
Name Independent Routing for Growth Bounded Networks

Ittai Abraham
School of Computer Science and Engineering

Hebrew University of Jerusalem
Jerusalem, Israel

ittaia@cs.huji.ac.il

Dahlia Malkhi
Microsoft Research, Silicon Valley Campus, and

Hebrew University of Jerusalem

dalia@microsoft.com

ABSTRACT
A weighted undirected network is ∆ growth-bounded if the
number of nodes at distance 2r around any given node is at
most ∆ times the number of nodes at distance r around the
node. Given a weighted undirected network with arbitrary
node names and ε > 0, we present a routing scheme that
routes along paths of stretch 1 + ε and uses with high prob-

ability only O(1
ε

O(log ∆)
log5 n) bit routing tables per node.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Distributed networks; G.2.2
[Discrete Mathematics]: Graph Theory—Network prob-
lems, Graph labeling .

General Terms
Algorithms, Theory.

Keywords
Compact Routing.

1. INTRODUCTION
Given a network of processes in which each process has

a unique name, a routing scheme is a distributed algorithm
in which, given a destination’s name, any node can route
messages that will eventually reach the destination.

Modeling the network as an undirected weighted graph G
there is a well known trade-off between two conflicting para-
meters of a routing scheme RS. The first is the space com-
plexity, the maximum over all nodes of the number of bits of
information required by RS, we denote this as space(RS, G).
The second is the stretch factor denoted by stretch(RS, G)
which is the maximum ratio over all pairs between the cost
of the shortest path between the pair denoted d(s, t) and
the cost of the path induced by the routing scheme denoted
dRS(s, t) for the same source destination pair.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

The most studied problem in this context is the uni-
versal trade-off between space and stretch. Specifi-
cally, let G(n) denote the set of all connected weighted
graphs on n nodes, then for any routing scheme
RS, let space(RS, n) = maxG∈G(n) space(RS, G) and
stretch(RS, n) = maxG∈G(n) stretch(RS, G). The univer-
sal trade-off problem for a parameter k ≥ 1 is to find a
polynomial scheme RS that as a function of n, minimizes
stretch(RS, n) given the restriction that space(RS, n) =

O(n1/k).
The lower bounds [27, 17, 33] for universal compact rout-

ing schemes come from graphs with many edges and high
girth. These bounds show that there exist high girth n-node
graphs in which any scheme that wants to achieve stretch
less than 2k + 1 must require some node to store Ω(n1/k)
bits of routing information. These high girth graphs seem
very far from a typical real life connected system. To the
contrary, most Internet networks tend to have multiple rela-
tively short paths from any source destination pair. Looking
at asymptotic behavior on the size of the network, worst case
analysis over all the input space is one of the most studied
questions in theoretical computer science. However it may
be that for a given network or for a large family of networks
there are polynomial time constructible schemes that have
much better trade-offs than that of a universal scheme on
the same network.

There are two variants on the assumptions of node names:
labeled and name-independent. In the labeled model [12,
33, 32, 13] the designer of the routing scheme is allowed
to give each node a poly-logarithmic label. This name is
then used in order to route to the destination. In the name-
independent model, the names of nodes are independent of
the routing scheme. For brevity’s sake, assume names are
unique indexes from {1, . . . , n}. Name-independent schemes
[9, 6, 7, 8, 5, 3, 2] are inherently harder than labeled schemes.
Informally, before routing on a low stretch path one needs
some low stretch directory service to learn where the desti-
nation is located.

The name-independent model is suitable when node
names are required to have some specific value that is not
related to the routing scheme. For example if nodes partic-
ipate in a forming a Distributed Hash Table (DHT), their
names should be arbitrary points in a unit segment; and in
a mobile setting nodes may need persistent names in order
to be consistently identified independently of their current
location. Generally, name-independent schemes allow the
network designer to label nodes with names that do not
necessarily need to change every time the topology changes.

1.1 Problem definition
In this paper we study the space-stretch trade-off for

name-independent routing schemes on growth-bounded
graphs.

Let G = (V, E, ω) be an undirected weighted graph. For
any u, v ∈ V let d(u, v) denote the cost of a minimum cost
path between u and v, where the cost of a path is the sum
of the weight of its edges. For any v ∈ V , r ∈ R+ define
N(v, r) = {u | d(u, v) ≤ r}.

Definition 1.1. For a real number ∆ > 0, an undirected
weighted graph G is ∆ growth-bounded if for all v ∈ V and
r ∈ R+, if |N(v, r)| > 1 then |N(v, 2r)| ≤ ∆|N(v, r)|.

This definition captures the growth dimensionality of a net-
work. Define that G has growth dimension s iff G is 2s

growth-bounded.
In this paper we study the problem of achiev-

ing the minimum stretch over all growth-bounded net-
works. Let G(n, ∆) be the set of all n-node undirected
weighted graphs G that are ∆ growth-bounded. The
goal is to find a routing scheme RS that minimizes
stretch(RS, n, ∆) = maxG∈G(n,∆) stretch(RS, G) given a
bound on space(RS, n, ∆) = maxG∈G(n,∆) space(RS, G).

1.2 Our results
In this paper we present a polynomial time constructible

name-independent routing scheme with stretch 1 + ε that
requires with high probability only a poly-logarithmic num-
ber of bits of routing information per node, for any n-node
∆ growth-bounded network. This result is in sharp contrast
to the universal space stretch lower bounds [27, 17, 33].

Theorem 1.2 (Main). For any ε > 0, n, and ∆ there
exists a polynomial time constructible name-independent
routing scheme with stretch(RS, n, ∆) ≤ 1 + ε and

space(RS, n, ∆) = O(1
ε

O(log ∆)
log5 n) with high probability.

1.3 Related work
A less restrictive model is one in which a metric space

is given and the designer is required to construct both a
low degree overlay network and an accompanying routing
scheme. Compared to routing schemes on graphs, the ad-
vantage is that the overlay can connect between any nodes
that the designer desires. Plaxton, Rajaraman and Richa
[28] give an object location scheme1 for metric spaces that
are growth-bounded and shrink-bounded (exists constants

δ, ∆ such that δ ≤ N(u,2r)
N(u,r)

≤ ∆). For such metrics they

give a randomized solution in which the expected stretch
is constant and the overlay degree is logarithmic and hence
the memory requirement is poly-logarithmic per node. This
scheme was later adapted to dynamic settings by Hildrum et
al. [23, 22]. Using a distributed node emulation technique,
Abraham et al. [4] show how to reduce the stretch to 1 + ε
while achieving expected logarithmic degree and requiring
only a growth-bound on the metric space. A method that
does object location for more realistic networks was given
by Hildrum et al. [21]. Indeed our construction has roots in

1Object location schemes are stronger than name-
independent routing schemes. They alow targets to be repli-
cated and grantee stretch relative to the closest copy from
the source.

the PRR object location overlay [28, 4], while extending the
treatment from metric spaces to graphs.

On graphs, the universal space-stretch trade-off has been
extensively studied under various models and extensions.
We refer the reader to Peleg’s book [26] and to the surveys
of Gavoille and Peleg [16, 18] for background.

Trees are another family of graphs that is well studied.
Labeled routing on a trees is explored in [14, 33], achieving
stretch 1 with O(log2 n/ log log n) bits for local tables and for
headers, and this is tight [15]. Laing [25] presents a routing
scheme on trees with arbitrary names that obtains stretch

2k − 1 with eO(n1/k) bit routing tables. With the same bit
complexity the author gives a single-source routing scheme
with stretch 2k − 1.

Iwama and Okita study compact routing schemes on flat
and almost-flat networks [24]. We note that flat networks
are growth-bounded so our result is applicable to their
model.

Recently there have been several efforts to devise labeled
routing schemes and distance labels for graphs whose in-
duced metric space has constant doubling dimension. A
metric space is said to have doubling dimension δ if any ball
with radius 2r can be covered by at most 2δ balls of radius
r. Informally the doubling dimension indicates how far the
metric is from having a uniform sub-metric. It is well known
(see [19]) that any metric with constant growth-bound has
constant doubling dimension and that the opposite need not
be true. Hence a constant growth-bound is a strictly more
restrictive requirement than a constant doubling dimension.
However for doubling metrics only labeled routing schemes
are known.

Given an n-node network with diameter D whose in-
duced metric space has a constant doubling dimension δ,

for any constant ε > 0 let K = 1
ε

O(δ)
. The following re-

sults were obtained for stretch 1 + ε distance labels: Gupta
et al. [19] O(K log n log D), Talwar [31] O(K log2 D), Chan
et al. [11] O(K log n log D), Slivkins [30] O(K log2 n(log n +
log log D)), Har-Peled, Mendel [20] O(K log n(log n +
log log D)), Slivkins [29] O(K log n log log D). Papers [31,
11, 30, 29] also give labeled routing schemes based on their
distance oracles.

The line of works above focuses on labeled schemes and
obtains stretch 1+ ε for any fixed ε > 0. Recently, Abraham
et al. [1] prove that any name-independent routing scheme
on networks with doubling dimension δ must have stretch
at least 3 − ε if less than Ω(δn) bits are used. This lower
bound implies that the stretch 1 + ε schemes mentioned
above cannot be extended with the same stretch factor to
name-independent schemes on networks with constant dou-
bling dimension. This leaves open the question of achieving
stretch 1+ε name-independent routing on other constrained
families of graphs, which our works addresses.

2. OVERVIEW
In this section, we give an informal overview of the rout-

ing scheme. Nodes are assigned virtual B-ary identifiers
uniformly at random. The base B = d∆2e is determined by
the growth-bound. For each level ` ∈ {1, ..., logB n}, each
node is assigned O(log n) identifiers of length `. Each node
defines a self-centric partition of the set of nodes, with grad-
ually increasing vicinities around itself, each one containing
B times as many nodes as the former. We denote the vicinity
of node v containing Bi nodes by A(v, i), and its diameter
by a(v, i). Given a B-ary identifier x of length `, A(v, `) is
expected to contain Θ(log n) nodes whose level ` identifiers
equal x.

First, we construct a stretch 1 + ε labeled routing scheme
using zero assisted routing. Call a node whose identifier is
0` a level-` zero node. For each node, its label contains
the names of the Θ(log n) zero nodes closest to it, one from
each level. Each node stores labeled tree-routing routing
information on trees rooted at zero nodes in its vicinity.
Specifically, it stores routing tables for all level-i zero nodes
within A(v, i + α + 2), where α = O(log 1/ε). The expected

amount of storage is eO(2α).
Consider two nodes u and v whose distance is d ≈ a(v, i)∗

2α. Because A(v, i) contains with high probability a level-
i zero node, then v has a level-i zero node zi “close-by”,
namely within distance εd. The main property we obtain
from the growth-bound, is the following. Blowing up the
radius of A(v, i) by a factor of 2α results in a vicinity that
contains u on the one hand, and on the other hand, contains
at most a factor ∆α nodes over A(v, i). Consequently, we
prove in Lemma 3.2 below that A(u, i + α + 2) contains
A(v, i), and hence, contains zi. Therefore, all nodes from zi

towards u, including u, store the tree routing information of
zi’s tree. Hence, given u’s label, v can route to u over zi’s
tree, paying εd extra distance.

Second, when v routes to u, we need to store u’s label
so that v can find it within ≈ εd distance. This is done by
storing u’s label at all nodes with matching level-i identifiers
to the length i prefix of u within A(u, i+α+2). Once again,

the storage inflicted by this on any node is bound by eO(2α).
The strategy for finding u’s label is to perform iterative

routing by fixing one-bit at a time; this is called prefix rout-
ing. Within A(v, i), v can find a node xi that “fixes” i bits in
u’s name. As above, due to the growth-bound, xi is within
A(u, i + α + 2), hence it stores u’s label, and we are done.

3. PRELIMINARIES
Virtual Identifiers and Vicinities. Our construc-

tion makes heavy use of virtual node identifiers, which are
drawn at random from certain alphabets. We now introduce
the relevant definitions concerning alphabets, identifiers and
vicinities.

Given a ∆ growth-bounded network we set B, the size
of the alphabet, to B = d∆2e. Denote the alphabet Σ =
{0, 1, . . . , B−1}. Given a letter b ∈ Σ denote bi as the word
b, . . . , b ∈ Σi and given a word w = w1, . . . , wi ∈ Σi and
letter b ∈ Σ denote w||b as the word w1, . . . , wi, b ∈ Σi+1.

In our scheme, identifers will be chosen in various lengths.
Denote by M the maximal length, such that M = dlogB ne.
Denote the lengths set by L = {1, 2, . . . , M}. We frequently
refer to a length ` as level `.

Definition 3.1 (`th vicinity around v). For all v ∈
V, ` ∈ L denote A(v, `) as the B` closest nodes to v with ties
broken by the node identifiers. Let a(v, `) be the radius of
the ball A(v, `) = N(v, a(v, `)).

The important properties of vicinities, derived from
the growth-bound assumption, are stated in the following
lemma. Parts (i)-(iii) of this lemma borrow from [4], though
the definitions of vicinities there are slightly different.

Lemma 3.2. Let x and y be any two nodes, for any i
such that y ∈ A(x, i):
(i) A(x, i) ⊆ A(y, i + 1).
(ii) A(y, i) ⊆ A(x, i + 1).
(iii) a(x, i + 1) ≥ 4a(x, i).
(iv) a(y, i) ≤ 2a(x, i),

Proof. Let r = a(x, i) denote the radius of A(x, i). Since
y ∈ A(x, i) then (see Fig. 1)

N(x, r) ⊆ N(y, 2r) ⊆ N(x, 3r) .

From the growth-bounded assumption we can bound the
number of nodes in N(x, 3r) using |N(x, r)| as follows:
|N(x, 3r)| ≤ ∆2|N(x, r)| = ∆2|A(x, i)| = ∆2Bi ≤ Bi+1 .

For (i), N(x, 3r) ⊆ A(x, i + 1), and so by node count,
A(y, i+1), the ball around y with Bi+1 nodes, must contain
N(y, 2r) and so must contain A(x, i). For (ii), A(y, i) ⊆
N(y, 2r) ⊆ N(x, 3r) ⊆ A(x, i + 1).

For (iii), |N(x, 4r)| ≤ ∆2|N(x, r)| ≤ Bi+1, so A(x, i+1) ⊇
N(x, 4r).

Finally, for (iv), N(y, 2r) ⊇ A(x, i), so A(y, i) 6⊃ N(y, 2r).
Hence, a(y, i) ≤ 2r.

X r

3r Y

2r

Figure 1: The circles N(x, r), N(y, 2r), and N(x, 3r)

We will select virtual identifiers with certain redundancy.
To this end, set ρ > 2 as a confidence parameter, and let R
denote a replication factor R = dρ ln ne. Let K denote the
replication set K = {0, 1, . . . , R}

Finally, let α = α(ε) be a constant parameter of the con-
struction which will be determined below (See Equation 1
in Section 5).

4. THE SCHEME

4.1 Identifiers and the zero-sets.
Every node chooses R · M = O(log2 n) identifiers in the

following manner. For every level ` in L a node chooses R
length ` random words.

Definition 4.1 (The identifiers). ∀v ∈ V, ` ∈ L, k ∈
K let I(v, `, k) denote a random variable chosen indepen-
dently and uniformly out of Σ`.

For an identifier w let C(w) denote the nodes that have
chosen w.

Definition 4.2 (The prefix set). ∀` ∈ L, w ∈ Σ`

denote C(w) = {u | (∃k ∈ K)I(u, `, k) = w}.

Specifically, nodes that have an all zero identifer will be
part of the zero set. Every node records the closest zero
nodes as its zero link.

Definition 4.3 (The zeros). For all ` ∈ L define
Z(`) = C({0}`).

Definition 4.4 (The zero link). For all v ∈ V, ` ∈ L
define z(v, `) as the node closest to v in the set Z(`).

There are two key properties relating the random virtual
identifier selection and vicinities. One bounds the density
of an identifier within a vicinity from below; the other from
above. Both are stated in the following lemma.

Lemma 4.5. Let w ∈ Σ` be any specific identifier. Then
for all v ∈ V and j ≥ ` we have |C(w) ∩ A(v, j)| ∈
(1
2
R B(j−`), 2R B(j−`)) w.h.p.

Proof. The expected value of |C(w) ∩ A(v, j)| is
R Bj B−` = R Bj−`. Using standard Chernoff bounds we
get

Pr[|C(w) ∩A(v, j)| ∈ (
1

2
R Bj−`, 2R Bj−`)] ≥

1− 2e
1
8 RBj−`

≥ 1− 2

n(ρ/8)

and the lemma follows by choosing a large enough ρ.

4.2 Zero-Assisted Routing
Routing on the graph is done via the assistance of the

zero nodes. This is done by utilizing labeled-tree routing
on partial trees. More specifically, we repeatedly make use
of the single source labeled routing scheme stated in the
following lemma.

Lemma 4.6. [14, 33] For every weighted tree T with n
nodes there exists a labeled routing scheme that, given any
destination label, routes optimally on T from any source to
the destination. The storage per node in T , the label size,
and the header size are O(log2 n/ log log n) bits. Given the
information of a node and the label of the destination, rout-
ing decisions take constant time.

For a tree T containing a node v, we let µ(T, v) denote
the routing information of node v and λ(T, v) denote the
destination label of v in T as required from Lemma 4.6.

Denote all the zeroes as Z =
S

`∈L Z(`). For any z ∈ Z
let T (z) denote a minimum cost path tree rooted at z.

The key element we use in forming graph routing is the
following. Let us have a node v and another node u such that
u is in the (i+α+2)’th vicinity of v, i.e., u ∈ A(v, i+α+2).
We want to make use of a zero-node zi in order to route from
u to v. In order to provide this, every node x on the path
from zi to v needs to maintain µ(T (zi), x); and every node
x on the path from u to zi must also maintain µ(T (zi), x),
and thus, given λ(T (zi), v), we can route from u to v. The
following lemma states that these provisions are satisfied if
every node maintains tree routing information on zeroes in
its A(∗, i + α + 4) vicinity:

Storage 4.7. For every i ∈ M , let each node v ∈ V
maintain µ(T (zi), v) for every zi ∈ Z(i) ∩A(v, i + α + 4).

We have obtained the following.

Lemma 4.8. Let v ∈ V be a node and u ∈ A(v, i+α+2).
Then for every zero node z ∈ A(u, i+α+2), where z ∈ Z(`)
for any i ≤ ` ≤ M , given the label λ(T (z), v), node u can
route to v with route length at most d(v, u) + 2a(u, `) w.h.p.

Proof. For every node w on a shortest path from u to
z, we have z ∈ A(w, i + α + 2) ⊆ A(w, ` + α + 2) because
z ∈ A(u, i + α + 2). Therefore, w maintains µ(T (z), w).

Now, by Lemma 3.2(ii), we have that z ∈ A(u, i+α+2) ⊆
A(v, i + α + 3). Therefore, every node w on any shortest
path from v to z also has w ∈ A(v, i + α + 3). Applying
Lemma 3.2(i), we obtain z ∈ A(v, i+α+3) ⊆ A(w, i+α+4).
Therefore, w maintains µ(T (z), w).

Together, we have that all nodes w on the path from v to
u over T (z) maintain µ(T (z), w). We obtain that given the
label λ(T (z), v), node u can route to v over T (z).

By Lemma 4.5, z ∈ A(u, `) w.h.p. Hence, the length of the
routing path is at most d(u, z)+d(z, v) ≤ d(u, z)+d(u, z)+
d(v, u) ≤ d(v, u) + 2a(u, `), as required.

4.3 Prefix routing
In order to perform prefix routing every node with identi-

fier w stores the closest node that contains an identifier that
extends w by one bit.

Definition 4.9 (The neighbor link). For all v ∈
V, ` ∈ L, k ∈ K, b ∈ Σ define n(v, `, k, b) as the node closest
to v in the set C(I(v, `, k)||b).

By Lemma 4.5 above, we have that neighbor links that fix
the `th bit are in A(v, `).

Lemma 4.10. For all v ∈ V, ` ∈ L, k ∈ K, b ∈ Σ, w.h.p.
n(v, `, k, b) ∈ A(v, `).

Proof. This follows immediately from Lemma 4.5.

Every node stores an appropriate tree-label for every
neighbor:

Storage 4.11. For all ` ∈ L, k ∈ K, b ∈ Σ, let u =
n(v, `, k, b) be the appropriate neighbor. Node v stores
z(v, `), λ(T (z(v, `)), u) (for prefix routing to the neighbor
link).

Together with the zero-assisted routing construction
above, we get that a node v can route to its level-i neighbor
via a route of distance proportional to a(v, i):

Lemma 4.12. Let v ∈ V be a node, u = n(v, i, k, b) a
level-i neighbor. Then v can route to u with route length at
most 3a(v, i) w.h.p.

Proof. By Lemma 4.10, w.h.p. u ∈ A(v, i). Using
Lemma 3.2(i), we have v ∈ A(v, i) ⊆ A(u, i + 1). Apply-
ing Lemma 4.8, we obtain that v can route to u with route
length at most d(v, u) + 2a(v, i) ≤ 3a(v, i).

4.4 The Directory
The final component of our construction is a directory of

node labels, that guarantees routing with (1 + ε) bounded
stretch.

In order to disperse directory entries such that they can
be found, we use a hash function h : V → ΣM that
is e2RBα+3-wise independent. Carter and Wegman [10]
show how to build such a function and represent it with
O(e2RBα+3 log n) = O(log2 n) bits. Now for all v ∈ V de-
note h(v) = h(v)1, . . . , h(v)M . For all ` ∈ L denote the
subsequence h(v, `) = h(v)1, . . . , h(v)`. The following de-
fines the set of nodes that implement the directory for a
node v; these are vicinity nodes that have an identifier that
coincides with h(v, i).

Definition 4.13 (The directory set). Let v be a
node. For every i ∈ L, the level-i directory set D(v, i) is
defined as D(v, i) = A(v, i + α + 2) ∩ C(h(v, i)).

Storage 4.14. For any node v, and every level i ∈ L, we
store a reference of the form v −→ 〈z(v, i), λ(T (z(v, i)), v)〉
at all the nodes in the directory set D(v, i).

Lemma 4.15. With high probability, the directory stor-
age requires at most e2MR2Bα+3 log2 n bits of storage per
node.

Proof. Fix a node u ∈ V . We want to count the nodes
v for which u stores a reference, i.e., for which there exists
i ∈ L, u ∈ D(v, i).

For every ` ∈ L, k ∈ K define X(u, `, k) = {v |
I(u, `, k) = h(v, `) and v ∈ A(u, ` + α + 3)}. Define X(u) =S

`∈L,k∈K X(u, `, k). The relationship of X to directory stor-

age is as follows. If u ∈ D(v, i) for some i ∈ L, then there
exists k ∈ K for which I(u, i, k) = h(v, i), and furthermore,
u ∈ A(v, i + α + 2). By Lemma 3.2(ii), v ∈ A(u, i + α + 3).
Hence, if u ∈ D(v, i) then v ∈ X(u) (though note that the
converse need not be true). Our strategy is to bound the
size of X(u), and thereby bound u’s storage requirements
from the above.

The probability that |X(u, `, k)| ≥ e2RBα+3 is less than
the probability that there exists a set of e2RBα+3 identifiers
in A(u, `+α+3) such that all these identifiers equal I(u, `, k).

Pr
�
|X(u, `, k)| ≥ e2RBα+3� ≤ RB`+α+3

e2RBα+3

!
(B−`)e2RBα+3

≤ (RB`+α+3)e2RBα+3 1

(e2RBα+3)!
(B−`)e2RBα+3

≤ (RBα+3)e2RBα+3
� e

e2RBα+3

�e2RBα+3

≤ (1/e)RBα+3

≤ n−ρ

Note that this argument only requires a e2RBα+3 =
O(log2 n)-wise independent hash function. Hence by union

bound Pr
�
|X(u)| ≤ e2MR2Bα+3

�
≥ 1 − RMn−ρ ≥ 1 −

n1−ρ. Finally, each element in the directory storage re-
quires O(log2 n) space, totalling O(e2MR2Bα+3 log2 n) stor-
age bits.

When routing toward v, we use h(v) as a target for bit-
fixing. Let the sequence of nodes visited by fixing the bits of
h(v) be s = x0, x1, x2, . . . When the distance from xi to v
is at most a(v, i+α+2), a directory reference is guaranteed
to be found. And since xi ∈ A(v, i + α + 2), by Lemma 4.8
we get that xi can route to v given λ(T (z(v, i)), v). This is
stated in the following lemma.

Lemma 4.16. Let v ∈ V be a node. Then for any node
u, such that u ∈ A(v, i + α + 2) and ∃k : I(u, i, k) = h(v, i),
u can route to v with route length at most d(v, u) + 2a(u, i).

Proof. By construction, we have that u is a level-i di-
rectory node for v, i.e., u ∈ D(v, i). Therefore, u maintains
a directory reference on v. The fact that u can route to
v with the specified route length then follows directly from
Lemma 4.8, since u ∈ A(v, i + α + 2).

4.5 The Routing Algorithm
Assume the source is s ∈ V and the target is t ∈ V . Set

i = 0 and x0 = s. Routing has two stages.

Phase 1: (Prefix routing) If xi does not contain a
pointer t → u then let k, b be such that I(xi, i, k)||b =
h(t, i+1). Let the neighbor information corresponding
to n(xi, i, k, b) at xi be zi, λi, route on T (zi) to λi. Set
xi+1 = n(xi, i, k, b), i = i + 1 and repeat Phase 1.

Phase 2: (Directory routing) Once xi contains a
pointer t → 〈z, λ〉 then on tree T (z) use label λ to
route to t.

4.6 Correctness

Lemma 4.17. From any starting node s ∈ V , given any
node t ∈ V , the routing algorithm finds t within a finite
number of steps.

Proof. During the first phase, every bit-fixing step suc-
ceeds according to Lemma 4.12. Let ` ∈ L be a level such
that B(`+α+2) ≥ n. At the latest, when the first phase has
made ` steps, it must find a reference to t. This holds since
it reaches a node x` that satisfies x` ∈ A(t, ` + α + 2) ∩
C(h(t, `)) =⇒ x` ∈ D(t, `). Once a reference to the target t
is found, Phase 2 succeeds by Lemma 4.16.

5. STRETCH ANALYSIS
Throughout the analysis below, we denote the source node

by s, the target node by t. The series of neighbor-steps
during Phase 1 are denoted s = x0, x1, x2, ..., xi. Phase 2
starts at xi and ends at t.

Lemma 5.1. For all s ∈ V, 1 ≤ i ∈ L, during Phase 1 of
routing, xi ⊆ A(s, i + 1).

Proof. By induction on i. For i = 1 we have s = x0, and
by Lemma 4.10, the neighbor satisfies x1 = n(s, 1, k, b) ∈
A(s, 1). Also, clearly A(s, 1) ⊆ A(s, 2).

Assume by induction that xi−1 ∈ A(s, i). By
Lemma 3.2(ii), A(s, i + 1) ⊇ A(xi−1, i). By Lemma 4.10,
xi ∈ A(xi−1, i), and hence, xi ∈ A(s, i + 1).

Lemma 5.2. The total distance of the path from s = x0

to xi is at most 2a(s, i + 1) .

Proof. By Lemma 5.1 for every 1 ≤ j ≤ i, xj ∈ A(s, j +
1). Applying Lemma 3.2(iv), a(xj , j + 1) ≤ 2a(s, j + 1).
By Lemma 4.12, the neighbor-routing from xj to xj+1 has
length at most 3a(xj , j + 1). Putting the above together,
the route from xj to xj+1 is bounded by 6a(s, j + 1).

By Lemma 3.2(iii), a(s, j +1) ≤ 4−(i−j)a(s, i+1). Hence,
the total distance of the path from x0 through xi is at most

i−1X
j=0

6a(s, j +1) ≤ 6a(s, i + 1)

i−1X
j=0

4−(i−j) ≤ 6

4− 1
a(s, i +1) .

Lemma 5.3. Let j be the first index such that s ∈ A(t, j+
α + 2) then i ≤ j.

Proof. From Lemma 5.1, xj ∈ A(s, j + 1). Applying
Lemma 3.2(ii) on s ∈ A(t, j + α + 1) gives A(s, j + α + 1) ⊆
A(t, j + α + 2). Combining the above xj ∈ A(s, j + α +
1) ⊆ A(t, j + α + 2). Also, by the routing algorithm, xj ∈
C(h(t, j)). Therefore, xj ∈ D(t, j), and xj must contain a
reference to t.

Theorem 5.4. The stretch of the path from s to t is 1+ε.

Proof. First, if s ∈ A(t, α + 1), then by definition, j ∈
D(t, 0) and hence stores a directory reference to t. In this
case, Phase 1 is degenerate, and we move directly to Phase
2. Since z(t, 0) = t, the reference at s on t is of the form
t −→ t, λ(T (t), t), and routing is along the shortest path
from s to t.

Otherwise, as in Lemma 5.3 above, let j be the first index
such that s ∈ A(t, j + α + 2). The first phase of the route
is the path from s = x0 to xj . We now make use of the
assumption that s 6∈ A(t, j+α+1), so d(s, t) ≥ a(t, j+α+1).
By node count, since A(t, j + α + 1) 6⊂ A(s, j + α + 1), we
obtain a(s, j+α+1) ≤ d(s, t)+a(t, j+α+1) ≤ 2d(s, t). This,
we note by Lemma 3.2(iii) implies a(s, j+1) ≤ 2 ·4−αd(s, t).

With Lemma 5.3, we obtain that the route length from s
to xj is bounded by

2a(s, j + 1) ≤ 4 · 4−αd(s, t) .

The second phase is the traversal from xj to t. With
Lemma 4.16, its length is bounded by d(xj , t) + 2a(xj , j).
Here, we use from Lemma 5.1 the fact that xj ∈ A(s, j +
1). With the triangle inequality, we have d(xj , t) ≤
d(xj , s) + d(s, t) ≤ a(s, j + 1) + d(s, t). For a(xj , j), we
use Lemma 3.2(iv) to obtain a(xj , j) ≤ 2a(s, j +1). Putting
all of the above together, the length of the route from xj to
t is bounded by

d(xj , t) + 2a(xj , j)

≤ a(s, j + 1) + d(s, t) + 4a(s, j + 1)

≤ d(s, t) + 10 · 4−αd(s, t)

The resulting total stretch is 1 + 14 · 4−α, and the theorem
is proven by choosing

α = log4

14

ε
= O(log(

1

ε
)) . (1)

6. SPACE ANALYSIS
For all v ∈ V node v stores the following:

1. For all i ∈ L, z ∈ Z(i)∩A(v, i+α+4) store µ(T (z), v)
(for zero-assisted routing).

2. For all i ∈ L, k ∈ K, b ∈ Σ, and for u = n(v, i, k, b),
store z(v, i), λ(T (z(v, i)), u) (for prefix routing to the
neighbor link).

3. For all i ∈ I store v −→ 〈z(u, i), λ(T (z(u, i)), v)〉 at all
the nodes u in the directory set D(v, i) (for finding v).

Theorem 6.1. With high probability, the network storage

requires at most O(1
ε

O(log ∆)
log5 n) bits of storage per node.

Proof. The storage consists of the following.
For the first storage item above, v stores routing informa-

tion of size O(log2 n) of at most 2RBα+4 zero nodes for each
i ∈ L, and the total is O(MRBα+4 log2 n).

Using Bα = Blog4
14
ε = 14

ε

log4 B ≤ ∆4 1
ε

log ∆
we get that

the total is O(1
ε

log ∆
∆12 log4 n).

For the second item, v stores label information of size
O(log2 n) of B neighbors for each i ∈ L, and k ∈ K, totalling
O(BMR log2 n) = O(∆2 log4 n).

The storage of the third item is bounded by Lemma 4.15

to be O(e2MR2Bα+3 log2 n) = O(1
ε

log ∆
∆12 log5 n).

Summing it all up, we have O(1
ε

O(log ∆)
log5 n) bits of stor-

age per node.

7. REFERENCES
[1] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On

space-stretch trade-offs for compact routing schemes.
Submitted for publication.

[2] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi.
Routing with improved communication-space
trade-off. In 18th International Symposium on
Distributed Computing (DISC), volume 3274 of
Lecture Notes in Computer Science, pages 305–319.
Springer, October 2004.

[3] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noan
Nisan, and Mikkel Thorup. Compact
name-independent routing with minimum stretch. In
16th Annual ACM Symposium on Parallel Algorithms
and Architecture (SPAA). ACM PRESS, June 2004.

[4] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski.
Land: stretch (1 + ε) locality-aware networks for
DHTs. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
550–559. Society for Industrial and Applied
Mathematics, 2004.

[5] Marta Arias, Lenore J. Cowen, Kofi A. Laing,
Rajmohan Rajaraman, and Orjeta Taka. Compact
routing with name independence. In Proceedings of the
fifteenth annual ACM symposium on Parallel
algorithms and architectures, pages 184–192. ACM
Press, 2003.

[6] Baruch Awerbuch, Amotz Bar Noy, Nati Linial, and
David Peleg. Improved routing strategies with succinct
tables. Journal of Algorithms, 11(3):307–341, 1990.

[7] Baruch Awerbuch and David Peleg. Sparse partitions.
In Proceedings of the 31st IEEE Symposium on
Foundations of Computer Science (FOCS), pages
503–513, 1990.

[8] Baruch Awerbuch and David Peleg. Routing with
polynomial communication-space trade-off. SIAM J.
Discret. Math., 5(2):151–162, 1992.

[9] Bruch Awerbuch, Amotz Bar-Noy, Nati Linial, and
David Peleg. Compact distributed data structures for
adaptive routing. In Proceedings of the twenty-first
annual ACM symposium on Theory of computing,
pages 479–489. ACM Press, 1989.

[10] J. Lawrence Carter and Mark N. Wegman. Universal
hash functions. Journal of Computer and System
Sciences, 18(2):143–154, 1979.

[11] T-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs,
and Shuheng Zhou. On hierarchical routing in
doubling metrics. In Proc. 16th Ann. ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2005.

[12] Lenore J. Cowen. Compact routing with minimum
stretch. In Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 255–260.
Society for Industrial and Applied Mathematics, 1999.

[13] Tamar Eilam, Cyril Gavoille, and David Peleg.
Compact routing schemes with low stretch factor.
Journal of Algorithms, 46:97–114, 2003.

[14] Pierre Fraigniaud and Cyril Gavoille. Routing in trees.
In 28th International Colloquium on Automata,
Languages and Programming (ICALP), volume 2076
of Lecture Notes in Computer Science, pages 757–772.
Springer, July 2001.

[15] Pierre Fraigniaud and Cyril Gavoille. A space lower
bound for routing in trees. In 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS),
volume 2285 of Lecture Notes in Computer Science,
pages 65–75. Springer, March 2002.

[16] Cyril Gavoille. Routing in distributed networks:
Overview and open problems. ACM SIGACT News -
Distributed Computing Column, 32(1):36–52, March
2001.

[17] Cyril Gavoille and Marc Gengler. Space-efficiency for
routing schemes of stretch factor three. J. Parallel
Distrib. Comput., 61(5):679–687, 2001.

[18] Cyril Gavoille and David Peleg. Compact and
localized distributed data structures. Journal of
Distributed Computing, 16:111–120, May 2003. PODC
20-Year Special Issue.

[19] Anupam Gupta, Robert Krauthgamer, and James R.
Lee. Bounded geometries, fractals, and low-distortion
embeddings. In FOCS ’03: Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer
Science, page 534. IEEE Computer Society, 2003.

[20] Sariel Har-Peled and Manor Mendel. Fast construction
of nets in low dimensional metrics, and their
applications. In SCG ’05: Proceedings of the twenty
first annual symposium on Computational geometry,
New York, NY, USA, 2005. ACM Press.

[21] Kirsten Hildrum, Robert Krauthgamer, and John
Kubiatowicz. Object location in realistic networks. In
SPAA ’04: Proceedings of the sixteenth annual ACM
symposium on Parallelism in algorithms and
architectures, pages 25–35. ACM Press, 2004.

[22] Kirsten Hildrum, John Kubiatowicz, Sean Ma, and
Satish Rao. A note on the nearest neighbor in
growth-restricted metrics. In SODA ’04: Proceedings
of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 560–561. Society for
Industrial and Applied Mathematics, 2004.

[23] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao,
and Ben Y. Zhao. Distributed object location in a
dynamic network. In SPAA ’02: Proceedings of the
fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 41–52. ACM
Press, 2002.

[24] Kazuo Iwama and Masaki Okita. Compact routing for
flat networks. In 17th International Symposium on
Distributed Computing (DISC), pages 196–210.
Springer, 2003.

[25] Kofi A. Laing. Brief announcement:
name-independent compact routing in trees. In
Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing,
pages 382–382. ACM Press, 2004.

[26] David Peleg. Distributed Computing: A
Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications, 2000.

[27] David Peleg and Eli Upfal. A trade-off between space
and efficiency for routing tables. Journal of the ACM,
36(3):510–530, July 1989.

[28] C. Greg Plaxton, Rajmohan Rajaraman, and
Andréa W. Richa. Accessing nearby copies of
replicated objects in a distributed environment. In
Proceedings of the ninth annual ACM symposium on
Parallel algorithms and architectures, pages 311–320.
ACM Press, 1997.

[29] Aleksandrs Slivkins. Distance estimation and object
location via rings of neighbors. In 24th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), 2005.

[30] Aleksandrs Slivkins. Distributed approaches to
triangulation and embedding. In Proc. 16th
Ann. ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2005.

[31] Kunal Talwar. Bypassing the embedding: algorithms
for low dimensional metrics. In Proceedings of the
thirty-sixth annual ACM symposium on Theory of
computing, pages 281–290. ACM Press, 2004.

[32] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. In 33rd Annual ACM Symposium on Theory
of Computing (STOC), pages 183–192, Hersonissos,
Crete, Greece, July 2001.

[33] Mikkel Thorup and Uri Zwick. Compact routing
schemes. In 13th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 1–10.
ACM Press, July 2001.

	Introduction
	Problem definition
	Our results
	Related work

	Overview
	Preliminaries
	The Scheme
	Identifiers and the zero-sets.
	Zero-Assisted Routing
	Prefix routing
	The Directory
	The Routing Algorithm
	Correctness

	Stretch Analysis
	Space Analysis
	REFERENCES -9pt

