
Agent programming with priorities and deadlines

Konstantin Vikhorev Natasha Alechina Brian Logan
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

{kxv,nza,bsl}@cs.nott.ac.uk

ABSTRACT
We present AgentSpeak(RT), a real-time BDI agent programming
language based on AgentSpeak(L). AgentSpeak(RT) extends AgentS-
peak intentions with deadlines which specify the time by which
the agent should respond to an event, and priorities which spec-
ify the relative importance of responding to a particular event. The
AgentSpeak(RT) interpreter commits to a priority-maximal set of
intentions: a set of intentions which is maximally feasible while
preferring higher priority intentions. We prove some properties of
the language, such as guaranteed reactivity delay of the AgentS-
peak(RT) interpreter and probabilistic guarantees of successful ex-
ecution of intentions by their deadlines.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and Soft-
ware

General Terms
Languages, Theory

Keywords
Agent programming languages, Belief Desire and Intention logics,
Complexity of reasoning

1. INTRODUCTION
Belief-Desire-Intention (BDI) based agent programming languages

facilitate the development of rational agents specified in terms of
beliefs, goals and plans. They allow an agent to balance deliberat-
ing about which plan to adopt in response to events (changes in its
beliefs or goals) and executing its current intentions. An agent is
rational if it adopts and executes intentions which achieve its goals,
given its current beliefs.

If an agent’s task environment is real-time, the requirements for
rational behaviour are more complex. In a real-time environment,
the events to which the agent must respond are characterized by a
deadline, e.g., the time by which a goal must be achieved or the
agent must respond to a change in its beliefs. In such an environ-
ment, a rational agent should not adopt an intention which it be-
lieves cannot be successfully executed by its deadline or continue
to execute an intention after its deadline. For example, an agent

Cite as: Agent programming with priorities and deadlines, Vikhorev,
Alechina and Logan, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), Tumer, Yolum, Sonenberg
and Stone (eds.), May, 2–6, 2011, Taipei, Taiwan, pp. 397-404.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

should not adopt an intention of writing a research proposal which
must be submitted by 4pm on Friday if there is insufficient time to
write the proposal. Similarly, if the agent believes it cannot achieve
every goal or respond to every change in its environment by the
relevant deadline, it should adopt intentions for the highest priority
events which are feasible.

We define a real-time BDI agent as one which is rational in this
sense, i.e., it adopts and schedules intentions so as to respond to
events by their deadlines; if not all events can be processed by their
deadlines, the agent favours intentions responding to high priority
events. For a real-time BDI agent, correctness of the agent’s pro-
gram depends not only on the actions the agent performs but the
time at which it performs them. However programming real-time
BDI agents in most existing BDI languages is hard as they lack the
notion of a deadline or the ability to deliberate about the feasibility
of intentions.

In this paper we present AgentSpeak(RT), a programming lan-
guage for real-time BDI agents in applications such as UAVs, pro-
cess control, trading agents, etc. AgentSpeak(RT) extends AgentS-
peak(L) [9] with deadlines and priorities, and, given the estimated
execution time of plans, schedules intentions so as to achieve a
priority-maximal set of intentions by their deadlines with a spec-
ified level of confidence. Real-time tasks can be freely mixed with
tasks for which no deadline and/or priority has been specified, and
if no deadlines and priorities are specified, the behaviour of the
agent defaults to that of a non real-time BDI agent. We prove a
number of properties of AgentSpeak(RT), including that the reac-
tivity delay of an AgentSpeak(RT) agent is bounded, that it com-
mits to a priority-maximal set of intentions, and that in a static en-
vironment its intentions will complete successfully by their dead-
lines with specified confidence. We also develop a model of the
‘difficulty’ of the agent’s environment, and show how it can be
used to determine the priority of intentions which will complete
successfully by their deadlines with specified confidence. A key
contribution of the paper is the analysis of real-time guarantees for
BDI agents and how these can be achieved within a BDI program-
ming framework. Although our approach to real-time BDI agents
is developed in the context of a particular BDI agent programming
language, we believe it can be applied to other BDI-based agent
programming languages.

The remainder of this paper is organised as follows. In section
2 we present the syntax of AgentSpeak(RT) and briefly describe
the execution cycle of the AgentSpeak(RT) architecture. In section
3 we show that under certain reasonable assumptions, the time re-
quired to execute a single cycle of the AgentSpeak(RT) interpreter
(and hence the reactivity delay of the agent) is bounded. We also
prove that an AgentSpeak(RT) agent commits to a priority-maximal
set of intentions, and that in a static environment its intentions will

397

complete successfully by their deadlines with specified confidence.
In section 4 we develop a model of the ‘dynamism’ of the agent’s
environment, and show how it can be used to determine the prior-
ity of intentions which can be reliably scheduled, and to estimate
the probability that a scheduled intention of given priority will be
displaced from the schedule by the arrival of an intention of higher
priority. Finally, in sections 5 and 6 we briefly review related work
and conclude.

2. THE AgentSpeak(RT) ARCHITECTURE
In this section we introduce the AgentSpeak(RT) agent program-

ming language and its associated interpreter.
We assume that an AgentSpeak(RT) agent operates in a real-time

task environment in which events (external goals and changes in
the agent’s beliefs about its environment) may be associated with a
deadline and/or a priority. The agent responds to events by adopting
and executing intentions. A developer can specify a required level
of confidence for the successful execution of intentions in terms of a
probability, α, and the agent schedules its intentions so as to ensure
that the probability that intentions complete by their deadlines is at
least α.1 Setting α = 1 gives hard real-time behaviour, i.e., the
agent will only commit to intentions that are certain to complete
by their deadlines. If not all intentions can be executed with the
required level of confidence, the agent favours intentions triggered
by high priority events.

The syntax and semantics of AgentSpeak(RT) is based on AgentS-
peak(L) [9]. We briefly review the syntax of AgentSpeak(L) and
explain the extensions to support real-time applications. To illus-
trate the syntax of AgentSpeak(RT) we use a simple running ex-
ample of a trading agent which buys commodities in an electronic
marketplace. The agent receives requests from clients to bid on
their behalf, and notifications of goods for sale which the agent
may also bid for on its own behalf. The deadline of an event is the
deadline for the corresponding auction. The priority is determined
by the importance of the client and the type of goods for sale.

The AgentSpeak(RT) architecture consists of five main compo-
nents: a belief base, a set of events, a plan library, an intention
structure, and an interpreter.

2.1 Beliefs and Goals
The agent’s beliefs represent its information about its environ-

ment, e.g., sensory input, information about other agents, etc. Be-
liefs are represented as ground atomic formulas. For example, the
agent may believe that client1 is a client, and that good1 is the type
of good that the agent buys:
client(client1)

buys(good1)

A belief atom or its negation is referred to as a belief literal. A
ground belief atom is called a base belief, and the agent’s belief
base is a conjunction of base beliefs.

A goal is a state the agent wishes to bring about or a query to
be evaluated. An achievement goal, written !g(t1, . . . , tn) where
ti, . . . , tn are terms, specifies that the agent wishes to achieve a
state in which g(t1, . . . , tn) is a true belief. A test goal, writ-
ten ?g(t1, . . . , tn), specifies that the agent wishes to determine if
g(t1, . . . , tn) is a true belief. For example, the goals
!bid(client1, a101, price1)

1For simplicity, we assume that α is the same for all intentions;
however the real time guarantees we prove in sections 3 and 4 still
hold if α is different for different events.

?credit(client1, price1)

indicate that the agent should bid price1 in auction a101 on behalf
of client1, and determine if client1 has sufficient credit to cover
price1.

2.2 Events
Changes in the agent’s beliefs or the acquisition of new achieve-

ment goals give rise to events. An addition event, denoted by +,
indicates the addition of a base belief or an achievement goal. A
deletion event, denoted by −, indicates the retraction of a base
belief.2 We distinguish between internal and external events. An
external event is one originating in the agent’s environment while
internal events result from the execution of the agent’s program. As
in AgentSpeak(L), all belief change events are external, while goal
change events may be external (goals originated by a user or an-
other agent) or internal (subgoals generated by the agent’s program
in response to an external event).

To allow the specification of real-time tasks, external events may
optionally specify a deadline and a priority. A deadline specifies
the time by which a goal should be achieved or the agent should
respond to a change in its beliefs. Deadlines are expressed as real
time values in some appropriate units, e.g, a user may specify a
deadline for a goal as “4pm on Friday”. Deadlines in AgentS-
peak(RT) are hard—it is assumed that there is no value in achiev-
ing a goal or responding to a belief change after the deadline has
passed. A priority specifies the relative importance of achieving
the goal or responding to a belief change. Priorities define a partial
order over events and are expressed as non-negative integer values,
with larger values taken to indicate higher priority. For example,
the events
+!bid(client2, a102, price2)[1010, 15]

+auction(a201, good1)[1060, 10]

indicates the acquisition of a goal to bid price2 on behalf of client2
in auction a102 with deadline 1010 and priority 15, and a new belief
that good1 is being offered in auction a201, with deadline 1060
and priority 10. By default the deadline is equal to infinity and the
priority is equal to zero.

2.3 Plans
Plans specify sequences of actions and subgoals an agent can use

to achieve its goals or respond to changes in its beliefs. The head
of a plan consists of a triggering event which specifies the kind of
event the plan can be used to respond to, and a belief context which
specifies the beliefs that must be true for the plan to be applicable.
The body of a plan specifies a sequence of actions and (sub)goals
to respond to the triggering event.

Actions are the basic operations an agent can perform to change
its environment in order to achieve its goals. Actions are denoted by
action symbols and are written a(t1, . . . , tn) where a is an action
symbol and t1, . . . , tn are the (ground) arguments to the action.
For example, the action
send-bid(a102, price2)

will cause the agent to bid price2 in auction a102. Performing an
action may result in changes in the agent’s beliefs when the action’s
effects on the environment are sensed at subsequent cycles of the
interpreter.

Plans may also contain achievement and test (sub)goals. Achieve-
ment subgoals allow an agent to choose a course of action as part
of a larger plan on the basis of its current beliefs. An achievement
subgoal !g(t1, . . . , tn) gives rise to a internal goal addition event

2In the interests of brevity, we do not consider goal deletion events.

398

+!g(t1, . . . , tn) which may in turn trigger subplans at the next ex-
ecution cycle. Test goals are evaluated against the agent’s belief
base, possibly binding variables in the plan. For example, the plan

+!bid(C, A, P,) : client(C) <-
?credit(C, P); send-bid(A, P).

is triggered by a request from agent C to bid price P in auction A. If
C is a client, then the agent will check that the client has sufficient
credit and, if so, make the bid on the client’s behalf.

The BNF for plans is given below:
plan ::= event [“:” context] “<-” body “.”
event ::= “+” [“!”] atomic-formula |

“-” atomic-formula
context ::= true | literal (“&” literal)∗

literal ::= atomic-formula | “not” atomic-formula
atomic-formula ::= p(t1, . . . , tn)
body ::= true | step (“;” step)∗

step ::= a(t1, . . . , tn) | “!” atomic-formula |
“?” atomic-formula

where p and a are respectively predicate and action symbols of
arity n ≥ 0, and t1, . . . , tn are terms. (As in Prolog, constants are
written in lower case and variables in upper case, and all negations
must be ground when evaluated.)

2.4 Execution Time Profiles
In order to determine whether a plan can achieve a goal by a

deadline with a given level of confidence, each action and plan has
an associated execution time profile which specifies the probabil-
ity that the action or plan will terminate successfully as a function
of execution time. We assume that plans can be arbitrarily inter-
leaved, and the estimated execution time of a plan is independent
of any other plans the agent is currently executing. The expected
execution time for an action or plan φ at confidence level α is given
by et(φ, α). We assume that execution times increase monotoni-
cally with α, i.e., in general, to have higher confidence that a plan
will complete successfully, we need to allow more time for the plan
to execute. The shape of the execution time profile will typically
be influenced by the (assumed) characteristics of the environment
in which the agent will operate. For example, the probability of a
plan to move to a location terminating successfully within a given
time may be lower in environments with many obstacles than in
environments with fewer obstacles. Execution time profiles can be
derived from an analysis of the agent’s actions, plans and environ-
ment, or using automated techniques, e.g., stochastic simulation.
In the simple case of plans consisting of a sequence of actions,
the execution time profile for the plan can computed from the ex-
ecution time profiles of its constituent actions. However for plans
which contain subgoals, the execution time profile will depend on
the relative frequency with which the possible plans for a subgoal
are selected in the agent’s task environment.

2.5 Intentions
The intention structure contains plans that have been chosen to

achieve goals or respond to changes in the agent’s beliefs. Plans
triggered by changes in beliefs or the acquisition of an external
(top-level) achievement goal give rise to new intentions. Plans trig-
gered by the processing of an achievement subgoal in an already
intended plan are pushed onto the intention containing the subgoal.
Each intention consists of a stack of partially executed plans, a set
of substitutions for plan variables, and a deadline and priority. The
set of variable substitutions for each plan in an intention results
from matching the belief context of the plan and any test goals it
contains against the agent’s belief base. The deadline and priority

of an intention are determined by the triggering event of the root
plan.

2.6 The AgentSpeak(RT) Interpreter
The interpreter is the main component of the agent. It manip-

ulates the agent’s belief base, events and intention structure, de-
liberates about which plan to select in response to belief and goal
change events, and schedules and executes intentions.

The agent’s state is a tuple 〈B,E, I〉 consisting of a set of base
beliefsB, a set of eventsE, and an (ordered) set of intentions I . We
formalize the execution of the interpreter as a sequence of function
applications which compute the new state of the agent and an exe-
cuted action based on its current state and its inputs at the current
cycle

(〈B′, E′, I ′〉, a) = exec(sched(opt(evt(〈B,E, I〉, P,G))))

where P is a set of percepts, G is a set of external goal addition
events, B′, E′, I ′ are the updated belief, event and intention sets,
and a is an action or null.

The function evt generates a set of events based on the agent’s
percepts P and external goal addition events G. It updates the be-
lief base B with the percepts in P to give an updated belief base
B′ and a set of belief addition and removal events EP , and returns
a new state

〈B′, E1 = E ∪ EP ∪G, I〉 = evt(〈B,E, I〉, P,G)

The second function, opt , takes 〈B′, E1, I〉 as input and returns
a pair consisting of a new state and a set of applicable plans or
options O

(〈B′, ∅, I1〉, O) = opt(〈B′, E1, I〉)
In contrast to AgentSpeak(L) which processes a single event at
each interpreter cycle, to ensure reactivity, AgentSpeak(RT) iter-
ates through E1, and, for each event e ∈ E1, generates a set
of applicable plans Oe. A plan is relevant if its triggering event
can be unified with e and a relevant plan is applicable if its be-
lief context is true in B′. In general, there may be many appli-
cable plans or options for each event. A selection function SO
chooses one of these plans for each event to give a set of options
O = {SO(Oe) | e ∈ E1}. SO is a partial function, i.e., it is not
defined ifOe is empty. If the event was triggered by a subgoal of an
existing intention, failure to find a applicable plan for the subgoal,
i.e., if Oe = ∅, aborts the intention which posted the subgoal and
the intention is removed from I (hence the change from I to I1).

The third function, sched , takes (〈B′, ∅, I1〉, O) as input and
returns a new state

〈B′, ∅, I2〉 = sched(〈B′, ∅, I1〉, O)

For each plan π in O, it either pushes π on top of the existing
intention in I1 that generated the triggering event (if the triggering
event for π was internal), or creates a new intention τ and adds
it to a set IE (if the triggering event for π was external). I2 is
the result of applying the scheduling algorithm (see Algorithm 2
below) to I1∪IE . The scheduling algorithm returns a set of feasible
intentions in deadline order (earliest deadline first).

Finally, exec takes 〈B′, ∅, I2〉 as input and returns a pair consist-
ing of a new state and an executed action

(〈B′, E′, I ′〉, a) = exec(〈B′, ∅, I2〉)
where I ′ is the result of executing the first intention in the sched-
ule I2, E′ contains any internal goal addition event generated by
executing the intention, and a is the action executed (or null if no
action was executed). Executing an intention involves executing

399

the first goal or action of the body of the topmost plan in the stack
of partially executed plans which forms the intention. Executing
an achievement goal adds a corresponding internal goal addition
event to E′. Executing a test goal involves finding a unifying sub-
stitution for the goal and the agent’s base beliefs. If a substitution
is found, the test goal is removed from the body of the plan and the
substitution is applied to the plan. If no such substitution exists,
the test goal is not removed and may be retried at the next cycle.
Executing an action results in the invocation of the Java code that
implements the action. If the action completes within its expected
execution time et(a, α), it is removed from the body of the plan.
Actions which time out are not removed and may be retried at the
next cycle.3 The executed action is returned as a. Reaching the
end of a plan (denoted by true below) causes the plan to be popped
from the intention and any substitutions for variables appearing in
the head of the popped plan are applied to the topmost plan in the
intention.

Algorithm 1 AgentSpeak(RT) Interpreter Cycle
E := E ∪G ∪ belief -events(B,P)
B := update-beliefs(B,P)
for all 〈e, τ〉 ∈ E do

Oe := {πθ | θ is an applicable unifier for e and plan π}
πθ := SO(Oe)
if πθ 6= ∅ and τ 6∈ I then

I := I ∪ πθ
else if πθ 6= ∅ and τ ∈ I then

I := (I \ τ) ∪ push(πθσ, τ) where σ is an mgu for πθ and τ
else if πθ = ∅ and τ ∈ I then

I := I \ τ
end if

end for
I := SCHEDULE(I)
if I 6= ∅ then

τ := first(I)
if first(body(top(τ))) = true then

π := pop(τ), π′ := pop(τ)
push((head(π′)← rest(body(π′)))θ, τ)
where θ is an mgu such that head(π)θ = π′θ

else if first(body(top(τ))) = !g(t1, . . . , tn) then
E = {〈+!g(t1, . . . , tn), τ〉}

else if first(body(top(τ))) = ?g(t1, . . . , tn) then
if ?g(t1, . . . , tn)θ is an answer substitution then

π := pop(τ)
push((head(π)← rest(body(π)))θ, τ)

end if
else if first(body(top(τ))) = a(t1, . . . , tn) then

if execute(a(t1, . . . , tn), et(a(t1, . . . , tn), α)) then
π := pop(τ)
push(head(π)← rest(body(π)), τ)

end if
end if

end if

The interpreter code is shown in Algorithm 1. The functions
head and body return the head and body of an intended plan, and
first and rest are used to return the first and all but the first ele-
ments of a sequence. The function top returns the topmost plan in
an intention. The function pop removes and returns the topmost
plan of an intention and the function push takes a plan (and any
substitution) and an intention and pushes the plan onto the top of
the intention. The function execute takes an action and an expected
execution time, and executes the action for at most the expected
execution time. It returns true if the action completes successfully

3Allowing test goals and actions to be retried is not critical, but
means that successful execution of intentions is less dependent on
precise characterization of the execution time profile of actions.

within its expected execution time; otherwise it returns false.
The scheduling algorithm is shown in Algorithm 2. The set of

candidate intentions is processed in descending order of priority.4

A candidate intention is added to the schedule if it can be inserted
into the schedule in deadline order while meeting its own and all
currently scheduled deadlines. A set of intentions τ1, . . . , τn is
feasible if there exists a schedule where each intention is executed
before its deadline. To check whether a schedule exists for a set of
intentions ordered earliest deadline first, it suffices to check that for
every scheduled intention τi

Σj≤i et(τj , α)− ex(τj) ≤ d(τi)

where ex(τj) is the time τj has spent executing up to this point, and
d(τi) is the deadline for τi. That is, the sum of expected remaining
execution time of intentions scheduled earlier than τi including τi
itself is less that the deadline of τi. A set of tasks is feasible iff
they can be scheduled earliest deadline first [7]. Intentions which
are not feasible in the context of the current schedule or which have
exceeded their expected execution time are dropped.5

Algorithm 2 AgentSpeak(RT) Scheduling Algorithm
function SCHEDULE(I)

Γ := ∅
for all τ ∈ I in descending order of priority do

if {τ} ∪ Γ is feasible then
Γ := {τ} ∪ Γ

end if
end for
sort Γ in order of increasing deadline
return Γ

end function

The scheduler returns a set of intentions which is ‘maximally
feasible’ (no more intentions can be added to the schedule if the
scheduled intentions are to remain feasible at the specified con-
fidence level) and moreover, intentions which are dropped are in-
compatible with some scheduled higher priority intention(s). Schedul-
ing in AgentSpeak(RT) is pre-emptive in that the adoption of a new
high-priority intention τi may prevent previously scheduled inten-
tions with priority lower than i (including the currently executing
intention) being added to the new schedule.

Note that if deadlines and priorities are not specified for external
events (and hence d =∞, p = 0 for all intentions), et(φ, α) =∞
for all φ, 0 ≤ α ≤ 1, the behaviour of an AgentSpeak(RT) agent
defaults to that of a non real-time BDI agent.

2.7 Implementation
We have implemented AgentSpeak(RT) in Java, and the current

prototype implementation includes the core language described above
and implementations of some basic actions. Additional user-defined
actions can be added using a Java API. AgentSpeak(RT) supports

4If there are multiple intentions with the same priority and/or dead-
line, we assume they are processed in a fixed order.
5The real time guarantees we prove in section 3 still hold in some
circumstances if intentions that exceed their expected execution
time are not dropped, but it complicates the presentation. The basic
idea is that an intention τ which has exceeded its expected execu-
tion time has its priority reduced to 0. τ will only be scheduled
if, after scheduling all higher priority intentions, there is sufficient
slack in the schedule to execute at least one step in τ before its
deadline. Given sufficient slack in the schedule, τ can therefore
still complete successfully. It will be however dropped if it exceeds
its deadline.

400

two mechanisms for defining primitive actions: writing a class which
implements the ExternalAction interface, and direct invoca-
tion of methods in existing Java legacy code.

2.8 Example
In this section we sketch a simple example AgentSpeak(RT) agent

and show how it allows the specification of tasks with priorities and
deadlines.

Consider a trading agent which buys commodities in an elec-
tronic marketplace both on its own behalf and as a broker on behalf
of clients. The market operates as a series of concurrent first-price
sealed-bid auctions of short duration in which sellers offer goods
for sale. Each auction has a deadline by which bids must be re-
ceived. Once the deadline for an auction has passed, the market
determines the highest bid and notifies successful agents of their
purchase and remaining credit level. The trading agent responds
to two kinds of events: requests from clients to make a specified
bid on their behalf in a particular auction, and notifications of new
auctions where the agent may decide to bid on its own behalf. The
deadline of an event is the deadline for bids for the corresponding
auction, and priorities are assigned to events based on the impor-
tance of the client (for client requests) and the type good sold in the
auction (for auction notifications). The agent’s primary role is as a
broker, so the priority of auction notification events is lower than
that of client requests. When the agent receives a request to bid in
an auction, it checks that the requesting agent is a client and that
the client has sufficient credit before making the bid. When it re-
ceives notification of a new auction, the agent may decide to bid on
its own account. Determining what price it should offer depends
on the type of good offered for sale. We require that scheduled
intentions complete by their deadlines with probability α = 0.9.

The agent’s program is shown below.

Beliefs:
client(client1)
client(client2)
credit(client1, price1)
credit(client2, price2)
credit(agent, price3)
buys(good1)
buys(good2)

Plans:
+!bid(C, A, P,) : client(C) <-
?credit(C, P); send-bid(A, P).

+auction(A, G) : buys(G) <-
price(G, P); ?credit(agent, P); send-bid(A, P).

At time 1000 the agent receives the following events.

+!bid(client1, a101, price1)[1100, 20] A request from
client1 to bid price1 in auction a101. The deadline for this event
is 1050 and the client is important so the priority of this event is 20.

+!bid(client2, a102, price2)[1010, 15] A request from
client2 to bid price2 in auction a102 with deadline 1010 and pri-
ority 15.

+auction(a201, good1)[1060, 10] A notification of an auc-
tion a201 offering good1 with deadline 1060 and priority 10.

These events trigger instances of the two plans in the agent’s pro-
gram to give three candidate intentions, τ1 (plan 1 with trigger-
ing event client1), τ2 (plan 1 with triggering event client2) and τ3
(plan3 with triggering event a201). The expected execution time
of τ1 and τ2 (plan 1) at the specified confidence level α = 0.9 is
20. The expected execution time of τ3 (plan 2), which involves

determining what price the agent should bid, is 50. τ2 is not fea-
sible, and is dropped. τ1 and τ3 are feasible and are scheduled in
deadline order: τ3 is scheduled first from 1000–1050, as it has the
earliest deadline, followed by τ1 from 1050–1070. The agent starts
execution of τ3.

Consider a new event arriving at time 1030 while τ3 is still ex-
ecuting (e.g., after the step price(good1, P) has been executed
but not ?credit(agent, P)). The new event is a a request for the
agent to bid in auction a103 for client2: +!bid(client2,a103,
price2). The deadline is 1065 and priority is 15, and the resulting
candidate intention, τ4 has an expected execution time of 20. τ1
and τ4 are inserted into the new schedule in deadline order. How-
ever it is not possible to schedule τ3 by its deadline—its expected
completion time exceeds its deadline by 20. (Note that it doesn’t
matter the order in which τ3 and τ4 are scheduled, they cannot both
be achieved by their deadline.) τ3 is therefore dropped, and the
agent begins to execute τ4.

While the plans and events in this example are extremely sim-
ple, it illustrates how the agent continually updates its scheduled
intentions in response to events to give a priority maximal set of
intentions that can be achieved by their deadlines with confidence
α.

3. REAL-TIME AGENCY
In this section we show that under certain assumptions (which we

believe are reasonable for real-time applications), the time required
to execute a single cycle of the AgentSpeak(RT) interpreter (and
hence the reactivity delay of the agent) is bounded. We also show
that an AgentSpeak(RT) agent commits to a priority-maximal set
of intentions, and that, given a fixed schedule, the probability that
an intention will complete successfully by its deadline is α.

We make the following assumptions about the agent’s program
and task environment:

1. the set of possible beliefs has a fixed maximal size (for exam-
ple, the set of possible beliefs can be restricted to the set of
ground instances of any atomic formula appearing in a belief
context or a test goal for a finite set of constants);

2. the set of possible goals has a fixed maximal size (for ex-
ample, the set of possible goals can be limited to the set
of ground instances of any atomic formula appearing in an
achievement goal for a finite set of constants);

3. the maximal possible interval between the arrival time and
deadline of any event is a constant dmax;

4. the minimal expected execution time for any plan is a con-
stant tmin; and

5. there is a maximal expected execution time, tmax, for any
action in the agent program (i.e., tmax = max(et(a, α)) for
any action a at the specified α)

THEOREM 1. If the sets of possible beliefs and goals, the max-
imal expected action execution time and the maximal distance to
deadline have a fixed maximal size, and the minimal plan execu-
tion time has a fixed minimal size, then the time required to execute
a single cycle of the AgentSpeak(RT) interpreter is bounded by a
constant δc.

PROOF. The time required to compute evt depends on the size
of the sets P and G. If the set of all possible beliefs is limited
to a fixed finite set of ground belief atoms (assumption 1 above),
then the number of possible percepts |P | is bounded by a constant

401

(assuming that the agent’s percepts are limited to changes in its
beliefs).

If the set of all possible agent goals is similarly limited (assump-
tion 2), then the number of possible goals |G| is also bounded by
a constant. This means that |E| and |B| are also bounded by a
constant at all stages of the cycle.

The time required to compute opt is bounded if |B| is bounded.
Computing the set of applicable plans for each event involves eval-
uating the belief context of each plan whose trigger matches the
event against the agent’s beliefs. Assuming that returning the set
of plans which match an event is a constant time operation and
matching the belief context of a plan against the agent’s beliefs is
bounded by a polynomial in |B|, if |B| is bounded, then the time
required to compute opt is also bounded by a constant. Computing
sched is bounded by a polynomial (in fact, a quadratic function) in
|I|. In the worst case, when priority varies with deadline and inten-
tions are inserted into the schedule in order of decreasing deadlines,
then the feasibility of each new intention involves checking the fea-
sibility of all currently scheduled intentions. |I| is bounded if the
maximal possible interval between the arrival time and deadline of
any event is a constant dmax (assumption 3), and the minimal ex-
pected execution time for any plan is a constant tmin (assumption
4). Then the maximal possible number of schedulable intentions is
bounded by dmax/tmin. By assumption 5, maximum action exe-
cution time and hence the time to compute exec is bounded by a
constant tmax.

The total cycle execution time is bounded by a constant δc which
is the sum of the bounds on computing each of the functions.

By the reactivity delay of an agent we mean the time the system
takes to recognize and respond to an external event [4] (i.e., the
time from the arrival of the event to the selection of a plan for the
event or deciding not to respond to the event).

THEOREM 2. Given assumptions 1-5, the reactivity delay of an
AgentSpeak(RT) agent is bounded.

PROOF. The maximum reactivity delay is for an event which
arrives just after the evaluation of evt begins, which is guaranteed
to be responded to by the end of the next agent cycle. Since the
agent’s cycle is bounded by δc, the maximum reactivity delay is
hence bounded by 2δc.

Note that the analogous result does not hold for AgentSpeak(L)
[9], even when the set of beliefs and goals are bounded. AgentS-
peak(L) processes a single event per cycle, and the order in which
events are processed is determined by the event selection function
SE . If SE preferentially returns events of a particular type and
events of this type arrive sufficiently frequently, then other events
will never be processed.

We now show that an AgentSpeak(RT) agent commits to a priority-
maximal set of intentions.

DEFINITION 1. Consider a set of intentions I . A set Γ ⊆ I is a
priority-maximal set of intentions (with respect to I) if:

1. Γ is feasible;

2. ∀τ ∈ I such that τ /∈ Γ: {τ} ∪ Γ is infeasible;

3. ∀τ ∈ I such that τ /∈ Γ, either {τ} is infeasible, or ∃Γ′ ⊆
Γ: the minimal priority of an intention in Γ′ is greater or
equal to p(τ), and Γ′ ∪ {τ} is infeasible.

Intuitively, this definition describes a subset of I which is ‘max-
imally feasible’ (no more intentions from I can be added if the

intentions are to remain feasible at the specified confidence level)
and moreover, intentions in I \ Γ are incompatible with some sub-
set of Γ which contains higher priority intention(s). Observe that
if all intentions in I have a unique priority, then there is only one
priority-maximal subset of Γ, containing the maximal number of
highest priority intentions which are jointly feasible.6

THEOREM 3. Given a partially ordered set of intentions I =
{τ1, τ2, . . . , τn}, where p(τi) ≥ p(τj) for i < j, the AgentS-
peak(RT) scheduling algorithm generates a priority-maximal set of
intentions Γ ⊆ I .

PROOF. Note that the AgentSpeak(RT) scheduling algorithm gen-
erates a sequence of sets starting with Γ0 = ∅, and sets Γi to be
Γi−1 ∪ {τi}, τi ∈ I if Γi−1 ∪ {τi} is feasible in deadline order, or
Γi−1 otherwise. The last set Γn is Γ. By construction, Γ is a fea-
sible set of intentions. Γ is also clearly a maximally feasible subset
of I: there is no τ ∈ I such that τ /∈ Γ and Γ ∪ {τ} is feasible.
To prove that it is priority-maximal, let τi ∈ I , {τi} feasible, and
τi /∈ Γ. We need to show that τi is incompatible with some subset
of Γ which contains only intentions of the same or higher priority
than p(τi). Since the intentions are added to Γ in descending or-
der of priority, when τi is considered and found incompatible with
Γi−1, p(τi) ≤ min({p(τ ′) : τ ′ ∈ Γi−1}).

THEOREM 4. The probability that an intention τ will execute
successfully in a static environment is equal to α.

PROOF. Immediate, from the fact that the execution time pro-
files of plans give us the estimate of duration of the task with the
probability α.

4. DYNAMIC ENVIRONMENTS
The guarantees in the previous section are for a static environ-

ment and schedule. They do not consider cases where a new in-
tention generated by the arrival of an event cannot be scheduled,
or a scheduled intention is dropped as a result of the arrival of a
higher priority task. In this section we develop a simple model of
task arrival which can be used to characterise the ‘difficulty’ of an
agent’s task environment. We show how this model can be used
to determine the priority of intentions which can be reliably sched-
uled in an environment of specified difficulty, and to estimate the
probability that an intention of given priority will not be displaced
from the schedule by the arrival of an intention of higher priority.

We characterise the agent’s task environment in terms of the av-
erage arrival rate and time available for the execution of intentions
of a given priority. Let ri be the average triggering rate of inten-
tions of priority i (expressed as the number of triggering events /
unit time), and ai the average time available for their execution,
i.e., the difference between the intention’s deadline and the time
at which it was triggered. For example, if each external achieve-
ment goal has a distinct priority level, ri and ai correspond to the
arrival rate and average time to achieve a particular type of goal.
We assume that ai ≥ ti where ti is the average execution time of
intentions of priority i at the specified confidence level α, i.e., that
deadlines advance with the time at which intentions are triggered
6In general, a priority-maximal set of intentions is not guaranteed
to contain the largest number of high priority intentions. For exam-
ple, if S = {τ1, τ2, τ3, τ4}, where p(τ1) = p(τ2) = p(τ3) = 2,
p(τ4) = 1, and it is possible to schedule either τ1 and τ4 to-
gether, or τ2 and τ3 together, both sets {τ1, τ4} and {τ2, τ3}will be
priority-maximal sets (but, for example, {τ1} will not be). Com-
puting the set containing the largest number of highest priority in-
tentions is a hard combinatorial problem, which can not be solved
by a real-time scheduler.

402

such that intentions are always individually feasible on average. ti
can be computed from the execution time profiles of the plans in
the agent’s plan library for the task environment. The larger ri and
the smaller the difference between ai and ti, the more difficult the
agent’s environment. The larger the value of ri the greater the num-
ber of intentions the agent must execute in a given period of time;
the smaller the value of ai − ti the less time there is to accom-
modate intentions of priority less than i. In general, the probability
that an intention of priority j will be unschedulable is an increasing
function of ri and decreases with ai − ti for all i > j.

In the worst case, when the schedule is full and intentions com-
plete their execution just before their deadlines, the long term av-
erage number of intentions of priority i in the agent’s schedule
is given by λi = riai. The amount of uncommitted or ‘slack’
time unused by intentions of priority i in such a schedule is si =
λi(ai − ti). We assume that si ≥ 0 for all i given an otherwise
empty schedule, i.e., that the average arrival rate and time available
for execution of intentions of each priority level are feasible for the
agent. For intentions of priority i− 1 to be reliably scheduled, the
total time required for their execution, λi−1 ti−1, must be less than
si. If the maximum priority of any intention is m, then the time
available to schedule intentions of priority j is

sj+1 = λm(am − tm)−
mX

i=j+1

λiti

Hence intentions of priority j < m are typically unschedulable if
sj+1 � λjtj . For given values of ri, ai and ti, we can there-
fore determine the priorities of intentions which can be typically
scheduled.

For a new intention of priority j to be schedulable, there must
be at least tj slack in the schedule at level j, i.e., sj ≥ tj . The
amount of slack at priority level j in the schedule depends on the
number of intentions in the schedule at priority levels j, . . . ,m.
(A new intention of priority j can displace already scheduled in-
tentions with priority < j but not already scheduled intentions of
priority j or higher.) Any currently scheduled intentions of priority
i, j ≤ i ≤ m, must have arrived in the last ai time units, i.e., be-
tween−ai and now. The number of intentions of each priority level
j, . . . ,m arriving between times −aj , . . . ,−am and now can be
represented as a vector 〈fj , . . . , fm〉 where fi for i ∈ {j, . . . ,m}
is the number of intentions of priority i which arrive within the last
−ai. Thus, for an intention of priority j to be schedulable, the
following must hold:

tj ≤ fm(am − tm)−
mX
i=j

fiti

Let the set of vectors satisfying this condition be

F = {〈fj , . . . , fm〉 : fm(am − tm)−
mX
i=j

fiti ≥ tj}

The probability that an intention of priority j is schedulable, Fj , is
then the probability that at most the number of intentions of each
priority level specified by one such sequence of arrivals occurs. If
the arrival of triggering events is a Poisson process, the probability
that at most fi intentions are added to the schedule in time ai is
given by

F (fi) =

fiX
x=0

e−λiλxi
x!

That is, the probability that exactly 0 or 1 or 2 or . . . or fi intentions
are added to the schedule in an interval of length ai. The probability

that at most the number of intentions of each priority level specified
by one such sequence occurs is then

Fj = 1−
Y

〈fj ,...,fm〉∈F
(1− F (fj)× . . .× F (fm))

We can also determine the probability that a scheduled inten-
tion of priority j is displaced from the schedule by the arrival of
a higher priority intention. If the uncommitted time at priority m,
sm, is sufficient to schedule the expected number of intentions of
priority m − 1, then for an intention of priority m − 1 to be dis-
placed from the schedule, um = dsm−1/tme intentions must be
added to the schedule during time am−1. The expected number of
prioritym intentions arriving in time am−1 is λm = rmam−1. The
probability that at least um intentions are added to the schedule in
time am−1 is given by

U(um) = 1− F (um−1)

That is, 1− the probability that exactly 0 or 1 or 2 or . . . or um−1

events arrive in an interval of length am−1.
In general, for a scheduled intention of priority j < m to be

displaced, sufficient intentions of priority > j, with total execution
time> sj , must arrive within a time interval aj . A set of intentions
with priorities j+1, j+2 . . . ,m sufficient to displace an intention
of priority j can be represented as a vector 〈uj+1, . . . , um〉 where
ui ∈ {j+1, . . . ,m} is the number of intentions of priority iwhich
arrive within aj . To displace an intention of priority j such vectors
must satisfy a number of conditions. First, the number of intentions
of each priority must be feasible given sj . Second, the combined
execution time of all intentions in the set must be greater than sj .
Third, that the combined execution time of the intentions should
exceed sj by at most the least execution time of any intention in
the set. Let the set of vectors satisfying the conditions be

U = {〈uj+1, . . . , um〉 : 0 ≤ ui ≤ sj/ti,P
uiti > sj ,P
uiti − min(ti)

i∈{j+1,...,m}
≤ sj}

That is, the set of all possible sequences of intentions of priority
> j which have combined execution time “just greater” than sj .
The probability that an intention of priority j is displaced, Uj , is
then the probability that at least the number of intentions of each
priority level specified by one such sequence occurs

Uj = 1−
Y

〈uj+1,...,um〉∈U
1− (U(uj+1)× . . .× U(um))

where U(ui) = 1−Pui−1
x=0

e−λiλxi
x!

as above.
The probability that an AgentSpeak(RT) agent will execute an

intention of priority j to completion is then

Ej = Fj × (1− Uj)× α
For given values of ri, ai and ti, we can therefore determine the
probability that an intention of given priority will not be scheduled,
or will be displaced from the schedule by a higher priority inten-
tion before it can complete successfully. For example, given the
rate at which requests to bid arrive and the time it takes to execute
the agent’s plan to process bids, we can determine the probability
that an intention to bid will be executed. For different applications
and priority levels, different probabilities of execution may be ap-
propriate. If, for the intended application, Ej is deemed to be too
low, the agent developer must either reduce the average triggering
rate of intentions of priority > j or increase ai − ti for i ≥ j, e.g.,
by reducing the execution time of the agent’s plans.

403

5. RELATED WORK
A number of agent architectures and platforms have been pro-

posed for the development of agents which must operate in highly
dynamic environments. For example, the Procedural Reasoning
System (PRS) [5] and PRS-like systems, e.g., JAM [6] and SPARK
[8], have features such as metalevel reasoning which facilitate the
development of agents for real time environments. However, to
guarantee real time behaviour, these systems have to be programmed
for each particular task environment—there are no general methods
or tools which allow the agent developer to specify that a particular
goal should be achieved by a specified time or that an action should
be performed within a particular interval of an event occurring. In
contrast, AgentSpeak(RT) provides a high-level programmatic in-
terface to a standardised real-time reasoning mechanism for tasks
with different priorities and deadlines.

Perhaps the work most similar to that described here are archi-
tectures such as the Soft Real-Time Agent Architecture [12] and
AgentSpeak(XL) [1]. These architectures use the TÆMS (Task
Analysis, Environment Modelling, and Simulation) framework [3]
together with Design-To-Criteria scheduling [13] to schedule inten-
tions. TÆMS provides a high-level framework for specifying the
expected quality, cost and duration of of methods (actions) and re-
lationships between tasks (plans). Like AgentSpeak(RT), methods
and tasks can have deadlines, and TÆMS assumes the availabil-
ity of probability distributions over expected execution times (and
quality and costs). DTC decides which tasks to perform, how to
perform them, and the order in which they should be performed,
so as to satisfy hard constraints (e.g., deadlines) and maximise
the agent’s objective function. In comparison to AgentSpeak(RT),
TÆMS allows the specification of more complex interactions be-
tween tasks, and DTC can produce schedules which allow inter-
leaved or parallel execution of tasks. However the view of ‘real-
time’ used in these systems is different from that taken by AgentS-
peak(RT). Deadlines are not hard (tasks still have value after their
deadline) and no attempt is made to offer probabilistic guarantees
regarding the successful execution of tasks. In addition, although
DTC can be used in an ‘anytime’ fashion, neither SRTA or AgentS-
peak(XL) execute in bounded time. In [11] we described ARTS,
a version of PRS which allows the specification of deadlines and
priorities, but which does not provide real-time guarantees for the
execution of intentions.

6. CONCLUSIONS
The AgentSpeak(RT) architecture provides a flexible framework

for the development of real-time BDI agents. An AgentSpeak(RT)
agent will achieve a priority-maximal set of intentions by their
deadlines with specified confidence. If not all intentions can be
achieved by their deadlines, the agent prefers intentions with greater
priority. By varying the confidence level, the developer can con-
trol the degree of ‘optimism’ the agent adopts when determining
the time required to complete a task in a given environment. In
task environments requiring a higher level of confidence, the agent
will typically allow more time to complete tasks (and so schedule
fewer tasks). As tasks are scheduled in priority order, increasing
the level of confidence also has the effect of causing the agent to
focus more on high priority tasks at the expense of lower priority
tasks which might be achievable given a more optimistic view of
execution time. Real-time tasks can be freely mixed with tasks for
which no deadline and/or priority is specified. Tasks without dead-
lines will be processed after any task with a specified deadline. If
no deadlines or priorities are specified, the behaviour of the agent
defaults to that of a non real-time BDI agent. Although the ap-

proach to real-time BDI agents we have presented here has been
developed in the context of a particular BDI agent programming
language, we believe it can be applied to other BDI-based agent
programming languages.

AgentSpeak(RT) adopts a single-threaded execution model. While
this is appropriate for the majority of real-time applications where
the execution times of intentions are relatively short, there are situ-
ations where it would be advantageous to be able to execute long-
running actions and plans in parallel with other intentions. In future
work we plan to extend the AgentSpeak(RT) architecture to allow
the parallel execution of intentions as in [2, 10] and investigate al-
ternative approaches to handling plan failure.

7. REFERENCES
[1] R. Bordini, A. L. C. Bazzan, R. de Oliveira Jannone, D. M.

Basso, R. M. Vicari, and V. R. Lesser. AgentSpeak(XL):
Efficient intention selection in BDI agents via
decision-theoretic task scheduling. In Proc. of the 1st Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS’02), pages 1294–1302, 2002.

[2] B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract
reasoning for planning and coordination. J. of Artificial
Intelligence Research, 28:453–515, 2007.

[3] K. S. Decker and V. R. Lesser. Quantitative modeling of
complex environments. Int. J. of Intelligent Systems in
Accounting, Finance and Management, 2:215–234, 1993.

[4] M. P. Georgeff and F. F. Ingrand. Decision-making in an
embedded reasoning system. In Proc. of the 11th Int. Joint
Conf. on Artificial Intelligence (IJCAI’89), pages 972–978.

[5] M. P. Georgeff and A. L. Lansky. Procedural knowledge.
Proc. of the IEEE, Special Issue on Knowledge
Representation, 74(10):1383–1398, 1986.

[6] M. J. Huber. JAM: a BDI-theoretic mobile agent
architecture. In Proc. of the 3rd Annual Conference on
Autonomous Agents (AGENTS’99), pages 236–243, 1999.

[7] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237–250, 1982.

[8] D. Morley and K. Myers. The SPARK agent framework. In
Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and
Multiagent Systems (AAMAS’04), pages 714–721, 2004.

[9] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In Proc. of the 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent
World: Agents Breaking Away, pages 42–55, 1996.

[10] J. Thangarajah and L. Padgham. An empirical evaluation of
reasoning about resource conflicts. Proc. of the 3rd Int. Conf.
on Autonomous Agents and Multiagent Systems
(AAMAS’03), 3:1298–1299, 2004.

[11] K. Vikhorev, N. Alechina, and B. Logan. The ARTS
real-time agent architecture. In Languages, Methodologies,
and Development Tools for Multi-Agent Systems, Vol 6039 of
LNCS, pages 1–15. 2010.

[12] R. Vincent, B. Horling, V. Lesser, and T. Wagner.
Implementing soft real-time agent control. In Proc. of the 5th
Int. Conf. on Autonomous Agents (AGENTS’01), pages
355–362, 2001.

[13] T. Wagner, A. Garvey, and V. Lesser. Criteria-directed
heuristic task scheduling. Int. J. of Approximate Reasoning,
19:91–118, 1998.

404

