there
is a task flyto(dest, speed). The resource constraint predicate for this task would be
flyto(ts, te, dest, speed). The resource constraint predicate is defined as a conjunction
of constraints, in the logical sense. As an example, consider the task flyto(dest, speed)
with the corresponding resource constraint predicate flyto(ts, te, dest, speed). The
constraint model associated with the task for a particular platform P1 might be:

te = ts + distance(pos(ts ,P1 ),dest)
speed ∧ (SpeedMin ≤ speed ≤ SpeedMax)



4 Allocating Tasks to Platforms

The Delegate speech act requires that the delegating agent believes that the contractor
has the ability to achieve the task. One central problem is therefore to find an agent
which can achieve a particular, potentially very complex, task. When a task becomes
complex it is highly likely that no single agent can achieve it alone. Since an agent
can achieve a task by delegating parts of it to another agent, recursive delegation can
solve the problem. The problem is therefore to find a set of agents who together can
achieve a complex task with time, space and resource constraints through recursive del-
egation. This can be seen as a task allocation problem. The problem is to allocate tasks
to platforms and assign values to parameters such that each task can be carried out by
its assigned platform and all the constraints are satisfied.

When a platform is assigned an elementary action node in a TST, the constraints
associated with that action are instantiated and added to the constraint store of the plat-
form. The resource constraint is connected to the constraint problem defined by the
TST through the node parameters. A platform can be allocated more than one node in a
TST. This may introduce implicit dependencies between the actions since each alloca-
tion adds resource constraints to the constraint problem of the platform. There can for
example be a shared resource that both actions use.

A complete allocation is an allocation which allocates every node in a TST to a
platform. A completely allocated TST defines a constraint problem that represents all
the constraints for this particular allocation of the TST. As the constraints are dis-
tributed among the platforms it is a distributed constraint problem. If the constraint
problem is consistent then a valid allocation has been found and each solution can be
seen as a potential execution schedule of the TST. The consistency of an allocation can
be checked by a distributed constraint satisfaction problem (DCSP) solver such as the
Asynchronous Weak Commitment Search (AWCS) algorithm [21] or ADOPT [18].

However, solving the task allocation problem as a single DCSP problem is cur-
rently not possible since the problem is too large even for modest TSTs. Instead we
have developed a heuristic search approach for allocating tasks to platforms which uses
marginal cost auctions to guide the search [16]. This allows reasonably large TSTs to
be allocated.

Example The constraint problem for a TST is derived by recursively reducing the Can
predicate statements associated with each task node with formally equivalent expres-
sions, beginning with the top-node τ0 until the logical statements reduce to a constraint
network. Below, we show the reduction of the complex task α0 represented by the TST
in Figure 1 when there are three platforms, P0, P1 and P2, with the appropriate capa-
bilities, P0 has been delegated the composite action α0 and has recursively delegated
α2 and α4 to P1 and α3 to P2 while keeping α1. αi is the composite action described
by the TST rooted in node τi.
Can(P0, α0, [ts0 , te0 ], cons) = Can(P0, S(α1, α4), [ts0 , te0 ], cons) ↔
∃ts1 , te1 , ts4 , te4(Can(P0, α1, [ts1 , te1 ], consP0)∨∃a1Delegate(P0, a1, α1, [ts1 , te1 ], consP0))

∧(Can(P0, α4, [ts4 , te4 ], consP0)∨∃a2Delegate(P0, a2, α4, [ts4 , te4 ], consP0))

Let us focus on the reduction of first element in the sequence, α1. Since P0 has not
delegated α1 we expand the Can predicate one more step:



Fig. 2. The completely allocated and reduced TST showing the interaction between the TST con-
straints and the platform dependent constraints.

Can(P0, α1, [ts1 , te1 ], consP0) = Can(P0, C(α2, α3), [ts1 , te1 ], consP0) ↔
∃ts2 , te2 , ts3 , te3(Can(P0, α2, [ts2 , te2 ], consP0)∨∃a1Delegate(P0, a1, α2, [ts2 , te2 ], consP0))

∧(Can(P0, α3, [ts3 , te3 ], consP0)∨∃a2Delegate(P0, a2, α3, [ts3 , te3 ], consP0))

Since P0 has recursively delegated α2 to P1 and α3 to P2 the Delegate predicates can
be reduced to Can predicates:

Can(P0, α1, [ts1 , te1 ], consP0) = Can(P0, C(α2, α3), [ts1 , te1 ], consP0) ↔
∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2 ], consP1) ∧ Can(P2, α3, [ts3 , te3 ], consP2)

Since P0 has recursively delegated α4 to P1 we can complete the reduction and end up
with the following:

Can(P0, α0, [ts0 , te0 ], cons) = Can(P0, S(C(α2, α3), α4), [ts0 , te0 ], cons) ↔
∃ts1 , te1 , ts4 , te4

∃ts2 , te2 , ts3 , te3Can(P1, α2, [ts2 , te2 ], consP1) ∧ Can(P2, α3, [ts3 , te3 ], consP2)
∧ Can(P1, α4, [ts4 , te4 ], consP1)

The remaining tasks are elementary actions and consequently the definition of Can
for these are platform dependent. When a platform is assigned an elementary action
node the resource constraints for that action is added to the local constraint store. The
local constraints are connected to the distributed constraint problem through the node
parameters of the assigned node. All remaining Can predicates in the recursion are
replaced with constraint sub-networks associated with specific platforms as shown in



Figure 2. To check that distributed constraint problem is consistent we use local CSP
solvers together with a DCSP solver.

5 A Collaborative UAS Case Study

One important application area for unmanned aircraft systems is to assist emergency
services. Here we consider an emergency services assistance scenario where an un-
manned aircraft system (UAS) should scan a disaster area for injured people and deliver
relief packages to them. In the first part of the scenario, the UAS scans the disaster area
and creates a map over the locations of the identified survivors [20]. In the second part,
the UAS delivers boxes with supplies to the survivors. To transport a box it can either be
carried directly by an unmanned aircraft or it can be loaded onto a carrier which is trans-
ported to a key position from where the boxes can be distributed to their final locations.

In this particular scenario, there is a UAS consisting of two platforms (P1 and P2)
and an operator (OP1) which has found five survivors (S1–S5). The UAS has access
to a carrier. Both platforms have the capability to transport a single box while only
platform P1 has the capability to transport a carrier. Both platforms also have the capa-
bilities to coordinate sequence and concurrent tasks. At the same time another operator,
OP2, is performing a mission with the platforms P3 and P4 north of the survivors. P3

is currently idle and OP1 is therefore allowed to borrow it if necessary.
From the map, a TST is created that will achieve the goal of distributing relief pack-

ages to all survivors (Figure 3). The TST contains a sub-TST (N1–N12) for loading a
carrier with four boxes (N2–N6), delivering the carrier (N7), and unloading the pack-
ages from the carrier and delivering them to the survivors (N8–N12). A package must
also be delivered to a survivor (S5) far away from where most of the survivors were
found (N13). The delivery of packages can be done concurrently to save time, while the
loading, moving, and unloading of the carrier is a sequential operation.

To achieve the mission, OP1 delegates the TST to P1. P1 is now responsible for N0

and for recursively delegating the nodes in the TST that it is not able to do itself. The
allocation algorithm traverses the TST in depth-first order. P1 will first find a platform
for node N1. When the entire sub-TST rooted in N1 is allocated then it will find an
allocation for node N13. Nodes N1 and N2 are composite action nodes which have the
same marginal cost for all platforms. P1 therefore allocates N1 and N2 to itself. The
constraints from nodes N0–N2 are added to the constraint network of P1. The network
is consistent since the composite action nodes describe an unrestricted schedule.

Below node N2 are four elementary action nodes. Since P1 is responsible for N2, it
tries to allocate them one at the time. For elementary action nodes, the choice of plat-
form is the key to a successful allocation. The candidates for node N3 are platforms
P1 and P2. P1 is closest to the package depot and therefore gives the best bid for the
node. P1 is allocated to N3. For node N4, platform P1 is still the best choice, and it is
allocated to N4. Given the new position of P1 after being allocated N3 and N4, P2 is
now closest to the depot resulting in the lowest bid and is allocated to N5 and N6. The
schedule initially defined by nodes N0–N2 is now also constrained by how long it takes
for P1 and P2 to carry out action nodes N3–N6. The constraint network is distributed
among platforms P1 and P2.



Fig. 3. The TST for the supply delivery case study.

The next node for P1 to allocate is N7, the carrier delivery node. P1 is the only
platform that has the fly carrier capabilities and is allocated the node. Continuing with
nodes N8–N12, the platform with the lowest bid for each node is platform P1, since it is
in the area after delivering the carrier. P1, is therefore allocated all the nodes N8–N12.
The last node, N13, is allocated to platform P2 and the allocation is complete.

The only non-local information used by P1 was the capabilities of the available plat-
forms which was gathered through a broadcast. Everything else is local. The bids are
made by each platform based on local information and the consistency of the constraint
network is checked through distributed constraint satisfaction techniques.

The total mission time is 58 minutes, which is much longer than the operator ex-
pected. Since the constraint problem defined by the allocation of the TST is distributed
between the platforms, it is possible for the operator to modify the constraint problem
by adding more constraints, and thereby potentially changing the task allocation. The
operator puts a time constraint on the mission, restricting the total time to 30 minutes.

The added time constraint makes the current allocation inconsistent. The last allo-
cated node must therefore be re-allocated. However, no platform for N13 can make the
allocation consistent, not even the unused platform P3. Backtracking starts. Platform
P1 is in charge, since it is responsible for allocating node N13. The N1 sub-network is
disconnected. Trying different platforms for node N13, P1 discovers that N13 can be
allocated to P2. Since removing all constraints due to the allocation of node N1 and its
children made the problem consistent, the backjump point is in the sub-TST rooted in
N1. Removing the allocations for sub-tree N8 does not make the problem consistent
so further backjumping is necessary. Notice that with a single consistency check the
algorithm could deduce that no possible allocation of N8 and its children can lead to



a consistent allocation of N13. Removing the allocation for node N7 does not make
a difference either. However, removing the allocations for the sub-TST N2 makes the
problem consistent. When finding an allocation of N13 after removing the constraints
from N6 the allocation process continues from N6. When a consistent allocation is
found, P1 informs the operator. The operator inspects the allocation and approves it,
thereby confirming the delegation and starting the execution of the mission.

6 Related Work

Due to the multi-disciplinary nature of the work considered here, there is a vast amount
of related work too numerous to mention. In addition to the work referenced in the
article, we instead consider a number of representative references from the areas of
cooperative multi-robot systems and task allocation from a robotic perspective.

Cooperative multi-robot systems have a long history in robotics, multi-agent sys-
tems and AI in general. One early study presented a generic scheme based on a dis-
tributed plan merging process [2]. Another early work is ALLIANCE [19], which is a
behavior based framework for instantaneous task assignment of loosely coupled sub-
tasks with ordering dependencies. M+ [3] integrates mission planning, task refinement
and cooperative task allocation. It uses a task allocation protocol based on the Contract
Net protocol with explicit pre-defined capabilities and task costs. The M+CTA frame-
work [1] is an extension of M+, where each robot has an individual plan and tasks are
initially decomposed and then allocated. After the planning step, robots negotiate with
each other to adapt their plans in the multi-robot context. The MURDOCH system [11]
uses a publish/subscribe protocol for communication and an auction mechanism for
task allocation. The result is very similar to the Contract Net protocol. Other Contract-
Net and auction-based systems similar to those described above are COMETS [17],
Hoplites [13] and TAEMS [8].

7 Conclusions

We have proposed and specified a formally grounded collaboration framework for robotic
systems and human-operated ground control systems. Collaboration is formalized in
terms of the concept of delegation and delegation is instantiated as a speech act. The
formal characterization of the Speech act has a BDI flavor and KARO, which is an amal-
gam of dynamic logic and epistemic/doxastic logic, is used in the formal characteriza-
tion. Tasks are central to the delegation process. Consequently, a flexible, specification
language for tasks is introduced in the form of Task Specification Trees. Task Specifica-
tion Trees provide a formal bridge between the abstract characterization of delegation
as a speech act and its implementation in the collaborative system shell. Using this
idea, the semantics of both delegation and tasks is grounded in the implementation in
the form of a distributed constraint problem which when solved results in the allocation
of tasks and resources to agents. We show the potential of this approach by targeting a
real-life scenario consisting of UAV’s and human resources in an emergency services
application. The results described here should be considered a mature iteration of many



ideas both formal and pragmatic which will continue to be pursued in additional iter-
ations as future work. We will for example explore the expansion of select and loop
nodes in much more detail.
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Abstract. Agreements define the roles (e.g., responsibilities, objectives and tasks)
of agents in executing a collaborative plan. Plans often need to be modified due
to changing conditions of the social and natural environment (e.g., governmen-
tal regulations, collaborators’ time, resources and objectives). With these plan
changes, agreements also need to be revised which is a complex process. This
process includes evaluating the participation in a plan, renegotiating the terms
and conditions, reassessing agreements made with other agents, and predicting
the exact transaction cost of these changes. In many domains, individuals are of-
ten not able to efficiently manage agreements and make sure they are compliant.
This is because individuals are bounded rational – they are not able to completely
capture and process the full complexity of issues that would guaranty a decision
to be optimal (e.g., taking actions towards achieving compliant agreements that
are reached efficiently). An individual’s decision making process is limited by its
cognitive abilities, the time available to capture and process information, and the
incompleteness and uncertainty associated with the information itself. This posi-
tion paper is a first step towards raising key questions and issues associated with
building a comprehensive approach to assist bounded rational actors in managing
agreements. The collaborative management of a patient with a chronic disease is
used as an example.

1 Introduction

Planned activities often need to be modified to achieve agreed goals. We consider plans
where several parties perform activities to achieve joint goals (and call those collab-
orative plans). If a collaborative plan is changed (which happens frequently in many
domains), then the participants are often required to change the underlying agreements,
too. If not managed well, significant costs can be incurred by rearranging agreements
as well as the potential to leave a plan invalid (not compliant). In some cases, if only
few activities in a plan are changed, a very large number of agreements may have to be
changed (it may depend on how many individuals are affected by the plan change). The
challenge is to cope with the bounded rationality of individual actors as this is a pri-
mary reason of optimal decisions not being made. Bounded rational actors have limited
cognitive abilities, insufficient time, and incomplete/uncertain information available to
make a decision, and hence, will influence the extend to which a compliant and efficient
agreement change can occur. This requires a system that minimises transaction cost and
ensures compliance when agreement changes are required. A transaction is represented



by an exchange of information or activity made in relation to changing an agreement
structure. The cost of a transaction can vary depending on how significant the changes
are. For example, agreements of one individual or agreements of one activity in a plan,
or changing agreements of the entire team or all activities. A more advanced approach
is to consider heuristics how much other providers are influenced by changes made to
the care plan.

One of the many practical domains in which the above is an issue is the collaborative
care management of chronic disease [6]. A team of health care professionals performs
a plan to care for a patient with a chronic disease aiming to maintain a healthy life and
reduce cost to the health care system. The plan itself may need to be updated frequently
due to changes in best practice guidelines, government regulations and a patient’s health
status to which a care plan has to comply with. When a plan is updated, each caregiver
needs to reassess and renegotiate his/her role in the plan to make sure the patient can
still be treated effectively and efficiently. For example, requirement of a collaborator’s
involvement (is a podiatrist services still required in a new plan?), review a collabora-
tors’s ability to perform a requested task (“loosing weight” activity is removed from a
plan for a still obese patient, a podiatrist will not be able to guarantee the maintenance
of healthy limbs), renegotiate the terms and conditions of financial outcomes (podiatrist
receives rebate four times a year for a “foot review”, but new plan consists of only two
“foot reviews”, hence less income for the podiatrist), and the validity of the plan (“tak-
ing a blood sample” is a legal requirement before giving a “nutrition education”). The
complexity comes in as health care providers need to frequently review and possibly
modify their role in executing a plan. If not managed well, plan changes can lead to a
poor execution or non-compliance.

One main research question of interest is: How to effectively assist the management
of agreement changes in collaborative care settings if the agreement parties are bounded
rational (and potentially make suboptimal decisions regarding the efficiency and effec-
tiveness of changing an agreement)? Developing “intelligent assistance” is well studied
in the literature [10, 5]. Our interest is in building systems different in the following
way.

– Assist in managing agreed activities, not their performance. The agent is not as-
sisting in performing an individual’s task (e.g., to help a GP to diagnose a patient’s
disease). Instead, an agent assists an actor in managing tasks. An actor has limited
cognitive abilities to achieve and manage its tasks (due to complex and dynamic
world), and an agent can extend this rationality by knowing how to achieve and
manage the actor’s task. Both, the agent and actor know the commitments of the
actor, but only the actor acts, and the agent advises.

– Enable exchange with other agents, not only one actor. An agent aims for ac-
tivities to be all in tune and agreed across all actors. An agent connects with other
agents to exchange relevant information that makes the maintainance of agreements
possible. This is different to connecting an agent to only one actor.

– Design towards group oriented outcomes. The behaviour of an agent is designed
to assist the management of tasks associated to a collaborative plan and joint goals,
and not the management of tasks of an individual.



Once such a system is realised, bounded rational caregivers are better able to man-
age the complex and dynamic conditions with an effect on the following three criteria.

– how to efficiently reduce the transaction cost during agreement changes possible
involving transactions performed the entire group.

– how to observe whether plans and agreements are valid.
– how to identify whether a service is still needed in a collaborative plan.

This paper argues that current software architectures for collaborative management
platforms are limited in supporting bounded rational actors in managing changes in joint
plans. Intelligent agents can be used to extend such architectures by capturing mental
attitudes of individuals, and more important to identify limitations which then require
interventions to continue the care. We discuss the issues surrounding a support element
in a software architecture architecture, including issues occurring at the conceptual,
formal, and implementation level.

1.1 Intuitive Problem Statement

Intuitively, the problem is to reduce the transaction cost associated with modifying un-
derlying agreement structures of a plan, where individual decision makers are bounded
rational. We assume that there is a constant cost in changing the plan itself as an algo-
rithm can recalculate the logical order of the loosely coupled activities. But the agree-
ments that need to change are assigned with a cost.

Given a set of agents A, an agreement structure AS, a plan P (a loosely coupled set
of activities), a revised plan P’, a mapping of activities in P to agents A, how can we
arrive at a new agreement structure AS’ that satisfies two criteria.

– Overall plan validity. Satisfies plan constraints (e.g., X can only be executed before
Y). Can the plan outcomes be achieved? Is a plan valid?

– Overall agreement validity. Satisfies agreement constraints (e.g., agent 1 must find
an agreement with agent 2). Are the agreements valid?

The efficiency of an algorithm may be measured by a value representing the in-
curred transaction costs, that is, the cost of all transactions that have been performed in
order to achieve an agreement change. This could be a combination of the number of
transactions and the weighing of each type of transaction.

1.2 Why is solving this problem important?

Currently, agreements are organized such that individuals are committed to a rigid
framework of rules and plans. This would all be fine and useful and predictable, if
there were no changes in the social and natural environment during the lifecycle of a
plan. Common sense dictates that if a change in the environment occurs that we just
adapt the plan. What is often forgotten in this simple process is the significant transac-
tion cost that is incurred when plans are reevaluated, reassessed and renegotiated. Some
processes are so complex that an individual is not able to foresee the entire consequence



to an action (e.g., is the overall care plan still achievable? What implications does an
action have to other members of the team?). There is currently no comprehensive so-
lution to this significant issue, and the research community often investigates idealized
models of rationality and assume that transaction costs are non-existent or minimal in
making changes to plans.

1.3 Bounded Rational Actor

According to Herbert Simon [9], bounded rationality means that we are limited in mak-
ing perfect decisions. This is due to a lack of information available to a decision maker
(incomplete and uncertain information), a limit of cognitive abilities to process infor-
mation, and a limited time to make decisions. We simplify a decision problem so much
that we can solve it, but may remove critical information during the simplification pro-
cess, and hence make a decision on ”‘too abstract”’ information – missing potentially
the true optimal solution of a problem. According to Simon [9], we merely satisfice
an optimisation problem, rather than optimally solving it. Rubinstein extends this work
on bounded rationality and provides a model of a bounded rational decision maker [8].
Following from this work, we introduce the term ”‘bounded rational actor (BRA)”’ – a
rational actor with certain limits. And we consider such an actor that makes decisions
towards achieving the goals of a collaborative plan.

Given the problem statement in Section 1.1, our interest is in investigating this prob-
lem under bounded rationality and how it effects the cost of transactions. This might be
due to not fully realising the possibility to reduce agreement structures effectively.

A simple example of a basic transaction cost function is where one cost unit corre-
sponds to an individual performing a request and response interaction towards changing
an agreement structure. Consider a team of health care provider, where each provider
agreed to perform an individually assigned tasks (specified in a careplan), and has
agreed to the overall workflow and outcomes of the plan. During the lifecycle of this
plan, the patient realises that he/she can not walk the distance as specified in the care
plan. This requires to modify this activity currently in the care plan. As the GP is re-
sponsible for the overall execution of the plan, he/she has to agree with changes. Indeed,
each team member may need to agree with the changed care plan, and at least each of
them is actioned to re-asses and re-agree to the revised plan. So, we have at least two
times the number of caregivers, for each caregiver there is a request and respond action.
Since this is a change that can occur frequently and primarily effects the GP and patient,
one basic approach may be to only involve the GP and patient in this transaction, and
to have a simple cutoff point on the influence of plan changes to individuals.

2 Questions and Issues on Building Intellgent Systems to Support
Bounded Rational Actors

In the context of organisations, [4] suggests that the world is too complex, dynamic
and diverse to be fully understood. Therefore, to overcome this limitation there are two
paths forward: 1) to reduce the scope of analyses for a satisfactory outcome (that is,
to simplify a problem to make it computable) and 2) to develop tools, techniques and



arrangements to extend the cognitive limitations of actors [4]. We focus on the latter
point and discuss the issues that arise in building a comprehensive system that assists
bounded rational agents to act in complex domains. We confine our discussion to the
conceptual, formal, and implementational issues that need to be addressed to build such
a framework.

2.1 Conceptual Layer

– What should be cared for? Which entity is the subject of care?
• Compliance, goal achievements?
• Individual, group, care plans?

– How can we care for it?
• Broadcast wide interventions?
• Replanning?
• Monitoring and observing?

In the context of chronic disease management, there are various ways of defining the
subject of care – though generally, we care about maintaining the health of a patient.
We can consider the lifecycle of the actual disease, or the collaborative status of the
patient, the status of the collaboration. One way to maintain the patient’s health is by
achieving the health care goals defined by the team of caregivers. Goals are achieved by
performing a health care plans, and this plan must be flexible to cope with the changes
that happen in the social and natural environment. The modification and execution of a
care plan is at the core of an intelligent collaborative care system. The question of what
we care about influences the structures that need to be maintained. It determines which
features are important to , and how we represent those features.

How do we need to view a patient in this system? What are the critical stages
through which a care plan goes? At what time does the patient exit the lifecycle? What
is the lifetime value of care plan? Figure 1 is a first attempt to outline the stages through
which a patient goes during the lifecycle of a plan. These steps are defined below.

– Patient enters system: Patient feels sick, shows symptoms of a chronic disease,
seeks help from medical professional.

– Diagnose patient: Patient is diagnosed with a disease using the pathological tests,
physical examinations, and historical medical data of a patient. At the end of this
process, the general practitioner knows the patient conditions, and can hence define
the treatment and the specific needs of a given patient.

– Create customised plan: Given the patient’s conditions and the treatment goals,
the GP can decide on the goals and outcomes of the care plan. This will define
activities according to best practice that will assist the treatment of a patient.

– Negotiate tasks: Caregivers are approached to potentially be assigned to the tasks.
The GP and health care authorities know which activities can be performed by
whom, and the specific caregivers understand the responsibilities to take in the care
plan. However, there is usually the option of refining a task, possibly modifying
activities specific to the caregiver in question that need be executed.

– Assign tasks: At this stage, all activities and goals have been identified, negotiated,
refined and agreed. A formal agreement by individual entities is now seeked.
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Fig. 1: Patient care plan lifecycle

– Execute plan: Individual caregivers (including patients) now need to follow on
their agreed committments by performing the activities as specified.

– Optimise plan: Changing environmental and patient conditions as well as chang-
ing patient objectives may require changes to the care plan. This may go as far as to
change the entire plan. The most “costly” part in this stage is to manage the existing
agreements that have been made in the negotiation and assignment stage.

– Patient exists system: The care plan has ceased to be relevant. There could various
reasons why this is so, e.g., , death of a patient, or the patient removal from a care
plan due to a patient not making any progress.

During each of these cycles, it is critical to make sure that the activities, and com-
mitments are aligned with reaching the desired outcomes of this care plan. This is a
challenge as actors are bounded rational, and require assistance to make sure the over-
all goals can be achieved.

Further questions of conceptual importance are. To what extend are we responsible
to care for individuals, and when do they need to care for themselves? What implication
on the system architecture and design? When to intervene and when not to? Costs to
health care providers? What is a care plan lifecycle exactly? What exactly constitutes a
basic relationship between two entities? How can we form, maintain and extend (con-
tractual) relationships? And why is it important? A relationship between two entities
defines which agreements can be established (which is discussed in the next section).



Hence, it is important to characterize the features of each entity, and the nature of this
relationship. In this section, we consider relationships as partnerships, where groups
share responsibility to achieve a goal. For example, “effective language learning is a
partnership between school, teacher and student”, “the action teams worked in partner-
ship with the government”. And in this paper we consider how a care team aims to move
a patient through a case plan lifecycle. Other important questions are: What is an agree-
ment? What are the mechanism that each agent performs to reevaluate the agreements?
What exactly needs to change in the agreement structure? How to manage agreement
restructuring in incomplete and uncertain domains, particularly domains consisting of
bounded rational humans? How is it done now (with rational humans)? How are agree-
ments formed and maintained? How can we ensure that things stay on track? What are
collaborative plan structures? What are collaborative care agreement structures?

2.2 Formal Layer

Since this section builds heavily on the section of concepts, we only outline first ques-
tions relevant to the formalisation of a framework.

– What needs to be represented, and what can be represented? What is an appropriate
level of abstraction for the agreements and plans?

– What logic can represent what we need to represent? What logic to use and/or
extend? Will it be a PCTL or PCTL + BDI type logic that is required?

– (How) can we formally represent the interaction and agreement processes in the
collaborative care management system?

– What is the algorithm, and how can we formalise it?
– How can we formally define the input and output of the algorithm?
– What and how can we measure the outcomes of the algorithm? What benchmark?

Generally, what we need to measure is the overall outcome of the algorithmic solu-
tion. The transaction costs would be the measure. In chronic disease,

2.3 Implementation/Evaluation Layer

Similar to Section 2.2, we only outline first questions relevant to the implementation
and evaluation of a framework.

– BDI agent platform/representation?
– What are the BDI Agents?
– Why BDI Agents? - justify why it best suits our framework.
– What questions can we answer?

The Belief-Desire-Intention (BDI) is one of various multi-agent programming mod-
els that aim to model human behavior [1, 7]. Computer agents have three mental states
about the outside world.

– Beliefs: represent information the agent currently has about the world, what the
agent beliefs to be true or valid.



– Desire: the options an agent has to enable it to achieve a goal. Not all of them has
to be executed, which option to choose is based on different elements.

– Intention: represent what the agent committed to achieve. They may represent
goals, in the basic scenario; intention is what the agent decided to work towards.

The BDI model for computer agents represents intelligent computer agents based
on the above mental attitudes. The BDI agents use these mental states to reason or
decide how to act. This is a practical reasoning model because one can reason with
a set of mental states to justify a course of action with relative ease. When an agent
has different approaches to achieve a goal, the agent chooses what it “thinks” it is best
based on its’ set of mental states. From an implementation point of view, we consider
using different approaches for the implementation of the agreement structure variation
framework.

3 Related Research

3.1 Service Oriented Architectures and Web Services

Web services are self-contained and self-describing, and provide functionality and in-
teroperation for business processes. Web services rely on fully standardised interfaces
and well described information flows to enable interoperability between processes ac-
cording to the Service Oriented Architecture (SOA) paradigm [2]. The interfaces are
well defined, and the data and control path are well known. Description languages,
such as Web services Description Language (WSDL), are used to define a service. Web
services provide a common standard mechanism (e.g., communication protocols) for
interoperable integration among disparate systems, and the key to their utility is their
standardization.1

One of the biggest issues of web services and SOA is that the assumed rigid stan-
dardisation (considered to be one of the greatest benefit of SOA), is possibly one of the
web services greatest disadvantages. There is no adequate answer to what will happen
if services change their interface and their quality of service (QoS) during the time of
invocation (the interface/QoS are simply assumed to remain entirely static once invoked
– an assumption that can not hold in many domains, particularly health care). Indeed,
what if the web service itself does not “realise” that interfaces and QoS have changed
or are not valid according to new certain governmental or partnership regulations. A
health care provider is often not able to realise or adapt to these changes due to its
bounded rationality and the complexity of the system changes. This can be a critical
issue in the management of a chronic disease, where service providers are assigned to
patients, have developed a close relationship with that patient, should stay with that
patient, but where frequent changes in regulations make this engagement invalid (as
per the SOA paradigm). In other words, government regulation can influence a health
care provider’s interface and QoS, and thus the provider’s involvement in a care plan.
However, we can’t just remove care providers, as patients have built a relationship with
him/her (and the care provider has established a relationship with other care providers).

1 http://www.ibm.com/developerworks/webservices/library/ws-soaintro.html



And it is also in the care provider’s interest to stay within a valid framework to re-
ceive the rebate by the government for the delivered services. There is a high demand
in flexibly reacting to the changing environmental conditions.

3.2 Contract Agreement Frameworks

Related research has been conducted on norms and contractual agreements [3]. In the
CONTRACT project, each contract is associated with Critical States (CS) and Danger
of Violation (DOV) states. CS are compulsory for the successful execution of a contract.
That is, at the service delivery stage, if a CS state does not occur, it is identified as a
violation of the contract. The DOV states indicate a possible violation of the contract,
but are not explicitly stated in a contract. This work considers a framework in which
global states are identified that show norm violations or close norm violations. Global
states and norms assume that there is some global and high-level regulative system.
However, many agreements are done among partners. The detection of states may need
to be done across the support agents.

4 Concluding Remarks

This paper argues that we need to assist bounded rational agents to follow and organise
agreements. Bounded rational here means that individuals are cognitively overwhelm-
ing with the ever changing environmental conditions of complex collaborative arrange-
ments. A lifecycle of a care entity could be a two year long care plan for a patient with a
chronic disease (which is used as an example in this paper). Such a plan is not likely to
stay static for two years due to changing health conditions of the patient, and changing
governmental policies that influence how care plans are conducted. The importance of a
solution to this problem is that it can significantly reduce transaction costs and increase
plan validity in dynamic and uncertain domains. The novelty of this approach is to en-
able assistance to execute a complex collaborative care plan. This is different to related
work where agents assist an individual to achieve its own plans (without necessarily
involving the constraints and goals of a collaborative plan), and different to detecting
global states that indicate the status of a regulative system execution. The realisation of
this proposed research will manage agreements and plans significantly better than ex-
isting approaches. The framework enables bounded rational actors to assist in complex
and dynamic environments, and achieve joint outcomes for the cared entity.
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Abstract. Decision support systems (DSSs) aim to assist people in their
decision making process. We argue that a shared mental model between
the human user and the DSS enables and enhances their collaboration.
This paper presents an approach based on shared mental models, for
analysing user-DSS cooperation, which results a set of concepts that
a shared mental model of the user and the NSS should contain. This
analysis also indicates the various reasons that discrepancies between the
individual mental models may arise. The results of this analysis provide
a basis for improving the sharedness of the mental models of the user
and the DSS, and thereby, improving their cooperation. We illustrate
our approach with an example: negotiation support systems.

1 Introduction

Decision makers often seek various forms of external information support to aid
their decision making process [6], in order to aid their cognitive deficiencies in
judgement and decision making. This had led to the development of interac-
tive computer-based systems that aid users in judgement and choice activities:
decision support systems (DSS) [5].

A DSS and its user can be regarded as a team, which has the task of making
a decision. They form a specific kind of team, in which each has their own, com-
plementary capabilities. It is well-known from the social psychology literature
that performance of human teams is positively influenced by the team members
having a shared understanding or shared mental model (SMM) of the task and
the team work involved ([11, 14]). We maintain that having an SMM is not only
important in human teams, but also in human-agent teams. Discrepancies be-
tween the mental models of the DSS and the user may at best result in innocent
misunderstandings, but at its worst may result in a dysfunctional cooperation.
We thus argue that the SMM concept is important for DSS development.

In this paper, we present a sketch of an SMM-based analysis of the user-DSS
task and interaction. We believe this analysis provides a basis for improving the
shared mental model of the user and the DSS, which in turn should improve
user-DSS cooperation.

We illustrate our analysis with an example: a negotiation support system
(NSS). We analyze the negotiation task and the interaction between user and



NSS, to determine the essential components of their SMM. Furthermore, the
analysis serves to determine the possible causes of discrepancies between mental
models, for example, the constructive nature of preferences and the bounded
rationality of humans. Future work will address how this analysis can be used
to determine how the SMM, and thus cooperation, can be improved.

This paper is organized as follows: Sect. 2 presents an introduction to shared
mental models and an outline of our SMM-based analysis method. Sect. 3 presents
the NSS example, in which we illustrate how our SMM-based analysis can be
applied to negotiation. Finally, we discuss future work in Sect. 4.

2 Shared Mental Models in User-DSS Cooperation

2.1 Shared Mental Models

Mental models have received a lot of attention in literature regarding team per-
formance. Several studies have shown a positive relation between team perfor-
mance and similarity between mental models of team members (e.g., [2, 11, 14]).
That is, it is important for team performance that team members have a shared
understanding of the team and the task that is to be performed, i.e., that team
members have a SMM. The concept of SMM is defined in [3] as:

knowledge structures held by members of a team that enable them to
form accurate explanations and expectations for the task, and, in turn,
coordinate their actions and adapt their behavior to demands of the task
and other team members.

SMMs thus help describe, explain and predict the behavior of the team, which
allows team members to coordinate and adapt to changes.

We maintain that SMM theory, as developed in social psychology, can be
used as inspiration for the development of techniques for improving teamwork
in human-agent teams.

We emphasize that not all knowledge in the mental models needs to be
shared. This is especially true for user-DSS teams, in which each team member
has complementary skills, and correspondingly, a distinct role. Therefore, the
first step in our approach is to determine what knowledge is complementary
and what should be shared. Based on this, a desired SMM can be defined. The
actual SMM consists of the knowledge actually shared (similar) between the two
mental models. The desired SMM consists of the knowledge that ideally should
be present in the SMM. In this desired SMM, we want the knowledge not only
to be similar but accurate.

We consider a discrepancy between mental models to exist when one model
contains information regarding an element, and the other model contains either
conflicting information regarding this element, or no information regarding this
element. Once a discrepancy is detected, it can be resolved by adapting (one
of) the mental models. Note that discrepancies may also exist for elements that
need not be part of the desired SMM. In this paper, we are interested in those



discrepancies that impair the desired SMM, and hence, possibly the cooperation.
We will sometimes use the term ‘problematic discrepancy’ to emphasize that we
are referring to a discrepancy regarding an element of the desired SMM.

2.2 SMM-Based Analysis of User-DSS cooperation

We argue that when a user does not understand or agree with the DSS advice,
there is a discrepancy between their mental models. However, it is not always
immediately clear how the discrepancy should be resolved, as there are different
kinds of discrepancies. In order to reduce and resolve these possible discrepancies,
we first must determine what they can be, when they arise and why. We therefore
propose an SMM-based analysis of user-DSS task and teamwork. This analysis
aims to gain insight into the user-DSS cooperation and how it may be improved.
The analysis consists of two steps:

1. Analysis of the user-DSS task, interaction and their different roles. This
allows us to determine what should knowledge is complementary and what
should be part of the desired SMM.

2. Analysis of what humans find difficult about the task, and other possible
reasons that sharedness may be difficult to achieve. This allows us to deter-
mine what areas might need extra focus when trying to achieve and maintain
sharedness.

The results of this analysis can form the basis for improving the SMM of user
and DSS.

3 Example: Negotiation Support Systems

In this section, we illustrate our approach of analyzing user-DSS cooperation,
based on SMM, with an example: negotiation (support systems). Negotiation
is an interactive decision-making process between two or more parties. The fol-
lowing four major stages can be discerned in integrative negotiation: private
preparation, joint exploration, bidding, and closing. Private preparation is about
information gathering and reflection before meeting the other party. In joint ex-
ploration the negotiating parties talk to each other, but do not place bids on the
table. During bidding, both negotiators exchange bids according to the agreed
protocol, typically a turn-taking protocol. For each incoming bid, the negotiator
has to decide whether to accept, to make a counteroffer, or to stop. During the
closing stage the outcome of the bidding stage is formalized and confirmed by
both parties.

3.1 Related Work

Negotiation is a complex process that involves emotions as well as computational
complexity. As a result, even experienced human negotiators can fail to achieve



efficient outcomes [15]. This has motivated the development of negotiation sup-
port systems (NSSs), which assist a human negotiator (user) in negotiation by,
for example, aiding communication, enhancing negotiation skills, and reducing
cognitive task load.

A number of NSSs have been or are being developed [7]. Inspire1 is a web-
based NSS with a facility for specification of preferences and assessment of offers,
an internal messaging system, graphical displays of the negotiation’s progress,
and other capabilities. It has been used to support humans in negotiation, as
well as to collect data about such negotiations for research purposes. Another
example of an NSS is Athena2. This system has primarily been used in education.
In both Inspire and Athena, users have to build content models themselves.
That is, users have to provide the domain structure. The provided support does
not include predefined repositories of content models, interaction support, or
assistance in selecting a bidding strategy. Smartsettle3 is a commercial NSS,
which also provides bidding support.

The Pocket Negotiator project [7] strives for synergy between NSS and the
human negotiator that it assists by exploiting their complementary skills. The
aim of the Pocket Negotiator is to provide focus and structured support, which
will increase the user’s capacity for structuring and exploring the negotiation
space, and to reduce the cognitive task load while doing so. The aim is not to
supplant the human in negotiation, but to create an intelligent artificial partner.

In general, an NSS does not engage directly in the negotiation. Its purpose is
to provide assistance during the negotiation process by structuring the process
and possibly offering analysis support [7]. This can be contrasted with automated
negotiating agents, which do engage directly in a significant part of negotiation,
acting on behalf of their human or artificial principal [9].

Several technical challenges must be faced when developing an NSS [7]. How-
ever, in this article, we assume that an NSS has been created successfully, and has
the technical means to assist with preference elicitation, domain and opponent
modelling, and strategic bidding. NSSs can differ in the number of parties they
support, and also the type of negotiation they support: bilateral or multilateral.
For example, an NSS may be built to support both parties during a bilateral
negotiation, or one party during a multilateral negotiation. We are interested
in the cooperation between the NSS and one of the parties it supports, i.e., the
user. In this illustrative example, we assume the user is involved in bilateral
negotiation.

3.2 The Interaction Between Human Negotiator and NSS: What to
Share?

In this section we analyze the interaction between user and NSS to gain insight
into the task division between user and NSS. This helps determine the contents
of the desired SMM that needs to be cultivated between user and NSS.
1 http://invite.concordia.ca/inspire/
2 http://www.athenasoft.org
3 http://www.smartsettle.com



In this type of human-machine collaboration, the human weaknesses are cov-
ered by the strengths of the machine, and the weaknesses of the machine are
covered by the strengths of the human. This implies that tasks should be divided
between user and NSS in a way that respects their complementary capabilities:

– The user has a wealth of knowledge about the world and about interacting
with other humans, but need not be a specialist in negotiation. The NSS
specializes in negotiation. It makes generic negotiation knowledge available
to the human.

– The NSS remains rational at all times. The user has emotions that might
hinder the negotiation. However, it has been argued that emotions are some-
times needed for decision making [4]. With negotiation, it seems that both
the rational NSS and the more emotional human can each provide a useful
perspective on the situation, and together achieve a good outcome.

– The user can recognize emotions from voice, face, and body language, but
might be at a loss how to deal with them. The NSS has generic negotiation
knowledge about dealing with emotions.

– The user has limited working memory and limited computational power, i.e.,
bounded rationality. The NSS typically has better memory and can search
much more quickly through much larger outcome spaces. Nevertheless, the
NSS also can have bounded rationality, i.e., in some cases it may lack suffi-
cient information and/or reasoning capabilities. However, for our purposes,
we assume that the NSS’s computational power suffices for the domains in
which it is used.

Because the user and the NSS have complementary skills and tasks, they
need not share all their knowledge. However, some shared information is nec-
essary to cooperate and understand each other, hence the need for an SMM.
The information and knowledge exchange between these two team members is
as follows: during the preparation and exploration stage the user needs to inform
the NSS about the current negotiation, e.g., the Opponent, the set of issues I,
and outcome space V , and the utility functions of himself (Self) and Opponent.
We assume that the user is also responsible for informing the NSS about the
exchanged bids. The NSS needs this user input in order to provide assistance
during the bidding stage, when strategic, tactical and bidding decisions have to
be made.

For this information exchange to be successful, the user must fully under-
stand the process of negotiation and what is expected of him/her by the NSS,
and what can be expected in return. This implies that during the negotiation
stages, the NSS needs to provide the user (upon request) with generic negotiation
information, but also current negotiation information regarding the Opponent,
I, V , and utility functions, in as far as such information is available to the NSS.

The user and the NSS thus need shared information about the current nego-
tiation and about their capabilities and knowledge. More formally, the desired
SMM of a human negotiator and an NSS contains submodels on:

– domain knowledge D



• I: set of issues
• ∀i ∈ I: Vi the value range of issue i

– knowledge about Self
• uS : the utility function of Self
• the emotional status of Self as far as Self is aware of that state
• the coping style of Self
• the negotiation model of Self
• the capabilities and types of knowledge of Self and of NSS

– knowledge about the Opponent
• uO: the utility function of the Opponent in as far as known to Self or

NSS
• the emotional status of the Opponent as far as perceived by Self
• the coping style of the Opponent as far as known to Self or NSS
• the negotiation model of the Opponent, in as far as this is known to Self

or NSS
– bidding knowledge
• bidding history: the sequence of bids that have been exchanged so far
• the current bidding strategy for Self
• the bidding protocol, including information about available time

3.3 The Weaknesses of the Human Negotiator

In this second part of our analysis, we discuss the problems humans have with
negotiation, assuming there is no NSS support. There are two ways to categorize
the problems humans have with negotiation: related to outcome, or related to
the negotiation process. The outcome related pitfalls in negotiation are: leaving
money on the table, settling for too little, rejecting a better offer than any other
available option, and settling for terms worse than alternative options [1, 15].

The outcome related pitfalls are caused by the problems people have during
the negotiation process, which are related to the following:

– Lack of training Humans have difficulty in structuring negotiation prob-
lems and thinking creatively about such problems. Moreover, just negoti-
ating in practice does not alleviate these problems due to faulty feedback
and self-reinforcing incompetence. Faulty feedback refers to the problem of
not getting accurate, immediate, and specific feedback, which can only be
solved through regular training. Self-reinforcing incompetence means not
being aware of one’s limitations, thus not seeing the need to improve one’s
skills.

– Lack of preparation Preparation is insufficient when it leaves the negotia-
tor unaware of an important part of the issues, underlying interests, the
preferences and/or circumstances of the parties involved, see e.g., [1, 15].

– Structural barriers to agreement This refers to such problems as die-hard bar-
gainers, a bad atmosphere [12], power imbalance [13], cultural and gender
differences [8], disruptive or incommunicative people, and a lack of informa-
tion. The last point can be caused by insufficient preparation, but also by
communication problems. See [1] for more information.



– Mental errors Parties commit mental errors such as the escalation error,
biased perception, irrational expectations, overconfidence, and unchecked
emotions. The escalation error is the continuation of a previously selected
course of action beyond the point where it makes sense. Biased perception
is the problem of perceiving the world with a bias in your own favour [1, 15].

– Satisficing Due to uncertainty of the future, the costs of acquiring informa-
tion, and the limitations of their computational capacities, people have only
bounded rationality, forcing them to make decisions by satisficing, not by
maximization [15].

NSSs aim to relieve some of these problems. At the same time, these problems
are also precisely what may make it difficult to achieve the desired SMM, and
thus, for the user to understand the reasoning and advice of the NSS.

3.4 Mental Model Discrepancies

We have now identified what should ideally be in the SMM of the user and the
DSS. We have also identified what may make achieving such a desired SMM
difficult. Together, this provides insight into where problematic discrepancies
may arise.

Section 3.2 showed that the NSS relies upon the user for most of its knowledge
about the current negotiation. If the user does not provide enough input, the
mental model of the NSS may be incomplete.

Section 3.3 discussed the problems humans have with negotiation. These can
cause the mental model of the user to lack (accurate) information. For example,
lack of training, lack of preparation and/or bounded rationality can cause the
user to have incomplete knowledge of the current situation. At the same time,
the NSS has generic negotiation knowledge that the user may lack, as well as
superior computational abilities. The NSS’s mental model can thus contain more
accurate information than the user’s. In such situations, the user’s mental model
should be adapted to that of the NSS.

One particular aspect that may lead to discrepancies is the constructiveness
of domain and preference information. Even with proper preparation, informa-
tion on the domain and preferences of Self and Opponent is often difficult to
determine fully at the start of the negotiation. Humans have been found to dis-
cover this information along the way. Due to this constructiveness, the user may
discover new knowledge during the negotiation that the NSS does not yet have,
thus resulting in a discrepancy.

Table 1 provides an overview of some possible causes of discrepancies between
mental models. For each submodel defined above, and for each team member,
the table lists what may cause their mental model to lack (accurate) information.
This knowledge about problematic discrepancies helps identify for what elements
of the desired SMM it may be particularly difficult to achieve similarity.



Table 1. Causes for lack of (correct) information in mental models

submodel User mental model NSS mental model

domain D = 〈I, V 〉 lack of preparation, bounded
rationality, constructive do-
main

lack of user input, construc-
tive domain

knowledge about Self,
e.g., uS

lack of training, lack of
preparation, bounded ratio-
nality, constructive prefer-
ences

lack of user input, construc-
tive user preferences

knowledge about Op-
ponent, e.g,. uO

lack of training, lack of
preparation, constructive
Opponent preferences,
bounded rationality

lack of user input, construc-
tive Opponent preferences

bidding knowledge lack of training, lack of
preparation, bounded ratio-
nality

lack of user input

4 Summary and Future Work

We presented an approach for improving user-DSS cooperation. This approach
involves a SMM-based analysis of user-DSS task and teamwork, which provides
insight into what knowledge should be shared between user and DSS, and what
might make achieving such a SMM difficult. This analysis can then form the
basis for improving cooperation. We illustrated our approach with an example:
NSSs.

Future work first of all calls for a more precise specification of our analysis
method. This requires formalizing the concepts of mental model and shared men-
tal model for user-DSS teams. Moreover, the analysis steps should be made more
concrete. This then allows us to apply our method in a more thorough manner
to different DSS domains, thereby generating a description of the contents of the
desired SMM in those domains.

Once a formal analysis method has been developed, we will investigate ways
to achieve and maintain the desired SMM. One technology that we believe is
suitable for this is explanation. Explanation can serve various purposes, such
as improving effectiveness (helping users make good decisions), increasing the
user’s trust in the system and improving transparency of the system [16]. The
latter is particularly relevant, as this facilitates detecting and resolving discrep-
ancies between mental models of NSS and user. Transparency means explaining
how the system works, thus giving the user a better understanding of the NSS’s
reasoning process. This allows the user to detect any discrepancies between the
mental models, and subsequently to resolve these by updating the mental models
where necessary. The results of our analysis can form a basis for these expla-
nations, determining the requirements. In [10], we have made some initial steps
herein, where explanation is used to resolve mental model discrepancies regard-
ing preferences.



There are also other ways in which our analysis might be used to improve
user-DSS cooperation. The results of our analysis could assist DSS design. For
example, the analysis results could provide guidelines for the knowledge that
needs to be stored in the DSS database(s). They could also provide guidelines
for the user interface design, by indicating what type of interaction is necessary
between user and DSS.

This work should be implemented and user tests should be performed to
determine if our approach indeed succeeds in improving user-DSS cooperation.
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Abstract. The benefits of collaborative agents include achievement of
complex goals that are difficult or impossible to attain for an individ-
ual agent. Incentive schemes, market mechanisms, and organizational
structures can be designed to foster collaboration. On the other hand,
unwanted collaboration between small numbers of agents, at the expense
of the benefit to the greater society, demands measures to disincentivize
such negative, collusive collaboration.

1 Why Collaboration is Not Always Desirable

In an ideal world, cooperative agents work together to achieve greater goals
for the good of the larger society. This ideal is not the world we live in. Self-
interested agents act for their own selfish benefit at the expenses of others;
groups of self-interested agents collude for their benefit at the expense of the
larger society. Collaborators break their promises, fail to comply with norms or
regulations, and even straight-out deceive. Agents can be at best careless and at
worst treacherous.

Just as incentive schemes, market mechanisms, and organizational structures
can be designed to foster collaboration, we argue that some situations require
careful design of anti-collaboration provisions.

Now famous is the 1995 US FCC spectrum auction [1]. The rules of the
auction prohibited companies from openly colluding to divide the spectrum at
low cost to themselves and hence low value for the public. The major players in
the auction neatly circumvented the rules, however, by using the least significant
digits of their public messages to coordinate their bidding strategies. “In other
words, these parties used the auction protocol itself to cheat” [15].

Electoral voting machines have been another headline topic for agents col-
laborating in anti-social manners [14]. How can the public have confidence that
their vote will be properly recorded and accounted, and that fallacious votes will
not be accounted? Supposing there is an inspection, what if certain agents (such
as the machine manufacturers) collude with the inspection agents?

This position paper draws attention to the need to disincentivize such nega-
tive, collusive collaboration, and to otherwise mitigate their effects.



2 Example: Maritime Customs Collaboration

Ocean-based freight, according to the International Maritime Organization, ac-
count for 90 percent of world trade by weight [12]. The inspection of container
contents and application of regulations and tariffs is a significant part of the
import-export process at ports worldwide. The progress of containers through
customs, however, is more often an exercise in negotiation rather than a struc-
tured queuing process. As soon as such a regulatory process involves negotiation,
corruption in its various manifestations becomes a possibility.

Fig. 1 shows some possible deviations from an archetypal customs import pro-
cess. These include inaccurate, incomplete, or fictitious documentation; under- or
over-inspection; inaccurate value estimation; waiving true fines or imposing ad-
ditional fines; and delaying or expediting certain containers. In some situations,
a whole grey ‘parallel customs’ system evolves.

Extra-process negotiation is the most common entry point for non-standard
behaviour within customs processes [11]. Agents willingly or unwillingly make
private, collusive agreements. Such non-standard practices fall into three cate-
gories [16, 7]. First, deviations based on the relationship between agents, where
these is no obvious monetary or physical bribe. Relationship levers in negotiation
can arise from family connection (nepotism), political tie (patronage), or favour
owed. Second, deviations be based on monetary considerations, where there is a
tangible bribe, whether cash or gift, or a debt forgiven. Third, negotiation levers
based on threats or extortion, whether physical, financial, or reputation-based.

Fig. 1. An archetypal import process. Some opportunities for deviations from the pub-
lished process are highlighted.



The Organization for Economic Co-operation and Development (OECD)
notes, particularly for developing countries, that customs revenue is a significant
component of public finances, but that customs efficiency is often hampered by
widespread corruption, creating “a major disincentive and obstacle to trade ex-
pansion” and leading to “disastrous consequences in terms of national security
and public finance” [8].

The effect of corruption burden communities and nations, weighing especially
on the disenfranchised. It hinders development, being “one of the most serious
barriers to overcoming poverty”, with a strong correlation manifest between per-
ceived corruption and national per capita income [18].

3 Disincentives, Incentives, and Process Design

Given that corruption can enter a market or process whenever there is opportu-
nity for agents to negotiate, what can be done to reduce the opportunities and
the incentives for and the impact of collusive behaviour? In certain situations,
guaranteed collusion-free protocols can be deployed (see Shelat [15] for a brief
overview). When it is not possible to eliminate negative collaboration entirely,3
how can the system be made more robust to its presence?

A perfusion of legal or normative rules provide no guarantee of disincentiviz-
ing collusion. As Tacitus observed, “The more corrupt the state, the more laws.”
Studies by the OECD and other organizations report that customs corruption is
not easily combated by policy changes, for example [8]. Further, extended pro-
cesses can provide more opportunities for negotiation and hence foster rather
than disincentivize deviations from the ideal.4

Hence a call can be issued to re-examine the research on agent collaboration
and market design [6]. The call is to disincentivize the socially bad behaviours,
not just incentivize socially good behaviours. It is not enough to be able to check
correctness of published contracts [2]; nor can we assume agents are cooperative.

Catalysts and culture. The problem of collusion is, then, challenging for
those who would wish to tackle it. Collusion can arise from within a group of
agents, needing no external catalyst agent. It can be fostered, however, by the
existence of external mediating agents, such as ‘fixers’ in a customs process.
Dignum et al. [4] point to the interaction of many elements—economic, social,
personal, structural, environmental—as determining the existence and role of
mediator agents. Further, the broad socio-cultural environment shapes agent
behaviour in negotiation [3]. Hence relevant is study of organizational behaviour,
norm emergence, and societal culture (for a computational study of culture’s
influence on human–agent negotiation, see Gal et al. [5]).
3 In the case of customs, such an effort would be prohibitively expensive and unreal-
istic. Further, draconian efforts can have adverse implications for personal freedoms
and fundamental human rights.

4 “Systems and procedures [evolve] to maximise the number of steps and approvals—to
create as many opportunities as possible for negotiation” [8].



Protocols and decision aids. If we take ‘agents’ to refer to autonomous
entities, encompassing human actors and businesses as well as automated agents,
then the failed Covisint business-to-business market in the automotive industry
[13] is another demonstration of the problems of cooperation—besides that of
collusion—that can emerge in an auction setting.

Karlsson et al. [10] show how positive cooperation (among humans) can be
incentivized through market-based protocols that allow complex bids.5 While
such protocols have theoretical and computational advantages, behavioural eco-
nomics assures us that humans are not rational decision-makers. Decision aids
may be needed in order for complex market-based protocols to be effective.

Mechanism design and simulation. Spectrum auction markets is one do-
main where collusion-resistant market mechanisms have been developed [19],
motivated by the FCC experience; another is online reputation mechanisms [9].
How do these mechanisms transfer to more ill-defined processes and agent sys-
tems such as in the domain of customs? How can elusive notions such as ‘benefit
to society’ be quantified, and taken into algorithmic account?

The connection to the agents community arises naturally through game the-
ory and mechanism design. In addition, we suggest that simulation has a role in
the study of complex multiagent processes and systems, aiding modelling, anal-
ysis, and evaluation [17, 7]. A broader question is whether agent technology can
be used to build automated, semi-automated, or decision-aided systems that are
more reliable than processes carried out solely by human actors.

4 Research Outlook

We conclude by enumerating relevant research questions, adapted from the Call
for Papers for the CARE workshop:

– How do we design markets that hinder collusion?
– What interventions and incentives can disincentivize negative collaboration?
– How do we enforce prohibitions on illicit joint agreements and contracts?
– How do we build agent systems that work efficiently in partially-regulated

environments where negative collaboration is not necessarily prohibited?
– How do we build systems or mechanisms robust to unreliable or non-conformant

collaborators, and to colluding groups of agents?
– How do organizational structures influence the negotiation of agents and

collusive behaviour?
– How can lessons learned in game theoretic computation inform mitigation

of collusion?
5 To ‘disincentivize’ is standard procedure in market programming, in the sense that
protocols should be robust to speculation, i.e., speculation being unwarranted in
every practical case by any rational agent in the market.
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