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ABSTRACT
In power markets, the trade of reserve energy will become
more important as more intermittent generation is traded.
In this work, we propose a novel bidding mechanism for the
integration of power and reserve markets. It adds expressiv-
ity to reserve bids and facilitates planning1.
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1. INTRODUCTION
The currently most popular power market design is to

conduct two separate ahead-markets for each hour of the
following day, one market to trade binding commitments
to transfer power (the day-ahead market), and one market
to trade optional intervals of power (the reserve market).
In a real-time balancing phase, the differences between the
outcome of the day-ahead market and actual demand are
settled by executing parts of the intervals sold in the reserve
market. The System Operator (SO) most often functions as
the market maker. Formally, during the day-ahead phase, a
generator g, with a capacity ∈ [PLg , P

U
g ] and a cost function

cg(P ), sells a default amount of power P defg and offers an
optional interval [0, P optg ]. During balancing, the SO can
execute P exeg ∈ [0, P optg ] per generator g. In both phases

combined, g will sell at least P defg and at most Pmaxg =

P defg + P optg ≤ PUg .
Most research into the co-existence of both markets agrees

to clear them simultaneously to avoid market power issues.
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However, the bids for fixed power and reserves are still made
separately, although there is in fact only one product (power
capacity) which can be offered in both markets. This causes
several problems for bidders. First, as there is only one cost
function for this product, then if bids are separated, at least
one bid needs to be simplified as long as it is unclear how
much capacity each bid will win. Current reserve market
designs restrict bids for reserves to only a constant price for
each activated unit in P exeg (sometimes also a fixed price
for keeping up to P optg available is asked). In addition, the
decision which amounts to offer in each of the two markets
such that all outcomes respect the upper capacity constraint
PUg , as well as the resulting calculation of opportunity costs,
are difficult issues for the bidding strategies of generators.

The trade volume of reserve power is expected to grow:
We are faced with decreasing certainty of supply caused by
the advent of intermittent generation, i.e. renewables like
solar and wind, and hope to use technologies like storage sys-
tems and Demand Response to manage this problem. This
paper explores this new research challenge, beginning with
the standard use case of reserve capacity offered by supply.

Its main contribution is the proposal of a novel, bundled
bid format and an associated clearing mechanism for an in-
tegrated power- and reserve market. The bid format allows
generators to offer P optg with non-constant price functions
that can resemble actual costs of production and relieves
them of the planning problem for PUg . In addition, the SO

is enabled to include estimates of
PG
g P

exe
g in its task to min-

imise generation and transmission costs. We formulate the
two-stage clearing process of the SO as a Strictly Convex
Quadratic Programming problem [2], which we have suc-
cessfully implemented in the well-known electricity network
simulation framework AMES [3] (thus incorporating trans-
mission constraints into pricing). We close by introducing a
strategy space to include opportunity costs within bids.

2. THE BID FORMAT
Generator g maps amounts of power to total prices via

a quadratic bid function. Quadratic functions are widely
used to model bids in power markets because they are suf-
ficiently realistic and their derivatives are continuous, and
thus marginal prices are well-defined. In traditional day-
ahead power auctions, the amounts P defg for all g are allo-
cated by the SO by announcing a marginal clearing price.
To also express bidding for reserve capacity P optg within
these supply functions, we propose that g fixes the ratio r =
P optg /Pmaxg for each bid, such that knowing P defg determines

P optg = P defg
r

1−r . For example, with r = 1
3

we denote that
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P defg will certainly be sold and [0, P optg ] = [0, 1
3
P defg / 2

3
] is the

optional interval. Thus, the reserve interval [P defg , Pmaxg ] is
determined by the market clearing, allowing the SO to price
P defg and P exeg on the same function and g to include op-
portunity costs in the bid.

At r = 0, no flexibility is offered and the generator has full
certainty how much he sells (P defg = Pmaxg , P optg = 0). This
resembles traditional bid functions with no reserve offer. At
r = 1, everything is flexible and the SO will assume full flex-
ibility over P exeg in the balancing phase (P defg = 0, P optg =
Pmaxg ). Generator g can place several bids bg,r, each using
a different r ∈ [0, 1].

3. THE MARKET MECHANISM

3.1 Optimal dispatch in the day-ahead trade
We now formulate a Constraint Satisfaction Problem for

the day-ahead phase. The SO conducts a one-shot auction.
Demand is modelled by agents l ∈ L, where L stands for
Load-serving-entities (LSE), who only submit the requested

amounts for fixed power P defl and reserve power P optl . The
SO chooses one bid bg,rg per generator g and announces
a marginal market clearing price γdef , which defines how

much each unit in
PG
g P

def
g will be paid for. The marginal

clearing price of the balancing phase γexe will be higher - its
theoretical maximum is known as it will also be determined
from the winning bids bg,rg . Via γdef , each generator can

look up on bg,rg how much power P defg he is committed to
supply and this also tells him how much reserve capacity
P optg he needs to keep available. The optimisation goal of
the SO is to minimise generation costs. One approach is
to only minimise the costs which are known for sure in this
phase (

PG
g P

def
g γdef ), another is to include an estimation

of the costs of the balancing phase (
PG
g P

exe
g γexe). The

first constraint to this optimisation requires that demand is
satisfied:

PG
g P

def
g =

PL
l P

def
l . Secondly, the SO needs to

make sure that each generator will stay within his generation
limits: PLg ≤ P defg ≤ PUg (1− rg). Each generator agrees to

hold back reserve capacity P optg = P defg
r

1−r . The overall
reserve capacity needs to match the demand for reserves.
Hence, we add the third constraint

PG
g P

opt
g ≥PL

l P
opt
l .

The number of functions each generator can bid is a pa-
rameter of the mechanism. This is a trade-off between the
time complexity of finding a solution and the freedom of the
generators to bid on as many different r as they want.

3.2 Optimal dispatch during balancing
During the real-time phase, LSEs announce their balanc-

ing requirements P exel ∈ [0, P optl ]. In order to find γexe and
thereby allocate each generator a value for P exeg ∈ [0, P optg ],

the SO translates the interval [P defg , Pmaxg ] of each successful
bid bg,rg from the day-ahead phase into a new bid function

bbalg in the interval [0, P optg ]. These translated bids are then

used to minimise
PG
g P

exe
g γexe.

4. OPPORTUNITY COST ASSESSMENT
Reserve markets should compensate generators for their

(lost) opportunity costs of withholding reserve capacity, the
computation of which is non-trivial [1]. We assume an ap-
proximation can be done via some function φg(P

opt
g ). To

include opportunity costs in bids, most approaches (see [4])

either use general availability costs, where generators include
a one-time fee for providing the reserve capacity interval
($/MW), or activation costs, only adding costs to each unit
of reserve capacity that is actually activated in real time
($/MWh). While the former approach is easier to derive,
the latter approach uses no constants which is a needed fea-
ture of many quadratic optimisers, like the one AMES uses.
We show how the a pure activation strategy as well as mixed
strategies can be computed, given the availability strategy.

Let cg(P ) = aP + bP 2 be the cost function of generator
g. The availability strategy simply shifts the function up-
wards by φg(P

opt
g ) and thus uses bAvg,r(P ) = cg(P )+φg(P

opt
g ).

The activation strategy instead increases the unit price a by
some amount a′, such that the expected total revenue equals
bAvg,r(P ), when taking an expected probability distribution D
over P exeg into account.

Figure 1: Pricing strategies for opportunity costs

With the availability strategy, the generator carries the
risk of underestimating P exeg , and the demand side carries
the risk of him overestimating it, while for the activation
strategy it is the other way around. Mixed strategies in-
crease a by a value ∈ [0, a′] and shift the cost function
upwards by a value ∈ [0, φg(P

opt
g )]. As for the activation

strategy, g can also use an expected probability distribution
to find these values, such that over the interval of possible
outcomes for P exeg , the expected total revenue equals bAvg,r.
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