
Probabilistic Quorums for Dynamic Systems

Ittai Abraham and Dahlia Malkhi

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel.

{ittaia,dalia}@cs.huji.ac.il

Abstract. A quorum system is a set of sets such that every two sets in
the quorum system intersect. Quorum systems may be used as a building
block for performing updates and global queries on a distributed, shared
information base. An ε-intersecting quorum system is a distribution on
sets such that every two sets from the distribution intersect with proba-
bility 1−ε. This relaxation of consistency results in a dramatic improve-
ment of the load balancing and resilience of quorum systems, making the
approach especially attractive for scalable and dynamic settings.
In this paper we assume a dynamic model where nodes constantly join
and leave the system. A quorum chosen at time s must evolve and trans-
form as the system grows/shrinks in order to remain viable. For such a
dynamic model, we introduce dynamic ε-intersecting quorum systems. A
dynamic ε-intersecting quorum system ensures that in spite of arbitrary
changes in the system population, any two evolved quorums intersect
with probability 1− ε.

1 Introduction

Consider the following natural information-sharing problem. Participants wish
to publicize certain data items, and be able to access the whole information base
with search queries. In order to balance the load of updates and queries among
the participants, quorums may be used for reading and for writing. Quorums
enhance the load balance and availability, and provide flexibility in tuning be-
tween read costs and writes costs. However, quorum systems are defined over a
universe known to all participants, requiring each process to maintain knowledge
of all the other participants.

We aim for a scalable and dynamic information-sharing solution, in which
maintaining global knowledge of the system configuration is prohibitive. More
concretely, we allow each participant to maintain connections with, and even
knowledge of, only a constant number of other members. This restriction stems
both from our vision of having ubiquitous, low-memory devices participate in
Internet resource sharing applications; and from the desire to keep the amount
of state that needs to be updated at reconfiguration very low.

Our focus on scale and dynamism of information-sharing systems is supported
by the stellar popularity of recent resource sharing applications like Gnutella.
In these systems, users make available certain data items, like music clips or

2 Ittai Abraham and Dahlia Malkhi

software, and the system supports global querying of the shared information.
Gnutella supports global querying through a probabilistic depth-bounded multi-
cast. This approach is effective, yet ad hoc.

We devise techniques for the information sharing problem, capable of deal-
ing with high decentralization and dynamism exhibited in Internet-scale appli-
cations. Our approach is based on the probabilistic quorum systems (PQSs) of
Malkhi et al. in [16]. We extend the treatment of PQSs to cope with scalabil-
ity and high dynamism in the following ways. First, we allow each participant
only partial knowledge of the full system, and avoid maintaining any global in-
formation of the system size and its constituents. To this end, we develop a
theory of PQSs whose individual member selection probability is non-uniform.
We demonstrate a realization of such a non-uniform PQS that is fully adapted
for the dynamic and scalable settings we aim for. The second extension of PQSs
we address is to evolve quorums as the system grows/shrinks in order for them
to remain viable. We provide both a formal definition of quorum evolution and
the algorithms to realize it.

We first remind the reader of PQSs and motivate their use. The PQSs of
Malkhi et al. [16] are an attractive approach for sharing information in a large
network. Using a PQS, each participant can disseminate new updates to shared
data by contacting a subset (a probabilistic quorum) of k

√
n processes chosen

uniformly at random, where n is the size of the system and k is a reliability
parameter. Likewise, participants query data from such quorums. Intuitively,
analysis similar to the famous “birthday paradox” (e.g., see [4]) shows that each
pair of update/query quorums intersect with probability 1− e−k2/2. The result
is that with arbitrarily good probability a query obtains up to date information,
and with a small calculated risk it might obtain stale data.

The benefit of the PQS approach is tremendous: Publicizing information and
global querying are done each with only a O(1/

√
n) fraction of the participants.

At the same time, PQSs maintain availability in face of as many as O(n) faults.
In deterministic approaches these two features are provably impossible to achieve
simultaneously (see [19]). Indeed, PQSs have been employed in diverse and nu-
merous settings. To name just a few deployments, PQSs were used for designing
probabilistic distributed emulations of various shared objects [12,13]; they were
used for constructing persistent shared objects in the Phalanx and Fleet systems
[14,15]; and they were employed for maintaining tracking data in mobile ad-hoc
networks [8].

Now we get to why we need new PQSs. The prevalent PQS construction
[16] is not adequate precisely for the kind of scalable and dynamic settings for
which PQSs are most beneficial. First, it requires global and precise knowledge
of the system size ‘n’. Second, it hinges on the ability of each participant to select
other processes uniformly at random. And third, it does not indicate what should
happen to a quorum that stores data at time s, as the system grows/shrinks.

Our goal is to maintain a PQS that copes with dynamism so that every pair
of quorums intersect with the desired probability 1 − ε despite any number of
system reconfigurations. To this end, we introduce the notion of dynamic PQSs.

Probabilistic Quorums for Dynamic Systems 3

This notion captures the need for quorums to evolve as the system changes, and
requires pairs of evolved quorums to intersect with probability 1−ε. We present a
dynamic PQS construction that works without maintaining any global knowledge
of the system size or its participants. Our approach incurs a reasonable price per
system reconfiguration.

It is worth noting that independently and simultaneously to our work, Naor
and Wieder [18] sought solutions in dynamic settings for maintaining determin-
istic quorum systems. Compared with strict quorum systems, PQSs are natural
for dynamic and non-structured environments: Finding members can be done in
parallel and efficiently, and replacing failed members is trivial.

Technical approach: We first consider the problem of establishing probabilistic
quorums in a setting in which full knowledge of the system by each member is
not desirable. After that, we address quorum evolution.

Consider a system in which each process is linked to only a small num-
ber of other processes. Clearly, a quorum establishment operation initiated at
some process must somehow walk the links in the system in search of unknown
members. There are indeed some recent dynamic networks that support random
walks. The works of [20,5,22] assume a-priori known bound on the network size,
whereas we do not place any bound on network growth. A different approach is
taken in the AntWalk system [21], that necessitates periodic, global “re-mixing”
of the links of old members with those of the new processes that arrived. We
consider the price of this approach too heavy for Internet wide applications.

The first step in our solution to avoid the globalization pitfall is to introduce
a non-uniform PQS as follows. Let us have any probability distribution p : S →
[0..1] over individual member selection. We define the flat access strategy f(p, m)
as the quorum selection distribution obtained by selecting m members according
to p. We show that a quorum system with the access strategy f(p, k

√
n) is an

e−k2/2-intersecting PQS.
It is left to show how to realize a process selection distribution p in dynamic

settings and how to preserve it in evolving quorums. Our approach makes use
of recent advances in overlay networks for peer-to-peer applications. Specifically,
our design employs a dynamic routing graph based on the dynamic approxi-
mation of the de Bruijn network introduced in [1] 1. This dynamic graph has
w.h.p. a constant-degree, logarithmic routing complexity, and logarithmic mix-
ing time. Thus, random walks are rapidly mixing to a stationary distribution p.
This means that using a logarithmic number of messages, each process can find
other participants with selection probability p.

The dynamic graph allows to estimate the size of the network n with a
constant error factor. Using this estimation, the flat access strategy f(p, k

√
n)

is approximated by performing roughly k
√

n random walks of log(n) steps each.
We obtain at any instant in time an e−k2/2-intersecting PQS. Accessing quorums
is done in log(n) parallel time.

1 The dynamic De Bruijn construction appeared independently also in [17,6,11].

4 Ittai Abraham and Dahlia Malkhi

Finally, we need to describe how to evolve quorums as the system grows. We
devise an evolution strategy that grows the quorums along with the system’s
growth automatically and distributively. We prove that our evolution technique
keeps quorums sufficiently large, as well as maintains the individual member se-
lection distribution p. The cost of our maintenance algorithm is w.h.p. a constant
number of random walks per system reconfiguration. Each single walk incurs a
logarithmic number of messages and a state change in one process.

To summarize, the results of our construction is a scalable information shar-
ing mechanism based on dynamic PQSs. The construction maintains 1 − ε in-
tersection probability in any dynamic setting, without central coordination or
global knowledge. The system achieves the following performance measures with
high probability: The cost of a member addition (join) is a logarithmic number
of messages, and a state-change in a constant number of members. Further, the
advantage of using PQSs is stressed in the time required for accessing a quorum.
Because O(

√
n) processes are chosen independently at random, quorum selection

is done in O(log n) parallel time. Regardless of system growth, the load incurred
by information maintenance and update processing on individual members is
balanced up to a constant factor.

2 Problem Definition

We consider a (potentially infinite) universe W of possible processes. The system
consists of a dynamic subset of processes taken from W that evolves over time as
processes join and leave the system. For purposes of reasoning about the system,
we use a logical discrete time-scale T = {0, 1, . . . }. At each time-step i ∈ T there
exists a set U(i) of processes from W that are considered members of the system
at that time. Each time-step i consists of a single event e(i), which is one of
the following: Either a process joins the system, or a process leaves the system.
For each time step t > 0, the partial history of events uniquely determines the
universe U = U(t) consisting of all the processes that joined the system minus
those that have left.

Focusing on a fixed time step t > 0 for now, we first recall the relevant
definitions from [16]. A set system Q over a universe U is a set of subsets of U . A
(strict) quorum system Q over a universe U is a set system over U such that for
every Q,Q′ ∈ Q, Q∩Q′ 6= ∅. Each Q ∈ Q is called a quorum. An access strategy
ac for a set system Q specifies a probability distribution on the elements of Q.
That is, ac : Q → [0, 1] satisfies

∑
Q∈Q ac(Q) = 1. We are now ready to state

the definition of probabilistic quorum systems:

Definition 1 (ε-intersecting quorum system[16]). Let Q be a set system,
let ac be an access strategy for Q, and let 0 < ε < 1 be given. The tuple 〈Q, ac〉 is
an ε-intersecting quorum system if Pr[Q∩Q′ 6= ∅] ≥ 1−ε, where the probability
is taken with respect to the strategy ac.

We now proceed to define time-evolving quorums. We first define an evolution
strategy as follows:

Probabilistic Quorums for Dynamic Systems 5

Definition 2 (Evolution strategy). For every t ∈ T , let Q(t) be a set system
over the system U(t). An evolution strategy evt specifies a probability distribution
on the elements of Q(t) for each given element of Q(t − 1). Formally, evt :
Q(t− 1)×Q(t) → [0, 1] satisfies

∀Q′ ∈ Q(t− 1) :
∑

Q∈Q(t)

evt(Q′, Q) = 1 .

Thus, evt(Q′, Q) for Q′ ∈ Q(t− 1) and Q ∈ Q(t) indicates the probability that
Q′ evolves into Q.

The access strategies over U(1), U(2), . . . together with an evolution strategy
determine the probability that a certain subset occurs as the evolution of any
previously created quorum. The following definition captures this distribution:

Definition 3 (Evolving probability distribution). For every time step i ∈
T , let 〈Q(i), aci〉 be a probabilistic quorum system and evi be an evolution strat-
egy. The evolving probability distribution ps

t : Q(t) → [0, 1] for quorums created
at time s that evolved up to time t, for t ≥ s, is defined recursively as follows:

∀Q ∈ Q(t) : ps
t (Q) =

acs(Q) t = s,∑

Q′∈Q(t−1)

ps
(t−1)(Q

′)evt(Q′, Q) t > s. (1)

Our goal is to devise a mechanism for maintaining ε-intersecting probabilistic
quorums in each U(t), and to evolve quorums that maintain information (such
as updates to data) so that their evolution remains ε-intersecting with quorums
in later time steps. Any two quorums created at times s and t will evolve in a
manner that at any later time r, their intersection probability remains 1 − ε.
This is captured in the following definition:

Definition 4 (Dynamic ε-intersecting probabilistic quorum system).
For every time step i > 0, let 〈Q(i), aci〉 be a probabilistic quorum system and
evi be an evolution strategy. Let 0 < ε < 1 be given. Then 〈Q(i), aci, evi〉 is a
dynamic ε-intersecting quorum system if for all r ≥ s ≥ t > 0, Q,Q′ ∈ Q(r):

Pr[Q ∩Q′ 6= ∅] ≥ 1− ε

where the probability is taken over the choices of Q and Q′, distributed respec-
tively according to Q ∼ ps

r and Q′ ∼ pt
r.

2.1 Performance measures

Driven by our goal to maintain quorums in very large and dynamic environ-
ments, such as Internet-wide peer-to-peer applications, we identify the following
four performance measures. First, we have the complexity of handling join/leave
events, measured in terms of messages and the number of processes that must
incur a state-change. Second, we consider the complexity of accessing a quorum,

6 Ittai Abraham and Dahlia Malkhi

measured both in messages and in (parallel) time. These two measures reflect the
complexity incurred by linking processes in the system to each other and of the
searching over the links. Our goal is to keep the join/leave message complexity
logarithmic, and the number of state-changes constant per reconfiguration. We
strive to maintain a logarithmic quorum access time.

Additionally, we consider two traditional measures that were defined to assess
the quality of probabilistic quorum systems [19,16]: The load inflicted on pro-
cesses is the fraction of total updates/queries they must receive. The degree of
resilience is the amount of failures tolerable by the service. The reader is referred
to [19,16] for the precise definition of these measures. Our goals with respect to
the latter two measures are to preserve the good performance of PQSs in static
settings. Specifically, we wish for the load to be O(1/

√
n) and the resilience to

be O(n).

3 Non-uniform Probabilistic Quorum Systems

In this section, we extend the treatment of probabilistic quorum systems of [16]
to constructions that employ non-uniform member selection.

Let S be a system containing n members (e.g., S = U(t) for some t > 0).
Let p(s) be any distribution over the members s ∈ S. We first define a flat non-
uniform selection strategy that chooses members according to p until a certain
count is reached.

Definition 5 (Flat access strategy). The flat access strategy f(p,m) : 2S →
[0, 1] as follows: for Q ∈ 2S, f(p,m)(Q) equals the probability of obtaining the set
Q by repeatedly choosing m times (with repetitions) from the universe S using
the distribution p.

The flat strategy f(p, m) strictly generalizes the known access strategy for PQSs
in which members are chosen repeatedly m times using a uniform distribution.
In the Lemma below, we obtain a generalized probabilistic quorum system with
non-uniform member selection.

Lemma 1. The construction 〈2S , f(p, k
√

n)〉 is an (e−k2/2)-intersecting quorum
system.

Proof. Consider two sets Q,Q′ ∼ f(p, k
√

n). For every s ∈ S denote an in-
dicator variable xs that equals 1 if s ∈ Q ∩ Q′, and equals 0 otherwise. Thus,
E[

∑
s∈S xs] = k2np2(s). By the Cauchy-Schwartz inequality, we have

∑
s∈S p2(s) 1

n ≥(∑
s∈S p(s) 1

n

)2. Combining the above: E(
∑

s∈S xs) = k2n
∑

s∈S p2(s) ≥ k2.
We now wish to apply Chernoff bounds to bound the deviation from the

mean. Since the xs’s are dependent, we cannot apply the bounds directly. Rather,
we define i.i.d. random variables ys ∼ xs. Clearly, E[

∑
s ys] = E[

∑
s xs]. Due

to a result by Hoeffding [10], we have: Pr[Q ∩ Q′ = ∅] = Pr[
∑

s∈S xs = 0] ≤
Pr[

∑
s∈S ys = 0] < e−k2/2.

Probabilistic Quorums for Dynamic Systems 7

Interestingly, the flat access strategy is overly conservative in the following
sense. Generally, a quorum selection strategy with non-uniform member selection
distribution need not necessarily have a fixed quorum size. Intuitively, this is
because “heavier” members (that are chosen with a higher probability) are more
likely to occur in the intersection among pairs of quorums. An example might
clarify this point: Suppose that some member s ∈ S has p(s) = 1/2. Clearly,
if s belongs to a quorum, then the probability of intersecting with any other
quorum is at least a half, even if quorums have only one element each. In the
general case, the total number of selected members could therefore depend on
their combined weight. We encountered a difficulty in obtaining such a “weighted”
access strategy, namely that the likelihood that a member is included in a quorum
depends on the ordering of sampling. We are currently still investigating whether
there is a way to implement a non-uniform variable-size quorum access strategy
along these lines.

Finally, note that implementing f(p, k
√

n) requires global knowledge of n,
which is difficult in a dynamic setting. The remaining of this paper is devoted
to approximating f , i.e., we show how to (roughly) maintain a non-uniform flat
quorum access strategy and how to evolve quorums, over a dynamic system.

4 Non-uniform Probabilistic Quorums in Dynamic
Systems

4.1 The dynamic graph

A key component in the construction is a dynamic routing graph among the pro-
cesses. The graph allows processes to search for other processes during quorum
selection. Denote G(t) = 〈V (t), E(t)〉 a directed graph representing the system
at time t as follows. V (t) is the set of processes U(t) at time point t > 0. There
is a directed edge (u, v) ∈ E(t) if u knows v and can communicate directly
with it. Henceforth, we refer to system participants as processes or as nodes
interchangeably.

Driven by the need to maintain the goals stated above in Section 2.1, we
wish to maintain a dynamic graph G(t) with the following properties: (1) Small
constant degree (so as to maintain constant join/leave complexity). (2) Log-
arithmic routing complexity (so as to maintain a reasonable quorum selection
cost). (3) Rapid mixing time, so that we can maintain a fixed individual selection
distribution using a small number of steps from each node.

We choose to employ for G(t) a routing graph that approximates a de Bruijn
routing graph. In the de Bruijn [3], a node 〈a1, . . . , ak〉 has an edge to the two
nodes 〈a2, . . . , ak, 0/1〉 (shift, then set the last bit). We employ a dynamic ap-
proximation of the De Bruijn graph that was introduced in [1]. This dynamic
graph has w.h.p. a constant-degree, logarithmic routing complexity, and loga-
rithmic mixing time.

The dynamic graph is constructed dynamically as follows. We assume that
initially, G1 has two members that bootstrap the system, whose id’s are 0 and
1. The graph linking is a dynamic de Bruijn linking, defined as follows:

8 Ittai Abraham and Dahlia Malkhi

Definition 6 (Dynamic de Bruijn linking). We say that a graph has a dy-
namic de Bruijn linking if each node whose id is 〈a1, . . . , ak〉 has an edge to each
node whose id is 〈a2, . . . , ak〉 or whose id is a prefix thereof, or whose id has any
postfix in addition to it.

Joining and the leaving of members is done as follows:

Join: When a node u joins the system, it chooses some member node v and
“splits” it. That is, let v̂ = 〈a1, . . . , ak〉 be the identifier v has before the split.
Then u uniformly chooses i ∈ {0, 1}, obtains identifier u.id = 〈a1, . . . , ak, i〉 and
v changes its identifier to v.id = 〈a1, . . . , ak, (1 − i)〉. The links to and from v
and u are updated so as to maintain the dynamic de Bruijn linking.

Leave: When a node u leaves the system, it finds a pair of ‘twin’ nodes 〈a1, . . . , ak, 0〉,
〈a1, . . . , ak, 1〉. If u is not already one of them, it uniformly chooses i ∈ {0, 1},
swaps with 〈a1, . . . , ak, i〉, and 〈a1, . . . , ak, i〉 leaves.

When a twin 〈a1, . . . , ak, i〉 leaves, its twin 〈a1, . . . , ak, (1 − i)〉 changes its
identifier to 〈a1, . . . , ak〉. The links to and from 〈a1, . . . , ak〉 are updated so as
to maintain the dynamic de Bruijn linking.

Definition 7 (Level). For a node v with id 〈a1, . . . , ak〉. Define its level as
`(v) = k.

Definition 8 (Global gap). The global gap of a graph G(t) is maxv,u∈V (t) |`(v)−
`(u)|.

For a more general definition of these dynamic graphs, and an analysis of
their properties see [1]. Techniques for maintaining w.h.p. constant-bound on the
global gap in dynamic graphs such as G(t) are presented in [1] with logarithmic
per join/leave cost. In [17] techniques are presented for maintaining a global
gap of 2 with linear cost per join/leave. From here on, we assume that w.h.p. a
constant bound C on the global gap is maintained.

If the global gap is small, then a node can estimate the size of the network
by examining its own level. This is stated in the following lemma:

Lemma 2. Let G(t) be a dynamic de Bruijn graph with global gap C. Then for
all u ∈ V (t) : 2`(u)−C ≤ |V (t)| ≤ 2`(u)+C .

4.2 Quorum selection

For a node u to establish a read or a write quorum, it initiates k
√

2`(u)+2C

random walk messages. When a node u initiates a random walk it creates a
message M with a hop-count `(u), an id u.id, and appends any payload A to
it, i.e., M = 〈`(u), u.id, A〉. Each node (including u) that receives a message
〈j, id, A〉 with a non zero hop-count j > 0, forwards a message M ′ = 〈j−1, id, A〉,

Probabilistic Quorums for Dynamic Systems 9

randomly to one of its outgoing edges. If (u, v) ∈ E then the probability that u
forwards the message to v is:

Pr[u forwards to v] =
1

2max{`(v)−`(u)+1,1} (2)

By induction on the splits and merges of the dynamic graph it is clear that the
above function (Equation 2) is a well defined probability function.

We call the node that receives a message with hop-count 0 the destination
of the message. As a practical matter, it should be clear that a destination node
opens the message payload and executes any operation associated with it, such
as updating data or responding to a query. These matters are specific to the
application, and are left outside the scope of this paper.

4.3 Analysis of quorum selection

Let G(t) be a dynamic graph on n nodes. Recall the probability distribution
of message forwarding as defined in Section 4.2, Equation 2. We represent this
distribution using a weighted adjacency (n× n)-matrix M(t) as follows:

mv,u = Pr[u forwards to v] =

{
1

2max{`(v)−`(u)+1,1} (u, v) ∈ E(t),
0 otherwise.

The main result we pursue, namely, that our construction realizes a non-
uniform PQS, stems from the two propositions below. Due to space limitations,
their proofs are deferred to an appendix. We first explicitly state the stationary
distribution on the dynamic graph, and then prove that the weighed random
walk algorithm makes a perfect sampling of this distribution.

Theorem 1. The stationary distribution of M(t) is the vector x, such that ∀v ∈
V (t), xv = 1

2`(v)

For every t > 0, denote x(t) as the stationary distribution on M(t). We now
show that the random walk algorithm described in Section 4.2 chooses nodes
according to x(t).

Theorem 2. The mixing time of a random walk on M(t) starting from a node
of level k is k.

The theorems above together imply that our graph maintenance algorithm
together with our random walk quorum selection strategy implement a non-
uniform selection strategy over the members of V (t), where the probability of
choosing v ∈ V (t) is 1/2`(v).

As an immediate consequence of the propositions above, we have our main
theorem as follows:

Theorem 3. For a system S on a dynamic graph with global gap C, the quo-
rum selection strategy as described above forms a e−k2

-intersecting probabilistic
quorum system.

10 Ittai Abraham and Dahlia Malkhi

Proof. The theorem follows from the fact that by assumption, each quorum
access includes at least k

√
2`(u)+2C ≥ k

√
n independent selections, each one

done according to the distribution x(t).

5 Quorum Evolution

In this section we describe the evolution algorithm for maintaining dynamic ε-
intersecting quorum systems. For such a construction, quorums need to evolve
along with the growth of the system in order to maintain their intersection
properties. This property must be maintained in spite of any execution sequence
of join and leave events that may be given by an adversary.

One trivial solution would be to choose new quorums instead of the old ones
each time the network’s size multiplies. Such a solution has a major drawback,
it requires a global overhaul operation that may affect all the system at once.
Even if we consider amortized costs, this process requires to change the state
of

√
|V | nodes for some join events. In contrast, our evolution scheme w.h.p.

resorts only to local increments for each join or leave event, each causing only a
constant number of nodes to change their state.

The intuition for our algorithm comes from the following simple case. Suppose
the network is totally balanced, i.e., all nodes have the same level m, and a
quorum with 2m/2 data entries is randomly chosen. Further assume that after a
series of join events, the network’s size multiplies by 4 and all nodes have level
m+2. Our evolution algorithm works as follows in this simple scenario. Each time
a node splits, each data entry stored on the split node randomly chooses which
sibling to move to. In addition, if the node that splits has an even level then
each of its data entries also creates one more duplicate data entry and randomly
assigns it to a new node. Thus the number of data entries doubles from 2m/2 to
2(m+2)/2 and each data entry is randomly distributed on the network.

Our evolution algorithm simulates this behavior on approximately balanced
networks. Thus, its success relies on the fact that the global gap of the dynamic
graph w.h.p. is at most C. In order to avoid fractions, we set the bound C on
the global gap to be an even number.

5.1 Informal description of the evolution algorithm

Recall that a join (respectively, leave) event translates to a split (respectively,
merge) operation on the dynamic graph. We now explain how the random walk
algorithm is enhanced, and what actions are taken when a split or a merge
operation occurs.

We divide the levels of the graph into phases of size C, all the levels (i −
1)C +1, . . . , iC belong to phase iC. When a node in phase iC wants to establish
a quorum, it sends k2(i+1)C/2 random walk messages. Each such message also
contains the phase of the sender which is iC.

When two nodes are merged, the data entries are copied to the parent node.
If the parent node is later split, we want each data entry to go to the sibling

Probabilistic Quorums for Dynamic Systems 11

it originally came from. Otherwise, the distribution of the data entry’s location
will be dependent on the execution sequence. Thus, each data entry also stores
all the random choices it has made as a sequence of random bits called dest.
When an entry is first created, dest is set to the id of the node that the data
entry is in.

When a node of level i is split into two nodes of level i + 1, there are two
possibilities: Either |dest| ≥ i + 1 and the data entry moves according to the
(i+1)th bit of dest. Otherwise, the data entry randomly chooses which one of
the two sibling to move to, and it records this decision by adding the appropriate
bit to dest.

The number of data entries is increased only when a data entry is split on a
node whose level is a multiple of C. If a data entry with phase iC is involved in
a split operation on a node with level iC then 2C/2 − 1 new data entries with
phase (i + 1)C are created. These data entries are randomly distributed using
the random walk algorithm.

Additionally, whenever a random walk message from a node in phase jC
arrives to a node u with phase (j + 1)C, we simulate as if the message first
arrived at an ancestor node of level jC that is a prefix of u, and later this
ancestor node had undergone some split operations. Thus, if a phase (j + 1)C
node receives a message with hop count 0 initiated by a node in phase jC then,
in addition to storing the data entry, the node also creates 22/C − 1 new data
entries with phase (j + 1)C. This simulation technique is recursively expanded
to cases where a node in phase (j + `)C receives a message initiated by a node
in phase jC.

5.2 Evolution algorithm

Enhanced random walk: Denote phase(i) = Cdi/Ce. When a node u initiates a
random walk it creates a message M with a hop-count `(u), phase phase(`(u)),
id u.id, and payload A to it, i.e., M = 〈`(u), phase(`(u)), u.id, A〉. Each node
that receives a message 〈j, ph, id,A〉 with a non zero hop-count j > 0, forwards
a message M ′ = 〈j − 1, ph, id,A〉, randomly to one of its outgoing edges v with
probability Pr[u forwards to v] = 1

2max{`(v)−`(u)+1,1} .
Nodes store information as a data entry of the form (dest, ph, id,A), where

dest is a sequence of bits that describes the location of the entry, ph is the phase,
id is the identity of the quorum initiator, and A is the payload.

When node w receives a message M = 〈0, ph, id,A〉 it stores the data entry
(w.id, ph, id,A). If phase(`(w)) > ph then for every i such that dph/Ce < i ≤
d`(w)/Ce, w sends 2C/2 − 1 messages of the form 〈`(w), iC, id,A〉.

Create: A node u creates a quorum by initiating k2(phase(`(u))+C)/2 enhanced
random walk messages.

Split: Suppose node u wants to enter the system, and v = 〈a1, . . . , ak〉 is the
node to be split into nodes 〈a1, . . . , ak, 0〉 and 〈a1, . . . , ak, 1〉. For every data entry
(d, ph, id,A) held in v do the following. If |d| ≥ k + 1 then store (d, ph, id,A) at

12 Ittai Abraham and Dahlia Malkhi

node 〈a1, . . . , ak, destk+1〉 where desti is the ith bit of dest. Otherwise, if |d| < k+
1 then with uniform probability choose i ∈ {0, 1} and send to node 〈a1, . . . , ak, i〉
the message 〈0, ph, id,A〉. Node 〈a1, . . . , ak, i〉 will handle this message using the
enhanced random walk algorithm (in particular, if the split has crossed a phase
boundary, it will generate 2C/2 − 1 new data replicas).

Merge: Suppose node u wants to leave the system, and the twin nodes 〈a1, . . . , ak, 0〉,
〈a1, . . . , ak, 1〉 are the nodes that merge into node v = 〈a1, . . . , ak〉. If u and one
of the twins swap their ids then they also swap the data entries that they hold.
After the swap, the merged node v = 〈a1, . . . , ak〉 copies all the data entries that
the nodes with ids 〈a1, . . . , ak, 0〉, 〈a1, . . . , ak, 1〉 held.

5.3 Analysis of quorum evolution

Given a network G(t) on n nodes, we seek to show that the evolved quorum’s
distribution is at least as good as the flat access scheme f(x(t), k

√
n). So we must

show a set of data entries that are independently distributed, whose size is at
least k

√
n. Note that the existence of some of the data entries is dependent on the

execution history. Therefore, it is not true that all data entries are independently
distributed. However, we use a more delicate argument in which we analyze the
size of a subset of the data entries whose existence is independent of the execution
sequence.

The main result we pursue is that a non-uniform PQS is maintained despite
any system reconfiguration, and is given in the Theorem below. The following
two lemmas are crucial for proving it. Their proofs are in the appendix.

Lemma 3. For any time t, data entry D, the distribution of D’s location on
V (t) is x(t).

Definition 9. Denote L(t) as the lowest phase on G(t), L(t) = minv∈V (t) phase(`(v)).

Lemma 4. Let t > 0, and let the dynamic graph G(t) have global gap C. Con-
sider any quorum initiated by a node u at phase i with payload A. If L(t) ≥ i
then the number of data entries of the form (d, ph, u,A) such that ph ≤ L(t) is
exactly k2((L(t)+C)/2 .

Theorem 4. On dynamic networks with global gap C, the evolution algorithm
maintains a dynamic ek2/2-intersecting quorum system.

Proof. By Lemma 3 the locations of all data entries of all quorums are distributed
by x(t), the stationary distribution of M(t). Consider a quorum initiated at a
phase i node. If L(t) < i then the initial k2(i+C)/2 ≥ k

√
|V (t)| data entries

suffice. If L(t) ≥ i then by Lemma 4 every quorum has k2(L(t)+C)/2 entries
whose existence is independent of the execution history. Since the network has
global gap of C, then k2(L(t)+C)/2 ≥ k

√
|V (t)|. Thus at any time t, the evolving

probability distribution pr
t of the above subset of data entries of any quorum,

for any establishment time r, is a flat access strategy f(x(t),m) in which m ≥
k
√
|V (t)|. By Lemma 1 this access scheme forms an ek2/2-intersecting quorum

system as required.

Probabilistic Quorums for Dynamic Systems 13

Our construction implements, for any history of events, access strategies and
an evolution strategy that maintains the evolving probability distribution pr

t as
a flat access strategy on V (t) using the distribution x(t) with more than

√
|V (t)|

independent choices. Thus, at any time t, all quorums (both newly established
and evolved) are ε-intersecting.

6 Performance Analysis

Our protocols hinge on the network balancing algorithms we employ, e.g., from
[1], and on their ability to maintain the bound C on the global level gap. We
note that the network construction of [1] incurs a constant number of state-
changes per join/leave and a logarithmic number of messages. It maintains the
global gap bound C w.h.p. Below, the analysis stipulates that the global gap C
is maintained, and calculates additional costs incurred by our algorithm.

Join/leave complexity. When a new process joins the system, it may cause a
split of a node whose level is a multiple of C. In that case, we allocate a constant
number of new data entries, that incur a constant number of random walks.
Thus, the message cost is O(log(n)) and the number of processes incurring a
change in their state is constant. Leave events generate one message and a state
change to one process.

Quorum access complexity. When selecting a quorum, we initiate O(
√

n) ran-
dom walks in parallel. The parallel time is O(log(n)), and the total number of
messages is O(

√
n log(n)).

Load and Resilience.

Lemma 5. The load on a process v during quorum selection at time t is O(1/
√

n).

Proof. This lemma stems from the fact that we have log(n) − C ≤ `(s) ≤
log(n) + C. Note that L(t) ≤ log(n) + C. The size of any quorum established
at time t is at most 2(phase(log(n)+C)+C)/2 ≤ 22C

√
n. Thus, the probability of s

being selected for any quorum is at most

1−
(

1− 1
2`(s)

)√
n22C

≤ 1−
(

1− 1
2log(n)−C

)√
n22C

≤
√

n22C

2log(n)−C
=

23C

√
n

.

As the system grows, the load above continues to hold. If the system dramat-
ically diminishes, the relative fraction of data entries could grow, causing high
load on processes. Naturally, a practical system must deploy garbage collection
mechanisms in order to preserve resources. The discussion of garbage collection
is left outside the scope of this paper.

For the availability analysis, note that all quorums of size k2C
√

n are high qual-
ity.

14 Ittai Abraham and Dahlia Malkhi

Lemma 6. The fault tolerance is n− k2C
√

n + 1 = Ω(n).

Proof. Because only k2C
√

n processes need be available in order for some (high
quality) quorum to be available, the fault tolerance is n− k2C

√
n + 1 = Ω(n).

Lemma 7. The failure probability Fp = e−Ω(n).

Proof. Let p denote the independent failure probability of processes. For the
system to fail, at least n−k2C

√
n+1 processes must fail. By a standard analysis

of threshold-resilience using a Chernoff bound (see [19]), the failure probability
can be bounded by the following:

Fp = Pr(#fail > n− k2C
√

n) ≤ e
−2n

(
k2C
√

n
+δ

)2

= e−Ω(n) ,

for all p ≤ 1− 2k2C
√

n
− δ. This failure probability is optimal [19].

7 Discussion

In this paper we assumed the read-write ratio to be roughly equal. It is possible
to extend the techniques of this paper to differentiate between read-quorums
and write-quorums, and achieve better performance. Given any read-write ratio,
instead of having all operations select cn1/2 nodes, read operations select cnα

nodes, and write operations select cn1−α nodes for some predetermined 0 < α <
1.

We presented a system with a constant 1 − ε intersection probability. In
the AntWalk system [21],

√
n log n processes are randomly chosen thus leading

to intersection with high probability. Our quorum selection and evolution algo-
rithm can be modified along similar lines to achieve a high probability dynamic
intersecting quorum system.

Our analysis is sketched in a model in which changes are sequential. While we
believe our construction to be efficient in much stronger settings, where a large
number of changes may occur simultaneously, it is currently an open problem to
provide a rigorous analysis.

The fault tolerance analysis concerns the robustness of the data which the
system stores against O(n) failures. While the data will not be lost due to such
catastrophic failure, clearly our constant degree network, which is used to access
the data, may disconnect. Network partitioning can be reduced by robustifing
the network through link replication. But unless each node has O(n) links, O(n)
failures will disconnect any network. Once the network is partitioned, the prob-
lem of rediscovering the network’s nodes is addressed in [9,2]. When the network
is reconnected, the dynamic de-Bruijn can be reconstructed. After recovering
from this catastrophic failure, the system will maintain consistency, since the
information itself was not lost.

Probabilistic Quorums for Dynamic Systems 15

References

1. I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi and E. Pavlov. A Generic
Scheme for Building Overlay Networks in Adversarial Scenarios. In International
Parallel and Distributed Processing Symposium (IPDPS 2003), April 2003, Nice,
France.

2. I. Abraham, D. Dolev. Asynchronous Resource Discovery. In proceedings of the
22nd ACM Symposium on Principles of Distributed Computing (PODC 2003).
June 2003.

3. N. G. de Bruijn. A combinatorial problem, Konink. Nederl. Akad. Wetersh. Verh.
Afd. Natuurk. Eerste Reelss, A49 (1946), pp. 758-764.

4. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
John Wiley & Sons, New York, 3rd edition, 1967.

5. A. Fiat and J. Saia. Censorship resistant peer-to-peer content addressable net-
works. In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms,
2002.

6. P. Fraigniaud and P. Gauron. The Content-Addressable Network D2B. Technical
Report 1349, LRI, Univ. Paris-Sud, France, January 2003.

7. http://gnutella.wego.com.
8. Z. J. Haas and B. Liang. Ad hoc mobility management with randomized database

groups. In Proceedings of the IEEE Internation Conference on Communications,
June 1999.

9. M. Harchol-Balter, T. Leighton, and D. Lewin. Resource Discovery in Distributed
Networks. In Proc. 15th ACM Symp. on Principles of Distributed Computing, May
1999, pp. 229-237.

10. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301):13–30, 1963.

11. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal Hash Table.
In 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), February
2003, Berkeley, CA.

12. H. Lee and J. L. Welch. Applications of Probabilistic Quorums to Iterative Algo-
rithms. In Proceedings of 21st International Conference on Distributed Computing
Systems (ICDCS-21), Pages 21-28. April, 2001.

13. H. Lee and J. L. Welch. Randomized Shared Queues. Brief announcement in
Twentieth ACM Symposium on Principles of Distributed Computing (PODC
2001).

14. D. Malkhi, M. Reiter. Secure and Scalable Replication in Phalanx. Proceedings of
the 17th IEEE Symposium on Reliable Distributed Systems (SRDS ’98), October
1998, Purdue University, West Lafayette, Indiana, pages 51–60.

15. D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large
Distributed Systems. IEEE Transactions on Knowledge and Data Engineering,
12(2):187–202, April 2000.

16. D. Malkhi, M. Reiter, A. Wool and R. Wright. Probabilistic quorum systems. The
Information and Computation Journal 170(2):184–206, November 2001.

17. M. Naor and U. Weider. Novel architectures for P2P applications: the continuous-
discrete approach. In proceedings pf Fifteenth ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2003), June 2003.

18. M. Naor and U. Wieder. Scalable and Dynamic Quorum Systems. In proceedings
of the 22nd ACM Symposium on Principles of Distributed Computing (PODC
2003), June 2003.

16 Ittai Abraham and Dahlia Malkhi

19. M. Naor and A. Wool. The load, capacity and availability of quorum systems.
SIAM Journal of Computing, 27(2):423–447, April 1998.

20. G. Pandurangan, P. Raghavan and E. Upfal. Building low-diameter p2p networks.
In Proceedings of the 42nd Annual IEEE Symposium on the Foundations of Com-
puter Science (FOCS), 2001.

21. D. Rataczjak. Decentralized Dynamic Networks. M. Eng. Thesis Proposal, MIT,
May 2000.

22. J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically Fault-Tolerant
Content Addressable Networks, In Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS ’02), March 2002, Cambridge, MA USA

A Deferred Proofs

A.1 Proofs for Section 4.3

Proof. (of Theorem 1) For this proof, we make use of the following technical
lemma. Intuitively, it states each node in G(t) is pointed to by edges whose total
weight is proportional to its own level. The precise sense in which this holds is
stated by the lemma.

Lemma 8. Let v ∈ G(t) be a node whose id is v.id = 〈a1, a2, . . . , ak〉. Denote
by N0(v) the nodes in G(t) whose id’s match 〈0, a2, . . . , ak〉, or are a prefix of it,
or have a postfix added to it. (Similarly, denote by N1(v) the nodes that match
〈1, a2, . . . , ak〉, its prefix or postfix.) Then∑

u∈Ni(v)

mv,u
1

2`(u)
=

1
2`(v)+1

.

Proof. (of Lemma 8) By our graph construction, there are two cases to consider.
The first one is |N0(v)| = 1. In this case, denote N0(v) = {w}, and it follows
that `(w) ≤ `(v). We therefore have:

mv,w
1

2`(w)
=

1
2`(v)−`(w)+1

1
2`(w)

=
1

2`(v)+1
.

The second case is |N0(v)| > 1. Then ∀w ∈ N0(v) : `(w) > `(v), and the nodes
w ∈ N0(v) have the form w.id = 〈0, a2, . . . , ak〉, or are a prefix of it or have a
postfix appended to it. By a trivial induction on split and merge operations, we
have

∑
w∈N0(v)

1
2`(w) = 1

2`(v) . Thus:

∑
w∈N0(v)

mv,w
1

2`(w)
=

∑
w∈N0(v)

1
2

1
2`(w)

=
1
2

∑
w∈N0(v)

1
2`(w)

=
1

2`(v)+1
.

By symmetry, the analogous statement on N1(v) also holds.

Now we get back to the main proof to Theorem 1. Showing
∑

v∈V (t) xv = 1 is
trivially done by induction on the series of node additions and removals.

Probabilistic Quorums for Dynamic Systems 17

For every v ∈ V (t), we will show that
∑

u∈V (t) mv,uxu = xv. Suppose v =
〈a1, a2, . . . , ak〉. In our graph, nodes that have directed links to v are those in
N0(v) and in N1(v). The sets N0(v) and N1(v) are disjoint by definition. Thus,
using Lemma 8, we have:

∑
u∈V (t)

mv,uxu =
∑

w∈N0(v) or w∈N1(v)

mv,wxw =
1

2`(v)+1
+

1
2`(v)+1

=
1

2`(v)
= xv .

Proof. (of Theorem 2) The proof makes use of the following Lemma.

Lemma 9. All the bits of a random walk message with hop count 0 are inde-
pendently uniformly distributed.

Proof. (of Lemma 9) We show by induction that after i hops, the walk reaches a
node whose bits beyond the first (k−i) bits are selected independently uniformly
at random.

Let v be a starting node whose level is k. Denote v’s id by v.id = 〈a1, . . . , ak〉.
The first hop must go to a node whose id matches 〈a2, . . . , ak, r1〉, or a prefix
thereof, or with a postfix appended. and where r1 is chosen to be 0/1 with
uniform probability. In case the destination node has a postfix appended, the
postfix bits are chosen uniformly at random by our construction, since every
split operation divides the weight of an edge pointing to the split node into half.
Thus, we have the induction basis.

For the induction step, suppose that after i−1 hops, the walk reaches a node
〈ai, . . . , ak, σ〉, or a prefix thereof, where σ is a sequence of randomly chosen
bits. Then at hop i we move to a node whose id matches 〈ai+1, . . . , ak, σ, ri〉, or
a prefix thereof, or with a random postfix added to it, and where ri is chosen to
be 0 or 1 with uniform probability. By the same argument as above, in case the
destination node has a postfix appended, the postfix bits are chosen uniformly
at random.

Thus when the hop count reaches zero, the bits of the target are all random,
independent and uniformly selected.

We also note the following simple combinatorial fact:

A1 For k ≤ j, given a fixed sequence of bits A = 〈a1, . . . , ak〉, and a sequence
B = 〈b1, . . . , bj〉 of bits each independently chosen with uniform probability then

Pr[A is a prefix of B] =
1
2k

Now we get back to the main proof of Theorem 2. A random walk message
starting at a level k node will walk k steps until its hop count reaches 0. By
Lemma 9 all its bits are independently uniformly chosen. Thus for v ∈ V (t) the
probability that the random walk reaches v by Fact A1 is 2−`(v).

18 Ittai Abraham and Dahlia Malkhi

A.2 Proofs for Section 5.3

Proof. (of Lemma 3) For every data item D = (dest, ph, id,A) we prove the
following by induction: dest is a sequence of bits that are independently and
uniformly distributed and D is stored in the node whose id is a prefix of dest.

When a data entry is created it is stored at a node v chosen by the ran-
dom walk algorithm and dest is set to v. By Lemma 9 all the bits of v are
independently uniformly distributed. Thus the induction base holds.

Now assume at time t entry D is stored in node v = 〈a1, . . . , ak〉. Suppose
the next event e(t+1) is a leave that causes a merge operation on v and its twin.
This will cause D to be stored in 〈a1, . . . , ak−1〉 which still remains a prefix of
dest.

Suppose e(t + 1) is a join that causes a split operation on v. If |dest| ≥ k + 1
then D moves to 〈a1, . . . , ak, destk+1〉 and the claim holds. If dest has only k
bits then the evolution algorithm independently with uniform probability chooses
which sibling to move to and thus the new destination maintains the induction
hypothesis.

Therefore, the dest sequence is i.i.d. and the data entry resides in a node
which is a prefix of dest. Thus by Fact A1 and Theorem 1, the location of D at
time t has a distribution x(t)

Proof. (of Lemma 4) The proof is by induction. When a quorum is established
by a node of phase i, it creates 2(i+C)/2 data entries with phase i. Since the gap
is at most C, i is either L(t) or L(t) + C. If i = L(t) then the induction base
holds. If i = L(t) + C then the base holds vacuously, since L(t) < i.

If e(t+1) is a join that causes L(t+1) = L(t)+C then all of the data entries
with phase at most L(t) must have been spilt on a node of level L(t) (or split
on a lower level node that simulates this split). If t + 1 is the first time that
L(t + 1) ≥ phase(id), and the induction hypothesis was vacuously true before
t+1, then the phase of the quorum establisher was L(t)+C, thus k2((L(t)+2C)/2

data entries of phase l(t) + C exist in the network as required.
Otherwise, by the induction hypothesis there are k2(L(t)+C)/2 data entries

of phase at most L(t). Each one creates 2C/2 − 1 more data entries of phase
L(t) + C. Together, there are k2((L(t)+2C)/2 entries of phase at most L(t) + C.

	Probabilistic Quorums for Dynamic Systems
	 Ittai Abraham cl@@auth, Dahlia Malkhi

