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Abstract

This paper studies compact routing schemes for networks with low doubling dimension. Two variants are

explored, name-independent routing and labelled routing. The key results obtained for this model are

the following. First, we provide the first name-independent solution. Specifically, we achieve constant

stretch and polylogarithmic storage. Second, we obtain the first truly scale-free solutions, namely, the

network’s aspect ratio is not a factor in the stretch. Scale-free schemes are given for three problem models:

name-independent routing on graphs, labelled routing on metric spaces, and labelled routing on graphs.

Third, we prove a lower bound requiring linear storage for stretch < 3 schemes. This has the important

ramification of separating for the first time the name-independent problem model from the labelled model,

since compact stretch-1 + ε labelled schemes are known to be possible.

1 Introduction

In this paper we study compact routing schemes for graphs with bounded doubling dimension. In
compact routing schemes the goal is to achieve efficient tradeoffs between the storage, the maximal
number of bits per node, and stretch, the maximal ratio between the route and the shortest path
over all source destination pairs. Two variants of the problem exists. In the labelled model, the
designer is allowed to assign nodes with short (typically polylogarithmic) labels that can be used
for routing. In the name-independent model, the node labels are decided by an adversary. While
this model makes the routing task much harder it also enables important network operations like
locating nearby copies of replicated objects and tracking of mobile objects [9, 6].

For example, consider the hyper-cube graph {0, 1}log n. In a labelled scheme, the designer
may give each node its natural log n bit identifier and then stretch 1 routing becomes trivial.
The name-independent version is much harder: Suppose an adversary maps nodes to names via
a random permutation of [1...n]. Intuitively, given a target label, a source node needs to discover
the location of the target at a cost that is competitive with the distance between the source and
target (which is unknown in advance).

For arbitrary n node graphs, routing schemes with stretch ≈ k that require ≈ n1/k bits per
node are known, for name-independent [9, 10, 1] and labelled [25] models. These results (for both
models) are asymptotically tight up to polylogarithmic factors. We refer the reader to Peleg’s
book [20] and to the surveys of Gavoille and Peleg [13, 14] for more detail and background.
Although intuitively the name-independent variant appears harder than the labelled one, until
now the same lower bounds hold for both problem models, and moreover the same upper bounds
were known up to polylogarithmic factors in storage and constant factors in stretch.

An easier problem than that of routing on a graph is that of routing on a metric space. A
metric space is set V and a non-negative, symmetric distance function d : V × V → R that obeys
the triangle inequality. In this model the designer needs first to choose for each node a set of
outgoing links, this then induces a directed overlay graph on which routing must occur as in the
graph model. In addition to minimizing the storage, the goal is also to minimize the number of
outgoing links. See [17, 4, 21] for routing schemes on this model.

Another aspect of routing schemes is their dependance on the scale of the network. Let the
aspect ratio ∆ be the ratio between the largest distance and the smallest distance, then many
schemes require memory that tends to infinity as ∆ increases. One would hope to remove the

1



dependence on ∆ altogether. We will say that a routing scheme is scale-free if its memory
requirement is independent of the aspect ratio. Obtaining scale-free schemes is a challenging goal:
Until now, scale-free compact routing schemes were known only for a fairly restricted class of
graphs [5] or with exponential stretch [7, 8].

In recent years, several problems, whose input contains a metric space, were shown to have
considerably better solutions when the doubling dimension is low. For example metric space
embedding [16, 18], nearest neighbor [19], distance estimation [23, 22], compact routing [21, 11].
The doubling dimension of a metric space is the smallest α > 0 such that every ball of radius 2r can
be covered by 2α balls of radius r. This notion naturally extends to undirected weighted graphs: a
graph has doubling dimension α if the metric space induced by the shortest path distances on the
graph has doubling dimension α. Yet no name-independent routing scheme on low dimensional
spaces was ever given, nor any labelled scale-free scheme provided for low dimensional graphs.

1.1 Our contribution

This paper provides a number of contributions on the topic of compact routing in low-dimensional
networks.

• In Section 2 we give the first results on name-independent routing in graphs with low
doubling dimension. Our basic scheme achieves constant stretch while requiring only
2O(α) log ∆ log n bits per node.

• We then extend this scheme in Section 3 to provide a constant stretch scale-free version
requiring only 2O(α) log4 n bits. This is the first scale-free compact routing scheme for low-
dimensional networks.

• In Section 4, we prove that any name-independent scheme with o(αn) (sub-linear) bits of
storage must have a stretch of at least 3− ǫ. In particular, this implies that there is no 1+ ǫ
name-independent scheme with sublinear storage. Thus, we separate for the first time the
name-independent and the labelled problem models, since 1 + ǫ compact labelled routing is
achievable.

• For the labelled case in metric spaces, in Section 5 we provide improvements over the best
known stretch 1+ǫ schemes. First, we achieve the optimal ⌈log n⌉ label size for graphs while
requiring lowest known memory. All previous schemes required label sizes which depend on
α, log ∆, log(1

ǫ ). Second, we give the first truly scale-free scheme on metrics, which also has
optimal label size. The best previous scheme still required a log log ∆ storage factor and
bigger labels.

• In Section 6 we present a stretch 1 + ε scale-free labelled scheme for graphs. We are not
aware of any previous scale-free schemes for graphs.

• Finally, in Section 7 we provide an additional lower bound on exact (stretch-1) compact
routing schemes. It proves that even for the very restricted class of growth bounded graphs,
Ω(

√
n) memory is required at some nodes. This demonstrates the benefits of allowing ǫ

slack in the routing stretch.

Table 1 summarizes the best known bounds and this paper’s contribution in the different
models.
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Reference Model Stretch Memory (in bits) Label/Header (in bits) Out degree

Awerbuch & Peleg [9] G, NI O(log2
n) O(log ∆ log2

n) O(log n)

This paper (Thm. 1) G, NI O(1) 2O(α) log ∆ log n O(log n)

This paper (Thm. 2) G, NI O(1) 2O(α) log4
n 2O(α) log3

n

Talwar [23] G, L 1 + ε O( 1
αǫ

)α log2+α ∆ O(α log ∆)

Chan et al. [11] G, L 1 + ε (α

ε
)O(α) log ∆ log n O(α log 1

ǫ
log ∆)

Slivkins [21] (Thm. 2.1) G, L 1 + ε ( 1
ε
)O(α) log ∆ log n O(α log 1

ǫ
log ∆)

Slivkins [21] (Thm. 4.1) G, L 1 + ε ( 1
ε
)O(α) log ∆ log n log log n 2O(α) log n log( 1

ǫ
log ∆)

This paper (Thm. 4) G, L 1 + ε ( 1
ε
)O(α) log ∆ log n ⌈log n⌉

Slivkins [21] (Thm. 4.2) M, L 1 + ε ( 1
ε
)O(α) log n log log n log log ∆ O(α log n log( 1

ǫ
log ∆)) ( 1

ε
)O(α) log n

This paper (Thm. 5) M, L 1 + ε ( 1
ε
)O(α) log2

n ⌈log n⌉ ( 1
ε
)O(α) log n

This paper (Thm. 6) G, L 1 + ε ( 1
ε
)O(α) log3

n 2O(α) log3
n

Table 1: Our results and comparison with previous results for routing schemes on n nodes of doubling
dimension α, aspect ratio ∆ and constant ε > 0 . Model notation: G for graph, M for metric space, NI for
name-independent, L for labelled

1.2 New Techniques

Our solutions employ a variety of novel techniques that are of interest in their own right.

In order to achieve scale-freedom in graph routing (both labelled and name-independent),
we use a new sparse-dense decomposition based on [3] that combines scale-based partitions with
node-count based partitions. Only doubling the scales may not be scale-free and storing only the
O(log n) scales that have a density change, like the measured decent decomposition [18], leads
to Ω(log n) stretch. To get constant stretch and polylogarithmic memory, our decomposition at
least doubles both the scale and the node count at each level. It uses different routing schemes
for each level depending on whether it is sparse or dense.

Through all of our constructions, a useful building block we designed for low doubling graphs
is a hierarchical network that grows gradually more dense. This is used for spanning low-degree
low-diameter trees.

For the labelled case we propose a new labelling scheme based on hierarchical nets and a
natural DFS enumeration, and combine this with the ring of neighbor scheme of [21]. This
produces optimal ⌈log n⌉-size labels.

1.3 Model and notation

Given is a weighted graph G = (V, E, ω) of size n = |V | with a non-negative weight function
ω : E → R

+. Let the cost of a path be the sum of the weights of its edges. For any u, v ∈ V let
d(u, v) be the cost of a minimum cost path between u and v, observe that (V, d) is a metric space.
Let ∆ denote the aspect ratio (normalized diameter) of G, ∆ = maxu 6=v d(u, v)/ minu 6=v d(u, v). In
order to avoid dragging a normalization constant, from here on assume that minu 6=v d(u, v) = 1.

Define the radius r ball around node u, B(u, r), as the set of nodes whose distance is at most
r from u, B(u, r) = {v | d(u, v) ≤ r}. For any node u, let T (u) denote a minimum cost path
spanning tree rooted at u. Given a lexicographic order on the nodes, for any node u ∈ V , set
Z ⊆ V , and integer m > 0 define N(u, m, Z) as the m closest nodes from Z to node u, i.e., as
the set N(u, m, Z) = N such that N ⊆ Z, |N | = m and for all x ∈ N and y ∈ Z \ N either
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d(u, x) < d(u, y) or d(u, x) = d(u, y) and x is lexicographically smaller than y. Let I denote
the set I = {0, 1, . . . , ⌈log ∆⌉}. Let K denote the level set K = {0, 1, 2, . . . , ⌈log n⌉}. Each node
has an arbitrary unique network identifier consisting of polylog(n) bits. Using standard hashing
techniques it is possible to generalize the model and assume nodes have arbitrarily long unique
labels.

Given two sets U ⊆ V , we define the following. U in an r-cover of V if ∀v ∈ V, ∃u ∈ U
such that d(u, v) ≤ r. U is a minimum r-cover of V if U is an r-cover of V and for any other
r-cover W , |U | ≤ |W |. U is r-independent if ∀u, v ∈ U : d(u, v) > r. U is an r-net of V if U is
r-independent and is an r-cover of V .

2 A Simple Name-Independent Routing Scheme

We begin by observing that low doubling dimension spaces have efficient sparse covers.

Lemma 1. For every weighted undirected graph G = (V, E, ω), |V | = n, with doubling dimension
α and integer ρ ≥ 1, there exists a polynomial algorithm that constructs a collection of sets
Cρ(G) ⊂ 2V such that:

1. (Cover) For all v ∈ V , there exists C ∈ Cρ(G) such that B(v, ρ) ⊆ C.
2. (Sparse) For all v ∈ V , | {C ∈ Cρ(G) | v ∈ C} | ≤ 4α.
3. (Small radius) For all C ∈ Cρ(G), rad(C) ≤ 2ρ, where rad(C) =

min {r | ∃u ∈ C : C ⊂ B(u, r)}.

Proof. Let U be a ρ-net of G, choosing U can be done in a simple greedy manner. Define
Cρ(G) = {B(u, 2ρ) | u ∈ U}. Property 1 follows since for any v fix u ∈ U such that d(u, v) ≤ ρ, so
B(v, ρ) ⊆ B(u, 2ρ). Property 3 follows by definition of Cρ(G). For Property 2, fix v ∈ V , let W
be a minimum ρ/2-cover of B(v, 2ρ), then |W | ≤ 4α and |U ∩ B(v, 2ρ)| ≤ |W | because each ball
in W contains at most one point from the ρ-net U .

Note by comparison that for general spaces, the seminal sparse covers of Awerbuch and Peleg
[9] provide O(n1/k) sparsity with cover radius kρ, for any chosen integer parameter k ≥ 1. Thus,
the low doubling dimension allows us to substantially improve the partition parameters.

For each i ∈ I let C2i(G) be a set of clusters as in Lemma 1. For each i ∈ I and C ∈ C2i(G)
we apply the following lemma to construct a low degree, low diameter tree T (C) that will be used
for routing. Note that T (C) is not necessarily a subgraph of G: it may use edges that are not in
G.

Lemma 2. Given a set C ⊂ V with rad(C) ≤ ρ, there exists a weighted tree T (C) whose nodes
are C with the following two properties:

1. Each node has out degree at most 4α.
2. Let the weight of edge (u, v) be dG(u, v). Then the weighted diameter of T (C) is at most 2ρ.

Proof. Let U0 = {r} be a set containing the center of the cluster C. For i = 1 to ⌈log ρ⌉ let Ui be
a (2−iρ)-net of C \∪0≤j<iUj . The tree is formed by connecting each v ∈ Ui to the closest node in
Ui−1, denoted p(v). Note that no cycles are created since if u ∈ Ui it will never be in Uj for j > i.
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For any u ∈ Ui−1 if p(v) = u then v ∈ B(u, 2−(i−1)ρ)∩Ui. Since Ui is a subset of an (2−iρ)-net
then |B(u, 2−(i−1)ρ)∩Ui| ≤ |W | where W is a minimum (2−(i+1)ρ)-cover of B(u, 2−(i−1)ρ). Hence
|{v | p(v) = u}| ≤ |W | ≤ 4α. For the diameter of the tree note that any path from the root is
bounded by

∑

0≤i 2
−iρ ≤ 2ρ.

Given such a tree we show an efficient routing scheme.

Lemma 3. Given a weighted undirected tree T = (V, E, ω) with root r, |V | = n, diameter ρ and
maximum out-degree k, there exists a name-independent tree-routing scheme on T with error-
reporting that routes on paths of length bounded by 4ρ, each node requires O(k log n) memory bits
and headers are of length O(log n). Moreover, routing for a non-existent name in T also incurs
a (closed) path of length 4ρ until a negative result is reported back to the source.

Proof. Let d(v) be a depth-first search post-order enumeration of the nodes in T starting from
the root. Let w1 < w2 < · · · < wn be a sorted sequence of the node names (lexicographical order).
For any node, let M(v) denote the sequence 〈d(v), wd(v)〉. Each node v stores M(v) and M(u)
for all u that are direct children of v. In addition each node v stores d(wd(v)). Observe that this
storage requires O(k log n) bits. Given a name w = wi, it costs at most ρ to get to the root. Then,
using M(·) information stored at each node, it is possible to navigate down the tree to the node
v such that d(v) = i, this costs at most ρ. Specifically, navigation is done by comparing for each
child t its stored wd(t) to w; and proceed to the child with largest wd(t) which does not surpass w.

Since v will store d(wi) it is possible to return to the root (at cost ρ) and route to w using
d(v) with an additional cost of ρ. If the name does no exist then it will cost 2ρ to reach the root
and back to the source.

The remaining obstacle is that T (C) is not a subgraph of G. So each node v ∈ T (C) needs
to be able to route to its parent and each of its children in T (C). This is done by storing for
each such connection the label of a labelled (1 + ǫ)-stretch routing scheme for a fixed ǫ < 1. This
requires a node in a tree to store routing information for at most 4α of its children. For the
labelled scheme we can employ the (1 + ǫ)-stretch scheme due to Slivkins [21], or the improved
labelled scheme we introduce later in this paper in Section 5.

Storage. The storage per node is as follows. For each i ∈ I, a node belongs to at most 4α

clusters. For each cluster a node maintains 4α connections. Each connection requires labels
of size O(log n) for maintaining M(·). The total is (log ∆)42αO(log n). In addition each node
participates in a labelled routing scheme with ǫ = 1/4 at cost 2O(α) log ∆ log n. The total is
2O(α) log ∆ log n.

Routing. Given a source s, for each i ∈ I, let Ci ∈ C2i(G) be the cluster such that B(s, 2i) ⊆ Ci.
Routing for a target t is done iteratively by searching for t on Ci using the scheme of Lemma 3
on the tree of Lemma 2 that spans Ci.

Stretch. For the index i such that 2i−1 < d(s, t) ≤ 2i, s will find t at the ith phase. The cost
of a phase j is as follows: It cost at most 2j to reach the tree root of Cj . The diameter of Cj is
bounded by 2j+1 and the diameter of the spanning tree of Lemma 2 is bounded by 2j+2. Searching
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for t from the cluster root costs stretch 5/4 < 2 for labelled routing times 2j+2 until the label of
the target is found, for a total cost of at most 2j+3. Then factor of 5/4 < 2 for labelled routing
and distance at most 2j+1 due to cluster diameter for reaching the source or target. The total
path is 2j+3 + 2j + 2j+2 ≤ 2j+4.

Summing on all levels from 0 to i we get
∑i

j=0 2j+4 = 2j+5 − 1 < 26d(s, t). So the stretch is

at most 26 = 64.

Theorem 1. For each weighted n-node graph with doubling dimension α and aspect ratio ∆, there
is a polynomial time constructible name-independent routing scheme with stretch factor 64 that
uses 2O(α) log n log ∆-bit routing tables per node.

3 A Scale-Free Name-Independent Routing Scheme

We begin with some modifications to Lemma 2 and Lemma 3 in order to make the construction
scale-free. For Lemma 2, instead of building the tree by iterating i from 1 to ⌈log ρ⌉ we iterate
only to max{⌈ρ⌉ , ⌈3 log n⌉}. Observe that some nodes may not belong to the tree yet. For each
u ∈ U3 log n let C(u) be the set of nodes in B(u, 2ρ−3 log n) whose closest node from U3 log n is u.
Hence G[C(u)] is connected so we build a spanning tree of C(u) rooted at u. Note that now a
node can belong to at most one Xi and to at most one C(u), hence a real node simulates two
nodes in the tree.

Since the diameter of each C(u) is smaller than n−2ρ we modify Lemma 3 as follows: while
searching for the label of the target, if we reach a node in X3 log n that has some subtree we will
simply visit all nodes in that subtree. For this we use the following scheme on the tree.

Lemma 4. [12, 25] For every weighted tree T with n nodes there exists a labelled routing scheme
that, given any destination label, routes optimally on T from any source to the destination. The
storage per node in T , the label size, and the header size are O(log2 n/ log log n) bits. Given the
information of a node and the label of the destination, routing decisions take constant time.

Given an enumeration of the nodes in C(u) each node stores the label of the next node in the
enumeration, hence it is possible to visit all nodes in C(u) at cost of at most ρ, while requiring
each node to store O(log2 n) bits.

Finally we replace the non scale-free labelled scheme used to route between nodes in the virtual
tree with the scale-free version described in Section 6 with ǫ = 1/4.

Summing up the changes, for each tree, a nodes needs to store 2O(α) log3 n bits per cluster it
belongs to.

3.1 Sparse-dense decomposition

We use the decomposition into dense and sparse neighborhoods from [3] with parameter k =
⌈log n⌉. Let K = {0, 1, 2, . . . , ⌈log n⌉}. For all u ∈ V and i ∈ K define the range a(u, i) recursively
as follows. Define a(u, 0) = 0. Then recursively define a(u, i + 1) as the smallest positive integer
j > a(u, i) such that |B(u, 2j)| ≥ 2|B(u, 2a(u,i))| (or let a(u, i + 1) = log ∆ if there does not exist
such an integer). For all u ∈ V and i ∈ K denote the neighborhood ball A(u, i) as the ball of
radius 2a(u,i) around u. Formally, A(u, i) = {u} for i = 0 and A(u, i) = B(u, 2a(u,i)) for i > 0.
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Intuitively, if the gap between a(u, i) and a(u, i+1) is small, then the neighborhood A(u, i+1)
is “dense” relative to the neighborhood A(u, i), otherwise A(u, i+1) is “sparse” relative to A(u, i).
A central definition capturing this intuitive notion is the following.

Let Φ be a integer parameter. For this section, let Φ = 5.

Definition 1 (Dense level). For u ∈ V and i ∈ K, we say that i is a dense level for node u if

a(u, i) < a(u, i + 1) ≤ a(u, i) + Φ

We say that i is a sparse level for node u if it is not a dense level. In words, in a dense level,
we find at least twice as many nodes as the current level by looking at a ball whose radius is at
most 2Φ times the current level.

The high level view of the routing scheme a simple iterative protocol. For phases i = 1 to
k, search for v as follows: If A(u, i) is sparse, use the sparse neighborhood routing strategy. If
A(u, i) is dense, use the dense neighborhood routing strategy.

3.2 Dense levels

For every u ∈ V define the range set of node u, denoted L(u), as L(u) = {a(u, i) | i ∈ K} and
define the extended range set R(u) as,

R(u) = {j ∈ I | ∃a ∈ L(u) s.t. − 1 ≤ a − j ≤ Φ + 1} .

Define F (u, i) = B(u, 2a(u,i)/2). The main property of dense levels is captured in the following
lemma.

Lemma 5 (Dense neighborhoods). [3] If i is a dense level for u and v ∈ F (u, i) then a(u, i) ∈
R(v).

Proof. Let v ∈ F (u, i) = B(u, 2a(u,i)−1), then B(v, 2a(u,i)−1) ⊆ A(u, i) and hence |B(v, 2a(u,i)−1)| ≤
|A(u, i)|.

Since a(u, i + 1) ≤ a(u, i) + Φ, then B(v, 2a(u,i)+Φ+1) ⊇ A(u, i + 1), and hence
|B(v, 2a(u,i)+Φ+1)| ≥ |A(u, i + 1)| ≥ 2|A(u, i)|.

Together, these imply |B(v, 2a(u,i)+Φ+1)| ≥ 2|B(v, 2a(u,i)−1)|. Therefore, there exists some
index a(v, j) such that a(u, i) − 1 ≤ a(v, j) ≤ a(u, i) + Φ + 1.

For every i ∈ I define Gi = (Vi, Ei) as the subgraph induced by the nodes Vi = {u | i ∈ R(u)}.
For each Gi we construct the routing scheme for scale 2i of Section 2. Specifically we build the
sparse cover of Lemma 1 of scale 2i and on each cluster we build the virtual tree and routing
scheme as detailed in the beginning of Section 3. Note that Gi may have several connected
components, in which case we construct the routing scheme for each such component separately.

Storage. Each node u stores routing scheme for scale 2i for each i ∈ R(u). For each such scale,
a node stores 2O(α) log3 n bits.
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Routing and Cost. Routing on a dense level i of node u is done by searching for the target
on the virtual tree spanning the cluster that contains the ball BGa(u,i)

(u, 2a(u,i)). The cost of

searching on this cluster is bounded by O(2a(u,i)).

3.3 Sparse levels

For sparse levels we construct a collection of landmarks {Ci ⊂ V | i ∈ K} due to Slivkins [21].
The following lemma follows from [21](Lemma 3.1). For completeness, we provide a proof of this
special case here. For any v ∈ V and i ∈ K let r(u, i) be the radius of N(v, 2i).

Lemma 6. For every i ∈ K there exists a set of landmarks Ci ⊆ V such that:
(1) d(u, Ci) ≤ 5r(u, i), for every node u.
(2) If |B(u, r)| ≤ 2j then |B(u, r/2) ∩ Ci| ≤ 22α+j−i + 1

Proof. Fix some i ∈ K. For each u ∈ V , denote N0 = N(u, 2i). From here on, for any ball B,
denote by B′ the ball obtained by blowing up B’s radius twice.

We define a mapping from u to balls Bu ⊆ B(u, 2r(u, i)), with the following property: Bu

has at least 2i/22α nodes, and blowing up Bu’s radius twice results in a ball that contains at
most 2i nodes. This is possible by the low dimensionality, as follows. There exists a cover of
N0 with balls N0,1, . . . , N0,22α whose radius is r/4. One ball contains 2i/22α nodes, denote it N1,

and accordingly N
′

1 the ball with twice its radius. If N
′

1 covers less than 2i nodes, we are done.
Otherwise, continue recursively with N

′

1. Since we reduce the radius to a half at each step of
the recursion, the process must end with a ball Nj with the desired property. Since each ball
Ni intersects N

′

i−1, and radii decrease by a factor of two on each element, the final ball satisfies

N
′

j ⊆ N
′

0.

We now take a maximal set Fi of non-intersecting balls Bu, and define Ci to be the set of
their center points. First, by counting, a ball B(s, r) with 2j nodes can trivially contain at most
2j−(i−2α) balls from F . Second, since Fi contains disjoint balls Bu, there can be at most one ball
Bu whose center is inside B(s, r/2) and whose radius is r/2. Hence, all but one center from Ci

inside B(u, r/2) belong to balls that are fully contained in B(u, r). Property (ii) follows.

In order to show (i), fix any node u. If Bu ∈ Fi, clearly B(u, 2r(u, i)) contains the center,
and we are done. Otherwise, Bu intersects some other ball Bv ∈ Fi. Since B

′

v contains at most
2i nodes, it does not strictly contain B(u, r(u, i)) = N(u, 2i). But since Bv and Bu intersect,
and Bu ⊆ B(u, 2r(u, i)), we have rad(Bv) ≤ 3r(u, i). Hence, the ball B(u, 2r(u, i) + rad(Bv)) ⊆
B(u, 5r(u, i)) contains the center v, as required.

For every u ∈ V and i ∈ K define the nearby landmarks S(u, i) to be the 22α+2 + 1 closest
nodes in Ci.

S(u, i) = N(u, 22α+2 + 1, Ci)

and define S(u) =
⋃

i∈K S(u, i).

Define the center c(u, i) as the closest node to u from Ci. and define C(u) =
⋃

i∈K c(u, i).

Let Γ = 4. Let E(u, i) = B(u, 2a(u,i+1)−Γ).

The main property of sparse levels is captured in the following Lemma.
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Lemma 7 (Sparse neighborhoods). Let i be a sparse level for u, i.e., a(u, i + 1) > a(u, i) + Φ. If
v ∈ E(u, i) then C(u) ∩ S(v) 6= ∅.

Proof. Denote a = a(u, i + 1). Let j be the index such that 2j ≤ |B(u, 2a(u,i)| < 2j+1 hence
|B(u, 2a−Φ)| ≥ 2j so N(u, 2j) ⊆ B(u, 2a−Φ). So d(u, Cj) ≤ 5 · 2a−Φ.

We now show that c(u, j) belongs to S(v, j). We do this by constructing a ball B1 around
v that contains B(u, 5 · 2a−Φ) on the one hand, and on the other hand has fewer than 22α+2

landmarks from Cj .

For B1 to contain sufficiently few landmarks, we start with B2 = B(v, 2a−1 − 2a−Γ), hence
B2 ⊆ B(u, 2a−1) so |B2| ≤ 2j+2, and by Lemma 6, B(v, 2a−2−2a−Γ−1) contains at most 22α+2 +1
landmarks from Cj . Accordingly, we choose B1 ⊆ B(v, 2a−2 − 2a−Γ−1).

For B1 = B(v, r) to contain B(u, 5 · 2a−Φ), it must have radius r ≥ 5 · 2a−Φ +2a−Γ. So we will
choose B1 = B(v, 5 · 2a−Φ + 2a−Γ).

Hence we need 5 · 2a−Φ + 2a−Γ ≤ 2a−2 − 2a−Γ−1 which is true when Γ ≥ 4 and Φ ≥ 5.

Therefore c(u, j) ∈ S(v, j) and the lemma follows.

So if a(u, i) is a sparse level let J(i) be the index such that 2J(i) ≤ |B(u, 2a(u,i)| < 2J(i)+1. The
routing scheme uses the following single source scheme.

3.3.1 Single-source routing

The following single-source routing scheme extends Lemma 3 to give constant stretch with poly-
logarithmic memory bound. We actually need a stronger result that gives either constant stretch
or a predetermined error cost:

Lemma 8. For any graph G = (V, E, ω) with doubling dimension α, |V | = n, and for any des-
ignated root r ∈ V , there exists a name-independent error-reporting single-source routing scheme
with the following properties:

1. Each node stores 2O(α) log3 n bits of routing information.
2. There exist O(log n) sub-clusters X1 ⊂ · · · ⊂ Xy = V such that the following holds for every

i: G[Xi] is connected, contains r, diam(Xi) ≥ 2 diam(Xi−1), and |Xi| ≥ 2 |Xi−1|.
3. For any j ∈ {0, . . . , y}, the root can perform a j-bounded search for destination v. A

j-bounded search for v has the following properties: If v ∈ Xj then it reaches v with
stretch O(1); Otherwise it returns a negative response to the root incurring a cost of at
most O(diam(Xj−1)).

Proof. Given a cluster X with |X| = n and a root r ∈ X we build O(log n) sub-clusters X1 ⊂
· · · ⊂ Xy in the following manner. Let X1 = {r} and recursively define Xi+1 as the minimal ball
around r such that |Xi+1| ≥ 2|Xi| and diam(Xi+1) ≥ 2 diam(Xi). If there does not exist such a
cluster then set Xi+1 = V and y = i + 1. If |Xi+1| = 2|Xi| then we say Xi+1 is sparse, otherwise
Xi+1 is dense. Note that if Xi+1 is dense then diam(Xi+1) = 2 diam(Xi) (unless y = i + 1,
in which case diam(Xi+1) ≤ 2 diam(Xi)). We build the scheme of [12, 25] (see Lemma 4) on a
shortest path tree rooted at r spanning x, let Λ denote this scheme. For every Xi we define a tree
Ti, if Xi is sparse then Ti is the virtual tree on Xi−1 as defined by Lemma 2 with the modification
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that the labels stored by nodes are of the Λ scheme and that that Ti on Xi−1 stores all the labels
of the Λ scheme of nodes in Xi, hence each node must store at most two labels. Otherwise let Ti

be the tree of Lemma 2 on Xi, and build the regular scheme from Lemma 3 while storing labels
of scheme Λ. Since y = O(log n), any node can belong to at most O(log n) trees and each tree
requires O(4α log2 n) bits per node.

A j-bounded search performs a search from r for t iteratively in T1, T2, . . . , Tj−1, and if Tj

is dense, also in Tj (if T(j−1) is sparse, searching T(j−1) is enough). For any i, if Xi is a dense
level then searching as in Lemma 3 costs at most O(diam(Xi)) = O(diam(Xi−1)). If Xi is sparse
then searching on Xi−1 as in Lemma 3 costs at most O(diam(Xi−1)). Given a target t, there
are two cases. If t /∈ Xj then the total cost will be

∑

i≤j O(diam(Xi−1)) = O(diam(Xj−1)) as
required. Otherwise, if t ∈ Xℓ for ℓ ≤ j then if Xℓ is dense then d(r, t) = Θ(diam(Xℓ−1)) and
finding t will cost

∑

i≤ℓ O(diam(Xi−1)) = O(diam(Xℓ−1)). Otherwise, if t ∈ Xℓ and Xℓ is sparse
then d(r, t) > diam(Xℓ−1), and finding t will cost

∑

i≤ℓ−1 O(diam(Xi−1)) + d(r, t).

3.3.2 Sparse level routing

Storage. The storage used per node for sparse level routing is as follows. Each node maintains
the routing scheme of Lemma 8 for all the centers v such that v ∈ S(u).

In addition each node u maintains for each sparse level i the minimal index bound(i) such
A(u, i) ⊆ Xbound(i), where Xbound(i) is the set in Lemma 8 for the closest center of level J(i).

So the amount of memory per sparse level is 22α+2 centers times 2O(α) log3 n bits for Lemma 8,
for a total of 2O(α) log3 n bits

Routing and Cost. On sparse level a(u, i) node u routes to the closest center ℓ from CJ(i) and
uses the single source routing scheme with bounding parameter bound(i) for Lemma 8 to shortest
path tree rooted at ℓ that contains all the nodes v that maintain ℓ ∈ S(v). If the target is not
found then the cost is bounded by O(2(a(u,i))) this follows from the definition of bound(i) and
Lemma 8. If the target is found during the search then by Lemma 8 the stretch is O(1).

3.4 The routing scheme

Theorem 2. For each weighted n-node graph with doubling dimension α and aspect ratio ∆, there
is a polynomial time constructible name-independent routing scheme with stretch factor O(1) that
uses 2O(α) log n min{log3 n, log ∆}-bit routing tables per node.

Proof sketch. For storage, Every node stores 2O(α) log3 n bits per dense level and 2O(α) log3 n per
sparse level. Since a node maintains at most log n sparse levels and |R(u)| = O(log n) dense levels,
the total scale-free storage is bounded 2O(α) log4 n bits per node.

For stretch analysis, let i ∈ K be the first iteration index in which v is found when search
from u. There are two cases to consider.

1. If level i − 1 is sparse for u, then given that v is not found in iteration i − 1, by Lemma 7,
v is not inside E(u, i − 1), and hence, d(u, v) ≥ 2a(u,i)−Γ.
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2. Otherwise, level i−1 is dense for u, and again, v is not found in iteration i−1. In this case, by
Lemma 5, v is not inside F (u, i−1) = B(u, 2a(u,i−1)/2). By density, a(u, i) ≤ a(u, i−1)+Φ.
Putting these two facts together, we have d(u, v) ≥ 2a(u,i−1)−1 ≥ 2a(u,i)−(Φ+1).

In either case, d(u, v) ≥ C1 · 2a(u,i) for a universal constant C1. From the analysis of both sparse
and dense cases, reaching v on level i will cost at most C2 ·d(u, v) where C2 is a universal constant.

For the cost of the negative responses, note that the highest level that fails is i− 1. From the
analysis of both sparse and dense cases, the cost of a negative response for level j is bounded by
C3 · 2a(u,j+1) for some universal constant C3.

Hence, the total cost of negative response is at most
∑i−1

j=0 C3 · 2a(u,j+1) ≤ C32
a(u,i)+1. So the

stretch is bounded by
C2 · d(u, v) + C3 · 2a(u,i)+1

C1 · 2a(u,i)
= O(1)

4 Lower Bounds for Shortest-Path Single-Source Routing

Schemes

A (d, m, ǫ)-star, for integers d, m ≥ 1 and ǫ ∈ [0, 1), is a subdivision G of K1,d, each edge of K1,d

being subdivided into exactly m nodes. It has a total of n = md+1 nodes and the degree-d node
of K1,d is called the center of G. The edges of G receive weights such that the distances from the
center to all the nodes of a same branch range in [1− ǫ, 1]. Finally, the nodes of G have (unique)
names taken from {1, . . . , md + 1}, the center being labelled md + 1.

We observe that an (n−1, 1, 0)-star is an unweighted n-node planar graph (it is actually a tree
isomorphic to K1,n−1 with uniform weights 1 − ǫ = 1 on all its edges), and that a (d, m, ǫ)-star
has doubling dimension α = log(d + 1) ∈ [1, log n].

Theorem 3. There is an (d, m, ǫ)-star for which every single-source name-independent routing
scheme with stretch factor < 3(1− ǫ) has memory requirements at least md log d−d log

√
7m bits.

In particular, for unweighted n-node trees, the stretch factor must be at least 3 if less than
Ω(n log n) bits are used, and for n-node graphs of doubling dimension α, the stretch must be at
least 3 − ǫ, for any ǫ > 0, if less than Ω(αn) bits are used.

Proof. Consider any single-source routing scheme R on an (d, m, ǫ)-star G. Assume that the
stretch factor of R is s < 3(1 − ǫ) and the source of R is the center of G. The center must route
to any destination y ∈ {1, . . . , md} (whose distance from the center ranges from [1− ǫ, 1]) on the
branch containing node y, since otherwise the stretch would be at least 3(1 − ǫ)/1.

With each possible labeling of the destinations, let us associate the routing table of the center,
say T . More precisely, T is a table of md entries such that T [y] ∈ {1, . . . , d} returns the port
number of R applied on y. From the above discussion, T [y] must return the branch number to
which y belongs.

In the fixed-port model, the number f(d, m) of distinct routing tables T used for all labelings
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of G, is:

f(d, m) =
(md)!

(m!)d

since there are (md)! labelings for the destinations, and since there are m! possible permuta-
tions for each branch (each such permutation given the same table). Clearly, at least one such
destination labeling forces the routing table of the center of G to store at least log f(d, m) bits.

For every n ≥ 1, we have n log(n/e) < log (n!) < n log(n/e) + log
√

7n, because, for n ≥ 1,
(n/e)n

√
2πn < n! < (n/e)n

√
2πne1/12−1/360+1/1260 < (n/e)n

√
7n (cf. formula (9.91) of [15][pp.

481]). Therefore the number of bits required by the center of G is at least:

log f(d, m) ≥ md log(md/e) − d(m log(m/e) + log
√

7m) = md log d − d log
√

7m

that completes the proof.

5 Labelled Routing Schemes

In this section we study labelled routing schemes for metric spaces. Routing with stretch 1 is
trivial using labels with O(n2 log n) bits that encode the whole graph. Hence an important factor
is the label size. Typically this is bounded by a polylogarithmic number of bits.

In all previous labelled stretch 1+ ε schemes [23, 11, 21], nodes labels depend on the doubling
dimension α and the aspect ratio ∆. Except for [23], they also depend on the stretch ǫ. Here we
provide a scheme with optimal labels of only ⌈log n⌉ bits. Furthermore, the storage is scale-free:
The storage in our scheme is (1

ε )O(α) log2 n, independent of the aspect ratio ∆.

5.1 Optimal label size

In this section, we explain the method for obtaining ⌈log⌉ bit label sizes. Let 1 + ǫ be the desired
stretch factor. Assume 0 < ǫ ≤ 2.

Our scheme builds a hierarchical net in the following intuitive manner. Start with a singleton
2log ∆-net Xlog ∆ = {r}, for an arbitrary choice of r ∈ V . Then recursively construct a 2i-net Xi

out of Xi+1 by expanding Xi+1 with nodes (greedily) to obtain a 2i-net. Thus, ∀ 1 ≤ i ≤ log ∆ :
Xi−1 ⊇ Xi.

The hierarchical {Xi} net naturally induces a tree T as follows: The root is r ∈ Xlog ∆. For
consistency, we count the tree levels from top (log ∆) to bottom (1). Now iterate on i to connect
every node in Xi to the closest node in Xi+1. Note that some nodes of V appear multiple times
in T . In order to distinguish V members from tree nodes we will call the latter tnodes. Also note
that, for any node x ∈ Xi∩Xi+1, the closest node to x from Xi+1 is x itself. Therefore, the tnode
in T that corresponds to x at level i + 1 connects to a tnode that corresponds to x at level i.

The important property maintained by this construction is the follows. Since every tnode s
at level j has distance at most 2j to its parent (at level j + 1), then a sub-tree rooted at level j
has radius 2j+1 around its root.

Let D(v) be a DFS enumeration of T that skips duplicate nodes. More precisely, if a node x
appears in several levels of T then it is counted the first time it is visited in the DFS order; on
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further visits, it is skipped and the DFS enumeration continues with the next tnode in the DFS
order.

A range of a tnode is the range of the DFS enumeration of its subtree. For a node v, let
Li(v) be the range of the tnode corresponding to v at level i of T (⊥ if none), observe that Li(v)
requires 2⌈log n⌉ bits. The label of a node v is defined simply as D(v) and requires ⌈log n⌉ bits.

For every i ∈ I and node x, let Yi(x) = B(x, 2i+1) ∩ Xi. Then we have the following.

Claim 9. For every i ∈ I and node x either x ∈ Yi(x) or there exists ℓ ∈ Yi(x) such that the
range Li(ℓ) contains D(x).

This follows directly from the structure of DFS enumerations and the fact that if x does not
belong to Xi then it has a parent in ℓ ∈ Xi with d(x, ℓ) ≤ 2i+1.

As a side remark, observe that with the above labelling scheme we can easily obtain a (1+ ε)-
stretch labelled routing scheme with ⌈log n⌉ label sizes as follows.

A node v maintains (Li(x), D(x)) for every x ∈
(

B(v, 2i+2) ∩ Xi−c

)

and i ∈ I. The parameter
c = log 1

ε + 3 guarantees that if 2i < d(v, u) ≤ 2i+1, then using the labels, v finds a net point
x ∈ Xi−c at distance at most 2i−c+1 < ε

4d(v, u) from u.

Claim 10. Stretch is 1 + ε.

Proof. Suppose the path of landmarks is u = x0, x1, . . . , xt = v then each time we route from
xi−1 towards v through a node xi we will show d(xi−1,xi)

d(xi−1,v)−d(xi,v) ≤ 1 + ǫ. Hence
∑t

i=1 d(xi−1, xi) ≤
(1+ǫ)

∑t
i=1(d(xi−1, v)−d(xi, v)) ≤ (1+ǫ)d(u, v). It remains to observe that d(xi, v) ≤ ε

4d(xi−1, v)

so d(xi−1,xi)
d(xi−1,v)−d(xi,v) ≤

(1+ ε
4
)d(xi−1,v)

(1− ε
4
)d(xi−1,v) ≤ 1 + ε using ǫ ≤ 2.

For storage, note that for each i, the number of nodes for which label information is maintained
is at most (2α)c+2 = 2O(α log(1/ε)). The total storage per node is therefore (1

ε )O(α) log n log ∆ bits.

Theorem 4. For any n point undirected weighted graph with doubling dimension α, aspect ratio
∆, and for any ǫ ≤ 1/2 there exists a polynomial time constructible labelled routing scheme that
assigns ⌈log n⌉ bit labels, routes on paths of stretch 1 + ǫ, and requires each node to maintain
(1

ε )O(α) log n log ∆ bits of routing information.

5.2 Scale-free labelled routing for metric spaces

Our next goal is to remove the scale factor from the storage. For this we use the concept of
the component tree of Thorup [24]. The following construction is applicable in the metric space
model.

Let G(i) be the subgraph of G containing all edges e for which ω(e) ≤ 2i. Note that G(i) is
not necessarily connected. For a graph G, let C(G) be the number of connected components of
G.

We recursively define the component tree, a rooted tree S = (W, p). The nodes W of S are
connected subgraphs of G. The root node is G and the leafs are all the singleton subgraphs. For
a node H ∈ W let cal(H), the caliber of H, be the maximum integer i such that C(H(i)) > 1.
Let F1, . . . , FC(H(cal(H)) be the connected components of H(cal(H)), then the children of H in
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the tree S will be the nodes F1, . . . , FC(H(cal(H)). This completes the definition of the component
tree. The parent function p : W → W maps each child to its parent in S, such that H is a child
of p(H) for any H ∈ W .

Claim 11. For any subgraph H ∈ W , the length of any simple path in H is ≤ 2cal(H)(n − 1)

Let W ⊂ W be the non-leaf nodes of S. We now proceed to assign to each H ∈ W a node
in v ∈ H such that each node in V is assigned at most one node in W . Initially all nodes are
unassigned. We build the assignment from leaves to the root, while maintaining the following
invariant for a node H ∈ W : If p(H) has no assignment yet, then H contains an unassigned node
v ∈ H. Given a node H with children F1, . . . , Ft, for some t ≥ 2, each child is either a single node,
in which case this node is unassigned or by the induction assumption has an unassigned node.
Hence we assign a previously unassigned node to handle H and there remains at least one more
unassigned node. We denote by v(H) the node assigned to H. The assignment induces a tree R
on a subset of the nodes of V : For a node v = v(H), fix its parent p(v) to be the node assigned
to its parent in the component tree S, i.e., v(p(H)).

Let ring(u, i, c) = B(u, 2i+2)∩Xi−c. Each node u maintains at most two sets of rings. The first
set is ring(u, i, c) for all cal(u) ≤ i ≤ cal(u)+3 log n+5+log(1/ǫ). If u is assigned to some H ∈ W
then it also maintains a second set: ring(u, i, c) for all cal(H) ≤ i ≤ cal(H)+3 log n+5+log(1/ǫ).
In addition, node u maintains p(u).

Routing: The idea is to climb up the component tree to the root until the target is found.
First look for the target in the first ring-set, if does not exist go to the parent. Given a node
assigned to a component, use its second set of rings. If the target is not found then move to the
parent.

Memory: Each ring requires at most (1
ε )O(α) log n bits. A node maintains up to 2(3 log n +

5 + log(1/ǫ)) rings, for a total memory of (1
ε )O(α) log2 n bits.

Stretch: From a node u, if d(u, t) ≤ n32cal(H) 25

ε , then some ring in the first set contains a
net point that cuts the distance and maintains stretch 1 + ε

2 (this is the usual argument as in
Claim 10).

Otherwise, each time we go from u to a node p(u) we know that d(u, t) > n32cal(H) 25

ε . Since

the cost of going from u to p(u) is at most n2cal(H) then we can repeat this n times and still spend
at most d(s, t) ε

25n
until the right ring is found. This process can occur at most n times so the

total cost of routing up the component tree to find the appropriate ring is at most ε
25 d(s, t).

Theorem 5. For any n point metric space with doubling dimension α and aspect ratio ∆, and
for any ǫ ≤ 1/2 there exists a polynomial time constructible labelled routing scheme that as-
signs ⌈log n⌉ bit labels, routes on paths of stretch 1 + ǫ, and requires each node to maintain
(1

ε )O(α) min{log n, log ∆} outgoing links and (1
ε )O(α) log n min{log n, log ∆} bits of routing infor-

mation.

6 Scale-Free Labeled Routing Schemes for Graphs

The following scale-free scheme is applicable for the graph model. We use the sparse-dense
decomposition of Section 3.1 with parameter Φ = log(1

ε ) + 6.
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We use the same hierarchical net creation {Xi} as in Section 5.1 and use rings defined as
ring(u, i, c) = B(u, 2i+2)∩Xi−c as in Section 5.2. Let c = Φ+6. Each node maintains ring(u, i, c)
for each i such that there exists a level j ∈ K with −6 ≤ i − a(u, j) ≤ Φ + 3. For each
ℓ ∈ ring(u, i, c) that u maintains, node u stores the a O(log n) bit range Li(ℓ) and label d(ℓ) as
described in Section 5.1, and the port of the next hop on a shortest path from u to ℓ.

We build the same centers Ci of Section 3.3. Each node also maintains labelled tree routing
scheme of [12, 25] (see Lemma 4) for a shortest path tree routed at each node in N(u, 22α+3+1, Ci)
for all i ∈ K.

The label Λ(u) of a node u will consist of two parts: (1) The O(log2 n) bit label for the labelled
tree routing scheme of Lemma 4 for each tree whose root is in N(u, 22α+3 + 1, Ci) for all i ∈ K.
(2) The O(log n) DFS identifier d(u) as defined in Section 5.1. The label’s length is dominated
by the first part and requires 2O(α) log3 n bits.

Given a current node u and destination t let i be the maximal index such that 2a(u,i) < d(u, t).
Denote by d = d(u, t). There are several cases to consider.

1. Sparse case: If 2a(u,i) 25

ε ≤ d < 2a(u,i+1)−Γ then i must be a sparse level for u.1 Suppose

2j ≤ |A(u, i)| < 2j+1 then by Lemma 6 there exists ℓ ∈ Cj such that d(u, ℓ) ≤ 5 · 2a(u,i). By
Lemma 7, for any node v ∈ B(u, 2a(u,i+1)−Γ) we have that ℓ ∈ N(v, 22α+3 + 1, Cj) hence all
the nodes on the path from ℓ to t maintain the tree routing scheme of the tree rooted at ℓ
and Λ(t) will contain the label of t on ℓ’s tree. Hence given t’s label Λ(t) we can reach the
root ℓ and then the target at a cost of at most ( ε

4 + 1 + ε
4)d.

2. Otherwise: If d < 2a(u,i) 25

ε or 2a(u,i+1)−Γ ≤ d < 2a(u,i+1) then by the definition of which rings
are stored, u maintains ring(u, j, c) where 2j ≤ d < 2j+1. Hence u can infer from t’s label
d(t) ∈ Λ(t) and from the labels and ranges of the rings it maintains, a node ℓ ∈ ring(u, j, c)
such that d(ℓ, t) ≤ ε

8d.

But for a graph this is not enough since we need the nodes on the shortest path from u to
ℓ to maintain routing information to reach ℓ. Let P be this path, let v ∈ P be the first
node such that d/2 ≤ d(u, v). Actually all we need is that the nodes of P from u up to, and
excluding, v will all maintain the required ring and hence maintain ℓ. There are two cases:

A. Dense case: If indeed each node on the path P from u up to, and excluding, v maintains
ℓ in its ring set then once we reach v we continue to route recursively. We prove that
d(u, v)/(d − d(v, t)) ≤ 1 + ǫ as in Claim 10. This will guarantee 1 + ǫ stretch for the
whole path.

Claim 12. If d/2 ≤ d(u, v) and d(ℓ, t) ≤ ε
8d then d(u, v)/(d − d(v, t)) ≤ 1 + ε.

Proof. Using the triangle inequality on v, t, l and on u, t, l we get d(v, t) ≤ d(1 + 2 ε
8)−

d(u, v). So d(u, v)/(d − d(v, t)) ≤ d(u, v)/(d(u, v) − 2 ε
8d) and using d/2 ≤ d(u, v) we

get ≤ 1 + 8 ε
8 when ε ≤ 1.

B. Back to sparse: Let w be the first node on the path from u to v (excluding v) that
does not maintain ring(w, j, c) that contains ℓ. Hence d(u, w) < d/2 so d(w, t) ≥

1 Recall that Γ has been defined after Lemma 6.
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d/2 − εd ≥ d/4. Therefore, 2j−2 ≤ d(w, t). Let a(w, i) be the maximal level such that
2a(w,i) < d(w, t).

Since w does not maintain the ring of distance 2j then by the definition of what rings
are stored due to a(w, i) it must be that 2a(w,i) 25

ε ≤ d(w, t) using 2j−2 ≤ d(w, t). Since

the rings due to a(w, i + 1) do not store scale 2j then d(w, t) < 2a(w,i+1)−Γ. Therefore
we are back to case 1, and we can reach t directly using tree routing as detailed above.

Theorem 6. For any n point undirected weighted graph with doubling dimension α, and for
any ǫ ≤ 1/2 there exists a polynomial time constructible labelled routing scheme that assigns
2O(α) log3 n bit labels, routes on paths of stretch 1 + ǫ, and requires each node to maintain
(1

ε )O(α) log4 n bits of routing information.

7 A Lower Bounded for Labeled Shortest Path Routing

A graph (or a metric) has growth α (also called grid dimension) if |B(u, 2r)|/|B(u, r)| ≤ α for all
node u and radius r. Graphs (or metric) of bounded growth have bounded doubling dimension,
but the reverse is false in general. In particular the next lower bound holds for labelled stretch-1
routing on bounded doubling dimension metric. The counter-example is a slight modification on
the planar construction presented in [2].

Theorem 7. There are bounded growth graphs with n nodes and with non-negative integral edge-
weights bounded by O(

√
n), for which every labelled stretch-1 routing scheme requires Ω(

√
n) bits

for some local routing tables or some node labels.

Proof. The counter-example is a slight modification on the graph construction presented in [2].
It depends on an integer k = k(n) = Θ(

√
n). Let M be a (k + 1) × (k + 1) weighted mesh whose

each edge of the i-th row has weight 2i and each edge of the j-th column has edge 2j.

Let us check that M has bounded growth. Indeed, let us consider a node u = (i, j) and a
radius r. A shortest path from u to any v can be decomposed in a maximal horizontal segment
and a maximal vertical segment. Hence, the ball B(u, r) is composed of the points of the mesh
located inside the quadriangle defined by the four points around u = (i, j): (i, j + δj), (i −
δi, j), (i, j − δj), (i + δi, j), where δi = ⌊r/(2j)⌋ and δj = ⌊r/(2i)⌋. Summing up the area of
the four triangles composing the quadriangle, it follows that |B(u, r)| ranges between 2δiδj and
2δiδj +4(δi + δj), where the term 4(δi + δj) denotes the perimeter of the quadriangle (some points
of the perimeter must possibly be counted twice). Bounding δi + δj ≤ 2δiδj , we obtain that
|B(u, r)| ∈ [2δiδj , 10δiδj ], and thus that |B(u, r)| = Θ(r2/(ij)). Therefore, |B(u, 2r)|/|B(u, r)| =
O(1) as claimed.

From M we construct the graph H in which every edge is subdivided in two edges with the
following weight updating: around the point (i, j) of the mesh, the weight 1 is assigned to the
upward incident edge and to the right incident edge (if any), whereas the downward incident edge
and the left incident edge (if any) have weights 2i − 1 and 2j − 1, respectively. Finally, we add
a diagonal edge with weight 1 between the upward and right neighbors of (i, j). In H, it follows
that the distance between the points (i−1, j) and (i, j +1) (using the diagonal edge) is 2i+2j−1
whereas the distance between (i, j) and (i − 1, j + 1) remains 2i + 2j as in M . More generally,
one can show that in H the shortest path between a left-up to a right-down point is unique and
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consists to only one vertical down segment, a diagonal edge, followed by a horizontal segment.
This corresponds to the distance in M minus 1, whereas the shortest paths between a left-down to
a right-up point remains the same than in M . It follows that B(u, r) in H is some neighborhood
of B(u, r) in M (i.e., is a quadriangle where some neighbors on the perimeter are added). As H
is of bounded degree, H has bounded growth as well. We observe that every graph obtained from
H by removing some diagonal edges has bounded growth as well.

Consider a graph A obtained from H by removing independently with probability 1/2 each
diagonal edge, and let B be the graph obtained from H by removing the diagonal edges of A. For
i, j ∈ {1, . . . , k}, let ui be the point (1, i) and let vj = (1 + j, k + 1 − j).

Claim 13. For all i + j ≤ k, the distance in A from ui to vj (i.e., from a left-up to right-down
point) is 2i(j + 1) + (2j + 1)(k + 1− j − 1) if and only if the diagonal edge of (i, j + 1) is missing
in A, and otherwise the distance is one less.

As already said before, A and B have bounded growth. Finally we consider the graph G
composed of A and B where the each pair of corresponding points of A and of B are connected
by a path of length two (with weight 1 on each edge), so forming a kind of 3D mesh. We check
that G has still a bounded growth (the degree is still bounded, and the eccentricity of each node
increases by at most two). We note that the graph G has O(n) nodes.

Consider any shortest path routing scheme from some u′
i to some v′j in G, where u′

i denotes
the middle node of the length-2 path connecting the ui node of A to the ui node of B (similarly
for v′j). By Claim 13 the shortest path from u′

i to v′j , with i + j ≤ k, is unique and goes to ui in
A if and only if the diagonal edge (i, j + 1) is missing in A (otherwise the shortest path goes thru
B). The graph A contains k2 random bits (one bit for each diagonal edges), and half of them
can be recovered given the routing tables of all the u′

i’s and given the label nodes of all the v′i’s.
It follows that at least one node has a routing table or a label node of Ω(k) = Ω(

√
n) bits. This

completes the proof.

Observe that this also proves that any distance labeling for bounded growth graphs requires
Ω(

√
n)-bit labels (for polynomial weighted graphs), and Ω(n1/3)-bit labels for unweighted bounded

growth graphs (by replacing each weight-w edge of G by a length-w unweighted path).
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