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ABSTRACT
Plug-in hybrid electric vehicles are expected to place a consid-
erable strain on local electricity distribution networks, requiring
charging to be coordinated in order to accommodate capacity con-
straints. We design a novel online auction protocol for this prob-
lem, wherein vehicle owners use agents to bid for power and also
state time windows in which a vehicle is available for charging.
This is a multi-dimensional mechanism design domain, with own-
ers having non-increasing marginal valuations for each subsequent
unit of electricity. In our design, we couple a greedy allocation al-
gorithm with the occasional “burning” of allocated power, leaving
it unallocated, in order to adjust an allocation and achieve mono-
tonicity and thus truthfulness. We consider two variations: burning
at each time step or on-departure. Both mechanisms are evaluated
in depth, using data from a real-world trial of electric vehicles in
the UK to simulate system dynamics and valuations. The mecha-
nisms provide higher allocative efficiency than a fixed price system,
are almost competitive with a standard scheduling heuristic which
assumes non-strategic agents, and can sustain a substantially larger
number of vehicles at the same per-owner fuel cost saving than a
simple random scheme.

Categories and Subject Descriptors
I.2.11 [AI ]: Distributed AI - multiagent systems

General Terms
Algorithms, Design, Economics

Keywords
electric vehicle, mechanism design, pricing

1. INTRODUCTION
Promoting the use of electric vehicles (EVs) is a key element in
many countries’ initiatives to transition to a low carbon economy
[4]. Recent years have seen rapid innovation within the automo-
tive industry [10], with designs such as plug-in hybrid vehicles
(PHEVs, which have both an electric motor and an internal com-
bustion engine) and range-extended electric vehicles (which have
an electric motor and an on-board generator driven by an internal
combustion engine) promising to overcome consumers’range anx-
iety1 and thereby increasing mainstream EV use (the Toyota ‘plug-

1Fear that a car will run out of electricity in the middle of nowhere.
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in’ Prius and the Chevrolet Volt are commercial examples of both,
which will be on the road in 2011). However, there are signifi-
cant concerns within the electricity distribution industries regard-
ing the widespread use of such vehicles, since the high charging
rates that these vehicles require (up to three times the maximum
current demand of a typical home) could overload local electricity
distribution networks at peak times [5]. Indeed, street-level trans-
formers servicing between 10-200 homes may become significant
bottlenecks in the widespread adoption of EVs [11].

To address these concerns, electricity distribution companies that
are already seeing significant EV use (such as the Pacific Gas and
Electric Company in California) have introduced time-of-use pric-
ing plans for electric vehicle charging that attempt to dissuade own-
ers from charging their vehicles at peak times, when the local elec-
tricity distribution network is already close to capacity2. While
such approaches are easily understood by customers, they fail to
fully account for the constraints on the local distribution networks,
and they are necessarily static since they require that vehicle owners
individually respond to this price signal and adapt their behaviour
(i.e., manually changing the time at which they charge their vehi-
cle). Looking further ahead, researchers have also begun to investi-
gate the automatic scheduling of EV charging. Typically, this work
allows individual vehicle owners to indicate the times at which the
car will be available for charging, allowing automatic scheduling
while satisfying the constraints of the distribution network [15, 2].
However, since these approaches separate the scheduling of the
charging from the price paid for the electricity (typically assuming
a fixed per unit price plan), they are unable to preclude the incentive
to misreport (e.g., an owner may indicate an earlier departure time
or further travel distances in order to receive preferential charging).

To address the above shortcomings, we turn to the field ofonline
mechanism design[12]. Specifically, we focus on mechanisms that
aremodel-free(which make no assumptions about future demand
and supply of electricity), and that allocate resources as they be-
come available (electricity isperishablesince installing alternative
storage capacity can be very costly). Now, existing mechanisms of
this kind assume that the preferences of the agents (representing the
vehicle owners) can be described by a single parameter, so-called
single-valueddomains. However, this assumption is not appropri-
ate for our problem, where agents have multi-unit demand with
marginal non-increasing valuations for incremental kilowatt hours
(kWh) of electricity.3 To this end, we extend the state of the art in

2See for examplewww.pge.com/about/environment/
pge/electricvehicles/fuelrates/.
3Marginal valuations are non-increasing in our domain because
distance and energy usage are uncertain, and therefore the first few
units of electricity are more likely to be used, and (in the case of
plug-in hybrid electric vehicles) any shortfall can be made up by
using the vehicle’s internal combustion engine.
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dynamic mechanism design as follows:

• We develop a formal framework and solution for the EV
charging problem, and show that it can be naturally modeled
as an online mechanism design problem where agents have
multi-unit demand with non-increasing marginal valuations.

• We develop the first model-free online mechanism for per-
ishable goods, where agents have multi-unit demand with
decreasing marginal valuations. To ensure truthfulness, we
show that this mechanism occasionally requires units to re-
main unallocated (we say that these units are ‘burned’), even
if there is demand for these units. This burning can be done
in two ways: at the time of allocation, or on departure of the
agent. The latter results in higher allocative efficiency and
allocations are easier to compute, but occasionally requires
the battery to be discharged which may not always be feasi-
ble in practice. Both variants are (weakly)dominant-strategy
incentive compatible(DSIC), which means that no agent has
an incentive to misreport their demand vector and the vehicle
availability, regardless of the others’ reports.

• We evaluate our mechanism through numerical simulation of
electric vehicle charging using vehicle use data taken from a
recent trial of EVs in the UK. In doing so, we show how the
agent valuations can be derived from real monetary costs to
the vehicle owners, by considering factors such as fuel prices,
the distance that the owner expects to travel, and the energy
efficiency of the vehicle. Experiments conducted in this re-
alistic setting show that the mechanism with on-departure
burning is highly scalable (it can handle hundreds of agents),
and both variants outperform any fixed price mechanism for
this problem in terms of allocative efficiency, while perform-
ing only slightly worse than a well known scheduling heuris-
tic, which assumes non-strategic agents.

Throughout this paper, we focus on measuring allocative efficiency
rather than seller profit, since our main design goal is to assure
that the capacity of the distribution network is not exceeded, and
that agents that need electricity most are allocated, rather than on
maximizing profits.

2. RELATED WORK
Online mechanism design is an important topic in the multi-agent
and economics literature and there are several lines of research in
this field. One of these aims to develop online variants of Vickrey-
Clarke-Groves (VCG) mechanisms [13, 7]. While these frame-
works are quite general, their focus is on (a slight strengthening
of) Bayesian-Nash incentive compatibility, whereas in this paper
we focus on the stronger concept of DSIC. Moreover, these works
rely on a model of future availability, as well as future supply (e.g.,
Parkes and Singh [13] use an MDP-type framework for predicting
future arrivals), while the mechanism proposed here is model-free.
Such models require fewer assumptions, and make computing allo-
cations more tractable than VCG-like approaches.

Model-free settings are considered by both Hajiaghayi et al. [8]
and Porter [14], who study the problem of online scheduling of
a single, re-usable resource over a finite time period. They char-
acterise truthful allocation rules for this setting and derive lower
bound competitive ratios. A limitation of this work [12, 8, 14] is
that they consider single-valued domains and, as we show, these ex-
isting approaches are no longer incentive compatible for our setting
where agents’ preferences are described by a vector of values.

Another related direction of work concerns designing truthful
multi-unit demand mechanisms for static settings. A seminal result
in this area is the sufficient characterisation of DSIC in terms of

weak monotonicity (WMON) [1]. Although this work is relevant
to our model (we briefly discuss the relationship between our mech-
anism and WMON in Section 4.3), it does not propose any specific
mechanism, and, more importantly, existing results do not imme-
diately apply to online domains where agents arrive over time and
report their arrival and departure times, as well as their demand.

A different approach for dynamic problems is proposed by Juda
and Parkes [9]. They consider a mechanism in which agents are al-
located options (a right to buy) for the goods, instead of the goods
themselves, and agents can choose whether or not to exercise the
options when they exit the market. The concept of options would
need to be modified to our setting with perishable goods, with
power allocated and then burned so that the final allocation reflects
only those options that would be allocated. It is not clear how our
online burning mechanism maps to their method.

In addition to theoretical results, several applications have been
suggested for online mechanisms, including: the allocation of Wi-
Fi bandwidth at Starbucks [6], scheduling of jobs on a server [14]
and the reservation of display space in online advertising [3]. How-
ever, this is the first work that proposes an online mechanism for
electric vehicle charging, and we show how our theoretical frame-
work naturally maps into this domain.

3. EV CHARGING MODEL
In this section we present a model for our problem, formally defin-
ing it as an online allocation problem.

(Supply) We consider a model with discrete and possibly infinite
time steps (e.g., hourly slots)t ∈ T . At each time step, a number of
units of electricity are available for vehicle charging as described
by thesupply functionS : T → N+

0 , whereS(t) describes the
number of units available at timet. Supply can vary over time
due to changes in electricity demand for purposes other than vehi-
cle charging, as well as changeable supply from renewable energy
sources, such as wind and solar.

Importantly, we assume that all vehicle batteries are charged at
the same rate.4 Thus, a unit of electricity corresponds to the total
energy consumed for charging a single vehicle in a single time step.
Note that, while there are multiple units of supply at each time
step (and agents have demand for multiple units), each agent can
be allocatedat mosta single unit per time step. These units are
allocated using a periodic multi-unitauction, one per time step.
Units of electricity areperishable, meaning that any unallocated
units at each time step will be lost.

(Agents and Preferences)Each vehicle owner is represented by
an agent. LetI = {1, . . . , n} denote the set of all agents. An agent
i’s (true) availability for charging is given by itsarrival timeai ∈ T
(i.e., the earliest possible time the vehicle can be plugged in), and
departure timedi ≥ ai, di ∈ T (i.e., after which the vehicle is
needed by the owner). We will sometimes useTi = {ai, . . . , di}
to indicate agenti’s availability and we say that agenti is active
in the market during this period. An agent has a positive value for
units allocated when the agent is active, and has zero value for any
units allocated outside of its active period. Furthermore, agents
have preferences which determine their value or utility for a certain
number of units of electricity. These preferences can change from
one agent to another, and depend on factors such as theefficiencyof
the vehicle, travel distance, uncertainty in usage, battery capacity
and local fuel prices. Formally, preferences are described by a val-
uation vectorvi = 〈vi,1, vi,2, . . . , vi,mi〉, wherevi,k denotes the
marginal valuefor the kth unit andmi is the maximum demand
from agenti. That is,vi,k = 0 for k > mi. We will often use
vi,k+1, which describes the value for the next unit when an agent

4We believe that our approach can be extended to address settings
with variable charge rates, but leave this for future work.
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already hask units of electricity. Note that the agent is indifferent
w.r.t. the precise allocation times, and merely cares about the total
number of units received over the entire active period. These com-
ponents together describe agenti’s typeθi = 〈ai, di,vi〉. We let
θ = {θ1, . . . , θn}, andθ−i is the types of all agents excepti. We
will often use the notation(θi, θ−i) = θ.

We assume that agents havenon-increasing marginal valuations,
i.e.,vi,k ≥ 0 andvi,k+1 ≤ vi,k. As we will show in Section 5, this
assumption is realistic in a setting with plug-in hybrid and range-
extended EVs, where the more a vehicle battery is charged, the less
it needs to rely on the fuel-consuming internal combustion engine.

(Reports and Mechanism)Importantly, we allow agents the op-
portunity to misreport their types. Let̂θi = {âi, d̂i, v̂i} denote an
agent’s report.5 Given this, amechanismtakes the agents’ reported
(or observed) types as input as they enter the system, and based
on these reports determines the allocation of resources, as well as
the payments to the agents. Our goal is then to design a mech-
anism which incentivises truthful reporting. Thedecision policy
then specifies an allocationπ〈t〉i (θ̂; k〈t〉) at each time pointt ∈ T

and for each agenti ∈ I, wherek〈t〉 = (k
〈t〉
1 , . . . , k

〈t〉
n ) denotes

the totalendowmentsof the agents at timet before the start of the
auction at timet. That is:

k
〈t〉
i =

t−1
∑

t′=âi

π
〈t′〉
i

(

θ̂i, θ̂−i|k〈t
′〉
)

.

The policyπ is subject to the constraint that units can only be al-
located to agents within their reported activation period. In what
follows, we will use the abbreviated notationπ〈t〉i (θ̂), leaving any
dependence on the current endowments implicit. Furthermore, let

πi(θ̂i, θ̂−i) =
∑d̂i

t=âi
π
〈t〉
i (θ̂i, θ̂−i) denote the total number of units

allocated to agenti in its (reported) active time period. We will
sometimes omit the arguments when this is clear from the con-
text. Furthermore, thepayment policyspecifies a payment func-
tion xi(θ̂i, θ̂−i|πi) for each agenti. Importantly, while allocations
occur at each time pointt ∈ T (since units are perishable), pay-
ments are calculated at the reported departure timed̂i (i.e., when
the owner physically unplugs the vehicle).

(Limited Misreports) As in [12], we assume that the agents
cannot report anearlier arrival, nor a later departure. Formally,
âi ≥ ai andd̂i ≤ di, and we say such a pair〈âi, d̂i〉 is admissible.
This is a valid assumption in our domain because the agent’s vehi-
cle has to be physically plugged into the system, and this cannot be
done if the vehicle is not available. However, it can still report an
earlier departure since the vehicle can be unplugged before the ve-
hicle is truly needed. Similarly, it can delay its effective arrival (i.e.,
after having arrived, the vehicle owner can delay actually plugging
in the vehicle).

(Agent Utility) Given its preferences, an agent’s utility by the
departure time is given by the valuation for its obtained units of
electricity, minus the payments to the mechanism. Formally:

ui(θ̂i; θi) =

πi(θ̂i,θ̂−i)
∑

k=1

vi,k − xi

(

θ̂i, θ̂−i|πi

(

θ̂i, θ̂−i

))

(1)

5In practice, reported arrival and departure correspond to times
when the vehicle is physically plugged into, and, respectively, un-
plugged from the network (which could differ from when the vehi-
cle is truly available), which can typically be observed by the sys-
tem. This is because we use a greedy-like scheduling approach (see
Section 4) which does not require agents to report their types, nor
have knowledge of their true types, in advance. Consequently, it is
straightforward to apply our approach to settings where agents do
not know their exact availability or this changes due to unexpected
events.

agent 1

agent 2

agent 3

t=1 t=2

v1 = 〈10, 4〉
v2 = 〈5〉

v3 = 〈2〉

Figure 1: Example showing arrivals, departures, and valuation
vectors of 3 agents.

4. THE ONLINE MECHANISM
In this section we consider the problem of designing a model-free
mechanism for the above setting. Now, in the case of single-unit
demand, a simple greedy mechanism with an appropriate payment
policy is DSIC [12]. However, we will show through an example,
that this is no longer the case in a multi-unit demand setting that we
consider. A greedy allocation is formally defined as follows:

DEFINITION 1 (GREEDY ALLOCATION). At each stept allo-
cate theS(t) units to the active agents with the highest marginal
valuations,v

i,k
〈t〉
i +1

, where ties are broken randomly.

Consider the example with 2 time steps and 3 agents in Figure 1,
showing the agents’ arrival, departure and valuations. Suppose fur-
thermore that supply isS(t) = 1 at each time step. Greedy would
then allocate both units to agent1, because agent1 has the highest
marginal valuation in both auctions.

Now, consider the question of finding a payment scheme that
makes greedy allocation truthful. How much should agent 1 pay?
To answer this, note that the payment for the unit allocated at time
t = 1 has to be at least 5. Otherwise, if agent 1 were present in the
market only at timet = 1 and had a valuationv1,1 ∈ (5 − ε, 5),
it would not be truthful, because it could reportv̂1,1 > 5 and still
win. Similarly, the payment for the unit allocated at timet = 2 has
to be at least 2. Thus, theminimumpayment of agent 1 if allocated
2 units isx1(θ̂|π1 = 2) = 7.

On the other hand, how much should agent 1 pay if it were allo-
cated only 1 unit instead? We argue no more than 2. Ifx1(θ̂|π1 =
1) = 2 + ε (whereε > 0), then if the agent’s first marginal value
was insteadv1,1 ∈ (2, 2 + ε), with remaining marginal values
zero, then it would win in period 2, but it would pay2 + ε and
hence have negative utility. However, ifx1(θ̂|π1 = 2) ≥ 7 and
x1(θ̂|π1 = 1) ≤ 2, then agent 1 wants only 1 unit, not 2, as al-
located by the greedy mechanism (its utility for one unit is greater
than for two, as10 − 2 > 10 + 4 − 7). Hence, online greedy
allocation cannot be made truthful.6

In order to address this, in our mechanism we extend the Greedy
decision policy by allowing the system to occasionally“burn” units
of electricity when necessary, in order to maintain incentive com-
patibility. By burning we mean that this unit is not allocated to
any agent, even when there is local demand. We consider two ap-
proaches:immediateburning, where the decisions to leave a unit
unallocated is made at each time step before charging, andon-
departureburning, where allocated units can be reclaimed by the
system when the agent leaves the market (i.e., the corresponding
amount of electricity is discharged from the battery on departure).

Each of these approaches has their own advantages and disad-
vantages. Burning on departure generally requires burning fewer
units in some cases, and thus it leads to a higher efficiency. More-
over, the current method we use to determine payments for im-
mediate burning can have a computational cost exponential in the
6Formally, this is because the decision policy violates a property
called weak monotonicity [1]. In this paper, we omit a detailed
discussion of this relationship, due to space restrictions.

813



number of the agents present, whereas for on-departure burning,
the cost of determining payments is linear. However, in terms of
the application domain, fast discharging of a vehicle’s battery may
not be practical.

Note that, for both approaches, the energy that is burnt is not
necessarily wasted, but it is simply returned to the grid, to be used
for other purposes than electric vehicle charging. For immediate
burning, the unallocated electricity units are returned to the grid
before it is actually charged by the agent. For the mechanism with
on-departure burning, units may be charged first and then rapidly
discharged when the agent leaves the market. While this may result
in some loss, this is probably negligible w.r.t. the overall amount of
electricity allocated.

4.1 The Mechanism
Before we introduce the decision policy, we show how we can
compute a set of threshold values, which are used both to calcu-
late the payments and to decide when to burn a unit of electricity.

Let k〈t〉−i,j =
∑t−1

t′=aj
π
〈t′〉
j (θ−i) denote the endowment of an active

agentj at start timet, under the allocation we would havein the
absence of agenti (note that calculating this value requires recom-
puting allocations without agenti in the market fromai until the
current timet). Thenv

j,k
〈t〉
−i,j+1

is the marginal valuation of agent

j at timet in the absence of agenti. Given this, we definev(n)
−i,t to

be thenth highest of such valuations from all active agentsj 6= i.
Thenv

(S(t))
−i,t , for supplyS(t), is the lowest value that is still allo-

cated a unit at timet, if agenti were not present. Henceforth, we
refer tov

(S(t))
−i,t as themarginal clearing valuefor agenti in period

t, and we will often usev−i,t = v
(S(t))
−i,t for brevity.

Now, letp〈t〉−i = incr(v−i,ai , v−i,ai+1, . . . v−i,t) denote agent
i’s price vector at timet, whereai is the reported arrival time of
agenti andincr(.) is an operator which takes a vector of real values
as input and returns it in increasing order. In addition, letp−i =

p
〈di〉
−i denote the value of this vector at timedi when agenti leaves

the market.
Intuitively, in any round t, the pricept

−i,k that agenti is charged
for the k-th unit is the minimum valuation the agent could report
for thek-th unit and win it by timet, given the greedy allocation
policy with burning described below. Given this, the decision and
payment policies of our mechanism are as follows.

• Decision PolicyThe decision consists of two stages.
Stage 1At each time pointt, pre-allocateusing Greedy (see
Definition 1).
Stage 2We consider two variations in terms of when to de-
cide to burn pre-allocated units:

– Immediate Burning. Burn a unit whenever:

v
i,k

〈t〉
i +1

< p
〈t〉
−i,k

〈t〉
i +1

– On-Departure Burning. This type of burning occurs
on reported departure. For each departing agent, burn
any unitk ≤ πi wherevi,k < p−i,k.

• Payment PolicyPayment occurs on reported departure. Given
thatπi units are allocated to agenti at timet = d̂i, the pay-
ment collected fromi is:

xi(θ̂i, θ̂−i|πi) =
∑πi

k=1
p−i,k (2)

Burning occurs whenever the marginal value for an additional unit
is smaller than the marginal payment for that unit. Thus these val-
ues are effectively agent-specific threshold values, below which no

agent 1: agent 2: agent 3:
T1 = {1, 2, 3} T2 = {1} T3 = {2, 3}
v1 = 〈10, 4〉 v2 = 〈5〉 v3 = 〈2〉

t = 1 k
〈1〉
1 = 0 k

〈1〉
2 = 0

v−1,1 = 5 v−2,1 = 10

p
〈1〉
−1 = 〈5〉 p

〈1〉
−2 = 〈10〉

π
〈1〉
1 = 1 π

〈1〉
2 = 0

t = 2 k
〈2〉
1 = 1 k

〈2〉
3 = 0

v−1,2 = 2 v−3,2 = 4

p
〈2〉
−1 = 〈2, 5〉 p

〈2〉
−3 = 〈4〉

π
〈2〉
1 = 0 (IM) π

〈2〉
3 = 0

π
〈2〉
1 = 1 (OD)

t = 3 k
〈3〉
1 = 1 k

〈3〉
3 = 0

IM v−1,3 = 0 v−3,3 = 4

p
〈3〉
−1 = 〈0, 2, 5〉 p

〈3〉
−3 = 〈4, 4〉

π
〈3〉
1 = 1 π

〈3〉
3 = 0

t = 3 k
〈3〉
1 = 2 k

〈3〉
3 = 0

OD v−1,3 = 0 v−3,3 = 0

p
〈3〉
−1 = 〈0, 2, 5〉 p

〈3〉
−3 = 〈0, 4〉

π
〈3〉
1 = 0 π

〈3〉
3 = 1

Table 1: Example run of the mechanism with 3 agents and 3
time periods for immediate (IM) and on-departure (OD) burn-
ing. Grey cells indicate different values for IM and OD burning.

unit is allocated to that agent. Moreover, it is important to note that
the mechanism used for computing the prices mirrors the actual al-
location mechanism. So, for example, if immediate burning is used
in the decision policy, then for each agenti and for all timest, the
values of thep〈t〉−i vector are computed by re-running the market,
in the absence of agenti using immediate burning, based on the
reports of the other agents. Conversely, if on-departure burning is
used for the decision policy, the same mechanism should be used
in computing thep−i prices.

4.2 Example
To demonstrate how the mechanism works, we extend the previous
example shown in Figure 1 to include a third time step,t = 3. Both
agents1 and3 remain in the market att = 3 (i.e., d1 = d3 = 3)
and no new agents arrive. Furthermore,S(t) = 1 in t ∈ {1, 2, 3},
and so there are now 3 units to be allocated in total. Table 1 shows
the endowmentsk〈t〉i , the marginal clearing valuesv−i,t, thep

〈t〉
−i

vectors, and the allocation decisionsπ
〈t〉
i at different time periods.

We start by considering the allocations and payment usingimme-
diate burning. At time t = 1, Stage 1 of the mechanism allocates
the unit to agent1, and sincev1,1 = 10 ≥ p

〈1〉
−1,1 = 5, this unit is

not burnt in the second stage. At timet = 2, the unit again gets
pre-allocated to agent1 sincev1,2 = 4 > v3,1 = 2. However,
the marginal clearing valuev−1,2 is inserted at the beginning of the
p
〈2〉
−1 vector, and as a resultv1,2 = 4 < p

〈2〉
−1,2 = 5. Consequently,

this unit gets burnt and is allocated to neither of the agents. At
time t = 3, therefore, the marginal value of agent1 is still 4 (since
its endowment is unchanged), and this value is added to agent3’s
marginal clearing values. To calculate the marginal clearing value
of agent1, recall that the decision policy needs to be recomputed
with agent1 entirely removed from the market. In that case agent
3 would have been allocated a unit at timet = 2, and thus at time
t = 3 the marginal value of this agent is0. Thus, the value of0
is inserted in thep〈3〉−i vector. Att = 3, since agent1 still has the
highest marginal value, it is again pre-allocated the unit. However,
nowv1,2 = 4 ≥ p

〈3〉
−1,2 = 2, and therefore the unit is not burnt. So,

in case of immediate burning, 2 out of 3 units are allocated to agent
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1, and that agent paysp〈3〉−1,1 + p
〈3〉
−1,2 = 2.

Now consider the same setting but withon-departure burning.
The first two time steps are as before, except that there is no burning
at t = 2 (since this will be done on departure if needed). This
changes the endowment state of agent1 at t = 3, and therefore the
marginal value of agent1 at t = 3 is equal tov1,3 = 0. Therefore,
the unit is allocated to agent3, and the payment for this unit is
p−3,1 = 0. The vectorp〈3〉−1 remains unchanged compared to the
immediate burning case. At this point, there is no longer a need
to burn one of the units of agent 1, since it has receivedk = 2
units, the same allocation as with immediate burning, and note that
v1,2 > p−1,2.

Still, it is possible to construct examples where, both with on-
departure and immediate burning, half of the units need to be burnt.
Furthermore, note that this unit cannot go to agent3, because pay-
ment would have beenp〈3〉−3,1 = 4, which would result in a negative
utility for agent3.

4.3 Properties
In this section we prove that the above mechanism is DSIC. We
will first establish DSIC with respect to valuations only, and prove
truthful reporting of arrival and departure times separately. In more
detail, we proceed in the following 3 stages: (i) We define the con-
cept of a threshold policy, and show that, when coupled with an
appropriate payment function, and given any admissible pair〈âi,
d̂i〉, if a decision policy is a threshold policy, then the mechanism
is DSIC with respect to the valuations (Lemma 1). (ii) We show that
our decision policy is a threshold policy (Lemma 2). (iii) Finally,
we show that, if agents truthfully report their valuations, reporting
âi = ai, d̂i = di is a weakly dominant strategy (Lemma 3). These
results are combined in Theorem 1 to show that our policy is DSIC.

DEFINITION 2 (THRESHOLDPOLICY). A decision policyπ
is a threshold policy if, for a given agenti with fixed〈âi, d̂i〉 and
θ̂−i, there exists a marginally non-decreasing threshold vectorτ ,
independent from the report̂vi made by agenti, such that following
holds:∀k, v̂i: πi(θ̂i, θ̂−i) ≥ k if and only if v̂i,k ≥ τk.

In other words, a threshold policy has a (potentially different) thresh-
old τk for eachk, such that agenti will receive at leastk units if
and only if its (reported) valuation for thekth item is at leastτk.7

Importantly, the vectorτ has to be non-decreasing, i.e.,τk+1 ≥
τk, and should be independent of the reported valuation vectorv̂i.
Note that both of these properties are satisfied by thep−i vector,
and we will use this to show that our mechanism is a threshold
policy. First, however, we show that a threshold policy with appro-
priate payments is DSIC with respect to the valuations.

LEMMA 1. Fixing admissible〈â, d̂〉 andθ̂−i, if π is a threshold
policy coupled with a payment policy:

xi(θ̂i, θ̂−i) =
∑πi(θ̂i,θ̂−i)

k=1 τk,

then ifvi is marginally non-increasing, reportingvi truthfully is a
weakly dominant strategy.

7A threshold policy satisfies weak-monotonicity (WMON) [1], and
is therefore sufficient for truthfulness in this domain since we have
bounded agent valuations and the domain is completely ordered,
meaning that all payoff types agree on the same weak preference
ordering on all allocations (i.e., more is always weakly better than
less), and indifference to the way goods are allocated to other
agents. We show that our decision policy has the threshold prop-
erty, and thus the WMON, and that it also handles misreports of
arrivals and departures.

PROOF. Agenti’s utility can be rewritten as:

ui(θ̂i; θi) =
∑πi(θ̂i,θ̂−i)

k=1 (vi,k − τk)

Sinceτ is independent of̂vi, agenti can only potentially bene-
fit by changing the allocation,πi(θ̂i, θ̂−i). Since the values of
τk+1 ≥ τk (non-decreasing threshold vector) andvi,k+1 ≤ vi,k

(non-increasing marginal values), by definition 2 we havevi,k −
τk ≥ 0 for anyk ≤ πi(θi) andvi,k − τk ≥ 0 for anyk > πi(θi).
Suppose that, by misreporting agenti is allocatedπi(θ̂i) > πi(θi),
thenui(θ̂i; θi) < ui(θi; θi) since:

∑πi(θ̂i,θ̂−i)

k=πi(θi,θ̂−i)+1
(vi,k − τk) < 0

Similarly, misreporting such thatπi(θ̂i, θ̂−i) < πi(θi, θ̂−i) results
in ui(θ̂i; θi) < ui(θi; θi) since:

∑πi(θi,θ̂−i)

k=πi(θ̂i,θ̂−i)+1
(vi,k − τk) ≥ 0

If misreporting has no effect on the allocation, the utility remains
the same. Therefore, there is no incentive for agenti to misreport
its valuations.

Note that Greedy (as per Definition 1) is not a threshold policy.
To see this, consider the example from Figure 1. As we saw earlier,
Greedy allocates 2 units to agent 1, and the required thresholdτ2

for winning the second unit is2 (below which Greedy would allo-
cate 1 unit). However, if agent1 had valuationv1 = 〈4, 4〉, Greedy
would allocate only 1 unit, even thoughv2 > τ2, which conflicts
with the requirement of a threshold policy.

The next lemma shows that the threshold condition holds if we
include burning, and if we set the threshold values toτk = p−i,k.

LEMMA 2. Given non-increasing marginal valuations, the de-
cision policyπ in Section 4.1 is (for either burning policy) a thresh-
old policy whereτk = p−i,k.

PROOF. First, from the definition of vectorp〈t〉−i andp−i from

Section 4.1, the values ofp〈t〉−i are independent of the reportŝvi

made by agenti. This is because each of its component values
v−i,ai , . . . v−i,t are computed based only on the reports of the
other agents, by first removing agenti from the market.

Second, we need to show two inequalities, thus the proof is done
in two parts.Part 1: Whenevervi,k ≥ p−i,k, πi allocatesat least
k units to agenti. Part 2: Whenevervi,k < p−i,k, πi allocates
strictly lessthank units to agenti.

Part 1: Let vi,k ≥ p−i,k. Suppose that agenti has the same
marginal values,vi,k, for the firstk units (i.e.,vi,1 = vi,2 = . . . =
vi,k), then it will win exactly those auctions wherevi,k ≥ v−i,t,
t ∈ Ti in Stage 1 of the mechanism (ignoring tie breaking). Note
that even when, by winning an auction, agenti displaces the losing
marginal value to a future auction, since this value is less or equal to
vi,k, it will not affect the future auctions for agenti since it will still
outbid that agent in the next auction. Now, becausep−i,j ≤ p−i,k

for j ≤ k (by definition), there must be at leastk auctions where
p−i,k ≥ v−i,t in the periodt ∈ T , and sincevi,k ≥ p−i,k, agenti
wins at leastk auctions in Stage 1.

Furthermore, each time an auction is won, the clearing values
appear as one of thej first elements of thept

−i vector, wherej is
the number of auctions so far (since these are the auctions with the
lowest clearing values, and the clearing values are ordered ascend-
ingly). Because agenti wins an auction in Stage 1 if and only if
vi,k ≥ v−i,t, it follows thatvi,k = vi,j ≥ p−i,j whenever it wins
an auction in Stage 1. Therefore, there is no burning in Stage 2.
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The above holds if agenti has uniform marginal values ofvi,k

for the firstk units. In fact, however, because of non-increasing
valuations, we havevi,j ≥ vi,k, for all 1 ≤ j ≤ k, and thus the
decision policy will allocateat leastk units to agenti.

Part 2: Let vi,k < p−i,k. First consider theon-departure burn-
ing case. As per the definition of Stage 2 of the mechanism, unit
k is burnt. However, we still need to show that any unitsj > k
are burnt as well. Sincep−i,j ≥ p−i,k andv−i,j ≤ v−i,k for all
j > k, it follows thatvi,j < p−i,j for all j > k. Therefore even
if Stage 1 allocatesk or more units, these will be burnt in Stage 2,
and thus strictly less thank units remain.

Now consider theimmediate burning case. Note thatp−i,k ≤
p
〈t〉
−i,k for (ai + k − 1) ≤ t ≤ di. That is, threshold values can

only decrease over time. Thus it follows thatv−i,k < p
〈t〉
−i,k for

any(ai + k − 1) ≤ t ≤ di. Consider a case where, at timetk, the
kth unit is allocated in Stage 1. Becausev−i,k < p

〈tk〉
−i,k, this unit

will always be burnt in Stage 2 of the decision policy. Therefore,
the final result is an allocation of strictly less thank units.

By settingτk = p−i,k, the payment function in Equation 2 corre-
sponds to the payment function in Lemma 1. Therefore the pro-
posed mechanism is shown to be DSIC in valuations. We now
complete the proof by showing that truthful reporting of the ar-
rival and departure times are also DSIC (given limited misreports),
given truthful reporting ofvi.

LEMMA 3. Given limited misreports, and assuming that truth-
fully reporting v̂i = vi is a dominant strategy for any given pair
of arrival/departure reports〈âi, d̂i〉, then it is a dominant strategy
to report âi = ai and d̂i = di.

PROOF. Let p〈âi,d̂i〉
−i denote the vector of increasingly ordered

marginal clearing values (computed withouti), given the agent re-
portsθ̂i = 〈âi, d̂i,vi〉. By reporting typêθi, the agent is allocated

πi(θ̂i) items, and its total payment is:
∑πi(θ̂i)

j=1 p
〈âi,d̂i〉
−i,j . For each

agenti, misreporting fromθi to θ̂i results in one of two cases:
πi(θ̂i) = πi(θi): Misreporting by agenti has no affect on the

marginal clearing valuesv−i,t, but can only decrease the size of
the p−i vector. In particular, due to limited misreports we have

âi ≥ ai andd̂i ≤ di, and thusp〈âi,d̂i〉
−i contains asubsetof the ele-

ments fromp
〈ai,di〉
−i . As these vectors are by definition increasingly

ordered, it follows thatp〈âi,d̂i〉
−i,j ≥ p

〈ai,di〉
−i,j , ∀j ≤ (d̂i − âi + 1).

Since the payment consists of the firstki = k̂i elements, this can
only increase by misreporting.
πi(θ̂i) 6= πi(θi): First, we show thatπi(θ̂i) > πi(θi) could

never occur. Since the marginal clearing values remain the same,
but the number of auctions in which the agent participates decreases
by misreporting, Stage 1 of the mechanism can only allocate fewer

or equal items. Furthermore, sincep
〈âi,d̂i〉
−i,j ≥ p

〈ai,di〉
−i,j , the possi-

bility of burning can only increase in Stage 2. Thus, it always holds
thatπi(θ̂i) ≤ πi(θi).

Now, we consider the caseπi(θ̂i) < πi(θi). First, as shown for

the caseπi(θ̂i) = πi(θi) above, we know that
∑πi(θ̂i)

j=1 p
〈ai,di〉
−i,j ≤

∑πi(θ̂i)
j=1 p

〈âi,d̂i〉
−i,k (i.e., the payment for those units won can only in-

crease by misreporting arrival and/or departure). Furthermore, we
know that the allocationπi(θi) is preferable to any other alloca-
tion πi(θ̂i) < πi(θi), otherwise reporting the true valuation vector
vi would not be a dominant strategy. Since the payment for these
items is potentially even higher when misreporting, the agent can-
not benefit by winning fewer items.

We are now ready to present the main theoretical result:

THEOREM 1. Given non-increasing marginal valuations and
limited misreports, Greedy with on-departure and immediate burn-
ing and with payment function according to Equation 2 are DSIC.

PROOF. The proof of this theorem follows directly from the
above lemmas. Lemmas 1 and 2 show that, for any pair of ar-
rival/departure (mis)-reports〈âid̂i〉 the decision policy is truthful in
terms of the valuation vectorvi, given an appropriate payment pol-
icy. Furthermore, the payments in Equation 2 correspond to those
in Lemma 2, and therefore they truthfully implement the mecha-
nism. Finally, Lemma 3 completes this reasoning, by showing that
for a truthful report of valuation vectorvi, agents cannot benefit by
misreporting arrivals/departures.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our proposed mechanism empirically.
In doing so, we seek to answer a number of pertinent questions.
First, since our greedy approach does not generally find the opti-
mal allocation, we are interested in how close it comes to this in
realistic settings. Second, we investigate the extent to which unit
burning occurs in practice (i.e., how often units of electricity need
to be burned by our decision policies, in order to ensure truthful-
ness). This is critical, as it may negatively affect efficiency. Finally,
we compare our mechanism to a range of simpler truthful mecha-
nisms that employ fixed pricing, as well as to a well-known online
scheduling approach. These serve as benchmarks for our mecha-
nism — fixed pricing is a common mechanism for selling goods in
a wide range of settings, while the scheduling approach highlights
what a non-truthful mechanism could achieve.

5.1 Experimental Setup
Our experimental setup is based on data collected during the first
large-scale UK trial of EVs. In December 2009, 25 EVs were pro-
vided to members of the public as part of the CABLED (Coventry
And Birmingham Low Emissions Demonstration) project.8 The
aim of this trial was to investigate real-world usage patterns of
EVs. To this end, they were equipped with GPS and data loggers
to record comprehensive usage information, such as trip durations
and distances, home charging patterns and energy consumption.

We use the data published by this project for the first quarter
of 2010 to realistically simulate typical behaviour patterns. More
specifically, in each of our experiments, we simulate a single 24
hour day, where charging periods are divided into hourly time in-
tervals. For the purpose of the experiments, a simulated day starts
at 15:00, as vehicle owners begin to arrive back from work. To de-
termine the arrival time of each agent, we randomly draw samples
from the home charging start times reported by the project. These
are highest after 18:00 and then quickly drop off during the night.
Likewise, to simulate departures, we sample from data recording
journey start times.

In order to simulate realistic marginal valuation vectors for the
agents, we combine data from the project about journey distances
with a principled approach for calculating the expected economic
benefit of vehicle charging. In particular, we can calculate the ex-
pected utility of a given amount of charge (in kWh),ce, given a
price of fuel (in £/litre),pp, an internal combustion engine effi-
ciency (in miles/litre),ep, an electric efficiency (in miles/kWh),ee,
and a probability density function,p(m), that describes the dis-
tance to be driven the next day:

E(u(ce)) =

∫ ∞

0

pp

ep
·m·p(m)dm−

∫ ∞

ce·ee

pp

ep
·m·p(m)dm, (3)

8Seehttp://cabled.org.uk/.
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where the first term is the expected fuel cost without any charge,
and the second term is the expected cost with a battery charge of
ce. Given this, and a charging rate (in kW),re, it is straight-forward
to calculate the marginal valuation of thekth hour of charging time:
vk = E(u(k · re))− E(u((k − 1) · re)).

To generate a variety of marginal valuations, we note thatee

andep depend on the specific make and type of the EV and thus
vary between households, whilep(m) depends on the driving be-
haviour of the car owner. We drawee uniformly at random from
2 – 4 miles/kWh andep is drawn from 9 – 18 miles/litre. Further-
more, we createp(m) from daily driving distances presented in the
CABLED report. These distances are typically short, with a daily
mean of 23 miles, but the distribution has a long tail with a maxi-
mum of 101 miles. Next, we draw the capacity of a car battery from
15 – 25 kWh and set the charging rate to3 kW. These and earlier
specifications are all based on the Chevrolet Volt, the first mass-
produced range-extended EV to be on the road in 2011. However,
we include some variance to account for other vehicle types.

Finally, to derive the supply functionS, we consider a realis-
tic neighbourhood-basedsupply function using the average energy
consumption of a UK household over time.9 In this setting, the total
energy available for charging depends on the number of households
in the neighbourhood and the constraints of the local transformer.
Hence, available supply during the night is significantly higher than
during the day. Furthermore, we tested a range of other supply
functions and valuation distributions, where we observed the same
general trends as discussed in the remainder of this section. How-
ever, we omit the details here for brevity.

5.2 Benchmark Mechanisms
In addition to the two decision policies developed within this paper
— Greedy with Immediate Burning(Immediate)and Greedy with
On-Departure Burning(On-Departure)— we benchmark the fol-
lowing strategies that have been widely applied in similar settings:

Fixed Price allocates units to those agents that value them higher
than a fixed pricep. The price they pay for this unit isp. When de-
mand is greater than supply, units are allocated randomly between
all agents with a sufficiently high valuation. This mechanism is
DSIC and so it constitutes a direct comparison to our mechanisms.
However, to optimise the performance of the fixed price mecha-
nism,p must be carefully chosen. Thus, we test all possible values
(in steps of £0.01) and select thep that achieves the highest average
efficiency (over 1000 trials) for a given setting. Thus, when show-
ing the results ofFixed Price, this constitutes an upper bound of
what could be achieved with this mechanism. We use the special
casep = 0 as a baseline benchmark and denote this asRandom.

Heuristic allocates units such that a weighted combination of an
agent’s valuation and urgency (proximity to its departure time) is
maximised. Here, anα ∈ [0, 1] parameter denotes the importance
of the urgency, such thatα = 1 corresponds to the well-known
earliest-deadline-first heuristic in scheduling, whileα = 0 indi-
cates that units are always allocated to the agent with the highest
valuation. This is not a truthful mechanism and we do not impose
payments here, as its primary purpose is as a benchmark for our
approach. Again, we always select the bestα.

Optimal allocates units to agents to maximise the overall alloca-
tion efficiency, assuming complete knowledge of future arrivals and
supply. Clearly, this mechanism is not practical and it is also not
truthful (again we impose no payments), but it serves as an upper
bound for the efficiency that could be achieved.

Having described the valuation calculation, the experimental set-
ting, and the benchmarks, we now describe our results.

9We use the average evaluated during a work day in winter, avail-
able athttp://www.elexon.co.uk/.
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Figure 2: Results for a small neighbourhood with 30 houses (a)
and a large one with 200 houses (b).

5.3 Results
For our experiments, we consider two possible neighbourhood sizes
— one with 30 households and one with 200 households. In these
settings, the capacity of the local transformer is constrained, so that
only a couple of cars can charge at the same time in the 30 house-
hold case and up to 16 with 200 households. We choose such highly
constrained settings here, because they are intrinsically more chal-
lenging and interesting than settings where all cars can be fully
charged overnight. Across the experiments, we vary the number
of these households that own an EV. Note here that we only show
results forImmediateburning up to 15 agents, because our current
implementation of this is computationally expensive. This is be-
cause the vector of marginal clearing valuesp

〈t〉
−i at timet depends

on which units are burned ini’s absence (and as this vector is used
to determine when burning takes place, it recursively depends on
the corresponding vectors of all agents that are allocated ini’s ab-
sence). Thus, we may potentially need to evaluate all subsets of
agents, which grows exponentially withn. Although it may be
possible to prune the search space efficiently in practice, we leave
these computational aspects to future work. It is interesting that
this does not apply toOn-Departureburning, because here burning
does not influence the agents’ marginal clearing values.

The results for both settings are given in Figure 2. First, the top
row shows the average10 efficiency, normalised to the performance
of Optimal (when there are more than 30 EV owners,Optimalbe-
comes intractable and so we normalise results to the performance
of Heuristicin those cases as a close approximation). Here, we note
that our two burning policies consistently outperform (or match) all
other truthful benchmarks. The improvement compared toRandom
is particularly pronounced, but our approach still achieves a sig-
nificant improvement over theFixed Pricemechanism. For small
neighbourhoods, this is almost 10%, while in larger neighbour-

10All results are averaged over 1000 trials. We plot 95% confidence
intervals, and significant differences reported are att < 0.05 level.
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hoods, it is up to 5%. This is a promising result, because setting
the optimal price for the fixed price strategy requires knowledge
about the distributions of agents types, but our approach makes no
such assumptions.

This improvement is due the ability of our mechanism to allocate
the agents with the highest marginal valuations, whileFixed Price
randomises over those that meet its price. Our approach is also
responsive to changes in demand over time, consistently allocating
units even when the highest valuations are low. In contrast,Fixed
Price must be tuned to operate at any particular balance of supply
and demand. Thus, it does not allocate when its price is unmet. It
performs better in the larger setting because it is more likely that at
least some of the agents meet the fixed price in this case.

Next, our mechanism also performs close to theOptimal and
Heuristic, consistently achieving 95% or better, which indicates
that our greedy approach performs well in realistic settings even
without having access to complete information (such as departure
times or even future arrivals). The lowest relative efficiency to the
optimal is achieved when there are few EVs (about 20% of the
neighbourhood). Here, scheduling constraints are most critical,
as it may sometimes be optimal to prioritise an agent with lower
valuations over one with higher valuations, but a longer deadline.
This becomes less critical when there are more agents, as there are
typically sufficiently many with high valuations. Finally, we see
thatImmediateburning achieves a slightly lower average efficiency
thanOn-Departure. This is due to higher levels of burning, but the
difference is small (and, in fact, not statistically significant).

In the second row of Figure 2, the average utility of each EV
owner’s allocation (not including the payments to the mechanism)
is shown. This corresponds directly to the fuel costs that a single
EV owner saves by using electricity instead of fuel. Initially, this is
high (around £2), as there is little competition, but starts dropping
as more EV owners compete for the same amount of electricity. Of
key interest here is the horizontal separation between the different
mechanisms. For a given fuel saving per agent, our mechanism
can sustain a significantly larger number of agents than the other
incentive-compatible mechanisms. For example, to save at least
£1 per agent in the small neighbourhood,Randomcan support up
to 10 EV owners, whileImmediateandOn-Departureachieve the
same threshold for up to 14 EV owners (a 40% improvement). In
the large neighbourhood, our mechanism can support around 60
additional vehicles in some cases (to achieve a £0.65 threshold).

Finally, the last row shows the average number of units that are
burned by our two decision policies, as a percentage of the overall
(tentatively) allocated units. Again, due to computational limita-
tions, full results for theImmediateburning policy are only shown
up to 15 agents. For up to 18 agents, results from only 100 trials
are shown (resulting in larger confidence intervals).On-Departure
burning clearly burns significantly fewer units thanImmediate, as
the latter sometimes unnecessarily burns units. There is also a
clear maximum in the number of burned units when around 20%
of households are EV owners. This is because there is a signif-
icant amount of competition, with many agents that have similar
marginal valuations, and this induces burning. However, when the
number of agents rises further, burning drops again. This is be-
cause agents are increasingly less likely to be allocated more than
a single unit in these very competitive settings and so there is no
need for burning. It should be noted that burning is generally low
(for On-Departureburning), with typically only 1-2% of allocated
units being burned (and always less than 10%).

6. CONCLUSIONS
This paper proposes a novel online allocation mechanism for a
problem that is of great practical interest for the smart grid com-
munity, that of integrating EVs into the electricity grid. Our contri-

bution to existing literature is two-fold. On the theoretical side, we
extend model-free, online mechanism design with perishable goods
to handle multi-unit demand with decreasing marginal valuations.

On the practical side, we empirically evaluate our mechanism
in a real-world setting, and showed that the proposed mechanism
is highly robust, and achieves better allocative efficiency than any
fixed-price benchmark, while only being slightly suboptimal w.r.t.
an established cooperative scheduling heuristic.

For future work we plan to look at several issues. First, in this
paper we assumed all EVs have a uniform charging rate, but in the
future we plan to extend the allocation model to deal with heteroge-
neous maximal charging rates (corresponding to different types of
EVs). Second, it would be interesting to compare the performance
of the model-free online mechanism proposed in this paper to a
model-based approach, such as the one in [13]. Finally, this paper
looked at performance in terms of a realistic application scenario,
but we also plan to study the worst-case bounds on allocative effi-
ciency and number of items our mechanism burns in future work.
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