
Principles of Locality-Aware Networks

for

Locating Nearest Copies of Data

Ittai Abraham and Dahlia Malkhi
The Hebrew University of Jerusalem, Israel

{ittaia,dalia}@cs.huji.ac.il

November 25, 2003

Abstract

Building overlay network tools for locating information in a manner that exhibits locality-
awareness is crucial for the viability of large internets. It means that costs are proportional
to the actual distance of interacting parties, and in many cases, that load may be contained
locally. This paper presents a step-by-step decomposition of several locality-aware networks,
that support distributed content-based location services. It explains their common principles
and their variations with simple and clear analysis.

1 Introduction

Problem statement. This paper considers the problem of forming an overlay routing network
that locates objects placed in arbitrary network locations. More formally, the network consti-
tutes a metric space, with a cost function c(x, y) denoting the “distance” from x to y. Let
s = x0, x1, ..., xk = t be the path taken by the search from a source node s to the object re-
siding on a target node t. The main design goal to achieve is constant stretch. Namely, that the
ratio c(x0,x1)+...+c(xk−1,xk)

c(s,t) is bounded by a (small) constant. Another important goal is to keep
node degree low, so as to prevent costly reconfigurations when nodes join and depart. Thus, trivial
solutions that connect all nodes to each other are inherently precluded.

Two variants of the problem may be considered. In one, the object of interest may be placed
on any desired target node t by the algorithm designer. A primary application of this problem
model is a distributed reference directory such as a Distributed Hash Table (DHT). In the second
variant, the object’s location is uncontrolled, e.g., a distributed web cache, or a location service
for mobile device, and the goal is to locate the closest copy of the object. The difference between
these two variants in location algorithms is that in the former, the target’s location can be a virtual
address determined by the algorithm’s designer; in the latter, a virtual address can only be used for
publishing the true object location. The lookup protocol routes towards the virtual target, until it
coincides with a published reference of the real object location. In terms of the locality issues of
importance to us, these problems are very similar, and we consider the slightly harder problem of
finding nearest copies of data.

1

Previous work. The problem of forming overlay routing networks was considered by several
recent works in the context of networks that are searchable for content. Many of the prevalent
overlay networks were formed for routing search queries in peer-to-peer applications, and exhibit
no locality awareness.

There are several known schemes that provide locality awareness, including [10, 11, 12, 9, 2].
All of these solutions borrow heavily from the PRR scheme [10], yet they vary significantly in their
assumptions and properties. Some of these solutions are designed for a uniform density space [9].
Others work for a class of metrics space whose growth rate is bounded both from above and from
below [10, 11, 12, 6], while others yet cope with an upper bound only on the growth rate [2]. There
is also variability in the guarantee provided on the stretch: In [9], there is no bound on stretch
(except the network diameter). In [10], the stretch is an expected constant, a rather large one
which depends on the growth bound. And in [2], the stretch can be set arbitrarily small (1 + ε).
Diversity is manifested also in the node degree of the schemes.

It is worth noting what would happen if we remove the growth-bound restriction altogether. In
the theory of networks design, a related problem of name independent routing has been considered
as early as 1989 [4]. In this problem, we are given a network G = 〈V,E, ω〉, where V is a set
of nodes, E are edges, and ω is an edge-cost function. Node names are chosen as an arbitrary
permutation on {1, ..., n}. A routing request destination is given in the form of a node name, and
the goal is to route with constant stretch. A trivial solution keeps full optimal routing tables at
each node with memory cost of O(n log n). Hence, the challenge is in devising compact schemes
whose memory is o(n log n). A compact solution for name independent routing can directly support
a locality aware object lookup service or a DHT, with node degree induced from the routing-table
requirements. However, for general metric spaces, routing with stretch < 3 requires a routing table
of size O(n) per node [5], and the best known schemes [3, 1] achieve stretch 5 and 3, respectively,
with O(

√
n) entries per node.

A step-by-step deconstruction. This paper offers a deconstruction of the principles that un-
derlie these locality-aware schemes step by step, and indicate how and where they differ. It demon-
strates the principles of locality awareness in a simplistic, yet reasonable (see [6]) network model,
namely, a network with power law latencies. Finally, it provides guidelines for extending to growth-
bounded metrics.

The logical steps we make are the following. First, we build geometric routing, whose character-
istic is that the routing steps toward a target increase geometrically in distance. This is achieved
by having large flexibility in the choice of links at the beginning of a route, and narrowing it down
as the route progresses. Geometric routing alone yields a cost which is proportional to the network
diameter. The designs in [9, 6] make use of it to bound their routing costs by the network diameter.

The next step is unique to the design of LAND in [2]. Its goal is to turn the expectation of
geometric routing into a worst-case guarantee. This is done while increasing node degree only by
a constant expected factor. The technique to achieve this is for nodes to emulate links that are
missing in their close vicinity as shadow nodes. In this way, the choice of links enforces a distance
upper bound on each stage of the route, rather than probabilistically maintaining it. If no suitable
endpoint is found for a particular link, it is emulated by a shadow node.

The final step in our deconstruction describes how to bring down routing costs from being
proportional to the network diameter (which could be rather large) to being related directly to the
actual distance of the target. This is done via a technique suggested by Plaxton et al. in [10], that

2

makes use of short-cut links that increase the node degree by a constant factor. With a careful
choice of the short-cut links, as suggested by Abraham et al. in [2], this guarantees an optimal
stretch, irrespective of the growth-rate parameters of the network.

We supplement our exposition with two enhancements. In Section 4, we sketch how to adapt
the building blocks we present to a growth-bounded metric space. In Section 5 we provide intuition
on dynamic maintenance components.

The analysis we present throughout is simple and proofs are short and intuitive. In our belief,
the simplicity and the elegance of analysis may lead to improved practical deployments of locality-
aware schemes.

2 Preliminaries

The system consists of a set V of N nodes. Let c : V 2 7→ R+ be the cost function, associated
with pairs of nodes, that expresses the cost of communication between nodes. We assume c has
positivity, reflexivity, triangle inequality, and symmetry. Thus 〈V, c〉 forms a metric space. From
here on, we refer to the cost as the distance between nodes.

Density. The set of nodes within distance r from x is denoted N(x, r). A power law latency
assumption is expressed as follows:

|N(x, r)| = Γrp ,

for some known constants Γ ≥ 2, p ≥ 1.1 In the calculation below, we take p = 2.
For convenience, we define neighborhoods Ak(x) = N(x, 2k), and the radius ak = 2k. Thus, we

have that |Ak(x)| = Γ4k.

Routing entities and identifiers. For the purpose of forming a routing structure among nodes,
nodes need to have addresses and links. We refer to a routing entity of a node as a router, and say
that the node hosts the router. Thus, each node u hosts an assembly of routers.

Each router u.r has an identifier denoted u.r.id, and a level u.r.level. Identifiers are chosen
uniformly at random. The radix for identifiers is selected for convenience to be 4. This is done so
that a neighborhood of radius 2k shall contain in expectation constant number of routers with a
particular length-k identifier. Indeed, the probability of a finding a router with a specific level and
a particular prefix of length k is 1/4k. According to our density assumption, a neighborhood of
diameter 2k has Γ4k nodes. Hence, such a neighborhood contains in expectation Γ routers matching
a length-k prefix.

Let M = log4 N . Identifier strings are composed of M digits. The level is a number between
1 and M . A level-k router has links allowing it to ‘fix’ its k’th identifier digit. Routers are
interconnected in a butterfly-like network, such that level-k routers are linked only to level-(k + 1)
and level-(k − 1) routers.

Let d be a k-digit identifier. Denote d[j] as the prefix of the j most-significant digits, and denote
dj as the j’th digit of d. A concatenation of two strings d, d′ is denoted by d||d′.

1In fact, our simple analysis can be easily adapted to accommodate an assumption Γrp ≤ |N(x, r)| ≤ ∆rp,
or similarly, an assumption that nodes are placed uniformly at random in space. For brevity, we use the above
assumption.

3

Objects and Hashing. Let A be the set of searchable objects in the system. We make use of
a uniformly distributed hash function H on object names. For any A ∈ A, reference information
about A’s location is stored on a node whose identifier has the longest matching prefix to H(A).

Summary of notations. For convenience, here is a short summary of constants and notations.
• N denotes the number of nodes in the network, M = log4 N .
• Router r hosted by node v is denoted v.r, its identifier is v.r.id, and its level v.r.level.
• The set of nodes within distance r from x is denoted N(x, r).
• Ai(x) = N(x, 2i), and the radius is ai = 2i.

3 The routing network

3.1 Step 1: Geometric routing

Every node v initially hosts M + 1 routers, denoted R1, ..., RM+1. For k = 1..M , a level-k router r
hosted on a node v maintains outgoing neighbor links as follows.

neighbor: There are four neighbor links, denoted L(b), b ∈ {0..3}. Each one of the links L(b) is
selected as the closest node within Cb(r), where Cb(r) = {u ∈ V | ∃s, u.s.id[k] = v.id[k −
1]||b, u.s.level = k + 1}. The link L(b) ‘fixes’ the k’th bit to b, namely, it connects to the
closest node that has a level-(k + 1) router whose identifier matches v.Rk[k − 1]||b.

Publish and lookup. As there is no relationship between the location of an object obj and its
identifier, we use a ‘home’ node to store a reference to the location of obj. In fact, in order to
maintain locality, we distribute reference information on obj in a number of home nodes dispersed
in the network. These are nodes u, such that u.Rk.id matches a (k − 1)-length prefix of H(obj).

More precisely, a node t that holds a copy of an object obj publishes this fact as follows.
Starting from t.R1, we follow neighbor links so as to fix target bits according to H(obj). Let
w1 = t, and denote by w1.r = t.R1. From a level-k router wk.r, k ≤ M , reached in the k’th
step, we follow wk.r.L[H(obj)k] to reach wk+1.r. Thus, wk+1.r is a level-(k + 1) router satisfying
wk+1.r.id[k] = H(obj)[k]. Each node wk+1 along the path retains a reference to obj of the form
obj;wk.

The lookup of an object obj residing on a node t from an origin node s proceeds as follows.
Starting with x1 = s, using router x1.r = s.R1, we move from a router xk.r to xk+1.r using the
level-k router links, fixing the k’th bit to that of H(obj) in the k’th step. The loop goes as follows:
So long as the target was not found, then from the current router xk.r, first check if there is a
reference of the form obj;wk−1 on xk. If so, move to it. Otherwise, if H(obj)k is b, continue at
xk.r.L(b).

Analysis of expected stretch. As already mentioned above, for any given length-k binary
prefix I[k], the ball Ak(v) contains in expectation at least one node u with u.R(k+1).id[k] = I[k].
Hence, the expected distance of the link v.Rk.L(b), for b ∈ [0..3], is at most ak = 2k. Further,
the expected cumulative length of a k-hop path is dominated by the last step, and is bounded by∑

i=1..k 2i ≤ 2k+1. The good news then are that any search path is bounded in expectation by a
constant stretch over the network diameter, namely, by 2n+1.

4

The bad news are that as this is an analysis of the expected case only, in the worst case, routes
may be much longer. Our next enhancement puts a worst-case bound on the distance of links, and
consequently, on the total length of any path.

3.2 Step 2: Shadow routers

The idea of bounding the distance of links is very simple: If a link does not exist within a certain
desired distance, it is emulated as a shadow router. More precisely, for any level 1 ≤ k ≤ M let r
be a level-k router hosted by node v (this could itself be a shadow router, as described below). For
b ∈ [0..3], if Cb(v) contains no node within distance 2k, then node v emulates a level-(k +1) shadow
router s that acts as the v.r.L(b) endpoint. Router s’s id is s.id = v.r.id[k − 1]||b and its level is
(k + 1).

Since a shadow router also requires its own neighbor links, it may be that the j’th neighbor link
of a shadow router s does not exist in Cj(s) within distance 2k+1. In such a case v also emulates a
shadow router that acts as the s.L(j) endpoint.

Emulation continues recursively until all links of all the shadow routers emulated by v are found
(or until the limit of M levels is reached).

Analysis of node degree with shadow routers. With shadow routers, we have a deterministic
bound of 2k on the k’th hop of a path, and a bound of

∑
i=1..k 2i = 2k+1 on the total distance of a

k-hop path.
A different concern we have now is that a node might need to emulate many shadow routers,

thus increasing the node degree. The following lemma tells us that in expectation, each router
incurs only a constant number of emulated routers on its behalf.

Lemma 3.1 For every router r hosted by a node v, the expected number of shadow routers hosted
by v to emulate r’s links is constant.

Proof: Recall that for every `, |N(v, 2`)| = Γ4` ≥ 2 · 4`. Let s be any router hosted by v
whose level is `. The probability that the i’th neighbor link of s is found inside A`(v) is at least

1−
(
1− 1

4`

)2·4`

≥ 1− e−2.
Let k = r.level denote the level of router r. For index 0 ≤ i ≤ n − k, let bk+i be a random

variable that counts the number of shadow routers that v recursively emulates in order to maintain
links for router r.

So bk = 1 and for 1 ≤ i ≤ n−k, each of the bk+i−1 nodes has 4 neighbor links with a probability
of emulating each one bounded by e−2. Therefore E[bk+i | bk+i−1] ≤ bk+i−1

4
e2 and due to the

independence of the identifiers E[bk+i] ≤ E[bk+i−1] 4
e2 . Thus by induction E[bk+i] ≤

(
4
e2

)i. The
expected total number of shadow router emulated by node v on r’s behalf is bounded by:

E[
∑

0≤i≤n−k

bk+i] ≤
∞∑
i=0

(
4
e2

)i

=
1

1− 4
e2

.

Corollary 3.2 Let v be any node. The total expected number of routers hosted by v is O(M).

5

Proof: Node v hosts M +1 initial routers. In expectation, it hosts a constant number of shadow
routers in order to maintain the links of each one of the initial routers.

As for stretch, it is possible that the search and the publish paths from a source and a target
converge towards each other, such that the k’th step of searching and the k’th step of publishing
coincide. In that case, the route will have distance O(2k).

However, there is no guarantee that this happens. In the worst case, starting from a source
very close to the target, the search route and the publishing route could drift away from each other
until they meet at a late step. This could lead to a search route that goes a distance that is the
full diameter of the network, even in the case that the source and target are initially very close to
each other. Our next and final improvement fixes this problem.

3.3 Step 3: Publish links

The technique that guarantees a constant stretch is to ‘publish’ references to an object in a slightly
bigger neighborhood than the regular links distance. The intuition on how to determine the size
of the enlarged publishing-neighborhood is as follows. The route that locates obj on t from s is
composed of three parts: (i) the path from x1 to xk, whose length is bounded by ak+1; (ii) the path
from wk−1 to w1, bounded by ak; and (iii) the hop from xk to wk, which is bounded by the triangle
inequality by the sum of distances of x1 from xk, plus the distance from wk−1 to w1, plus the
distance from s to t. In order to achieve a stretch bound close to 1, we should therefore guarantee
that a hop from xk to wk−1 occurs as soon as ak is proportional to εc(s, t). This will yield a total
route distance proportional to (1 + ε)c(s, t).

More precisely, let d = O(log(1
ε)) be a parameter determined as in Equation 1 below. Each

router r of level k hosted by a node v has, in addition to neighbor links, the following set of links:

publish: The set of publish links, r.P , contains all the level-(k+1) routers with the same first k−1
prefix identifier bits as r.id within the ball Ak+d+4(v). Formally, r.P = C(r) ∩ Ak+d+4(v),
where C(r) = {u ∈ V | ∃s, u.s.level = k + 1, u.s.id[k − 1] = r.id[k − 1]}.

Analysis of stretch. In order to bound the stretch of all search routes, denote as above by obj
an object residing on node t, and let s be an origin searching for obj. Denote the publish path of obj
from t by t = w1, ..., wn+1, and the corresponding routers by w1.r, ..., wn+1.r. Thus, wi.r is a level-i
router satisfying wi.r.id[i − 1] = H(obj)[i − 1]. Note that some nodes may repeat due to shadow
router emulation. The routing steps in search of obj from s are x1.r, ..., xk.r, wk−1.r, ..., w1.r, where
s = x1 and t = w1, xi.r.level = i, and xi.r.id[i− 1] = H(obj)[i− 1].

Lemma 3.3 For every i ≥ 1, wi ∈ Ai+1(t), and likewise, xi ∈ Ai+1(s).

Proof: By induction on i. For i = 1 we have t = w1. Assume by induction that wi−1 ∈ Ai(t).
If wi.r is emulated by the same node as wi−1.r then we are done. Otherwise, by construction
wi ∈ Ai(wi−1). Since wi−1 ∈ Ai(t), taking the sum of radii of Ai(t) and Ai(wi−1) we get Ai(wi−1) ⊆
Ai+1(t). Putting the above together, we obtain wi ∈ Ai+1(t). The case for xi is identical.

Lemma 3.4 Let k be the first index such that t ∈ Ak+d+2(s). Then xk contains a reference to obj
linking to wk−1.

6

Proof: From Lemma 3.3, we have xk ∈ Ak+1(x) and wk−1 ∈ Ak(t). Hence,

c(xk, wk−1) ≤ c(xk, s) + c(s, t) + c(t, wk−1) ≤ ak+1 + ak+d+2 + ak ≤ 2ak+d+2 ≤ ak+d+3 .

Hence, xk ∈ Ak+d+3(wk−1). Since wk−1.r has level-(k − 1) publish links to all level-k routers with
a prefix wk−1.r.[k − 2] = H(obj)[k − 2] within Ak+d+3(wk−1), there is indeed a reference to obj on
xk pointing to wk−1.

Let k be the first index such that t ∈ Ak+d+2(s). By Lemma 3.4, we know that when the lookup
path reaches xk, it proceeds to wk−1 and from there backwards to t. It is left to see what is the
total distance of the route s = x1, . . . , xk, wk−1, ..., w1 = t.

Theorem 1 The stretch of the path from s to t is 1 + ε.

Proof: Since k is the first index for which t ∈ Ak+d+2(s), we have that c(s, t) ≥ ak+d+1.
The total distance of the route from x1 through xk is bounded by ak+1 ≤ 2−dak+d+1 ≤ 2−dc(s, t).

The step from xk to wk−1 has distance at most ak+1+c(s, t)+ak ≤ c(s, t)(2−d +1+2−d−1). Finally,
the route from wk−1 to w1 has distance at most ak ≤ 2−d−1ak+d+1 ≤ 2−d−1c(s, t). It follows that
the stretch is bounded by

2−d + 2−d + 1 + 2−d−1 + 2−d−1 = 1 +
3
2d

≤ 1 + ε ,

where the last inequality is obtained by choosing

d ≥ log
(

3
ε

)
. (1)

Analysis of the number of publish-links. We also need to show that the number of publish
links per node is logarithmic, in order for the total number of links per node to remain logarithmic.

Lemma 3.5 For every node router v, the expected number of publish links is O(M).

Proof: We prove that the expected number of links for every router r of level `, for each
` = 1.. log N , is a constant.

Denote r.level = `. The probability that a node v hosts an initial level-(` + 1) router v.R`+1

that matches the first `− 1 digits of u.id is most 4−(`−1).
Further, we should consider the probability that a node emulates a shadow router of level (`+1)

with identifier matching r.id[`− 1], hence r also has a publish link to it. Using the same arguments
as in the proof of Lemma 3.1 above, for 0 ≤ i ≤ `, the probability that a node v has a level-(`+1−i)
router with identifier-prefix r.id[`− 1− i] and needs to emulate a level-(` + 1) shadow router with
prefix id[`− 1] (i.e., emulate recursively to depth i) is bounded by 4−(`−i−1)e−2i.

The total probability that a node hosts a level-(`+1) router (real or shadow) matching r.id[`−1]
is bounded by

∞∑
i=0

1
4`−1

(
4e−2

)i =
1

4`−1

1
(1− 4e−2)

.

7

Hence, the expected number of nodes among the Γ4`+4 nodes that match this criterion is bounded
by

E[|u.P |] ≤ Γ4`+4 1
4`−1

1
(1− 4e−2)

=
α45

1− 4e−2
.

For any node u (regular or virtual), the probability that a node is a level-j direct link of u,
i.e., that it matches the first j bits of v, is 1/2j . Hence, within Aj+d+2(u), the expected number
of such nodes is at most Γ2j+d+2(1/2j) = Γ2d+2. By Lemma 3.1 above, the expected number of
shadow router emulated by v is constant, each one of which has an expected constant number of
direct links. Hence, the lemma follows.

In is not hard to see that the expected in-degree of nodes is logarithmic by analogous arguments.
Hence, we obtain the following statement:

Theorem 2 The expected degree of all nodes is O(M).

4 From uniform density to growth-bounded metrics

In this section, we sketch how to extend the principles outlined above to more general metrics.
The growth-bounded metrics we consider satisfies the following condition. There exists a constant
parameter ∆ > 1 such that for every node v, and every radius ρ ≥ 1, we have

|N(v, 2ρ)| ≤ ∆|N(v, ρ)| .

Growth-bounded metrics are considered in [8], and are slightly more general than the model assumed
in [10, 11, 12], in which a bound is also placed on growth-density from below.

In order to adapt our mechanisms to this general network model, we need to change the network
so as to maintain the following two properties: (i) First, for every k, we need that Ak(v) will contain
an expected constant number of routers with a specific length-k prefix. This property is required
in order to maintain the expected number of links per router a constant. It is used in the proofs
of Lemma 3.1 and Lemma 3.5. (ii) Second, for the constant stretch, we require that for every two
nodes u, v, and every k, if u ∈ Ak(v) then Ak(v) is proportional to Ak+1(u) and vice versa. This is
required so that the k’th publishing step (wk) and the k’th search step (xk) will be in proportional
distance from the target (t) and the source (s), respectively. The reader should verify that properties
(i) and (ii) suffice to uphold (with slightly varying constants) the proofs of Lemma 3.3, Lemma 3.4
and Theorem 1.

For property (i), the technique we employ is to re-define the neighborhood Ak(v) to be the
smallest ball around v containing αBk nodes, where B is a new radix we choose for identifiers, to
be defined shortly, and α is chosen so that Bα−1 < 1. We continue to use the notation ak(v) for the
radius of Ak(v). For (ii), we simply choose B ≥ ∆2 (accordingly, we set M = logB N). The next
lemma shows that this indeed provides the neighborhood-containment behavior we desire, and also
gives an explicit ratio bound between ak(v) and ak+1(v).

Lemma 4.1 Let x and y be any two nodes, for any i such that y ∈ Ai(x):
(i) Ai(x) ⊆ Ai+1(y).
(ii) Ai(y) ⊆ Ai+1(x).
(iii) ai+1(x) ≥ γ ai(x), where γ = Blog∆ 2.

8

Proof: Let r = ai(x) denote the radius of Ai(x), so Ai(x) = N(x, r). Since y ∈ N(x, r) then (see
Figure 1)

N(x, r) ⊆ N(y, 2r) ⊆ N(x, 3r) .

From the growth bounded assumption we can bound the number of nodes in N(x, 3r) using |N(x, r)|
as follows: |N(x, 3r)| ≤ ∆2|N(x, r)| = ∆2|Ai(x)| = ∆2αBi ≤ αBi+1 .

For (i), N(x, 3r) ⊆ Ai+1(x), and so Ai+1(y), the ball around y with αBi+1 nodes, must contain
N(y, 2r) and so must contain Ai(x). For (ii), Ai(y) ⊆ N(y, 2r) ⊆ N(x, 3r) ⊆ Ai+1(x).

For (iii), Blogδ 2 = 2log∆B, hence |N(x,Blog∆ 2r)| ≤ ∆log∆ B|N(x, r)| = αBi+1, so Ai+1(x) ⊇
N(x,Blog∆ 2r).

X r

3r Y

2r

Figure 1: The circles N(x, r), N(y, 2r), and N(x, 3r)

5 From a static design to dynamic deployment

In this section we sketch how nodes may dynamically arrive and depart from the system.
When a new node arrives to the system it needs to do several things: (1) acquire an id for

each of its routers, (2) establish network links for each of its routers, (3) acquire necessary object
references.

Acquiring identifier for each router. Each node chooses for each initial router, R1 . . . R(n+1),
an identifier of M uniformly independent random radix B digits. Note that due to a significant
change in the number of nodes, the parameter M = logB N may change. In such a case, routers
may need to add a new digit to each of their identifiers.

9

Finding the nearest neighbor. As part of the process of establishing router links, a node first
needs to identify the closest neighbor it has in the network. Hildrum et al. propose in [7] to use
the PRR routing scheme in a backward manner, in order to locate the nearest neighbor with high
probability in PRR like networks. As the authors note in their conclusion, it is possible to combine
the techniques of [7] with the LAND construction. Using the basic LAND architecture a load
balanced distributed nearest neighbor search will take an expected logarithmic number of steps.
The nearest neighbor is always found, unlike [7] which has only high probability guarantees.

Establishing network links. Once the id and level of a router is set, and the closest node to
the node hosting it is known, the router is left with the task of establishing links as defined in
Section 3.

For a router v.r with level `, the main difficulty is to find all the level ` + 1 routers with prefix
v.r.id[`− 1] in the ball A`+d+5(v). Router v.r also needs to inform all routers u.r of level `− 1 with
prefix v.r.id[`− 2] such that v ∈ A`+d+4(u). This can be done, again, by finding all routers u.r in
A`+d+5(v) with prefix v.r.id[`− 2].

The algorithm for locating all of the required links for a router v.r is done by routing from the
node nearest to v to a node with a length-(` + 2) prefix matching r. From that node, by following
existing incoming router links backward, suitable nodes within the required vicinity are guaranteed
to be found.

Leave. Finally, when a regular node x of level ` leaves the network, the level `− 1 nodes whose
neighbor link contained a router x.r need to be updated, and x.r removed from their list. If x.r
was a neighbor link of a router v.r, then v.r’s next closest publish link becomes the neighbor link,
unless this link is too far away in which case v emulates a shadow node.

The complexity of the join algorithm is O(n2) messages, and O(M) nodes changing their state.
Leave has O(M) message complexity, and O(M) state changes.

10

References

[1] I. Abraham, C. Gavoille, D. Malkhi, and N. Nisan. Stretch (3+ ε) name independent compact
routing. Submitted for publication.

[2] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 + ε) locality aware networks
for DHTs. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA04),
2004.

[3] M. Arias, L. J. Cowen, K. A. Laing, R. Rajaraman, and O. Taka. Compact routing with name
independence. In Proceedings of the fifteenth annual ACM symposium on Parallel algorithms
and architectures, pages 184–192. ACM Press, 2003.

[4] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for
adaptive routing. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 479–489. ACM Press, 1989.

[5] C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch factor three. Journal
of Parallel and Distributed Computing, 61:679–687, 2001.

[6] A. Goal, H. Zhang, and R. Govindan. Incrementally improving lookup latency in distributed
hash table systems. In ACM Sigmetrics, 2003.

[7] K. Hildrum, J. Kubiatowicz, and S. Rao. Another way to find the nearest neighbor in growth-
restricted metrics. Technical Report UCB/CSD-03-1267, UC Berkeley, Computer Science
Division, August 2003.

[8] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In ACM
Symposium on Theory of Computing (STOC ’02), 2002.

[9] X. Li and C. G. Plaxton. On name resolution in peer-to-peer networks. In Proceedings of the
2nd ACM Worskhop on Principles of Mobile Commerce (POMC), pages 82–89, October 2002.

[10] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby copies of replicated objects in
a distributed environment. In Proceedings of the Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA 97), pages 311–320, 1997.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, 2001.

[12] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz. Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications, 2003.

11

	Introduction
	Preliminaries
	The routing network
	Step 1: Geometric routing
	Step 2: Shadow routers
	Step 3: Publish links

	From uniform density to growth-bounded metrics
	From a static design to dynamic deployment

