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ABSTRACT
We consider the problem of tracking multiple, partially ob-
served targets using multiple sensors arranged in a given
configuration. We model the problem as a special case of
a (finite horizon) DEC-POMDP. We present a quadratic
program whose globally optimal solution yields an optimal
tracking joint policy, one that maximizes the expected tar-
gets detected over the given horizon. However, a globally
optimal solution to the QP cannot always be found since
the QP is nonconvex. To remedy this, we present two lin-
earizations of the QP to equivalent 0-1 mixed integer lin-
ear programs (MIPs) whose optimal solutions, which may
be always found through the branch and bound method, for
example, yield optimal joint policies. Computational experi-
ence on different sensor configurations shows that finding an
optimal joint policy by solving the proposed MIPs is much
faster than using existing algorithms for the problem.

1. INTRODUCTION
This paper addresses a special case of finite horizon DEC-

POMDPs. The special case has been called a network dis-
tributed POMDP [4] or a factored DEC-POMDP [5]. Lately,
this special case has received attention in these pages, espe-
cially for the problem of detecting multiple targets passing
through a given configuration of locations using multiple
sensors, and specialized algorithms have been conceived for
it [4], [6], [3]. Our focus too shall be on the multi-target
tracking problem.

In this problem, the set of agents (sensors) is partitioned
into subsets. It is assumed that for each subset, we can de-
fine immediate rewards that are dependent on the actions
of the agents of the subset but not on the actions of agents
outside the subset. It is furthermore assumed that the prob-
abilities with which an agent receives observations are in-
dependent of probabilities with which other agents receive
observations. Finally, it is assumed that the probabilities of
transitions between states are independent of actions of the
agents.

The purpose of the above partitioning scheme is to model
autonomy for agents in one subset from those in other sub-
sets. In the multi-target tracking problem (Figure 1), only
the two sensors surrounding a location are required to detect
a target at that location; the other sensors play no role in
the target’s detection. Each sensor enjoys autonomy from

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

Figure 1: Sensor configurations (reprised from [6]).

all the other sensors save its immediate neighbor(s) in any of
the four cardinal directions. In this problem, state transition
probabilities are independent of the sensors’ actions since a
sensor’s choice of location to monitor (its action) does not
influence the targets’ positions (the state of the problem).

Recently, in [1], mathematical programming was applied
with encouraging results to the general case of finite horizon
DEC-POMDPs. Specifically, a nonlinear program (nonlin-
ear objective, linear constraints) and 0-1 mixed integer lin-
ear programs (MIPs), equivalent to the nonlinear program,
were presented. The use of the sequence form of a policy
facilitated the conception of these programs. Exploiting the
power of ILOG CPLEX and NEOS solvers, these programs
were able to solve sample problems much more rapidly than
other algorithms (by two orders of magnitude).

In this paper, we adapt this mathematical programming
approach to the multi-target tracking problem. For the con-
figurations of locations considered, the set of agents parti-
tions into subsets that each contain exactly two agents. This
being so, the adaptation of the nonlinear program yields a
quadratic program. Following [1], we linearize this QP to a
0-1 MIP. While solving the QP is only guaranteed to find a
locally optimal joint policy (but in practice often finds the
optimal joint policy), the solving MIP is guaranteed to re-
turn an optimal joint policy. Secondly, we present a new
linearization of the quadratic program to a 0-1 MIP. The
new 0-1 MIP uses exponentially fewer variables and con-
straints than the other 0-1 MIP. This new MIP is in fact
also usable for solving the general case of DEC-POMDPs.
Computational experience of the programs on different loca-
tion configurations reveals that the programs are much faster
than existing approaches for the problem, the improvement
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in time being of the same order as for problems of general,
unpartitioned DEC-POMDPs.

2. THE MODEL
The special case of a DEC-POMDP is specified by the

following data:
I = {1, 2, . . ., n}, a set of agents. S, a set of states. Ai

and Oi, sets of respectively actions and observations of agent
i ∈ I. For each pair of states s, s′ ∈ S, the probability p(s, s′)
that the process moves from s to s′, is defined. As stated
earlier, we assume that this probability is not conditional
on the actions of the agents. For each i ∈ I, for each a ∈
Ai, for each s′ ∈ S, and for each o ∈ Oi, the probability
qi(ai, oi, s

′) that i receives o in s′ if he has taken a, is defined.
Again, as stated earlier, we assume that this probability
is not conditional on the observations or actions of other
agents.

The set I of agents is partitioned into subsets which to-
gether exhaust it. The set of these subsets is denoted by D.
Each subset in D has one or more agents in common with
at least one other subset in D.

For each d ∈ D, let Ad denote the set×i∈dAi (joint actions
over d). Thereby, for each d ∈ D, immediate rewards are
defined: that is, for every s ∈ S and for every joint action
d ∈ Ad, the reward Rd(s, a) of the agents of d taking a in s,
is defined. Thereby, the total reward obtained by the agents
in a period if the state is s and they take the joint action
a ∈ A is

∑
d∈D Rd(s, a(d)) where a(d) ∈ Ad is the joint

action over d formed by the elements of a.
Let T denote the horizon of the problem. Let Zi denote

the set of all possible sequences of T - 1 or less observations
conceivable from Oi. Zi also includes the null sequence. The
policy of an agent is a function from Zi to Ai. In using a
policy πi, the agent takes action πi(z) in a period if the
sequence of observations he has received till that period is
z. A mixed policy is a probability distribution over the set
of policies. A joint policy is a n-tuple of policies, one policy
in the tuple per agent.

Let ∆(S) denote the set of probability distributions over
S. For b∗ ∈ ∆(S), an optimal joint policy at b∗ is a joint
policy π = (π1, π2, . . ., πn) that maximizes the expecta-

tion of
∑T

t=1

∑
d∈DR

d(st, πd(zd,t)) where st is a random

variable representing the state in period t, zd,t is a random
variable representing the tuple of sequences of observations
received by the agents in d till period t, and πd(zd,t), the
corresponding joint action according to πd, the joint policy
over d formed from π, and where s1 is according to b∗.

2.1 Example
We follow the specifications of the multi-target tracking

problem given in [4]. Consider the 4-chain configuration
given in Figure 1. The four sensors in the chain together
are meant to detect mobile objects (targets) that appear at
the three locations following a fixed Markovian law. Two
types of targets are possible: targets of type 1 appear only
at location Loc1-1 while targets of type 2 can appear at
locations Loc2-1 or Loc2-2.

Each sensor is an agent. Sensors 1 and 2 are assigned
to monitor location Loc1-1, sensors 2 and 3 are assigned to
monitor location Loc2-1 while sensors 3 and 4 are assigned
to monitor location Loc2-2. Thus, I = {1, 2, 3, 4} and D =
{{1, 2}, {2, 3}, {3, 4}}.

In a period, a sensor can either monitor the location to
its left (⊃) or monitor the location to its right (⊂) or switch
itself off (∅). A target is detected at a location only if the
location is being monitored by the sensors to its left and right
(or, in other configurations such as Five-P, by the sensors
to its top and bottom); if only one of these two sensors is
monitoring the location, the target slips by undetected. For
instance, if a target is at location Loc1-1 in a period, it is
detected only if sensor 1 chooses ⊂ and sensor 2 chooses ⊃,
and if a target is at location Loc2-2 in a period, it is detected
only if sensor 2 chooses ⊂ and sensor 3 chooses ⊃. If targets
appear at these two locations in the same period, sensor 2
must decide which location is preferable to monitor in that
period.

The state of the problem in a period is described by the
a pair of numbers (x, y) with x ∈ {0, 1} and y ∈ {0, 1, 2}.
x = 0 denotes the absence of target 1 in Loc1-1 and x = 1
its presence in Loc1-1. y = 0 denotes the absence of target
2 in both Loc2-1 and Loc2-2, y = 1 its presence in Loc2-1
and y = 2 its presence in Loc2-2. There are thus 6 possible
states in the problem. The state of the problem evolves
from one period to another according to probabilities that
are independent of the agents’ actions.

A target arriving at a location is partially observed by the
sensors assigned to the location and unobserved by the sen-
sors not assigned to the location. The observations received
by a sensor assigned to a location are ‘1’ (for presence of a
target) and ‘0’ (for absence of target).

Finally, each monitoring action of a sensor in a period ob-
tains a reward. The monitoring of a target-less location has
a small negative reward. The detection of a target at a loca-
tion results in a large positive reward obtained collectively
by all the sensors. If a sensor switches itself off, there is no
reward. Our objective in this problem is to maximize the
expected number of targets detected in a given number of
periods, and to do so we must maximize the total expected
reward obtainable in those periods.

3. THE SEQUENCE FORM
The sequence form of a policy is a representation of a (pos-

sibly, mixed) policy that facilitates formulating the problem
of finding an optimal joint policy as a mathematical pro-
gram. It was introduced in [2] for games in extensive form
and used in [1] for finite horizon DEC-POMDPs.

The sequence form of a policy of an agent is defined as a
conditional probability distribution over the set of histories
of the agent. We define a history of length t ≥ 1 of an
agent to be a sequence of length 2t - 1 in which the elements
in odd positions are actions of the agent and those in even
position, his observations. Thus, a history of length t has t
actions and t - 1 observations. A history of length 1 is just
an action. A history of length T shall be called terminal.

To give examples of histories from the 3 or 4-chain con-
figuration of the multi-target tracking problem where Ai =
{⊂, ⊃, ∅} and Oi = {0, 1}, ⊂-1-⊃-0-⊂ is a history of length
3, ⊃-0-⊃ is a history of length 2, ∅ is a history of length 1
etc.

Let Wi denote the set of histories of lengths less than or
equal to T of agent i. Let Yi denote the set of terminal
histories of agent i. A policy in the sequence form of agent
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i is a function σi from Wi to [0, 1] such that,∑
a∈Ai

σi(ai) = 1 (1)

σi(h) =
∑

a∈Ai

σi(h, o, a), ∀h ∈Wi\Yi, ∀o ∈ Oi(2)

where h, o, a denotes the history obtained on concatenating
o and a to h. For history h = (a1, o1, a2, . . ., ot−1, at) σi(h)
is the conditional probability,

prob(a1, a2, . . . , at|o1, o2, . . . , ot−1) (3)

In using a policy σi in the sequence form, the agent takes
action a in period t upon receiving observation o in that
period with probability σi(ht, o, a)/σi(ht), where ht is the
history that has occurred till that period.

(Note: That any (mixed) policy πi in the canonical form
can be converted to its equivalent sequence form is self-
evident. The converse can also be shown: For every pol-
icy σi in the sequence form, there exists a (possibly, mixed)
policy πi in the canonical form such that for each history
h ∈Wi, the conditional probability of the form (3) assigned
to h by σi is the same as assigned by πi.)

3.1 The Expected Reward
The expected reward of a joint policy (in the sequence

form) can be expressed in terms of the sum of the expected
rewards of the terminal joint histories of each subset d ∈ D.
Denoting the size of d by m, a terminal joint history of d
is an m-tuple of terminal histories, one history in the tuple
per agent in d.

Let Y d denote the set ×i∈dYi of of terminal joint histories
of d. In a joint history J ∈ Y d, let Ji denote the history of
agent i ∈ d in h. Let rd(J) denote the expected reward of
J ∈ Y d. Then, the expected reward of a joint policy (σ1,
σ2, . . ., σn) in the sequence form is given by,∑

d∈D

∑
J∈Y d

rd(J)
∏
i∈d

σi(Ji) (4)

Let Od denote the set ×i∈dAi (joint observations over d).
For a terminal joint history J = (a1, o1, a2, o2, . . ., oT−1,
aT ) ∈ Y d , where each ak is a joint action in Ad and each
ok is a joint observation in Od. Thereby,

rd(J) =
{ T−1∏

t=1

P (ot|bd,t, at)
}{ T∑

t=1

Rd(bd,t, at)
}

The elements appearing in the r.h.s. are as follows. For t =
1, bd,t = b∗; for t > 1, for each s′ ∈ S,

bd,t(s′) =
∑
s∈S

bd,t−1(s)p(s, s′)
∏
i∈d

qi(a
t−1
i , s′, ot−1

i )

, for each t ≥ 1,

Rd(bd,t, at) =
∑
s∈S

bd,t(s)Rd(s, at)

and,

P (ot|bt,d, at) =
∑
s∈S

bd,t−1(s)p(s, s′)
∑
s′∈S

∏
i∈d

qi(a
t−1
i , s′, ot−1

i )

4. QUADRATIC PROGRAM
A policy in the sequence form is a solution to system of

linear equations and inequalities. To be precise, a solution
to the following system, based on (1)-(2), is a policy in the
sequence form of agent i,∑

a∈Ai

xi(ai) = 1 (5)

−xi(h) +
∑

a∈Ai

xi(h, o, a) = 0, ∀h ∈Wi\Yi, ∀o ∈ Oi(6)

xi(h) ≥ 0, ∀h ∈Wi (7)

This system consists of one variable xi(h) for each history
h ∈ Wi. Thus, the variable xi(h, o, a) is for the history
obtained on concatenating o and a to the history h. Let
the size of Wi be denoted by ni. Let mi denote the number
of equations in (5)-(6). Let Ci denote an mi × ni matrix
containing the coefficients of the left-hand sides of (5)-(6).
Let ci denote an mi-vector containing the right-hand sides
of (5)-(6); thus, the first entry of ci is 1 and the remaining
entries are 0s. Then, (5)-(7) can be written as Cixi = ci, xi

≥ 0. Note that matrix Ci is sparse (most of its entries are
0s).

The set of policies Xi of agent i is a polyhedron.

Xi = {xi ∈ Rni |Cixi = ci, xi ≥ 0}

A joint policy an n-tuple of points, each point in a distinct
polyhedron.

The discussion so far leads us directly to a linearly con-
strained quadratic program for the problem of multi-target
tracking. In the multi-target tracking problem, in each con-
figuration considered, there are only two agents in each sub-
set d. Hence, the subsets in D can be numbered as 12, 23,
34 etc. (12 means that agents 1 and 2 are in subset 12).
Therefore, the expected reward (4) of a joint policy (σ1, σ2,
. . ., σn) for this problem assumes a quadratic form. For ex-
ample, for the 4-chain configuration, the expected reward
is,∑
J∈Y 12

r12(J)σ1(J1)σ2(J2) +
∑

J∈Y 23

r23(J)σ2(J2)σ3(J3)

+
∑

J∈Y 34

r34(J)σ3(J3)σ4(J4)

The expected reward of a joint policy can be expressed in
matrix form as follows. Let the histories of each set Wi be
numbered from 1 to ni. For the 3-chain configuration, D =
{{1, 2}, {2, 3}}. Define an n1 × n2 matrix M12 whose rows
are indexed by the histories of W1 and whose columns by
the histories of W2, and whose fgth entry is,

M12
fg =

{
r12(f, g), if f and g are both terminal histories

0, otherwise

Define an n2 × n3 matrix M23 analogous to M12. Then,
the expected reward of a joint policy (σ1, σ2, σ3) for this
configuration is,

σ′1M
12σ2 + σ′2M

23σ3

σ′ denotes the transpose of σ.
The expected reward of a joint policy for the other con-

figurations can be similarly expressed in terms of matrices.
For the 4-chain configuration, it can be expressed in terms
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of matrices M12, M23 and M34; for the 4-star configuration,
in terms of matrices M12, M23 and M24; for the 5-star con-
figuration, in terms of matrices M12, M23, M24 and M25;
for the 5-P configuration, in terms of matrices M12, M23,
M25, M34 and M45.

An optimal solution to the following quadratic program is
an optimal joint policy for the 3-chain configuration,

maximize x′1M
12x2 + x′2M

23x3

subject to,

xi ∈ Xi, i = 1, 2, 3

A globally optimal solution x∗1, x∗2, x∗3 to this QP is an op-
timal joint policy.

While this QP for the 3-chain configuration, its skeleton
is applicable in fact to all the configurations of the problem.
The only changes that are required to the program when
moving from one configuration to another are to rewrite the
objective function and to either add or remove sets of policy
constraints (depending on whether the new configuration
has more or less sensors than the previous configuration).
For instance, an optimal solution to the following QP is an
optimal joint policy for the 4-star configuration,

maximize x′1M
12x2 + x′2M

23x3 + x′2M
24x4

subject to,

xi ∈ Xi, i = 1, 2, 3, 4

The general form of the QP for the multi-target tracking
problem is,
(Q)

maximize
∑
d∈D

x′iM
dx−i

subject to,

xi ∈ Xi, i = 1, 2, . . ., n

where for a given d ∈ D, i and −i represent respectively the
indices of the two agents (sensors) that belong to d ∈ D.

Proposition 1. A globally optimal solution (x∗1, x∗2, . . .,
x∗n) to Q is an optimal joint policy.

Proof. By definition of a policy in the sequence form
and the expected reward of a joint policy in the sequence
form.

As a algorithm, however, Q is not ideal because it is non-
convex (in most cases). In other words, in most cases, none
of the matrices, (

0 −Md

−Md′ 0

)
is positive semi-definite. Solving Q is thereby guaranteed
to yield only a locally optimal joint policy. In the next sec-
tion, we convert Q to equivalent 0-1 mixed integer linear
programs, solving which is guaranteed to yield an optimal
joint policy.

5. MIXED INTEGER PROGRAMS
As stated in the opening, we present two different 0-1

mixed integer linear programs (MIPs) that are equivalent to

Q in the sense that an optimal solution to the MIP is also
a globally optimal solution to Q.

Both MIPs are based on the linearization of the objective
of Q. Both MIPs yield an optimal joint policy that is pure,
that is one in which each policy assigns conditional proba-
bilities to histories that are either 0 or 1. The first MIP was
described in [1] while the second MIP is novel.

The 0-1 MIP due to [1] is as follows.
(M1)

maximize
∑
d∈D

m′dzd

subject to,

xi ∈ Xi, ∀i ∈ I
l−ixi(h) =

∑
J∈Y d:Ji=h

zd(J), ∀i ∈ I, ∀d ∈ Di, ∀h ∈ Yi

∑
J∈Y d

zd(J) = lil−i, ∀d ∈ D

0 ≤ zd(J) ≤ 1, ∀d ∈ D, ∀J ∈ Y d

xi(h) ∈ {0, 1}, ∀i ∈ I, ∀h ∈ Yi

In this program, md denotes a vector indexed by the termi-
nal joint histories over d (members of Y d) and containing the
expected rewards of these terminal joint histories, li denotes
|Oi|T−1 and Di denotes the set of subsets in D to which
agent i belongs to.

The program is a linearization of Q in that each quadratic
term of the objective function of Q is replaced by a linear
term (for instance, for h ∈ Y1 and ĥ ∈ Y2, x1(h)x2(ĥ) is

replaced by z12(h, ĥ)). Thus, for each d ∈ D, zd is a vector
of non-integer variables containing one variable per termi-
nal joint history over d. For the 3-chain configuration, the
variables of M1 are thus the vectors x1, x2, x3, z12 and z23.

The last line of the program ensures that the each xi is a
pure policy. Placing 0-1 constraints on the variables repre-
senting terminal histories of each agent is sufficient to ensure
that in every solution to the program, even the variables rep-
resenting nonterminal histories of each agent acquire a value
of either 0 or 1.

The constraints of M1 are explained as follows. Assume
we are given a pure joint policy (σ1, σ2, . . ., σn). Then: (1)
The number of terminal histories of agent i that receive a
conditional probability of 1 from σi is exactly li. (2) There-
fore, the number of terminal joint histories over d that re-
ceive a conditional probability of 1 from the joint policy (σi,
σ−i) is exactly lil−i (where i and −i are used to denote the
two agents belonging to d) (3) Moreover, if a terminal his-
tory h of agent i ∈ d receives a conditional probability of 1
from σi, the number of terminal joint histories of which h
is a part of, and which receive a conditional probability of 1
from (σi, σ−i) is exactly l−i.

Note that in the program, we can replace the constraints,

l−ixi(h) =
∑

J∈Y d:Ji=h

zd(J), ∀i ∈ I, ∀d ∈ Di, ∀h ∈ Yi

by,

xi(Ji) + x−i(J−i)− 2zd(J) ≥ 0, ∀d ∈ D, ∀J ∈ Y d
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without changing the set of outcomes of the program. How-
ever, the constraints of the latter type outnumber by far the
constraints of the former type, and hence are not preferable.

Proposition 2. Given an optimal solution (x∗i ), ∀i ∈ I,
(z∗d), ∀d ∈ D, to M1, (x∗1, x∗2, . . ., x∗n) is an optimal joint
policy.

Proof. The proposition was proved in [1]; the proof is
omitted here.

We now move to the second 0-1 MIP. Recall that Di denotes
the set of subsets in D to which agent i belongs to. For a
terminal history h ∈ Yi, for a d ∈ Di and for a pure policy
σ−i define,

md
i (h, σ−i) =

∑
ĥ∈Y−i

rd(h, ĥ)σ−i(ĥ)

−i denotes the other agent of the subset d. Furthermore,
define,

md−
i (h) = l−i min

ĥ∈Y−i

rd(h, ĥ)

md+
i (h) = l−i max

ĥ∈Y−i

rd(h, ĥ)

md−
i (h) and md+

i (h) are respectively the lower and upper
bounds on md

i (h) for any σ−i,

md−
i (h) ≤ md

i (h, σ−i) ≤ md+
i (h)

Now consider the following 0-1 MIP.
(M2)

maximize
1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi

{
md+

i (h)xi(h) + wd
i (h)

}
subject to,

xi ∈ Xi, ∀i ∈ I
wd

i (h) ≤ md
i (h, x−i)−md+

i (h)xi(h)−md−
i (h)(1− xi(h)),

∀i ∈ I, ∀d ∈ Di, ∀h ∈ Yi

wd
i (h) ≤ 0, ∀i ∈ I ∀d ∈ Di, ∀h ∈ Yi

xi(h) ∈ {0, 1}, ∀i ∈ I ∀h ∈ Yi

This program contains one variable xi(h) for each history h
of each agent i. It also contains one variable wd

i (h) for each
history h of each agent i, for each of the subsets d. Notice
the absence of variables for joint histories in this program.
The size of the program is exponential in T but linear in n.

Proposition 3. Given an optimal solution (x∗i , w∗i ), ∀i ∈
I, to M2, (x∗1, x∗2, . . ., x∗n) is an optimal joint policy.

Proof. Note that for each i = 1 to n for each h ∈ Yi and
for each d ∈ Di,

wd
i (h) = 0, if xi(h) = 0

wd
i (h) ≤ md

i (h, x−i)−md+
i (h), if xi(h) = 1

Therefore, we can write,

wd
i (h) ≤

{
0, if xi(h) = 0

md
i (h, x−i)−md+

i (h), if xi(h) = 1

This being so, in every optimal solution to M2, neither of
the following two cases arise: (1) wd

i (h) < 0 and xi(d) = 0,

(2) wd
i (h) < md

i (h, x−i) - md+
i (h) and xi(h) = 1 (since we

are maximizing, wd
i (h) will take the largest feasible value

instead of the smallest).
Hence we have that,

wd
i (h) =

{
0, if xi(h) = 0

md+
i (h)−md

i (h, x−i), if xi(h) = 1

In effect, from the objective function of M2, there obtains,

1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi

{
md+

i (h)xi(h) + wd
i (h)

}
=

1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi:xi(h)=1

{
md+

i (h)xi(h) +md
i (h, x−i)−md+

i (h)
}

=
1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi:xi(h)=1

md
i (h, x−i)

=
1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi:xi(h)=1

∑
ĥ∈Y−i

rd(h, ĥ)x−i(ĥ)

=
1

2

n∑
i=1

∑
d∈Di

∑
h∈Yi

∑
ĥ∈Y−i

rd(h, ĥ)xi(h)x−i(ĥ)

=
1

2

n∑
i=1

∑
d∈Di

x′iM
dx−i

=
∑
d∈D

x′iM
dx−i

which is the same objective function as in Q. Note that, as
stated before, for a d ∈ D and an i ∈ d, −i denotes the
other (than i) agent in d. In other words, in maximizing the
objective function of M2 subject to the constraints on the
xi variables, for i = 1 to n, we are effectively maximizing
the objective function Q subject to the same constraints on
the xi variables.

The size of M1 or M2 can be reduced by identifying unre-
alizable histories, and not including variables and constraints
for such histories in the program. A history of an agent is
unrealizable if, given the initial state b∗, the probability that
every joint history, of which the history is a part, occurs is
0. Formally, a terminal history h of agent i is unrealizable
if,

prob.(h(o), ĥ(o)|h(a), ĥ(a), b∗) = 0, ∀d ∈ Di, ∀ĥ ∈ Y−i

Here, as before, −i denotes the agent other than i in set d.
h(o) denotes the sequence of observations of h and h(a) de-
notes the sequence of actions of h. A nonterminal history h
of length t < T of an agent is unrealizable if every history of
length t + 1 of the agent, whose first 2t - 1 elements coincide
with h, is unrealizable. Note that the size of a program can
be further reduced by iteratively identifying and excluding
dominated histories. A dominated history is a history that
is provably not required to find an optimal joint policy (an
equally good or better history exists). However, this iter-
ated elimination procedure involves solving a series of linear
programs, and this in turn can be very time consuming.

6. COMPUTATIONAL EXPERIENCE
We tested the two MIPs, M1 and M2, on the four sen-

sor configurations shown in Figure 1 for horizon 3. The
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Sensor M1 M2 GOA SPIDER SPIDER-
Config. [4] [6] ABS [6]
3-chain 1.125 3.73 ≈103 ≈101 ≈101

4-chain 1.148 14.22 ≈104 ≈102 ≈102

5-P 49.3 > 4000 ≈104 ≈104 ≈104

5-star 22.25 3035 ≈104 ≈103 ≈103

Table 1: Time taken in seconds by exact algorithms
for solving for horizon 3.

M∗ Solver Time Taken (s) M
3-chain 226 SNOPT 0 120

LOQO 0.012 163
LANCELOT 0.26 163

4-chain 338 SNOPT 0.01 70
LOQO 0.14 248
LANCELOT 1.31 248

Table 2: Performance of Q for horizon 3.

programs were coded in Java and were solved through the
branch-and-bound-revised simplex method using ILOG CPLEX.
Table 1 shows the time taken by the programs to find an op-
timal joint policy.

The time taken is inclusive of every computation involved:
the calculation of expected rewards of histories, calculation
of upper and lower bounds (in M2), the identifying of unre-
alizable histories, the setting up and solving of the program.
Also shown in the table is the time taken (approximate, since
precise figures were not available) by three existing exact al-
gorithms for this problem.

We also tested Q on the 3-chain and the 4-chain configu-
rations for horizon 3. Q was coded in the AMPL language
and solved using three freely available QP solvers from the
NEOS website1: SNOPT, LOQO and LANCELOT. The re-
sults, given in Table 2, are somewhat discouraging in that
while the solvers quickly find a solution, they seem unable
to find an optimal joint policy. In the table M∗ denotes
the expected reward of the optimal joint policy (as found by
M1 and M2) while M denotes the expected reward of the
locally joint policy found by Q.

The computational experience is limited to horizon 3. Longer
horizons seem out of reach. On the smallest configuration,
3-chain, M1 took 885 seconds to solve for horizon 4. For
the other configurations, in solving for horizon 4, the two
programs either cannot be formulated in memory for want
of space, or when they can be, take too long to be solved.

7. DISCUSSION
Central to our mathematical programming approach is the

use of the sequence form of a policy. In finding an optimal
joint policy in the sequence form, we find for each agent a
conditional probability distribution over his set of histories.
The size of the set of histories of an agent is exponential in T ,
and it is reduced substantially (by upto fifty percent in the
configurations considered), when unrealizable histories are
removed from it. Thus, the use of the sequence form enables
us to conceive mathematical programs of a reasonable size
(exponential in T : the number of variables and constraints
in Q as well as in M2 is exponential in T and linear in n

1http://neos.mcs.anl.gov/neos/solvers/index.html

while it is exponential in 2T and linear in n in M1).
As an exact algorithm, M2 is much smaller that M1.

However, this advantage in size is not matched by a com-
mensurate advantage in time; indeed, the opposite is seen.
M2 takes much longer to be solved than M1. Why does M2
fail where M1 succeeds when both are subject to the same
solver (ILOG CPLEX)? The crucial advantage M1 holds
over M2 is that the matrix formed by the coefficients of its
constraints is sparse and the symmetric. A working defini-
tion of a sparse matrix is that it is a matrix in which the
zeros in each row far outnumber the nonzeros in each row.
By symmetry, we mean that the zero and nonzero entries in
the matrix are arranged in regular patterns. In M1, a typ-
ical row consists of a minus one, a very small block of ones
and a very large block of zeros. The sparsity and symme-
try of M1’s constraints’ matrix allows the revised simplex
method (used in ILOG CPLEX) to efficiently (rapidly and
using little space) solve the relaxation LP of M1 because
it reduces the number of arithmetic operations conducted
over the tableau and allows a faster inversion of the matrix.
When this is not the case, as in M2 whose constraints ma-
trix is neither sparse nor symmetric, ILOG CPLEX falters
given the large size of the program. This is one, possibly
partial, explanation. A fuller understanding of the problem
faced in solving M2 may be arrived at by examining the
revised simplex method in detail.

To summarize, we have applied a mathematical program-
ming approach to the problem of multi-target tracking, and
have obtained encouraging results when compared to exist-
ing approaches. For the configurations of sensors considered,
the problem of finding an optimal joint policy reduces to a
quadratic program (Q). We have shown two ways in which
Q can be converted to an exact algorithm. Given the central
place occupied by quadratic programming in the domain of
nonlinear programming, it may be possible to conceive other
ways (other MIPs). Another matter of further investigation
could be the conception of approximate algorithms using
M1 or M2. As briefly stated before, the size of the MIP
can be reduced by identifying all unrealizable or dominated
histories. We can thereby use the criteria of ε-unrealizability
or ε-dominance to further whittle down the size of the pro-
gram in a controlled manner.

8. REFERENCES
[1] R. Aras. Mathematical Programming Methods For

Decentralized POMDPs. Ph.D. Dissertation, Université
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ABSTRACT
Kriesgpiel, or partially observable chess, is appealing to the
AI community due to its similarity to real-world applica-
tions in which a decision maker is not a lone agent chang-
ing the environment. This paper applies the framework
of interactive POMDPs to design a competent Kriegspiel
player. The novel element proposed here is a way to handle
complexity in I-POMDPs by using the notion of quantal re-
sponse developed in behavioral game theory. This allows us
to model only one (or a few) prototypical opponents while
representing a whole ensemble of possible levels of expertise
of the opponent’s evaluation functions. The model is used to
predict the opponent’s likely moves. The moves of our own
player can then be computed based on these predictions.
Furthermore, we explore practical considerations when ap-
proximating I-POMDP solutions. Due to the immense num-
ber of possible states in a game of chess, we approximate the
distribution over states using a sampling of possible states.
We show the practical viability of our approach by testing
a Kriegspiel playing agent against human players.

1. INTRODUCTION
Kriegspiel is a chess variant belonging to the family of in-

visible chess that encompasses partially observable variants
of the popular game. Playing Kriegspiel is difficult, first,
because the player needs to maintain a belief over all possi-
ble board configurations. Second, the player needs to select
his move, given his belief about the board configuration and
given the likely responses of the opponent. Predicting the
likely responses is crucial and has a long tradition in min-
imax approaches to fully observable games. Minimax as-
sumes that the players are rational and have opposing pref-
erences, which is common knowledge.1 Further, minimax
is applicable only to fully observable games. In partially
observable games one needs to model not only the oppo-
nent’s preferences, but also the opponent’s belief about the
board configuration, and possibly his belief about the orig-
inal player. Further, the opponent’s level of expertise may
also be in question in realistic settings.

Our approach is based on interactive partially observable
Markov decision process [9] (I-POMDPs). Like POMDPs,

1We should remark that common knowledge is a very strong,
indeed unrealistic, assumption. See, for example, [10].

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

I-POMDPs provide a framework for sequential planning.
However, they generalize POMDPs to multi-agent settings
by including the models of the other agent in the state
space.2 The models are used to form an informed predic-
tion of the other agent’s actions, which is then used during
the move selection. Given the complications of maintaining
the beliefs over the board configurations in Kriegspiel, the
need to include the possible models of the other player fur-
ther adds to the difficulty. We argue that without opponent
modeling some important aspects of the game are necessar-
ily neglected. In particular, without modeling the state of
belief of the opponent the impact of moves which have the
effect of supplying the opponent with information cannot
be taken into account. As should be expected, I-POMDPs
reduce to classical POMDPs if there are no other agents in
the environment.

In previous work Parker et. al. [11] use sampling to rep-
resent beliefs over the state of the board, and avoid mod-
eling the opponent explicitly by assuming that it will move
randomly. Though we also use sampling to represent belief
states, we do not model the opponent as random. Russell
and Wolfe [13] consider whether guaranteed wins exist in
some end-game configurations. Since the wins are to be
guaranteed the opponent’s state of belief does not matter
and need not be considered. Parker et. al.’s work is par-
ticularly relevant to our approach because it can be viewed
as an approximation. More precisely, the assumption that
the opponent responds by executing a random move is an
approximation of having a more informed prediction of the
opponent’s action obtained using a model of the opponent’s
preferences and beliefs about the state. Of course, one may
model the opponent on a more detailed level by consider-
ing how it may model the original player, and so on. In
I-POMDP framework [9] the nesting of models may be in-
finite, but finitely nested I-POMDPs are approximations
which guarantee that the belief updates and solutions are
computable. In our discussion below we illustrate how, for
example, the assumption that the opponent will respond
randomly approximates the solution obtained based on an
explicit model of the opponent.

One of the obvious sources of complexity of solving I-
POMDPs, apart from complexity inherent in POMDPs, is
the need for considering all possible models of the opponent,
and, if further levels of nesting are used, all possible models
the opponent may have of the original agent, and so on. This
paper proposes the use of the notion of quantal response [4,

2For simplicity we assume the presence of a single other
player throughout the rest of the paper.
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12] to ameliorate the complexity. Quantal response allows
one to use one model of the opponent to represent a whole
ensemble of models with similar characteristics. In the case
of Kriegspiel chess, instead of modeling all possible levels
of expertise and beliefs of the opponent one can explicitly
consider only one prototypical (hopefully the most likely)
model. The predictions of this prototypical model are prob-
abilistically “perturbed” to account for the possibility that
the actual opponent’s characteristics may not match those
of the explicitly considered model exactly, but that large
discrepancies are unlikely.

Another source of complexity in Kriegspiel specifically is
the high dimensionality of the state space. There are approx-
imately 1050 possible states of the chess board[2]. Though
the state space is significantly smaller at the beginning of
the game, it grows exponentially with each move. This high
dimensionality makes maintaining an exact representation
of the probability distribution over states practically impos-
sible. Furthermore, since we are considering an interactive
state space which includes the beliefs of the opponent, each
possible state also has an associated distribution of states
that represent the opponent’s beliefs. This nesting of distri-
butions can be as deep as we want. To tackle this problem,
we maintain a sample set of interactive states to approxi-
mately represent the distribution over the entire state space.

2. KRIEGSPIEL
We briefly summarize the rules of Kriegspiel following [5,

11, 13, 14]. The game of Kriegspiel involves two players, i
(which will stand for White), and j (Black), and one ref-
eree. The two players can see only their own pieces; the
opponent’s pieces are not visible. The referee can see the
pieces of both players. The rules governing moves of the
pieces are analogous to those in chess. Every time a player,
say i, proposes a move to the referee, the following happens:

• If the move is illegal (i.e., it does not comply with
the rules of chess given all the pieces on the board),
the referee announces ”Illegal”, and the player i may
propose another move.

• If the move is legal, it is executed, and the referee
announces:

– ”Capture in X ”, if a piece is captured on square
X.

– ”Check by Y ” if Black is in check. Y can have
the values of Rank (row), File (column), Short
Diagonal, Long Diagonal and Knight.

– If Black has no legal moves: ”Checkmate” if Black
is in Check and ”Stalemate” otherwise.

– ”Black (White) to move” or ”Silent” if none of the
above happens.

– ”Draw.” If the game is drawn due to insufficient
material on the board for a checkmate to occur,
or due to the 50 move rule being invoked.

3. INTERACTIVE POMDPS
The I-POMPD framework [9] generalizes the concept of

single-agent POMDPs to multi-agent domains. An I-POMDP
of agent i is

I-POMDP i = 〈ISi, A, Ti,Ωi, Oi, Ri〉 (1)

where:

• ISi, the interactive state, is the cross product of the
set of physical states S (in our case possible board configu-
rations) and the set of possible models of the opponent, j.
We will consider only intentional models (or types) here. A
type of agent j, θj , consists of its belief state bj and framebθj . As we explain further in the next section, the interac-
tive states allow i to keep track of i ’s belief about the board
configuration and about j ’s beliefs.

• A is the cross product of the actions agent i and oppo-
nent j can make.

• Ti, the transition function, defined as Ti : S ×A× S →
{0, 1}. Thus, we assume that Kriegspiel is a deterministic
domain and that agents’ actions are assumed to only in-
fluence the physical state part of the interactive state space
(this is called a model non-manipulability assumption in [9].)

• Ωi is the set of possible observations of i, here assumed
to be the set containing all possible referee’s responses.

• Oi is an observation function Oi : S ×A×Ωi → {0, 1}.
We assume that the referee’s responses are deterministic ac-
cording to the rules of Kriegspiel explained above.

• Ri is the reward function Ri : Si × A → <. . Both
Kriegspiel and chess associate a reward only with terminal
states of the game and the win, lose or draw of each agent.
Since we cannot search the game tree so far into the future,
we use a board evaluation function to represent the utility of
a state (i.e., the measure that the board configuration will
lead to the agent’s win.)

It should be noted here that in POMDPs, utility of a belief
state is computed as the sum of the reward from each state
s in a belief state b. In chess, the board evaluation function
does not represent the reward for being in a given state,
but rather the expected utility given all states reachable
from s. That is, the board evaluation function acts as an
approximation to the expected utility of being in any state
if it were computed as the result from a fully observable
Markov decision process. Thus, the use of a chess board
evaluation function amounts to an MDP approximation of
the real value of a belief state.

There is little research on board evaluation functions for
Kriegspiel, so we have chosen to use the board evaluation
function from a standard fully observable chess engine. In
fact, for reasons noted above, board evaluation may be inap-
propriate, but instead a different kind of evaluation function
could be defined over entire belief states. For lack of a bet-
ter alternative, our implementation uses the gray-matter[1]
library for move generation and board manipulation, and
therefore, we have adopted the gray-matter board evalua-
tion function as well. Looking at the effect of different board
evaluation functions would be an interesting direction for fu-
ture research.

4. PARTICLE FILTERING IN I-POMDPS
Particle filtering is a Monte Carlo method for approximat-

ing a posterior distribution over states xt at time t given
a sequence of observations y1:t, a prior belief over states
p(x0), a transition model p(xt|xt−1), and an observation
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model p(yt|xt). We will summarize the general algorithm
here, however it is discussed in detail in [8]. First, a set
of particles is initialized by sampling N particles from the
prior belief distribution. That is for each particle xi0 where
i = 1, · · · , N

xi0 ∼ p(x0)

Then, at each time step t, three updates are performed on
the particle set. First, the particle set is projected using
the transition model. That is, each particle is resampled
according to:

xit ∼ p(xt|xit−1)

Second, each particle is assigned a weight wit according to
the observation function.

wit = p(yt|xit)

Finally, a new particle set is resampled from this weighted
particle set according to the weights of each particle. Thus,
particles with low weights (and therefore low probabilities)
die out and particles with high weights (and therefore high
probabilities) are reproduced.

This method has been adapted for filtering and policy
generation in I-POMDPs[7, 6]. In I-POMDPs, each parti-
cle is not simply a sample from the state space, but rather a
sample from the entire interactive state space. Each particle
therefore includes a physical state s and a model of j. An in-

tentional model consists of j ’s belief and its frame, bθj , which
contains other relevant properties of j (for example, j ’s re-
ward function [9].) The representation of agent j ’s belief in
each particle is itself another particle set. The particles are
therefore nested within each other to the depth of modeling
that is desired. Transition models for particles are based on
probability distributions over the opponent’s actions as well
as a model of the opponent’s observations.

Policy evaluation is performed by considering every action
available to the agent. For each action, the particle set is
updated as though that action was performed. The particle
set is then updated according to each possible observation
at that time step. This process is repeated to project the
particle set out to all reachable belief states at a given time
horizon. Each belief state is evaluated by summing over the
utility of the interactive states and dividing by the number
of particles.

4.1 Sample Impoverishment
Sample impoverishment in particle filters is a problem that

arises when the diversity in the particle set becomes small
due to high importance samples being statistically sampled
very often[3]. This is particularly a problem in models that
have a low process noise. Because of the determinism of
Kriegspiel play, if the particle set does not represent a di-
verse enough selection of states, it is possible that a given
observation will be inconsistent with all particles in the set.
In this case, wit = p(yt|xit) = 0 for all particles, and no
particle can be selected for the next iteration.

To deal with this particular case, we have adopted a strat-
egy similar to that used by Parker et. al. [11] in which a
sample set is generated that is consistent with the last obser-
vation. When no particles are consistent with the current
observation, we generate a set of particles from a random
distribution. The distribution is random given some known
arrangement of the observable pieces at t − w where w is

the size of a history window. Then, the random particle
set is run forward to be consistent with the last w observa-
tions. This gives us a particle set that, though not necessar-
ily an accurate representation of the true distribution over
interactive states, is at least consistent with the last several
observations.

4.2 Quantal Response Approximation
The notion of quantal response we use has been coined in

the fields of behavioral game theory and experimental eco-
nomics [4, 12]. The idea is that decision makers can rarely
be assumed to be perfectly rational, and to compute their
utilities and probabilities exactly. Hence, one may need to
replace the postulate that a decision maker is surely going
to maximize his expected utility with a postulate that like-
lihoods of various actions increase as the actions’ expected
utilities increase. The shape of this dependence quantifies
the likelihoods of the decision maker’s mistakes, as well as
the errors inherent in the model of the decision maker.

Formally, the quantal response is defined by:

P (αj) =
eλU(αj)P
αj
eλU(αj)

(2)

where P (αj) is the probability for opponent j to execute
action αj and U(αj) is the expected utility of an action
computed by the model. The parameter λ quantifies the
degree to which our model of j is correct. The high values
of λ indicate that j is unlikely to perform an act that does
not maximize its expected utility, as computed by the model.

As we mentioned the quantal response is an approxima-
tion to explicitly representing a large, or even infinite, num-
ber of possible models of the other agent. The computa-
tional advantage of having only one prototypical model is
obvious. Also important is how this approximation natu-
rally expresses the fact that the likelihood of the prototypi-
cal model being far off is small. We believe that such intu-
itive approximations to complexities of modeling agents are
necessary to make them applicable to real-life problems.

5. IMPLEMENTATION AND EXPERIMENT
We have implemented a prototype Kriegspiel playing agent

based on the I-POMDP particle filtering discussed here. The
agent is written in a mix of C++ and Ruby. Performance
critical portions are written in C++ so they can be opti-
mized for speed, while the remainder of the application uses
Ruby for its flexibility and rapid development features. The
agent was designed to be played via a telnet client similar
to the way Internet Chess Servers (ICS) can be accessed.

For our experiments, we built five agents with different
parameters to test. These agents differ in the depth of op-
ponent modeling, and in the number of time-steps that the
agent looks ahead. Two of the agents modeled their op-
ponent as being perfectly random. These agents were “0
depth” models in that they did not have any intentional
models of their opponent. The other two agents had an op-
ponent model of one layer deep (i.e. agent i models agent j ).
Also, two of the agents computed the utility of moves by pro-
jecting the particle set 1 time-step, while two of the agents
projected the particle sets 2 time-steps ahead. Thus we have
four agents formed by different combinations of look-ahead
and modeling depth. The fifth agent is a perfectly random
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Random - 0 / 3 0 / 4 0 / 5 0 / 4
1 ahead, 0 deep 3 / 3 - 1 / 8 0 / 3 0 / 3
1 ahead, 1 deep 4 / 4 0 / 8 - 8 / 23 2 / 6
2 ahead, 0 deep 4 / 5 3 / 3 11 / 23 - 0 / 2
2 ahead, 1 deep 4 / 4 3 / 3 1 / 6 1 / 2 -

Table 1: Results of the 66 games between each of
the five kinds of agents. The numbers indicate the
number of wins by the agent identified by the row
header when playing against the agent identified by
the column header. e.g. The agent with 1 move look
ahead and 0 depth opponent modeling won 3 out of
3 games against the random agent, but only 1 out
of 8 games against the “1 ahead, 1 deep” agent.
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Random - - - - -
1 ahead, 0 deep 0 / 3 - - - -
1 ahead, 1 deep 0 / 4 7 / 8 - - -
2 ahead, 0 deep 1 / 5 0 / 3 4 / 23 - -
2 ahead, 1 deep 0 / 4 0 / 3 3 / 6 1 / 2 -

Table 2: Draw and stalemate results of the 66 games
between each of the five kinds of agents. The num-
bers indicate the number of draws and stalemates
out of total games between pairs of agents.

agent that will be used as a baseline. All intentional agents
are modeled using a set of 200 particles.

5.1 Computer vs. Computer
We ran a series of games where computer agents were

paired at random. The number of wins and games for each
pairing is reported in Table 1, and drawn or stalemated
games are tallied in Table 2. It is worth noting that the
unusually high number of games between the “1 ahead, 1
deep” and “2 ahead, 0 deep” agent is due to a day of testing
where the other three agents had been disabled. Though,
more data points would be useful, there are some interest-
ing trends that can be observed. First, the random agent
failed to win a single game. The best it did was a draw
against the “2 ahead, 0 deep” player. This is not particu-
larly surprising, but demonstrates that this approach is at
least viable.

A second interesting point is that the “2 ahead, 1 deep”
agent, which should be theoretically the one with the great-
est planning abilities, only lost two games. This should be
expected, but due to the amount of time required to run a
game against this agent, we don’t have a large enough sam-
ple set to say conclusively that this is the strongest agent.

Human 1 ahead 2 ahead
Wins 1 deep 1 deep
Human - 5 / 12 6 / 7
1 ahead, 1 deep 4 / 12 - -
2 ahead, 1 deep 0 / 7 - -

Table 3: Results of the 19 games between humans
and 2 kinds of agents. The numbers indicate the
number of wins by the agent identified by the row
header when playing against the agent identified by
the column header.

1 ahead 2 ahead
Wins 1 deep 1 deep
Human 3 / 12 1 / 7

Table 4: Draw and stalemate results of the 19 games
between humans and the 2 agent types. The num-
bers indicate the number of draws and stalemates
out of total games between pairs of agents.

5.2 Computer vs. Human
To test the agent against human opponents, we invited

students in an AI course to play the game online while we
logged results. We had students play 19 games of Kriegspiel
with two different agent designs. Though the human player
generally performed better, the artificial agent was able to
win 4 out of the 19 games. The win and drawn game tallies
are represented in Tables 3 and 4.

What is interesting and somewhat surprising about these
results is that the agent that looked farther ahead actually
performed worse than the more myopic agent. Though we
don’t have enough data points to draw a definite conclusion,
we put forward two possible hypotheses to explain these
results. One is that the agent with further planning was a
considerably slower agent (approximately 30-60 seconds per
move) than the myopic agent. This additional time forced
the humans playing to take more time pondering their own
moves and therefore made better moves.

Another potential explanation is that the myopic agent
tended to make bolder moves since it did not consider the
counter move by the opponent. These bolder moves tend to
result in a large number of captures. It is possible that the
human players tend to be overly risk averse when playing
against the near sited agent.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated that a reasonably performing Krieg-

spiel agent can be created using particle filter based ap-
proximations to I-POMDPs. We have also demonstrated
a method by which a particle filter which has failed due to
sample impoverishment can recover and continue to be use-
ful, if not entirely precise. Furthermore, we have also shown
that explicitly modelling the opponent’s actions can perform
better than assuming they are random.

The limited foresight of this implementation is a serious
weakness, and future research needs to be spent tackling
performance issues so that longer time horizons can be con-
sidered. Our future work will involve expanding this model
to allow deeper lookahead. We will also explore other ways
to resample particles when the sample set becomes impov-
erished.
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Furthermore, more in depth testing should be done. We
intend to open the Kriegspiel server up to a wider audience
and invite experienced Kriegspiel players to play it. Also,
comparison of play between agents with different parame-
ters (number of particles, depth of nesting, length of time
horizon, and type of board evaluation function) would be
useful in determining what aspects make for a good Krieg-
spiel agent.
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ABSTRACT
In decentralized settings with partial observability, agents can often
benefit from communicating, but communication resources may be
limited and costly. Current approaches tend to dismiss or underesti-
mate this cost, resulting in overcommunication. This paper presents
a general framework to compute the value of communicating from
each agent’s local perspective, by comparing the expected reward
with and without communication. In order to obtain these expecta-
tions, each agent must reason about the state and belief states of the
other agents, both before and after communication. We show how
this can be done in the context of decentralized POMDPs and dis-
cuss ways to mitigate a common myopic assumption, where agents
tend to overcommunicate because they overlook the possibility that
communication can be deferred or initiated by the other agents.
The paper presents a theoretical framework to precisely quantify
the value of communication and an effective algorithm to manage
communication. Experimental results show that our approach per-
forms well compared to other techniques suggested in the literature.

1. INTRODUCTION
In multiagent settings, each agent is faced with three types of

uncertainty. The first is uncertainty about the effects of its actions.
This uncertainty is often addressed using the Markov Decision Pro-
cess (MDP). The agent’s world consists ofstates, and the agent’s
actions have probabilistic outcomes that change the state. The
agent can receive areward for entering a desirable state. The sec-
ond type of uncertainty is about the state that the agent is in. This
uncertainty can be addressed by addingobservationsto the model.
The agent can reason about its state by combining its knowledge
about state transitions with knowledge of its past actions and ob-
servations. The third type of uncertainty is about the state that the
other agents are in, and the future actions that they will take, while
accounting for the fact that the other agents perform similar rea-
soning. In this paper, we consider the Dec-POMDP (Decentralized
Partially Observable MDP) model [2], and how this third type of
uncertainty manifests itself within a Dec-POMDP.

One way to alleviate the latter type of uncertainty is to commu-
nicate with the other agents. In fact, it would usually be unrealistic
to assume that agents do not communicate in a cooperative setting.
But assuming ubiquitous communication is unrealistic for two rea-
sons. First, trivially, if communication were ubiquitous, then in
fact the problem could be solved and executed by onecentralized
agent, removing a key feature of multiagent systems. Second, in
the real world communication is often not ubiquitous. Agents may

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

be separated by distance, or the bandwidth between them may be
limited, or they may operate in a low power environment where en-
ergy must be conserved. A common approach to factor this into the
model is to assign communication a negative reward orcost.

In this paper, we will use thesyncmodel of communication [13].
That is, when one agent decides to communicate, the result will
be that all agents mutually exchange all available information. Be-
cause we assume that agents can synchronize in this manner, the
paper studies the question ofwhento communicate. There is a rich,
separate branch of the literature that studieswhat to communicate
as well [9].

The paper proceeds as follows. First we discuss previous work
on communication. Then we discuss the specific model that we
use to produce communication decisions. An algorithm is devel-
oped that converts the complicated multiagent domain into a Hid-
den Markov Model in order to estimate the state of the other agents.
The algorithm is expanded so that each agent can account for the
communication policies of the other agents as well as their states.
Finally, we show that the resulting planner performs well empiri-
cally.

2. RELATED WORK
The literature on communication can be divided into works that

start with a centralized plan and those that do not. In the former
group, agents generate a centralized policy at planning time, and
then at execution time they communicate to enforce execution of
the centralized plan. Xuan et al. consider the view of a “moni-
toring agent” whose knowledge consists only of jointly observable
information since the last synchronization time [13]. Agents com-
municate whenever the monitoring agent notices ambiguity in what
an agent should plan next. Roth et al. use thetell model of com-
munication instead of thesyncmodel [8]. Each agent uses its local
history and theQPOMDP heuristic to reason about the joint action that
should be taken. The history is also used to reason about commu-
nication.

Other works do not start with a centralized policy. Nair et al. in-
troduce the Communicative DP-JESP (Dynamic Programing Joint
Equlibrium-Based Search for Policies) technique, which integrates
a communication strategy intoK-step pieces of the JESP algorithm
and finds a Nash equilibrium of policies for multiple agents [6]. In
order to keep the algorithm tractable, the authors enforce a rule that
communication must occur at least everyK steps.

Some recent work explores the concept of delayed communi-
cation. Spaan et al. find the best domain-level policy given that
communication delays are stochastically possible [7].

The above approaches do not explicitly represent any cost to
communicating. Overcommunicating is thought to be undesirable,
either out of general principle, or because it can add to planning
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time. Williamson et al. compute an explicit reward for communi-
cating [12]. They introduce thedec_POMDP_Valued_Commodel,
which includes a communication reward function. Reward for com-
municating is based on the KL Divergence in the agents’ belief
states.

The approach most similar to ours has been developed by Becker
et al. [1]. Communication incurs a negative reward, determined by
the domain. Each agent determines theValue of Communication
(VoC), which is the difference between the expected value of fu-
ture policies with and without communication. However, the tech-
nique assumes that the world has joint full observability, that each
agent fully observes its own local state, and furthermore that the
other agents cannot affect its transitions or observations. The only
interaction between the agents is via the joint reward function. The
resulting problem is “only” NP-Complete [4], as the elimination
of observations means that each agent only needs to reason about
the global state, and not the belief states or observation histories
of the other agents. In this paper, we will use a similar method-
ology to solve instances of the more complicated Dec-POMDP-
Comm model, where each agent receives partial observations, and
the agents are not transition or observation independent. Comput-
ing the value of communication in this more general context is sub-
stantially more complicated and is one of the key contributions of
this paper. We retain thesyncmodel of communication, though, as
we will see in the next section.

3. DEC-POMDP
A Dec-POMDP is a Decentralized Partially Observable Markov

Decision Process with Communication [3]. It is defined by the fol-
lowing components:

• A set of agents numbered1..n

• S, the set of domain states.

• b0 ∈ ∆S, the initial belief state distribution.

• A = ×iAi is the set of joint actions, whereAi is the set of
actions available to agenti. At each time step, agents take
one joint actiona = 〈a1, .., an〉.
• T , the transition model:T (s′|s,a) is the probability of tran-

sitioning to states′ given the previous state wass and joint
actiona was taken by the agents.

• R, the reward function:R(s,a) is the immediate reward for
taking joint actiona in states.

• Ω1..Ωn, the sets of observations possible for each agent.
Each agenti receives only its own observationoi ∈ Ωi at
each timestep. The vector of received observations iso =
〈o1, .., on〉.
• O, the observation function. It specifies joint observation

probability O(o|s′, a1..an), the joint probability that every
agenti sees corresponding observationoi after the agents
took joint actiona causing a state transition tos′.

• H, the horizon, or number of steps, in the problem.

We add communication to the model. Each agent has the option
to initiate communication before taking an action. We restrict this
paper to thesynccommunication model, so the communication lan-
guage simply allows transmission of the agents’ action/observation
histories before each action. Communication is instantaneous, a
message is received without delay as soon as it is sent. We also in-
cludeC, a fixed cost on each step of communicating these synchro-
nization messages. The fixed cost ofC is incurred ifanynumber

of agents choose to communicate. Otherwise, if no agent commu-
nicates, they incur no penalty. This problem is NEXP-hard. In-
deed, when communication is prohibitively expensive, the model
becomes a Dec-POMDP with no communication.

Since the problem has a finite horizonH, we can use a policy tree
to represent a non-communicative policy of an agent. In the policy
tree representation, nodes represent actions and branches represent
observations. Each agenti follows its own policy tree generated at
the last synchronization step, referred to asπ0

i with its first action
corresponding to the root at timet = 0, and its last action corre-
sponding to the leaves.π0

i contains a number of subpolicies, each
corresponding to an observation sequence as the tree is traversed.
We refer to an observation sequence asō and the resulting subpol-
icy asπi(ō). Note that if we know an agent’s initial policy and
its sequence history of observations, we can derive its sequence of
actions. Furthermore, the next sections will show that the local his-
tory of an agent can be combined with Bayesian reasoning on the
Dec-POMDP model and the initial policies of the other agents to
form a belief about the histories of other agents. To summarize,
each node of an agent’s policy tree maps to:

• A unique action/observation sequenceōi

• A future local subpolicy rooted at the nodeπi(ōi)

• A belief about the globalS as well as the action/observation
histories of the other agents.

We will use these mappings throughout the paper. Unless stated
otherwise we will also assume some housekeeping on the part of
the algorithms that we describe, that knowledge ofπi(ōi) implies
knowledge ofōi.

Let b(s) be a belief state, and letq be a variable representing
a successor state. Letai anda−i be the root actions of policies
〈πi, π−i〉. Standard theory on Dec-POMDPs says that the value of
a joint policy tree,〈πi, π−i〉 at a given belief state is recursively
defined as the expected sum of the rewards of the subpolicy trees.
That is:

V (〈πi, π−i〉, b) =
∑

s,q,oi,o−i

[
b(s)T (q|s, ai, a−i)

O(oi, o−i|q, ai, a−i)V (〈πi(oi), π−i(o−i)〉, q)
]

The above equation says that the value of the joint policy atb0 can
be decomposed into cases where the root actions result in a transi-
tion to stateq, resulting in observationsoi ando−i. The base case
of the recursion occurs at the last step of a finite horizon problem,
where value simply corresponds to the rewardR(s, ai, a−i) of the
last actions taken.

4. SOLUTION METHOD
In our method, plans and communication strategies are deterim-

ined offline and stored for use at runtime. The planner starts by
precomputing optimal joint policies without communication (any
non-communicative planner which generates policy trees can be
used for this step). It also precomputes non-communicative joint
policies for various reachable belief states of horizons1...T (more
details on this are in the next section), and stores these policies and
their value in a cache. It uses these to construct a cache function
for reachable belief distributions on the global state, and at runtime
the cache will be accessed by each agent through a function call:

CACHEi(b(S), h)→ 〈π∗i (b(S)), π∗−i(b(S))〉

wherei is the identity of the local agent accessing the cache,b(S)
is the belief state it wants to query,h is the depth of the policy and
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π∗ represents that the policy is specific to that belief state. It also
optionally stores a mapping of some or all observation sequences
to communications decisions (if these are not stored, they could be
recomputed by the agent at execution time).

〈b(S), ōi〉 → {true, false}

where ōi is a vector composed of the observations agenti has
made on prior steps. At execution time, each agent follows its
policy and its communications policy. Upon communication, it
retrieves the appropriate policy from the cache for the discovered
belief state. We note trivially that if agents’ policies are known to
each other, then a joint observation sequence〈ōi, ō−i〉 also deter-
mines a unique action history, and a uniqueb(S) can be constructed
by starting at the initial belief state and performing a forward com-
putation as in a POMDP.

Before each action, each agent must decide whether to com-
municate. To do this, it uses theValue of Communication. Let
P (q, ō−i|ōi, 〈πi, π−i〉, b0) represent the probability of reaching state
q while the other agents receive observationsō−i after |ōi| steps,
given a starting belief stateb0 with policies〈πi, π−i〉, and local ob-
servations̄oi. (The computation of this probability will be deferred
to the next section). Let〈πi, π−i〉 be the joint policy before com-
munication and〈π∗i (bh), π∗−i(bh)〉 be the joint policy that results
from communication and discovery of joint belief statebh.

DEFINITION 1. The Value of Communication (VoC) is the dif-
ference between the expected value when communicating and the
expected value for remaining silent.

V oC(ōi, 〈πi, π−i〉, b0) =
∑

q

∑
ō−i

Pq,ō−i(V
∗ − C − V )

where
Pq,ō−i = P (q, ō−i|ōi, 〈πi, π−i〉, b0)

V ∗ = V ∗(〈π∗i (bh), π∗−i(bh)〉, q, t)
V = V (〈πi(ōi), π−i(ō−i)〉, q, t)

bh is the belief distribution at timeh given〈oi, o−i〉 andb0.

To understand the above definition, consider the perspective of
agenti. It has synchronized with the other agents and determined
that they synchronized in belief stateb0, it knows that the other
agents have been following policiesπ−i since then, and that it
has observed̄oi since synchronization. In order to contemplate the
value of remaining silent, it must consider the joint probability that
the other agents’ have observedō−i, and that the real current state
is q. If this is the case, it knows that the agents will continue along
subpolicies〈πi(ōi), π−i(ō−i)〉, and the value of staying silent is
simply the value of the joint subpolicy from stateq. If the agents
do communicate, they will combine observations to form a new
joint belief statebh, and they will follow a new joint policy for the
belief state,〈π∗i (bh), π∗j (bh)〉. The new joint belief state does not
affect the fact that the true state isq, and so it computes the value
of the new joint policy forq.

For example, consider the well-known multiagent Tiger problem
[5], after an agent has observed Tiger-Left. In order to evaluate
the value of communicating, the agent must consider each scenario
that occurs after communication, one of which is the (small) chance
that the other agent has also observed Tiger-Left, that they use the
combined observations to open the door on the right, but that the
true state was Tiger-Right, resulting in a large penalty.

4.1 Estimating the Joint History
We now explain howP (q, ō−i|ōi, 〈πi, π−i〉, b0) is computed.

There are three sources of difficulty in this computation: (1) the

Algorithm 1 : Find SSTs for other agents at current step
input : Synchronized Belief State b, Nonlocal PoliciesQ−i, Local

Observation Historȳoi, Local Action Historyāi, steps
output : An array of SSTs, each containing the true state, the

remaining policies of the other agents, and a probability
begin

D, E ← arrays of StateSubTrees, initialized to empty
for i = 1 to |S| do

D[i]← 〈i, Q−i, b(i), false〉
for step = 1 to steps do

E ← empty
for i = 1 to |D| do

ā−i ← the root actions ofD[i].tree
ai ← āi[step]
oi ← ōi[step]
for s′ = 1 to |S| do

for o−i = 1 to |Ω−i| do
SST ← new SST
α← (D[i].p)T (s, ai, a−i, s

′)
O(s, ai, a−i, oi, o−i, s

′)
if nonmyopicthen

LookupSST.comm
if SST.comm == true then

prune SST

SST.s = s′

SST.p = α
SST .Q =D[i].Q.subTrees[o−i]
Add SST to E

Merge SSTs with equivalent subpolicies
Prune SSTs withp < threshold fromE
Normalize eachSST.p in E
D ← E

returnD
end

local agent’s history of actions has affected the transition matrix
of the global state; (2) the other agents have adjusted their actions
based on their observation history, not the true state; and (3) each
local agent only holds its own observations, not necessarily the ob-
servations of the other agents.

DEFINITION 2. Let a State SubTree (SST), be a tuple〈s, Q, p, comm〉,
where s is a state, Q is a finite-horizon policy, p is a probability, and
comm is a boolean.

Algorithm 1 shows howP (ō−i, q|ōi, 〈πi, π−i〉, b0) is estimated.
The algorithm takes as input initial belief stateb0, the action and
observation histories of the current agenti, and the known policies
of the other agents atb0. It outputs a set of SSTs at the current time
step, each SST assigns a probability to one world state, composed
of the actual state and the current policy of the other agents. SSTs
are computed in a forward fashion. The set of SSTs is initialized
to contain one element for each nonzero entry inb0, with its p be-
ing its probability inb0, and itsQ being the initial policies of the
other agents. At each time step, the current set of SSTs are used
to generate a new set. Each SST in the new set represents a joint
action taken by the other agents, a joint observation received, and a
global state transition from an old SST, resulting in the new SST’s
state and subpolicy. The forward probabilityα is the probability of
the old SST times the probability that the other agents made this
transition, given the local agent’s knowledge of its own action and
observation on that step.

We also take the opportunity to merge SSTs with the same sub-
policy. That is, if two observation histories of the other agent lead
to the same subpolicy, there is no need to distinguish the two cases.
Formally, if there are two SSTs,
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〈s, Q, p1, comm〉
and

〈s, Q, p2, comm〉
, they can be merged into a single SST

〈s, Q, p1 + p2, comm〉

This can be particularly useful in practice, if the non-communicative
plans were built by an algorithm such as IMBDP [11], which builds
plans where only a limited set of subpolicies are generated, and dif-
ferent observations lead to the same subpolicy.

There are other augmentations that can be made to Algorithm 1
which are not explored in this work. (1) The cache can be smaller
and only contain likely decision points. At run-time, when a non-
cached state is encountered, the agent can either initiate an online
computation, or it can use the joint-policy from the least (Man-
hattan) distant cached belief-state. (2) SSTs can be generated by
sampling from agent histories, rather than direct computation.

THEOREM 1. The problem of estimatingM.p has an equiva-
lent Hidden Markov Model (HMM) representation. Furthermore
the algorithm is correct:

Suppose agenti calls Algorithm 1 with threshold0 at timet after
observingōi, and the algorithm returns a setZ of SSTs. Then
∀M ∈ Z, if M = 〈s, Q, p, comm〉, thenp is the probability that
the global state iss and the other agents’ policies on this step are
Q at timet.

PROOF. We can convert the problem of estimatingM.p into an
HMM, and then solve using the forward-backward algorithm [10].
Each state of the HMM corresponds to a global state and an obser-
vation history of the other agents (we use the fact that each joint
observation history maps to a specific joint subpolicy such as Q).
State transition probabilities of the HMM correspond to state tran-
sition probabilities of the Dec-POMDP, given the local agent’s ac-
tion histories, times the probability of making the last observation.
The transition probability is zero if the new observation history can
not follow from the old. That is, a state with an observation his-
tory w1w2 can not transition to a state with an observation history
w2w2w3, but it can transition to a state with observation history
w1w2w3.

Given this transition model, it is clear through induction (with
the base case consisting merely ofS when Algorithm 1 is initial-
ized) that the forward computation used to generate the leaves in
the last step of Algorithm 1 are the same as the steps used to gen-
erate the corresponding states in the HMM.

We note that approaches similar to Algorithm 1 appear through-
out the literature. For instance, [6] states that "The key insight
in the multiagent case is that if the policies of all other agents
are fixed, then the free agent faces a complex but normal single-
agent POMDP”. However, we are unaware of a specific equiva-
lency proof to an HMM, and we are hopeful that such an equiva-
lency can be used in future work to leverage the rich HMM litera-
ture in Decentralized POMDPs.

PROPOSITION 1. Assume the agents synchronize at belief state
b0 and form policies〈πi, π−i〉, and the cost of communication is
C. Assume a myopic perspective (the local agent may communi-
cate only once, and the other agent can not communicate at all).
The error introduced when agenti makes a single communication
decision after observation sequenceōi is at most:

P (ōi|〈πi, π−i〉, b0) · C

PROOF. Assuming Theorem 1, if an agent computes its expec-
tation of communication and decides not to communicate, it can
never be wrong in the expected case. However, if it decides to
communicate, it may be making an error. SinceV ∗ ≥ V , that is,
the policy after communication is always at least as good as the
one before, the error on this case bounded byC, and weighing by
the probability of encountering the case in the first place, we have
P (ōi|〈πi, π−i〉, b0) ·C. Note that we are only considering the sin-
gle communication decision; not possibilities that involve multiple
future communication actions. This analysis is considerably more
complex and will be handled in future work.

The communication may not be necessary, as there are cases where
(1) the other agent may initiate communication in all of the neces-
sary states, or (2) communication can be deferred to a future step
when more information is known.

Note that the number of SSTs can grow exponentially in each
step, in the worst case. In practice, however, the number only grows
with reachable belief states, and often on real-world problems only
a small number of observations will be possible on each step. In
order to keep the algorithm tractable, the algorithm can optionally
prune SSTs with low probabilities at each step.

4.2 Non-myopic Reasoning
Algorithm 1 does not take into account the communication pol-

icy of the other agents, nor does it take into account the fact that
communication need not be immediate, it may be deferred to future
steps. In this section, we discuss how we improve the algorithm
past thismyopic assumption. The algorithm can be improved in
three ways, first by using the fact that other agents did not commu-
nicate since the lastsync, second by using the fact that other agents
can communicate in the present, and finally by using the fact that
communication can be deferred to the future.

4.3 Other agents in the past
We can use the knowledge that the other agents have not com-

municated since the last synchronized state. To do this, we use
thecommfield in the SST structure. At planning time, each agent
computes VoC given its possible observation sequences and syn-
chronized belief states. If VoC is positive, it setscommto true. The
commvalue is stored for this history.

As Algorithm 1 is executed, each SST represents one possible
observation history of this agent, and its children represent a con-
tinuation of that history. If thecommfield is set to true for a corre-
sponding observation history, this means that the agents would have
communicated at this point. But any agent executing Algorithm 1
knows that didn’t happen, since the algorithm initialized at the last
communication point. Therefore it is known that the observation
histories represented by such an SST never occurred, and the SST
can be pruned.

(As an aside, the algorithm only generates accurate probabilities
for SSTs in the current step. SST probabilities from previous steps
are not necessarily reflect the probabilities of those histories. This
is due to the nature of the forward-backward algorithm. In the last
step, only a forward computation is necessary, such as that provided
in the algorithm. For past steps, however, backwards information
from subsequent steps would be necessasry. Let this backwards
probability beβ, and define it to be the probability that an SST’s
policy Q was executed from its states given future observations.
Findingβ can be computationally complex, as each leaf ofQ must
be evaluated. Therefore in implementation we limit the analysis of
Q to the nexth steps, and only computingβh. For instance define
β1 for an SST with states′ and whose policyQ corresponds to an
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observation historȳo−i to be:

β1 ←
∑
s′′

∑
ō′′∈O′′

T (s′′|a, s′)O(ō′′|a, s′′)

wherea is a joint action composed of the known local action for
that step as well as the root action for each other agents’ policies in
the SST, andO′′ is the set of joint observations which must include
the known observation from the local agent’s history.)

4.4 Nash equlibrium in the present
Having modeled the communication strategy of the other agent

on past steps, we turn to modeling the present step. To do this, we
find a Nash equilibrium of communication strategies by construct-
ing a matrix. For the two agent case, each row of the matrix corre-
sponds to the SSTs for one agent, and each column corresponds to
the SSTs for the other agent (for the multiagent case, each dimen-
sion represents another agent). Entries in the matrix correspond to
the VoC given the history represented by the corresponding joint
history, multiplied by the probability of that joint history. Each
agent has the ability to communicate or not to communicate given
a history. Communicating after a history corresponds to turning
a row (or column, for the other agent) ”on” or ”off”. The value
of a joint communication strategy is the sum of the ”on” values in
the matrix. The myopic strategy discussed in above sections cor-
responds to turning each row or column on if its entries sum to a
positive number. However, this illustrates the flaw of myopia, it
does not maximize the value of the whole matrix, only its indi-
vidual rows and columns. Since the row agent and column agent
are not coordinating, they may double count entries. We improve
on this by finding the Nash equilibrium. The approach is similar
to the one described in [1], except (1) The rows and columns and
probabilities correspond to observation histories, not states. (2) To
reduce time of computation, agents can only alterK rows, where
K is a parameter specified by the users. The remaining rows are
toggled through myopic computation.

4.5 Value of deferring communication
The value of deferring communication to the future can be com-

puted. For a given SST, the value of delay is the reward achieved by
not communicating on the current step, added to the expected re-
ward after communicating on the next step. The immediate reward
is pR(s,a) and it is added to:

p
∑
s′,o′

T (s′|a, s)O(o′|a, s′)V(〈π∗i (bh+1), π
∗
−i(bh+1)〉, s′)

wherep is the probability associated with the SST,a is the joint
action specified by continuing the current policy of the local agent
and the SST,s is the state in the SST,o′ the next joint observa-
tion, andbh+1 is the belief state that would result at the next step.
V is used to represent the fact that VoC must be retrieved for the
local agent’s observation ino′, and if it is positive thenV = V ∗

andbh+1 is the belief state that results from communication while
if V is negative,V = V and the joint policy merely continues.
To compute the value of delaying communication, the computation
above is summed for all SSTs returned by algorithm 1. If the sum is
greater than or equal to the value of communicating on the current
step, the agent does not communicate. A new value of delay will
be computed after the next action is executed. Because of this, it is
possible that the decision to postpone communication will cascade
across several steps.

5. EXPERIMENTS

horizon Cost No-Comm Periodic VoC-NM
3 0 5.19 11.3 12.5
3 5 5.19 5.46 7.99
3 10 5.19 5.19 6.03
5 0 4.92 26.2 26.2
5 5 4.92 6.3 9.14
5 10 4.92 4.92 5.62
8 0 9.00 41.8 41.8
8 5 9.00 12.3 24.3
8 10 9.00 9.00 10.6
10 0 9.4 53.2 53.2
10 5 9.4 12.87 22.7
10 10 9.4 9.4 11.9

Table 1: Comparison of various communications strategies for
the Tiger problem.

horizon Cost No-Comm Periodic VoC-NM
5 0 59.6 78.7 (4.0) 78.7 (4.0)
5 15 59.6 64.3 (1.0) 64.9 (.89)
5 30 59.6 60.3 (1.0) 64.1 (.80)

Table 2: Comparison of various communications strategies for
the BoxPushing-5 problem. Parentheses show the mean num-
ber of communications for each simulation.

We considered our algorithm, labeledVoC-NM(Value of Com-
munication - Non-Myopic), as compared to the algorithms ofNo
Communication, Full Communication(communicating on every
step), as well asPeriodic Communicationon various domains from
the literature. For this latter strategy, we ran an algorithm which
communicated everyK steps, and we used results from the best
value of K from 1 to the horizon of the problem. Thus,Peri-
odic will provably outperformNo CommunicationandFull Com-
munication, so we do not separately list results for full communi-
cation. Our algorithm was implemented as follows: we precom-
puted values of communication for each agent for reachable histo-
ries at planning time by running a large number of simulations, and
then stored this in a cache. We used a pruning threshold of0, as
we did not prune SSTs. We used the IMBDP planner [11] as the
non-communicative submodule for this step. Then we ran a new
100,000 simulations of the non-myopic algorithm, referencing this
cache on each simulation. Since MBDP-based planners only store
a handful of subpolicies for each horizon step (using the same sub-
policies for various branches of the larger policy tree), this choice
of planners kept the size of the cache smaller.

The Multiagent Tiger problem [5] was simulated with horizon
10. Results show that theV oC−NM planner was able to success-
fully communicate for both lower and higher costs of communica-
tion. Not shown in the figure, there was also a smooth decline in
the number of communications attempted by theVoC-NMplanner
as cost of communication increased. There was an average of3.5
synchronizations for each simulated run when the communication
cost wasC = 5, atC = 10 there was an average of.5 communi-
cations, and atC = 15 communication was rare, the average was
.04 per simulation. Running time was9 seconds for the precompu-
tation, and 2 seconds for the100, 000 simulated runs after that. We
also ran a myopic variant of theVoCplanner, it did not include the
algorithm enhancements of Section 4.2. The result across all tests
was an approximately10% decrease in score atC equal to5 or 10.

We also ran the larger BoxPushing problem [11] for horizon5, a
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problem in which the value of the generated centralized and decen-
tralized plans only differ by20. Still, results similarly show that
a VoC-NMmethodology outperformed the other strategies because
it communicates less, resulting in a gradual decrease in value as
communication cost gets higher. The time taken for BoxPushing-5
was4300 seconds at the planning stage, and then.38 seconds to
run each simulation at execution time.

Across all experiments, a simple communication policy such as
Periodiccan be adequate when communication cost is low, or when
communication points can easily be picked from the domain. As
the cost of communication cost gets higher, and agents are moti-
vated to avoid communication if possible, the richerVoC-NMap-
proach is required. Even assuming, as we did, that the best pe-
riod can be determined, a periodic communicator is forced to ei-
ther choose to not communicate at all, or else to overcommunicate.
This was shown as theVoC-NMapproach reduced the amount of
communication by10% on BoxPushing when communication cost
was15, and by20% when cost was30.

6. CONCLUSION
We have presented a general approach for reasoning about costly

communication within the Dec-POMDP framework. Computing
the value of communication is challenging because each agent re-
ceives different partial observations and must reason about the pos-
sible synchronized state of the system after communication. We
have shown that computing the value of communication can be
used effectively to determine the utility of communicating versus
staying silent. The approach allows each agent to make an exact es-
timate of the state of the other agents. We implemented and tested
this capability using several standard benchmark problems. The re-
sults show that our approach uses communication effectively and
outperforms a naive algorithm based on periodic communication.
One area not explored in this paper is the tradeoff between build-
ing the cache of new policies at planning time, versus building it
at runtime. Our implementation used for experiments generated
the full cache at planning time, and always accounted for all pos-
sible observation histories. In future work, it would be interesting
to trade accuracy for speed. This can be done by pruning more im-
probable belief state histories for the other agents as the algorithm
progresses. Furthermore, it may be possible to drop the require-
ment that the exact value of the post-communication policies be
used. Instead, perhaps a quicker heuristic could be used, such as
the value of the centralized policy. These techniques create prac-
tical, yet disciplined ways to manage communication in decentral-
ized multiagent systems.
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ABSTRACT
Motivated by multi-agent systems applications, we study a
task allocation problem in a competitive environment with
multiple self-interested autonomous agents. Tasks dynami-
cally arrive to a contractor that oversees the process of task
allocation. Tasks are auctioned to contractees, who submit
prices they require to accept tasks. The agent with the low-
est bid wins but is rewarded with the second-lowest price.
Each agent, based on his own state, will decide whether to
participate in the auction or not, and will decide the bidding
price if he chooses to participate. If a busy agent wins a new
task, he has to decommit from his current task and pay a
decommitment fee.

We formulate the problem and derive structural properties
of equilibrium strategies. We also provide heuristics that
are practical for multiagent system designers. Issues related
to system design are discussed in the context of numerical
simulations. The contribution is that (a) we provide formal
analysis of contractees’ optimal strategies in a given dynamic
task allocation system with commitment flexibility; (b) we
study the value of commitment flexibility in the presence of
different system parameters.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; I.2.8 [Problem Solving, Control Methods,
and Search]: Plan execution, formation, and generation

General Terms
Management, Economics, Experimentation

Keywords
Commitment Flexibility, Task Allocation, Multirobot Sys-
tems, Second-Price Auction

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

1. INTRODUCTION
Task allocation, especially in competitive environments,

is one of the most important issues in the field of multi-
agent systems. In contrast to a cooperative environment
in which agents work toward a common objective, a com-
petitive environment is characterized by agents who seek
to maximize their individual social utilities. In a dynamic
task-allocation problem, agents not only compete directly
with each other, but also compete indirectly with agents
over time through the opportunity cost of potentially losing
more lucrative tasks to others. A successful mechanism de-
sign, therefore, should induce the agents to contribute to the
achievement of their common goals while maximizing their
individual utilities.

Our work is motivated by the fast-developing multiagent
resource/task allocation applications, including large-scale
disaster relief (e.g., [10]), automated resource allocation of
multiple distributed UAVs (e.g., [15]), and task allocation
among multirobot coordination (e.g., [5]). These problems
share the following characteristics: 1) significantly dynamic
environments full of uncertainties, which makes it difficult
to adopt centralized, static control schemes because tasks
with different priorities/values/durations might arrive un-
predictably. In a disaster relief system, for instance, agents
face uncertain, and time stressed environments that require
timely, flexible response. 2) The state of the agent network
evolves over time such that it is possible that not the same
set of agents are active in the agent society at each time.
These features make full commitment contracts (i.e., a con-
tract is binding once it is made), as assumed in most of the
existing task allocation literature, less lucrative in terms of
both system performance and agent utilities.

Prior research (e.g., [12], [2], [13]) has shown that it is
indeed beneficial to the system to provide agents with a cer-
tain degree of commitment flexibility, i.e., an agent is allowed
to walk away from its contract by paying a decommitment
penalty. Such flexibility is especially favorable in cases with
multiple job types, wherein agents’ incentive to drop low-
value and/or time-consuming tasks can enhance the system’s
capability of handling tasks. Nevertheless, aligning individ-
ual utilities and system-wide objectives cannot happen by
magic. The agents need to be well coordinated by setting
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appropriate decommitment penalties: too great decommit-
ment penalties will force agents to become timid and con-
tinue on less lucrative jobs; too small decommitment penal-
ties would allow agents to decommit from their jobs too
frequently and sacrifice system-wide performance.

Our study is based on the contract net (CNET) protocol
([16]). A CNET consists of four parts: (a) Problem recogni-
tion, (b) task announcement, (c) bidding, and (d) awarding
the contract. While the formats of (a), (b), and (d) are usu-
ally given in a multi-agent system, an efficient and effective
auction mechanism is crucial in (c). A second-price-sealed-
bid auction scheme is widely adopted in various systems due
to its ability to induce bidders to bid their true valuations.
In a second-price auction, the bidder who places the highest
bid is granted the contract, but will pay the second-highest
bid. We adopt an “inverse” second-price auction, i.e., the
agent who asks for the lowest reward is the winner and is
paid the second lowest reward in the auction.

Our goal is to design an auction-based mechanism that
effectively takes advantage of commitment flexibility so as
to enhance the system’s task handling capability. The first
step, however, is to examine individual agents’ equilibrium
strategies given various environment settings, e.g., decom-
mitment penalty, arrival pattern of incoming tasks, and re-
ward mechanism. The paper is organized as follows: In Sec-
tion 2, we present relevant research. Then in Sections 3 and
4, we describe the problem, formulate each agent’s problem
and validate structural properties of equilibrium strategies.
In Section 5, we apply heuristics to compare system perfor-
mance under different environmental variables and mecha-
nism settings. Issues related to system design are discussed
in light of the numerical simulations. Finally, we conclude
and discuss future research possibilities.

2. RELEVANT LITERATURE
Several research papers in the area of task allocation are

relevant to our research. Sandholm and Lesser [12] study a
leveled-commitment game between a contractor and a con-
tractee, each of which is reluctant to walk away from the
contract first. The study focuses on contract design and
does not consider dynamic arrivals of incoming tasks. Ab-
dallah and Lesser [1] build a model that integrates differ-
ent aspects of mediator decision-making into a Semi-MDP
model. The model is essentially a centralized model wherein
the mediator rather than the agents has the option of decom-
mitting from an unfinished task in pursuit of a more lucra-
tive one. Sarne et al. [14] study the problem where multiple
self-interested, autonomous agents compete for dynamically
arriving tasks through a Vickrey-type auction mechanism.
Each agent exits from the system after he gets a task assign-
ment. They introduce the model and formulate equations
by which the agents determine their equilibrium strategies.
An efficient algorithm is proposed to calculate the equilib-
ria. However, their model does not allow for the possibility
of decommitment because it assumes one-shot task assign-
ment for each agent. Brandt et al. [4] explore an automated
task allocation mechanism combining auctioning protocols
and contracts with commitment flexibility. They do not
provide a mathematically rigorous model, but instead use
simulation experiments to show the benefits of commitment
flexibility. In addition, they do not take the equilibrium be-
havior of each agent into consideration. Finally, their model
does not capture the various trade-offs the agents face in a

dynamic task allocation environment and thus provides only
limited insights.

Our research enriches the literature in that it brings to-
gether dynamic task allocation and commitment flexibility,
with mathematical formulations, structural results of equi-
librium behaviors, and computational analysis. This has
not been done in the existing literature. This study helps
system designers achieve a better understanding of the way
commitment flexibility helps enhance a decentralized sys-
tem’s performance through auction mechanisms among self-
interested, autonomous agents.

3. PROBLEM DESCRIPTION

3.1 Assumptions

• There is one contractor and a number of homogeneous
contractees denoted by n = 1, 2, · · · , N . N can be
a random number with known probabilistic distribu-
tion. The contractees are homogeneous in the sense
that they have the same capabilities in performing the
incoming tasks.

• Each contractee’s activity is confidential to other agents.
This implies N ≥ 3.

• We assume an infinite planning horizon with intervals
of equal length denoted by t = 1, 2, 3, . . . .

• Each task has a constant maximum reward M .

• The duration of each task, denoted by L, follows a dis-
crete probabilistic distribution with minimum length
Lmin and maximum length Lmax.

• There is an entry fee for participating in an auction,
denoted by C.

• The probabilistic distribution of the duration of incom-
ing tasks, the costs and rewards, are public to all the
agents. However, each agent’s task allocation informa-
tion is confidential to other agents.

• A contractee who wins a task will receive his due re-
ward in full immediately1.

• The cost for each agent to perform a task is c per
period, and will be incurred period by period.

• A contractee’s total cost of each incoming task does
not exceed the contractor’s budget, i.e.,

c · Lmax ≤ M.

3.2 Sequence of Events
Each round of auction follows the subsequent procedure:

• A task arrives at the beginning of each period.

• The contractor observes the incoming task and makes
an announcement about the task duration to all the
contractees.

1We make this assumption primarily for conciseness of the
subsequent POMDP formulation. This assumption is also
made in [14]. Assuming this would not necessarily encourage
contractees to walk away, since the decommitment penalty
might be larger than total reward of a task. We will extend
this assumption in Section 4.3
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• Each contractee decides whether to participate in the
subsequent auction or not. A bidding contractee sub-
mits his own bid in a sealed envelope to the contractor.

An agent who has an incomplete task on hand is al-
lowed to participate in the auction. However, if he
wins an auction, he has to decommit from his current
task and pay a decommitment penalty, denoted by d.

• The contractor compares contractees’s bids and an-
nounces the outcome of the auction. The winner is
the contractee whose bid is lowest; he is awarded with
a reward given by the second-lowest bid. Both the
submissions of bids and announcements of results are
conducted in a confidential manner such that each con-
tractee is only aware of his own bids/results.

4. MODELING AND STRUCTURAL ANAL-
YSIS

Our goal is to design a decentralized system that effec-
tively makes use of agents’ commitment flexibility to en-
hance the overall system’s ability to complete as many tasks
as possible. As the initial step, we analyze each contractee’s
behavior in the face of the environment we described in the
preceding section.

4.1 Formulation
A contractee’s objective is to decide whether to participate

in the auction or not, and, if yes, how much to bid, so as
to maximize his total discounted reward over the infinite
planning horizon. We formulate contractee i’s problem as
a POMDP (Partially observed Markov decision process, see
[7]) characterized by a tuple < S,Ai, T ,Ri,Ωi ,Oi >, the
elements of which denote state space, action space, state-
transition functions, the reward functions, observation space
and observation functions, respectively. Here S and T are
defined across all the contractees.

1) S = ZN
+ × Z+ contains all the contractees’ state (since

one contractee’s outcome is affected by other contractees’
state) and the duration of the incoming task. Contractee i’s
state at the beginning of period t is defined as xit such that
xit = 1, 2, . . . denotes time-to-go until the completion of the
currently active job and xit = 0 means that the contractee
is idle. The duration of the task arriving to the system at
time t is denoted by yt.

2) Ai = {0, 1} × R involves a two-fold decision: whether
to bid or not, and if yes, how much to offer.

3) T : S × A → Π (S) defines state-transition function.
Define hit = 0 or 1 as a contractee i’s bidding result at time
t. We see that

Pr[xi,t+1|xit 6= 0] =





1 if xi,t+1 = xit − 1, hit = 0

0 if xi,t+1 6= xit − 1, hit = 0

1 if xi,t+1 = yt − 1, hit = 1

0 if xi,t+1 6= yt − 1, hit = 1

and

Pr[xi,t+1|xit = 0] =





1 if xi,t+1 = 0, hit = 0

0 if xi,t+1 6= 0, hit = 0

1 if xi,t+1 = yt − 1, hit = 1

0 if xi,t+1 6= yt − 1, hit = 1

4) Ri = R specifies contractee i’s reward given an action.
Our definition follows that if contractee i places a bid, then

his one-stage reward would be the second lowest bid minus
decommitment penalty (if he has an unfinished task) if his
wins, and 0 if he does not.

5) Ωi = {0 , 1}∞ contains hit, t = 0, 1, . . . , which is the
only signal that contractee i uses to reason about other con-
tractees’ state.

6) Oi : S×A → Π (Ωi) is the observation function ω(a, s′)
specifing the transition probabilities of making each possi-
ble observation o ∈ Ωi given that contractee’s bidding deci-
sion and state in the next period. Solving the above-defined
POMDP is by no means an easy task due to the existence
of a great number of agents and requirement of large state
space. However, given that the initial system state is known,
our POMDP can be converted to the following MDP formu-
lation. We study the contractee’s decision at the beginning
of period t. V i

t (xit, yt) is defined as the maximum total dis-
counted reward discounted by δ from time t until infinity,
given xit and yt.

We see that the transition probability of hit is exactly
contractee i’s probability of winning if he bids at time t.
Instead of using hit as part of contractee i’s state, we include
it to estimate the probabilities of winning and thus expected
total rewards in the future.

A contractee’s bidding strategy sit = (∆it(xit, yt), bit(xit, yt))
for an auction consists of two parts: ∆it(xit, yt) = 1 indi-
cates contractee i will participate in the auction, and ∆it(xit, yt) =
0 otherwise. bit is contractee i’s bidding price if he chooses
to participate in the auction.

Let s−it denote the symmetric bidding strategy of all the
contractees other than contractee i at period t. Given s−it,
and assuming the system state follows its stationary distri-
bution, contractee i would be able to determine the prob-
abilistic distribution of the number of participants in the
auction, and his probability of winning for a given bid. His
estimated expected maximum total discounted reward func-
tion can be written as

V i
t (xit, yt; s−it) (4.1)

=





−c + maxbit

{
δẼV i

t+1(xit − 1, yt+1; s−it) ,

−C + ω(bit, s−it)
[
Ẽ[zt|bit, s−it]− d+

δẼV i
t+1(yt − 1, yt+1; s−i,t+1)

]

+[1− ω(bit, s−it)]δẼV i
t+1(xit − 1, yt+1; s−i,t+1)

}
,

if xit = 1, 2, 3, . . .

maxbit

{
δẼV i

t+1(0, yt+1; s−it) ,

−C + ω(bit, s−it)
[
−c + Ẽ[zt|bit, s−it]

+δẼV i
t+1(yt − 1, yt+1; s−i,t+1)

]

+ [1− ω(bit, s−it)]δẼV i
t+1(0, yt+1; s−i,t+1)

}
,

if xit = 0

where ω(bit, s−it) is the estimated probability of winning
the auction given s−it and bit, when xn ≥ 1 and xn = 0,
respectively. Ẽ[zt|bit, s−it] denotes the estimated expected
second-lowest bid in the tth round auction given bit and s−it.

Since we are dealing with a discounted infinite-horizon
problem, each contractee’s decision is not time sensitive. Let
L be the random variable denoting the length of an incoming
task, the above equation could be rewritten as
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V i(xi, y; s−i) (4.2)

=





−c + maxbi

{
δẼV i(xi − 1, L; s−i) ,

−C + ω(bi, s−i)
[
Ẽ[z|bi, s−i]− d

+δẼV i(y − 1, L; s−i)
]

+[1− ω(bi, s−i)]δẼV i(xi − 1, L; s−i)
}

,

if xi = 1, 2, 3, . . .

maxbi

{
δẼV i(0, L; s−i) ,

−C + ω(bi, s−i)
[
−c + Ẽ[z|bi, s−i]+

δẼV i(y − 1, L; s−i)
]

+ [1− ω(bi, s−i)]δẼV i(0, L; s−i)
}

,

if xi = 0

We have the following propositions that help determine
the form of optimal equilibrium strategies:

Proposition 1. When x ≥ 1, V i(x, y; s−i) is decreasing
in x.

Proof. Intuitively, it is easy to see that V (x, y; s−i) is
decreasing in x since the agent is always better off with a
shorter task duration. We can show this by induction. To
begin with, we look at the finite-horizon problem defined in
(4.2). Assume that there are N periods in total. Define the
terminal equation as

V i
N+1(xi,N+1, yN+1; s−i,N+1) = −cxi,N+1.

The above equation suggests that in the final periods, each
contractee, if busy, will continue to work unless the task is
finished.

Clearly V i
N+1(xi,N+1, yN+1; s−i,N+1) decreases in xi,N+1.

Now suppose that V i
k (xi,k, yk; s−i,k) decreases in xi,k, we see

V i
k−1(xi,k−1, yk−1; s−i,k−1)

= −c + max
bi,k−1

{
δẼV i

k (xi
k−1 − 1, yk; s−i,k−1) ,

− C + ω(bi,k−1, s−i,k−1) · [Ẽ[z|bi,k−1, s−i,k−1]− d

+ δẼV i
k (yk−1 − 1, yk; s−i,k)]

+[1− ω(bi,k−1|s−i,k−1)]δẼV i
k (xi,k−1 − 1, yk; s−i,k)

}

is decreasing xi,k−1 because, for any given yk−1, s−i,k−1, bi,k−1,
both of the following two functions are increasing in xi,k−1:

f1(xi,k−1; yk−1, s−i,k−1, bi, k − 1)

= δẼV i
k (xi

k−1 − 1, yk; s−i,k−1)

f2(xi,k−1; yk−1, s−i,k−1, bi, k − 1)

= −C + ω(bi,k−1, s−i,k−1) · {Ẽ[z|bi,k−1, s−i,k−1]

− d + δẼV i
k (yk−1 − 1, yk; s−i,k)}

+ [1− ω(bi,k−1|s−i,k−1)]δẼV i
k (xi,k−1 − 1, yk; s−i,k)

We have shown that V i
k (xi,k, yk; s−i,k) decreases in xi,k, k =

1, . . . , N +1 in the above finite-horizon MDP. Now let N →
∞, we see that V i(x, y; s−i) is decreasing in x.

Proposition 2. V i(x, y; s−i) is decreasing in y.

Proof. An intuitive explanation to this proposition is
that a larger task duration increases a contractee’s cost, i.e.,
total costs throughout the duration of the task, and possible
decommitment fees incurred in order to switch to a shorter
task. Strict proof can be done by induction and is similar
to that of Proposition 1.

4.2 Structural Forms of Equilibrium Strate-
gies

In this section, we establish the contractees’ optimal bid-
ding strategies (to bid or not to bid, and the optimal bidding
price). We also apply our analytical framework to study the
special case in which commitment flexibility is not allowed.

Before we derive our optimal bidding strategy, we make
the assumption that a contractee with a shorter remaining
time to finish the current task would like to place a higher
bid. This makes sense because the contractee, when fac-
ing a shorter xi, has less incentive to switch to other tasks.
Similarly, we assume that a contractee would like to place
a higher bid for a task with longer duration. This makes
sense since tasks with longer duration have higher opportu-
nity cost for the contractees.

To find out a symmetric bidding strategy, each contractee
assumes that the policy function of other contractees is sta-
tionary, and makes its decisions conditioned on the station-
ary distributions formed when all the contractees choose
symmetric strategies. This assumption is usually referred
to as “fixed-strategy assumption” and made primarily for
simplicity of modeling. Athey and Segal [3] give a review
of dynamic mechanism design literature, and find out it is a
common practice to assume that information is independent
across periods and each agent has little access to informa-
tion over time about other agent’s type. Hu and Wellman
[6] show that it is reasonable to make such an assumption
when studying contractee’s learning behaviors in that it is
easy to model and implement, and, in some cases, such a
model outperforms more sophisticated models.

Theorem 1. (Optimal Bidding Strategy)

(i) A participant (denoted by i) with time-to-go x in the
auction for a task of duration y, given the equilibrium
strategies of other contractees, will place a bid in the
amount b∗(x, y; s−i) such that

b∗i (xi, y; s−i)

=





δẼ
[
V i(xi − 1, L)− V i(y − 1, L)

]
+ d

+ C
ω(b∗i (xi,y;s−i),s−i)

, if xi = 1, 2, . . .

δẼ
[
V i(0, L)− V i(y − 1, L)

]

+ C
ω(b∗i (0,y;s−i),s−i)

+ c, if xi = 0

(4.3)

(ii) If xi ≥ 1, contractee i’s willingness to bid is increasing
in xi.

(iii) A contractee’s willingness to bid is decreasing in y.

(iv) A busy contractee will choose to participate in the auc-
tion if and if only y ≤ `(x), where `(x) is increasing in
x; An idle contractee will choose to participate in the
auction if and only if y ≤ `0, where `0 is a constant.

Proof. (i) Our model can be viewed as a correlated
private-value second-price auction in which each con-
tractee’s remaining duration is a private signal. Fac-
ing the same set of environmental variables (e.g., y, C,
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c, d), the only factor that separates one contractee’s
decision from another contractee’s is only their own
remaining duration. Applying existing auction theo-
retic results (see, for example, [8] and [9]), contractee
i’s optimal bidding price makes him indifferent as to
whether to participate in the auction or not. In addi-
tion, contractee i bids his own true valuation, i.e., we
might replace E[second|bi, s−i] with b∗i .

When xi = 1, 2, 3 . . . The optimal bidding price b∗i
must satisfy:

δẼV i(xi − 1, L; s−i)

= −C + ω(b∗i , s−i)
[
b∗i − d + δẼV i(y − 1, L; s−i)

]

+ [1− ω(b∗i , s−i)]δẼV i(xi − 1, y; s−i) (4.4)

which gives

b∗i (xi, y; s−i) = δẼ
[
V i(xi − 1, L)− V i(y − 1, L)

]
+ d

+
C

ω(b∗i (xi, y; s−i), s−i)
. (4.5)

Similarly, we see that

b∗i (0, y; s−i) = δẼ
[
V i(0, L)− V i(y − 1, L)

]

+
C

ω(b∗i (0, y; s−i), s−i)
+ c.

(ii) We have previously assumed that b∗i (xi, y; s−i) decreases
in xi. What we need to do now is to verify that this
actually holds.

Examine the right-hand side of (4.5), given s−i when
xi increases, it follows from Proposition 1 that

Ẽ
[
V i(xi − 1, L)− V i(y − 1, L)

]

decreases. Since b∗i (xi, y; s−i) decreases in xi, ω(b∗i , s−i)
will increase (a larger bid implies a lower chance of win-
ning), which yields a decreasing C

ω(b∗i (xi,y;s−i),s−i)
. We

then see that both the right-hand and left-hand sides
of (4.5) are decreasing in xi.

We have assumed that the highest reward that a con-
tractee could receive from accomplishing a task is fixed,
which means a large b∗i (xi, y; s−i) would put a con-
tractee in a disadvantaged position. Hence contractee
i’s willingness to bid is decreasing in xi.

(iii) Similar to the proof of (ii).

(iv) Combining (ii) and (iii), we see that contractee i’s will-
ingness to bid is increasing in xi but decreasing in yi,
which is exactly what we need to prove. Since all the
contractees are homogeneous, all the contractees must
follow the same strategies, which completes the proof.

(i)–(iv) give the stationary, symmetric optimal equilib-
rium strategies for the repeated second-price auction game.

A Special Case: No Commitment Flexibility

We have provided analysis for the general case. Now we
study the special case in which commitment flexibility is
disabled. We will see that its MDP formulation as well as
optimal bidding strategies are in simplified forms.

Theorem 2. If decommitment is forbidden, at the begin-
ning of period t, an idle agent’s strategy is to not to bid
unless y ≤ ˆ̀, where ˆ̀ is a constant.

Proof. When full commitment is assumed, each con-
tractee’s problem can be formulated as the following MDP
(we inherit most of the notation in (4.1) except that we have
to define a state variable for each contractee, since a con-
tractee must be idle to be eligible for participating in the
auction):

V i(y; s−i) = max
bi

{
δẼV i(L; s−i),−C + ω(bi, s−i)·

{
Ẽ[z|si, b−i]− yc + δyẼV i(L; s−i)

}

+[1− ω(bi, s−i)]δẼV i(L; s−i)
}

where ω(bi, s−i) denotes the contractee’s probability of win-
ning the auction given bi, s−i.

We can then use similar argument as in the proof of Part
(i) of Theorem 1 to show that it is optimal for the contractee
not to bid unless y is below a certain threshold.

Theorems 1 and 2 establish the basis for our simulation-
based study in the following section. Theorem 2 implies
that, when only full commitments are assumed, the equilib-
rium strategy for each idle agent is to bid when the duration
of the incoming task is equal to or lower than a fixed thresh-
old, and reject all the tasks with durations longer than the
threshold. In the contrast, Theorem 1 says that in an en-
vironment where commitment flexibility is enabled, agents
have different thresholds of task durations as to whether to
participate in the auction or not, depending on each agent’s
state. Such commitment flexibility can make the system
more “friendly” to tasks with longer durations and thus can
accommodate more tasks in a given period.

4.3 Extension: Different Reward Mechanisms
The model we presented above does not consider compar-

ison of different reward mechanisms. Consider, for instance,
that a contractee is not given his full reward immediately af-
ter he wins an auction. Instead, he has to finish his task to
get the corresponding reward. Another possible mechanism
is that the contractee might receive partial rewards period
by period according to his progress.

Our POMDP model can be revised to accommodate such
differences by adding a new variable ri denoting the remain-
ing reward from the currently active task (if any) to a con-
tractee’s state. Threshold policy in terms of xi, y and ri can
be shown in similar fashion and is omitted here.

5. NUMERICAL STUDY

5.1 Experiment Design
We have previously established the structure of optimal

equilibrium strategies. To have a concrete understanding of
the benefits of commitment flexibility under different set-
tings, we design a set of comparative experiments.

We resort to heuristics in our numeric study, recognizing
that it is difficult to calculate the exact optimal solutions
implied by our MDP model due to the following two diffi-
culties:

• The number of bidders in each auction is uncertain. In
a traditional task-allocation problem with an auction
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protocol, only idle agents would bid for the incoming
task. Our framework, in contrast, allows every con-
tractee, busy or idle, to participate in the auction as
long as it is profitable for him to do so. What makes
our problem even more challenging is the existence of
entry fee.

• Each contractee’s valuation of the same new task de-
pends on his current state. We do not have a straight-
forward expression of the probability distribution of
agents’ valuation of an incoming task, as opposed to
well-studied auction problems in the Economics litera-
ture (e.g., [11]). Furthermore, the distribution of each
agent’s progress is closely related to the equilibrium
strategies of the agent. This further separates our pa-
per from [14], in which an agent’s valuation of the in-
coming task solely depends on his own capabilities and
the state of the world.

Without commitment flexibility, we assume that each con-
tractee will bid at the beginning of period t if and only if

yt ≤ ρ · (Lmax − Lmin) + Lmin

where 0 < ρ ≤ 1 is a parameter that determines each agent’s
bidding strategy. A bidding agent’s bid, depending on the
duration of the incoming task, will be

b(yt) = (δ − δyt)Eyt+1V (yt+1) + ytc +
C

ω′
,

δ ≈ 1 further simplifies the bid as

b(yt) = ytc +
C

ω′
,

where ω′ is only partial known but can be estimated as fol-
lows: each contractee uses his own prior probability of win-
ning to determine his bidding prices, and then use the bid-
ding history over a period of time to update ω̂′ iteratively.

With commitment flexibility, we assume that contractee i
will use the following strategy: to bid if and only if

yt ≤ ρ1 · (Lmax − Lmin) + Lmin

when the agent is idle; to bid if and only if

yt ≤ ρ2 · xit

when the agent is busy. An idle contractee will place a bid
in the amount of

b(0, yt) = ytc +
C

ω0
,

while a busy contractee will place a bid in the amount of

b(xit, yt) = (xit − yt)c + d +
C

ω(xit)
.

Both the values of ω0 and ω(xt) can be obtained through
an iterative update approach (similar to the way we learn
ω′).

5.2 Simulation Experiments
Our model fits into the situation marked by dynamically

incoming tasks and relatively limited number of agents. Our
default experimental parameters reflect such a feature with
N = 7, C = 10, M = 100, c = 5 and d = 45. We further
assume that L, the duration of each incoming task, is uni-
formly distributed between Lmin = 2 and Lmax = 20. We

observe 1000 periods and assume that the discount factor
δ ≈ 1. In each set of experiment, we change one parameter
and keep all the other parameters unchanged.

Define THC (Task handling capability) as

THC =
Number of completed tasks

The maximum possible number of completed tasks

THC measures a system’s ability to handle tasks.

5.2.1 Different Decommitment Penalties
We want to find out the behavior of the system over dif-

ferent values of decommitment penalties. The results are
shown in Figures 1 and 3. From our experimental design,
we see that 0 ≤ ρ∗1 ≤ 1 measures an idle contractee’s willing-
ness to bid: the larger ρ∗1 is, the contractee is more willing
to bid for an incoming task. Similarly, 0 ≤ ρ∗2 ≤ 1 measures
a busy contractee’s willingness to participate in the auction
for the incoming task, which makes it possible for him to
switch to a more attractive task.

We observe from Figure 1 that when the decommitment
penalty is set too low, contractees have the incentive to bid
for most of the incoming tasks and always to decommit from
the current task, which leads to low productivity (see Figure
3). When the decommitment penalty is set too high, con-
tractees are discouraged to decommit from long tasks, which
make the system’s ability of handling tasks relatively low.

The results also enable us to look at the benefits of com-
mitment flexibility. When commitment flexibility is not al-
lowed, each contractee would choose ρ∗ = 0.7, resulting
in THC = 73.72% and a total discounted reward of 972.
In contrast, when commitment flexibility is enabled, con-
tractees would choose ρ∗1 = 0.95, ρ∗2 = 0.65, which leads to
THC = 85.13% and a total discounted reward of 1194, or a
15% improvement in THC.

Figure 1: ρ∗1, ρ
∗
2 and THC for different decommitment

penalties (C = 10, c = 5, M = 100, L ∼ [2, 20], N = 7)

Figure 2: Numbers of attempted, completed and de-
committed tasks for different commitment penalties
(C = 10, c = 5, M = 100, L ∼ [2, 20], N = 7)
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Figure 3: Contractee’s average reward for different
decommitment penalties (C = 10, c = 5, M = 100, L ∼
[2, 20], N = 7)

5.2.2 Different Entry Fees
Choosing appropriate entry fee is also important in de-

signing the auction mechanism. Our simulation results, as
shown in Figures 4 and 5, reveal that a low entry fee will lead
to low system productivity (as indicated by THC) because it
encourages busy contractees to participate in auctions more
frequently. When the entry fee is set to be too high, the sys-
tem’s task handling ability is inhibited due to contractees’
limited participation.

Figure 4: ρ∗1, ρ
∗
2 and THC for different entry fees (d =

50, c = 5, M = 100, L ∼ [2, 20], N = 7)

Figure 5: Numbers of attempted, completed and de-
committed tasks for different entry fees (d = 50, c =
5, M = 100, L ∼ [2, 20], N = 7)

5.2.3 Different Maximum Rewards Per Task
We observe from the experiment results (Figure 6) that

a larger M in general leads to high system productivity. If,
however, the contractor’s objective is not just to improve
task handling ability, but also to reduce the total payments
to contractees, the choice will be between cost and perfor-
mance.

5.2.4 Different Task Duration Distributions
We fix Lmin = 2 and observe the changes brought by

different Lmax’s. Our results (Figure 7) indicate that the

Figure 6: ρ∗1, ρ
∗
2 and THC for different M(d = 50, C =

10, c = 5, L ∼ [2, 20], N = 7)

system’s ability of handling tasks decreases when Lmax in-
creases.

Figure 7: ρ∗1, ρ
∗
2 and THC for different Lmax(d =

50, C = 10, c = 5, M = 100, L ∼ [2, Lmax], N = 7)

5.3 Discussions
Our experiments reveal the power of commitment flexibil-

ity. We might view ρ or ρ1 (as used in Section 5.1) as the
threshold of an idle contractee when deciding whether to bid
for the incoming task or not: a lower ρ or ρ1 means that the
contractee is more“picky”about the duration of tasks, while
a higher ρ or ρ1 makes it possible for relatively longer tasks
to be put on the auction. When there is no commitment flex-
ibility, the contractee would choose a relatively low ρ, after
accounting for the opportunity cost brought by a long task.
When a contractee is allowed to decommit from his current
task, however, he would take a more relaxed manner when
making an initial bid for a task, i.e., he can tolerate long
tasks, because he still has a “second chance” made possible
by commitment flexibility.

6. DISCUSSION AND FUTURE RESEARCH
In this paper, we study a dynamic task-allocation problem

using repeated second-price auctions. We provide mathe-
matical formulations and analysis, which lead to structural
results of the equilibrium strategies. Our model is helpful
for multi-agent system designers in revealing the benefits of
commitment flexibility. In addition to the existing literature
and our current work, more sophisticated models are needed.
Below are several potential extensions of the current model
that we plan to pursue:

1. Different values. Our model assumes a constant max-
imum reward for any incoming task. What would con-
tractees’ behavior vary if the incoming tasks possess different
value? Such an extension can give us a more comprehensive
understanding of the benefits of commitment flexibility.

2. Bid on decommitted tasks. Under our current prob-
lem settings, a decommitted task is discarded and cannot

28



be completed. Allowing contractees to bid on decommitted
tasks would further improve the flexibility of the system.
This is aligned with the notion of resale in the auction liter-
ature.

3. Team work. It would be interesting to consider the
case when contractees can form teams to handle an incom-
ing task. More interestingly, how does the team dynamics
among contractees affect the contractor’s decision of optimal
bidding mechanism that induces contractees to complete as
many tasks as possible? We leave this extension for future
research.
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ABSTRACT
Over the past seven years, researchers have been trying to find
algorithms for the decentralized control of multiple agent un-
der uncertainty. Unfortunately, most of the standard methods
are unable to scale to real-world-size domains. In this paper, we
come up with promising new theoretical insights to build scal-
able algorithms with provable error bounds. In the light of the
new theoretical insights, this research revisits the policy itera-
tion algorithm for the decentralized partially observable Markov
decision process (DEC-POMDP). We derive and analyze the first
point-based policy iteration algorithms with provable error bounds.
Our experimental results show that we are able to successfully
solve all tested DEC-POMDP benchmarks: outperforming stan-
dard algorithms, both in solution time and policy quality.

1. INTRODUCTION
In recent years, there has been increasing interest in finding

scalable algorithms for solving multiple agent systems where agents
cooperate to optimize a joint reward function, while having dif-
ferent individual observations. To formalize and solve such prob-
lems, [3] suggest a model that enables a set of n agents to co-
operate in order to control a partially observable Markov deci-
sion process. This framework can model environments under
three constraints: uncertainty, partial observability and decen-
tralization: uncertainty relies on the fact that the agents are im-
perfectly informed about action effects during the simulation;
partial observability means that agents are imperfectly informed
about the state of the process during the execution; and decen-
tralization signifies that the agents are differently imperfectly in-
formed during the execution. An environment that concurrently
involves these three constraints is known as a decentralized par-
tially observable Markov decision process (DEC-POMDP). Un-
fortunately, finding either optimal or even ε-approximate solu-
tions of such problems has been shown to be particularly hard
[12].

While some important progress has been made for solving fi-
nite horizon DEC-POMDPs, we still lack efficient algorithms with
provable error bounds for the infinite horizon case. Indeed, the
unique ε-optimal algorithm for the infinite horizon case runs quickly
out of memory [2], as do optimal algorithms for the finite horizon
case. This is mainly because they require the exhaustive enumer-
ation of all possible joint policies at each time step, i.e., the ex-
haustive backup. Unfortunately, the resulting set of joint policies
requires an exponential space with respect to the number of joint

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

observations and the number of agents. As a result, many at-
tempts to solve infinite horizon DEC-POMDPs rely on memory-
bounded algorithms [1, 4, 16]. These locally optimal algorithms
use a fixed amount of memory, i.e., the size of the solution is fixed
prior to the execution of the algorithm. Even though the size of
the solution is bounded, memory-bounded algorithms still suffer
from the proved complexity of the problem. Moreover, choosing
the right size for the solution is not obvious and dynamically ad-
justing it may raise non-negligible computation costs. Further-
more, though these algorithms tackle the space complexity ef-
ficiently, the time complexity remains too high and limits their
ability to scale to medium solution sizes. Even more importantly,
they fail to provide guarantees on the policy quality. Rather than
constraining the size of the solution prior to the execution of the
algorithm, it is equally possible to come up with a policy within a
bound of the optimal policy.

In this paper, we design policy iteration (PI) algorithms that
provide many desirable properties that current infinite horizon
solvers lacked. First of all, we define exact and approximate Dy-
namic Programming (DP) backup operators that enable us to com-
pute an improved value function. Secondly, we build up the joint
policy based on the improved value function, this circumvents
the problem of the exhaustive backup. Finally, we state and prove
approximation error bounds on the resulted policy quality. The
difficulty of this work lies in the definition of backup operators
that guarantee: (1) the decentralization is preserved over the up-
dates of the value function and the transformations of the cor-
responding policy while avoiding the exhaustive backup; (2) the
updates of the value function are essentially DP updates. To lever-
age the first issue, we introduce new multi-agent concepts namely
basis objects and sets, i.e., partial joint information of the team
that is sufficient to satisfy the decentralization. Even more im-
portantly, these concepts help circumventing the problem of the
exhaustive backup. To handle the second point, we perform es-
sentially a single-agent DP update and keep track only on the
value function that satisfies the decentralization.

2. BACKGROUND AND RELATED WORK
We review the DEC-POMDP model and the associated nota-

tion, and provide a short overview of the state-of-the-art algo-
rithms.

2.1 The DEC-POMDP Model

DEFINITION 1. A n-agent DEC-POMDP can be represented us-
ing a tuple (I ,S, {Ai },P, {Ωi },O,R), where: I is a finite set of agents
indexed by 1 · · ·n; S = {s} is a finite set of joint states; Ai denotes
a finite set of actions available for agent i , and A =⊗i∈I Ai is the
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set of joint actions, where a = (a1, · · · , an ) denotes a joint action;
P : S × A →4S is a Markovian transition function. P (s′|s, a) de-
notes the probability of transiting from state s to state s′ when tak-
ing action a; Ωi defines a finite set of observations available for
agent i , and Ω = ⊗i∈I Ω

i is the set of joint-observations, where
o = (o1, · · · ,on ) is a joint observation; O : A × S → 4Ω is an ob-
servation function. O(o|a, s′) denotes the probability of observing
joint observation o given that joint action a was taken and led to
state s′; R : A ×S →ℜ is a reward function. R(a, s) denotes the re-
ward signal received when executing action a in state s;

Optimization criterion. The DEC-POMDP model is param-
eterized by: b0 ∈4S, the initial belief distribution, i.e., the team
belief over its initial state. The belief state (belief for short) b ∈4S
defines a probability distribution of the team over the underlying
states. The next belief, denoted ba,o = τ(b, a,o), that incorpo-
rates the latest joint action-observation pair (a,o) and the cur-
rent belief b, is updated as follows:

ba,o (s′) = ηO(o|s′, a)
∑

s b(s)P (s′|s, a) (1)

where η is a normalizing constant. When the agents operate over
an unbounded number of time-steps, the DEC-POMDP has a dis-
count factor, γ ∈ [0,1). This model is coined by the term infinite-
horizon DEC-POMDP with discounted rewards. Solving such a
DEC-POMDP means finding a joint policy δ that yields the high-
est expected value V δ(b0) = maxδ E

[∑∞
τ=0 γ

τR(aτ, sτ)|b0,δ
]

where

V δ(b) denotes the expected sum of discounted rewards obtained
given that joint policy δ is executed starting in belief b. Given
the definition, the true value of a starting belief b at time step
τ, which we write Vτ(b), is just V δ∗τ (b) – where δ∗τ is an opti-
mal policy at time step τ. Since finding an ε-optimal joint pol-
icy is known to be intractable, we therefore state our optimiza-
tion criterion as finding the best joint policy based on a small
set of representative beliefs B and the amount of time that is al-
lotted to the algorithm. With this criterion, we want to design
novel infinite horizon DEC-POMDP algorithms that update al-
ternatively all, a belief set Bτ, the optimal value function Vτ over
Bτ and the corresponding joint policy δτ, until Bellman residual,
i.e., ‖Vτ−Vτ−1‖∞, is less or equal to 2εγ/(1−γ). That is the re-
turned joint policy is an ε-optimal policy with respect to belief
space B .

Policy representation. Throughout the paper, a policy for sin-
gle agent i , deterministic finite state controller (DFSC), can be
represented as policy graph δi = (X i ,π,η, xi

0), where X i = {xi }

denotes a set of machine states; π(xi ) is the individual action
ai selected in machine state xi ; η(xi ,oi ) is the successor ma-
chine state when individual observation oi is perceived in ma-
chine state xi ; and xi

0 is the starting machine state. We denote
a joint policy, deterministic joint finite-state controllers ( DJFSC
) by δ. A DJFSC can also be represented as joint policy graph
δ = (X ,π,η, x0), where: X := ⊗n

i=1 X i denotes a set of machine
states; π(x), η(x,o) and x0 are defined as for DFSCs. This con-
trasts with the standard representation based on policy vectors,
i.e., vectors of individual policies, one for each agent. Each joint
machine state x is associated to a hyperplaneαx – that is the vec-
tor value that denotes the expected sum of discounted rewards
obtains when executing δ starting in machine state x.

2.2 Related Work
In this section, we first present POMDP relevant work that we

use as a foundation for our PI algorithms. Then, we discuss the
state-of-the-art ε-optimal approach to solving infinite horizon
DEC-POMDPs.

Policy Iteration for POMDPs. A special case of DEC-POMDP,
in which each agent shares its private information with its team-
mates at each time step, is called a multi-agent POMDP (MPOMDP).
Because all the information available to the team at each time
step is known, MPOMDPs can be solved using single-agent POMDP
techniques. Over the past few years, exact and approximate PI al-
gorithms have been proposed for POMDPs by [15, 6] and [8], re-
spectively. These algorithms, summarized in Algorithm 1, share
the same structure that consists of a threefold method: first, com-
pute the value function Vτ of the current DJFSC δτ (policy eval-
uation); secondly, update the value function Vτ represented by
a set Γτ+1 of hyperplanes into an improved value function Vτ+1
represented by a setΓτ of hyperplanes (policy improvement); and
finally, transform the current DJFSCδτ−1 into an improved DJFSC
δτ (policy transformation) with respect to Γτ+1. These processes
alternate until a convergence criterion is reached. The policy
evaluation step is straightforward when a policy is represented
as a DJFSC [6]. This can be achieved by solving the system of lin-
ear equations:

αx (s) = R(s,π(x))+γ∑
s′,o P (s′|s,π(x))O(o|s′,π(x))αη(x,o) (2)

where x and η(x,o) are machine states. In addition, the policy
improvement step relies on the fact that a POMDP can be refor-
mulated as a belief MDP. Indeed, it is well-known that in POMDPs
the belief is a sufficient statistic for a given history. Therefore, the
value function Vτ can be updated using DP. [13] show how to im-
plement the DP update of a value function Vτ by exploiting its
piece-wise linearity and convexity. Because the value function is
a mapping over a continuous |S|-dimensional space, Vτ+1 can-
not be directly computed. Instead, the corresponding set Γτ+1
can be generated through a sequence of operations over Γτ.

Algorithm 1 Policy Iteration

1: procedure PI(initial policy: δ0, belief space: B)
2: Initialization: δτ+1 = δτ = δ0
3: repeat
4: % policy evaluation
5: Compute Γτ← {αi }, i.e., value function of δτ

6: % policy improvement
7: Γτ+1 ← BACKUP(Γτ,B) where B may be 4S

8: % policy transformation: δτ→ δτ+1
9: Re-initialization: τ= τ+1
10: until ‖Vτ+1 −Vτ‖∞ ≤ 2εγ/(1−γ)

DP update. We now describe the straightforward implementa-
tion of DP update for POMDPs [14]. First, we generate intermedi-
ate sets Γa,∗ and Γa,o ∀a,o (Step 1): Γa,∗ ←αa,∗(s) = R(s, a) and
Γa,o ←α

a,o
i (s) =∑

s′ P (s′|s, a)O(o|s′, a)αi (s′), ∀αi ∈ Γτ. Next, we
create Γa (∀a ∈ A), the cross-sum over joint observations, which
includes one αa,o from each Γa,o (Step 2): Γa ← Γa,∗⊕o∈Ω Γa,o .
Finally, we take the union of Γa sets (Step 3): Γτ+1 = ∪a∈A Γ

a .
It is often the case that a hyperplane in Γτ+1 is completely domi-
nated by another hyperplane (α·b ≤α′ ·b, ∀b) or by combination
of other hyperplanes. Those hyperplanes can be pruned away at
each steps of the update without affecting the policy quality. Fi-
nally, [6] suggests a number of rules that enables us to transform
the current policy δτ into an improved one δτ+1. To the best of
our knowledge, there is no known techniques that extend com-
pletely this approach to multiple agent settings.

Policy Iteration for DEC-POMDPs. [2] proposed recently an
attempt to extend PI from single-agent into decentralized multi-
agent settings. This algorithm builds over a series of steps a vec-
tor of stochastic finite state controllers, one for each agent. Each
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step consists of a twofold method: the exhaustive backup and the
pruning of dominated stochastic machine states. For each agent
i , the exhaustive backup takes as input the current set of stochas-
tic machine states X i

τ. Then, it builds new stochastic machine
states X i

τ+1 for all possible joint actions, such that the successor
links of the new stochastic machine state are associated only to
stochastic machine states that appear in the current sets. The re-
sulted set of stochastic machine states X i

τ+1 is exponential with

respect to the number of observation, i.e., |X i
τ+1| = |Ai ||X i

τ||Ω
i |+

|X i
τ|. Thus, the joint stochastic controller grows by

∏n
i=1 |Ai ||X i

τ||Ω
i |

, which grows exponentially with n. Thereafter, a pruning step
eliminates dominated stochastic machine states without loosing
the ability to eventually converging to an ε-optimal controller.
Performing this pruning step, however, can be extensive since
they require a linear program and its dual. While interesting,
this PI algorithm laks many desirable properties of the PI algo-
rithm in single-agent settings. Among many, the algorithm fails
to define a DP backup operator for the decentralized multi-agent
case. This would enable us to derive the Bellman residual ‖Vτ−
Vτ−1‖∞ – distance between two successive value functions and
even more importantly approximation error bounds. Further-
more, as already discussed in the POMDP section, dominated
stochastic machine states can be pruned away at earlier steps of
the backup. Doing so, would avoid the exhaustive generation of
all possible stochastic machine states which is expensive.

3. POLICY ITERATION REQUIEREMENTS
In order to extend PI algorithms along with its properties from

single-agent to the decentralized multi-agent settings, we need
to face two key issues. As we aim at finding a policy for DEC-
POMDPs, we need to make sure that our backup operator HB
transforms set Γτ into an improved set Γτ+1 while preserving the
decentralization – that is all hyperplanes α ∈ Γτ+1 and the im-
proved policyδτ+1 satisfy the decentralization constraint. On the
other hand, to inherit POMDP properties our backup operator
need essentially to be the DP backup operator – that is the value
Vτ+1(b) at belief b depends on values Vτ(b′) of its successor be-
liefs b′: Vτ+1(b) =HB Vτ(b) = maxa E

[
R(a,b)+γ∑

o Vτ(τ(b, a,o))
]
.

3.1 Satisfying the Decentralization
In this section, we introduce new multi-agent planning con-

cepts namely basis objects and sets. These concepts help pre-
serving the decentralization while updating hyperplanes or trans-
forming policies.

Preliminary definitions. A set of basis joint observations also
called basis set and denoted Ω̊⊆Ω is a set of joint observations of
the smallest size where each individual observation of any agent,
e.g., oi ∈Ωi , is included in at least one joint observation of the ba-
sis set, e.g., (· · · ,oi , · · · ) ∈ Ω̊. Because all individual observations
of all agents are represented in at least one joint observation of
the basis set, the cardinality of a basis set Ω̊, denoted κ(Ω) (κ for
short), is given by:κ= |Ω̊| = maxi∈I |Ωi |. This holds for any ba-
sis set and even more importantly for any number of agents. In
the remainder of the paper, we assume that each agent has the
same number of individual observations 1. Therefore, a straight-
forward way of building a basis set Ω̊ is to include the largest set
of joint observations such that any pair of joint observations is
component-wise different, e.g., (o1,o2) and (o2,o1). A basis object
is any object, e.g., policy or hyperplane, defined only over basis

1Fictitious individual observations are added to agents if neces-
sary such that the assumption always holds.

observations. A basis joint policy δB : Ω̊∗ → A is a DJFSC defined
only over basis joint observations. A basis hyperplane is a vec-
tor of hyperplanes, one for each basis joint observation. We call
the complement hyperplane, a vector of hyperplanes, one hyper-
plane for each non basis joint observation o ∈ Ω\Ω̊. Any object
that satisfies the decentralization constraint is said to be valid.

Valid policies. We introduce below a criterion that checks whether
a DJFSCδ satisfies the decentralization constraint, i.e., it is a valid
policy.

LEMMA 1. A DJFSC δ = (X ,π,η, x0) satisfies the decentraliza-
tion constraint if and only if it corresponds to a vector of DFSCs
(δ1, · · · ,δn ) such that: ∀x ∈ X , ∃(x1, · · · , xn ) : π(x) = (π(x1), · · · ,π(xn ))
and η(x,o) = (η(x1,o1), · · · ,η(xn ,on )) where o = (o1, · · · ,on ) and
δi = (X i ,π,η, xi

0).

This lemma states that the joint action taken for a given se-
quence of joint observations when the vector of DFSCs (δ1, · · · ,δn )
is executed is exactly the joint action taken when δ is executed af-
ter perceiving the same sequence of joint observations. Now we
are ready to claim our main theorem.

THEOREM 1. The basis DJFSC δB is the sufficient information
to build a DJFSC δ that is valid.

x1
0 x2

0

x1
1 x2

2

x1
2 x2

1
o1

o2

o2

o1

o2

o1

x1
0

x1
1

x1
2 x2

0

x2
2

x2
1

o2
1

o2
2

o2
2

o2
1

o2
2

o2
1

o1
2

o1
1

o1
1

o1
2

o1
1

o1
2

Figure 1: Extraction of vector of DFSCs.

To prove this we suggest a constructive two-step method that
builds a unique DJFSC δ based on δB : first, we build the unique
vector of DFSCs associated with a basis δB . To do so, we extract
from δB the DFSC δi for each agent i = 1 · · ·n. This is achieved
by removing from δB the components related to the other agents,
such that only nodes and arcs that are labeled by individual ac-
tions and observations of agent i are kept. This step provides
us with the vector of DFSCs (δ1, · · · ,δn ). We then build DJFSC δ

based on the vector of DFSCs (δ1, · · · ,δn ) by using Lemma 1: ∀x ∈
X ,π(x) = (π(x1), · · · ,π(xn )) andη(x,o) = (η(x1,o1), · · · ,η(xn ,on )),
where o = (o1, · · · ,on ) and X =⊗n

i=1 X i . One can merge together
machine states x ∈ X where the associated action π(x) and the
successor linksη(x,o) are the same. This two-step method proves
the existence of such a DJFSC . But, we still need to prove that δB
is the sufficient information to build δ. This is achieved by re-
moving either a node or an arc from δB . In that case, the vector
of DFSCs (δ1, · · · ,δn ) will consist of DFSCs δi that lack a node or
an arc. In accordance with this two-step method, we illustrate in
Figure 1 the vector of DFSCs (down) extracted from a basis DJFSC
(up) where the basis set is Ω̊= {o1 = (o1

1 ,o2
2),o2 = (o1

2 ,o2
1)}.

Valid hyperplanes. A similar result for a basis hyperplane can
be easily derived from the above theorem.
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COROLLARY 1. Let {αo }o∈Ω̊ be a basis hyperplane. There ex-
ists a unique complement hyperplane {αo }o∈Ω\Ω̊, such that hy-
perplane α=∑

o∈Ωαo is valid.
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Figure 2: The construction of a valid hyperplane (in white) and
the complement of basis hyperplane hyperplane (in gray) given
the basis hyperplane (in black).

One can look at {αo }o∈Ω̊ as a set of hyperplanes that represents
leaf nodes of a one-step basis joint policy δB . Therefore, using
Theorem 1, we are able to build the one-step joint policyδ associ-
ated to δB and thus the corresponding hyperplane. Consider the
example depicted in Figure 2, where each agent has observation
set Ωi = {oi

1,oi
2} for i = 1,2. Let Ω̊ := {o1 = (o1

1 ,o2
2),o2 = (o1

2 ,o2
1)}

be the basis set, therefore its complement isΩ\Ω̊ := {o3 = {o1
1 ,o2

1},

o4 = {o1
2 ,o2

2}}. We know α(x1
3 ,x2

3 ) is built based on basis hyper-

planes α(x1
2 ,x2

2 ) and α(x1
1 ,x2

1 ) that are associated to machine states

η(x,o1) = (x1
2 , x2

2) and η(x,o2) = (x1
1 , x2

1), respectively. Thus, using
Theorem 1, it turns out that the DFSC of agent 1 is transformed by
adding machine state x1

3 where η(x1
3 ,o1

2) = x1
2 and η(x1

3 ,o1
1) = x1

1 ,
and the DFSC of agent 2 is transformed by adding machine state
x2

3 where η(x2
3 ,o2

2) = x2
2 and η(x2

3 ,o2
1) = x1

2 . As a consequence, the
complement hyperplane {αη(x,o3),αη(x,o4)} is a vector of hyper-

planes associated to machine states (x1
1 , x2

2) and (x1
2 , x2

1), respec-
tively. For instance to determine the machine state associated to
αη(x,o3), we use η(x,o3) = (η(x1

3 ,o1
1),η(x2

3 ,o2
1)), i.e., (x1

1 , x2
2). We

call this procedure the construction of valid hyperplanes.
Preserving the decentralization. We are now ready to state the

update and transformation rules that preserve the decentraliza-
tion. It is straightforward to see that the construction of valid hy-
perplanes discussed above preserves the decentralization. There-
fore, an update that preserves the decentralization consists in
generating hyperplanes in Γτ+1 using the construction of valid
hyperplanes based on hyperplanes in the current set Γτ. On the
other hand, we identify two transformation rules that preserve
the decentralization. The first rule is to remove individual ma-
chine states xi along with all joint machine states x = xi x−i and
hyperplanes αx associated. The second rule is to replace an in-
dividual machine state xi by another one x̂i every where xi ap-
pears. Because these are essentially transformations of individ-
ual controllers, the resulting joint controller is still valid.

3.2 The Sufficient Statistic
In this section, we explain how planning only over reachable

beliefs allows the optimal policy of a DEC-POMDP to be found.
Planning over reachable beliefs. In order to be optimal, the

Markov assumption requires that a policy depends on all the in-
formation available to the team at each time step. In DEC-POMDPs,
at the execution time the agents are unaware of private informa-
tion of their team-mates. However, in simulation each agent can
divulge its private information to its team-mates. Therefore, the
agents can maintain a complete joint history trace of all joint ob-

servations and joint actions they ever simulated. This joint his-
tory can get very long as time goes on. A well-known fact is that
this joint history can be summarized via a belief. Unfortunately,
because of the decentralization constraint a belief alone is not
sufficient to condition the selection of a joint action. Neverthe-
less, we can still show that planning only over reachable beliefs
allows the optimal policy to be computed. To better understand
this, let b0 be an initial belief we need to compute the optimal
value. We know that the machine state x whose hyperplane αx
yields the highest value for belief b0 depends on machine states
whose hyperplanes {αη(x,o)}o∈Ω are selected for its successor be-
liefs {bπ(x),o }o∈Ω. Because of the decentralization constraint, the
hyperplanes selected for successor beliefs {bπ(x),o }o∈Ω are de-
pendent on each other – that is the selection of hyperplanes for
some successor beliefs in {bπ(x),o }o∈Ω constrains the selection of
hyperplanes for the remaining. As previously discussed, if we se-
lect a basis hyperplane for successor belief b′ ∈ {bπ(x),o }o∈Ω̊ as-
sociated to basis joint observations, we determine directly the
hyperplanes that are assigned to the remaining successor beliefs
{bπ(x),o }o∈Ω\Ω̊. A similar argument can be used to show that suc-
cessor beliefs of beliefs {bπ(x),o }o∈Ω are also dependent on each
other, and so on. Thus, in the decentralized multi-agent settings,
the value of any belief bτ+1 depends on the value of all beliefs
reachable starting in its precedent belief bτ. It is worth noting
that because the initial belief b0 does not have a precedent be-
lief, its value depends only on all reachable beliefs starting in
b0. This permits us to claim that planning only over reachable
beliefs allow us to compute the optimal policy for a given ini-
tial belief. Although, the optimal value Vτ+1(b) cannot be com-
puted directly for each reachable belief (since it may depends on
infinitely many other beliefs), the corresponding set Γτ+1, that
includes the hyperplane that is maximal for b while satisfying
the decentralization constraint, can be generated through a se-
quence of operations on the set Γτ.

Selection of belief set B . Since the selection of a finite set of
beliefs B is crucial to the solution quality of all point-based al-
gorithms, we rely on sampling techniques whose efficiency has
been proven. In particular, [10] described a forward simulation
that generates the sample belief set. The procedure starts by se-
lecting the initial belief set B0 := {b0} including the initial belief
b0 at time τ= 0. Then, for time τ= 1,2, · · · , it expands Bτ to Bτ+1
by adding all possible ba,o produced, and this ∀b ∈ Bτ, ∀a ∈
A, ∀o ∈ Ω, such that pr (o|b, a) > 0. Then, the belief set 4̄ :=
∪∞
τ=0Bτ is the set of beliefs reachable during the simulation time.

It is therefore sufficient to plan only over these beliefs in order to
find an optimal joint policy customized for a team of agents that
starts from belief b0, since 4̄ constitutes a closed inter-transitioning
belief set. Unfortunately, it is likely that 4̄ is infinitely large. Thus,
rather than keeping all possible ba,o we keep only a single ba,∗
that is the one that has the maximum L1 distance to the current
B . And we add it into B only if its L1 distance is beyond a given
threshold ε.

4. POLICY ITERATION FOR DEC-POMDPS
Our PI (HB -PI) algorithm is summarized in Algorithm 1, with

the principal structure shared with its POMDP counterparts [6,
8]. Similarly to the single-agent case, HB -PI consists of a three-
fold method: policy evaluation; policy improvement; and pol-
icy transformation. While the policy evaluation step is straight-
forward as previously discussed, processing the two later steps
while providing guarantees on the satisfaction of the decentral-
ization constraint is not trivial.

Policy Improvement. To show the importance of using basis
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objects and sets for DP updates in decentralized multi-agent set-
tings, we first consider state-of-the-art alternative strategies from
either single-agent or multi-agent cases. In the single-agent case,
we need first to generate the whole set Γτ+1 and thereafter prune
non valid hyperplanes [14]. This approach is, of course, hope-
lessly computationally intractable, as it requires the generation
of |A||Γτ|κn

hyperplanes which is doubly exponential in κ and n.
In the multi-agent case, we build first all possible individual poli-
cies, that induces set Γτ+1 of valid hyperplanes and thereafter
prune dominated hyperplanes [2]. While this approach is more
tractable than the previous one, the exhaustive backup limits its

scalability. Indeed, set Γτ+1 grows by |A|∏n
i=1 |X i

τ||Ω
i | , which

grows exponentially with n.
We are now ready to present the implementation of our backup

operator HB . Similarly to the single-agent case, we start by cre-
ating intermediate sets Γa,∗ and Γa,o , ∀a ∈ A, ∀o ∈ Ω̊ (step 1):
Γa,o ←α

a,o
i (s) =∑

s′ P (s′|s, a)O(o|s′, a)αi (s′), ∀αi ∈ Γτ andΓa,∗ ←
αa,∗(s) = R(s, a). Next we create Γa (∀a ∈ A), the cross-product
over basis joint-observations, which includes oneαa,o from each

Γa,o (step 2): Γa =
(
⊗o∈Ω̊ Γ

a,o
)
⊗Γa,∗. Then, we create for each

basis hyperplaneα= {αa,o1 , · · · ,αa,oκ ,αa,∗} ∈ Γa its complement
hyperplane {αa,oκ+1 , · · · ,αa,o|Ω| } with respect to Corollary 1 dis-
cussed above. We therefore replace in Γa , the hyperplane α by
the hyperplane built as a cross-sum over hyperplanes in (step
3): ∀α ∈ Γa , Γa ← Γa \{α} and Γa ←α′ =αa,∗+γ∑

o α
a,o . After-

wards, we take the union of Γa sets (step 4): Γτ+1 =∪a Γ
a . Fi-

nally, we include the initial set of hyperplanes (step 5): Γτ+1 =
Γτ+1 ∪ Γτ to preserve the integrity of the solution. In practice,
many of the hyperplanes αi in the final set Γτ+1 may be com-
pletely dominated by another hyperplane. To prune away those
hyperplanes while preserving the decentralization, we rely on an
individual machine state dominance criterion:

THEOREM 2. Let X i and X−i be sets of machine states of agent
i and the other agents except agent i , respectively. A machine state
xi ∈ X i is dominated iff: ∃x̂i ∈ X i \xi : αx̂i x−i ·b ≥αxi x−i ·b, ∀b ∈
B ,∀x−i ∈ X−i .

PROOF. We rely on a proof by contradiction. Assume (1) ma-
chine state xi ∈ X i is non dominated and (2) ∃x̂i ∈ X i \xi : αx̂i x−i ·
b ≥αxi x−i ·b, ∀b ∈ B ,∀x−i ∈ X−i . From the first claim, we derive
that some of the reachable beliefs yield their optimal values un-
der the decentralization constraint at hyperplanes αxi x−i , where

x−i ∈ X−i . From the second argument, we derive that there exists
a machine state x̂i ∈ X i such that hyperplane αx̂i x−i point-wise

dominates hyperplane αxi x−i for any machine state x−i ∈ X−i .

In addition, by replacing machine state xi by machine state x̂i

the decentralization constraint still holds. As a result, this mod-
ification transforms the initial policy into a policy with a value
function that increases for at least one belief state b ∈ B and de-
creases for no b ∈ B – which is a contradiction.

The pruning then alternates from one agent to another until no
more machine states are pruned. We extend the machine state
dominance criterion to prune successively intermediate setsΓa,o

and Γa , for all a ∈ A and o ∈ Ω̊ and set Γτ+1. As κ and |Γτ| grow
the overhead of performing these pruning mechanisms is non-
negligible.

The point-based B&B backup H̄B . This method aims at build-
ing the next set of hyperplanesΓτ+1 using hyperplanes inΓτ. The
problem of finding the next set of hyperplanes Γτ+1 given a finite
set of beliefs B and intermediate sets Γa,∗ and Γa,o (∀a ∈ A and
∀o ∈ Ω̊), corresponds to the problem of finding basis hyperplane

(αa,o1
b , · · · ,αa,oκ

b ) such that the corresponding valid hyperplane
αb ∈ Γτ+1 is maximal for belief b, and this for each belief in B .
One may suggest to solve such a problem using essentially the
single-agent point-based backup operator while preserving the
decentralization. That is, solving the problem by selecting hy-
perplane αa,o

b that is maximal at b, one hyperplane for each ba-
sis joint observation. Then, we build the corresponding valid hy-
perplane. Unfortunately, the resulting hyperplane yields a lower-
bound value. This is because its complement hyperplane can
provide poor rewards. As a result, the overall contribution of the
basis hyperplane is diminished by the poor contribution from its
complement hyperplane. If we relax the problem by skipping
the decentralization constraint, we build hyperplane αb that is
an upper-bound value at belief b and potentially a non valid hy-
perplane. Hence, applying single-agent point-based methods do
not lead to the best valid hyperplane for each belief. As this is
essentially a combinatorial problem, we rely on a point-based
branch-and-bound backup operator.

To describe this method, the following definitions are required:
(a) ~αa is a vector of hyperplanes one for each joint-observation;
(b) ~αa (o) is the selected hyperplane α

a,o
i ∈ Γa,o . The forward

search in the space of vectors of hyperplanes can be considered
as an incremental construction of the best vector of hyperplanes
based on optimistic evaluations of only partially completed vec-
tors of hyperplanes. In each step of the search, the most promis-
ing partially completed vector of hyperplanes is selected and fur-
ther developed, hence the best first approach. For a completely
defined vector of hyperplanes ~αa , we are able to find the corre-
sponding hyperplane α = αa,∗ +γ∑

o ~α
a (o). We then state our

maximization problem as follows: αb = argmaxα (α · b). No-
tice that a partially completed vector of hyperplane is a vector
where ~αa is only partially defined. Moreover, any partially com-
pleted vector of hyperplanes can be completed by assigning hy-
perplane αa,o ∈ Γa,o that yields the highest value for belief b at
points ~αa (o) where ~αa is not constrained. In order to determine
whether or not to expand the leaf node of the search tree cor-
responding to a partially completed vector of hyperplanes, we
compute an upper-bound value of any partially completed vec-
tor of hyperplanes for a given belief b. We define the upper-
bound based on the decomposition of the exact estimate into
two estimates. The first estimate, G(~αa ,b), is the exact estimate
coming from points ~αa (o) where ~αa is constrained. The second
estimate, H(~αa ,b), is the upper-bound value coming from points
~αa (o) where ~αa is not constrained. We introduce sets of joint-
observationsΩ1 andΩ2 (such thatΩ=Ω1∪Ω2) that correspond
to joint-observations that lead to constrained points and non-
constrained points, respectively.

V̄ (~αa ,b) =
(
αa,∗+γ ∑

o∈Ω1

~αa (o)

)
·b︸ ︷︷ ︸

G(~αa ,b)

+
(
γ

∑
o∈Ω2

max
αa,o

(αa,o ·b)

)
︸ ︷︷ ︸

H(~αa ,b)

In the following, we draw our attention to a single search tree
of our point-based B&B backup operator with the following en-
tries: a belief b; a joint action a and intermediate sets Γa,o (∀o ∈
Ω), see Algorithm 2. We start by initializing the pool of live nodes
with a partially defined vector~αa

0 where none of the points~αa
0 (o)

(∀o ∈ Ω) is defined, and the value hereof is used as the value
(called incumbent) of the current best solution (line 1). In each it-
eration of the heuristic, the node~αa

i that yields the highest upper-
bound is selected for exploration from the pool of live nodes (lines
3−4). Then, a branching is performed: two or more children of
the node are constructed through the definition of a single point
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~αa
i (o) (line 5), for o ∈ Ω̊. Furthermore, for each of the gener-

ated child nodes ~αa
i , points ~αa

i (o) for o ∈ Ω\Ω̊ that can be de-
fined based on already constrained points are defined and the
upper-bound is calculated. In case the node corresponds to a
completely defined vector of hyperplanes its upper-bound is its
exact estimate value, the value hereof is compared to the incum-
bent, and the best solution and its value are kept (lines 7− 10).
If its upper-bound is not better than the incumbent, the node is
discarded, since no completely defined descendant nodes of that
node can be better than the incumbent. Otherwise the possibil-
ity of a better solution in the descendant nodes cannot be ruled
out, and the node is then joined to the pool of live nodes (line 11).
When the search tree has been completely explored, the heuristic
starts a new search tree with a new joint-action and the current
best solution, until all joint-actions have been processed and this
for each belief b ∈ B .

Algorithm 2 Point-based branch and bound backup

1: procedure H̄B -BACKUP(a,b, {Γa,o }o∈Ω)
2: Initialize: Incumbent :=V (b); Live := {

~αa
0

}
3: repeat
4: Select ~αa

i ∈ Live : ∀~αa
j ∈ Live, V̄ (~αa

j ,b) ≤ V̄ (~αa
i ,b)

5: Live := Live \ {~αa
i }

6: Branch on ~αa
i generating ~αa

1 , · · · ,~αa
ik

7: for 1 ≤ p ≤ k do
8: if V̄ (~αa

ip
,b) > Incumbent then

9: if ~αa
ip

is completely defined then

10: Incumbent := V̄ (~αa
ip

,b)

11: Solution :=αa,∗+∑
o ~α

a
ip

(o)

12: else Live := Live ∪ {~αa
ip

}

13: until Live =;
14: return Solution

Policy Transformation. [6] describes a policy transformation
mechanism based on a simple comparison of Γτ+1 and Γτ, for
the single-agent case. These rules are extended here for multiple
agent settings. The procedure below iterates between agents un-
til no more machine states can be eliminated. Notice that these
transformation rules preserve the decentralization and decrease
the value for no b ∈ B .

For all y i ∈ X i
τ+1:

• rule 1: If the action and successor links associated with y i dupli-
cate those of a machine state of δi , then keep that machine state
unchanged in δi

τ+1;

• rule 2: Else if the machine y i dominates a machine state xi ∈
X i
τ associated with a machine state in δi

τ, change the action and
successor links of that machine state to those that correspond to
xi ;

• rule 3: Else add a machine state to δi
τ+1 that has the action and

successor links associated with y i ;

Finally, prune any machine state for which there is no corresponding
hyperplane in Γτ+1, as long as it is not reachable from a machine state
to which an hyperplane in Γτ+1 does correspond.

Transformation rules

♣

5. THEORETICAL ANALYSIS
This section presents convergence, error bound and the com-

plexity arguments that draw on earlier approaches in single agent
settings.

Convergence Properties. Point-based PI algorithms, despite
being approximate methods, inherit many desirable properties
of PI algorithms from POMDPs [6, 8], including: (1) If a DJFSC
has not converged, the policy improvement transforms it into a
DJFSC with a value function that increases for at least on belief
b ∈ B and decreases for no b ∈ B ; (2) Point-based PI algorithms
converge to an approximate DJFSC after a finite number of iter-
ations; (3) the exact PI H-PI algorithm (B =4S) converges to an
ε-optimal policy.

Error bounds. We now show that the error between Vτ and the
optimal value function V ∗ is bounded. The bound depends on
how densely B samples the belief set 4̄; with denser sampling,
Vτ converges to V ∗. Cutting off the point-based PI (HB -PI) iter-
ations at any sufficiently large time step, we know that the dif-
ference between Vτ and the optimal value function V ∗ is not too
large. The overall error in HB -PI, ‖Vτ −V ∗‖∞, is bounded by:
‖Vτ−V ∗

τ ‖∞+‖V ∗
τ −V ∗‖∞. Because,H (resp. HB ) is a contraction

mapping, HVτ(b) = maxa E
[
R(a,b)+γ∑

o V ∗
τ (ba,o )

]
, the second

term ‖V ∗
τ −V ∗‖∞ is bounded by γτ‖V ∗

0 −V ∗‖ (see [5]). The re-
mainder of this section states and proves a bound on the first
term ‖Vτ−V ∗

τ ‖∞. We prove that [10]’s bound stated for POMDPs
holds for DEC-POMDPs. in the remainder of this paper, we state
εB = maxb′∈4̄ minb∈B ‖b−b′‖1, and ‖r‖∞ = maxs,a R(s, a). First
of all, let us prove the following lemma:

LEMMA 2. The error introduced inHB -PI when performing one
iteration of value function update over B, instead of 4̄, is bounded

by: η≤ ‖r‖∞
1−γ εB

PROOF. To have an intuition of the proof we provide an illus-
trative example Figure 3. Let b′ ∈ 4̄\B be the belief where HB -
PI makes its worst error in the value function update, and b ∈ B
be the closest (L1 norm) sampled belief to b′. Let αy the hyper-

plane that would be maximal at b′, where y = {y i } and y 6∈ X . Let
αx be the hyperplane that is maximal for b′, where x = {xi } and
x ∈ X . By failing to include αy in its solution set, HB -PI makes
an error of at most αy ·b′−αx ·b′. On the other hand, we know
that αx · b ≥ αy · b. This is mainly because in order to remove

hyperplane αy Theorem 2 requires each machine state y i to be

dominated or equal to machine state xi over belief set B . So,

η ≤ αy ·b′−αx ·b′
= αy ·b′−αx ·b′+ (αy ·b −αy ·b) add zero
≤ αy ·b′−αx ·b′+αx ·b −αy ·b αx maximal at b′
= (αy −αx ) · (b′−b) collect terms
≤ ‖αy −αx‖∞‖b′−b‖1 Holder inequality
≤ ‖αy −αx‖∞εB definition of εB

≤ ‖r‖∞
1−γ εB

The remainder of this section states and proves a bound for
HB -PI algorithm.

THEOREM 3. For any belief set B and any time step τ, the error

of the HB -PI algorithm ητ = ‖Vτ−V ∗
τ ‖∞ is: ητ ≤ ‖r‖∞

(1−γ)2 εB .

PROOF.

ητ = ‖Vτ−V ∗
τ ‖∞ (definition of ητ)

= ‖HB Vτ−1 −HV ∗
τ−1‖ (definition of HB and H)

≤ ‖HB Vτ−1 −HVτ−1‖∞+‖HVτ−1 −HV ∗
τ−1‖∞≤ η+‖HVτ−1 −HV ∗

τ−1‖∞ (definition of η)
≤ η+γ‖Vτ−1 −V ∗

τ−1‖∞ (contraction)
≤ η+γητ−1 (definition of ητ−1)

≤ ‖r‖∞
(1−γ)2 εB (series sum)

Notice that a tighter approximation error bound of HB -PI can
be derived. Indeed, we estimate only the pruning error that in-
curs during the policy improvement step and ignore the policy
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Figure 3: Errors made on a 2-states DEC-POMDP by HB -PI for
beliefs b′ with respect to their closest belief b.

evaluation step as well as hyperplanes from the earlier updates
that are kept for the integrity of the controller.

6. EXPERIMENTAL RESULTS
As memery-bounded algorithms, NLP and BPI, are known to

perform better than other approximate solvers, we compare H̄B -
PI. only to NLP and BPI. The comparison is made according to
DEC-POMDP benchmarks from the literature: the multi-access
broadcast channel (MABC) problem [7], the multi-agent tiger prob-
lem [9], the MEETING GRID problem [4], and the COOPERATIVE

BOX-PUSHING problem [11]. The COOPERATIVE BOX-PUSHING prob-
lem provides an opportunity for testing the scalability of differ-
ent algorithms. The reader can refer to the references above for
an exact specification of the benchmarks. The performances of
memory-bounded algorithms where sent by the authors, and run
on an Intel(R) Pentium(R) 4 CPU 3.4GHz with 2GB of memory.
Our algorithm was run on a Intel Core Duo 2.4GHz with 2GB of
memory.

Results. Figure 4 presents our experimental results. For each
problem and solver, we report: the value V δ(b0) at the initial be-
lief b0, the CPU time (in seconds) and the size |B | belief set B
used for H̄B -PI. We depict for each benchmark two graphs. On
the right-hand side, we show the runtimes of all solvers over iter-
ations. As performance results of memory-bounded solvers are
built based on the solution size, we report on the x-axis the in-
dividual controller size. On the other hand, since H̄B -PI is an
iterative algorithm we report on the x-axis the number of iter-
ations performed so far. As a result, we use iteration – that is
the label of the x-axis, either for the size of individual controllers
or the number of iterations performed so far, depending on the
solver. Because all solvers do not have the same x-axis, the reader
should mostly focus on the best value obtained by the solver and
the amount of time it takes to reach that value. On the left-hand
side, we illustrate the value at the initial belief over the iterations.
Overall it appears that H̄B -PI outperforms all NLP and BPI in all
tested DEC-POMDP domains and in both computation time and
solution quality. For problem of small-size, H̄B -PI reaches a fixed
point quite fast while neither NLP nor BPI were able to even reach
the same solution quality for TIGER-A, MEETING-GRID, and COOP-
ERATIVE BOX-PUSHING. As an example, H̄B -PI takes 11.5 seconds
to converge into a DJFSC of value 1.91 for the TIGER-A problem.
The best memory-bounded solver, NLP, takes 1059 seconds to
find its best joint stochastic controller of value −2.36. For this
same problem, BPI could not find a stochastic joint controller
of value higher than −52.63, this also explains why it does not

appear in the graph. Even more importantly, H̄B -PI converges
into a fixed-point for MABC, TIGER-A, and MEETING-GRID bench-
marks. This suggests that it inherited some of the properties of
single-agent solvers.

7. CONCLUSION AND FUTURE WORK
We have derived and analyzed the first PI algorithms with prov-

able error bounds. This research also provides interesting new
theoretical insights, including the ability to perform DP updates
while preserving the decentralization. Even though the experi-
ment results demonstrate impressive improvement over the cur-
rent standard methods, we are still far from being able to deal
with real-world-size DEC-POMDPs. To this end, we are plan-
ning to use the new theoretical insights exhibited in this paper
as foundations of more scalable algorithms facing some of the
bottlenecks of our approach.
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Figure 4: Performance results for DEC-POMDP benchmark problems from the literature.
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ABSTRACT
Recursive reasoning of the formwhat do I think that you think that
I think (and so on) arises often while acting rationally in multiagent
settings. Previous investigations indicate that humans do not tend
to ascribe recursive thinking to others. Several multiagent decision-
making frameworks such as RMM, I-POMDP and the theory of
mind model recursive reasoning as integral to an agent’s rational
choice. Real-world application settings for multiagent decision
making tend to bemixedinvolving humans and human-controlled
agents. We investigate recursive reasoning exhibited by humans
during strategic decision making. In a large experiment involv-
ing 162 participants, we studied the level of recursive reasoning
generally displayed by humans while playing a sequential fixed-
sum, two-player game. Our results show that subjects experiencing
a strategic game made more competitive with fixed-sum payoffs
and tangible incentives predominantly attributed first-level recur-
sive thinking to opponents. They acted using second level of rea-
soning exceeding levels of reasoning observed previously.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems

General Terms
Theory, Performance

Keywords
decision making, recursive reasoning, human behavior

1. INTRODUCTION
Strategic recursive reasoning of the formwhat do I think that you

think that I think(and so on) arises naturally in multiagent settings.
For example, a robotic uninhabited aerial vehicle (UAV)’s decision
may differ if it believes that its reconnaissance target believes that
it is not being spied upon in comparison to when the UAV believes
that its target believes that it is under surveillance. Specifically,
an agent’s rational action in a two-agent game often depends on
the action of the other agent, which, if the other is also rational,
depends on the action of the subject agent.

Assumptions ofcommon knowledge[11, 10] of elements of the
game tend to preclude the emergence of recursive reasoning. How-
ever, not all elements can be made common knowledge. For exam-

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

ple, an agent’s belief is private especially in a non-cooperative set-
ting. Multiple decision-making frameworks such as the recursive
modeling method (RMM) [17, 18] and interactive partially observ-
able Markov decision process (I-POMDP) [16, 8] model recursive
beliefs as an integral aspect of agents’ decision making in multia-
gent settings.

Real-world applications of decision making often involve mixed
settings that are populated by humans and human-controlled agents.
Examples of such applications include UAV reconnaissance in an
urban operating theater and online negotiations involving humans.
The optimality of an agent’s decisions as prescribed by frameworks
such as RMM and I-POMDP in these settings depends on how ac-
curately the agent models the strategic reasoning of others. A key
aspect of this modeling is the depth of the recursive reasoning that
is displayed by human agents.

Initial investigations into ascertaining the depth of strategic rea-
soning of humans by Stahl and Wilson [25] and more recently, by
Hedden and Zhang [21] and Ficici and Pfeffer [12] show that hu-
mans generally operate at only first or second level of recursive
reasoning. Typically the first level, which attributes no recursive
reasoning to others, is more prominent. Evidence of these shal-
low levels of reasoning is not surprising, as humans are limited by
bounded rationality.

Increasing evidence in cognitive psychology [14, 15, 19] sug-
gests that tasks which are ecologically more valid and which in-
corporate tangible incentives induce decisions in humans that are
closer to being rational. Both these aspects were lacking in the ex-
periments conducted by Hedden and Zhang [21]. We hypothesize
that a strategic setting that is realistic, competitive and includes tan-
gible incentives would increase participants’ tendency to attribute
levels of reasoning to others that reflect individuals’ actual level of
reasoning.

In this paper, we report on a large study that we conducted with
human subjects to test our hypothesis. We constructed a task that
resembled the two-player sequential game as used by Hedden and
Zhang but made more competitive by incorporating fixed-sum out-
comes and monetary incentives. Subjects played the game against
a computer opponent, although they were led to believe that the
opponent was human. Different groups of subjects were paired
against an opponent that used no recursive reasoning (zero level)
and opposite one that used first-level reasoning. We also manipu-
lated the realism of the task between participants, with one group
experiencing the task described abstractly while the other experi-
enced a task that was structurally identical but described using a
realistic cover story involving UAV reconnaissance.

Data collected on the decisions of the participants indicate that
(i) subjects acted accurately significantly more times when the op-
ponent displayed first-level reasoning than when the opponent was
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at zero level. The particpants also learned the reasoning level of
opponents more quickly than reported previously by Hedden and
Zhang. (ii) No significant difference in the accuracy of the deci-
sions was noticed between abstract and realistic task settings. Thus,
our study reveals clear evidence that higher levels of recursive rea-
soning could be observed in humans under simpler and more com-
petitive settings with tangible incentives. However, there is room
for future research on whether increased realism contributes to deeper
levels of strategic reasoning.

2. RELATED WORK
Harsanyi [20] recognized that indefinite recursive thinking arises

naturally among rational players, which leads to difficulty in mod-
eling it computationally. In order to, in part, avoid dealing with
recursive reasoning, Harsanyi proposed the notion of agent types
and common knowledge of the joint belief over the player types.
However, as shown in [11, 10], common knowledge is itself mod-
eled using an indefinite recursive system.

Since Harsanyi’s introduction of abstract agent types, researchers
have sought to mathematically define the type system. Beginning
with Mertens and Zamir [24], who showed that a type could be de-
fined as a hierarchical belief system with strong assumptions on the
underlying probability space, subsequent work [5, 22] has gradu-
ally relaxed the assumptions required on the state space while si-
multaneously preserving the desired properties of the hierarchical
belief systems. Along a similar vein, Aumann defined recursive
beliefs using both a formal grammar [1] and probabilities [2] in an
effort to formalize interactive epistemology.

Within the context of behavioral game theory [6], Stahl and Wil-
son [25] investigated the level of recursive thinking exhibited by
humans. Stahl and Wilson found that only 2 out of 48 (4%) of their
subjects attributed recursive reasoning to their opponents while play-
ing 12 symmetric 3×3 matrix games. On the other hand, 34%
of the subjects ascribed zero-level reasoning to others. Remain-
ing subjects utilized either Nash equilibrium based or dominant
strategies. Corroborating this evidence, Hedden and Zhang [21] in
a study involving 70 subjects, found that subjects predominantly
began with first-level reasoning. When pitted against first-level
co-players, some began to gradually use second-level reasoning,
although the percentage of such players remained generally low.
Hedden and Zhang utilized a sequential, two-player, general-sum
game, sometimes also called the Centipede game in the literature [4].
Ficici and Pfeffer [12] investigated whether human subjects dis-
played sophisticated strategic reasoning while playing 3-player, one-
shot negotiation games. Although their subjects reasoned about
others while negotiating, there was insufficient evidence to distin-
guish whether their level two models better fit the observed data
than level one models.

Evidence of recursive reasoning in humans and investigations
into the level of such reasoning is relevant to multiagent decision
making inmixedsettings. In particular, these results are directly ap-
plicable to computational frameworks such as RMM [17], I-POMDP [16]
and cognitive ones such as theory of mind [9] that ascribe inten-
tional models of behavior to other agents.

3. EXPERIMENTAL STUDY: HIGHER LEVEL
RECURSIVE REASONING

In a large study involving human subjects we investigate whether
subjects would generally exhibit a higher level of recursive reason-
ing under particular settings that are more typical of realistic appli-
cations.

We begin with a description of the problem setup followed by the
participating population and our methodology for the experiment.

3.1 Problem Setting
In keeping with the tradition of experimental game research [7,

6] and the games used by Hedden and Zhang [21], we selected a
two-player alternating-move game of complete and perfect infor-
mation. In this sequential game, whose game tree is depicted in
Fig. 1(a), playerI (the leader) may elect tomoveor stay. If player
I elects to move, playerII (the follower) faces the choice of mov-
ing or staying, as well. An action of stay by any player terminates
the game. Note that actions of all players are perfectly observable
to each other. While the game may be extended to any number of
moves, we terminate the game after two moves of playerI.

Moves Moves Moves

Stays Stays Stays

I III

A B C

D A

B

D

C

(a) (b)

I decides

I decides

II decides

Figure 1: (a) A game tree representation (extensive form) of
our two-player game. Because of its particular structure, such
games are also sometimes called Centipede games. States of the
game are indicated by the letters, A, B, C and D.(b) Arrows
denote the progression of play in the game. An action ofmove
by each player causes a transition of the state of the game.

In order to decide whether to move or stay at stateA, a rational
playerI must reason about whether playerII will choose to move or
stay atB. A rational playerII ’s choice in turn depends on whether
playerI will move or stay atC. The default action is to stay. Thus,
the game lends itself naturally to recursive reasoning and the level
of reasoning is governed by the height of the game tree. Player
I’s rational choice may be computed using backward induction in a
straightforward way.

Recent studies have reported that more normative reasoning is
facilitated in humans by using multimodal, spatial, ecologically
valid (realistic) and experience-based presentations of the underly-
ing game structure. Such facilitation has been reported in multiple
psychological phenomena such as base-rate neglect [19, 15], over-
confidence [14], the confirmation bias [13], and the conjunction
fallacy [14]. In all these cases, the implementation of more real-
istic settings with richer contexts has made reasoning significantly
closer to rational. Therefore, we imposed the followingcover story
in order to instantiate the game of Fig. 1:

Player I (you) wants to gather critical information about a tar-
get. Player II (a UAV) wants to prevent you from gathering that
information. In order to gather the information, you can use your
best spy-grade binoculars, and you can move closer to the target.
You are currently at position J in Fig. 2(a), where you are close
enough to have a 60% chance of getting the information you need.
If you move to position K, you will still have a 60% chance of get-
ting the information. If you move to position L, you increase your
chances to 100%. You cannot move directly from position J to po-
sition L, and you cannot move backwards (L to K, K to J, or L to
J). Player II has equipment to jam your signal, which completely
destroys any information you have obtained, if it is deployed suc-
cessfully. Player II is currently at position X, and it can move to
position Y, but it cannot move backwards (Y to X). If you stay at
position J, you will not arouse Player II’s suspicion, she will not
attempt to jam your signal, and she will not move from position X.
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If you move to K, then Player II must choose whether to stay at X
or move to Y. If Player II stays at X, she has a 33.3% chance of
jamming your signal, but if she moves to Y, she has a 66.7% chance
of jamming your signal. However, if she chooses to move to Y, you
can quickly move from K to L while she is moving. If you are at L
and she is at Y, she has a 20% chance of jamming your signal. If
you move from K to L while Player II is still at X, she has a 100%
chance of jamming your signal, so you should not do that.

Moves Moves Moves

Stays Stays Stays

I III
0.8

0.20.40.6move

move

move

0.6

0.2
1.0

0.33
0.667

0.6

X Y

L K

J

II

I

target
1.0

(a) (b)

Figure 2: (a) A spatial visualization of the game where player
I is a human intending to gather information about a target.
Player II is a human-controlled UAV aiming to hinder I from
gathering the critical information. The dashed arrows and
probabilities indicate the chances ofI gathering information
or II hindering its access.(b) Centipede representation of our
game with the outcomes as the probabilities of success of player
I. It is a fixed-sum game and the remaining probability is the
chance of success of playerII (failure of player I).

This scenario is accompanied with Fig. 2 for illustration. If par-
ticipants have difficulty in understanding the scenario, they will be
further provided with a chart shown in Table 1 in which the poste-
rior probabilities of success are clearly given. In order to succeed,
player I must both obtain the information and not have the sig-
nal jammed. So the overall probability of success is: Pr(obtaining
info)×[1-Pr(jamming signal)].

Notice from Fig. 2 that a rational playerI will choose to stay.
This is because ifI chooses to move, playerII will choose to stay
with an overall chance of 0.6 of hindering access. A move by player
II is not rational because playerI will then choose to move as well
with the probability of success forII being only 0.2.

Player I’s Player II’s I’s chance of II’s chance of I’s overall chance

position position obtaining info jamming signal of success

J X 60% 0% (doesn’t try) 60%

J Y wouldn’t happen – II doesn’t move if I doesn’t go from J to K

K X 60% 33.3% 40%

K Y 60% 66.7% 20%

L X 100% 100% 0% (so don’t try it!)

L Y 100% 20% 80%

Table 1: Chart showing the various probabilities for players I
and II .

3.2 Participants
A total of 162 subjects participated in the study. The partici-

pants were undergraduate students enrolled in lower-level Psychol-
ogy courses at the University of Georgia. In addition to receiving
performance-contingent monetary incentives, which we describe
below, the participants received partial course credit.

All participants gave informed consent for their participation prior
to admission into the study. They were appropriately debriefed at

the conclusion of the study.

3.3 Methodology

3.3.1 Opponent Models
In order to test different levels of recursive reasoning, we de-

signed the computer opponent (playerII ) to play a game in two
ways: (i) If player I chooses to move,II decides on its action by
simply choosing between the outcomes at statesB and stay, andC
with a default of stay in Fig. 1(b) rationally. Therefore,II is a zero-
level player and we call itmyopic(see Fig. 3(a)). (ii) If player I
chooses to move, the opponent decides on its action by reasoning
what playerI will do rationally. Based on the action ofI, playerII
will select an action that maximizes its outcomes. Thus, playerII
is a first-level player, and we call itpredictive(see Fig. 3(b)).

C        D

C        D

move

stay B         [C : D]

B         [C : D]

move

stay

move

stay

A         [B : [C : D]]

I

predictive II

I

A         [B : [C : D]]

Second-level reasoning

(a)

(b)

move

stay B         C

B         C 

move

stay

A         [B : C]

I

myopic II 

A         [B : C]

First-level reasoning

Figure 3: (a) A myopic player II decides on its action by com-
paring the payoff at state B with that at C. Here, B ≺ C de-
notes a preference of C over B for the player whose turn it is to
play and B : C denotes the rational choice by the appropriate
player between actions leading to states B and C. Thus, player
I exhibits first-level reasoning. (b) If player II is predictive, it
reasons aboutI’s actions. Player I then exhibits second-level
reasoning in deciding its action at state A.

To illustrate, in the game of Fig. 2 if playerI decides to move,
a myopic playerII will move to obtain a probability of success of
0.8, while a predictiveII will choose to stay because it thinks that
playerI will choose to move fromC to D, if it moved. By choosing
to stay,II will obtain an outcome of 0.6 in comparison to 0.2 if it
moves.

3.3.2 Payoff Structure
Notice that the rational choice of players in the game of Fig. 1

depends on the preferential ordering of states of the game rather
than actual values. Leta ≺ b indicate that the player whose turn
it is to play prefers stateb overa, and because the game is purely
competitive, the other player prefers statea overb. Games that ex-
hibit a preference ordering ofD ≺ C ≺ B ≺ A andA ≺ B ≺ C
≺ D for playerI are trivial because playerI will always opt to stay
in the former case and move in the latter case, regardless of how
II plays. Furthermore, consider the orderingC ≺ A ≺ B ≺ D for
playerI. A myopic opponent will choose to move while a predic-
tive opponent will stay. However, in both these cases playerI will
choose to move. Thus, games whose states display a preferential
ordering of the type mentioned previously are not diagnostic – re-
gardless of whether playerI thinks that opponent is myopic or is
predictive,I will select the same action precluding a diagnosis of
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I’s level of recursive reasoning. Of all the 24 distinct preferential
orderings among states that are possible, only one is diagnostic:C
≺ B ≺ A ≺ D. For this ordering, playerI will move if it thinks
that the opponent is myopic, otherwiseI will stay if the opponent
is thought to be predictive. We point out that the game in Fig. 2
follows this preference ordering.

3.3.3 Design of Task
Batches of participants played the game on computer terminals

with each batch having an even number of players. Each batch was
divided into two groups and members of the two groups were sent
to different rooms. This was done to create the illusion that each
subject was playing against another, although the opponent was in
reality a computer program. This deception was revealed to the
subjects during debriefing.

Each subject experienced an initialtraining phaseof at least 15
games that were trivial or those in which a myopic or predictive
opponent behaved identically. These games served to acquaint the
participants with the rules and goal of the task without unduly bi-
asing them about the behavior of the opponent. Therefore, these
games have no effect on the initial model of the opponent that par-
ticipants may have. Participants who failed to choose the rational
actions in any of the previous 5 games after the 15-game training
phase continued with new training games until they met the crite-
rion of no rationality errors in the 5 most recent games. Those who
failed to meet this criterion after 40 total training games did not
advance to the test phase, and were removed from the study.

In thetest phase, each subject experienced 40 games instantiated
with outcome probabilities that exhibited the diagnostic preferen-
tial ordering ofC ≺ B ≺ A ≺ D for playerI. The 40 critical games
were divided into 4 blocks of 10 games each. In order to avoid sub-
jects developing a mental set, we interspersed these games with 40
that exhibited the orderings,C ≺ A ≺ B ≺ D andD ≺ B ≺ A ≺ C.
The latter games not only serve to distract the participants but also
function as “catch” trials allowing us to identify participants who
may not be attending to the games.

Approximately half the participants played against myopic op-
ponents while the remaining played against predictive ones. In each
category, approximately half of the participants were presented with
just the Centipede representation of the games with probabilistic
payoffs and no cover story, which we label as theabstractver-
sion. Remaining participants in the category were presented with
the UAV cover story and the associated picture in Fig. 2, including
the Centipede representation. We label this as therealisticversion.
About half of all participants also experienced a screen asking them
what they thought the opponent would play and their confidence in
the prediction, for some of the games.

Participants received a monetary incentive of 50 cents for every
correct action that they chose in a game. This resulted in an average
payout of approximately $30 per participant.

3.4 Results and Discussion
Our study spanned a period ofthree monthsfrom September

through November 2008. We report the results of this study be-
low.

3.4.1 Training Phase
As mentioned before, each of the 162 human subjects initially

played a series of 15 games in order to get acquainted with the
fixed-sum and complete information structure, and objectives of the
task at hand. After this initial phase, participants who continued to
exhibit errors in any of the games up to 40 total games were elim-
inated. 26 participants did not progress further in the study. These

participants either failed to understand how the game is played or
exhibited excessive irrational behavior, which would have affected
the validity of the results of this study.

3.4.2 Test Phase
Of the 136 participants (70 female) who completed the test phase,

we show the numbers that experienced myopic or predictive oppo-
nents and abstract or realistic versions of the games, in Table 2.

Structure myopic myopic predictive predictive
abstract realistic abstract realistic

No. of subjects 37 30 37 32

Table 2: The numbers of participants that experienced each of
the 4 different types of tasks. The numbers differ from each
other because of eliminations in the training phase.

Participants in each of the 4 groups were presented with 40 in-
stances of the particular game type whose payoff structure is diag-
nostic. For the sake of analysis, we assembled 4test blockseach
comprising 10 games. For each participant, we measured the frac-
tion of times that the subject played accurately in each test block.
We define anaccurate choiceas the action choice which is rational
given the type of opponent. For example, in the game of Fig. 2, the
accurate choice for playerI, if the opponent is myopic, is to move.
On the other hand, if the opponent is predictive, the accurate choice
for I is to stay.

Because opponents types are fixed and participants experience
40 games, they have the opportunity to learn how their opponent
might be playing the games. Consequently, participants may grad-
ually make more accurate choices over time. Participants were
deemed to have learnt the opponent’s model at the game beyond
which performance was always statistically significantly better than
chance, as measured by a binomial test at the 0.05 level and one-
tailed. This implies making no more than one inaccurate choice in
any block of 10 games. (For this purpose, blocks were defined by
a moving window of 10 games, not the fixed blocks used in other
analyses.)

In Fig. 4(a), we show the mean proportion of accurate choices
across all participants in each of the 4 groups. Two group-level
findings are evident from the results in Fig. 4(a): First, the mean
proportion of accurate choices is significantly higher when the op-
ponent is predictive as compared to when it is myopic. This is
further evident from Fig. 4(b) where we show the mean propor-
tions marginalizedover the abstract and realistic versions of the
tasks. Student t-tests with p-values< 0.0001 confirm that partici-
pants playing against predictive opponents have statistically signifi-
cant higher proportions of accuracy compared to myopic opponents
across all test blocks.

The higher proportions of accurate choice when the opponent
is predictive in conjunction with the lower proportions when the
opponent is myopic implies that subjects predominantly displayed
second-level reasoning when acting. They expected the opponent
to reason about their subsequent play (first-level reasoning) and
acted accordingly. The fact that myopic opponents did not do this
resulted in their choices being inaccurate.

Second, no significant difference in the mean proportions be-
tween abstract and realistic versions of the tasks is evident across
any test block from Fig. 4(a). This is regardless of whether the op-
ponent is myopic or predictive. This observation is further evident
in Fig. 4(c) which shows the mean proportions for abstract and real-
istic versions marginalized over myopic and predictive opponents.
Student t-tests with very low p-values revealed no statistical signif-
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Figure 4: (a) Mean proportion of accurate choices of the participants for all conditions across test blocks. Notice that subjects
generally expected their opponents to play at first level far more than at zero level. Mean proportions marginalized over(b) abstract
and realistic versions of the task, and(c) over myopic and predictive opponents. The difference in the latter is not statistically
significant.

icance in the difference between the proportions, either overall or
in any test block.

The lack of any significant difference in the accuracy of the choices
seems to suggest that our cover story neither confounded the partic-
ipants nor clarified it further in an intuitive sense. We speculate that
the indifference is due to,(i) the Centipede representation though
abstract being sufficiently clear to facilitate understanding of this
simple game, and thus(ii) subjects playing the games with high
accuracy leaving little room for improvement, at least in the pre-
dictive groups.

Notice from Fig. 4(a) that the mean proportion of accurate choice
improves over successive test blocks in all groups. Many partici-
pants in the predictive groups learnt in fewer than 10 games, by
making no inaccurate choices in the first 7 games, and no more
than one in the first 10 games. Forty-one participants, of which
40 were in the myopic conditions, never achieved learning by our
standard; they were then assigned a value of 40 for the number of
games to learning. The average number of games to learning was
10 for the predictive group and 31.7 for the myopic group (for the
difference, Student t-tests reveal p< 0.0001).
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Figure 5: Count of participants who played myopic or predic-
tive opponents and grouped according to different proportions
of accurate choice.

Finally, in Fig. 5, we detail the number of participants whose
actions across all games fell into different bins of proportion of ac-
curate choice. Fig. 5 reveals that about 83% of the 67 participants
who played against a myopic opponent had proportions less than
0.875. In comparison, only about 4% of the 69 participants who
played a predictive opponent exhibited such proportions of accu-
rate choice. Consequently, these results conclusively reveal that our
subjects predominantly played reasonably and as though they ex-
pected the opponents to be predictive, and thus generally reasoned
at a level higher than had been previously observed.

4. DISCUSSION
Multiple previous investigations into spontaneous recursive rea-

soning by individuals while playing strategic games have shown
that humansgenerallydo not think that opponents will think re-
cursively while playing. Therefore, they themselves reason at only
a single level of nesting. This has been attributed to the bounded
rationality and limited mental processes of humans. Using a strate-
gic game employed in one such previous study but made more
competitive by incorporating fixed-sum payoffs and tangible incen-
tives, we have shown that humans exhibit a higher level of recursive
thinking when playing this game. Thus, we have demonstrated that
in some settings humansgenerallyreason at higher levels of recur-
sion, and therefore exhibit more rational behavior. Consequently,
our experiment opens up avenues for identifying settings where hu-
mans typically exhibit other forms of strategic sophistication such
as simultaneous deeper and longer term thinking.

Although there is psychological evidence to suggest that intuitive
cover stories induce human behavior closer to rational action, our
cover story of UAV reconnaissance neither reduced nor improved
the accuracy of the results. However, we do not claim that the pre-
viously perceived effect is not real, only that our particular cover
story did not evoke it. We suspect that it may make a positive dif-
ference if the game is more sophisticated such as an extended Cen-
tipede game requiring three or four levels of recursive thinking.

An alternate hypothesis for explaining our results could be that
many of the subjects solved the games completely using backward
induction (ie. minimax). However, we do not believe this to be the
case because,(a) participants are implicitly encouraged to think
about opponent models,(b) Hedden and Zhang’s result of predom-
inant first-level reasoning in an identically-structured game pre-
cludes the use of backward induction. Others have noted that back-
ward induction fails to explain a variety of human reasoning and
decision-making behavior [23], and that it is not robust particularly
in gaming situations where parity and certainty do not exist [3].
Our game does not display parity because player I has greater con-
trol over the outcome of the game, and(c) the subjects were not
explicitly trained in sophisticated game-theoretic techniques such
as backward induction or minimax for solving games. Indeed,
our exit questionnaire revealed that participants predominantly rea-
soned about the opponent’s thinking.
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ABSTRACT
We present a procedure for the estimation of bids in auction
protocols. This class of protocols is of interest to multia-
gent systems because they can be used to coordinate the
assignment of tasks to agents. The main idea is to take ad-
vantage of methods for the synthesis of task execution con-
trollers that rely on the availability of value functions. These
provide a natural way to obtain the bid values for a given
task. The approach is demonstrated on an active surveil-
lance system, where mobile robots must approach and iden-
tify humans, and conduct patrols. The Partially Observable
Markov Decision Process (POMDP) framework is used to
compute policies for the execution of tasks by each agent,
the task bid values are obtained directly from the respective
value functions. Several simulation examples are presented
for an urban surveillance environment, illustrating the ap-
plicability of our ideas.

General Terms
Multiagent systems

Keywords
POMDP, Auction Protocol, Task Assignment

1. INTRODUCTION
We present an approach to the estimation of bids in auc-

tion protocols. It is based in the value functions obtained
from the design of controllers for the execution of tasks by
the agents. From these functions, the fitness of an agent to
execute a task (given the state of the environment) can be
obtained directly, and without extra effort.

The use of auction protocols was initially proposed by
[20] for collaborative, distributed problem solving among a
set of agents. In multi-robot systems, these protocols are
commonly used to determine the assignment of tasks [5].
They are also used in assignment problems arising in areas
such as corporate management [2], and game theory [13].
The main advantages of these protocols are their robustness
to individual agent failures and the reduced bandwidth re-
quirements [6]. Another advantage is that the assignment
solutions are computed in a distributed manner, and thus
can be used by agents with low computational resources.

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

A crucial challenge to applying auction protocols is the es-
timation of the agents’ bid values for each task. Agents must
evaluate their fitness for executing a task using only locally
available information. In mobile robotic applications, tasks
often consist in the execution of a path [6, 7, 5]. Therefore,
the bid value on each task can be the path distance, the
travel time or a combination of these measures [12]. In gen-
eral, these are heuristic measures that need to be defined for
each task, often in an ad-hoc manner. By comparison, the
advantage of using task controllers based on value functions
is that bid functions need not be tailored for the application
at hand. Instead, they already have been computed, and
will reflect better true bid values, since they are derived di-
rectly from the task controller. In order to implement our
task execution controllers using value functions, they are
synthesized through a decision-theoretic approach. In par-
ticular, we use Partially Observable Markov Decision Pro-
cesses (POMDPs) [10], which form a general and powerful
mathematical basis for planning under uncertainty.

The remainder of this paper is as follows. In Section 2 we
present an overview of the proposed approach. The POMDP
framework is reviewed in Section 3, and Section 4 describes
the auction protocol. In Section 5 the proposed approach for
the estimation of bids is presented. Section 6 shows how the
approach can be applied to an active surveillance system,
and it is evaluated through simulation. Finally, in Section 7
we discuss the paper.

2. MULTIAGENT TASK COORDINATION
The problems considered in this paper are the assignment

of tasks and their execution in a multiagent system. The
first problem is formulated as the assignment of tasks with
unknown arrival order. The agents can execute only one
task at a time, which can be interrupted to begin the execu-
tion of another one. In this case, the current progress of the
interrupted task is lost. Due to communication and hard-
ware failures, the number of available agents is not known
a priori. The computation of the assignment solution when
the order of task arrivals is known and no failures occur is
NP-HARD in general, [9, 4]. The available algorithms pro-
posed for this problem often require computational resources
organized in a centralized manner.

The second problem is the synthesis of controllers for the
execution of each task by the agents. Each has available
a finite, and possibly distinct, set of actions and can per-
ceive features of interest in the environment. This problem
is then formulated as computing a controller for the exe-
cution of a task by an agent. The tasks are assumed to
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Figure 1: Diagram of proposed solution. Each agent
is running a POMDP model for each task in parallel,
but only one is active (indicated by a solid box).

be executed by a single agent, without explicit coordination
with other agents. In this way, we avoid the severe complex-
ity penalty involved when considering the full joint planning
problem (either centralized or decentralized). Coordination
is achieved on a task level, by finding the optimal assignment
of individual tasks to agents.

A POMDP problem is formulated and solved for each task
an agent can execute. The POMDPs at each agent receive
the same set of local observations, but between agents no
beliefs or other types of information are shared. When an
agent is assigned a task, the policy of the corresponding
POMDP is enabled and the others disabled. That is, the
actions executed by the agent are those determined only by
the policy of the assigned task POMDP.

The proposed approach in this paper is represented in the
block diagram of Figure 2. It is composed by a central su-
pervisor, denoted the auctioneer, and a set of heterogeneous
agents. The tasks to be executed by the agent are received
by the auctioneer and are then assigned through an auc-
tion protocol. Although the solution to the computation of
task assignments is centralized, these can arrive in any or-
der and the computational complexity is polynomial. Also,
it is robust to communication and individual agent failures.
The disadvantage is that in general, an optimal assignment
solution is not guaranteed.

3. POMDP BACKGROUND
We will discuss POMDP models and solutions, briefly

introducing some general background. A more elaborate
POMDP model description is provided by [10], for instance.

A POMDP models the interaction of an agent with a
stochastic and partially observable environment, and it pro-
vides a rich mathematical framework for acting optimally in
such environments. The framework is based on the assump-
tions that at any time step the environment is in a state
s ∈ S and the action a ∈ A is taken by the agent. As a re-
sult of this action, a reward r(s, a) signal is received by the
agent from the environment. And the environment state

is changed to the new state s
′, in accordance to a known

stochastic transition model p(s′|s, a). The task of an agent
is defined by the reward it is given at each time step. The
agent task goal is to maximize the long-term reward signals
received. After the environment transition to the new state,
an observation o ∈ O is perceived by the agent. This is con-
ditional on the current environment state, and possibly the
action executed, according to a known stochastic observa-
tion model p(o|s′, a).

Given the transition and observation models, the POMDP
can be transformed to a belief-state MDP, where the all past
information of the agent is summarized using a belief vec-
tor b(s). It represents a probability distribution over S, from
which a Markovian signal can be derived for the planning of
actions. The initial state of the system is drawn from the
initial belief b0, which is typically included in the POMDP
problem formulation. Every time an action a is taken by
the agent and observation o is obtained, the agent belief is
updated by Bayes’ rule; for the discrete case:

b
o
a(s′) =

p(o|s′, a)

p(o|a, b)

X

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
P

s′∈S
p(o|s′, a)

P

s∈S
p(s′|s, a)b(s), is a

normalizing constant.
In POMDP literature, a plan is called a policy π(b) and

maps beliefs to actions. The policy can then be used to se-
lect the action the agent must execute in order to achieve the
task goal. A policy π can be characterized by a value func-
tion V

π which is defined as the expected future discounted
reward V

π(b) the agent can gather by following π starting
from belief b:

V
π(b) = Eπ

h

h
X

t=0

γ
t
r(bt, π(bt))

˛

˛

˛

b0 = b

i

, (2)

where r(bt, π(bt)) =
P

s∈S
r(s, π(bt))bt(s) following the

POMDP model as defined before, h is the planning horizon,
and γ is a discount rate, 0 ≤ γ ≤ 1.

The process of solving POMDPs optimally is hard, and
thus algorithms that compute approximate solutions are used.
There has been much progress in approximate POMDP solv-
ing, see for instance [8, 21] and references therein. Further-
more, if a value function has been computed off-line, the
on-line execution of the policy it implements does not re-
quire much computational requirements.

4. AUCTION PROTOCOL
The purpose of the auction protocol is to determine the

POMDP policy that each agent must execute. This is equiv-
alent, in the context of this paper, to the assignment of tasks
to agents. The task generation process is assumed to be ex-
ogenous to the multiagent system. For instance, the execu-
tion of a task can be triggered by the occurrence of an event.
The tasks arrive at the auctioneer at any time instant, but
are assigned in a bulk manner at regular intervals. Note that
we can also start a round of task assignment on demand, for
instance when a high-priority task arrives. Also, a task can
be scheduled to be executed at periodic time intervals, such
as battery recharge operations.

The task execution requests could also originate from some
of the agents or the auctioneer. As an example, the auction-
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eer may directly receive event messages and locally favor the
assignment of some tasks over others. The priority of each
task is dictated by the specific application.

In order to solve the task assignment problem, the auc-
tioneer is only required to know the expected discounted re-
ward values of the POMDP task solutions from each agent,
given their individual beliefs. The auction protocol is de-
signed as follows, requesting this information from each agent.

Definition 1 (Auction Protocol). The auction pro-
tocol is as follows:

1) All of the tasks are announced to the agents by the
auctioneer.

2) The agents reply with their current expected discount
reward V

π(b) for each task. Hence, this is obtained
from the solution V

π for the task’s POMDP model,
and the agent’s current belief b.

3) The assignment solution is computed by the auctioneer
and announced to the agents.

The assignment solution is determined by solving a mixed
integer-linear program (MILP). The number of tasks waiting
to be assigned by the auctioneer, at a particular instant,
is represented by w. The number of agents that replied
with bids is n. The assignment of the tasks to the agents is
represented by the matrix Y . The element yij is one if the
i-th agent is assigned the j-th task, and zero otherwise. The
optimal assignment solution, Y

∗, is then determined from
the MILP:

max
X

i

X

j

βij · yij

s.t.
X

i

yij ≤ 1, j = 1, . . . , w

X

j

yij ≤ 1, i = 1, . . . , n

yij ∈ {0, 1}

(3)

where βij is the value of the bid received from the i-th
agent for the execution of the j-th task. The problem con-
straints state that each task is assigned to at most one agent
and vice-verse. Thus, if their numbers are not equal, that is
w 6= n, some tasks are not assigned or some agents remain
idle. This can also occur in heterogeneous multiagent sys-
tems, where some agents may not be able to execute some
of the tasks. In this case, the agents reply with an arbitrary
negative value. From the problem formulation, it is clear
that if βij is negative then the i-th agent is not assigned
the j-th task. This is because there is at least one feasible
solution without this assignment and with a greater value
for the cost functional.

The main advantage of this protocol is that the auctioneer
is not required to known the number of available agents or
their beliefs. Therefore, the approach is robust to the fail-
ure of agents or temporary network shortages. Because if an
agent cannot be contacted, the others are still assigned tasks.
Also, the communication and computational resources are
reduced since only the current expected discounted reward
must be reported to the auctioneer. Finally, the coordina-
tion of the agents is obtained implicitly through the auction
protocol.

Although the assignment problem is a MILP, it can be effi-
ciently solved in polynomial time using the Hungarian algo-
rithm [3]. Therefore, this approach can be applied to small
and medium sized problems with tens or hundreds of agents
and tasks. In contrast, the auction protocols described in [5]
often exhibit exponential complexity. The reason is that in
these protocols, agents bid on bundles of tasks instead of
the single task case of our protocol. Although the compu-
tational complexity is greatly reduced, the solution is only
locally optimal. In [11] it was shown that for bundles with
a small number of tasks, the assignment solution quality is
improved without significantly increasing the computational
and communication costs. Nevertheless the problem of com-
puting the bid value is not considered and the tasks to be
executed are known in advance. This is not the case in this
paper, where the tasks and their arrival order are not known
in advance. Also, it is assumed that agents do not accurately
know their state. As a result, the estimation of bids for fu-
ture tasks is complicated by the uncertainty at the current
state.

5. POMDPS FOR BID ESTIMATION
In this work, we assume that the agents do not share any

information among them. The reason is to reduce the net-
work bandwidth and computational requirements, since the
POMDP instances are smaller. It is known that relying on
perfect communication can reduce the decentralized plan-
ning to a centralized one [17], but the size of the centralized
problem still grows exponentially in the number of agents.
Another reason is that since the agents are assumed not to
be required to coordinate their individual actions in order
to execute tasks, their POMDP models in general need not
account for other agents. It must be stressed that the ex-
ecution of tasks could benefit from knowledge on the other
agents’ beliefs and actions. For instance, if the planned
paths of two mobile robots intersect, the collision could be
avoided if their beliefs were shared. In order to avoid such
potentially dangerous cases, low-level safety controllers are
assumed to be available for the execution of actions.

Since multiple independent decision makers are present in
the environment, the problem could be modeled as a de-
centralized POMDP (Dec-POMDP) [1, 19, 14]. However,
given their very high complexity class, current algorithms
do not scale to the types of applications we are focusing
on. In our case, the coordination of the agents is obtained
implicitly through the auction protocol and the auctioneer;
coordination is considered on the level of task assignments
vs. the level of individual agent actions, as is common in
Dec-POMDPs.

A POMDP model of a certain task provides both an im-
plementation of the task, i.e., how the agent should act to
accomplish the task, as well as a valuation of the agent’s
fitness to execute it. The latter depends on the state of the
environment, and in the POMDP case, on the agent’s belief
state. For each task, the reward model is such that when the
agent accomplishes the goal, for instance reaching an area
where to patrol, it receives a single reward of 10. When
reaching the goal, the agent is transferred to an absorbing
state, in which it receives zero reward, and it only leaves the
absorbing state when a new task has been assigned. The
use of an absorbing state is crucial, because otherwise the
POMDP values can keep on rising, by instructing the agent
to remain in a goal state. Although this effect might not
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influence the policy implemented by the value function, in-
flated values are not desirable for our approach, given that
we compare values between different POMDPs.

As discussed, in order to evaluate the relative benefit of
using agent x over agent y, their valuations should be in the
same range. For this reason we employ the same maximum
reward in each POMDP model, where the values of each
are normalized to [0, 10]. However, we need to be able to
express different priorities for tasks, in order to ensure that
more important tasks get assigned first; for instance, when
there are more tasks than agents available. This is accounted
for by multiplying each the bid values by the task priority.
Since the bid values are normalized, the result is that each
bid is weighted by the respective task priority.

Note that instead of POMDPs also other planning mod-
els can be used, as long as they involve computing a value
function. An example is the ALLIANCE control architec-
ture [15], where the agent impatience and acquiescence levels
determine the task to be executed. Assume that the sum of
both levels is equal to some constant. Then the value func-
tion can be identified with the agent impatience and the
acquiescence with the complementary value.

6. ACTIVE SURVEILLANCE SYSTEM
The presented approach is applied, in simulation, to an

active surveillance system. It is composed by a set of mobile
robots, an auctioneer and a network of cameras. These are
capable of detecting, with some uncertainty, the location in
the environment of robots and humans. Upon the detec-
tion of a human by the cameras, the auctioneer is notified.
Note that here we present a simplified scenario, which can
be extended easily to include more events (with different
priorities), for instance the detection of fires.

6.1 Experimental setup
The robots have available on-board cameras, which can

recognize humans, also with some uncertainty. Each robot
can obtain its localization in the environment directly from
the camera network. In addition, the robots’ on-board power
supply is limited and must be recharged after some time has
elapsed. The tasks the mobile robots can execute are thus:
(i) identification of humans, (ii) meeting a person, (iii) patrol
the environment and (iv) recharge their on-board batteries.
The first two tasks are assigned only when a person detection
event has occurred. In these tasks the robot must approach
the desired location and use the on-board sensors either to
identify a human or meet it, in order to engage in human-
robot interaction. The last two task types are assigned at
regular intervals and have a low priority with respect to the
first two. In this manner, if no events occur mobile robots
can conduct patrols or recharge their batteries.

A set of four robots were simulated (as a unicycle), three
modeled after a Pioneer 3-AT robot (indicated by Pioneer
A, B and C), and one after an AtrvJr robot. In our current
setup, the difference between the Pioneers and the AtrvJr
is their maximum speed, which is 1.0m

s
for the AtrvJr and

0.4m
s

for the Pioneers. In addition, the camera of Pioneer A
had a higher resolution than the cameras on-board the other
robots. As a result, this robot could observe a location in
the environment from a greater distance than the others.

A topological map of the active surveillance environment
is represented in Figure 2. It was obtained from the test site
of the URUS project [18], at the UPC campus in Barcelona,
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Figure 2: Topological map of the active surveillance
environment.

Task State variables
Patrol SouthWest Robot position
Patrol NorthWest Robot position
Patrol NorthEast Robot position
Patrol SouthEast Robot position
Meet Person Robot position, person position
Identify Person Robot position, person position
Recharge Robot position, battery level

Table 1: State variables used by different tasks. Po-
sitions are represented by nodes in the topological
map; battery level consists of four levels, ranging
from “high” to “very low”.

Spain. The overall dimensions of the map are 100 by 100
meters, as represented in the figure. The environment was
partitioned in smaller regions, with the center of each rep-
resented in the map. The tasks are defined as navigation
actions, defined using the region centers as way-points. In
such a topological map, from each node a robot can only
move to nodes connected to it by edges, representing the
topology of the environment.

Each of the tasks mentioned in the previous section have
been modeled and approximately solved a POMDP, using
Symbolic Perseus [16]. The POMDP models are represented
using two-stage dynamic Bayesian networks, and the soft-
ware allows for exploiting (context-specific) independence
between state variables. Table 1 lists the different state vari-
ables for each task. We assume the surveillance cameras can
localize each robot, but with a particular uncertainty. Also
each robot’s movement actions are subject to noise. As we
are essentially considering long-term plans, the discount rate
is set high, γ = 0.99. Each movement action is penalized
with a reward of −0.1.

6.2 Simulation Results
In a first experiment, all of the robots are initially posi-

tioned at the region containing the center node, in location
(46, 45), and are requested to execute four patrol tasks, one
to each corner of the map. The value functions of each robot
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Figure 3: Four different Patrol tasks.
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Figure 4: Three Patrol tasks and a Meet person task.

over time are plotted in Figure 3. As the belief of the robot
changes while moving through the environment, the value
for each of the tasks is updated. The AtrvJr robot has ini-
tially the highest value for any task since it is the fastest
robot. Nevertheless it can only be assigned one task, in this
case the “Patrol SouthEast” task, and the Pioneers are as-
signed the remaining three tasks: Pioneer A gets “Patrol
NorthWest”, Pioneer B “Patrol NorthEast”, and Pioneer C
“Patrol SouthWest”. Although the AtrvJr robot has initially
a higher value for the“Patrol NorthWest” task, it is assigned
a different task. The reason is that the task assignment is
determined by maximizing the sum of all bid values (3) and
not individual bids.

Until about 100 time units, all Pioneers are still close to
their initial starting position. As a result, their values for
each task are similar, but a hysteresis mechanism prevents
the assignment solution from changing too often. But as
the robots move progressively away from the starting point,
their values also become more different and the assignment
solution stabilizes naturally.

In the second experiment (see Figure 4), three of the
robots again start at the same node, but now at location
(46, 75). The robots are requested to execute three patrol
tasks and also a recharge task. This is only executed when
their battery level is low enough. Since the robots start
with a full battery, initially each is assigned a patrol task.
At about 50 time units, a person is detected in the node at
location (46, 90) and a task to meet the person is requested.
Since the patrol and recharge tasks have a lower priority, one
of the robots, Pioneer A, abandons its patrol task and was

assigned the “Meet person” task. The other two robots are
assigned two of the patrol tasks and one task is left unas-
signed. At around 100 time units, the AtrvJr robot, while
moving to the patrol task goal, passes by the node contain-
ing the battery recharge station. Since the destination of the
patrol task is still far and its battery is low, it is assigned
the recharge task.

Finally, in the third experiment (Figure 5) robots Pio-
neer A and B are initially at nodes with locations (2.5, 17.5)
and (87.5, 17.5) respectively. The robots where initially re-
quested to execute two patrols tasks, one for each of their
respective locations. Since the robots where already at their
goals, they did not move. At about 40 time units, a person
was detected at node (46, 17.5) and an identify person task
was requested. For this task, unlike the meet person, the
robot is only required to approach the person close enough
to take a clear picture. Although the robot Pioneer A is
further away from the person, it has a camera with a better
resolution and can take a picture at a greater distance. For
this reason it is assigned the “Identify person” task instead
of Pioneer B.

These experiments demonstrate that the auction protocol
enable the robots to coordinate their task execution without
communication of their state or beliefs. Also, the system is
able to respond to detected events that occur during the
execution of the tasks initially requested. Although in sim-
ulation, the presented methodology should transfer well to
a real-world scenario, given the robustness with respect to
communication failures.
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Figure 5: Identify person task and two Patrol tasks.

7. DISCUSSION AND FUTURE WORK
An approach to the assignment and execution of tasks

in a multiagent system was presented. The motivation be-
hind the approach was to illustrate the benefits of using
auction protocols and the POMDP framework in multia-
gent systems. The auction protocols enable the coordina-
tion of multiple agents under stringent network operation
conditions and robustness to individual agent failures. But
an important drawback in the use of auctions is the question
of how to estimate each agent’s bid values.

The synthesis of controllers for the execution of tasks
was performed using the POMDP framework. If suitable
stochastic models of the environment and the agent obser-
vations are available, the synthesis problem can be formu-
lated in a straightforward mathematical manner. The main
difficulty of the POMDP approach is to compute a solution
in an efficient manner. This is especially the case for almost
all problem instances, expect those with relatively small di-
mensions.

The combination of the two frameworks produced a solu-
tion in which the individual drawbacks are mitigated. From
the synthesis of controllers using POMDP task models, the
values to bid are naturally obtained from the respective ex-
pected discounted rewards. Another advantage is that the
agent’s belief is already factored into this value. As a result,
it is not necessary to invest additional time in the design
of bid functions for each of the agents’ tasks. Furthermore,
as they are derived directly from the task controller, they
are likely to reflect better true bid values, compared to com-
monly used heuristic bid functions.

The use of an auction enabled the use of smaller POMDP
models than otherwise would be used if all agents and all
tasks are considered simultaneously. This because the agents’
coordination is implied in the use of the auction protocol and
the auctioneer. Therefore, in the controller synthesis prob-
lem the other agents and tasks can be abstracted away. This
is at the cost of optimality, since in practice the agents can
interfere in each others’ task execution.

It is possible, depending on the application, to use dif-
ferent auction protocols, such as on-line combinatorial auc-
tions [13], or for agents to bid on bundles of tasks. This
would require that the arrival order for tasks is known or
that agents could accurately estimate their future rewards.
Also, instead of POMDPs other planning models can be
used, as long as they involve computing a value function.

A direction of future research is the synthesis of a con-

troller for the auctioneer to determine the task priorities.
The purpose is to maximize some performance criteria, such
as the minimum assignment delay for some task types. The
controller can also be used to determine which tasks to trade
with other auctioneers.
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ABSTRACT
While distributed POMDPs provide an expressive framework for
modeling multiagent collaboration problems, NEXP-Complete com-
plexity hinders their scalability and application in real-world do-
mains. This paper introduces a subclass of distributed POMDPs,
and TREMOR, a novel algorithm to solve such distributed POMDPs.
Two major novelties in TREMOR are (i) use of social model shap-
ing to coordinate agents, (ii) harnessing efficient single agent-POMDP
solvers. Experimental results demonstrate that TREMOR may pro-
vide solutions orders of magnitude faster than existing algorithms
while achieving comparable, or even superior, solution quality.

1. INTRODUCTION
The excitement of Distributed Partially Observable Markov De-

cision Problems (DEC-POMDPs) flows from their ability to tackle
real-world multi-agent collaborative planning, under transition and
observation uncertainty [2, 3, 9, 17]. Given the NEXP-Complete
complexity of DEC-POMDPs [3], however, the emerging consen-
sus is to pursue approximate solutions [12, 17] and sacrifice ex-
pressivity by identifying useful subclasses of DEC-POMDPs (e.g.,
transition-independent DEC-MDPs [2, 15], and event-driven DEC-
MDPs [1, 4, 10]). Such algorithms, through finding non-optimal
joint policies or exploiting the structure of a subclass, are able to
significantly reduce planning time.

In this continuing quest for efficiency, our research identifies a
subclass of distributed POMDPs that allows for significant speedups
in computing joint policies. We thus provide two key contributions.
The first is a new subclass: Distributed POMDPs with Coordina-
tion Locales (DPCL). DPCL is motivated by the many domains,
including those found in distributed POMDP literature, where mul-
tiple collaborative agents must perform multiple tasks. The agents
can usually act independently, but they interact in certain coordi-
nation locales, identified as a set of states and times where agents
could potentially need to coordinate, such as to avoid interfering
with each other’s task performance or to facilitate other agents’ task
performance. For example, in disaster rescue [8], multiple robots
may act to save multiple injured civilians. While often acting in-
dependently, the robots should avoid colliding with other robots
in a building’s narrow corridors, and could clear up debris along
the hallway to assist other robots. DPCL’s expressivity allows it to
model domains not captured in previous work: it does not require
transition independence [2], nor does it require that agents’ task
allocation and coordination relationships be known in advance [1,

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

10], but does account for local observational uncertainty.
Our second contribution is a novel approach to solving DPCLs:

TREMOR (Team’s REshaping of MOdels for Rapid execution), an
efficient algorithm for finding joint policies in DPCLs. TREMOR’s
primary novelty is that: (i) it plans for individual agents using
single-agent POMDP solvers, thus harnessing the most efficient
POMDP solution approaches; (ii) it then manages inter-agent coor-
dination via social model shaping — changing the transition func-
tions and reward functions of coordinating agents. While TREMOR
is an approximate approach and it will not apply to the most gen-
eral DEC-POMDPs, it does open a new line of attack on a large
subclass of problems. We show that even in the presence of sig-
nificant agent interactions, TREMOR can run orders of magnitude
faster than state-of-the-art algorithms such as MBDP [17] and pro-
vides higher solution quality.

2. MOTIVATING DOMAINS
Our work is motivated by cooperative multiagent domains where

agents must be assigned to different tasks. There are positive and
negative interactions when agents perform these tasks [16, 20].
Since tasks are initially unassigned, agent interactions are initially
unknown, but are limited to certain regions of the state space. Ex-
amples include disaster response [13] where fire-engines must be
assigned to fight fires and ambulances to save civilians, wilderness
search and rescue [5], and space exploration [6].

This paper focuses on urban disaster response where multiple
robots must save civilians trapped in a building following a disaster.
We use two types of robots, each of which must deal with sensing
and action uncertainty. Rescue robots provide medical attention to
victims. Cleaner robots remove potentially dangerous debris from
building corridors, lobbies, and walkways. Saving victims provides
a high reward, where the amount of reward depends on the victim’s
health status; cleaning up debris yields a lower reward (see Figure
1).

We model this as a discrete grid, where grid squares may be
“safe” or “unsafe.” Each agent begins with a health value of 3,
which is reduced by 1 if it enters an unsafe square. An agent is
disabled if its health falls to zero. Collisions may occur in narrow
hallways if two robots try to pass through simultaneously, resulting
in minor damage (cost) and causing one of the robots (chosen at
random) to move back to its previous state. If a rescue robot at-
tempts to traverse a “debris grid,” it will get delayed by one time
unit with high probability. A cleaner robot will instantly remove
debris from a grid it is in and receive a small positive reward. 1

1More details of the experimental domain and all DPCLs are shown
in Appendix A & B.
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Figure 1: This figure shows a 4 × 4 domain (with 1089 joint
states). Two rescue robots plan to reach two victims. The rescue
robots may collide in narrow corridors; a cleaner robot can
remove debris to assist the rescue robots. Safeness of a grid
cell (not shown in figure) is only known with a certain degree of
certainty.

Each agent has eight actions: move in the four cardinal directions
and observe in each of the four cardinal directions. A movement ac-
tion may succeed or fail, and observational uncertainty may lead to
inaccurate information about movement success or safety of a lo-
cation. Every action has a small cost and a rescue robot receives a
high reward for being co-located with a victim, ending its involve-
ment in the task. When modeling this domain as a DEC-POMDP,
the goal of the planner is to obtain a reward-maximizing joint pol-
icy, where each policy assigns a rescue robot to a victim, and which
debris (if any) each cleaner robot will clean.

3. THE DPCL MODEL
In a DPCL, a team of N agents is required to perform a set of

M tasks, one agent per task but potentially many tasks per agent,
in the presence of transitional and observational uncertainty. Like
DEC-POMDPs, DPCL too is a tuple 〈S,A, P, R, Ω, O, b〉 where
S, A, and Ω and the sets of joint states, actions and observations;
P : S × A × S → [0, 1], R : S × A × S → �, and O :
S × A × Ω → [0, 1] are the joint transition, reward, and observa-
tion functions respectively and b = ΔS is a starting belief region.
However, DPCL specializes from DEC-POMDPs in that it assumes
S := Sg×S1× . . .×SN where Sn is a set of local states of agent
n for 1 ≤ n ≤ N and Sg = (E×St) is a set of global states where
E = {e1, . . . , eH} is the set of decision epochs and St is a set of
task states st that keep track of the execution of tasks. Precisely,
st = (st,m)1≤m≤M where st,m ∈ {Done, NotDone} is the status
of execution of task m.

Finding optimal joint policies to DEC-POMDPs is NEXP-Complete
because the functions P , R and O are defined jointly, even if agent
interactions are limited — DPCL is designed specifically to over-
come this limitation. Let Pn : (Sg × Sn) × An × (Sg × Sn) →
[0, 1], Rn : (Sg × Sn) × An × (Sg × Sn) → � and On :
(Sg × Sn) × An × Ωn → [0, 1] denote agent local transition, re-
ward and observation functions respectively. DPCL restricts DEC-
POMDPs in that it assumes that agent observations are fully in-
dependent, i.e., O((sg, s1, . . . , sN ), (a1, . . . aN ), (ω1, . . . ωN)) =∏

1≤n≤N On((sg, sn), an, ωn) and that agent transitions and re-
wards are partially independent. Precisely, DPCL identifies sit-
uations where agent coordination is necessary, so that, with the

exception of these situations, P and R naturally decompose into
{Pn}1≤n≤N and {Rn}1≤n≤N . These situations, referred to as co-
ordination locales (CLs), are assumed in DPCL to be either same-
or future-time. 2

3.1 Same-time coordination locales (STCLs)
STCLs identify situations where state or reward resulting from

the simultaneous execution of actions by a subset of agents cannot
be described by the local transition and reward functions of these
agents. Formally, a STCL for a group of agents (nk)K

k=1 is a tuple
cls = 〈(sg, sn1 , . . . , snK ), (an1 , . . . , anK )〉 where sg is the cur-
rent global state and (ank )K

k=1 are the actions that agents (nk)K
k=1

execute in their current local states (snk)K
k=1. For cls to qualify

as a STCL, there must exist joint states s = (sg, s1, . . . sN), s′ =
(s′g, s′1, . . . s

′
N) ∈ S and a joint action a = (an)N

n=1 ∈ A where
(snk )K

k=1 and (ank )K
k=1 are specified in cls, such that the joint tran-

sition or reward function is non-decomposable, i.e., P (s, a, s′) �=∏
1≤n≤N Pn((sg, sn), an, (s′g, s′n)) or R(s, a, s′) �=∑
1≤n≤N Rn((sg, sn), an, (s′g, s

′
n)). The set of all STCLs is de-

noted as CLs.

3.2 Future-time coordination locales (FTCLs)
FTCLs identify situations an action impacts actions in the fu-

ture. Informally, because agents modify the current global state
sg = (e, st) as they execute their tasks, they can have a future
impact on agents’ transitions and rewards since both Pn and Rn

depend on sg . Formally, a FTCL for a group of agents {nk}Kk=1

is a tuple 〈m, (snk )K
k=1, (ank)K

k=1〉 where m is a task number and
(ank)K

k=1 are the actions that agents (nk)K
k=1 execute in their cur-

rent local states (snk)K
k=1. For clf to qualify as a FTCL, the actual

rewards or transitions of agents (nk)K
k=1 caused by the simulta-

neous execution of actions (ank)K
k=1 from states states (snk )K

k=1

must be different for st,m = Done and NotDone for some global
state sg = (e, st) ∈ Sg . Precisely, there must exist: (i) starting
joint states s = (sg, s1, . . . sN), s = (sg, s1, . . . sN ) ∈ S where
(snk )K

k=1 are specified in clf and sg = (e, st) differs from sg =
(e, st) only on st,m �= st,m; (ii) a joint action a = (an)N

n=1 ∈ A
where (ank )K

k=1 are specified in clf and (iii) ending joint states
s′ = (s′g, s′1, . . . s

′
N), s′ = (s′g, s′1, . . . s

′
N ) ∈ S where s′g =

(e′, s′t) differs from s′g = (e′, s′t) only on s′t,m �= s′t,m such that
either P (s, a, s′) �= P (s, a, s′) or R(s, a, s′) �= R(s, a, s′). The
set of all FTCLs is denoted as CLf .

Example: Consider a rescue robot from the domain in Section
2, entering a narrow corridor. If another robot were to attempt to
enter the same narrow corridor simultaneously, one of them would
transition back to starting state and the robots would damage each
other (STCL). If the narrow corridor had debris and a cleaner robot
completed the task of removing this debris, the rescue robot would
traverse the corridor faster (FTCL).

4. SOLVING DPCLS WITH TREMOR
We are interested in providing scalable solutions to problems

represented using the DPCL model. To this end, we provide TREMOR,
an approximate algorithm that optimizes expected joint reward while
exploiting coordination regions between agents. TREMOR accounts
for the coordination locales, using a two stage algorithm: (1) A
branch and bound technique to efficiently search through the space
of possible task assignments. (2) Evaluating task assignments (for
step (1) above) in the presence of uncertainty (transitional and ob-
servational) and coordination locales.

2If agent interactions are limited, |CLs| + |CLf | 	 |dom(P )|
and DPCLs are easier to specify than equivalent DEC-POMDPs.
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Figure 2: This diagram depicts the branch and bound search.

4.1 Branch and Bound Search
Multiagent planning problems often have a large number of pos-

sible task assignments, precluding exhaustive evaluation. TREMOR
incorporates a Breadth-first Branch and Bound search algorithm
to exploit task decomposition among a team, significantly prun-
ing the search space. In order to aid the search, we compute up-
per bounds on the expected value of joint policy using a heuris-
tic that solves the decision problems of agents as MDPs (ignoring
the observational uncertainty). Search begins with computation of
upper-bounds for all task assignments and evaluation of the task as-
signment with highest upper-bound using TREMOR. Any assign-
ment with an upper-bound lower than a complete evaluation calcu-
lated by TREMOR is pruned. Task assignments 3 with the highest
heuristic evaluations are repeatedly evaluated until all remaining
allocations are evaluated or pruned (see Figure 2).

4.2 Task Assignment Evaluation
At this point of algorithmic execution, agents have been assigned

their tasks and an optimal joint policy consistent with this assign-
ment has to be found. Since the problem is still NEXP-Complete,
TREMOR’s approach in evaluating the current task assignment is
to search for a locally optimal joint policy (see Algorithm 1). To
that end, TREMOR initially finds the optimal joint policy assum-
ing that agents are not interacting, i.e., by solving individual agent
POMDPs (lines 1–3). Note that we can employ state of the art
POMDP solvers to solve a POMDP in SOLVEPOMDP() (line 3).
We then try to improve the joint policy (lines 5–41) until no agent
policies can be changed.

At each iteration, we re-compute policies πi for all agents which
are part of the sets In, where 1 ≤ n ≤ N . This set includes agents
whose local transition, Pi, and reward functions, Ri, have been
changed due to interactions with agent n. TREMOR considers
interactions due to STCLs (lines 6–21) and FTCLs (lines 22–38)
separately.

3Note that TREMOR allows the number of agents and tasks to be
unequal, as well as allowing an agent to be assigned to multiple
tasks.

Upon verifying that a STCL c, 〈(st, sn1 , . . . , snK ), (an1 , . . . , anK )〉,
involves agent n (line 8), the algorithm computes the difference
R+ − R− in the expected utility, EU(πn) for agent n’s policy,
given that the transition, Pn and reward functions, Rn of agent n
are updated for state action pairs in c. TREMOR then computes the
probability, ĉ, that c will occur given the current joint policy, π, and
uses ĉ to determine the shaping reward RΔ. Depending on whether
c is beneficial to agent n or not, the algorithm behaves differently.

If the shaping reward is positive (beneficial to agent n; lines 15–
17), agents are encouraged to follow policies that induce c. The
agent is influenced by adding a fraction RΔ/K of the shaping re-
ward to local reward functionRi of each agent. To ensure a coher-
ent dynamic model for the agents after interaction, local transition
models of agents are then redefined by using the global transition
function P (for local state-action pairs resulting in c); such redef-
inition could potentially take into account the probability of co-
ordination locales (although not used in our implementation). To
calculate the old transition functions of each agent, Pi, we first
“extract” the old probability of transitioning from one agent state
to another given its action and a status of task, st. Let e, e′ ∈ E be
the starting and ending decision epochs for that transition, ai ∈ Ai

be the agent’s action, si, s
′
i ∈ Si be the starting and ending local

agent states, st, s
′
t ∈ St be the starting and ending task states. The

local transition probability of agent i assuming a STCL c does not
occur, Pi,¬c(((e, st), si), ai, ((e

′, s′t), s
′
i)), is given as a domain

input. We derive the local transition probability of agent i assum-
ing c occurs, Pi,c(((e, st), si), ai, ((e

′, s′t), s
′
i)), from a given joint

transition function, and update Pi using ĉ and derived probabilities.
Formally:

Pi,c(((e, st), si), ai, ((e
′, s′t), s

′
i))←

∑
{
∀s′nk

∈S,k �=i
}

P ((sn1 , . . . , snK ), (an1 , . . . , anK ), (s′n1 , . . . , s′ni
, . . . , s′nK

)),

Pi ← ĉ× Pi,c(((e, st), si), ai, ((e
′, s′t), s

′
i))

+(1− ĉ)× Pi,¬c(((e, st), si), ai, ((e
′, s′t), s

′
i))

In contrast, if the shaping reward is negative (not beneficial to
agent n; lines 18–21) agents in coordination locale c are discour-
aged from policies that induce c, except for agent n which is given
no incentive to modify its behavior. As c will not occur in this
interaction, there is no need to redefine the agent local transition
functions in terms of the joint transition function P . To update the
reward and transition functions in an STCL, consider the follow-
ing example from our domain. A STCL occurs when two robots, i
and j, bump into each other in a narrow corridor. We are initially
given the transition probability of an individual robot i’s traveling
through the corridor alone (as input). When two robots’ policies
create an STCL (agents i and j bump into each other in the narrow
corridor), we first check if the STCL is beneficial or not. If it is
non-beneficial, we provide a negative reward to one of the robots
(robot j) to encourage it to avoid the narrow corridor; the robots’
transition functions are not modified since this STCL will not occur.
Although this would not happen in our example domain, a benefi-
cial STCL would need a positive shaping reward. We then update
the transition function Pi of robot i, using the transition probabili-
ties Pi when bumping occurs and when it does not occur, using the
updating formula above.

TREMOR then considers all FTCLs:
c ∈ CLf , 〈m, (snk )K

k=1, (ank)K
k=1〉, involving agent n (lines 22–

38). To that end, it computes probabilities, P
e,s+

t,m
π , that a task
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is completed by a decision epoch, e, when the joint policy π is
executed. These probabilities are used to determine the sum of ex-
pected utilities for the current policies of the agents, R+ and R−,
when agent n completes task m and when task m was never com-
pleted respectively. As in STCLs, TREMOR computes the shaping

reward RΔ = (R+ − R−) · P e,s+
t,m

π . When the shaping reward
is positive (coordination locale c is beneficial, lines 29–32), agents
participating in coordination locale c will have their transition func-
tions, Pi, modified using heuristics to reflect that in each decision
epoch e ∈ E, task m can be moved to Done state from NotDone,

with probability P
e,s+

t,m
π .

For FTCLs, a heuristic similar to that used for STCLs is applied,
updating the local transition functions of each agent. First we “ex-
tract” the old probability of transitioning given its action and a sta-
tus of specific task m that will be done by another agent j from Pi.
Let st ∈ St be the starting task state where task m (that some other
agent j executes) is not yet completed, i.e., st,m = NotDone
and s′+t , s′−t ∈ St be two possible ending task states that dif-
fer on the status of execution of task m, i.e., s′+t,m = Done and
s′−t,m = NotDone. According to the old function Pi, agent i “be-
lieved” with a certain probability that task m will be completed
by agent j in decision epoch e. Initially, Pi(((e, st,m), si), ai,
((e′, s′+t,m), s′i))) and Pi(((e, st,m), si), ai, ((e

′, s′−t,m), s′i))) are given
as a domain input, and used for updating Pi. Now, agent j is shap-
ing the transition function of agent i and it makes agent i “believe”
that task m will be completed decision in epoch e with a different
probability. Agent j’s commitment to the completion of its task m
has changed, i.e., task m will now be completed in decision epoch

e with probability P
e,s+

t,m
π – agent i’s new transition function Pi

should then be updated with this new information. For a given task
m, we typically have the explicit task status pair, (st,m, s′t,m). We

calculate P
e,s+

t,m
π for each (st,m, s′t,m) separately and keep updat-

ing Pi iteratively for all tasks. Formally:

Pi ← P
e,s+

t,m
π × Pi(((e, st,m), si), ai, ((e

′, s′+t,m), s′i)))

+(1− P
e,s+

t,m
π )× Pi(((e, st,m), si), ai, ((e

′, s′−t,m), s′i)))

We could further generalize this updating step by summing over
all current and future task states, however, that would increase the
complexity of transition function shaping.

In contrast, if the shaping reward is not beneficial (lines 33–36)
agents will have their transition functions Pi modified to reflect
that st,m cannot change from NotDone to Done in any decision
epoch. At last, whenever agent n can execute task m, the current
shaping reward RΔ is added to its local reward function Rn, to
either encourage (if RΔ > 0) or discourage (if RΔ < 0) agent n
from executing task m. The algorithm terminates the task assign-
ment evaluation if the current joint policy cannot be improved, i.e.,
all the sets In for 1 ≤ n ≤ N are empty or the number of model
refinements is greater than maximum number of iterations.

5. EMPIRICAL RESULTS
This section demonstrates that TREMOR can successfully solve

DPCL problems orders of magnitude faster than required by exist-
ing locally optimal algorithms, while still discovering policies of
comparable value. To that end, we evaluate TREMOR’s perfor-
mance on a set of disaster rescue tasks (described in Section 2) by
comparing its planning time and solution value with three existing
planning approaches.

Algorithm 1 TREMOR-EvalTaskAssignment(Agents, Tasks)
1: for agent n = 1, . . . , N do
2: POMDPn ← CONSTRUCTPOMDP (n, Tasks[n])
3: πn ← SOLVEPOMDP(POMDPn)
4:
5: repeat
6: for agent n = 1, . . . , N do
7: In ← ∅
8: for c = 〈(sg , sn1 , ..., snK )(an1 , ..., anK )〉 ∈ CLs such that

n ∈ {nk}1≤k≤K do
9: R− ← EU(πn)

10: R+ ← EU(πn when Pn and Rn are redefined
in terms of joint functions P and R for arguments
((sg , sn), an, (s′g, s′n)) for all (s′g, s′n) ∈ Sg × Sn)

11: ĉ← Pπ((sg , sn1 , ..., snK )(an1 , ..., anK ))

12: RΔ ← (R+ −R−) · ĉ
13: if RΔ > 0 then
14: In ← In ∪ {nk}1≤k≤K

15: for agent i ∈ {nk}1≤k≤K and (s′g, s′i) ∈ Sg × Si do

16: Ri((sg , si), ai, (s
′
g, s′i))

+←− RΔ/K

17: Pi ← Pi redefined in terms of P for arguments
((sg, si), an, (s′g, s′i)) for all (s′g, s′i) ∈ Sg × Si

18: else if RΔ < 0 then
19: In ← In ∪ ({nk}1≤k≤K \ {n})
20: for agent i ∈ {nk}1≤k≤K \{n} and (s′g, s′i) ∈ Sg×Si

do
21: Ri((sg , si), ai, (s

′
g, s′i))

+←− RΔ/(K − 1)

22: for c = 〈(m, (sn1 , ..., snK )(an1 , ..., anK ))〉 ∈ CLf such
that m ∈ Tasks[n] do

23: for all e ∈ E do

24: P
e,s+

t,m
π ←∑

((e,st),s1,...sN )∈S
:st,m=Done;a∈A

Pπ(s, a)

25: R+ ←∑K
k=1

EU(πnk given that task m will be completed

in epoch e ∈ E with probability P
e,s+

t,m
π )

26: R− ←∑K
k=1

EU(πnk if task m not completed)
27: ĉ←∑

sg∈Sg
Pπ((sg , sn1 , ..., snK )(an1 , ..., anK ))

28: RΔ ← (R+ −R−) · ĉ
29: if RΔ > 0 then
30: In ← In ∪ {nk}1≤k≤K ∪ {n}
31: for agent i ∈ {nk}1≤k≤K and e ∈ E do
32: Modify Pi knowing that in each epoch e ∈ E, st,m

can change from NotDone to Done with probability

P
e,s+

t,m
π )

33: else if RΔ < 0 then
34: In ← In ∪ {nk}1≤k≤K ∪ {n}
35: for agent i ∈ {nk}1≤k≤K do
36: Modify Pi knowing that in each epoch e ∈ E, st,m

cannot change from NotDone to Done
37: for all ((sg, sn), an, (s′g, s′n)) ∈ (Sg×Sk)×An× (Sg ×

Sk) : st differs from s′t on st,m �= s′t,m do

38: Rn((st, sn), an, (s′t, s′n)
+←− RΔ

39: for all i ∈ In do
40: πi ← SOLVEPOMDP(POMDPi)
41: until ∪1≤n≤N In = ∅ or maximum iterations

5.1 Experimental Setup
TREMOR employs EVA [18, 19] as the single agent POMDP

solver. We compare against JESP (Joint Equilibrium-based Search
for Policies) [12] and MBDP (Memory-Bounded Dynamic Pro-
gramming for DEC-POMDPs) [17], two of the leading approxi-
mate algorithms for solving DEC-POMDPs. Lastly, we consider
a planner that ignores interactions between agents, i.e. TREMOR
without any coordination locales (call independent POMDPs). All
planners are given a maximum wall-clock time of 4 hours.

TREMOR and EVA’s parameters were set as follows: maximum
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iterations of TREMOR= 50, and ε = 5.0. MBDP experiments used
the parameters suggested by the authors: type of algorithm = ap-
proximate, max. number of trees = 3, max. number of observations
for the improved MBDP algorithm = 2, depth of recursion = 2,
and backup type = Improved Memory-Bounded Dynamic Program-
ming. JESP has no tunable parameters.

Experiments were run on quad-core Intel 3.2GHz processors with
8GB of RAM. Each approach was run 20 times on each DPCL and
we report the average wall-clock time. For computing expected
value of a joint policy, we averaged over 500 runs.

5.2 State Space
This set of experiments show that TREMOR can handle large

state spaces, unlike existing algorithms. Every experiment has a
time horizon of 10, one cleaner robot, and two rescue robots. The
state space changes from 81 to 6561 joint states (2 × 2 to 4 × 10
grids). Figure 3a shows scaling of TREMOR’s runtime with respect
to the size of state space. The x-axis shows the number of joint
states in the problem and the y-axis shows log (plan time in sec).
MBDP is only able to solve tasks of up to 361 joint states within
the time limit and requires 1.5–2.9 orders of magnitude more time
than TREMOR. Independent POMDPs plan faster than TREMOR
as they disregard all inter-agent interactions.

Figure 3b displays the average reward accrued by polices on the
y-axis over the same set of tasks as in 3a. TREMOR outperforms
MBDP, even though MBDP is an algorithm that plans on the joint
models and we expected it to account for interactions better. In ad-
dition, TREMOR also achieved the statistically significant result
of outperforming independent POMDPs with respect to average
reward, although using up to 1.6 orders of magnitude more time
(p < 1.5× 10−9).

TREMOR’s runtime does not increase monotonically with the
size of the state or horizon as shown in Figure 3. It depends on
(i) the time it takes to resolve interactions for each resolution itera-
tion (lines 6–40 in Algorithm 1), (ii) the maximum number of such
iterations, both of which change depending on the details of each
DPCL.

JESP was unable to solve any task within the time limit and thus
is not shown. For illustrative purposes, we ran JESP on a 81 joint
state problem with T=2 (reduced from T=10). It finished execut-
ing in 228 seconds, yielding a reward of 12.47, while TREMOR
required only 1 second and received a reward of 11.13.

5.3 Time Horizon
The second set of experiments consider an increasing time hori-

zon from T=2–23, shown in Figures 3c and 3d. These experiments
show increased episode lengths lead to higher planning times, but
that TREMOR can generate deep joint-policy trees. We considered
problems with two rescue robots, one cleaning robot and 361 joint
states.

MBDP is able to solve tasks up through T=14, but takes at least
2.6 orders of magnitude more time than TREMOR, while its final
policies’ rewards are dominated by TREMOR’s policies. TREMOR
requires at most 1.1 orders of magnitude more time than indepen-
dent POMDPs, but produces policies that accrue significantly more
reward.
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5.4 Number of Agents and Tasks
The third set of experiments keep the state space and time hori-

zon constant (1089 joint states and T=10) and show that TREMOR
scales well with the number of agents. In fact, TREMOR’s im-
provement over independent POMDPs increases with the number
of agents. Figure 4a and 4b show the running time and reward ac-
crued on tasks with one cleaning robot and 1–8 rescue robots (the
number of victims and rescue robots are equal).

As shown in Figure 4b, TREMOR and the Independent POMDPs’
rewards diverge as the number of agents (and tasks) are increased
due to increasing numbers of CLs. Increased number of interac-
tions leads to a higher runtime for TREMOR, but also higher re-
wards. In contrast, the runtime of independent POMDPs do not
increase as dramatically, but rewards suffer as they are increasingly
penalized for their lack of coordination. MBDP fails to solve any
case with two or more tasks within the time limit. 4 TREMOR re-
quires between 0.35 and 1.73 orders of magnitude more time than
independent POMDPs, but produces policies that accrue signifi-
cantly more reward.

5.5 Number of CLs
The last set of experiments show how TREMOR performs when

the number of CLs changes: more CLs imply more inter-agent in-
teractions, increasing TREMOR’s overhead and reducing its bene-
fit relative to MBDP. All experiments have 361 joint states, T=10,
two rescue robots, and one cleaning robot; these settings were cho-
sen explicitly so that MBDP could complete the task within the
cutoff time. Figure 5a and 5b show the running time and reward
with various number of CLs. The performance of TREMOR de-
pends on the number of CLs and maximum number of resolution
interactions. As we discussed in the previous section, TREMOR is
well-suited for domains which require limited coordination. These
results demonstrate that the running time increases and reward de-
creases when more coordination is required. It should be noted that
TREMOR can trade off time and quality by tuning the maximum
number of model refinement iterations.

MBDP is able to discover a joint policy superior to TREMOR
for very large numbers of CLs. For the problem with the number of
CLs = 1368, MBDP received a higher reward than TREMOR and
independent POMDPs, although it continues to require more time.

We have shown TREMOR’s superior scalability with respect to
state space, time horizon, number of agents and tasks, and num-
ber of coordination locales. Furthermore, TREMOR provided so-
lutions of comparable, or even superior, quality to those found by
existing DEC-POMDP solvers.

4We did not try MBDP with one task because there are no interest-
ing same-time coordination locales.
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6. RELATED WORK AND CONCLUSIONS
As mentioned earlier, others have done significant work to iden-

tify classes of DEC-POMDPs that may be solved efficiently. For
example, Becker et al. [2] assume an individually observable do-
main where agents are transition independent. ND-POMDPs build
on transition-independence and add network structure interactions [9].
Though DPCL assumes individual observability, it differs due to
transition dependence (captured using coordination locales), thus
focusing on a broad new class of multiagent applications. Task-
based ED-DEC-MDPs [1, 4, 10] leverage pre-specified task alloca-
tion and dependencies to reduce the search space. This is another
key differentiating factor in DPCL, where task allocations and de-
pendencies are not part of the model.

Others have also examined how to combine role allocation with
distributed POMDP solvers [13], exploiting problem structure to
speed up policy search. Oliehoek et al. [14] also exploit problem
structure — factored DEC-POMDPs — but assume observation-
dependence. TREMOR differs from these and other DEC-POMDP
algorithms in its fundamental approach by employing single-agent
POMDPs and exploiting social model shaping to manage inter-
agent interactions. In this sense, TREMOR shares some similarity
with other MDP-related work [7] where subsystems can plan sepa-
rately, but can iteratively re-plan if the subsystems interact unfavor-
ably. However, the use of POMDPs and social model shaping sets
our work apart. Lastly, shaping rewards have been previously used
in multi-agent contexts (c.f., Matarić [11]), but are typically present
to assist agents via human-specified rewards. In TREMOR, shap-
ing rewards are used to allow coordination between agents without
explicit multi-agent planning and are determined autonomously.

This paper has introduced TREMOR, a fundamentally different
approach to solve distributed POMDPs. TREMOR is an approx-
imate algorithm and it does not apply to general DEC-POMDPs.
However, it is extremely efficient for solving DPCLs, an important
subclass of distributed POMDPs. This subclass includes a range of
real-world domains where positive or negative agent interactions
occur in a relatively small part of the overall state space. By iter-
atively discovering interactions and using shaping of models to in-
fluence efficient individual POMDPs, TREMOR enables a team of
agents to act effectively and cohesively in environments with action

and observation uncertainty. The main insight behind TREMOR is
using social reward and transition shaping allows a DEC-POMDP
to be approximated by a set of single-agent POMDPs. TREMOR
can thus also exploit advances in single-agent POMDP solvers.
Extensive experimental results show how TREMOR provides dra-
matic speedups over previous distributed POMDP approaches with-
out sacrificing expected reward.
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Table 1: State transition function
State State1 Action Probability
Safe Safe Success Psafety × (1− PactionF ailure)

Failure Psafety × PactionF ailure

Unsafe Success (1− Psafety)× (1− PactionF ailure)
Failure (1− Psafety)× PactionF ailure

Unsafe Safe Success Psafety × (1− PactionF ailure)
Failure Psafety × PactionF ailure

Unsafe Success (1− Psafety)× (1− PactionF ailure)
Failure (1− Psafety)× PactionF ailure

Table 2: Reward function
Action Reward
Saving the victim (only rescue robots) +8.0
Cleaning debris (only cleaning robots) +1.0
Moving and observing -0.2
Collisions -4.0
Dead -10.0

APPENDIX

A. DPCL FOR TREMOR
〈S, A,P, R,Ω, O, b〉 with STCLs, FTCLs
(1) S: set of world states (row, column, health): {(0, 0, 0), (0, 1,

0), (0, 2, 0), ..., }
Row and Column: 0− n, Health value for each robot: 0−m.
(2) A: actions: A = {move north, move east, move south, move

west, observe north, observe east, observe south, observe west}
(3) P : state transition function: Transition to a state based on

how the health of the robot will be affected due to safety of destina-
tion cell (Psafety) and probability of action failure (PactionF ailure).

Psafety: assigned randomly, PactionF ailure: 0.2 (See Table 1).
In case of collisions between savers (same time coordination lo-

cale, STCL), the transition probabilities of states are dependent on
actions of other agents. For instance in a collision between two
agents in a narrow corridor (x, y), an agent gets to that cell and the
other agent goes back to the originating cell. If agents are starting
from different cells and colliding in (x, y), this happens with 0.5
probability for each agent.

In case of coordination due to cleaning of debris (future time
coordination locale, FTCL), the debris is cleared by the cleaner
robot and cleaning action is guaranteed to succeed all the time.

(4) R: reward function (See Table 2).
(5) O: observations. O = {Success/Failure for moving action,

Safe/Unsafe for observing action} (See Table 3).
(6) STCLs (same-time coordination locales): situations where

state or reward resulting from the simultaneous execution of ac-

Table 3: Observations
Action State Observation Probability
Moving Success Success 0.8

Failure 0.2
Failure Success 0.6

Failure 0.4
Observing Safe Safe 0.8

Unsafe 0.2
Unsafe Safe 0.6

Unsafe 0.4
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tions.
cls = 〈(sg, sn1 , . . . , snK ), (an1 , . . . , anK )〉 where sg is the

current global state and (ank )K
k=1 are the actions that agents (nk)K

k=1

execute in their current local states (snk )K
k=1.

(7) FTCLs (future-time coordination locales): situations an ac-
tion impacts actions in the future.

clf = 〈m, (snk)K
k=1, (ank )K

k=1〉 where m is a task number and
(ank )K

k=1 are the actions that agents (nk)K
k=1 execute in their cur-

rent local states (snk)K
k=1.

B. EXPERIMENTAL DOMAIN
(1) State Space Scale-Up: 2×2 (# of joint states: 81) – 4×10 (#

of joint states: 6561) (See Figure 6).

Figure 6: 4×10 (# of joint states: 6561), T=10: 2 rescue robots,
2 victims, 1 cleaning robot, 2 debris, & 11 narrow corridors.

One example case both CLs can happen:
Saver0: (3, 0)→ (2, 0)→ (1, 0)→ (1, 1)→ (1, 2)→ (1, 3)→

(1, 4)→ (1, 5)→ (1, 6)
Saver1: (3, 0)→ (3, 1)→ (3, 2)→ (2, 2)→ (2, 3)→ (2, 4)→

(2, 5)→ (1, 5)→ (1, 6)
Cleaner0: (1, 4)→ (1, 3)→ (1, 2)

STCL happens between savers on (1, 5) at T=7:
cls7 : 〈(sg7, s14, s25), (a1, a0)〉, where
sg7 : (NotDone0, NotDone1, 7)
s14 : (1, 4, 1)
s25 : (2, 5, 1)
a1 : move east
a0 : move north

FTCL happens between Saver0 and Cleaner0 at debris0’s
location (1, 2):

clf1 : 〈m2, (s11, s13), (a1, a3)〉, where
m2 : cleaningdebris0at(1, 2)
s11 : (1, 1, 1)
s13 : (1, 3, 1)
a1 : move east
a3 : move west

(2) Time Horizon Scale-Up: T=2 – 23 (See Figure 7).

(3) Number of Agents and Tasks Scale-Up: 1–8 rescue robots,
1–8 victims (See Figure 8).

(4) Number of Coordination Locales Scale-Up: 0 narrow cor-
ridor (# of CLs: 0) – 7 narrow corridors (# of CLs: 1368) (See
Figure 9).

Figure 7: 3×3 (# of joint states: 361), T=2–23: 2 rescue robots,
2 victims, 1 cleaning robot, 2 debris, & 3 narrow corridors.

Figure 8: 4×4 (# of joint states: 1089), T=10: 1–8 rescue robots,
1–8 victims, 1 cleaning robot, 2 debris, & 3 narrow corridors.

Figure 9: 3×3 (# of joint states: 361), T=10: 2 rescue robots, 2
victims, 1 cleaning robot, 2 debris, & 0–7 narrow corridors.
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ABSTRACT
Distributed Partially Observable Markov Decision Problems (Dis-
POMDPs) are emerging as a popular approach for modeling se-
quential decision making in teams operating under uncertainty. To
achieve coherent behaviours of agents, performing appropriate run-
time communication is essential. Thus, there have been many works
on the run-time communication schemes in Dis-POMDPs. Also,
a Finite State Machine (FSM) is a popular representation for de-
scribing a local policy that works in a very long or an infinite
time horizon. In this paper, we examine a run-time communica-
tion scheme when the local policy of each agent is represented as
an FSM. In this scheme, the meaning of each message is not prede-
fined; it is given implicitly by the interaction between local policies.
We propose an iterative-improvement type algorithm that searches
for a joint policy where run-time communication incurs some cost.
Thus, agents use run-time communication only when doing so is
cost-effective. Interestingly, our algorithm can find a joint policy
that obtains a better expected reward than a hand-crafted joint pol-
icy, and it requires fewer nodes in the local FSM and fewer message
types. Furthermore, we experimentally show that our algorithm can
obtain a sufficiently large joint policy within a reasonable amount
of time.

1. INTRODUCTION
Distributed Partially Observable Markov Decision Problems (Dis-

POMDPs) are emerging as a popular approach for modeling se-
quential decision making in teams operating under uncertainty [2,
14, 7].

To achieve coherent behaviours of agents, performing appropri-
ate run-time communication is essential. There have been many
works on the run-time communication schemes in Dis-POMDPs.
For example, Nair et al. [7] gave the clear semantics of run-time
communication when the local policy of an agent is represented as
a policy tree. In their scheme, agents communicate their observa-
tion/action histories with each other. Thus, they can remove uncer-
tainty about the belief on other agents and they can start from a new
synchronized belief state. Shen and Becker [11] proved that syn-
chronizing communication between agents can reduce complexity
of Dis-POMDPs. In general, finding an optimal joint policy in Dis-
POMDPs is NEXP-Complete [2]. They identified a special case of
Dis-POMDPs with communication where the complexity becomes
NP-Complete. Goldman and Zilberstein [5] developed a formal
model for a decentralized controller, in which an agent has a com-
munication policy as well as an action policy. In this approach, the

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

communication policy of an agent is optimized for a given action
policy. Rothet al. [10] developed a method for reducing ineffective
communications from a joint policy in which run-time communi-
cation is performed by default after each observation period.

On the other hand, to describe a local policy that is able to work
in very long or infinite time horizons, a Finite State Machine (FSM)
is commonly used as a compact representation of a local policy. For
POMDPs in an infinite horizon, Poupart and Boutilier [9] devel-
oped an algorithm with a non-deterministic FSM, which represents
finding an optimal policy as a linear programming formation. [9]
introduced a value iteration technique where the expected values of
nodes are represented by a vector. This algorithm guarantees the
monotonic improvement of the value function while keeping the
controller size fixed. FANS [6] algorithm utilizes FSMs to repre-
sent policies for Networked Distributed POMDPs in a finite hori-
zon and evaluates policies with dynamic programming and heuris-
tic computation techniques. It can find an optimal policy faster than
existing algorithms against increasing number of steps.

Bernstein [1] presented a method for searching a joint policy that
corresponds to a correlated equilibrium, i.e., agents can observe a
common correlated probabilistic device to achieve better coordi-
nation. scheme that utilizes acorrelated deviceto achieve better
coordination among agents. In [1], an iterative improvement type
algorithm is used to modify each local FSM and the correlated de-
vice. Szer and Charpillet [13] developed a best-first algorithm to
search for an optimal joint policies.

However, as far as the authors aware of, there have been very lit-
tle work on the run-time communication scheme of Dis-POMDPs
when the local policy of each agent is represented as an FSM. Of
course, there exists a vast amount of works on communications be-
tween FSMs (e.g., [3]), including works on multi-agent systems
(e.g., [12]). However, these works intend to use an FSM for for-
mally representing/analyzing a communication protocol, while our
work aims to search for a good joint FSM that effectively uses run-
time communication.

In this paper, we aim to search for an optimal/semi-optimal joint
policy (which is a combination of local FSMs) when the run-time
communication incurs some cost. In this scheme, communication
is one type of possible actions that can affect the observations of
other agents. Agents use run-time communication only when it is
cost-effective.

One notable characteristic of this scheme is that the semantics
of the messages are not predefined. We just define the possible
number of message types without any predefined meanings, e.g.,
agents can send two types of messages, i.e., either0 or 1. The
meaning of each message type is given implicitly by the interaction
between local policies. Since we don’t need to define the meaning
of communication before hand, this scheme is similar tocheap talk,
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which is considered in game theory literature [4]. However, we
assume that the communication incurs some cost, while cheap talk
is assumed to have no impact on agents’ utilities.

When the number of possible local FSMs (determined by the
number of nodes in the FSM, possible actions/observations, and
message types) is small, we can exhaustively search for an opti-
mal joint policy. However, this approach quickly becomes infea-
sible when the number of possible FSMs becomes large. Thus, in
this paper, we utilize an iterative-improvement type algorithm, in
which, fixing the FSMs of other agents, it tries to improve the FSM
of one particular agent and repeats the process for each agent in
turn.

Quite interestingly, for two different domains (Tiger-problem and
Meeting Problem), our algorithm can find a joint policy that ob-
tains a better expected reward than a hand-crafted joint policy, and
it requires fewer nodes in the local FSM and fewer message types.
Furthermore, we experimentally show that our algorithm can ob-
tain a sufficiently large joint policy within a reasonable amount of
time.

2. MODEL: DIS-POMDPS
We follow Bernstein [2] as a description of Dis-POMDPs. Dis-

POMDPs withn agents are defined as a tuple:〈S, A, P, Ω, O, R〉.
S is a finite set of world states{s1, s2, . . . , sm}. A = Π1≤i≤nAi,
whereA1, . . . , An are the sets of actions for agents1 to n. A
joint action is represented as〈a1, . . . , an〉. The transition func-
tion P (si, 〈a1, . . . , an〉, sf ) represents the probability that the cur-
rent state issi, if the next state issf and the previous joint action
is 〈a1, . . . , an〉. Ω = Π1≤i≤nΩi is the set of joint observations
whereΩi is the set of observations for agenti. The observation
function O(s, 〈a1, . . . , an〉, ω) represents the probability of joint
observationω ∈ Ω, if the current state iss and the agents’ pre-
vious joint action is〈a1, . . . , an〉. We assume that an agent’s ob-
servations are independent of others’ observations. Thus the ob-
servation function can be expressed as:O(s, 〈a1, . . . , an〉, ω) =
O1(s, 〈a1, . . . , an〉, ω1)·. . .·On(s, 〈a1, . . . , an〉, ωn). Finally, the
agents receive a single, immediate joint rewardR(s, 〈a1, . . . , an〉)
.

Each agenti chooses its actions based on its local policyπi. The
goal in Dis-POMDPs is to compute a joint policyπ = 〈π1, . . . , πn〉
that maximizes the team’s expected reward.

In this paper, we represent a local policy as a Finite State Ma-
chine (FSM) defined as follows. While an FSM can be either deter-
ministic or stochastic [1, 9], in this paper, we restrict our attention
to deterministic FSMs for simplicity.

A deterministic FSM of agenti is defined as the following tuple:
〈Qi, ψi, ηi, q

0
i 〉whereQi is the finite set of FSM nodes,ψi : Qi →

Ai is an action selection function,ηi : Qi × Oi → Qi is an FSM
transition function, andq0

i ∈ Qi is the starting node of the FSM.
Given FSMs for each agent, we can obtain a joint policy, i.e., one

FSM that combines all local FSMs. The expected discount reward
of this joint FSM can be obtained by solving a system of linear
equations defined overVj(s) for eachs ∈ S, wherej is the index
of a node in the joint FSM.

Vj(s) = R(s,~a) + γ
X

s′∈S,ω∈Ω

P ′(s′, ω|s,~a)Vj′(s
′)

whereγ is a discount factor,~a = 〈ψ0(j), . . . , ψn(j)〉 is a set of
actions associated with nodej, andP ′(s′, ω|s,~a) = P (s,~a, s′)P

ω∈Ω s.t. η(j,ω)=j′ O(s,~a, ω).

Table 1: Transition function P : * corresponds with either
OpenLeftor OpenRight

Action/Transition SL → SL SL → SR
(SR → SR) (SR → SL)

〈∗, ∗ or Listen〉 0.5 0.5
〈∗ or Listen, ∗〉 0.5 0.5
〈Listen, Listen〉 1.0 0.0

Table 2: Observation function O: * of state corresponds with
either SL or SR, * of action corresponds withOpenLeftor Open-
Right

State Action HL HR Reset
SL 〈Listen, Listen〉 0.85 0.15 0.0
SR 〈Listen, Listen〉 0.15 0.85 0.0
∗ 〈∗, ∗ or Listen〉 0.0 0.0 1.0
∗ 〈∗ or Listen, ∗〉 0.0 0.0 1.0

Table 3: Reward function R: c corresponds with listen cost,
d corresponds with tiger cost, andd/2 denotes the cost when
agents jointly open door to tiger.

Action/State SL SR
〈OpenRight, OpenRight〉 +20 −d/2
〈OpenLeft, OpenLeft〉 −d/2 +20
〈OpenRight, OpenLeft〉 −d −d
〈OpenLeft, OpenRight〉 −d −d

〈Listen, Listen〉 −c −c
〈Listen, OpenRight〉 +10 −d
〈OpenRight, Listen〉 +10 −d
〈Listen, OpenLeft〉 −d +10
〈OpenLeft, Listen〉 −d +10

3. ILLUSTRATIVE DOMAIN: MULTI-AGENT
TIGER PROBLEM

We introduce an illustrative domain called the multiagent tiger
problem [7], in which performing appropriate run-time communi-
cation is effective. Two agents stand in front of the two rooms and
its doors labeled “left” and “right”. Behind one door lies a hun-
gry tiger and behind the other lies untold riches but the agents do
not know the position of either. Thus,S = {SL, SR}, indicating
behind which door the tiger is present. The agents can jointly or
individually open either door. In addition, they can independently
listen for the presence of the tiger. Thus,A0 = A1 = {OpenLeft,
OpenRight, Listen}. The transition functionP specifies that every
time either agent opens one of the doors, the state is reset toSL
or SR with equal probability, regardless of the action of the other
agent (see Table 1). However, if both agents chooseListen, the state
is unchanged.

The observation functionO will return eitherHL or HR with
different probabilities depending on the joint action taken and the
resulting world state (see Table 2). For example, if both agents lis-
ten and the tiger is behind the left door (state isSL), each agent
receives observationHL with probability0.85 andHR with prob-
ability 0.15. Reward functionR returns a joint reward (see Table
3). For example, the injury sustained if they opened the door to the
tiger is less severe if they open that door together than if they open
the door alone.

4. RUN-TIME COMMUNICATION SCHEME
AND SEARCH ALGORITHM
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In this paper, we aim to search for an optimal/semi-optimal joint
policy when the run-time communication incurs some cost. In this
scheme, communication is one type of possible actions that can
affect the observation of other agents. Agents use run-time com-
munication only when doing so is cost-effective. More specifically,
we simply define the possible number of message types without any
predefined meanings, because the meaning of each message type is
given implicitly by the interaction between local policies.

4.1 Run-time communication scheme
We illustrate how run-time communication among FSMs works

using the multiagent tiger problem. Let us assume agents can com-
municate two types of messages, 0 and 1, which correspond to ac-
tionsComm0andComm1, respectively.

We assume the communication action of one agent can supersede
the other agent’sListenaction, but notOpenLeftandOpenRight.
More specifically, when agent 0 communicates 0 (or 1), and agent
1 listens or communicates, then agent 1 observesSignal0(or Sig-
nal1). On the other hand, if agent 1 doesOpenLeft(or OpenRight),
the state is reset and both agents observeReset. When agent 0 com-
municates and agent 1 listens, then agent 0 receives no observation
(denoted asNothing).

We assume communication actions require a certain cost. Also,
by choosing a communication action, an agent might loose an op-
portunity to perform other more profitable actions.

Note that we don’t ascribe any predefined meanings to the mes-
sages, such as message 0 means that the agent observes that the
tiger is left, etc. However, the search algorithm described in the
following subsection can automatically find a joint policy in which
these messages are used effectively. For example, agent 0 com-
municates message 0 (or message 1) if he observes the tiger is left
(or right), and agent 1 chooses an appropriate action based on the
received message type.

4.2 Search algorithm
The number of possible local FSMs is determined by the number

of nodes in the FSM, the number of possible actions/observations,
and the number of message types. When the number of possible
local FSMs is small, we can exhaustively search for an optimal joint
policy, or use more sophisticated search algorithms [13]. However,
finding an optimal joint policy becomes quickly infeasible when
the number of possible FSMs becomes large. Thus, in this paper,
we introduce an iterative-improvement type algorithm that can find
a locally optimal joint policy quickly.

There exist several works on iterative improvement type search
algorithms for FSMs, such as [1]. Since we assume deterministic
FSMs, we cannot directly apply the techniques introduced in [1].
Therefore we use a relatively simple iterative improvement type al-
gorithm similar to JESP [8]. It changes one node of one particular
agent one by one, by using hill-climbing procedure.

Algorithm 1 describes our algorithm. First, it generates an ini-
tial default FSM for each agent (Line 1).Π contains the current
joint FSM. Then, the algorithm picks one agenti in turn (Line 5)
and chooses one particular nodeq of the FSM of agenti (Line 6).
Then, the algorithm tries all possible local FSMs by changing only
this particular nodeq and chooses the one that gives the highest
expected reward (Lines 7 to 13). This process is repeated for each
agent in turn, until no improvement is obtained.

The quality of the obtained local optimal joint policy critically
depends on the choice of the initial default FSMs. Thus, we repeat-
edly run Algorithm1 starting from different initial default FSMs
and choose the best joint policy obtained in the multiple trials.

Algorithm 1 NODE-BASE-APPROXIMATION(Q)

1: Π ← GETDEFAULTFSM(Q)
2: Vtmp ← V (Π)
3: Vmax ← Vtmp

4: Πbest ← Π
5: for all agenti do
6: for all q ∈ Qi do
7: for all a ∈ Ai do
8: Expandψi : q → a
9: for all η′i ∈getAllFSMTransition(q, Qi, Ωi) do

10: η ← η′

11: if V (Π)− Vtmp > 0 then
12: Vtmp ← V (Π)
13: Πbest ← Π
14: if Vtmp − Vmax > 0 then
15: Vmax ← Vtmp

16: Go to line 5
17: return Πbest

Com m 0

Listen

OLOR Com m 1

HL HR

Signal0 Signal1

Figure 1: The hand-crafted policy represented by FSM in the
Tiger Problem.

5. EXPERIMENTAL RESULTS
In this section, we empirically evaluate our proposed algorithm

in Section4.1 using the tiger and meeting problems in terms of the
expected reward and runtime of the obtained policies. These prob-
lems are slightly extended to treat communication among agents,
since our proposed algorithm introduces communication among
agents. We ran the algorithm for an initial state chosen randomly,
and the initial/default policy is also selected randomly for all states.
Then, we perform an empirical comparison of the obtained policy
and a hand-crafted policy on those two problems. The discount
factorγ is set to0.9.

5.1 Tiger problem
Let us describe a hand-crafted policy for the tiger problem. Ini-

tially, we thought we needed (at least) two types of messages to
make communication worthwhile in the tiger problem, i.e., mes-
sage 0/1 means the agent observedHL/HR. Figure1 shows a hand-
crafted policy based on this idea. The initial node is the one with
a bold line and, each edge illustrates a transition according to an
observation. Though we omit a transition back to the initial node,
when an agent observesReset, the state always transits to the ini-
tial node. In the policy, both agents first choosesListen, and they
send either message 0 or 1 according to its observation (HRor HL).

  L isten

O LO R

 Comm0    L isten

O LO R

 Comm0

Signal0

HL

Nothing

Agent0 Agent1

Nothing

HR

Signal0

Figure 2: The obtained FSM with one type of communication
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Table 4: The comparison of results in the global and local
search algorithms

Runtime [secs] Expected reward
Global search 8897.0 17.19
Local search 690.00 17.19

Table 5: Evaluating the expected rewards and runtime by in-
creasing the number of FSM nodes

Number of nodes 4 5 6 7
Expected reward 9.35 20.14 26.77 26.77
Average runtime[sec] 0.14 1.70 7.24 22.98

After sending messages, if they realize they had the observation of
HR (HL), they chooseOpenLeft(OpenRight). If they have different
observations, both move back to the initial node. This policy is in-
tuitively quite natural and it seems difficult to generate any reason-
able policy using fewer nodes/message types than the hand-crafted
policy.

However, our algorithm finds a better policy with only one mes-
sage type and four nodes. Figure2 shows the obtained FSM by our
algorithm. When we ran the algorithms, we assume that the tiger
cost isd = 50, the listen cost isc = 2, and the communication cost
is e = 2. In the setting, Figure1 achieves the average expected
reward of14.58, and Figure2 achieves that of17.19. Let us ex-
plain why the obtained FSM outperforms the hand-crafted FSM in
terms of the expected rewards. In the obtained FSM, agent 0 com-
municates only when he observesHR. Also, agent 1 communicates
only when he observesHL. When agent 0 observesHL, he chooses
Listen again. If agent 1 communicate in the next step, it means
that agent 1 observesHL (since agent 1 communicates only when
he observesHL), thus both agents chooseOR. Thus, this policy
can achieve the same coherent behavior as the hand-crafted policy
using only one message type and four nodes. Furthermore, the ob-
tained FSM is more efficient than the hand-crafted policy when the
observations of agents contradict. When agent 0 observesHR and
agent 1 observesHL, the obtained FSM chooses the same action as
the hand-crafted policy.

On the other hand, when agent 0 observesHL and agent 1 ob-
servesHR, the obtained policy immediately returns to the initial
node without any communication. Thus, the obtained FSM outper-
forms the hand-crafted FSM since the hand-crafted FSM requires
one extra step in this case. We perform an empirical comparison
of the global and local search algorithms using the tiger problem.
Each agent has an FSM with four nodes and uses only one type of
communication (Comm0).

Table4 shows the comparison of results in the global and local
search algorithms. In the local search algorithm, we perform 5000
time experiments and choose a solution (joint policy) with the high-
est expected reward among 5000 obtained policies. The expected
reward of the joint policy in Figure2 is 17.19. The joint policy is
equivalent to the one obtained by utilizing the global search algo-
rithm. The total runtime for the global search algorithm to find the
joint policy is 8897 seconds, while that for the local search algo-
rithm is 690 seconds. The runtime for the local search algorithm
per one experiment is138 msec. When a policy has a few nodes
in an FSM, the local search algorithm can find a joint policy whose
expected reward is equivalent to that of the obtained joint policy
from the global search algorithm, though the runtime is reduced.

Finally, to examine the scalability of our algorithm, we evaluate

Listen

Comm1

Listen

Comm1

HL

HR

Signal1

All All All All

Nothing

HR

Signal1
Signal1

Signal1

HL
HL

HR

Nothing

OROL OROL

Listen Listen

Listen

Listen Listen

Listen

Figure 3: The obtained FSM with seven nodes

agent

Figure 4: Meeting problem (2agents,l = 6)

the expected rewards and runtime by increasing the number of FSM
nodes from 4 to 7. Each agent uses two types of communication
for d = 1000 andc = 0.1. We perform 1000 time experiments
for each number of nodes and choose the joint policies with the
highest expected reward among the 1000 obtained policies shown
in Table5. The expected rewards are9.35 with 4 nodes and26.77
with 6 and7 nodes. The FSM with4 nodes generated the policy
equivalent to Figure2. The FSM with7 nodes generated the policy
shown in Figure3. However, since two of the seven nodes are never
reached when the FSM is conducted, only five nodes in the FSM
with 7 nodes are used to control agents.

Table 5 denotes that the expected reward of the FSM with five
nodes (20.14) is outperformed by that of the one with seven nodes
(26.77). In particular, though the FSM with seven nodes includes
two unreachable nodes, it achieves better expected rewards. Since
the average runtime for seven nodes is22.98 seconds, our algo-
rithm can generate a joint policy in a feasible time when the num-
ber of nodes is increased. Thus, we can say that our algorithm has
adequate scalability.

5.2 Meeting problem
This subsection focuses on a meeting problem where two agents

try to meet on a line field of lengthl with no obstacles [13]. Here,
each agent has the available actions of move left, move right, or
communicate on the current square. An agent cannot realize where
his partner is and he can observe an end wall of the line field only
when he reaches it. Their goal is to stay on either the same or
their neighbor’s square. When their goal is achieved, they receive a
reward of 1.0.

There are six observations. First, if an agent moves left or right,
he observes a wall to his left (LeftEdge), his right (RightEdge), or
no wall (Middle). Second, an agent observesSignal if his partner
agent choosesComm. Third, if one agent choosesCommand the
other chooses a different action fromComm, the agent which chose
CommobservesNothing, and the other agent observesSignal. In
other words, if agent0 chooses to communicate, the message is
delivered to agent1 regardless of the choice of actions of agent1.
Finally, if both agents meet, they receive the reward and observe
Reset. The positions of the agents are shuffled randomly and the
next period begins.

We perform an empirical comparison of the obtained policy and
the hand-crafted policies on the meeting problem. Let us describe
the two types of hand-crafted FSMs with/without communication.
Figure 5 illustrates an FSM without communication, where one
agent moves left and the other agent moves right until they reaches
either edge. Then, the agent who reaches an edge changes his di-
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Figure 5: The hand-crafted FSM without communication
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Figure 6: The hand-crafted FSM with communication

rection. Next, we describe a policy to make communication worth-
while in the meeting problem described in Figure6. The policy is
basically the same as the policy without communication until one
agent reaches the edge. If agent 0, who is moving left, reaches the
edge before meeting agent 1, it means that agent 1 is on his right
side and keeps moving to right. Thus, agent 0 communicates (send
a signal to) agent 1 the fact that agent 0 is at the left edge. By
receiving this signal, agent 1 turns and starts moving to the left.

Since these two FSMs are natural and reasonable, it seems dif-
ficult to outperform these hand-crafted FSMs. However, our al-
gorithm finds a policy (shown in Figure7) that outperforms them
whenl is small. In this policy, both agents choose to communicate
in every two steps until one agent reaches the edge. At first glance,
this sounds wasteful, since by communicating, agents lose one step
to move. However, in many configurations, the agents are moving
in opposite directions. Therefore, moving cautiously can pay off.
If agent 0 reaches an edge, he changes his direction without com-
munication and he will not communicate afterward. Agent 1, who
observed that agent 0 did not communicate, changes his direction
and will not communicate afterward. In the meeting problem with
l = 6, the expected reward of Figure6 is 3.61, while Figure5 is
3.92 and Figure7 is 4.15. More specifically, Figure8 illustrates
how these FSMs work. The left side of Figure8 shows the hand-
crafted FSM without communication (no-comm), the middle shows
the hand-crafted FSM with communication (comm-hand), and the
right side shows the obtained FSM (comm-search). At the initial
state,no-commneeds5 steps to meet the agents. Also, the left
agent ofcomm-handcommunicates at step2, since he reaches the
left edge, while staying in the same position. Furthermore, the right
agent moves to the right square.

On the other hand, if an initial state is drawn randomly, the ex-
pected reward ofcomm-searchoutperforms that ofcomm-hand.
Agents withcomm-searchmeet in four steps. At the first step, one
agent moves left and the other moves right. Since the agent who
chose move left faces an edge, at the second step, he chooses move
right, while the other agent communicates. Then, the right side
agent receives no signal from the other agent. At the third step, he
changes his direction to move, i.e., moves left. Since the left side
agent receives a signal, he keeps to the right. As a result, the agents
meet at the fourth step. Considering the possible initial states in
l = 6, it is likely that comm-searchrequires fewer steps to meet
thancomm-hand.

Figure9 describes the expected rewards of the obtained and the
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Middle

LeftEdge RightEdge
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Middle
Signal

Middle
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Figure 7: The obtained FSM in meeting problem
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Figure 8: The comparison of the obtained FSM and the hand-
crafted FSMs l = 6

two hand-crafted FSMs (comm-search, comm-hand, andno-comm),
varying in the lengths (l = {5, 6, 7, 8, 9}). Here, thoughcomm-
searchoutperforms the other FSMs in terms of the expected re-
wards in l = {5, 6, 7, 8}, the difference of performances seems
small as the length increases. Inl = 9, the expected rewards of
comm-searchandcomm-handare2.58. Since both has the same
FSM in comm-hand. Also in l ≥ 10, our algorithm finds similar
FSM to that ofl = 9. We choosel ≥ 5 because whenl ≤ 4, a
trivial FSM with one node can maximize the expected reward (e.g.,
both agents just keep on moving to the left). Therefore, we pay
our attention to cases withl ≥ 5 where it is effective for agents to
utilize some nodes in addition to the initial node.

6. CONCLUSION
This paper proposed a run-time communication scheme where

the local policy of each agent is represented as an FSM. Also, we
proposed an iterative-improvement type algorithm that searches for
a joint policy where run-time communication incurs some cost.
Thus, agents use run-time communication only when doing so is
cost-effective.

Interestingly, our algorithm could find a joint policy that obtains
a better expected reward than a hand-crafted joint policy that rea-
sonably utilizes a communication in response with an observation.
In addition, the obtained policy requires fewer nodes in the local
FSM and fewer message types than the hand-crafted joint policy.
Furthermore, we experimentally confirmed that our algorithm gen-
erates a sufficiently large joint policy within a reasonable amount of
time. Future works will examine our algorithm with more agents,
or generate global optimal FSMs in larger-scale problems.
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ABSTRACT
Policy optimization in Decentralized MDPs is in general in-
tractable, so researchers have developed a variety of tech-
niques geared towards solving restricted subclasses of these
problems more efficiently. In particular, Becker and col-
leagues have identified an interesting class wherein agents’
interactions consist of event-driven dependencies, and have
applied informed policy search techniques to solve these prob-
lems optimally. Here we present a dual formulation of the
Event-driven DEC-MDP, representing interactions with a
well-established commitment paradigm. We claim that, for
this particular class of problems, searching a space of rich
commitments is equivalent to searching the policy space di-
rectly. And we argue that our commitment-based reformula-
tion not only enables more efficient, scalable computation of
approximate solutions, but further provides a natural flex-
ibility of approximation by which interactions can be mod-
eled with more or less detail.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Performance

Keywords
Multiagent Systems, Decentralized Markov Decision Pro-
cesses, Event-Driven Interactions, Commitments

1. INTRODUCTION
For agents involved in cooperative planning and decision-

making, there is often the danger that uncertainty in the
timing of one’s own actions could carry over to uncertainty
in the timing of interactions with others. Our work is moti-
vated by problems in which agents can affect the transitions
and rewards of one another, and so benefit from coordinat-
ing their actions, but in doing so must account for durational
uncertainty in the effects of these actions. These problems
have inspired a variety of techniques for successfully solving
them in restricted cases [6, 12, 13]. One common theme ex-
plored in prior works is the use of temporal decoupling: if

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

there is a range of possible times that an inter-agent effect
can take place, temporal decoupling entails selecting indi-
vidual time points and constraining the effect to occur at
(or by) these times.

In this paper, we generalize the notion of temporal decou-
pling into a framework of temporal commitments that can be
used to constrain agent interaction modeled by Decentral-
ized Markov Decision Processes (DEC-MDPs). We focus on
a class of loosely-coupled DEC-MDPs called Event-Driven
DEC-MDPs [2] that represent agent interactions in a struc-
tured form of event dependencies. As Becker and colleagues
[2] note, even this restricted class is difficult to solve opti-
mally. But here we show that our decoupling methodology
can be used to coordinate structured, temporally-uncertain
interactions effectively and efficiently, scaling well with the
degree of temporal uncertainty.

We begin by providing a detailed description of the Event-
Driven problem class along with an example to illustrate
how temporally-uncertain interactions are modeled. Next,
in Section 3, we describe Becker’s optimal solution algorithm
and give an overview of related DEC-MDP approaches. In
Section 4, we characterize structural properties that can be
taken advantage of in solving problems with temporally-
uncertain interactions, and discuss their (limited) impacts
on Becker’s optimal solution algorithm, exposing the need
for algorithms that can exploit temporal uncertainty. In Sec-
tion 5, we describe that commitment semantics that form
the core of our methodology and show how they can be ex-
tended so as to provide a reformulation of the Event-Driven
DEC-MDP problem. In Section 6, we prove (given common
assumptions) that our methodology yields optimal solutions
equivalent to those returned by Becker’s algorithm. And in
Section 7, we argue that our methodology can flexibly trade
off solution quality and computational complexity, produc-
ing approximate solutions more efficiently than Becker’s al-
gorithm. We conclude with a preliminary evaluation and
discussion.

2. PROBLEM DESCRIPTION
Our approach addresses coordination problems with tem-

poral uncertainty and temporal constraints that arise among
loosely-coupled agents that interact through features in their
shared environment. The kinds of problems where this and
the assumptions described below hold arise in the DARPA
Coordinators [20] application domain where one agent might
establish the preconditions for another agent’s action, or
where successful achievement of objectives requires the si-
multaneous execution of actions by multiple agents. These
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types of multiagent coordination problems can be repre-
sented in the TAEMS description language [8]. Here we
describe one such problem (in Section 2.1) and model the
problem as a DEC-MDP (in Section 2.2).

2.1 Example
An example of a TAEMS problem is depicted in Figure 1.

Consider two autonomous vehicle agents with various mis-
sion objectives, one of which is to find and retrieve resources
in their environment. The two agents have differing abili-
ties, so in order to fulfil their objectives, they must work
together to first locate resource X and then collect resource
X. The problem is made more difficult by uncertainty in the
timing details of the mission. Depending on where X is lo-
cated, the UAV agent may have to fly around for a variable
amount of time before finding it. Similarly, depending on
what obstacles lie in its path, the UGV agent may take a
variable amount of time to obtain the item after it has been
located by the UAV agent.

Figure 1: Autonomous Vehicle Example Problem

More formally, the joint mission objectives are represented
by a hierarchy of tasks the agents can perform. The agents
accumulate quality by completing tasks, the quality of each
of which is dictated by a function (in this case, summation)
of the qualities of the underlying completed tasks. A task
may have preconditions necessary for starting the task and
ensuring its successful completion. A task may also have ef-
fects that are realized upon its successful completion. Each
task also has a probability distribution over duration, mod-
eling temporal uncertainty. And each task has a deadline,
which is the last time step at which the task can yield its
prescribed quality and effects. If the task completes later
than its deadline, then the agents do not benefit from it.

Agent interaction occurs with the fulfillment of task de-
pendencies. The effects of one agent’s task may meet pre-
conditions for a task of another agent, signifying that a non-
local effect (NLE) exists between the two tasks. The second
agent is non-locally affected by the first agent completing
its task. We call this kind of non-local effect an enablement :
locate-item-X enables obtain-item-X. So we are faced with
the problem of coordinating the behavior of the agents so
that they perform tasks that will achieve mission objectives
and maximize their collective rewards within deadlines.

2.2 Event-Driven DEC-MDPs
This problem can be modeled using a DEC-MDP with

Event-Driven Interactions [2] (or Event-Driven DEC-MDP,
for short). As defined by Bernstein and colleagues [4], an n-
agent DEC-MDP can be described by the tuple 〈S,A, P,R,
Ω, O〉, where S is a set of world states, A = A1×A2×...×An

is the joint action space, P : S × A × S → [0, 1] is the
transition function, R : S ×A× S → Rn is the joint reward
function, Ω = Ω1×Ω2×...×Ωn is the joint observation space,
and O : S ×A× S × Ω→ R is the observation function.

In our example problem from Figure 1, the actions avail-
able to each agent are to begin executing each of its methods
or to wait a time step. The transition probabilities associ-
ated with each of these method-execution actions are dic-
tated the respective durational outcomes. The reward for
entering a state in which a task has just been completed (by
its deadline and with its dependencies previously fulfilled)
is the prescribed quality of that task (as given in Figure
1). The agents observe whether or not their own tasks have
completed as well as those tasks which affect the executions
of their own tasks.

Event-driven DEC-MDP world state is factored into local
state components so as to separate features relevant to one
agent from features relevant to other agents. In our TAEMS
problem, an agent’s local state is composed of the current
time as well as features relating to the executions and out-
comes of its methods. For simplicity, we consider features
dictating whether or not an agent’s task is enabled to be
part of that agent’s local state, and therefore fully observ-
able by that agent. Although this is not strictly speaking
how Becker models TAEMS problems in his Event-Driven
DEC-MDP treatment [2], he notes that this added observ-
ability could be incorporated into his model.

In addition to being factored, locally fully observable, and
reward independent, Event-Driven DEC-MDPs have struc-
tured transition dependencies [2]. In particular, one agent
may influence the local state transitions of another through
the occurrence of a proper event, a disjunction of primitive
events of the form e = (si, ai, s

′
i), each of which may occur in

agent i’s execution history. Interactions occur though event
dependencies of the form dkij =

〈
Eki , D

k
j

〉
, whereby an event

in Eki brings about a change in the transitions, Dk
j (which

is made up of state-action pairs), of agent j. Dependency
satisfaction is captured by Boolean variable bksjaj

, which is

true when an event in Eki has occurred.
The transition function P of a DEC-MDP with event-

driven interactions is defined as the combination of indi-
vidual transition functions Pi

(
s′i|si, ai, bksiai

)
, one for each

agent. That is, the agents’ local state transitions are inde-
pendent of one another with the exception of event depen-
dencies captured by the bksiai

variables.
In our example problem from Figure 1, we can model the

enablement NLE between locate-item-X and obtain-item-X
by a set of event dependencies

{
dk12
}

. For example, d2
12 =〈

E2
1 , D

2
2

〉
represents the dependency satisfied by locate-item-

X completing at or before time 2. D2
2 thus contains state-

action pairs representing agent 2 attempting to execute obtain-
item-X at time 2. There is one such dependency for each
time step that agent 2 could be enabled.

3. EXISTING SOLUTION METHODS

3.1 Dependency-Augmented MDPs and CSA
Becker’s algorithm [2] exploits dependency structure in

the Event-Driven DEC-MDP model. Becker shows that, be-
cause interactions are restricted to event dependencies, the
DEC-MDP can be broken into augmented local MDPs, each
representing additional information regarding the agent’s
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(non-local) dependencies. Si is expanded to contain vari-
ables that represent the dependency history in all states.
Becker’s algorithm constructs each augmented local MDP
〈S′i, Ai, Pi, Ri〉π−i

by assuming that the policies of the other

agents (π−i) have been fixed, extracting dependency infor-
mation (in the form of P

(
dkij |si

)
) from these policies, and

then incorporating this dependency information into the lo-
cal state and local transitions. Further, the reward function
of the augmented local MDP is supplemented with the ex-
pected nonlocal reward obtained by other dependent agents
resulting from satisfaction of local-event dependencies.

The DEC-MDP is thereby converted into a set of local
MDPs, each with transitions and rewards dependent on a
parametrization of the policies of the other agents and re-
wards that reflect the joint utility of the system (as a linear
combination of those parameters). This allows for the ap-
plication of Becker’s coverage set algorithm (CSA) [3]. The
coverage set algorithm has been shown in the past to find op-
timal solutions tractably by performing an informed search
of the joint policy space, but there is additional computa-
tional cost in applying it to Event-Driven DEC-MDPs, as
we will discuss in Section 4. There has been recent devel-
opment of a more efficient reformulation of CSA using Sep-
arable Bilinear Programming [15] but no publications, as of
yet, extend it to handling Event-Driven interactions.

3.2 Other Related Work
The general class of DEC-MDPs has been shown by Bern-

stein and colleagues to be NEXP-complete [4]. Despite this
daunting complexity result, researchers have developed opti-
mal algorithms including A∗ Heuristic search [18], dynamic
programming [11], and policy iteration [5], as well as a vari-
ety of approximate algorithms [1, 5, 16]. All of these meth-
ods are applicable to DEC-MDPs with Event-Driven inter-
actions, but as they do not exploit the special dependency
structure, they are computationally intractable for all but
the smallest of problems.

The methodology that we present here, like Becker’s, gains
traction by taking advantage of structure in problems with
Event-Driven interactions. Along these lines, researchers
have developed practical techniques that exploit structure in
other DEC-MDP problem subclasses. Goldman and Zilber-
stein have developed a suite of techniques that exploit goal-
oriented behavior in decentralized MDPs (and POMDPs)
under different communication regimes [10]. Nair extended
his JESP algorithm to solve a particular class of transition-
independent DEC-POMDPs called network distributed PO-
MDPs (ND-POMDPs), taking advantage of the transition
independence in the best-response calculations as well as lo-
cality of interactions within the system of agents [14].

Our work also has the flavor of decoupling the agents’
problems by imposing temporal constraints on their inter-
actions. Others have recently taken similar temporal decou-
pling approaches. Beynier [6] and, more recently, Marecki
[13] have also looked at another special class of DEC-MDPs
called Opportunity Cost DEC-MDPs (OC-DEC-MDPs), in
which interaction dependencies (in the form of precedence
constraints) form a fully-connected, time-constrained depen-
dency graph in which each agent’s methods lie along a path
through the graph. Temporal reasoning is then used to facil-
itate the formation of communication-free joint policies that
coordinate the start times of agents’ tasks.

4. THE CURSE OF DIMENSIONALITY
Becker gains traction by exploiting structure to compute

solutions more efficiently. But while the complexity of DEC-
MDPs with Event-Driven Interactions is reduced from that
of the general class of DEC-MDPs, it is still doubly exponen-
tial in the number of dependencies1. And because the Cov-
erage Set Algorithm (CSA) is an optimal solution method,
its performance is critically affected by this exponential re-
lationship. This curse of dimensionality manifests itself in
two different ways in particular.

First, there is the incorporation of dependency informa-
tion into local state. To maintain the Markov property, CSA
requires that local models be augmented so as to include
dependency history information, yielding an increase in the
number of local states that is exponential in the number of
dependencies. This increase can have a significant effect on
the local policy computation, an operation that is employed
repeatedly during the course of one run of CSA. Becker dis-
cusses intuitive characterizations that allow the augmented
local MDPs to be kept small for his sample problems. In sec-
tion 4.1, we further characterize these classes of problems,
formalizing key structural properties that allow us to bound
local state space complexity.

A second (and arguably more severe) impact is seen with
the size of the CSA parameter space. As we will describe
in Section 4.2, the number of parameters is no less than the
number of dependencies, thus defining a many-dimensional
space to navigate in order to compute the coverage set. In
Section 4.2, we discuss the pitfalls of applying CSA as the
number of dependencies scales up. We also relate this dis-
cussion to additional structural properties that could be ex-
ploited.

4.1 Exploiting Temporal Structure
As discussed in Section 3.1, Becker’s algorithm breaks the

DEC-MDP into augmented local models, making the state
space exponentially larger in the number of interaction de-
pendencies. To combat this increased complexity and render
the coverage set algorithm tractable, Becker and colleagues
focus their evaluation on TAEMS problems with enablement
interactions. As it turns out, these problems contain special
structure that give way to more efficient modeling meth-
ods. We formalize this additional event-driven dependency
structure with the following definitions.

Definition 1. A DEC-MDP is temporally indexed if
time is represented explicitly as a state feature, which we
will call time (e.g. time(s0) = 0).

Definition 2. A dependency dkij =
〈
Eki , D

k
j

〉
is tempo-

rally conditioned if there exists a single dependency
time t such that:
∀sj ∈ Sj ,

(
∃aj | 〈sj , aj〉 ∈ Dk

j

)
⇒ (time(sj) = t).

Definition 3. An interaction is a temporally uncertain
interdependency if it may be represented by a set of tem-
porally conditioned dependencies
Xij =

{
d1
ij , d

2
ij , ..., d

k
ij =

〈
Eki , D

k
j

〉
, ...
}

with the following
properties:

1It is important to note that, given Becker’s dependency
semantics, there may be several dependencies required for
each interaction (non-local effect). There is actually one
dependency needed for each time that an interaction could
occur.
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1. ∀dkij ∈ Xij , dkij is temporally conditioned with the de-
pendency time tk

2. ∀dxij , dyij ∈ Xij , (tx < ty) ⇒ (Exi ⊆ Eyi ), which implies
that ∀sj ∈ Sj , if dxij is satisfied in sj , so is dyij

3. ∀dxij ∈ Xij ,¬∃dyij ∈ Xij for which (tx = ty)∧
(
dxij 6= dyij

)
With these definitions, we have identified a type of in-

teraction that is represented by the satisfaction of a tem-
porally uncertain interdependency. Each of the temporally-
conditioned dependencies in Xij represents a time point at
which the temporally uncertain interdependency might be
satisfied. As soon as one of the interaction dependencies is
satisfied, all future dependencies are in turn satisfied. This
is an intuitive property of enablement interactions: it may
be uncertain when a task will get an enabled, but after that
it can be successfully executed at all future time steps (sub-
ject to deadline constraints). This additional structure al-
lows the dependency histories of all of the dependencies in
Xij to be compactly represented in Becker’s augmented lo-
cal models. Only a single Boolean satisfaction variable b
need be added to the local state, representing whether the
interdependency has been satisfied. The size of the local
state space thus increases by a factor of just 2|X| for DEC-
MDPs with only temporally-uncertain event-driven interac-
tions, whereas, in general, it increases by T |d| (because de-
pendency histories are recorded).

Definition 4. For any given Event-Driven problem, the
agent interaction graph summarizes agent influence, con-
taining a node for each agent, and representing an edge be-
tween nodes i and j for every non-local effect that exists
between agent i and agent j (or equivalently, for every way
in which one can influence the other and vice versa).

Theorem 1. For a DEC-MDP with Event-Driven tem-
porally uncertain interdependencies X̄ =

{
Xk
}

where

(a) the only local state features observable by more than
one agent are time and the interdependency satisfac-
tion variable bk associated with each

{
Xk
}

(b) there are no (undirected) cycles in the agent interac-
tion graph,

For each variable bk modeled by agent j and representing
agent i’s satisfaction of Xk

ij, and for any policy of agent i,

parameters
{
Prob(bk|sx),∀sx ∈ Sj

}
can be completely sum-

marized by
{
Prob(bk|t), ∀t ∈ [0, T ]

}
.

Proof Sketch. In order to prove this theorem, it suf-
fices to prove that there do not exist two of agent j’s local
transition

{
sx → s′x, sy → s′y

}
both occurring at time t for

which Prob(bk|sx) = Prob(bk|sy) = 0 and Prob(bk|s′x) 6=
Prob(bk|s′y). That is, given a fixed policy of agent j, there
do not exist two trajectories of agent i for which the time
is the same but the probability of incoming satisfaction is
different. Space limitation preclude a full proof, but let us
provide some intuition as to why this should be true. If(
Prob(bk|sx) 6= Prob(bk|sy)

)
, then there must be some dif-

ferentiating feature (other than time) modeled by agent j
whose value is conditioned on the probability of agent i sat-
isfying bk. In Event-Driven problems, the only dependencies
between agent i’s local transitions and agent j’s local tran-
sitions are the event dependencies whose satisfaction is cap-
tured by dependency satisfaction variables. So one of these

must be the differentiating feature. The two possibilities
are (1) that agent i has an outgoing dependency whose sat-
isfaction differs in sx and sy that affect agent i’s transitions
thereby affecting Prob(bk) or (2) that agent imodels another
incoming dependency represented by b′k that is dependent
on bk and whose satisfaction differs in sx and sy. But the
acyclicity of the agent interaction graph precludes both of
these possibilities. So Prob(bk|sx) must equal Prob(bk|sy).

Theorem 1 has the implication that for certain problems
with the assumed interaction structure dictated by condi-
tions (a) and (b), the parameter space can be compacted
significantly. Agent j need only represent agent i’s policy
with T parameters per interaction whereas in the general
case, it requires |Sj | parameters per dependency.

4.2 Reducing the Viable Parameter Space
Even with the reductions implied by Theorem 1, the size of

the parameter space of Becker’s CSA increases significantly
with the number of dependencies. In general, there is at least
one parameter for each dependency. CSA finds the optimal
joint policy by computing a coverage set, which is the set
of all local policies of one agent that are a best response to
any parameter value (that encodes the policy) of the other
agent. This boils down to exploring all dimensions of the
parameter set, computing a number of best-response policies
that is (at least) exponential in the number of parameters.
Thus, as the number of dependencies increases, the work
that must be done by CSA increases exponentially.

We contend that although this parameter space is very
large, temporally-uncertain interactions enable significant
reductions in the number of parameter values that need be
explored. CSA searches in a way that treats each parameter
as an independent dimension. We propose to instead exploit
the natural relationships that exist between the dependen-
cies that make up a temporally-uncertain interaction. For
example, if the probability of Agent 1 locating item X (from
Figure 1) by time 3 is 0.5, the probability of it locating item
X by time 4 must be at least 0.5. Intuitively, it makes sense
to consider these parameters in combination instead of treat-
ing them as independent dimensions. The approach that we
present in the next section takes advantage of these relation-
ships to re-organize the parameter search space, mapping
multiple related dependencies onto the same dimension.

5. COMMITMENTS
The DEC-MDP solution methods cited in Section 3 (by

and large) have the flavor of policy search, involving com-
putation of joint policies directly. We reformulate the DEC-
MDP problem by decoupling the policy computation from
the coordination of agent interactions. By allowing agents
to negotiate over potential commitments to interactions, the
problem is then turned into one of commitment-space search,
whereby interactions are decided and then policies computed
and evaluated around these interactions.

The idea of forming commitments to interactions and plan-
ning local behavior around those commitments has a rich
history in the multiagent systems literature. Our work in-
herits ideas from Smith’s Contract Net protocol for dis-
tributed processing[17] and Cohen and Levesque’s theory
of Joint Intentions[7]. Others have designed implementa-
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tions of these commitment theories for solving multi-agent
classical planning problems [9, 19, 23]. Here, we extend our
previous work on MDP-based Commitment models [21, 22]
so as to apply it to solving Event-Driven DEC-MDPs.

5.1 Commitment Semantics
We begin by adapting the commitment definition so that

it corresponds to the satisfaction of a dependency:

Definition 5. A commitment C
(
dkij
)

= ρ to dependency

dkij =
〈
Eki , D

k
j

〉
is a guarantee that agent i will adopt a

policy such that event Eki occurs in its execution (thereby
satisfying dkij for agent j) with probability no less than ρ.

Commitments of this form allow agents to form promises
to fulfill other agents’ nonlocal dependencies. For example,
our UAV agent from Figure 1 can promise to enable the
UGV to execute its obtain-item-X task at time 2 with prob-
ability 2/3 by forming a commitment to the corresponding
dependency. We further extend the commitment semantics
to temporally uncertain interdependencies.

Definition 6. A temporal commitment C (Xij) = 〈ρ, t〉
is a guarantee that agent i will perform actions so as to, with
probability no less than ρ, satisfy the temporally uncertain
interdependency (represented by temporally-conditioned de-
pendency set Xij) by time t.

The temporal commitment is capable of representing more
sweeping promises. By forming a temporal commitment,
an agent is promising to satisfy all interaction dependencies
whose times are greater than or equal to t. For example, this
corresponds to the UAV (from Figure 1) promising to enable
the UGV (with probability 2/3) to execute its obtain-item-X
task at times 2, 3, 4, and 5.

5.2 Commitment Modeling
Commitments allow for compact representation of rele-

vant nonlocal policy information. As with Becker’s approach
(as described in Section 3.1), this nonlocal information can
be incorporated into the local state. With each temporally
uncertain interdependency, we can associate a single vari-
able b ∈ {true, false} that corresponds to the satisfaction
of the interdependency (as discussed at the end of Section
4.1). And just as in Becker’s augmented DEC-MDP model,
we can add this variable to the dependent agent’s local state
such that b(si) = T implies that in state si, the interdepen-
dency has been satisfied.

Upon augmenting the local state as such, commitments
must next be incorporated into the transition model. Given
a temporal commitment to satisfy an interdependency by
time t with probability ρ, each transition 〈si, ai, s′i〉 leading
into any state s′i with time(s′i) = t must be expanded as
follows:

∀s′i, si, ai|time(s′i = t),
P ′i (s

′
i, b = T |si, ai, b = F ) = Pi(s

′
i|si, ai, b = F ) · ρ

P ′i (s
′
i, b = F |si, ai, b = F ) = Pi(s

′
i|si, ai, b = F ) · (1− ρ)

P ′i (s
′
i, b = T |si, ai, b = T ) = Pi(s

′
i|si, ai, b = T )

P ′i (s
′
i, b = F |si, ai, b = T ) = 0

(1)
Because the interdependency is expected to be satisfied by
time t with probability ρ, we expect that Prob(b|si) = ρ for
all states at time t. The dependent agent thus models this

satisfaction bit as being set at t with probability ρ. All other
transitions not influenced by some temporal commitment as
above are governed by:

∀s′i, si, sa|time(s′i 6= t),
P ′i (s

′
i, b = T |si, ai, b = F ) = 0

P ′i (s
′
i, b = F |si, ai, b = F ) = Pi(s

′
i|si, ai, b = F )

P ′i (s
′
i, b = T |si, ai, b = T ) = Pi(s

′
i|si, ai, b = T )

P ′i (s
′
i, b = F |si, ai, b = T ) = 0

(2)

5.3 Commitment Enforcement
We can make use of past-developed Linear Programming

methods [21] by which to compute an optimal local policy
for a committing agent constrained so that its outgoing com-
mitments are guaranteed. Constraints are added that repre-
sent the probabilistic fulfilment of commitment conditions.
These commitment constraints can be trivially extended to
enforce commitments to dependencies. Given a dependency
dkij =

〈
Eki , D

k
j

〉
, consider the following linear programming

constraint: ∑
(su,a,sv)∈Ek

i

(xua · Pi (sv|su, a)) ≥ ρk (3)

Adding such a constraint to the standard MDP LP (as we
have described in previous work [21]) directly constrains
the occupancy measures x̄ of the agent i’s policy, requir-
ing that some event in Eki occurs with probability at least
ρk. This corresponds exactly to semantics of a commitment
Cij

(
dkij
)

= ρ. A temporal commitment Cij (Xij) = 〈ρ, t〉
can, in turn, be enforced with the following constraint:∑
[Ek

i |(dk
ij∈Xij∧dt(dk

ij)≤t)]

∑
[(su,a,sv)∈Ek

i ]

(xua · Pi (sv|su, a)) ≥ ρk

(4)
where dt() corresponds to the dependency time characteristic
from Definition 2.

5.4 Commitment-space Search
At the core of the commitment approach is the process

of selecting the right set of commitments. The goal is to
find commitments that, when modeled by the dependent
agent and enforced by the supporting agent, produce high-
quality joint policies that coordinate the agents’ interac-
tions. This has the flavor of the coverage set algorithm
in that commitments provide a parametrization of the sup-
porting agent’s potential policies over which the dependent
agent can search. More generally, commitments provide a
parametrization of the interaction possibilities over which
both agents can search. A (commitment) parameter set-
ting for any given temporally-uncertain interaction takes the
form of a time t ∈ [0, T ] and a probability ρ ∈ [0, 1].

Increases in the temporal uncertainty of an interaction
have little effect on this parametrization. The more poten-
tial times an interaction might occur, there a still just two
dimensions (time and probability) over which to search for
commitments. But with Becker’s CSA, each additional time
that an interaction could occur translates to an additional
dependency and hence another dimension in the parameter
space. We argue that, by mapping related dependency pa-
rameters onto different time values of same two-dimensional
space, commitments enable a more scalable parametrization
of temporally-uncertain interactions.
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6. A COMPLETE COMMITMENT MODEL
A single temporal commitment conveys an accurate prob-

ability of interdependency satisfaction (Prob(b|si)) in states
at time t but not at times before or after t. We can com-
plete the model by expressing temporal commitments at all
potential satisfaction times:

Definition 7. A complete temporal commitment set
Ccomplete (Xij) =

{
Ckij (Xij)

}
= {〈ρk, tk〉} is a guarantee

that agent i will perform actions so as to satisfy the tempo-
rally uncertain interdependency Xij =

{
d1
ij , d

2
ij , ..., d

k
ij , ...

}
(with dependency times {t1, t2, ..., tk, ...}) by each and every
time tk with probability no less than ρk respectively.

Theorem 2. For any Event-Driven DEC-MDP whose in-
teractions are temporally uncertain interdependencies where

(a) the only local state features observable by more than
one agent are time and the dependency satisfaction
variables

{
bk
}

, and

(b) there are no (undirected) cycles in the agent interac-
tion graph,

there exists a configuration of complete temporal commit-
ment sets (one per interaction) that, when represented using
augmented local models (as in Section 5.2) and solved (as in
Section 5.3) yield the optimal joint policy (equivalent to the
one found by Becker).

Proof Sketch. To prove this theorem, it suffices to prove
that our commitment-augmented local model captures all of
the state information that Becker’s dependency-augmented
local model does. From this it follows that since Becker’s
augmented local models are capable of representing local
policies that together form the optimal joint policy of the
DEC-MDP, so are our augmented local models.

Consider first the state information captured by Becker’s
augmented local model. Becker’s augmented local state of
agent j adds only features that represent the execution his-
tory of each dependency dkij . Since all dependencies are
temporally-conditioned members of temporally uncertain in-
terdependencies (each with a dependency time before and
after which no state transitions are affected by the depen-
dency’s satisfaction), in any given state, it is redundant to
record when such a dependency was satisfied. The only rel-
evant information is whether or not the dependency was
satisfied.

Due to property (2) of Definition 3, this information may
be represented by an interdependency satisfaction variable b
and corresponding state information Prob(b|si). A complete
temporal commitment set explicitly represents Prob(b|time =
t) and combining this with the insight from Theorem 1, com-
mitments and their respective models encode Prob(b|si) for
all local states. Therefore, subject to assumptions (a) and
(b), commitment-augmented local MDPs capture all of the
state information that Becker’s dependency-augmented lo-
cal models capture.

Theorem 2 has the consequence that a commitment search
methodology can, in theory, be used to optimally solve Event-
Driven DEC-MDPs with temporally uncertain interdepen-
dencies subject to two additional structural assumptions.
Since all of Becker’s experimental problems also satisfy these
assumptions, Theorem 2 applies to an interesting class of

Event-Driven DEC-MDPs. Our future work includes ex-
tending the proof of Theorem 2 to a broader class of prob-
lems.

Theorem 2 proves that there must exist a set of com-
mitments that, when enforced, will yield the optimal joint
policy. Unfortunately, the space of possible temporal com-
mitment sets is exponentially large, so finding the optimal
set is intractable for large problems. Fortunately, as we have
argued elsewhere [22], commitments provide a framework for
tractable informed techniques that find useful approximate
solutions.

7. FLEXIBLE APPROXIMATION
Sections 5 and 6 present two extremes of our commitment

modeling approach. Section 5 associates a single temporal
commitment with each interaction. For a dependent agent
like the UGV from Figure 1, this single commitment pro-
vides an often crude approximation of the committed agent’s
behavior because the dependent agent only models a single
time and probability. If an uncertain interaction occurs at
one of the other possible times, the agents may miscoor-
dinate. The benefit of such an approximation is compact
models that may capture more concisely the most critical
time and probability. Contrast this with modeling every
time and probability as in Section 6. In general, this com-
plete interaction model will increase the nonlocal informa-
tion contained in the augmented local models, and thereby
increase the computational complexity of computing local
policies, finding the right set of commitments, and solving
the problem. But if the right set of commitments is found,
the agents will coordinate optimally.

Consider again the example shown in Figure 1. This prob-
lem has only one interaction that, given the fixed optimal
policy of the UAV, could take place at time 1, time 2, or
time 3 (depending on the probabilistic duration of locate-X ).
Performing an exhaustive commitment-space search would
yield the following complete-commitment-set as being op-
timal:

{〈
1
3
, 1
〉
,
〈

2
3
, 2
〉
, 〈1, 3〉

}
. When optimal local policies

are formed around the commitments, the agents achieve the
optimal expected utility of 3 2

3
. At the other extreme, if the

UGV were to represent its policy with only a single tempo-
ral commitment, the optimal commitment would be

〈
2
3
, 2
〉
,

yielding an expected utility of 1 + 2
3
· 3 = 3. This is because

the UGV is not modeling the case in which the UAV hap-
pens to locate X at time 3. It is only modeling the potential
interdependency satisfaction that occurs at time 2.

Which extreme is most suitable depends on the difficulty
of the problem, the amount of planning time available to
the agents, and the importance of high solution quality. A
strength of using our commitment approach is that one need
not pick either extreme. Our methodology is capable of
representing a single commitment, all commitments, or a
partial commitment set that flexibly balances quality and
computation cost.

8. EMPIRICAL RESULTS
As a proof of concept, we have developed an algorithm

that transitions from the single-commitment extreme to the
complete-commitment-set extreme, computing better and
better approximate solutions in an anytime fashion. This
is a direct extension of our Commitment Negotiation algo-
rithm [22], which greedily converges on a single time and
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probability for each interaction through iterative negotia-
tions between requester and provider. Our extension incre-
mentally adds more commitments (one at a time) by greedily
picking the best additional time and probability using the
same greedy convergence protocol. Commitments are built
up from just one per interaction to the full commitment set
per interaction, and local models are gradually augmented
with more precise information about each interaction.

In order to measure optimal solution quality, we have also
implemented a centralized solution method that models the
full DEC-MDP state space and uses linear programming to
compute the optimal joint policy constrained so that agents
base their individual policy decisions only on those features
of their fully-observable local state.

8.1 Flexibility
We begin by applying our greedy incremental commitment-

space search algorithm to a set of small problems to evaluate
how much quality is lost due to approximation. Each prob-
lem contains two agents with three tasks each ({A1, B1, C1}
and {A2, B2, C2}). Each task has 3 different (equally-likely)
durational outcomes {minduration, minduration+1, mindura-
tion+2}, where minduration is a randomly-selected integer
in the interval [1, 3]. Each task is assigned a random inte-
ger quality selected uniformly from [0, 3]. All tasks have a
global deadline of T = 8. There is a single enablement in-
ternal to each agent (between its local tasks): for agent i, an
enablement constraint is added imposing Ai-enables-Bi or
Bi-enables-Ci (with either case being equally likely). And
between the two agents, there is one non-local enablement
: C1-enables-A2. We have generated 25 of these random
problems so as to create a diverse test set.

Figure 2 shows a bar graph of the quality achieved by
the incremental greedy algorithm at each step (from com-
mitment sets of size 0 to sets of size 8). Note that the for
the first bar, no commitments are established. Instead each
agent simply builds its local policy under the assumption
that all incoming enablements will have probability 0 at
all times. The Q* line is the quality achieved by the op-
timal DEC-MDP joint policy as computed by using the lin-
ear program described above. The results show that this
greedy incremental commitment-space search method pro-
duces near-optimal quality, on average, for a diverse set of
simple TAEMS problems. Shown alongside each quality bar
is a hollowed-out runtime bar depicting the average compu-
tational cost of negotiating the corresponding commitment
set. As more temporal commitments points are added, more
computational resources are consumed, suggesting the flex-
ible tradeoff of computation for solution quality that this
incremental commitment-search method provides.

As a test of our claims from Theorem 2, we went on to run
a naive exhaustive commitment-space search method on all
25 problems. Although it ran for substantially longer than
the greedy commitment negotiation, our exhaustive search
found a complete commitment set that yielded a joint policy
with utility equal to that of the optimal joint policy for every
problem.

8.2 Scalability
Next, we apply our commitment-space search algorithms

to set of 25 larger problems. This time, each agent has 5
tasks, each with 5 possible durations and a global deadline
of T=25. There is still only a single enablement interaction,

Figure 2: Scalability Experiment

but the greater degree of temporal uncertainty makes for
much larger local models and complete commitment set with
25 temporal commitment points. A plot of the average so-
lution quality of our greedy incremental commitment-space
search (this time measuring runtime on the x-axis) is plot-
ted in Figure 3. The dotted line underneath represents the
average quality of the optimal 0-commitment solution. The
algorithm converged on a complete temporal commitment
set for each of the 25 runs in less than 90 seconds.

Figure 3: Incremental Greedy Commitment-Space
Search Quality

Due to the large degree of uncertainty inherent in these
problems, each interaction, if modeled with Becker’s CSA
algorithm, would need to include 25 dependencies, yielding
a 25-dimensional parameter space. Navigating a space of
such high dimensionality is a daunting task, and intractable
to search completely. Commitment negotiation avoids this
high dimensionality by approximating the parameter space,
attributing just two dimensions to the interaction: a time
and a probability, and searching in an informed manner.
This experiment, though preliminary, suggests the scalabil-
ity of the commitment solution methodology in computing
near-optimal approximate solutions.

9. CONCLUSION
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The main contribution of this paper is a reformulation of
the Event-Driven DEC-MDP problem into one that can be
solved with commitment-space search algorithms. In pursuit
of this goal, we have identified further structural proper-
ties of certain Event-Driven problems and developed theory
to show how these properties can be exploited. We have
developed a commitment framework that exploits tempo-
rally uncertain structure, proving (under some restrictions)
that this can produce optimal joint policies for Event-Driven
DEC-MDPs equivalent to Becker’s optimal algorithm. We
have also demonstrated that our methodology can represent
a range of approximate solutions when planning time is lim-
ited. Because it avoids the dimensionality explosion of opti-
mal solution methods like CSA, it can scale to provide useful
approximate coordination solutions to larger problems than
existing solutions methods.

We have provided preliminary empirical results in sup-
port of our claims, developing an anytime commitment al-
gorithm that scales well in providing coordinated, approxi-
mate solutions to problems with large amounts of temporal
uncertainty. But further empirical investigation is needed
to determine how commitment-driven approximate solutions
compare to approximate solutions computable with other
existing methods like CSA for problems small and large.
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ABSTRACT
The cognitive hierarchy model is an approach to decision
making in multi-agent interactions motivated by laboratory
studies of people. It bases decisions on empirical assump-
tions about agents’ likely play and agents’ limited abilities to
second-guess their opponents. It is attractive as a model of
human reasoning in economic settings, and has proved suc-
cessful in designing agents that perform effectively in inter-
actions not only with similar strategies but also with sophis-
ticated agents, with simpler computer programs, and with
people. In this paper, we explore the qualitative structure of
iterating best response solutions in two repeated games, one
without messages and the other including communication
in the form of non-binding promises and threats. Once the
model anticipates interacting with sufficiently sophisticated
agents with a sufficiently high probability, reasoning leads to
policies that disclose intentions truthfully, and expect credi-
bility from the agents they interact with, even as those poli-
cies act aggressively to discover and exploit other agents’
weaknesses and idiosyncrasies. Non-binding communication
improves overall agent performance in our experiments.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Finite Au-
tomata; G.3 [Probability and Statistics]: Markov Pro-
cess; I.2.0 [Artificial Intelligence]: Cognitive Simulation;
I.2.11 [Artificial Intelligence]: Distributed Artifical Intel-
ligence—Intelligent Agents, Multiagent Systems

General Terms
POMDPs, Cognitive Hierarchy, Repeated Games

Keywords
Agent Communication, Game Theory, Multiagent Learning

1. INTRODUCTION
When agents repeatedly face the same simple strategic prob-
lems, we can expect them to exhibit equilibrium behavior—
where each acts to optimize his outcome given how the oth-
ers will act; see Leyton-Brown and Shoham [8] for a compu-

AAMAS 2009 Workshop on Multi-agent Sequential Decision-Making in
Uncertain Domains, May 11, 2009, Budapest, Hungary.

tational introduction. For rational agents, such settings of-
fer the information and computation needed to deliberately
work out a strategy that takes others’ choices into account.
But even agents that act by trial and error will reach equilib-
ria in such settings, through the reinforcement provided by
patterns of past play [10]. Indeed, in repeated simple strate-
gic interactions, we do find equilibrium behavior in people
and many other organisms.

It is different for situations which do not obviously call for
strategic reasoning, for situations which are novel or com-
plex. Here, it becomes unlikely that agents will enjoy the
information, computation or history that make equilibrium
play feasible. Instead, we expect agents to exhibit heuristic,
approximate or biased solutions to the problems of interac-
tion [1, 9]. Think of a a lovers’ quarrel, a game of chess, or a
corporate acquisition: these are interactions people muddle
through, not interactions they solve. In interesting domains,
agents will have to go beyond first-principles reasoning about
interaction to model the heuristic basis of their partners’ de-
cisions: the gut reactions, the resource limits, and the back-
ground culture of practices and expectations that actually
lead to choices. Agents may also have to work explicitly
to create interactions where their own and their partners’
limited reasoning is effective. Such thinking is the main-
stay of human social life: not only in the trust, rapport and
relationship we can achieve in alignment with one another,
but also in the circumspection, prudence and vigilance we
otherwise maintain.

This paper presents a set of simulation results designed
to explore the diverse reasoning that might be required for
interacting agents in realistic situations. Our basic tack is
to approach interaction not as strategy but as a more con-
strained planning problem for sequential action under uncer-
tainty. In particular, we use the computational framework
of partially-observable Markov decision processes (POMDPs
[6]) as a common substrate for our agents’ reasoning. Our
POMDP framework captures the key features of interactive
reasoning by simulating the fixed decision making of relevant
possible opponents. We can represent background expecta-
tions and heuristic choices by simulating opponents that
meet specific expecations, or follow specific heuristics. We
can characterize limited strategic reasoning through a cog-
nitive hierarchy model—simulating more sophisticated op-
ponents that tune their behavior to simpler opponents [3].
And finally, we can investigate adaptive response, because
the POMDP framework describes the tradeoff between act-
ing to achieve immediate payoffs and acting to reveal qual-
ities of opposing players that can be exploited in further
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decision making.
The method we introduce applies POMDP solving tech-

niques to find the best response to a given population of
strategies. A new population is built by combining the old
one with the new computed strategy. As this process is
repeated and the population grows according to a prede-
fined Poisson distribution, earlier strategies recede in im-
portance somewhat. In this way, our proposed algorithm
repeatedly computes new strategies and attains more ex-
perience against more sophisticated agents, as it converges
toward some policy that will yield the same policy in re-
sponse. This procedure therefore determines a cognitive hi-
erarchy model, as explained more fully in the Section 2.1.

We work specifically with the classic prisoner’s dilemma
game, iterated for a small number of rounds with an oppo-
nent with limited, heuristic, or biased decision making. In
this setting, our agent will do best by defecting against un-
cooperative or credulous opponents, and by engaging with
reciprocating opponents who respond to cooperation with
cooperation but defection with defection. Thus, our agent
must learn how its opponent plays, and signal how it plays,
as it accumulates payoffs in initial rounds. We sometimes
give agents the opportunity to explain themselves: to offer
non-binding promises and threats describing the expected
course of future interactions. Our simulation results show
that agents in this general setting can achieve collaboration
in some cases, but that they face a difficult problem in estab-
lishing trust with a reciprocating opponent while guarding
against exploitation by uncooperative opponents. Commu-
nication can help, by allowing agents to establish trust by
truthfully describing harmful actions they must take to avoid
leaving themselves vulnerable to exploitation. Specifically,
once the model anticipates interacting with sufficiently so-
phisticated agents with a sufficiently high probability, rea-
soning leads to policies that disclose intentions truthfully,
and expect credibility from the agents they interact with,
even as those policies act aggressively to discover and ex-
ploit other agents’ weaknesses and idiosyncrasies. The re-
sults offer a suggestive link between the challenges agents
face in connecting with one another and the constructs that
people—or agents—can use to pursue those connections.

2. RESEARCH SETTING
Traditional learning methods find it difficult to learn in

games where other agents are also learning. The algorithms
often require a static environment and the presence of other
learning agents invalidates this assumption. One commonly
cited example is the rock–paper–scissors game, where each
one of the three moves dominates one other. In this case,
crudely adapting agents will circle each other indefinitely, as
each reacts to a model of the other that is out-of-date.

One lesson is that acting effectively amid other learners
requires a new way to generalize from past experience. It
is not enough to assume that other agents will act as they
have in the past. Others may think strategically, and ar-
rive at behavior that differs from anything that they have
done so far. To prepare for this, agents must second-guess
one another, and attempt to model their opponents’ possi-
bly creative decision making. Such reasoning strategies can
lead to good performance against learning agents, even in
problematic cases like rock–paper–scissors [5].

In general, we could approach this second-guessing
through the symmetric strategizing of game theory [8],

through open-ended general models of agents’ reasoning [5],
or through a range of further simplifying assumptions. The
cognitive hierarchy model offers one such simplification; it
offers a framework for bounding strategic reasoning by as-
suming that agents have heuristic limits on the degree to
which they are willing to second-guess one another [3]. The
model is intuitively appealing, because it captures the em-
pirical observation that players are boundedly rational, with
limited amounts of working memory, and furthermore be-
lieve that others also have bounds on their rationality. More-
over, as we shall see, it has a straightforward implementation
using off-the-shelf planning techniques.

2.1 The Cognitive Hierarchy Model in Games
A cognitive hierarchy model is defined in terms of a set of

base policies and a series of levels of sophistication describ-
ing agents’ possible strategic reasoning. The base policies
involve no strategic reasoning; they simply prescribe a dis-
tribution over actions to perform in each state. The least so-
phisticated agents in a cognitive hierarchy, the 0-step agents,
are those that directly follow one of the base policies. We
assume an initial distribution over the 0-step agents.

More sophisticated agents at level k + 1 in the hierarchy
perform best-response reasoning, on the assumption that
other agents are drawn from a distribution of agents at level
k or lower. Thus, agents at level k + 1 have no model of
players doing more than k steps of thinking. For example,
a 1-step agent second-guesses the 0-step agents by planning
a best-response to their distribution of strategies.

In general, k-step players must plan their responses based
on a distribution over the sophistication of their opponents.
A simple assumption is that their information about less
sophisticated agents is correct; their “mistake” is to ignore
the possibility of more sophisticated agents. Formally, if the
actual proportion of h-step players is f(h), a k-step player
will believe the proportion of h-step players to be gk(h),
where gk(h) = 0 ∀ h ≥ k and gk(h) ∝ f(h) otherwise.
Finally, as k increases, we assume that k-step players become
exponentially less and less likely, so this estimate converges
to a fixed distribution. Essentially, the difference between
players doing k and k + 1 steps of thinking will shrink as k
increases and the proportion of agents reasoning more than
k steps get smaller. Under these conditions, the players
should converge towards some strategy. However, we might
not expect this algorithm to end up at a Nash equilibrium.
The agent must respond to the original naive strategies as
well as the more sophisticated ones, as a result of keeping
some of them in its model of the environment.

The distribution f(k) is the main component of the cog-
nitive hierarchy model, and is determined by the param-
eter τ corresponding to the average k in the population.
Camerer et al. [3] argue that f(k)/f(k − 1) is proportional
to 1/k, resulting in f(k) as the Poisson distribution, so that
f(k) = e−ττk/k!. This distribution has a number of ad-
vantages: it is simple to compute as it has only one free
parameter, τ , and it closely fits empirical observations.

One example where this model is useful is the Keynesian
beauty contest [7] where players score highest by picking the
contestant that others value most. In the p-beauty contest,
numbers are substituted for beauty contestants. Each of
N players chooses a number 0 ≤ xi ≤ 100. The average
of these numbers scaled by p specifies the winning number.
The player who chose closest to the winning number wins a
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fixed prize. The Nash equilibrium for this game is for ev-
eryone to choose 0 when p < 1, but people do not reach this
equilibrium immediately. A cognitive hierarchy model can
explain these results in terms of players’ expectations over
how deep the average reasoning will be, with increasingly
sophisticated agents reaching increasingly low estimates of
others’ likely bids.

2.2 POMDPs
Partially observable Markov decision processes, or

POMDPs, are a mathematical model for decision making
under uncertainty and have been used productively to de-
fine and solve for optimal policies for agents [6]. A POMDP
model consists of sets of states, actions, observations, and
probabilistic functions relating them.

The problem of computing a policy that plays optimally
against a finite-state opponent chosen from a finite set can
be cast as a POMDP, consisting of an underlying MDP
< S,A, T,R > and set of observations O. Here, the states S
of the POMDP are the states within the possible strategies.
The actions A are the choices of the agent and transition
function T is determined by the opponent strategy. Rewards
R are a property of the game and depend on both players’
actions. The observations O are the opponent’s observed
responses. When there is communication in the game, the
receipt of messages between rounds map to additional ob-
servations in separate states. An agent starts out in state s
against strategy i, but this state is unknown to the agent.

Through repeated interaction over the length of a
POMDP, an agent computes its belief state b, which is a
cross product of all possible strategies and the current state
in each such strategy. As the agent traverses the graph de-
fined by the opponent’s strategy, it achieves greater certainty
about the identity of that opponent as well as the proper re-
sponse. In other words, each new observation o brings b
more in line with the correct state within the actual strat-
egy of the opponent. Solving methods balance the value of
this information with well-rewarded actions based on b.

A POMDP solver available on the web (www.pomdp.org)
presents a straightforward protocol for specifying a POMDP,
including states, transitions, actions, rewards, and obser-
vations [4]. In combination, these five inputs constitute a
POMDP. The solver uses several state-of-the-art exact algo-
rithms to calculate the optimal policy and values for each
state depending on the actual probability for these states. If
the solver can construct an optimal policy within reasonable
time bounds, it outputs this strategy the form of a finite au-
tomaton, which is easily incorporated as another entry in
the cognitive hierarchy for future optimizations.

To capture a cognitive hierarchy with a POMDP solver,
we run the solver on a model that describes interaction with
a distribution of 0-step agents. The solution describes a 1-
step agent. From here on out, whenever we derive a solution
agent for step k, we can add the agent to the distribution
of agents with weight given by h(k), and repeat the solu-
tion process, yielding the automaton for step k + 1. The
procedure can be iterated indefinitely.

3. TRADEOFFS FOR REASONING
Games with cooperative outcomes and an incentive to

cheat, like the prisoner’s dilemma, are good settings for ex-
ploring ways to encourage and enforce cooperation between
agents with conflicting interests. We consider solutions to

finite iterated prisoner’s dilemma problems under a cogni-
tive hierarchy model. We begin with a range of base policies,
some of which reward cooperation and punish defection, and
some of which do not.

The best response against these base agents amounts to
a tradeoff. Defecting offers an opportunity to discover what
kind of opponent one faces, and perhaps to exploit them.
But it forgoes opportunities to cooperate with reciprocating
agents, against which cooperation is the best outcome.

More sophisticated agents eventually face different trade-
offs. They must not only be able to size up base agents,
but they must be able to recognize and interact appropri-
ately with agents that carry out limited strategic reasoning.
Depending on the prevalence of the different levels of reason-
ing in the environment, a more sophisticated agent may be
forced to surreptitiously masquerade as a reciprocating base
agent in order to elicit good behavior from less sophisticated
agents.

3.1 Communication and credibility
Consider what happens if agents can exchange non-

binding threats and promises that do not impact the payoffs
of the game. In equilibrium analyses, ‘cheap talk’ of this
form has an effect on the outcome of a game only under cer-
tain constraints. In particular, the type of the sender agent
must make a difference to the receiver, and the sender and
receiver cannot diverge in preferences. While for us the first
condition is clearly met, the second is not because the agents
have incentive to defect from the cooperative outcome, and
therefore to deceive.

In the cognitive hierarchy model, however, the effect of
cheap talk depends not only on the game itself, but also
on the behavior of the base agents and the tradeoffs made
by agents of different levels of sophistication. We include
reciprocating agents that describe their future intentions
honestly. Meaningful communication cannot occur without
some agent in the population who engages in enough truth
telling to make it worthwhile to believe the agent.

Best responders to these base strategies then have the op-
tion of demanding integrity rather than demanding recipri-
cation, or in addition to it. Such agents provide benefits to
truth-tellers, and punish deceivers.

More sophisticated agents may not only call for integrity
but realize that they must behave with honesty if they are
to cooperate with the less sophisticated agents that demand
integrity—the analogue of masquerading as the kind of base
agent that these agents cooperate with. In the end, such
agents communicate successfully, truthfully sharing the in-
formation that they are hard-nosed players that nevertheless
intend to reciprocate with one another. This is a way to get
meaningful communication despite the nonaligned interests
of the communicators.

3.2 Learning and teaching
Reasoning in the cognitive hierarchy contains elements of

strategic teaching [2], as a side-effect of the iterated planning
involved in solving POMDPs. In essence, by computing the
optimal series of actions given a certain 0-step distribution
over opponents, the output 1-step solution will act to help
train the 2-step generation’s computed policy. The next pol-
icy shaped in part by the interactions of the previous one
will be guided towards the 0-step reciprocal strategies. This
effect will feed on itself, and the 2-step agents will in turn
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guide the 3-step generation even more strongly. Another
property of the algorithm based on the cognitive hierarchy
viewpoint is that the proportion of sophisticated agents that
each new k-step POMDP contains gradually rises for all val-
ues of τ , leading to a situation where the majority of agents
contain some level of sophistication against several classes
of opponents.

Other research has looked into adaptive methods to find-
ing best actions, notably experience-weighted attraction
(EWA), which itself blends two other techniques, relying on
reinforcement and belief updating [2]. Our iterated method
attempts to compute an exact policy for the entire game pe-
riod and finds the optimal series of moves for the total payoff.
Another difference is that EWA tries to adapt to changing
players as the game progresses. This algorithm yields sta-
tionary strategies and the contribution of each strategy to an
agent’s model changes as k and τ increase. Our model con-
siders other strategies to be stationary multi-step decision
rules and must adapt to changes in the relative proportions
of such rules.

4. EXPERIMENTS AND RESULTS
The following experiments were run with Cassandra’s

POMDP solver from www.pomdp.org [4]. The game is a
six-turn version of prisoner’s dilemma, with the following
payoff matrix for player 1. Player 1’s actions are on rows,
player 2 on the columns. C stands for the cooperate action
and D for defect:P1 C D

C 3 0
D 4 1


In this game, a player is always better off choosing D,

which leads (D,D) to be known as the Nash equilibrium for
this game. However, these values tend to create cooperative
behavior when playing is repeated. There is also a discount
factor of 0.95 for each successive state. Where communi-
cation is present, the message-exchange step is a separate
state, but for purposes of comparing relative scores the dis-
count will be excluded.

One useful feature about this solver that is convenient for
these experiments involves the output values for each be-
lief state. This data is output along with the policy graph
finite automaton solving the POMDP. While the solver pro-
vides one policy based on the starting state specified in the
program, policies for different starting belief states can be
calculated without running the solver again. This way, the
policies can be quickly recomputed without creating new
files for each desired combination of belief states.

4.1 Iterated Prisoner’s Dilemma Without
Communication

Imagine that you are told to play IPD for six turns against
a single player selected at random from a population. The
majority of this population will be unknown. Some, but
not all, of your possible opponents will consist of the follow-
ing ratio of four strategies, defined as the 0-level. Three of
the four 0-level strategies are non-reciprocating, including
a strategy that always cooperates, one that always defects,
and one that simply picks an action randomly, with each ac-
tion equally likely. A fourth strategy is reciprocating, mean-
ing that it pays to cooperate with it as cooperative actions

will be rewarded with cooperation, while defections will tend
to be punished with defections. A player has equal chance
to meet each of these strategies. We might consider them
to represent simplified personalities that exist in the world.
There exist the altruist, the mean individual, the crazy, ran-
dom strategy and the reasonable, reciprocating player. The
ratio of three to one is derived from the relative costs of de-
fecting against the two classes of agents. On average, the
payoff of defecting against a non-responsive player is +1,
while the average penalty for defection against a fully recip-
rocating agent is no smaller than -1.5 in the long run (-3
every other turn). A minor alteration is that a small per-
centage around 20% of the reciprocating population starts
off defecting while the rest cooperate. While this change
does not have much effect on the actual policies, it makes
exploration easier.

Examples of reciprocating agents include Tit-for-Tat
(TFT) and Pavlov. TFT starts by cooperating and then
simply returns the action of the other player from the pre-
vious round. After the first round, Pavlov will cooperate if
the players play the same action in the previous round, and
otherwise it defects. For the reciprocating player we have
chosen to use the Pavlov strategy, for several reasons. First,
Pavlov achieves a subgame equilibrium in self-play in re-
peated settings. It has a credible deterrent and is somewhat
more robust than TFT where some degree of noise is present,
as two TFT agents can easily start alternating defections.
It is also an evolutionarily stable strategy. Another reason
is as there are only a short number of rounds of play avail-
able, it is necessary for a strategy to achieve coordination
quickly. TFT, while ideal as a deterrent, adds uncertainty
when players find themselves in mutual defection. A player
will have to cooperate for two more turns before finding out
whether the opposing strategy matches TFT, while against
Pavlov it will be known the following turn.

It is uncertain what a player should do in a situation like
this one, where players other than these given strategies will
be part of the population alongside the known participants.
These other players should be considered to have some rea-
soning capacity, and are trying to figure out what to do also.
Someone might start by saying that it would be nice to coop-
erate with the reciprocating player, assuming that the same
actions are observed. However, the observed actions are the
same for the always C agent, so it would also be nice to know
which one we are facing, as there is substantial reward for
having this knowledge. A player can only find out this in-
formation by testing the other player with a defection move.
The problem comes when the player starts thinking past this
point to how more advanced players will view the game. If
a defection is sent out the first round, it will be indistin-
guishable from the constantly defecting agent. So, perhaps
it would be better to wait a certain number of turns, but
during this waiting period a player is giving up valuable op-
portunities. It would appear that this type of game is suited
for cognitive hierarchy analysis, where the four given types
of player constitute the 0-step thinker in that model.

In order to implement our version of the cognitive hier-
archy model, we include each k-step agent according to the
predefined Poisson distribution. The primary parameter for
the distribution f(k) is τ , and it will be varied across trials,
also determining the actual number of 0-step players. Once
a policy against the initial distribution is computed, it is
called the 1-step policy. It is included in the set of strate-
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gies in the proportion given by f(1) for the second iteration
of POMDP, which will yield the 2-step agent. However, the
estimated population does not yet include agents with step
greater than 1, so at every stage only policies computed with
step size < k will be present. The distribution of strategies
in round k will be attained by renormalizing the contribu-
tion of the original strategies given by f(0)/

∑k−1
i=0 f(i) . The

process is then repeated to find the 3-step policy, and so on.
Some simple calculation will show that even with low lev-

els of reciprocating agents, it is worthwhile to engage in
cooperation, provided that a player can become fairly confi-
dent about the opponent after several testing rounds. Figure
1 shows the number of testing moves required to distinguish
a reciprocator from a completely random agent, over vary-
ing prior ratios for the reciprocating agent. If the agent fails
the test, the other agent is clearly random and exploitable.

When Pavlov makes up 25% of the initial arrangement,
the first computed policy begins by testing the field with
a single defection, and then follows the rule set by Pavlov.
Namely, if the other agent has defected also, cooperate next.
Otherwise, defect again. This policy can be seen in Fig-
ure 2. This combination accomplishes two things: it forces
the reciprocating agent to respond with a punishing de-
fection on the following round, and it reveals some of the
non-responsive agents such as the always cooperating agent.
Since there is only one correct sequence of actions for this
test, the random agent gives itself away with increasing like-
lihood. If the opposing agent passes the test, the 1-step
player is then safe to pursue mutual cooperation at least
until the final round, when there is no consequence for tak-
ing the more profitable defection move.

This strategy is placed into a new POMDP at a propor-
tion derived from the current τ . The 2-step policy is then
computed. See Figures 2-5 for the first four steps of reason-
ing computed in this manner, with τ ≤ 2. To read the finite
automata graphs, start at the state with the double circle.
The action inside the circle, whether C or D, describes the
agent’s action. The arrows exiting the circle are the actions
played by the player facing this agent. The agent behavior
can then be tracked until the game ends.

Another feature of the policies with small k is that un-
warranted defections, such as those that occur without a
prompting test defection, are classified as non-responsive.
This feature has consequences for the next round of policy
computation, because the condition of one or more initial
cooperation moves must be met to warrant future cooper-
ation from the population of 1-step policies. As Figure 3
shows, the 2-step policy finds it beneficial to wait a turn be-
fore testing the opposing agent, as well as to watch for the
pattern defined by the reciprocating 1-step agent. For lower
values of τ this process continues until k is about 4, where
the number of previous (k − 1)-step agents are too small
to consider. The final policy of this particular sequence for
τ ≤ 2 in Figure 5 shows how waiting three turns is the
best policy, followed by constant defection if it has not been
tested by that point.

For intermediate τ > 2 , the process gives a strategy where
agents find that it is only worth cooperating for a single
round if the other agent is very forgiving, due to the wide
range of strategies present in the population. In the highest
values of τ measured, about 3.5 and 4, a new policy arises
in response to the dominant one, which acts very obediently
in order to receive its one cooperation outcome from the
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Figure 1: Number of testing rounds in a game be-
tween random agent and reciproctor required to re-
duce probability that the opponent is random. Plot-
ted over the true probability of reciprocation.

previous strategy.
Figure 6 demonstrates the relationship between τ and the

overall population’s score. We see a slight rise for low values
of τ , with a peak around 2 followed by a steep dropoff. In
general players do better within a population by reasoning
more, but the population suffers when too much reasoning is
done because the cooperation unravels from the final turns.

4.2 Iterated Prisoner’s Dilemma With Com-
munication

The same method applied to games with communication
proceeds somewhat differently. Here, the players are able to
send a message before odd-numbered turns, which consists
of a two-bit string. This message is meant to correspond to
the next turn consequence to the opponent for its choice of
action in the current round. That is, the first string describes
the sender’s action resulting from a receiver’s cooperate ac-
tion, and the second bit of the string describes the response
to the receiver’s defection action. Thus, two rounds are re-
quired between messages. This conditional structure can
also be applied to games with with more than two actions.

These messages will gain their meaning from the agents
that intend to enforce the truth value of messages they send,
even if only consisting of a minority of the total population.
An important point concerning these messages is that only
two of them actually contain evidence that the sender will
reciprocate. A message containing the same action for both
conditions says either that the receiver’s action will be ig-
nored in the decision for the next turn, or that the sender
does not mean what it is saying. In either case, these mes-
sages express that the sender is an unreliable communicator
and does not deserve reciprocation. This condition holds as
long as there are no reciprocating agents that fail to com-
municate correctly.

The message stage opens up more possiblities for the ini-
tial 0-step agents to play. There are four new actions be-
tween every second round that are seemingly unrelated to
the underlying strategy. The communication strategies mir-
ror their corresponding actions. That is, the virtuous re-
ciprocator agent follows a Pavlov strategy that communi-
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cates that strategy truthfully. The random agent sends ran-
dom messages. The all-cooperator and all-defector attempt
to blend in with the truthful population by restricting the
messages to the Tit-for-Tat message, which states that an
action will be met with the same action on the following
turn. Looking more closely, the naive cooperator demon-
strates even greater naivete in the hope that an empty threat
will induce cooperation. Since this message is the one most
commonly used by the Pavlov strategy, it also makes sense
that an all-out defector would send it, as this lie has the
biggest chance of success. In general, the games with and
without communication were made as close as possible in
the sense that the same starting population was used in
both. While communication is itself a big difference, it is
not immediately obvious that it will have much impact on
the actual results.

The population of k-step agents follows the same distribu-
tion as the non-communication case. When τ is varied, the
fraction of each policy changes. As the policy computation
is repeated, initial differences in the distribution over k will
lead to different policies, and in substantial divergence in
later rounds.

In the communicating population, the 1-step policy com-
puted on this 0-step distribution defects right away on the
non-information messages, as only the random agent sends
such messages. It also becomes very sensitive to the truth
content of the messages. Senders that do not conform to
their own messages by following through on their promised
consequences are weeded out by the second turn. To com-
plete the evaluation, the agent starts off by testing the re-
sults of defecting, and if the action is unpunished continues
that exploitation. Otherwise, reciprocation continues pend-
ing further adherence to the truth contained in the messages.
It is important to note, however, that this policy does not
meet its own standards. Since there is no opposing agent
that will exact a consequence for reneging on promises, it
does not pay attention to the messages it sends.

The 2-step agent does send meaningful messages, and
sticks to them until an opposing promise is broken. The
presence of the 1-step agent is enough to select for this prop-
erty. Furthermore, because the computed policies find truth
enforcement to be a better indicator for future reciproca-
tion, there is no need to seek the cooperative action from
the beginning. Therefore, the 2-step agent is free to test by
defecting right away, and checks that the other agent will
follow direction by sending a specific message that corre-
sponds to the message a Pavlov agent would send in that
scenario. Specifically, the message states that ”‘I will defect
next if you cooperate this turn, and vice versa”’. Any logi-
cal agent could not resist this temptation to defect, and so if
the other agent matches this behavior, mutual cooperation
can begin on the following turn. If the other agent starts off
with the Tit-for-Tat message, the correct sequence will be
cooperate/defect for the opposer, and defect/defect for the
computed 2-step policy. Mutual cooperation can then ensue
in the third turn, as long as the messages now contain the
Tit-for-Tat instruction.

An agent dealing with the 2-step agent will be led to truth-
ful communication by the cascade of reasoning suggested in
Section 3.1. The 2-step agent finds the cooperative outcome
with the Pavlov agent as well as other sophisticated strate-
gies. Second, it tests the other agent’s messages for accu-
racy. Third, it enforces this credibility test with a penalty of
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endless defection for failure. Finally, it tells the truth itself,
at least until the last round when future actions cease to
matter.

Across the board, as τ varies, this same pattern is ob-
served. Although more advanced agents begin defecting ear-
lier, the initial moves remain the same. The result of this be-
havior is that future iterations of agents will choose initally
matching strategies, instituting some degree of coordination.
The benefits of this outcome are obvious. Instead of several
turns of enforced waiting as with the non-communicating
agents, the agents are able to test their opponent immedi-
ately upon commencing the game, and so separate with a
high degree of confidence the reciprocating agents from the
non-responsive ones. In addition, as the number of strate-
gies remains small, each new policy will not have to change
much and the coordinated outcome is enforced. Note that
this outcome is not explicitly devised, as in other signaling
games where coordination is obviously desirable. Instead, it
arises from the decentralized discovery that communication
can work to bring players to a better space.

The experimental results confirm that the communicat-
ing agents following this strategy achieve higher scores over
the total run of the game. Communication is also better
for the scores when high reasoning ability is present, both
within and between populations. Figure 6 shows the in-
crease in performance for communicating agents as τ rises.
As τ increases, the scores begin to diverge from those non-
communicating games until the gap between them is over 2.5
points. The performance peaks at a higher reasoning level,
and degrades more slowly as reasoning rises. This amount
understates the true advantage in scores, because in reality
the variance across strategies is much less than the maximum
of 24. One of the main reasons for an improvement with
communication is that the higher k-step non-communicating
agents spend time waiting, which hurts performance against
the exploitable members of the population. Communicators
have the ability to side-step the waiting issue by directly
stating what they are planning to do.

78



Figure 2: An agent in the six-turn IPD that does not wait before test defecting. τ ≤ 2, k = 1.

Figure 3: An agent in the six-turn IPD that waits a single turn before test defecting. τ ≤ 2, k = 2.

Figure 4: An agent in the six-turn IPD that waits two turns before test defecting. τ ≤ 2, k = 3.
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Figure 5: An agent in the six-turn IPD that waits three turns before defecting. Notice that at this stage, it
no longer resumes cooperation after these three turns have passed. τ ≤ 2, k = 4.

5. CONCLUSION
In environments with possibilities for cooperation and

conflict, the cognitive hierarchy model provides an approach
to planning that combines background expectations about
other agents with limited strategic reasoning. In this paper,
we have used POMDP inference to explore the strategies
derived by the cognitive hierarchy model in limited sessions
of repeated prisoners’ dilemma.

The solutions show how the cognitive hierarchy model op-
erationalizes the intuitive tradeoffs that characterize inter-
actions in these potentially problematic situations. Agents
must challenge their opponents to discover any weaknesses,
but they must also engage their opponents to earn their
trust. The appropriate balance between these goals, as rep-
resented by the round when the agent chooses to test the op-
ponent with a defection, varies as a function both of the dis-
tribution of different baseline opponent policies in the model
and the extent to which opponents themselves do additional
rounds of strategic thinking.

The appropriate balance also depends on the actions avail-
able to the agent. In some settings, the cognitive hierarchy
model is able to plan truthful announcements of future inten-
tions as a credible way of simultaneously challenging oppo-
nents and building trust. Communication thereby improves
agents’ outcomes.

These preliminary simulations offer an encouraging di-
rection for deeper work on communication and strategy in
multi-agent interaction. In future work, we aim both for
mathematical results, describing the relationship of baseline
strategies, nested inference, and communicative action on
planning and performance, and for empirical results, partic-
ularly focusing on the extent to which the cognitive hierar-
chy model can model people’s expectations and adaptations
and thereby derive agent policies that are able to interact
more effectively with users.
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