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Categories and Subject Descriptors row 4, and the second player chooses colufnand their payoff
1.2.6 [Computing M ethodologies]: Artificial Intelligence—Learn- is given by the first and second entry of the matrix positiary)
ing respectively.
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Multi-agent learning, Evolutionary game theory, Replacaty- A classical benchmark reinforcement learning algorithrsingle-
namics, Q-learning, Lenient learning state Q-learning [6], which uses the action-value update
Recently, an evolutionary model of Lenient Q-learning (L@¥ to refine its reward estimatiof) for the taken action at each time
been proposed, providing theoretical guarantees of cgemee to  Stept; « controls the learning step size, andliscounts future re-
the global optimum in cooperative multi-agent learningwseuer, wards. After each update ¢f, the new policy is derived using the
experiments reveal discrepancies between the predictedmily ~ Boltzmann exploration mechanism that converts the aatane
ics of the evolutionary model and the actual learning bedranf function @ to the probability distributior:
the Lenient Q-learning algorithm, which undermines itsotlei- eQi/T
cal foundation. Moreover it turns out that the predictedawédr Ti = W
of the model is more desirable than the observed behavidneof t J ) o o )
algorithm. We propose the variant Lenient Frequency Adjti€- It hag bgen shown tha}t leniency, i.e., forgiving initial mis
learning (LFAQ) which inherits the theoretical guarantees re- coordination, can greatly improve the accuracy of an ageetvard
solves this issue. estimation in the beginning of the learning process [4]h&reby
The advantages of LFAQ are demonstrated by comparing the OVercomes the problgm that initial mis-cqordination milgatd to
evolutionary dynamics of lenient vs non-lenient FrequeAcl suboptl_mal solutlon_s in the long run. Leniency towards_, ctilean
justed Q-learning. In addition, we analyze the behavionveo be achieved by having the agent collectewards for a single ac-
gence properties and performance of these two learningitigs tion before updating the value of this action based on thiedspof

empirically. The algorithms are evaluated in the Battlehaf Bexes ~ thoser rewards [4]. _ _
(BoS) and the Stag Hunt (SH), while compensating for initins The evolutionary model of LQ that delivers the theoretiazdig

learning speed differences. Significant deviations aris@ the in- antees is based on the evolutionary model of Q-learning;wivas
troduction of leniency, leading to profound performancéngan derived under the assumption that all actions are updatedllgq
coordination games against both lenient and non-lenienbégs. often [S]. However, the action-values in Q-learning are atpd
asynchronously: the value of an action is only updated wtisrse-
1.1 Gamesand Learning lected. Furthermore, the evolutionary model predicts matienal

behavior than the Q-learning algorithm actually exhitats] there-
fore [3] introduce the variation Frequency Adjusted Q-téag
(FAQ) that simulates synchronous updates by weightingdtiera
value update inversely proportional to the action-sebecproba-

Reinforcement learning (RL) tries to maximize the numérica
reward signal received from the environment as feedbackeon p
formed actions. This paper considers single-state RL. Haoh
step the agent performs an actioapon which it receives a reward "
r; € [0, 1]. Based on this reward the agent updates its policy which Pility:
is defined as a probability distributianover its actions, where; 1
denotes the probability of selecting actiorThe environment will Qit+1) — Qi(t) + P rit+1)+ vmax Qi) = Qilt)
be given by the following games, where the first player cheose This paper proposes the Lenient Frequency Adjusted Qifearmn
Cite as; Empirical and Theoretical Support for Lenient Learning {Ex  (LFAQ) algorithm that combines the improvements of FAQ aed L
tended Abstract), Daan Bloembergen, Michael Kaisers and Rayls, nient Q-learning. The action-value update rule of LFAQ isado
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys- that of FAQ; the difference is that the lenient version azife: re-
tems (AAMAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, yards before updating its Q-values based on the highestos&th
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Multiagent Systems (www.ifaamas.org). All rights resetve in [2].
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2. EXPERIMENTSAND RESULTS

This section provides a validation of the proposed LFAQ algo
rithm, as well as an empirical comparison to non-lenient FAQ
more elaborate evaluation of the performance of lenienhes-
lenient learning algorithms can be found in [1].

Figure 1 presents an overview of the behavior of Lenient Q-
learning and Lenient FAQ-learning in the Stag Hunt. Theameti
selection probability of both players’ first action is pkdt The
figure shows different initialization settings for the Quwes: pes-
simistic (left), neutral (center) and optimistic (righfjhe arrows
represent the directional field plot of the lenient evoloéioy
model; the lines follow learning traces of the algorithmesa re-
sults show that the behavior of LQ deviates considerabimftioe
evolutionary model, and depends on the initialization. QFén the
other hand is robust to different initialization valuesdéollows
the evolutionary model precisely.
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Figure 1: Validating L FAQ-learning.
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Figure 2 shows the policy trajectories of FAQ, LFAQ, and a eom
bination of both in Battle of the Sexes and the Stag Hunt. I8 Bo
LFAQ provides a clear advantage against non-lenient FAQi; in
cated by a larger basin of attraction for its preferred éopiiim
at (0,0). In SH, LFAQ outperforms FAQ also in self-play, with a
larger basin of attraction for the global optimum(at1).

Finally, Figure 3 shows the average reward over time for FAQ
(solid), LFAQ (dotted), FAQ mixed (dashed), and LFAQ mixed
(dash-dot). Again, LFAQ has the advantage by achievingeeith
higher or similar average reward than FAQ.

3. CONCLUSION

The proposed LFAQ algorithm combines insights from FAQ [3]

and LQ [4] and inherits the theoretical advantages of bothpil-

cal comparisons confirm that the LFAQ algorithm is consistéth
the evolutionary model derived by [4], whereas the LQ alioni
may deviate considerably. Furthermore, the behavior of Q&
independent of the initialization of the Q-values. In gahdrFAQ
performs at least as well as non-lenient learning in coattitin
games. As such, leniency is the preferable and safe chommjn
erative multi-agent learning.
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Figure 2: Comparing lenient and non-lenient FAQ.
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Figure 3: Averagereward plot.



