
A Double Oracle Algorithm for Zero-Sum Security Games
on Graphs

Manish Jain∗, Dmytro Korzhyk†, Ondřej Vaněk+, Vincent Conitzer†,
Michal Pěchouček+, Milind Tambe∗

∗ Computer Science Department, University of Southern California, Los Angeles, CA. 90089
{manish.jain,tambe}@usc.edu

† Department of Computer Science, Duke University, Durham, NC. 27708
{dima,conitzer}@cs.duke.edu

+ Department of Cybernetics, Czech Technical University, Prague. Czech Republic.
{vanek,pechoucek}@agents.felk.cvut.cz

ABSTRACT
In response to the Mumbai attacks of 2008, the Mumbai police
have started to schedule a limited number of inspection checkpoints
on the road network throughout the city. Algorithms for similar
security-related scheduling problems have been proposed in recent
literature, but security scheduling in networked domains when tar-
gets have varying importance remains an open problem at large.
In this paper, we cast the network security problem as an attacker-
defender zero-sum game. The strategy spaces for both players are
exponentially large, so this requires the development of novel, scal-
able techniques.

We first show that existing algorithms for approximate solutions
can be arbitrarily bad in general settings. We present RUGGED
(Randomization in Urban Graphs by Generating strategies for En-
emy and Defender), the first scalable optimal solution technique for
such network security games. Our technique is based on a double
oracle approach and thus does not require the enumeration of the
entire strategy space for either of the players. It scales up to realistic
problem sizes, as is shown by our evaluation of maps of southern
Mumbai obtained from GIS data.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Security, Performance

Keywords
Game theory, Double oracle, Zero-sum games, Minimax equilib-
rium

1. INTRODUCTION
Securing urban city networks, transportation networks, computer

networks and other critical infrastructure is a large and growing
Cite as: A Double Oracle Algorithm for Zero-Sum Security Games on
Graphs, Manish Jain, Dmytro Korzhyk, Ondřej Vaněk, Vincent Conitzer,
Michal Pěchouček, Milind Tambe, Proc. of 10th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2011), Tumer,
Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp.
327-334.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

area of concern. The key challenge faced in these domains is to ef-
fectively schedule a limited number of resources to protect against
an intelligent and adaptive attacker. For example, a police force
has limited personnel to patrol, operate checkpoints, or conduct
searches. The adversarial aspect poses significant challenges for
the resource allocation problem. An intelligent attacker may ob-
serve the strategy of the defender, and then plan more effective
attacks. Predictable scheduling of defender resources can be ex-
ploited by the attacker. Randomization has thus been used to keep
attackers at bay by increasing the uncertainty they face.

Game theory offers a principled way of achieving effective ran-
domization. It models the varying preferences of both the defender
and the attacker, and allows us to solve for optimal strategies. Re-
cent work has also used and deployed game-theoretic techniques in
real-world attacker-defender scenarios, for example, ARMOR [13]
and IRIS [10].

In this paper, we model an urban network security problem as
a game with two players: the defender and the attacker. The pure
strategies of the defender correspond to allocations of resources to
edges in the network—for example, an allocation of police check-
points to roads in the city. The pure strategies of the attacker cor-
respond to paths from any source node to any target node—for
example, a path from a landing spot on the coast to the airport.

The strategy space of the defender grows exponentially with the
number of available resources, whereas the strategy space of the
attacker grows exponentially with the size of the network. For ex-
ample, in a fully connected graph with 20 nodes and 190 edges,
the number of defender actions for only 5 resources is

(
190
5

) ≈ 2
billion, while the number of possible attacker paths without any cy-
cles is ≈ 6.6× 1018. Real-world networks are significantly larger,
e.g., a simplified graph representing the road network in southern
Mumbai has more than 250 nodes (intersections) and 600 edges
(streets), and the security forces can deploy tens of resources.

We model the scenario as a zero-sum game, where the attacker
gets a positive payoff in case of a successful attack and 0 other-
wise, and the payoff to the defender is the negative of the attacker’s
payoff. Our goal is to find a minimax strategy for the defender,
that is, a strategy that minimizes the maximum expected utility that
the attacker can obtain.1 The extremely large size of the games

1Because in this work, we assume the game to be zero-sum, a min-
imax strategy is equivalent to a Stackelberg strategy (where the de-
fender finds the optimal mixed strategy to commit to); moreover,
via von Neumann’s minimax theorem [12] (or linear programming
duality), minimax strategies also correspond exactly to Nash equi-

327

inhibits the direct application of standard methods for finding min-
imax strategies. Thus, we propose a double-oracle based approach
that does not require the ex-ante enumeration of all pure strate-
gies for either of the players. We propose algorithms for both the
defender’s and the attacker’s oracle problems, which are used it-
eratively to provide pure-strategy best responses for both players.
While we present NP-hardness proofs for the oracle problems for
both players, the entire approach remains scalable in practice, as is
shown in our experiments.

We also provide experimental results on real-city networks, specif-
ically on graphs obtained from the GIS data of southern Mumbai.
The graph representation of southern Mumbai has 250 nodes and
600 edges. The placement of sources and targets in the experi-
ment was inspired by the Mumbai 2008 attacks where the targets
were important economic and political centers and the sources were
placed along the coast line. Our experimental results show that this
problem remains extremely difficult to solve. While we show the
previous approximation method to not be ready for deployment,
our own techniques will need to be enhanced further for real de-
ployments in the city of Mumbai. We believe the problem remains
within reach, and is clearly an exciting and important area for con-
tinued research.

2. RELATED WORK
Game theory has been applied to a wide range of problems where

one player — the evader — tries to minimize the probability of
detection by and/or encounter with the other player — the patroller;
the patroller wants to thwart the evader’s plans by detecting and/or
capturing him. The formalization of this problem led to a family of
games, often called pursuit-evasion games [1]. As there are many
potential applications of this general idea, more specialized game
types have been introduced, e.g., hider-seeker games [7, 9] and
infiltration games [2] with mobile patrollers and mobile evaders;
search games [8] with mobile patrollers and immobile evaders; and
ambush games [14] with the mobility capabilities reversed. In the
game model proposed in this paper, the evader is mobile whereas
the patroller is not, just like in ambush games. However, in contrast
with ambush games, we consider targets (termed destinations in
ambush games) of varying importance.

Our game model is most similar to that of interdiction games [17],
where the evading player — the attacker — moves on an arbitrary
graph from one of the origins to one of the destinations (aka. tar-
gets); and the interdicting player — the defender — inspects one or
more edges in the graph in order to detect the attacker and prevent
him from reaching the target. As opposed to interdiction games,
we do not consider the detection probability on edges, but we al-
low different values to be assigned to the targets, which is crucial
for real-world applications.

Recent work has also considered scheduling multiple-defender
resources using cooperative game-theory, as in path disruption gam-
es [3], where the attacker tries to reach a single known target. In
contrast with the static asset protection problem [6], we attribute
different importance to individual targets and unlike its dynamic
variant [6], we consider only static target positions. Recent work in
security games and robotic patrolling [4, 10] has focused on con-
crete applications. However, they have not considered the scale-up
for both defender and attacker strategies. For example, in ASPEN,
the attacker’s pure strategy space is polynomially large, since the
attacker is not following any path and just chooses exactly one tar-
get to attack. Our game model was introduced by Tsai et al. [15];

librium strategies. For a discussion of the relationships among
these concepts in security games, which include zero-sum games,
see Yin et al. [18].

however, their approximate solution technique can be suboptimal.
We discuss the shortcomings of their approach in Section 4, and
provide an optimal solution algorithm for the general case.

Techniques used by RUGGED are based on a double oracle ap-
proach, as proposed by McMahan et al. [11] (corresponding exactly
to the notion of constraint and column generation in linear pro-
gramming). This technique is intended to solve large-scale games,
and is especially useful in settings where efficient algorithms for
the best-response oracle problems are available. Double oracle al-
gorithms have subsequently been applied to various pursuit-evasion
games [9, 16]. While the best-response oracle problems are NP-
hard in our setting (as we show in Sections 5.3 and 5.4), we give
algorithms for these problems that allow the approach to still scale
to realistic instances.

3. PROBLEM DESCRIPTION
A network security domain, as introduced by Tsai et al. [15], is

modeled using a graph G = (N,E). The attacker starts at one
of the source nodes s ∈ S ⊂ N and travels along a path of his
choosing to any one of the targets t ∈ T ⊂ N . The attacker’s pure
strategies are thus all the possible s−t paths from any source s ∈ S
to any target t ∈ T . The defender tries to catch the attacker before
he reaches any of the targets by placing k available (homogeneous)
resources on edges in the graph. The defender’s pure strategies are
thus all the possible allocations of k resources to edges, so there
are
(|E|
k

)
in total. Assuming the defender plays allocationXi ⊆ E,

and the attacker chooses path Aj ⊆ E, the attacker succeeds if and
only if Xi ∩ Aj = ∅. Additionally, a payoff T (t) is associated
with each target t, such that the attacker gets T (t) for a success-
ful attack on t and 0 otherwise. The defender receives −T (t) in
case of a successful attack on t and 0 otherwise. The network secu-
rity domain is modeled as a complete-information zero-sum game,
where the set S of sources, T of targets, the payoffs T for all the
targets and the number of defender resources k are known to both
the players a-priori. The objective is to find the mixed strategy x
of the defender, corresponding to a Nash equilibrium (equivalently,
a minimax strategy) of this network security game. The notation
used in the paper is described in Table 1.

G(N,E) Urban network graph
T Target payoff
k Defender resources
X Set of defender allocations, X = {X1, X2, . . . , Xn}
Xi ith defender allocation. Xi = {Xie}∀e,Xie ∈ {0, 1}
A Set of attacker paths, A = {A1, A2, . . . , Am}
Aj jth attacker path. Aj = {Aje}∀e,Aje ∈ {0, 1}
x Defender’s mixed strategy over X
a Adversary’s mixed strategy over A

Ud(x, Aj) Defender’s expected utility playing x against Aj
Λ Defender’s pure strategy best response
Γ Attacker’s pure strategy best response

Table 1: Notation

4. RANGER COUNTEREXAMPLE
RANGER was introduced by Tsai et al. [15] and was designed

to obtain approximate solutions for the defender for the network
security game. Its main component is a polynomial-sized linear
program that, rather than solving for a distribution over allocations,
solves for the marginal probability with which the defender covers

328

each edge. It does this by approximating the capture probability
as the sum of the marginals along the attacker’s path. It further
presents some sampling techniques to obtain a distribution over de-
fender allocations from these marginals. What was known before
was that the RANGER solution (regardless of the sampling method
used) is suboptimal in general, because it is not always possible to
find a distribution over allocations such that the capture probability
is indeed the sum of marginals on the path. In this paper, we show
that RANGER’s error can be arbitrarily large.

Let us consider the example graph shown in Figure 1. This multi-
graph2 has a single source node, s, and two targets, t1 and t2; the
defender has 2 resources. Furthermore, the payoffs T of the targets
are defined to be 1 and 2 for targets t1 and t2 respectively.

s t1 t2

a

a

a

b

Figure 1: This example is solved incorrectly by RANGER. The
variables a, b are the coverage probabilities on the correspond-
ing edges.

RANGER solution:
Suppose RANGER puts marginal coverage probability a on each of
the three edges between s and t1,3 and probability b on the edge
between t1 and t2, as shown in Figure 1. RANGER estimates that
the attacker gets caught with probability a when attacking target
t1 and probability a + b when attacking target t2. RANGER will
attempt to make the attacker indifferent between the two targets to
obtain the minimax equilibrium. Thus, RANGER’s output is a =
3/5, b = 1/5, obtained from the following system of equations:

1(1− a) = 2(1− (a+ b)) (1)
3a+ b = 2 (2)

However, there can be no allocation of 2 resources to the edges
such that the probability of the attacker being caught on his way to
t1 is 3/5 and the probability of the attacker being caught on his way
to t2 is 4/5. (The reason is that in this example, the event of there
being a defensive resource on the second edge in the path cannot
be disjoint from the event of there being one on the first edge.) In
fact, for this RANGER solution, the attacker cannot be caught with
a probability of more than 3/5 when attacking target t2, and so the
defender utility cannot be greater than −2(1− 3/5) = −4/5.

Optimal solution:
Figure 2 shows the six possible allocations of the defender’s two
resources to the four edges. Three of them block some pair of edges
between s and t1. Suppose that each of these three allocations is
played by the defender with probability x.4 Each of the other three
allocations blocks one edge between s and t1 as well as the edge
between t1 and t2. Suppose the defender chooses these allocations
with probability y each (refer Figure 2). The probability of the
attacker being caught on his way to t1 is 2

3
3x + 1

3
3y, or 2x +

2We use a multi-graph for simplicity. This counterexample can
easily be converted into a similar counterexample that has no more
than one edge between any pair of nodes in the graph.
3We can assume without loss of solution quality that symmetric
edges will have equal coverage.
4Again, this can be assumed without loss of generality for symmet-
ric edges.

x

x

x

y

y

y

t2t1s

t2t1s

t2t1s

t2t1s

t2t1s

t2t1s

Figure 2: The possible allocations of two resources to the four
edges. The blocked edges are shown in bold. The probabilities
(x or y) are shown next to each allocation.

y. Similarly, the probability of the attacker being caught on his
way to t2 is 2x + 3y. Thus, a minimax strategy for this problem
is the solution of Equations (3) and (4), which make the attacker
indifferent between targets t1 and t2.

1(1− 2x− y) = 2(1− 2x− 3y) (3)
3x+ 3y = 1 (4)

The solution to the above system is x = 2/9, y = 1/9, so that the
expected attacker utility is 4/9. Thus, the expected defender utility
is −4/9, which is higher than the expected defender utility of at
most −4/5 resulting from using RANGER.

RANGER sub-optimality:
Suppose the payoff T (t2) of target t2 in the example above was
H,H > 1. The RANGER solution in this case, again obtained
using Equations 1 and 2, would be a = (H+1)

(2H+1)
, b = (H−1)

(2H+1)
.

Then, consider an attacker who attacks the target t2 by first going
through one of the three edges from s to t1 uniformly at random
(and then on to t2). The attacker will fail to be caught on the way
from t1 to t2 with probability (1 − b), given that the defender’s
strategy is consistent with the output of RANGER. Even conditional
on this failure, the attacker will fail to be caught on the way from
s to t1 with probability at least 1/3, because the defender has only
2 resources. Thus, the probability of a successful attack on t2 is
at least (1 − b)(1/3), and the attacker’s best-response utility is at
least:

H(1− b)
3

=
H(H + 2)

3(2H + 1)
>
H(H + 0.5)

3(2H + 1)
=
H

6
(5)

Thus, the true defender utility for any strategy consistent with RAN-
GER is at most −H

6
.

Now, consider another defender strategy in which the defender
always blocks the edge from t1 to t2, and also blocks one of the
three edges between s and t1 uniformly at random. For such a
defender strategy, the attacker can reach t1 with probability 2/3,
but cannot reach target t2 at all. Thus, the attacker’s best-response
utility in this case is 2/3. Therefore, the optimal defender utility
is at least −2/3. Therefore, any solution consistent with RANGER
is at least H

6
/ 2

3
= H

4
suboptimal. Since H is arbitrary, RANGER

solutions can be arbitrarily suboptimal. This motivates our exact,
double-oracle algorithm, RUGGED.

5. DOUBLE-ORACLE APPROACH
In this section, we present RUGGED, a double-oracle based al-

gorithm for network security games. We also analyze the compu-
tational complexity of determining best responses for both the de-
fender and the attacker, and, to complete the RUGGED algorithm,
we give algorithms for computing the best responses.

329

5.1 Algorithm
The algorithm RUGGED is presented as Algorithm 1. X is the set

of defender allocations generated so far, while A is the set of at-
tacker paths generated so far. CoreLP(X,A) finds an equilibrium
(and hence, minimax and maximin strategies) of the two-player
zero-sum game consisting of the sets of pure strategies, X and A,
generated so far. CoreLP returns x and a, which are the current
equilibrium mixed strategies for the defender and the attacker over
X and A respectively. The defender oracle (DO) generates a de-
fender allocation Λ that is a best response for the defender against
a. (This is a best response among all allocations, not just those in
X.) Similarly, the attacker oracle (AO) generates an attacker path
Γ that is a best response for the attacker against x.

Algorithm 1 Double Oracle for Urban Network Security
1. Initialize X by generating arbitrary candidate defender allo-
cations.
2. Initialize A by generating arbitrary candidate attacker paths.
repeat

3. (x,a)←CoreLP(X,A).
4a. Λ← DO(a).
4b. X← X ∪ {Λ}.
5a. Γ← AO(x).
5b. A← A ∪ {Γ}.

until convergence
7. Return (x,a)

The double oracle algorithm thus starts with a small set of pure
strategies for each player, and then grows these sets in every itera-
tion by applying the best-response oracles to the current solution.
Execution continues until convergence is detected. Convergence is
achieved when the best-response oracles of both the defender and
the attacker do not generate a pure strategy that is better for that
player than the player’s strategy in the current solution (holding the
other player’s strategy fixed). In other words, convergence is ob-
tained if, for both players, the reward given by the best-response
oracle is no better than the reward for the same player given by the
CoreLP.

The correctness of best-response-based double oracle algorithms
for two-player zero-sum games has been established by McMahan
et al [11]; the intuition for this correctness is as follows. Once the
algorithm converges, the current solution must be an equilibrium
of the game, because each player’s current strategy is a best re-
sponse to the other player’s current strategy—this follows from the
fact that the best-response oracle, which searches over all possible
strategies, cannot find anything better. Furthermore, the algorithm
must converge, because at worst, it will generate all pure strategies.

5.2 CoreLP
The purpose of CoreLP is to find an equilibrium of the restricted

game consisting of defender pure strategies X and attacker pure
strategies A. Below is the standard formulation for computing a
maximin strategy for the defender in a two-player zero-sum game.

max
U∗
d
,x

U∗d (6)

s.t. U∗d ≤ Ud(x, Aj) ∀j = 1, . . . , |A| (7)
1Tx = 1 (8)
x ∈ [0, 1]|X| (9)

The defender’s mixed strategy x, defined over X, and utility U∗d
are the variables for this problem. Inequality (7) is family of con-
straints; there is one constraint for every attacker pathAj in A. The

function Ud(x, Aj) is the expected utility of the attacker path Aj .
Given Aj , the probability that the attacker is caught is the sum of
the probabilities of the defender allocations that would catch the at-
tacker. (We can sum these probabilities because they correspond to
disjoint events.) More precisely, let zij be an indicator for whether
allocation Xi intersects with path Aj , that is,

zij =

{
1 if Xi ∩Aj 6= ∅
0 otherwise (10)

These zij are not variables of the linear program; they are parame-
ters that are determined at the time the best responses are generated.
Then, the probability that an attacker playing path Aj is caught is∑
i zijxi, and the probability that he is not caught is

∑
i(1−zij)xi.

Thus, the payoff function Ud(x, Aj) for the defender for choosing
a mixed strategy x when the attacker chooses path Aj is given by
Equation (11), where T (tj) is the attacker’s payoff for reaching tj .

Ud(x, Aj) = −T (tj) · (
∑
i

(1− zij)xi) (11)

The dual variables corresponding to Inequality (7) give the at-
tacker’s mixed strategy a, defined over A. The expected utility for
the attacker is given by −U∗d .

5.3 Defender Oracle
This section concerns the best-response oracle problem for the

defender. The Defender Oracle problem is stated as follows: gen-
erate the defender pure strategy (resource allocation) Λ allocating k
resources over the edges E that maximizes the defender’s expected
utility against a given attacker mixed strategy a over paths A.

Defender Oracle problem is NP-hard: We show this by reduc-
ing the set cover problem to it. The Set-Cover problem: Given
are a set U , a collection S of subsets of U (that is, S ⊆ 2U), and an
integer k. The question is whether there is a cover C ⊆ S of size k
or less, that is,

⋃
c∈C c = U and |C| ≤ k. We will use a modifica-

tion of this well-known NP-hard problem so that S always contains
all singleton subsets of U , that is, x ∈ U implies {x} ∈ S. This
modified problem remains NP-hard.

THEOREM 1. The Defender Oracle problem is NP-hard, even
if there is only a single source and a single target.

PROOF. Reduction from Set-Cover to Defender Oracle: We
convert an arbitrary instance of the set cover problem to an instance
of the defender oracle problem by constructing a graph G with just
3 nodes, as shown in Figure 3. The graph G is a multi-graph5 with
just three nodes, so that N = {s, v, t}, where s is the only source
and t is the only target (with arbitrary positive value). There are up
to |S| loop edges adjacent to node v; each loop edge corresponds to
a unique non-singleton subset in S. There are |U | edges between s
and v, each corresponding to a unique element in U . There are also
|U | edges between v and t, each corresponding to a unique element
in U . The attacker’s paths correspond to the elements in U . A path
that corresponds to u ∈ U starts with the edge between s and v that
corresponds to u, then loops through all the edges that correspond
to non-singleton subsets in S that contain u, and finally ends with
the edge between v and t that corresponds to u. Hence, any two
paths used by the attacker can only intersect at the loop edges. The
probabilities that the defender places on these paths are arbitrary
positive numbers. We now show that set U can be covered with
k subsets in S ⊆ 2U if and only if the defender can block all of
the attacker’s paths with k resources in the corresponding defender
oracle problem instance.
5Having a multi-graph is not essential to the NP-hardness reduc-
tion.

330

e2

e1

e3

e1'

e2'

e3'
e1,2

e1,3

s v t

Figure 3: A defender oracle problem instance correspond-
ing to the SET-COVER instance with U = {1, 2, 3}, S =
{{1}, {2}, {3}, {1, 2}, {1, 3}}. Here, the attacker’s mixed
strategy uses three paths: (e1, e1,2, e1,3, e

′
1), (e2, e1,2, e

′
2),

(e3, e1,3, e
′
3). Thus, the SET-COVER instance has a solution of

size 2 (for example, using {1, 2} and {1, 3}); correspondingly,
with 2 resources, the defender can always capture the attacker
(for example, by covering e1,2, e1,3).

The “if” direction: If the defender can block all the paths used
by the attacker with k resources, then the set U can be covered
with C ⊆ S, where |C| = k and is constructed as follows. If
the defender places a resource on a loop edge, then C includes the
non-singleton subset in S that corresponds to that loop edge. If the
defender blocks any other edge then C includes the corresponding
singleton subset.

The “only if” direction: If there exists a cover C of size k, then
the defender can block all the paths by placing a defensive resource
on every loop edge that corresponds to a non-singleton subset in C,
and placing a defensive resource on the corresponding edge out of
s for every singleton subset in C.

Formulation: The defender oracle problem, described below,
can be formulated as a mixed integer linear program (MILP). The
objective of the MILP is to identify the allocation that covers as
many attacker paths as possible, where paths are weighted by the
product of the payoff of the target attacked by the path and proba-
bility of attacker choosing it. (In this formulation, probabilities aj
are not variables; they are provided by CoreLP.) In the formulation,
λe = 1 indicates that we assign a resource to edge e, and zj = 1
indicates that path Aj (refer Table 1) is blocked by the allocation.

max
z,λ

−∑j(1− zj)ajTtj (12)

s.t. zj ≤
∑
e

Ajeλe (13)∑
e λe ≤ k (14)
λe ∈ {0, 1} (15)
zj ∈ [0, 1] (16)

THEOREM 2. The MILP described above correctly computes a
best-response allocation for the defender.

PROOF. The defender receives a payoff of −T (tj)aj if the at-
tacker successfully attacks target tj using pathAj , and 0 in the case
of an unsuccessful attack. Hence, if we make sure that 1− zj = 1
if path Aj is not blocked, and 0 otherwise, then the objective func-
tion (12) correctly models the defender’s expected utility. Inequal-
ity (13) ensures this: its right-hand side will be at least 1 if there
exists an edge on the pathAj that defender is covering, and 0 other-
wise. zj need not be restricted to take an integer value because the
objective is increasing with zj and if the solver can push it above 0,
it will choose to push it all the way up to 1. Therefore, if we let Λ
correspond to the set of edges covered by the defender, zj will be
set by the solver so that:

zj =

{
1 if Λ ∩Aj 6= ∅⇔ ∃e |λe = Aje = 1
0 otherwise (17)

Inequality (14) enforces that the defender covers at most as many
edges as the number of available resources k, and thus ensures
feasibility. Hence, the above MILP correctly captures the best-
response oracle problem for the defender.

PROPOSITION 1. For any attacker mixed strategy, the defender’s
expected utility from the best response provided by the defender or-
acle is no worse than the defender’s equilibrium utility in the full
zero-sum game.

PROOF. In any equilibrium, the attacker plays a mixed strat-
egy that minimizes the defender’s best-response utility; therefore,
if the attacker plays any other mixed strategy, the defender’s best-
response utility can be no worse.

5.4 Attacker Oracle
This section concerns the best-response oracle problem for the

attacker. The Attacker Oracle problem is to generate the attacker
pure strategy (path) Γ from some source s ∈ S to some target t ∈
T that maximizes the attacker expected utility given the defender
mixed strategy x over defender allocations X.

Attacker Oracle is NP-hard: We show that the attacker oracle
problem is also NP-hard by reducing 3-SAT to it.

THEOREM 3. The Attacker Oracle problem is NP-hard, even if
there is only a single source and a single target.

PROOF. Reduction from 3-SAT to Attacker Oracle: We con-
vert an arbitrary instance of 3-SAT to an instance of the attacker
oracle problem as follows. Suppose the 3-SAT instance contains n
variables xi, i = 1, . . . , n, and k clauses. Each clause is a disjunc-
tion of three literals, where each literal is either a variable or the
negation of the variable. Consider the following example:

E = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4) (18)

The formula E contains n = 4 variables and k = 2 clauses.
We construct a multi-graphG6 with n+k+1 nodes, v0, . . . , vn+k

so that the source node is s = v0, and the target node is t = vn+k.
Every edge connects some pair of nodes with consecutive indices,
so that every simple path from s to t contains exactly n+ k edges.
Each edge corresponds to a literal in the 3-SAT expression (that
is, either xi or ¬xi). There are exactly three edges that connect
nodes vi−1 and vi for i = 1, . . . , k. Those three edges correspond
to the three literals in the i-th clause. There are exactly two edges
that connect nodes vk+j−1 and vk+j for j = 1, . . . , n. Those two
edges correspond to literals xj and ¬xj . An example graph that
corresponds to the expression (18) is shown in Figure 4.

x
1

x
1

x
4

x
1

¬x
1

x
2

¬x
2

x
3

¬x
3

x
4

¬x
4

¬x
2

¬x
3

x
2

s=v
0

v
1

v
2

v
3

v
4

v
5 v

6
=t

Figure 4: An example graph corresponding to the CNF formula
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x4)

There are 2n defender pure strategies (allocations of resources),
each played with equal probability of 1/(2n). Each defender pure
strategy corresponds to a literal, and the edges that correspond to
that literal are blocked in that pure strategy. In the example shown
in Figure 4, the defender plays 8 pure strategies, each with proba-
bility 1/8. Three edges are blocked in the pure strategy that corre-
sponds to the literal x1 (namely, the top edge between v0 and v1,
6We use a multi-graph for simplicity; having a multi-graph is not
essential for the NP-hardness reduction.

331

the top edge between v1 and v2, and the top edge between v2 and
v3); only one edge is blocked in the pure strategy that corresponds
to the literal ¬x4 (the bottom edge between v5 and v6). (If it is
desired that the defender always use the same number of resources,
this is easily achieved by adding dummy edges.) We now show
that there is an assignment of values to the variables in the 3-SAT
instance so that the formula evaluates to true if and only if there
is a path from s to t in the corresponding attacker oracle problem
instance which is blocked with probability at most 1/2.

The “if” direction: Suppose there is a path Γ from s to t that
is blocked with probability at most 1/2. Note that any path from
s to t is blocked by at least one of the strategies {xi,¬xi}, for all
i = 1, . . . , n, so the probability that the path is blocked is at least
n/(2n) = 1/2. Moreover, if for some i, the path passes through
both an edge labeled xi and one labeled ¬xi, then the probability
that the path is blocked is at least (n + 1)/(2n) > 1/2—so this
cannot be the case for Γ. Hence, we can assign the true value to
the literals that correspond to the edges on the path Γ, and false
to all the other literals. This must correspond to a solution to the
3-SAT instance, because each clause must contain a literal that cor-
responds to an edge on the path, and is thus assigned a true value.

The “only if” direction: Suppose there is an assignment of val-
ues to the variables such that the 3-SAT formula evaluates to true.
Consider a simple path Γ that goes from s to t through edges that
correspond to literals with true values in the assignment. Such a
path must exist because by assumption the assignment satisfies ev-
ery clause. Moreover, this path is blocked only by the defender
strategies that correspond to true literals, of which there are exactly
n. So the probability that the path is blocked is n/(2n) = 1/2.

Formulation: The attacker oracle problem can be formulated as
a set of mixed integer linear programs, as described below. For ev-
ery target in T , we solve for the best path to that target; then we
take the best solution overall. Below is the formulation when the
attacker is attacking target tm. (In this formulation, probabilities xi
are not variables; they are values produced earlier by CoreLP.) In
the formulation, γe = 1 indicates that the attacker passes through
edge e, and zi = 1 indicates that the allocation Xi blocks the at-
tacker path. Equations (20) to (22) represent the flow constraints
for the attacker for every node n ∈ N.

max
z,γ

Ttm
∑
i xi(1− zi) (19)

s.t.
∑
e∈out(n) γe =

∑
e∈in(n)

γe n 6= s, tm (20)

∑
e∈out(s) γe = 1 (21)∑
e∈in(tm) γe = 1 (22)

zi ≥ γe +Xie − 1 ∀e∀i (23)
zi ≥ 0 (24)
γe ∈ {0, 1} (25)

THEOREM 4. The MILP described above correctly computes a
best-response path for the attacker.

PROOF. The flow constrains are represented in Equations (20)
to (22). The sink for the flow is the target tm that we are currently
considering for attack. To deal with the case where there is more
than one possible source node, we can add a virtual source (s) to
G that feeds into all the real sources. in(n) represents the edges
coming into n, out(n) represents those going out of n. The flow
constraints ensure that the chosen edges indeed constitute a path
from the (virtual) source to the sink.

The attacker receives a payoff of T (tm) if he attacks target tm
successfully, that is, if the path does not intersect with any defender

allocation. Hence, if we make sure that 1− zi = 1 if allocation Xi
does not block the path, and 0 otherwise, then the objective function
(19) correctly models the attacker’s expected utility. Inequality (23)
ensures this: if the allocation Xi covers some e for which γe = 1,
then it will force zi to be set at least to 1; otherwise, zi only needs
to be set to at least 0 (and in each case, the solver will push it all the
way down to this value, which also explains why the zi variables
do not need to be restricted to take integer values). Therefore, if we
let Γ correspond to the path chosen by the attacker, zi will be set
by the solver so that

zi =

{
1 if Xi ∩ Γ 6= ∅⇔ ∃e |γe = Xie = 1
0 otherwise (26)

It follows that the MILP objective is correct. Hence, the above
MILP captures the best-response oracle problem for the attacker.

PROPOSITION 2. For any defender mixed strategy, the attacker’s
expected utility from the best response provided by the attacker or-
acle is no worse than the attacker’s equilibrium utility in the full
zero-sum game.

PROOF. In any equilibrium, the defender plays a mixed strat-
egy that minimizes the attacker’s best-response utility; therefore,
if the defender plays any other mixed strategy, the attacker’s best-
response utility can be no worse.

Figure 5: Example graph of Southern Mumbai with 455 nodes.
Sources are depicted as green arrows and targets are red bulls-
eyes. Best viewed in color.

6. EVALUATION
In this section, we describe the results we achieved with RUGGED.

We conducted experiments on graphs obtained from road network
GIS data for the city of Mumbai (inspired by the 2008 Mumbai in-
cidents [5]), as well as on artificially generated graphs. We provide
two types of results: (1) Firstly, we compare the solution quality
obtained from RUGGED with the solution quality obtained from
RANGER. These results are shown in Section 6.1. (2) Secondly,
we provide runtime results showing the performance of RUGGED
when the input graphs are scaled up.7 The following three types of
graphs were used for the experimental results:

(1) Weakly fully connected (WFC) graphs, denotedGWFC(N,E),
are graphs where N is an ordered set of nodes {n1, . . . , nm;S =
{n1}, T = {nm}}. For each node ni, there exists a set of directed
7All experiments were run on standard desktop 2.8GHz machine
with 2GB main memory.

332

edges, {(ni, nj)|ni < nj}, in E. These graphs were chosen be-
cause of the extreme size of the strategy spaces for both players.
Additionally, there are no bottleneck edges, so these graphs are de-
signed to be computationally challenging for RUGGED.

(2) Braid-type graphs, denoted GB(N,E), are graphs where N
is a sequence of nodes n1 to nm such that each pair ni−1 and ni
is connected by 2 to 3 edges. Node n1 is the source node. Any
following node is a target node with probability 0.2, with payoff
T randomly chosen between 1 and 100. These graphs have a sim-
ilar structure as the graph in Figure 1, and were motivated by the
counterexample in Section 4.

(3) City graphs of different sizes were extracted from the south-
ern part of Mumbai using the GIS data provided by OpenStreet-
Maps. The placement of 2-4 targets was inspired by the Mumbai
incidents from 2008 [5]; 2-4 sources were placed on the border of
the graph,8 simulating an attacker approaching from the sea. We
ran the test for graphs with the following numbers of nodes: 45,
129 and 252. Figure 5 shows a sample Mumbai graph with 252
nodes, 4 sources and 3 targets.

6.1 Comparison with RANGER
This section compares the solution quality of RUGGED and RAN-

GER. Although we have already established that RANGER solutions
can be arbitrarily bad in general, the objective of these tests is to
compare the actual performance of RANGER with RUGGED. The
results are given in Table 2, which shows the average and maxi-
mum error from RANGER. We evaluated RANGER on the three
types of graphs — city graphs, braid graphs and weakly fully con-
nected graphs of different sizes, fixing the number of defender re-
sources to 2 and placing 3 targets, with varied values from the inter-
val [0, 1000]. The actual defender utility from the solution provided
by RANGER9 is computed by using the best-response oracle for the
attacker with the RANGER defender strategy as input. The error of
RANGER is then expressed as the difference between the defender
utilities in the solutions provided by RANGER and by RUGGED.

Table 2 shows the comparison results between RANGER and
RUGGED, summarized over 30 trials. It shows the percentage of
trials in which RANGER gave an incorrect solution (denoted “pct”).
It also shows the average and maximum error of RANGER (denoted
as avg and max respectively) over these trials. It shows that while
RANGER was wrong only about 1/3 of the time for Braid graphs,
it gave the wrong answer in all the runs on the fully connected
graphs. Furthermore, it was wrong 90% of the time on city graphs,
with an average error of 215 units and a maximum error of 721
units. Given an average target value of 500, these are high errors
indeed — indicating that RANGER is unsuitable for deployment in
real-world domains.

6.2 Scale-up and analysis
This section concerns the performance of RUGGED when the in-

put problem instances are scaled up. The experiments were con-
ducted on graphs derived directly from portions of Mumbai’s road
network. The runtime results are shown in Table 3, where the rows
represent the size of the graph and the columns represent the num-
ber of defender resources that need to be scheduled. As an example
of the complexity of the graph, the number of attacker paths in the
Mumbai graph with 252 nodes is at least a 1012, while the num-
ber of defender allocations is approximately 1010 for 4 resources.

8We placed more sources and targets into larger graphs.
9Because RANGER provides a solution in the form of marginal
probabilities of defender allocations along edges, we used Comb
sampling [15] to convert this into a (joint) probability distribution
over defender allocations.

City Braid WFC
nodes 45 129 10 20 10 20

avg error 215 250 210 259 191 80
max error 721 489 472 599 273 117

pct 90% 100% 30% 37% 100% 100%
avg T 500 500 500 500 500 500

Table 2: RANGER average and maximum error and percent of
samples where RANGER provided a suboptimal solution. Tar-
get values T were randomly drawn from the interval [1, 1000].

1 2 3 4
45 0.91 6.43 22.58 33.42

129 6.63 32.55 486.48 3140.23
252 17.19 626.25 2014.14 34344.70

Table 3: Runtime (in seconds) of RUGGED when the input
problem instances are scaled up. These tests were done on
graphs extracted from the road network of Mumbai. The rows
correspond to the number of nodes in the graph whereas the
columns correspond to the number of defender resources.

The game matrix for this problem cannot even be represented, let
alone solved. The ability of RUGGED to compute optimal solu-
tions in such situations, while overcoming NP-hardness of both or-
acles, marks a significant advance in the state of the art in deploying
game-theoretic techniques.

Figure 6(a) examines the performance of RUGGED when the size
of the strategy spaces for both players is increased. These tests were
conducted on WFC graphs, since they are designed to have large
strategy spaces. These problems have 20 to 100 nodes and up to 5
resources. The x-axis in the figure shows the number of nodes in
the graph, while the y-axis shows the runtime in seconds. Different
number of defender resources are represented by different curves
in the graph. For example for 40 nodes, and 5 defender resources,
RUGGED took 108 seconds on average.

To speed up the convergence of RUGGED, we tried to warm-start
the algorithm with an initial defender allocation such as min-cut-
based allocations, target- and source-centric allocations, RANGER
allocations and combinations of these. No significant improvement
of runtime was measured; in some cases, the runtime increased
because of the larger strategy set for the defender.

6.3 Algorithm Dynamics Analysis
This section analyzes the anytime solution quality and the per-

formance of each of the three components of RUGGED: the de-
fender oracle, the attacker oracle, and the CoreLP. When we solve
the best-response oracle problems, they provide lower and upper
bounds on the optimal defender utility, as shown in Propositions 1
and 2. Figure 6(b) shows the progress of the bounds and the CoreLP
solution for a sample problem instance scheduling 2 defender re-
sources on a fully connected network with 50 nodes. The x-axis
shows the number of iterations and the y-axis shows the expected
defender utility. The graph shows that a good solution (i.e., one
where the difference in the two bounds is less than ε) can be com-
puted reasonably quickly, even though the algorithm takes longer
to converge to the optimal solution. For example, a solution with an
allowed approximation of 10 units10 can be computed in about 210
iterations, whereas 310 iterations are required to find the optimal
solution. The difference between these two bounds gives an upper

1010 units is 1% of the maximum target payoff (1000).

333

(a) (b) (c)

Figure 6: Results. Figure (a) shows the scale-up analysis on WFC graph of different sizes. Figure (b) shows the convergence of oracle
values to the final game value and the anytime bounds. Figure (c) compares the runtimes of oracles and the core LP.

bound on the error in the current solution of the CoreLP; this also
provides us with an approximation variant of RUGGED.

Figure 6(c) compares the runtime needed by the three modules
in every iteration. The x-axis shows the iteration number and the
y-axis shows the runtime in seconds in logarithmic scale. As ex-
pected, CoreLP — solving a standard linear program — needs con-
siderably less time in each iteration than both the oracles, which
solve mixed-integer programs. The figure also shows that the mod-
ules scale well as the number of iterations increases.

7. CONCLUSION AND FUTURE WORK
Optimally scheduling defender resources in a network-based en-

vironment is an important and challenging problem. Security in
urban road networks, computer networks, and other transportation
networks is of growing concern, requiring the development of novel
scalable approaches. These domains have extremely large strategy
spaces; a graph with just 20 nodes and 5 resources can have more
than 2 billion strategies for both players. In this paper, we presented
RUGGED, a novel double-oracle based approach for finding an opti-
mal strategy for scheduling a limited number of defender resources
in a network security environment. We showed that previous ap-
proaches can lead to arbitrarily bad solutions in such situations, and
the error can be very high even in practice. We applied RUGGED to
real-city maps generated from GIS data; we presented the results of
applying RUGGED to the road network of Mumbai. While enhance-
ments to RUGGED are required for deployment in some real-world
domains, optimal solutions even to these problems are now within
reach. The scalability of RUGGED opens up new avenues for de-
ploying game-theoretic techniques in real-world applications.

8. ACKNOWLEDGEMENTS
This research is supported by the United States Department of

Homeland Security through Center for Risk and Economic Analy-
sis of Terrorism Events (CREATE), the Czech Ministry of Educa-
tion, Youth and Sports under project number N00014-09-1-0537,
the NSF CAREER grant 0953756 and IIS-0812113, ARO 56698-
CI, and an Alfred P. Sloan fellowship. We thank Ron Parr, Michal
Jakob and Zhengyu Yin for comments and discussions.

9. REFERENCES
[1] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and

B. Vöcking. Randomized pursuit-evasion in graphs. In
ICALP, pages 901–912, 2002.

[2] S. Alpern. Infiltration Games on Arbitrary Graphs. Journal
of Mathematical Analysis and Applications, 163:286–288,
1992.

[3] Y. Bachrach and E. Porat. Path Disruption Games. In
AAMAS, pages 1123–1130, 2010.

[4] N. Basilico, N. Gatti, and F. Amigoni. Leader-Follower
Strategies for Robotic Patrolling in Environments with
Arbitrary Topologies. In AAMAS, pages 500–503, 2009.

[5] R. Chandran and G. Beitchman. Battle for Mumbai Ends,
Death Toll Rises to 195. Times of India, 29 November 2008.

[6] J. Dickerson, G. Simari, V. Subrahmanian, and S. Kraus. A
Graph-Theoretic Approach to Protect Static and Moving
Targets from Adversaries. In AAMAS, pages 299–306, 2010.

[7] M. M. Flood. The Hide and Seek Game of Von Neumann.
MANAGEMENT SCIENCE, 18(5-Part-2):107–109, 1972.

[8] S. Gal. Search Games. Academic Press, New York, 1980.
[9] E. Halvorson, V. Conitzer, and R. Parr. Multi-step

Multi-sensor Hider-Seeker Games. In IJCAI, pages 159–166,
2009.

[10] M. Jain, E. Kardes, C. Kiekintveld, F. Ordóñez, and
M. Tambe. Security Games with Arbitrary Schedules: A
Branch and Price Approach. In AAAI, pages 792–797, 2010.

[11] H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the
Presence of Cost Functions Controlled by an Adversary. In
ICML, pages 536–543, 2003.

[12] J. V. Neumann. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100(1):295–320, 1928.

[13] J. Pita, M. Jain, F. Ordóñez, C. Portway, M. Tambe,
C. Western, P. Paruchuri, and S. Kraus. Using Game Theory
for Los Angeles Airport Security. AI Magazine, 30(1), 2009.

[14] W. Ruckle, R. Fennell, P. T. Holmes, and C. Fennemore.
Ambushing Random Walks I: Finite Models. Operations
Research, 24:314–324, 1976.

[15] J. Tsai, Z. Yin, J. young Kwak, D. Kempe, C. Kiekintveld,
and M. Tambe. Urban security: Game-theoretic resource
allocation in networked physical domains. In AAAI, pages
881–886, 2010.

[16] O. Vaněk, B. Bošanský, M. Jakob, and M. Pěchouček.
Transiting Areas Patrolled by a Mobile Adversary. In IEEE
CIG, pages 9–16, 2010.

[17] A. Washburn and K. Wood. Two-person Zero-sum Games
for Network Interdiction. Operations Research,
43(2):243–251, 1995.

[18] Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, and
M. Tambe. Stackelberg vs. Nash in Security Games: Interch-
angeability, Equivalence, and Uniqueness. In AAMAS, pages
1139–1146, 2010.

334

