
Normative Programs and Normative Mechanism Design

(Extended Abstract)
Nils Bulling

Department of Informatics
Clausthal University of Technology

bulling@in.tu-clausthal.de

Mehdi Dastani
Intelligent Systems Group

Utrecht University
mehdi@cs.uu.nl

ABSTRACT
The environment is an essential component of multi-agent
systems, which is often used to coordinate the behaviour of
individual agents. Recently many programming languages
have been proposed to facilitate the implementation of such
environments. This extended abstract is motivated by the
emerging programming languages that are designed to im-
plement environments in terms of normative concepts such
as norms and sanctions. We propose a formal analysis of
normative environment programs from a mechanism design
perspective. By doing this we aim at relating normative en-
vironment programs to mechanism design, setting the stage
for studying formal properties of these programs such as
whether a set of norms implements a specific social choice
function in a specific equilibria.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Modal
logic

General Terms
Theory, Verification, Languages

Keywords
Normative Environment, Mechanism design, Programming
Languages

1. INTRODUCTION
The overall objectives of multi-agent systems can be en-

sured by coordinating the behaviors of individual agents
and their interactions. Existing approaches advocate the
use of exogenous normative environments and organisational
models to regulate the agents’ behaviors and interactions
[4, 5, 7]. Norm-based environments regulate the behavior
of individual agents in terms of norms being enforced by
means of regimentation and sanctioning mechanisms. Gen-
erally speaking, the social and normative perspective is con-
ceived as a way to make the development and maintenance

Cite as: Normative Programs and Normative Mechanism Design (Ex-
tended Abstract), Nils Bulling and Mehdi Dastani, Proc. of 10th Int.
Conf. on Autonomous Agents and Multiagent Systems (AA-
MAS 2011), Tumer, Yolum, Sonenberg and Stone (eds.), May, 2–6, 2011,
Taipei, Taiwan, pp. 1187-1188.
Copyright c© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

of multi-agent systems easier to manage, e.g., AMELI [4]
and Moise+ [6].

This extended abstract departs from the normative en-
vironment programming perspective and proposes a formal
analysis of normative environment programs by relating them
to concurrent game structures (a well-known model used for
modelling multi-agent systems) [2] and mechanism design.
In our view, normative environment programs can be mod-
elled as concurrent game structures where possible paths
in game structures denote possible execution traces of the
corresponding normative environment programs. This rela-
tion would set the stage for studying formal properties of
normative environments such as whether a set of norms im-
plements specific choice functions in specific equilibria. This
also allows, for example, to analyse whether groups of agents
are willing to obey the rules specified by a normative sys-
tem. Such a formal analysis is closely related to the work
presented in [1, 11], where norms are modelled by the de-
activation of transitions, and the work presented in [9, 10],
where social laws were proposed to be used in computer sci-
ence to control agents’ behaviours.

2. NORMATIVE PROGRAMS
The general setting of our programming framework is as

follows. A normative multi-agent program consists of a nor-
mative environment program and a set of agents programs
that when executed perform actions in the normative envi-
ronment. In this framework, the programmed agents may or
may not have access to the specified norms in the environ-
ment, their actions are performed simultaneously, and the
actions’ outcomes are determined by the normative environ-
ment programs.

We are interested in programming languages which are
designed to implement normative environments in terms of
norms and sanctions. These languages often provide pro-
gramming constructs to specify 1) the (initial) state of an
environment, 2) the outcomes of the agents’ actions, and
3) norms and sanctions. The interpreter of such languages
is based on a cyclic process that continuously monitors the
agents’ (observable) actions, determines the outcome of the
actions, and imposes norms and sanction if necessary. In-
tuitively, the performance of agents’ actions will change the
environment state and possibly cause a violation of some
specified norms. Imposing sanctions may in turn modify
the environment state, which can be considered as a way to
bring the violated state of the environment back to an op-
timal one. It is important to note that possible executions
of a normative environment program depend on the agents’

1187



actions and the interpreter of a normative environment pro-
gramming language which selects an execution path among
all possible ones. In order to relate the execution models of
such normative environment programs to mechanism design
and study their formal properties, the normative environ-
ment programming languages are required to have formal
(operational) semantics. A candidate for a such a norma-
tive environment programming language is 2OPL [3].

3. NORMATIVE MECHANISM DESIGN
We propose to use concurrent game structures [2] as ab-

straction and as a formal model of normative environment
programs. In such models it is assumed that all agents exe-
cute their actions synchronously. A combination of actions
together with the current environment state determines the
next state of the environment. An environment and a con-
current game structure are considered equivalent if the set
of environment program executions coincides with the set of
paths in the concurrent game structure. As program exe-
cutions and paths are considered as the semantics of both
normative environments and concurrent game structures, it
is very natural to consider agents’ preferences as relations
on the sets of executions. In this way, an agent prefers some
executions over others.

In social choice theory a social choice function assigns
outcomes to given preference profiles (cf. e.g.[8]), where a
preference profile consists of one preference for each par-
ticipating agent. The task of a social choice function is to
determine an outcome with respect to the preference pro-
file. Various natural requirements are imposed on the social
choice function in order to ensure e.g. fairness.

Mechanism design is concerned with creating a protocol
or a set of standards for behaviours such that the outcome
agrees with a social choice function provided that agents
behave rationally–in some sense–according to their prefer-
ences. In game theoretic terms behaving rationally means to
act according to some solution concept (e.g. the concept of
Nash equilibria). If such a mechanism exists it is said that
the mechanism implements the social choice function in an
equilibrium (e.g., Nash equilibrium).

We define a normative behaviour function as a social choice
function that assigns a set of “desired” environment execu-
tions to each preference profile. We refer to the outcomes
as the normative behaviours wrt a specific preference profile.
As a consequence, the aim of normative mechanism design
is to come up with a normative mechanism or a normative
environment program which imposes norms and sanctions
based on the performed agents’ actions such that agents–
again following some rationality criterion according to their
preferences–behave in such a way that the system executions
stay within the normative outcome. Given an environment
program and its corresponding concurrent game structure
we are interested in the following question: Can we spec-
ify a set of norms and sanctions such that extending the
environment programs with the norms and sanctions imple-
ments a normative behaviour function in an equilibrium (e.g.
dominant or Nash)?

As said before, our work is closely related to [1, 11]. In the
former, labelled Kripke structures are considered as models
supposing that each agent controls some transitions. A norm
is then considered as the deactivation of specific transitions.
The main difference to our work is that adding norms and
sanctions to an environment program in our framework can

also “activate” new transitions in the underlying environ-
ment execution model. This is because the activation of
transitions in our framework does depend on actions’ pre-
and postconditions.

4. CONCLUSIONS
In this extended abstract we are proposing normative mech-

anism design as a formal tool for analysing normative envi-
ronment programs. We have argued how one can abstract
from such programs and then apply methods from mecha-
nism design to verify whether the restrictions imposed on
the program agree with the behaviour the designer expects.
More precisely, we have introduced normative behaviour
functions for representing the “ideal” behaviour of the sys-
tem with respect to different sets of agents’ preferences. The
latter has enabled us to apply concepts from game theory
to identify agents’ rational behaviour. These ideas can now
be used to verify whether a programmed normative envi-
ronment is sufficient to motivate agents to act in such a way
that the behaviour described by the normative behaviour
function is met.

5. REFERENCES
[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge.

Normative system games. In Proceedings of the
AAMAS ’07, pages 1–8, New York, NY, USA, 2007.
ACM.

[2] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time Temporal Logic. Journal of the
ACM, 49:672–713, 2002.

[3] M. Dastani, D. Grossi, J.-J. Ch. Meyer, and
N. Tinnemeier. Normative multi-agent programs and
their logics. In Proceedings of KRAMAS 2008, volume
LNAI 5605, pages 16–31. Springer, 2009.

[4] M. Esteva, J.A. Rodŕıguez-Aguilar, B. Rosell, and J.L.
Arcos. AMELI: An agent-based middleware for
electronic institutions. In Proceedings of AAMAS
2004, pages 236–243, New York, US, July 2004.

[5] D. Grossi. Designing Invisible Handcuffs. PhD thesis,
Utrecht University, SIKS, 2007.

[6] J. F. Hübner, J. S. Sichman, and O. Boissier. Moise+:
Towards a structural functional and deontic model for
mas organization. In Proceedings of AAMAS 2002,
pages 501–502. ACM, July 2002.

[7] A. J. I. Jones and M. Sergot. On the characterization
of law and computer systems. In J.-J. Ch. Meyer and
R.J. Wieringa, editors, Deontic Logic in Computer
Science: Normative System Specification, pages
275–307. John Wiley & Sons, 1993.

[8] M. Osborne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

[9] Y. Shoham and M. Tennenholtz. On the synthesis of
useful social laws for artificial agent societies. In
Proceedings AAAI-92, San Diego, CA, 1992.

[10] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: off-line design. Artificial
Intelligence, 73(1-2):231–252, 1995.

[11] W. van der Hoek, M. Roberts, and M. Wooldridge.
Social laws in alternating time: Effectiveness,
feasibility, and synthesis, 2007.

1188


