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Abstract

Embedded systems consisting of collaborating agents capa-
ble of interacting with their environment are becoming ubiq-
uitous. It is crucial for these systems to be able to adapt to
the dynamic and uncertain characteristics of an open environ-
ment. In this paper, we argue that multiagent meta-level con-
trol (MMLC) is an effective way to determine when this adap-
tation process should be done and how much effort should
be invested in adaptation as opposed to continuing with the
current action plan. We describe a reinforcement learning
based approach to learn decentralized meta-control policies
offline. We then propose to use the learned reward model as
input to a global optimization algorithm to avoid conflicting
meta-level decisions between coordinating agents. Our initial
experiments in the context of NetRads, a multiagent tornado
tracking application show that MMLC significantly improves
performance in a 3-agent network.

Introduction

Meta-level control (Cox and Raja 2008) in an agent involves
making decisions about whether to deliberate, how many re-
sources to dedicate to this deliberation and what specific de-
liberative control to perform in the current context. Multia-
gent meta-level control (MMLC) facilitates agents to have a
decentralized meta-level multiagent policy, where the pro-
gression of what deliberations the agents should do, and
when, is choreographed carefully and includes branches to
account for what could happen as deliberation plays out.

In this research, we study the role of MMLC on NetRads,
a real application. NetRads (Krainin, An, and Lesser 2007)
is a fielded, next generation distributed sensor network sys-
tem developed by the University of Massachusetts NSF En-
gineering Research Center for Collaborative Adapting Sens-
ing of the Atmosphere (CASA). It is modeled as a network
of adaptive radars controlled by a collection of Meteorologi-
cal Command and Control (MCC) agents that instruct where
to scan based on emerging weather conditions. The NetRads
radar is designed to quickly detect low-lying meteorologi-
cal phenomena such as tornadoes. The time allotted to the
radar and its control systems for data gathering and analysis
is known as a heartbeat.
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Our intent for this work is to design and develop a frame-
work for MMLC. At the highest level, the question we plan
to address is the following: How does the meta-level con-
trol component of each agent learn policies so that it can
efficiently support agent interactions and reorganize the un-
derlying network when needed? Specifically in NetRads do-
main, reorganizing the network involves addressing the fol-
lowing questions:

1. What triggers a radar to be handed off to another MCC
and how do we determine which MCC to hand off the
radar to?

2. How to assign different heartbeats to sub networks of
agents in order to adapt to changing weather conditions?

Our Approach

Each MCC’s heartbeat (30 seconds or 60 seconds long) is
split up into deliberative-level actions and meta-level ac-
tions. The current deployed version of the MCC (Krainin,
An, and Lesser 2007) handles the deliberative-level actions
that give radars instructions as to where to scan based on
emerging weather conditions.

MMLC will use a learned meta-level policy to handle the
coordination of MCCs and guide the deliberative-level ac-
tions in other phases in NetRads. This involves reassigning
radars and adjusting the heartbeats of MCCs in a decentral-
ized fashion.

We design and develop a MMLC approach that involves
coordination of decentralized Markov Decision Processes
(DEC-MDPs) (Bernstein, Zilberstein, and Immerman 2000)
using the Weighted Policy Learning (WPL) algorithm (Ab-
dallah and Lesser 2007). WPL is a reinforcement learning
algorithm that achieves convergence using an intuitive idea:
slow down learning when moving away from a stable pol-
icy and speed up learning when moving towards the stable
policy. WPL is used to learn the policies for the meta-level
DEC-MDPs belonging to individual agents. Online learning
on a very large MDP that captures all possible weather sce-
narios during the MMLC phase can be very time expensive.
To overcome this challenge, sets of weather scenarios are
grouped into abstract meta-level scenarios based on number
of tasks and types of tasks and MCCs learn the policies for
each abstract scenario offline. The MDPs of these abstract
scenarios and their policies will be stored in a library that is
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available to each MCC. At real time, each MCC will adopt
the scenario-appropriate policy.

We map the NetRads meta-level control problem to a
DEC-MDP model in the following way. The model is a tuple
〈S,A,P,R〉, where

• S is a finite set of world states, with a distinguished ini-
tial state s0. In NetRads domain, the state of each MCC
is the meta-level state, defined as the abstract representa-
tion of the state which captures the important qualitative
state information relevant to the meta-level control deci-
sion making process.

• A is a finite set of actions. In NetRads domain, the actions
for each MCC are radar handoffs or heartbeat changing.

• P is a transition function. P(s′ | s, ai) is the probabil-
ity of the outcome state s′ when the action ai is taken
in state s. In NetRads domain, the transition function
is based on the time/quality distribution for the actions
MCCi chooses to execute.

• R is a reward function. R(s, ai, s
′) is the reward obtained

from taking action ai in state s and transitioning to state
s′. In NetRads domain, the reward is only received in a
terminal state, and it represents the average of qualities
of all tasks collected by MCCi from last heartbeat. The
quality of a task from a single radar is the priority of the
task multiplied by a factor meant to represent the quality
of the data that would result from the scan (specified by
experts in the field e.g. meteorologists) (Krainin, An, and
Lesser 2007).

Experiments and Future Work

We use the NetRads radar simulator system (Krainin, An,
and Lesser 2007) to conduct some initial experiments to
study the effectiveness of the WPL algorithm for MMLC
on a small set of MCCs (3 MCCs supervises 3 radars each).
We test the results in three different weather scenarios. They
are defined as: High Rotation Low Storm (HRLS), Low Ro-
tation High Storm (LRHS), and Medium Rotation Medium
Storm (MRMS). For example, HRLS denotes the scenario
in which the number of rotations overwhelms the number
of storms in a series of heartbeats. We compare the results
of three methods: No-MLC, Adaptive Heuristic Heartbeat
(AHH) and MMLC. No-MLC is the method that without
meta-level control module. AHH is the method where we
incorporate simple heuristics in meta-level control to adap-
tively change the heartbeat of each MCC. In our MMLC ap-
proach, we used 50 training cases and each has a long se-
quence of training data (500 heartbeat periods) to learn the
policies for all the abstract scenarios offline. Using each
method mentioned above, we ran 30 test cases for each
of three weather scenarios. Average Quality and Negotia-
tion Time are the parameters to compare the scanning per-
formance. Average Quality rates the performance of tasks
achieved. Negotiation Time denotes the total time (seconds)
MCCs spend in negotiation with other MCCs. In figure 1,
MMLC spends least Negotiation Time among the three. Fig-
ure 2 shows that our MMLC approach performs significantly
(p < 0.05) better than No-MLC (p values in the t-tests are

0.038, 0.014 and 0.00043) and AHH (p values are 0.029,
0.0033 and 0.005) on Average Quality.

Figure 1: Negotiation
Time of No-MLC,
AHH and MMLC
in different weather
scenarios.

Figure 2: Average
Quality of No-MLC,
AHH and MMLC, for
number of tasks to be
80, 160 and 200.

Our current results are encouraging and show that MMLC
can be an efficient way to allocate resources and reorganize
the network with the goal of improving performance in Ne-
tRads. However, our current implementation only guaran-
tees optimal policies for each agent from a local perspective,
possibly leading to conflicting action choices among agents.
The Bounded Max-Sum (Farinelli et al. 2008) algorithm is a
decentralized coordination algorithm that provides bounded
approximate (within 95% of the optimum) solutions for gen-
eral constraint networks while requiring very limited com-
munication overhead and computation. We plan to extend
this algorithm to achieve the global optimization required
in NetRads when we scale up the problem to hundreds of
radars.
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