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ABSTRACT

Recent research has demonstrated that considering local in-
teractions among agents in specific parts of the state space,
is a successful way of simplifying the multi-agent learning
process. By taking into account other agents only when
a conflict is possible, an agent can significantly reduce the
state-action space in which it learns. Current approaches,
however, consider only the immediate rewards for detecting
conflicts. This restriction is not suitable for realistic sys-
tems, where rewards can be delayed and often conflicts be-
tween agents become apparent only several time-steps after
an action has been taken.

In this paper, we contribute a reinforcement learning algo-
rithm that learns where a strategic interaction among agents
is needed, several time-steps before the conflict is reflected
by the (immediate) reward signal.
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1. INTRODUCTION

Reinforcement Learning (RL) is an unsupervised learning
technique which allows agents to learn policies in initially
unknown, possibly stochastic, environments, steered by a
scalar reward signal they receive from the environment. This
signal can be delayed, such that agents only see the effect
of a certain action, several timesteps after the action was
performed. Using an appropriate backup diagram which
backpropagates these rewards still ensures convergence to
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the optimal policy [4]. When multiple agents are present in
the environment, these guarantees no longer hold, since the
agents now experience a non-stationary environment due to
the influence of other agents [5].

Most multi-agent learning approaches alleviate the problem
by providing the agents with sufficient information about
each other. Generally this information means the state infor-
mation and selected actions of all the other agents. As such,
the state-action space becomes exponential in the number
of agents.

Recent research has illustrated that it is possible to identify
in which situations this extra state information is necessary
to obtain good policies [3, 1] or in which states agents have
to explicitely coordinate their actions [2]. These techniques
rely on sparse interactions with other agents and only use
the state information of the other agents if this is needed.
In all these techniques however, it is assumed that the need
for coordination is reflected in the immediate reward signal.
However, in RL-systems a delayed reward signal is common.
Similar, in a multi-agent environment the effect of the joint
action of the agent is often only visible several time steps in
the future.

In this paper we describe an algorithm which will determine
the influence of other agents on the total reward until ter-
mination of the learning episode. By means of statistical
test on this information it is possible to determine when
the agent should take other agents into consideration even
though this is not yet reflected by the immediate reward
signal. By augmenting the state information of the agents
in these situations to include the (local) state of the other
agents, agents can coordinate without always having to learn
in the entire joint-state joint-action space.

2. DELAYED COORDINATION PROBLEMS

The main idea behind our approach is to port the principle
of delayed rewards to the framework of sparse interactions.
If we think about mobile robots navigating in an environ-
ment, it is possible that there are some bottleneck areas,
such as small alleys where robots will only see the fact that
they had to coordinate when it is already too late, i.e. both
robots are already in the alley. A similar situation in which
coordination must occur is when the order in which agents
enter the goal is important for the reward they can earn.

2.1 FCQ-learning

The technique we describe here uses the same basic prin-



ciples as CQ-learning [1], but has been adapted to be able
to deal with future coordination problems. This is why we
call this approach FCQ-learning, which stands for Future
Coordinating Q-learning. As for CQ-learning, the idea is
that agents learn in which of their local states they will aug-
ment there state information to incorporate the information
of other agents and use a more global system state.

The most important challenge to achieve this, is detecting
in which states, the state information must be augmented.
FCQ-learning makes use of a Kolmogorov-Smirnov test for
goodness of fit to trigger an initial sampling phase. This sta-
tistical test can determine the significance of the difference
between a given population of samples and a specified distri-
bution. We assume the agents have converged to the correct
single agent Q-values. FCQ-learning will compare the evo-
lution of the Q-values when multiple agents are present to
the values it learned when acting alone in the environment.

If a change is detected in the Q-values of a state of an
agent, it will start observing the local state information
of the other agents and start sampling the rewards it col-
lects, starting from that local state until termination of the
episode. Using these samples, the agent can perform a Fried-
mann statistical test which can identify the significance of
the difference between the different local states of the other
agents for its own local state. This principle is represented in
Figure 1. Agent 1 starts sampling the rewards until termina-
tion of the episode in local state 2* based on the local state
information y*3’ and y* of Agent 2. If a significant differ-
ence is detected, the state information for z° is augmented
with the state information of agent 2 that caused this change
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Figure 1: Agent 1 in local state z‘ is collecting re-
wards until termination of the episode based on the
local state information of agent 2.

The action selection works as follows. The agent will check

if its current local state is a state which has been augmented
to include the state information of other agents. If so, it will
check if it is actually in the augmented state. This means
that it will observe the global state to determine if it con-
tains its augmented state. If this is the case, it will condition
its action based on this augmented state information, other-
wise it can act independently using only its own local state
information.
If an agent is in a state in which it used the global state in-
formation to select an action it will update its joint Q-values
and bootstrap using the single agent Q-values. In all other
situations the normal Q-learning update rule is used.
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For every augmented state a confidence value is main-
tained which indicates how certain the algorithm is that this
is indeed a state in which coordination might be beneficial.
This value is updated at every visit of the local state.

2.2 FCQ-learning with uninitialised agents

Having initialised agents beforehand who have learned the
correct Q-values to complete their task is an ideal situation,
since agents can transfer the knowledge they learned in a
single agent setting to a multi-agent setting, adapting only
their policy when they have to. This is of course not always
possible. This is why we propose a simple variant of FCQ-
learning. By collecting samples for every state-action pair at
every timestep these single agent Q-values and the KS-test
are no longer required. Despite this relaxation in the re-
quirements for the algorithm, this results in a lot more data
to run statistical tests on, most of which will be irrelevant.

3. CONCLUSION

In this paper we presented an algorithm that learns in

which states of the state space an agent needs to include
knowledge or state information about other agents in or-
der to avoid coordination problems that might occur in the
future. By means of statistical tests on the obtained re-
wards and the local state information of other agents, FCQ-
learning is capable of leaning in which states it has to aug-
ment its state information in order to select actions using
this augmented state information. We have described two
variants on this algorithm that have a different computa-
tional complexity in terms of processing power and memory
usage, due to the number of samples collected and on which
statistical tests have to be performed.
Future research will focus on exploring different coordination
techniques than merely selecting actions using more state
information, as well as applying FCQ-learning to more com-
plex multi-agent environments such as robosoccer. In such
an application, FCQ-learning can be used to adapt strate-
gies, based on the actions of the opponent team.
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