
Distributed Computing manuscript No.
(will be inserted by the editor)

Probabilistic Quorums for Dynamic Systems

Ittai Abraham, Dahlia Malkhi

The Hebrew University of Jerusalem e-mail: {ittaia,dahlia}@cs.huji.ac.il

The date of receipt and acceptance will be inserted by the editor

1 Introduction

A classic approach for maintaining information in dis-
tributed settings is to post data items to, and retrieve
information from, subsets of the system called quorums
that have the property that any two quorums have a
non empty intersection. Due to the intersection prop-
erty, each quorum of processes collectively guarantees
access to all previously posted data items. Quorum sys-
tems are attractive for two reasons. First, they o�er high
availability, as the system may continue serving requests
in face of failures, so long as some quorum of accessible
processes exists. Second, they promote load balancing, as
each individual process su�ers only the load of requests
done on quorums that include it. For a comprehensive
theory of quorum techniques, see [26,32]. The theory of
quorum systems tells us, among other things, that there
is an inherent tradeo� between the reduced load on in-
dividual system members, in�icted by quorum accesses,
and the high fault tolerance of the system.

Probabilistic quorum systems (PQS), introduced in
[29], use randomization to circumvent this tradeo� and
provide optimal load and availability simultaneously, while
relaxing the strict intersection property to a probabilistic
one. Informally, in a probabilistic quorum system, quo-
rum members are selected at random according to some
distribution, such that two selected quorums intersect
with high probability. Compared with strict quorum sys-
tems, PQSs are natural for dynamic and non-structured
environments: Finding members can be done in parallel
and e�ciently, and replacing failed members is trivial.

This paper introduces enhanced PQS techniques that
cope with scalable, highly decentralized and highly dy-
namic settings. It addresses two challenges. First, it as-
sumes that no process in the system has a global view of
the system participants. More concretely, we allow each
process to maintain connections with, and even knowl-
edge of, only a constant number of other members. This
restriction stems both from our vision of having pro-
cesses run on ubiquitous, low-memory devices, and par-
ticipate in Internet resource sharing applications; and
from the desire to keep the amount of state that needs
to be updated at recon�guration very low. To this end, it

addresses the issue of selecting quorum members with-
out such global view. Second, it provides an evolution
scheme over time for quorum-replicated data, when the
system of which this quorum is part of grows/shrinks.

Non-uniform PQS. The �rst problem we address is that
in order to uniformly select quorum members at ran-
dom, a process would need to know all other processes.
In order to avoid global information, we introduce a non-
uniform PQS as follows. Let us have any probability
distribution p : S → [0..1] over individual members of
the system S, where |S| = n. We de�ne the �at access
strategy f(p, m) as the quorum selection distribution ob-
tained by randomly choosing m members (with repeti-
tions) where each member is independently chosen ac-
cording to the distribution p. We generalize the uniform
distribution PQSs by showing that for any parameter
ρ, a quorum system with the access strategy f(p, ρ

√
n),

for any probability distribution p, guarantees quorums

intersection with probability 1− e−ρ2/2.
It is left to show how to realize a process selection

distribution p in dynamic settings and how to preserve
it in evolving quorums. Our approach is to form an on-
the-�y overlay graph among the processes. Then from
any process, selecting ρ

√
n other processes is done by

performing random walks on the graph.
More speci�cally, our design employs a dynamic rout-

ing graph based on the dynamic approximation of the de
Bruijn network introduced in [1] 1. Using techniques in-
troduced in [1], we show how to insert nodes into the
overlay graph and how to remove them. We also prove
that random walks of reasonable (log(n)) length give us
the independent node selection distribution p that we
need.

The dynamic graph also allows to estimate the size
of the network n with a constant error factor. Using
this estimation, the �at access strategy f(p, ρ

√
n) is ap-

proximated by performing roughly ρ
√

n random walks
of log(n) steps each. We obtain at any instant in time

1 The dynamic De Bruijn construction appeared indepen-
dently also in [30,11,20].
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an e−t2/2-intersecting PQS. Accessing quorums is done
in log(n) parallel time.

Quorum evolution. The second issue is how to evolve
quorums as the system grows. We devise an evolution
strategy that grows the quorums along with the system's
growth automatically and distributively. We prove that
our evolution technique keeps quorums su�ciently large,
as well as maintains the individual member selection dis-
tribution p. The cost of our maintenance algorithm is
w.h.p. 2 a constant number of random walks per system
recon�guration. Each single walk incurs a logarithmic
number of messages and a state change in one process.

Summary of contribution. To summarize, the result of
our construction is a scalable information sharing mech-
anism based on dynamic PQSs. For a �xed ε > 0, the
construction maintains 1 − ε intersection probability in
any dynamic setting, without central coordination or
global knowledge. We extend the treatment of PQSs to
cope with scalability and high dynamism in the following
ways. First, we allow each participant only partial knowl-
edge of the full system, and avoid maintaining any global
information of the system size and its constituents. To
this end, we develop a theory of PQSs whose individual
member selection probability is non-uniform. We demon-
strate a realization of such a non-uniform PQS that is
fully adapted for the dynamic and scalable settings we
aim for. The second extension of PQSs we address is to
evolve quorums as the system grows/shrinks in order for
them to remain viable. We provide both a formal de�-
nition of quorum evolution and the algorithms to realize
it.

The resulting scheme achieves the following perfor-
mance measures with high probability: The cost of a
member addition (join) is a logarithmic number of mes-
sages, and a state-change in a constant number of mem-
bers. Because the O(

√
n) processes are chosen indepen-

dently at random using O(log n) length random walks,
quorum selection may be done in O(log n) parallel time.

1.1 Related Work

Our work touches both on quorum systems techniques
for managing distributed data and on scalable data shar-
ing systems. We describe related work in both of these
areas.

We begin with a brief mentioning of landmark works
on strict quorum systems. Quorum systems, originally
introduce by Gi�ord [13] and Thomas [38], are tools for
increasing the availability and e�ciency of replicated ser-
vices. A quorum system for a universe of servers is a col-
lection of subsets of servers, each pair of which intersect.
Intuitively, each quorum can operate on behalf of the

2 In this paper w.h.p. means that the probability of this
event is at least 1 − 1/n where n is the number of nodes in
the system.

system, thus increasing its availability and performance,
while the intersection property guarantees that opera-
tions done on distinct quorums preserve consistency. The
connection between voting and quorum systems was ex-
plored in [12], demonstrating that the latter includes
more �exibility. Maekawa suggests in [25] an e�cient
quorum construction, the �rst quorum system with quo-
rums of size

√
n, where n is the size of the system, and

in which every pair of quorums intersect in exactly one
element. Naor and Wool introduce in [32] formal perfor-
mance measures for quorum systems, including load and
availability. They provide a lower bound of 1/

√
n on the

load of any quorum system, and demonstrate an inher-
ent availability-load tradeo�. Malkhi and Reiter initiate
in [27] the study of Byzantine quorum systems, intended
for environments prone not only to data inavailability re-
sulting from benign process or communication failures,
but also to arbitrary data corruption.

We now remind the reader of PQSs and motivate
their use. The PQSs of Malkhi et al. [29] are an attrac-
tive approach for sharing information in a large network.
Using a PQS, each participant can disseminate new up-
dates to shared data by contacting a subset (a probabilis-
tic quorum) of ρ

√
n processes chosen uniformly at ran-

dom, where ρ is a reliability parameter. Likewise, partic-
ipants query data from such quorums. Intuitively, anal-
ysis similar to the famous �birthday paradox� (e.g., see
[10]) shows that each pair of update/query quorums in-

tersect with probability 1−e−ρ2/2. The result is that with
arbitrarily good probability a query obtains up to date
information, and with a small calculated risk it might
obtain stale data.

The bene�t of the PQS approach is that publiciz-
ing information and global querying are done each with
only a O(1/

√
n) fraction of the participants. At the same

time, PQSs maintain availability in face of as many as
O(n) faults. In deterministic approaches these two fea-
tures are provably impossible to achieve simultaneously
(see [32]). Indeed, PQSs have been employed in diverse
and numerous settings. To name just a few deployments,
PQSs were used for designing probabilistic distributed
emulations of various shared objects [22,23]; they were
used for constructing persistent shared objects in the
Fleet system [28] and the Aquarius system [7]. Proba-
bilistic quorum techniques were also applied for main-
taining tracking data in mobile ad-hoc networks [15,14,
4]. In the latter applications, quorum member selection
policy is highly in�uenced by the dynamics and geome-
try of the ad-hoc network, hence not necessarily uniform.
The simulations presented in these works indicate good
performance, i.e., high probability of quorum intersec-
tion.

We now get to survey works on dynamic quorums.
A limitation of all the quorum systems mentioned above
is that they require their clients to know a priori the
quorum construction and its members. In scalable and
dynamic settings, this may pose an infeasible cost. Re-
cently, a number of dynamic quorum selection techniques
were developed for the purpose of tracking mobile hosts
in wireless ad hoc networks [36,37]. These works vari-
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ate on the following basic principle. Location servers are
situated in a plane, such that each host can communi-
cate with its close-by neighbors. A quorum emanating
from any participant is constructed by forming on the
�y a north-south path and an east-west path (or more
general trajectories), thus guaranteeing high likelihood
of intersection among quorums. Hosts arrive and depart
dynamically, replacing or being replaced in the quorums
they belong to accordingly. This guarantees intersection
of past quorums with new ones. Naor and Wieder adopt
the same approach in [31] using virtual plane coordi-
nates for dynamic quorum maintenance in general set-
tings. The approach taken in [16,9] for dynamic quorum
maintenance is to assign virtual coordinates for quorum
members, and dynamically assign actual servers to take
their role according to network settings. Compared with
our approach, all of the above works deal with strict
quorum systems. We view probabilistic quorum systems
as particularly suitable for scalable dynamic settings, in
that they naturally allow quorum members to be ac-
cessed in parallel, and in that a failed access attempt is
easily replaced by another member access.

Previously, the construction of dynamic probabilistic
quorums was addressed in AntWalk [33]. In order to pro-
vide uniform member selection with partial knowledge,
AntWalk necessitates periodic, global �re-mixing� of the
links of old members with those of the new processes
that arrived. We consider the price of this approach too
heavy for Internet wide applications.

We now more generally look at scalable data shar-
ing facilities. The advent of the Internet and ubiquity
of computing resources led to rising interest in infor-
mation sharing services. We do not attempt to provide
a comprehensive survey of information sharing projects
here, but focus on distributed directory services, that
had in�uenced our work. A distributed directory asso-
ciates information with a name (a key), and scatters
directory entries around the network. In large scale dis-
tributed directories the main challenge is to route queries
to the location (or locations) that contain the value cor-
responding to a particular name. They achieve this by
constructing an overlay routing infrastructure. Examples
of directories include DNS, the most widely deployed dis-
tributed directory to date, as well as a number of Dis-
tributed Hash Tables (DHTs) [35,34,39]. Unlike our ap-
proach, directory services do not support global querying
of names, and cannot support fuzzy forms of searching
(this was stated as an open problem in [18]). Addition-
ally, the data itself is often held in such systems in a
single location, whereas part of our goal is to provide
high availability data. Thus, the main idea we borrow
from the DHT paradigm is the dynamic routing overlay,
which we employ in order to �nd quorum members.

Content sharing facilities currently deployed on the
Internet do facilitate more �exible searching. For exam-
ple, Gnutella (http://en.wikipedia.org/wiki/Gnutella)
supports global querying through a probabilistic depth-
bounded multicast. This approach is e�ective, and re-
sembles ours, yet it is ad hoc. Our work provides formal

background and analysis by which rigorous semantics
can be assured.

Another problem area closely related to ours is infor-
mation dissemination and content delivery in scalable
networks. Several recent systems employ peer-to-peer
overlay routing infrastructure to build scalable group
multicast services, e.g., Bayeux [40], SplitStream [6], and
SCRIBE [24]. Other protocols employ randomization us-
ing epidemic style gossiping for scalable information dis-
semination, including Bimodal multicast [5] and [21]. All
of these achieve our goal of having partial system view at
each participant. However, their goal is to quickly spread
write-once information, and they do not handle search-
ing or data longevity.

Finally, it should be noted that this paper is based
on the preliminary conference version in [3].

2 Problem De�nition

We consider a (potentially in�nite) universe W of possi-
ble processes. The system consists of a dynamic subset
of processes taken from W that evolves over time as pro-
cesses join and leave the system. We use a logical discrete
time-scale T = {0, 1, . . . }. At each time-step i ∈ T there
exists a set U(i) of processes from W that are considered
members of the system at that time. Each time-step i
consists of a single event e(i), which is one of the fol-
lowing: Either a process joins the system, or a process
leaves the system. For each time step t > 0, the par-
tial history of events uniquely determines the universe
U = U(t) consisting of all the processes that joined the
system minus those that have left. It should be clear that
this abstraction is done for reasoning purposes only; in
practice, many arrivals and departures occur simultane-
ously, but their modeling unnecessarily complicates the
treatment.

Focusing on a �xed time step t > 0 for now, we �rst
recall the relevant de�nitions from [29]. A set system Q
over a universe U is a set of subsets of U . A (strict)
quorum system Q over a universe U is a set system over
U such that for every Q,Q′ ∈ Q, Q∩Q′ 6= ∅. Each Q ∈ Q
is called a quorum. An access strategy ac for a set system
Q speci�es a probability distribution on the elements of
Q. That is, ac : Q → [0, 1] satis�es

∑
Q∈Q ac(Q) = 1.

From here on, we use the notation Q ∼ ac to denote that
Q is a random variable whose probability function is ac.
We are now ready to state the de�nition of probabilistic
quorum systems:

De�nition 1 (ε-intersecting quorum system[29]).
Let Q be a set system, let ac be an access strategy for
Q, and let 0 < ε < 1 be given. The tuple 〈Q, ac〉 is an
ε-intersecting quorum system if Pr[Q∩Q′ 6= ∅] ≥ 1−ε,
where Q,Q′ ∼ ac, the probability of choosing Q and Q′

is taken with respect to the strategy ac.

We now proceed to de�ne time-evolving quorums. A
time-evolving quorum system has a �xed creation time s
and a series 〈Q(i), aci〉 of quorum systems for every time
step after its creation s ≤ i ∈ T . In order to formally
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de�ne the way the quorum system evolves, we �rst de�ne
an evolution strategy as follows:

De�nition 2 (Evolution strategy). For every t ∈ T ,
let Q(t) be a set system over the system U(t). An evo-
lution strategy evt speci�es a probability distribution on
the elements of Q(t) for each given element of Q(t− 1).
Formally, evt : Q(t− 1)×Q(t) → [0, 1] satis�es

∀Q′ ∈ Q(t− 1) :
∑

Q∈Q(t)

evt(Q′, Q) = 1 .

Thus, evt(Q′, Q) for Q′ ∈ Q(t−1) and Q ∈ Q(t) indicates
the probability that Q′ evolves into Q.

The access strategies over U(1), U(2), . . . together
with an evolution strategy determine the probability that
a certain subset occurs as the evolution of any previously
created quorum. The following de�nition captures this
distribution:

De�nition 3 (Evolving probability distribution).
Fix a creation time s ∈ T . For every time step s ≤ i ∈ T ,
let 〈Q(i), aci〉 be a probabilistic quorum system and evi

be an evolution strategy. The evolving probability distri-
bution ps

t : Q(t) → [0, 1] for quorums created at time s
that evolved up to time t, for t ≥ s, is de�ned recursively
as follows:

∀Q ∈ Q(t) :

ps
t (Q) =


acs(Q) t = s,∑

Q′∈Q(t−1)

ps
(t−1)(Q

′)evt(Q′, Q) t > s.

Our goal is to devise a mechanism for maintaining
ε-intersecting probabilistic quorums in each U(i) for all
s ≤ i, and to evolve quorums that maintain information
(such as updates to data) so that their evolution remains
ε-intersecting with quorums in later time steps. Any two
quorums created at times s and t will evolve in a manner
such that at any later time r, their intersection proba-
bility remains 1 − ε. This is captured in the following
de�nition:

De�nition 4 (Dynamic ε-intersecting probabilistic
quorum system). For every time step i > 0, let 〈Q(i), aci〉
be a probabilistic quorum system and evi be an evolution
strategy. Let 0 < ε < 1 be given. Then 〈Q(i), aci, evi〉 is
a dynamic ε-intersecting quorum system if for all r ≥
s ≥ t > 0, Q,Q′ ∈ Q(r):

Pr[Q ∩Q′ 6= ∅] ≥ 1− ε

where the probability is taken over the choices of Q and
Q′, distributed respectively according to Q ∼ ps

r and Q′ ∼
pt

r.

In words, if Q is a quorum chosen at time s from
U(s) using strategy acs and evolved using evi until time
r (r − s evolution steps), and Q′ is a quorum chosen at
time t from U(t) using strategy act and evolved using evi

until time r (r − t evolution steps) then the probability
that Q and Q′ do not intersect is less than ε.

2.1 Performance goals

Driven by our goal to maintain quorums in very large and
dynamic environments, such as Internet-wide peer-to-
peer applications, we identify the following four perfor-
mance goals. (Formal de�nitions are given in Section 6.)
First, we strive to keep the join/leave message complex-
ity low (logarithmic), and the number of state-changes
per recon�guration a small constant. Second, we wish
for an e�cient accessing procedure that �nds quorums
and reads or writes from/to them. Additionally, we con-
sider two traditional measures that were de�ned to assess
the quality of probabilistic quorum systems [32,29]: The
load in�icted on processes is the fraction of total up-
dates/queries they must receive. The degree of resilience
is the amount of failures tolerable by the service. Our
goals with respect to the latter two measures are to pre-
serve the good performance of PQSs in static settings.
Speci�cally, we wish for the load to be O(1/

√
n) and the

resilience to be O(n).

3 Non-uniform Probabilistic Quorum Systems

In this section, we extend the treatment of probabilis-
tic quorum systems of [29] to constructions that employ
non-uniform member selection.

Let S be a system containing n members (e.g., S =
U(t) for some t > 0). Let p(s) be any distribution over
the members s ∈ S. We �rst de�ne a �at non-uniform
selection strategy that chooses members according to p
until a certain count is reached.

De�nition 5 (Flat access strategy). The �at access
strategy f(p, m) : 2S → [0, 1] is de�ned as follows: for
Q ∈ 2S, f(p, m)(Q) equals the probability of obtaining
the set Q by repeatedly choosing m times (with repeti-
tions) from the universe S using the distribution p.

The �at strategy f(p, m) strictly generalizes the known
access strategy for PQSs in which members are chosen
repeatedly m times using a uniform distribution. In the
Lemma below, we obtain a generalized probabilistic quo-
rum system with non-uniform member selection.

Lemma 1. The construction 〈2S , f(p, ρ
√

n)〉 is an (e−ρ2/2)-
intersecting quorum system.

Proof. Consider two sets Q,Q′ ∼ f(p, ρ
√

n). For every
s ∈ S denote an indicator variable xs that equals 1 if
s ∈ Q∩Q′, and equals 0 otherwise. Thus, E[

∑
s∈S xs] =

t2np2(s). By the Cauchy-Schwartz inequality, we have∑
s∈S p2(s) 1

n ≥
(∑

s∈S p(s) 1
n

)2
. Combining the above:

E(
∑

s∈S xs) = t2n
∑

s∈S p2(s) ≥ t2.
We now wish to apply Cherno� bounds to bound the

deviation from the mean. Since the xs's are dependent,
we cannot apply the bounds directly. Rather, we de�ne
i.i.d. random variables ys ∼ xs. Clearly, E[

∑
s ys] =

E[
∑

s xs]. Due to a result by Hoe�ding [19], we have:
Pr[Q ∩ Q′ = ∅] = Pr[

∑
s∈S xs = 0] ≤ Pr[

∑
s∈S ys =

0] < e−t2/2. ut
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Interestingly, the �at access strategy is overly con-
servative in the following sense. Generally, a quorum se-
lection strategy with non-uniform member selection dis-
tribution need not necessarily have a �xed quorum size.
Intuitively, this is because �heavier� members (that are
chosen with a higher probability) are more likely to occur
in the intersection among pairs of quorums. An exam-
ple might clarify this point: Suppose that some member
s ∈ S has p(s) = 1/2. Clearly, if s belongs to a quo-
rum, then the probability of intersecting with any other
quorum is at least a half, even if quorums have only one
element each. In the general case, the total number of
selected members could therefore depend on their com-
bined weight. We encountered a di�culty in obtaining
such a �weighted� access strategy, namely that the like-
lihood that a member is included in a quorum depends
on the ordering of sampling. We are currently still in-
vestigating whether there is a way to implement a non-
uniform variable-size quorum access strategy along these
lines.

Finally, note that implementing f(p, ρ
√

n) requires
global knowledge of n, which is di�cult in a dynamic
setting. The remaining of this paper is devoted to ap-
proximating f , i.e., we show how to (roughly) maintain
a non-uniform �at quorum access strategy and how to
evolve quorums, over a dynamic system.

4 Non-uniform Probabilistic Quorums in
Dynamic Systems

4.1 The dynamic graph

A key component in the construction is designing a dy-
namic overlay routing graph among the processes. The
graph allows processes to search for other processes dur-
ing quorum selection while maintaining low memory over-
head. We assume that the underlying communication
network is a complete graph but the overlay routing
graph may be partial. Denote by G(t) = 〈V (t), E(t)〉 a
directed graph representing the system's routing overlay
network at time t as follows. V (t) is the set of processes in
U(t) at time point t > 0. A directed edge (u, v) ∈ E(t)
indicates that u knows the network identi�er of v and
hence u can communicate directly with v. Henceforth,
we refer to system participants as processes or as nodes
interchangeably.

One option is to maintain G(t) as a complete graph
over all the system participants. However this would
cause high (linear) join/leave complexity. Driven by the
need to maintain the goals stated above in Section 2.1,
we wish to maintain a dynamic graph G(t) with the fol-
lowing properties: (1) Small constant degree (so as to
maintain constant join/leave complexity). (2) Logarith-
mic routing complexity, so time to select a quorum log-
arithmic. (3) Rapid mixing time 3, so that we can main-
tain a �xed individual selection distribution independent

3 Formally, every connected unweighted non-bipartite
graph G induces an irreducible and aperiodic Markov chain
M . The stationary distribution is the unique distribution π
such that π = Mπ. The mixing time of M is the minimum

of the origin using a small number of steps from each
node.

We choose to employ for G(t) a routing graph that
approximates a de Bruijn routing graph. In the de Bruijn
[8] of order k there are 2k nodes each with a unique iden-
ti�er in {0, 1}k. Every node has two outgoing links: Node
〈a1, . . . , ak〉 has an edge to the two nodes 〈a2, . . . , ak, 0/1〉
(shift, then set the last bit). We employ a dynamic ap-
proximation of the De Bruijn graph that was introduced
in [1]. This dynamic graph has w.h.p. a constant-degree,
logarithmic routing complexity, and logarithmic mixing
time.

The dynamic graph is constructed dynamically as fol-
lows. Each node has a binary identi�er. We maintain two
properties. First, the identi�ers of the nodes always form
a complete pre�x code.

De�nition 6 (Complete pre�x code). We say that a
set of nodes has a Complete pre�x code property if no
identi�er is a pre�x of another identi�er and for every
in�nite binary string S ∈ {0, 1}∗ there exists an identi-
�er that is a pre�x of S.

Second, the graph linking (edge set) is a dynamic de
Bruijn linking, de�ned as follows:

De�nition 7 (Dynamic de Bruijn linking). We say
that a graph has a dynamic de Bruijn linking if each node
whose id is 〈a1, . . . , ak〉 has an edge to each node whose
id is X = 〈a2, . . . , ak〉 or whose id is a pre�x of X, or
whose id has X as a pre�x.

For example consider a system with 5 nodes whose
identi�ers are 11, 10, 01, 001, 000. They clearly form a
complete pre�x code. For Dynamic de Bruijn linking,
node 11 has links to 10 and itself, node 10 has links to
nodes 01, 001, 000, node 01 has links to 11, 10, node 001
has links to node 01 , node 000 has links to 001 and itself.

We assume that initially, G1 has two members that
bootstrap the system, whose id's are 0 and 1. Joining
and leaving of members is done as follows:

Join: When a node u joins the system, it chooses some
member node v and �splits� it. The way a node chooses a
member will be described in the load balancing section.
Speci�cally, let v.id = 〈a1, . . . , ak〉 be the identi�er v has
before the split. Then u uniformly chooses i ∈ {0, 1},
obtains identi�er u.id = 〈a1, . . . , ak, i〉 and v changes its
identi�er to v.id = 〈a1, . . . , ak, (1− i)〉. The links to and
from v and u are updated so as to maintain the dynamic
de Bruijn linking, as follows. If previously v had a link
〈a2, . . . , ak〉 or a pre�x, then both u and v link to it;
a link of the form 〈a2, . . . , ak, i〉 or for which this is a
pre�x, is dropped from v's links and is copied to u, and
links of the form 〈a2, . . . , ak, (1− i)〉 or for which this is
a pre�x remain v's links, and are not copied over to u.

integer m such that for any initial π0, π0M
m is the stationary

distribution.
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Leave: When a node u leaves the system, it �nds a pair
of `twin' nodes 〈a1, . . . , ak, 0〉, 〈a1, . . . , ak, 1〉. The way a
`twin' is found will be described in the load balancing
section. If u is not already one of them, it uniformly
chooses i ∈ {0, 1}, and swaps with 〈a1, . . . , ak, i〉. Swap-
ping exchanges both identities and links: The node whose
identi�er was 〈a1, . . . , ak, i〉 now has u's identi�er (and
maintains all of u's links) and u's assumes the identi-
�er 〈a1, . . . , ak, i〉. More importantly, now u is one of the
twins.

Now node u, with id 〈a1, . . . , ak, i〉, leaves the system.
Its twin u′ = 〈a1, . . . , ak, (1 − i)〉 changes its identi�er
to 〈a1, . . . , ak〉. The links to and from 〈a1, . . . , ak〉 are
updated so as to maintain the dynamic de Bruijn linking:
The incoming and outgoing links of both u and u′ are
merged and kept by 〈a1, . . . , ak〉.

Load balancing. Recall that by the dynamic construc-
tion above, we are hoping to maintain a constant-degree,
logarithmic diameter graph. The key component required
for this to occur w.h.p. is a load balancing strategy. A
load balancing strategy determines which node to split
upon arrival, and which node(s) to merge upon depar-
ture. The goal is to keep all nodes at approximately the
same id length. More precisely, we introduce the follow-
ing technical de�nitions:

De�nition 8 (Level). Given a node v with id 〈a1, . . . , ak〉
with a length k identi�er, we de�ne its level as `(v) = k.

De�nition 9 (Global gap). The global gap of a graph
G(t) is de�ned as maxv,u∈V (t) |`(v)− `(u)|.

Techniques for maintaining a constant-bound w.h.p.
on the global gap in dynamic graphs such as G(t) are
presented in [1] with logarithmic per join/leave cost.
Brie�y, the randomized load balancing there is to se-
lect for splitting the lowest-level node among log(n) ran-
domly drawn nodes; and to the contrary for merging,
choose the highest-level pair among log(n). In [30] tech-
niques are presented for maintaining a global gap of 2
with linear cost per join/leave.

From here on, we assume that w.h.p. a constant bound
C on the global gap is maintained.

Graph properties. If the global gap is small, then a node
can estimate the size of the network by examining its
own level. This is stated in the following lemma:

Lemma 2. Let G(t) be a dynamic de Bruijn graph with
global gap C. Then for all u ∈ V (t) : 2`(u)−C ≤ |V (t)| ≤
2`(u)+C .

Proof. Since the global gap is C and the node has a
length `(u) identi�er, than the maximum length of an
identi�er is `(u) + C. Since all ids are unique, there can
be at most 2`(u)+C nodes. Similarly, identi�ers form a
pre�x code and have at least `(u)−C digits. Hence there
are at least 2`(u)−C nodes. ut

In addition, for a global gap C the dynamic de Bruijn
graph has out-degree at most O(2C), and diameter log(n)+
C [1].

4.2 Quorum selection

We now describe the quorum selection algorithm. A quo-
rum is selected by performing multiple random walks.
The elements of the quorum are the end recipients of
these random walks. The number of random walks per-
formed is a function of the bound on the global gap
C, and the required probabilistic guarantees. For a ε-

intersecting quorum system we �x a parameter ρ =
√

ln 1
ε .

For a node u to establish a read or a write quorum,
it initiates ⌈

ρ
√

2`(u)+2C
⌉

random walk messages. For every random walk that node
u initiates, it creates a message M with a hop-count `(u),
an id u.id, and appends any payload A to the message,
i.e., M = 〈`(u), u.id, A〉. Each node (including u) that
receives a message 〈j, id, A〉 with a non zero hop-count
j > 0, forwards a message M ′ = 〈j − 1, id, A〉, randomly
to one of its outgoing edges. If (u, v) ∈ E then the prob-
ability that u forwards the message to v is:

Pr[u forwards to v] =
1

2max{`(v)−`(u)+1,1} (1)

Lemma 3. The above function (Equation 1) is a well
de�ned probability function.

Proof. The proof is by induction of the splits and merges
of the dynamic graph. Denote f(u, v) = 1

2max{`(v)−`(u)+1,1} .
For the initial graph with two nodes 0, 1 and edge set
0 → 0, 0 → 1, 1 → 0, 1 → 1 it is clear that f is well
de�ned.

Assume the function is well de�ned for G(t) and
let G(t + 1) be formed by a split operation that splits
node w = 〈a1, . . . , ak〉 into nodes u = 〈a1, . . . , ak, 0〉 and
v = 〈a1, . . . , ak, 1〉. Due to the Dynamic de Bruijn link-
ing the following will be true. Consider any node x that
had a link to w. If `(w) ≥ `(x) then x will have a link to
both u and v. Otherwise, if `(w) < `(u) then x will have
a link to either u or v but not both. From the de�nition
of f is is clear that f(x,w) = f(x, u)+f(x, v) and hence∑

{y|(x→y)∈G(t)} f(x, y) =
∑

{y|(x→y)∈G(t+1)} f(x, y) =
1.

Similar analysis holds for merge operations. ut

We call the node that receives a message with hop-
count 0 the destination of the message.

The number of random walks is chosen to be more
than ρ

√
n. Informally, if the random walks are rapidly

mixing then an ε-intersecting quorum system is formed.
Intuitively, the reason a random walk originating from
a level k node needs to take k steps is that this ensures
the resulting distribution is independent of the originat-
ing node. The reason the random walk is non-uniform
is that the graph itself is imbalanced. A uniform ran-
dom walk may create a higher load and a longer mixing
time. Our non-uniform random walk ensures that the
stationary distribution formed is relatively balanced up
to a constant factor that is a function of C. We formally
perform the analysis of the quorum selection in the next
subsection.
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4.3 Analysis of quorum selection

Let G(t) be a dynamic graph on n nodes. Recall the prob-
ability distribution of message forwarding as de�ned in
Section 4.2, Equation 1. We represent this distribution
using a weighted adjacency (n × n)-matrix M(t) as fol-
lows:

mv,u =

Pr[u forwards to v] =

{
1

2max{`(v)−`(u)+1,1} (u, v) ∈ E(t),
0 otherwise.

We �rst explicitly state the stationary distribution
on the dynamic graph, and then prove that the weighed
random walk algorithm makes a perfect sampling of this
distribution.

We begin with a technical lemma. Intuitively, it states
each node in G(t) is pointed to by edges whose total
weight is proportional to its own level. The precise sense
in which this holds is stated by the lemma.

Lemma 4. Let v ∈ G(t) be a node whose id is v.id =
〈a1, a2, . . . , ak〉. Denote by N0(v) the nodes in G(t) whose
id's match 〈0, a2, . . . , ak〉, or are a pre�x of it, or have a
post�x added to it. (Similarly, denote by N1(v) the nodes
that match 〈1, a2, . . . , ak〉, its pre�x or post�x.) Then for
any i ∈ {0, 1} ∑

u∈Ni(v)

mv,u
1

2`(u)
=

1
2`(v)+1

.

Proof. By our graph construction, there are two cases
to consider. The �rst one is |N0(v)| = 1. In this case,
denote N0(v) = {w}, and it follows that `(w) ≤ `(v).
We therefore have:

mv,w
1

2`(w)
=

1
2`(v)−`(w)+1

1
2`(w)

=
1

2`(v)+1
.

The second case is |N0(v)| > 1. Then ∀w ∈ N0(v) :
`(w) > `(v), and the nodes w ∈ N0(v) have the form
w.id = 〈0, a2, . . . , ak〉, or are a pre�x of it or have a
post�x appended to it. By a trivial induction on split
and merge operations, we have

∑
w∈N0(v)

1
2`(w) = 1

2`(v) .

Thus:

∑
w∈N0(v)

mv,w
1

2`(w)
=

∑
w∈N0(v)

1
2

1
2`(w)

=
1

2`(v)+1
.

By symmetry, the analogous statement on N1(v) also
holds. ut

We now analyze the stationary distribution of M(t).

Theorem 1. The stationary distribution of M(t) is the
vector x, such that ∀v ∈ V (t), xv = 1

2`(v)

Proof. Showing
∑

v∈V (t) xv = 1 is trivially done by in-

duction on the series of node additions and removals.
For v ∈ V (t), we show that

∑
u∈V (t) mv,uxu = xv.

Suppose v = 〈a1, a2, . . . , ak〉. In our graph, nodes that

have directed links to v are those in N0(v) and in N1(v).
The sets N0(v) and N1(v) are disjoint by de�nition.
Thus, using Lemma 4, we have:

∑
u∈V (t)

mv,uxu =
∑

w∈N0(v) or w∈N1(v)

mv,wxw =

1
2`(v)+1

+
1

2`(v)+1
=

1
2`(v)

= xv .

ut

For every t > 0, denote x(t) as the stationary distri-
bution on M(t), that is x(t) = M(t)x(t). We now show
that the random walk algorithm described in Section 4.2
chooses nodes according to x(t). We begin by proving
that the choices made in the random walk are indepen-
dent and uniform.

Lemma 5. All the bits of a random walk message with
hop count 0 are independently uniformly distributed.

Proof. Let v be a starting node whose level is k. We
show by induction that after i hops, the walk reaches a
node whose bits beyond the �rst (k− i) bits are selected
independently uniformly at random. Since the hop count
starts with k, then when i = k the hop count is 0 and
the lemma follows.

Denote v's id by v.id = 〈a1, . . . , ak〉. The �rst hop
must go to a node whose id matches 〈a2, . . . , ak, r1〉, or
a pre�x thereof, or with a post�x appended. and where
r1 is chosen to be 0/1 with uniform probability. In case
the destination node has a post�x appended, the post�x
bits are chosen uniformly at random by our construction,
since every split operation divides the weight of an edge
pointing to the split node into half. Thus, we have the
induction basis.

For the induction step, suppose that after i−1 hops,
the walk reaches a node 〈ai, . . . , ak, σ〉, or a pre�x thereof,
where σ is a sequence of randomly chosen bits. Then at
hop i we move to a node whose id matches 〈ai+1, . . . , ak, σ, ri〉,
or a pre�x thereof, or with a random post�x added to
it, and where ri is chosen to be 0 or 1 with uniform
probability. By the same argument as above, in case the
destination node has a post�x appended, the post�x bits
are chosen uniformly at random.

Thus when the hop count reaches zero, the bits of the
target node which equals the bits of the random walk
message are all random, independent and uniformly se-
lected. ut

We also note the following simple combinatorial claim:

Proposition 1. For k ≤ j, given a �xed sequence of bits
A = 〈a1, . . . , ak〉, and a sequence B = 〈b1, . . . , bj〉 of bits
each independently chosen with uniform probability then

Pr[A is a pre�x of B] =
1
2k

The number of hops until a random walk has distri-
bution x(t) is exactly the level of the node initiating the
walk. This is the reason why a level k node performs
k-hop random walks.
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Theorem 2. The mixing time of a random walk on M(t)
starting from a node of level k is k.

Proof. A random walk message starting at a level k node
will walk k steps until its hop count reaches 0. By Lemma 5
all its bits are independently uniformly chosen. Thus for
v ∈ V (t) the probability that the random walk reaches
v by Fact 1 is 2−`(v). ut

Theorem 1 and Theorem 2 above together imply that
our graph maintenance algorithm together with our ran-
dom walk quorum selection strategy implement a non-
uniform selection strategy over the members of V (t),
where the probability of choosing v ∈ V (t) is 1/2`(v).
As an immediate consequence we have our main theo-
rem as follows:

Theorem 3. For a system S on a dynamic graph with

global gap C and parameter ρ =
√

ln 1
ε , the quorum se-

lection strategy as described above forms a ε-intersecting
probabilistic quorum system.

Proof. The theorem follows from the fact that each quo-

rum access includes at least ρ
√

2`(u)+2C ≥ ρ
√

n indepen-
dent selections, each one done according to the distribu-
tion x(t). ut

5 Quorum Evolution

In this section we describe the evolution algorithm for
maintaining dynamic ε-intersecting quorum systems. For
such a construction, quorums need to evolve along with
the growth of the system in order to maintain their inter-
section properties. This property must be maintained in
spite of any execution sequence of join and leave events
that may be given by an adversary.

One trivial solution would be to choose new quo-
rums instead of the old ones each time the network's
size multiplies. Such a solution has a major drawback,
as it requires a global overhaul operation that may af-
fect all the system at once. Even if we consider amortized
costs, this process requires changing the state of

√
|V |

nodes for some join events. In contrast, our evolution
scheme w.h.p. resorts only to local increments for each
join or leave event, each causing only a constant number
of nodes to change their state.

The intuition for our algorithm comes from the fol-
lowing simple case. Suppose the network is totally bal-
anced, i.e., all nodes have the same level m, hence there
are 2m nodes. In this state a quorum using ρ2m/2 random
walks is chosen. Hence the size of the quorum is ρ

√
n1

where n1 = 2m. Further assume that after a series of join
events, the network's size multiplies by 4 and all nodes
have level m + 2. Our evolution algorithm works as fol-
lows in this simple scenario. Each time a node splits, each
data entry stored on the split node randomly chooses
which sibling to move to. In addition, if the node that
splits has an even level then each of its data entries (it
may have several data entries for several di�erent quo-
rums) also creates one more duplicate data entry and

randomly assigns it, using a random walk, to a new node.
Thus the number of data entries doubles from 2m/2 to
2(m+2)/2 and each data entry is randomly distributed on
the network. Hence the new quorum has ρ

√
n2 random

members where n2 = 2m+2.
Our evolution algorithm simulates this behavior on

approximately balanced networks. Thus, its success re-
lies on the fact that the global gap of the dynamic graph
w.h.p. is at most C. In order to avoid fractions, we set
the bound C on the global gap to be an even number.

5.1 Informal description of the evolution algorithm

Recall that a join (respectively, leave) event translates
to a split (respectively, merge) operation on the dynamic
graph. We now explain how the random walk algorithm
is enhanced, and what actions are taken when a split or
a merge operation occurs.

We divide the levels of the graph into phases of size
C, all the levels (i− 1)C + 1, . . . , iC belong to phase iC.
When a node in phase iC wants to establish a quorum,
it sends ρ2(i+1)C/2 random walk messages. Each such
message also contains the phase of the sender which is
iC.

When two child nodes are merged into one parent
node, all the data entries stored in the two children are
copied to the parent node. If the parent node is later
split, we want each data entry to go to the sibling it
originally came from. Otherwise, the distribution of the
data entry's location will be dependent on the execution
sequence. Thus, each data entry also stores all the ran-
dom choices it has made as a sequence of random bits
called dest. When an entry is �rst created, dest is set to
the id of the node that the data entry is in.

When a node of level i is split into two nodes of level
i+1, there are two possibilities: Either |dest| ≥ i+1 and
the data entry moves according to the (i+1)th bit of dest.
Otherwise, the data entry randomly chooses which one
of the two sibling to move to, and it records this decision
by adding the appropriate bit to dest.

The number of data entries is increased only when a
data entry is split on a node whose level is a multiple of
C. If a data entry with phase iC is involved in a split
operation on a node with level iC then 2C/2 − 1 new
data entries with phase (i+1)C are created. These data
entries are randomly distributed using the random walk
algorithm.

Additionally, whenever a random walk message from
a node in phase jC arrives at a node u with phase
(j+1)C, we simulate as if the message �rst arrived at an
ancestor node of level jC that is a pre�x of u, and later
this ancestor node had undergone some split operations.
Thus, if a phase (j + 1)C node receives a message with
hop count 0 initiated by a node in phase jC then, in
addition to storing the data entry, the node also creates
22/C −1 new data entries with phase (j +1)C. This sim-
ulation technique is recursively expanded to cases where
a node in phase (j + `)C receives a message initiated by
a node in phase jC.
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5.2 Evolution algorithm

Enhanced random walk: Denote phase(i) = Cdi/Ce. When
a node u initiates a random walk it creates a message M
with a hop-count `(u), phase phase(`(u)), id u.id, and
payload A to it, i.e., M = 〈`(u), phase(`(u)), u.id, A〉.
Each node that receives a message 〈j, ph, id,A〉 with a
non zero hop-count j > 0, forwards a message M ′ =
〈j−1, ph, id, A〉, randomly to one of its outgoing edges v
with probability Pr[u forwards to v] = 1

2max{`(v)−`(u)+1,1} .
Nodes store information as a data entry of the form

(dest, ph, id,A), where dest is a sequence of bits that de-
scribes the location of the entry, ph is the phase, id is the
identity of the quorum initiator, and A is the payload.

When node w receives a message M = 〈0, ph, id,A〉 it
stores the data entry (w.id, ph, id,A). If phase(`(w)) >
ph then for every i such that dph/Ce < i ≤ d`(w)/Ce, w
sends 2C/2 − 1 messages of the form 〈`(w), iC, id,A〉.

Create: A node u creates a quorum by initiating
ρ2(phase(`(u))+C)/2 enhanced random walk messages.

Split: Suppose node u wants to enter the system, and
v = 〈a1, . . . , ak〉 is the node to be split into nodes 〈a1, . . . , ak, 0〉
and 〈a1, . . . , ak, 1〉. For every data entry (d, ph, id,A)
held in v do the following. If |d| ≥ k + 1 then store
(d, ph, id,A) at node 〈a1, . . . , ak, destk+1〉 where desti
is the ith bit of dest. Otherwise, if |d| < k + 1 then
with uniform probability choose i ∈ {0, 1} and send
to node 〈a1, . . . , ak, i〉 the message 〈0, ph, id, A〉. Node
〈a1, . . . , ak, i〉 will handle this message using the enhanced
random walk algorithm (in particular, if the split has
crossed a phase boundary, it will generate 2C/2 − 1 new
data replicas).

Merge: Suppose node u wants to leave the system, and
the twin nodes 〈a1, . . . , ak, 0〉, 〈a1, . . . , ak, 1〉 are the nodes
that merge into node v = 〈a1, . . . , ak〉. If u and one of
the twins swap their ids then they also swap the data
entries that they hold. After the swap, the merged node
v = 〈a1, . . . , ak〉 copies all the data entries that the nodes
with ids 〈a1, . . . , ak, 0〉, 〈a1, . . . , ak, 1〉 held.

5.3 Analysis of quorum evolution

Given a network G(t) on n nodes, we seek to show that
the evolved quorum's distribution is at least as good as
the �at access scheme f(x(t), ρ

√
n) where x(t) is the sta-

tionary distribution G(t) as proven in Theorem 1. So we
must show a set of data entries that are independently
distributed, whose size is at least ρ

√
n where n is the

size of the current system. Note that the existence of
some of the data entries is dependent on the execution
history. Therefore, it is not true that all data entries are
independently distributed. However, we use a more del-
icate argument in which we analyze the size of a subset

of the data entries whose existence is independent of the
execution sequence.

The main result we pursue is that a non-uniform PQS
is maintained despite any system recon�guration, and is
given in the Theorem below. The following two lemmas
are crucial for proving it.

Lemma 6. For any time t, data entry D, the distribu-
tion of D's location on V (t) is x(t).

Proof. For every data item D = (dest, ph, id,A) we prove
the following by induction: dest is a sequence of bits that
are independently and uniformly distributed and D is
stored in the node whose id is a pre�x of dest. Since the
identi�ers form a complete pre�x code and dest will al-
ways be at least as long as any identi�er with the same
pre�x, this claim is well de�ned.

When a data entry is created it is stored at a node
v chosen by the random walk algorithm and dest is set
to v. By Lemma 5 all the bits of v are independently
uniformly distributed. Thus the induction base holds.

Now assume at time t that entry D is stored in node
v = 〈a1, . . . , ak〉. Suppose the next event e(t + 1) is a
leave that causes a merge operation on v and its twin.
This will cause D to be stored in 〈a1, . . . , ak−1〉 which
still remains a pre�x of dest.

Suppose e(t+1) is a join that causes a split operation
on v. If |dest| ≥ k+1 then D moves to 〈a1, . . . , ak, destk+1〉
and the claim holds. If dest has only k bits then the evo-
lution algorithm independently with uniform probability
chooses which sibling to move to and thus the new des-
tination maintains the induction hypothesis.

Therefore, the dest sequence is i.i.d. and the data
entry resides in a node which is a pre�x of dest. Thus by
Fact 1 and Theorem 1, the location of D at time t has a
distribution x(t) ut

De�nition 10. Denote L(t) as the lowest phase on G(t),
L(t) = minv∈V (t) phase(`(v)).

Lemma 7. Let t > 0, and let the dynamic graph G(t)
have global gap C. Consider any quorum initiated by a
node u at phase i with payload A. If L(t) ≥ i then the
number of data entries of the form (d, ph, u,A) such that
ph ≤ L(t) is exactly ρ2((L(t)+C)/2 .

Proof. The proof is by induction. When a quorum is es-
tablished by a node of phase i, it creates ρ2(i+C)/2 data
entries with phase i. Since the gap is at most C, i is
either L(t) or L(t) + C. If i = L(t) then the induction
base holds. If i = L(t)+C then the base holds vacuously,
since L(t) < i.

If e(t+1) is a join that causes L(t+1) = L(t)+C then
all of the data entries with phase at most L(t) must have
been spilt on a node of level L(t) (or split on a lower level
node that simulates this split). If t + 1 is the �rst time
that L(t + 1) ≥ phase(id), and the induction hypothesis
was vacuously true before t + 1, then the phase of the
quorum establisher was L(t)+C, thus ρ2((L(t)+2C)/2 data
entries of phase l(t)+C exist in the network as required.

Otherwise, by the induction hypothesis there are ρ2(L(t)+C)/2

data entries of phase at most L(t). Each one creates
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2C/2 − 1 more data entries of phase L(t) + C. Together,
there are ρ2((L(t)+2C)/2 entries of phase at most L(t)+C.
ut

Theorem 4. On dynamic networks with global gap C,

and parameter ρ =
√

1
ε , the evolution algorithm main-

tains a dynamic ε-intersecting quorum system.

Proof. By Lemma 6 the locations of all data entries of
all quorums are distributed by x(t), the stationary distri-
bution of M(t). Consider a quorum initiated at a phase

i node. If L(t) < i then the initial ρ2(i+C)/2 ≥ ρ
√
|V (t)|

data entries su�ce. If L(t) ≥ i then by Lemma 7 every
quorum has ρ2(L(t)+C)/2 entries whose existence is inde-
pendent of the execution history. Since the network has
global gap of C, then ρ2(L(t)+C)/2 ≥ ρ

√
|V (t)|. Thus at

any time t, the evolving probability distribution pr
t of

the above subset of data entries of any quorum, for any
establishment time r, is a �at access strategy f(x(t),m)
in which m ≥ ρ

√
|V (t)|. By Lemma 1 this access scheme

forms an ε-intersecting quorum system as required. ut

Our construction implements, for any history of events,
access strategies and an evolution strategy that main-
tains the evolving probability distribution pr

t as a �at
access strategy on V (t) using the distribution x(t) with
more than

√
|V (t)| independent choices. Thus, at any

time t, all quorums (both newly established and evolved)
are ε-intersecting.

6 Performance Analysis

In this section, we state more formally the four perfor-
mance measures alluded to in Section 2.1, and analyze
them with respect to our dynamic quorum system. Gen-
erally, we note that our protocols hinge on the network
balancing algorithms we employ, e.g., from [1], and on
their ability to maintain the bound C on the global level
gap. We note that the network construction of [1] incurs
a constant number of state-changes per join/leave and a
logarithmic number of messages. It maintains the global
gap bound C w.h.p. Below, the analysis stipulates that
the global gap C is maintained, and calculates additional
costs incurred by our algorithm.

Join/leave complexity. The complexity of handling join/
leave events is measured in terms of the count of mes-
sages and the number of processes that must incur a
state-change. In our dynamic quorums, when a new pro-
cess joins the system, it may cause a split of a node. In
that case, we allocate a constant number of new data
entries, that incur a constant number of random walks.
Thus, the message cost is O(log(n)) and the number of
processes incurring a change in their state is constant.
Leave events generate one message and a state change
to one process.

Quorum access complexity. Our second measure is the
complexity of accessing a quorum, measured both in mes-
sages and in (parallel) time. When selecting a quorum in
our system, we initiate O(

√
n) random walks in parallel.

The parallel time is O(log(n)), and the total number of
messages is O(

√
n log(n)).

Load The load of a quorum system, de�ned by Naor
and Wool [32], captures the probability of accessing the
busiest server. Load is a measure of e�ciency. All other
things being equal, systems with lower load can process
more requests than those with higher load.

De�nition 11 (Load). Let w be a strategy for a set
system Q = {Q1, . . . , Qm} over a universe U . For a
server u ∈ U , the load induced by w on u is lw(u) =∑

Qi3u w(Qi). The load induced by a strategy w on Q is

Lw(Q) = maxu∈U{lw(u)}.
Let 〈Q, w〉 be an ε-intersecting quorum system. Then

the load of 〈Q, w〉 is L(〈Q, w〉) = Lw(Q).

It is known that for any quorum system Q over n servers,

L(Q) ≥ max{ 1
c(Q) ,

c(Q)
n } where c(Q) is the size of the

smallest quorum in Q [32]. In particular, this implies
that for any quorum system Q, L(Q) ≥ 1/

√
n.

In our dynamic system, the load on a process v dur-
ing quorum selection at time t is O(1/

√
n). In order

to see this, observe that Theorem 1 and Theorem 2
above together imply that our graph maintenance al-
gorithm together with our random walk quorum selec-
tion strategy implement a non-uniform selection strat-
egy over the members of V (t), where the probability
of choosing v ∈ V (t) is 1/2`(v). By Lemma 2, at most
ρ2(log(n)+c+2c)/2 processes are accessed in every quorum
access. The probability that some node v is selected is
therefore bounded as follows:

1−
(

1− 1
2`(v)

)ρ2(3/2)C√n

≤

1−
(

1− 1
2log(n)−C

)ρ22C√n

≤ ρ22C
√

n

2log(n)−C
=

ρ23C

√
n

.

As the system grows, the load above continues to
hold. If the system dramatically diminishes, the relative
fraction of data entries could grow, causing high load
on processes. Naturally, a practical system must deploy
garbage collection mechanisms in order to preserve re-
sources. The discussion of garbage collection is left out-
side the scope of this paper.

Fault tolerance The fault tolerance and failure proba-
bility measures for PQSs de�ned in [29] measure the
resilience of the system to failures. There is some tech-
nical complexity in de�ning resilience of PQSs, which
can intuitively be explained as follows. Suppose that we
have a certain PQS over an n-member universe. Sup-
pose that we add to this PQS �quorums� of all individual
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members, each �quorum� containing one member. These
quorums are non-intesecting, but we do not care: We se-
lect these quorums with zero probability! This strange
construction is �ne in the context of PQS. However, for
resilience measurement, we must take care not to count
the individual-quorums as being available, because this
would arti�cially in�ate the apparent resilience.

The formal de�nitions below take care of this by re-
lating resilience to the access probability of quorums.
The key notion with which fault tolereance is de�ned
is that of high quality quorum, which are selected with
non-marginal probabilities.

De�nition 12 (δ-high quality quorums). Let 〈Q, w〉
be an ε-intersecting quorum system, and let 0 ≤ δ ≤ 1
be given. The set of δ-high quality quorums of 〈Q, w〉 is

R = {Q ∈ Q : Pr[Q ∩Q′ 6= ∅] ≥ 1− δ},

where Q′ ∈ Q is chosen according to w.

De�nition 13 (High quality quorums). Let 〈Q, w〉
be an ε-intersecting quorum system. Then the high qual-
ity quorums of 〈Q, w〉 are the

√
ε-high quality quorums

of 〈Q, w〉.

De�nition 14 (Fault tolerance). Let 〈Q, w〉 be an ε-
intersecting quorum system. Let R be the set of high
quality quorums of 〈Q, w〉, and let S = {S : S ∩ Q 6=
∅ for all Q ∈ R}. Then the fault tolerance A(〈Q, w〉) is
minS∈S |S|.

De�nition 15 (Failure probability). Let 〈Q, w〉 be an
ε-intersecting quorum system, and let R be the set of
high quality quorums of 〈Q, w〉. The failure probability
Fp(〈Q, w〉) is the probability that every Q ∈ R contains
at least one crashed server, under the assumption that
each server in U crashes independently with probability
p.

For the availability analysis, note that all quorums of size
ρ2C

√
n are high quality. Because only ρ2C

√
n processes

need be available in order for some (high quality) quorum
to be available, the fault tolerance is n − ρ2C

√
n + 1 =

Ω(n).
The failure probability is given by Fp = e−Ω(n). Let p

denote the independent failure probability of processes.
In order that the system fail, at least n − ρ2C

√
n + 1

processes must fail. By a standard analysis of threshold-
resilience using a Cherno� bound (see [32]), the failure
probability can be bounded by the following:

Fp = Pr(#fail > n−ρ2C
√

n) ≤ e
−2n

�
ρ2C
√

n
+δ

�2

= e−Ω(n) ,

for all p ≤ 1−2ρ2C

√
n
−δ. This probability decreases rapidly

to zero for values of p approaching 1 (according to the
selection of δ), which is the best we can expect. Further-
more, this failure probability is optimal [32].

7 Discussion

In this paper we assumed the read-write ratio to be
roughly equal. It is possible to extend the techniques
of this paper to di�erentiate between read-quorums and
write-quorums, and achieve better performance. Given
any read-write ratio, instead of having all operations se-
lect cn1/2 nodes, read operations select cnα nodes, and
write operations select cn1−α nodes for some predeter-
mined 0 < α < 1.

We presented a system with a constant 1−ε intersec-
tion probability for a �xed constant ε. In the AntWalk
system [33], O(

√
n log n) processes are randomly chosen

thus leading to intersection with probability 1−nc. Our
quorum selection and evolution algorithm can be modi-
�ed along similar lines to achieve a 1 − nc dynamic in-
tersecting quorum system.

Our analysis is sketched in a model in which changes
are sequential. While we believe our construction to be
e�cient in much stronger settings, where a large number
of changes may occur simultaneously, it is currently an
open problem to provide a rigorous analysis.

The fault tolerance analysis concerns the robustness
of the data which the system stores against O(n) failures.
While the data will not be lost due to such catastrophic
failure, clearly our constant degree network, which is
used to access the data, may disconnect. Network par-
titioning can be reduced by robustifying the network
through link replication. But unless each node has O(n)
links, O(n) failures will disconnect any network. Once
the network is partitioned, the problem of rediscover-
ing the network's nodes is addressed in [17,2]. When the
network is reconnected, the dynamic de-Bruijn can be
reconstructed. After recovering from this catastrophic
failure, the system will maintain consistency, since the
information itself was not lost.
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