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ABSTRACT
In many application areas, complex data sets are often rep-
resented by some metric space and metric embedding is used
to provide a more structured representation of the data. In
many of these applications much greater emphasis is put
on the preserving the local structure of the original space
than on maintaining its complete structure. This is also the
case in some networking applications where “small world”
phenomena in communication patterns has been observed.
Practical study of embedding has indeed involved with find-
ing embeddings with this property. In this paper we initiate
the study of local embeddings of metric spaces and provide
embeddings with distortion depending solely on the local
structure of the space.

Categories and Subject Descriptors: F.2.0 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity – General

General Terms: Algorithms, Theory

Keywords: Metric Embedding

1. INTRODUCTION
The field of metric space embedding studies embeddings

that “faithfully” preserve distances of the source space in
the host space. There are many ways to formally measure
the “faithfulness” of an embedding. In this paper we suggest
a new and quite natural paradigm of local distortion embed-
dings: I.e. embeddings that preserve the local structure of
the space, distances of close neighbors are preserved better
than those of distant neighbors.

Metric embedding has emerged as powerful tool in several
applications areas. Typically, an embedding takes a “com-
plex” metric space and maps it into a “simpler” one. For
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example embedding of metric spaces into trees and ultramet-
rics found a large number of algorithmic applications (e.g.
[20]). In many fields that use high dimensional data (e.g.
computer vision, computational biology, machine learning,
networking, statistics, and mathematical psychology), em-
beddings are used to map complex data sets into simpler
and more compact representations [13]. In distributed net-
work settings, embedding has been used to map the Internet
latencies into a simpler metric structure. Often, the em-
bedding can then be distributed as a labeling scheme in a
distributed system [26, 16].

In many important applications of embedding, preserving
the distances of nearby points is much more important than
preserving all distances. Indeed, it is sometimes the case in
distance estimation, that determining the distance of nearby
objects can be done easily, while far away objects may just
be labeled as “far” and only a rough estimate of the distance
between them will be given. Thus large distances may al-
ready incorporate an inherently larger error factor. In such
scenarios it is natural to seek local embeddings that main-
tain only distances of close by neighbors. Indeed both [13]
and [28] study low dimensional embeddings that maintain
distances only to the k nearest neighbors.

The revolution of large scale Social Networking in the In-
ternet has increased the interest in new areas of research
that emerged from issues in the border of Sociology and
Network theory. One aspect studied by Kleinberg [21] is the
algorithmic aspects of the “small world” phenomena: how
messages are greedily routed in networks that arise from a
social and geographical structure. In this model the net-
work is assumed to have a local property: the probability
of choosing a close neighbor as an associate is larger than
that of choosing a far away neighbor. Specifically, the prob-
ability of choosing a neighbor is inversely proportional to
its distance from the source. Liben-Nowell et. al. [23] con-
sider a related model where the probability of choosing the
k-th nearest neighbor is chosen proportional to ∝ 1

kα for
some parameter α > 1, they validate this model experimen-
tally. A person would have more interaction with his close
associates than with far away ones. In the context of us-
ing metric space embedding in “small world” networks it is
natural to require that the embedding of a close neighbor
would be better than that of a far away neighbor.

Kleinberg, Slivkins, and Wexler [22] study network em-
bedding as a means to provide distance estimation of the In-
ternet latency without need to measure all distances. They
note a discrepancy between theory and practice: while known
theoretical embedding results guarantee very weak bounds,



practical network coordinates perform quite well. In order
to overcome this gap, the authors suggest to study embed-
dings with slack, where the distortion bounds are provided
only for distant neighbors but not of close by ones. Strong
results have been obtained in this model and its general-
ization [2, 1]. However, for certain applications, one might
claim that preserving only distances to far-away neighbors
defeats the purpose. For example, an Internet application
that is induced by a social structure might interact mostly
amongst local neighbors and so on. Our study on local em-
bedding can be viewed as addressing the same question of
[22] when indeed preserving local distances is more impor-
tant than preserving far away distances.

In the context of data compression, our results can be
viewed as a new type of dimension reduction technique.
Typically, dimension reduction causes a uniform error over
all points. A high dimensional data set X in L2 can be faith-
fully mapped into O(log |X|) dimensions. Our techniques
allow to map metric spaces into constant dimensional Eu-
clidean space which faithfully preserves distances between
all nearby neighbor points, i.e. the local structure of the
space.

In large scale systems it is often the case that one wants
to maintain a compact data structure known as a Distance
Oracle [26]. More demanding tasks are name independent
compact routing schemes where the name of the node is in-
dependent of its location [6] and mobile user schemes which
are competitive distributed protocols for routing when the
target may be mobile. In all these settings it is clearly de-
sirable to obtain improved results for close by neighbors.

1.1 Local embeddings
We now formally define new notions of local distortion.

Given a metric space (X, d), let B(u, r) = {v | d(u, v) ≤ r}.
For any point x let <x be an order relation on the points in
X \ {x} such that for any u, v ∈ X \ {x} if d(u, x) < d(v, x)
then u <x v. For any k ∈ N let Nk(x) be the set of first k
elements of X \{x} according to <x, i.e., Nk(x) is the set of
k nearest neighbors of x. Let rk(x) be minimal radius such
that Nk(x) ⊆ B(x, rk(x)).

Definition 1. Let (X, dX) be a metric space on n points,
(Y, dY ) a target metric space and k ∈ N, let f : X → Y be
an embedding.

• f is non-expansive if for any u, v ∈ X, dY (f(u), f(v)) ≤
dX(u, v).

• f is an embedding with k-local distortion α if f is non-
expansive and for any u, v ∈ X such that v ∈ Nk(u),

dY (f(u), f(v)) ≥ dX(u, v)

α
.

• f is an embedding with strong k-local distortion α if
f is non-expansive and for any u, v ∈ X,

dY (f(u), f(v)) ≥ min{dX(u, v), rk(u)}
α

• f is an embedding with (strong1) scaling local distor-
tion α, for a non-decreasing function α : N → R+, if
f has (strong) k-local distortion α(k), for all k ∈ N
simultaneously.

1Note that all of the scaling local distortion results in this
paper are in fact in the strong sense.

• Given a distribution D on maps f : X → Y , we say
that D has probabilistic (strong) {k, scaling}-local dis-
tortion if the appropriate lower bound holds and the
appropriate upper bound holds in expectation over D.

We also study a related notion of proximity distortion.

Definition 2. Let (X, dX) be a metric space on n points
with minx,y∈X{d(x, y)} ≥ 1, let (Y, dY ) be a target metric
space, let t ≥ 1, let f : X → Y be an embedding.
• f is an embedding with t-proximity distortion α if for

any u, v ∈ X such that d(u, v) ≤ t,

dX(u, v) ≥ dY (f(u), f(v)) ≥ dX(u, v)

α
.

• f is an embedding with scaling proximity distortion
α, for non-decreasing function α : R+ → R+, if it has t-
proximity distortion α(t), for all t simultaneously.

1.2 Overview of results
We begin by providing some basic results in this model.

All of our scaling results are strong. Theorem 1 shows that
any metric space can be embedded into a single ultrametric
(and hence a tree metric) with strong scaling local distor-
tion k. Using a variant of Bourgain’s embedding shows that
strong k-local embeddings with distortion O(log k) are pos-
sible for any fixed k. Using the embeddings of [2] we can
also bound the dimension by O(log n). This is presented
in Theorem 2. In Theorem 3 we give an embedding with
strong scaling local distortion of Õ(log k) using a variation
of Bourgain’s embedding method. Another aspect of k-local
embeddings is that the dimension can be bounded in terms
of k (for non-strong local embeddings). In this introductory
section we demonstrate this phenomenon for the special case
of k = 1: Theorem 4 shows that 1-local embeddings into `p

with p
√

3 distortion requires only 3 dimensions.
We continue with presenting embeddings into ultrametrics

and into distributions of ultrametrics. Theorem 5 shows a
strong k-local distortion O(log k) into a distribution of ultra-
metrics. Its scaling counterpart, Theorem 6 obtains strong
scaling local distortion Õ(log k), and worst case distortion
O(log n). Our embeddings are based on the existing proba-
bilistic embedding techniques of [7, 8, 18, 9]. Yet, the proof
of Theorem 6 differs from all known embeddings into ultra-
metrics. One indication of this is the fact that all previous
embedding are non-contracting, while the probabilistic em-
bedding presented here is non-expanding in expectation, and
the contraction factors vary for different pairs. Achieving
this requires to make subtle modifications of known ultra-
metric construction algorithms.

While Theorem 2 provides an embedding into Lp with k-
local distortion, its dimension is a function of the size of the
data set. In Theorem 8 we significantly improve this result
and provide a novel form of dimension reduction resulting
in embeddings that require only O(log k) dimensions. Our
result requires that the metric space obeys a very weak form
of growth bound (formally defined later). Using a subtle
argument based on the partition-based embeddings of [2]
together with a non-standard variant of the Lovász local
lemma, we prove the existence of embeddings with k local
distortion O(log k) in dimension O(log k).

Our result shows that the k-local structure of the space
can be embedded in its natural dimension which is inde-
pendent of the size of the original space. Using embeddings



based on partitions, Theorem 10 provides better local scaling
distortion for metrics with improved dimension and embed-
dings with improved distortion for decomposable (including
doubling) metrics. Following [12, 25, 11] we provide local
metric Ramsey-type theorems. In particular, we provide
stronger guarantees for the metric Ramsey partitions which
depend on the local neighborhood of a node, which we later
use for application to proximity problems.

Another natural property one may desire is to have em-
beddings whose distortion depends on the distance between
points and not on the cardinality of the closer neighbors.
For example, in a social network it may be desirable to ob-
tain good distortion to all neighbors of distance t away, as
a function of t. In the context of “small world” networks,
[21] studied a distribution that depends on the distance with
exactly this type of local behavior. In Section 9 we study
embeddings with proximity distortion – in which the distor-
tion bound of a pair x, y is a function of d(x, y). Theorem 12
is our main result using this notion. Using partition-based
embeddings [2] we show that embeddings into Lp with scal-

ing proximity distortion Õ(log t) are given for decompos-
able metrics (these include in particular doubling and planar
metrics).

In Section 10 we discuss some applications of our local em-
beddings. We show that in systems using a “small world”
distribution, our local embeddings provide constant average
distortion. We also discuss the application of our proba-
bilistic embedding into ultrametrics to online problems with
local structure of the request sequence. Finally, we discuss
how our techniques can be used to provide better distance
oracles and proximity ranking data structures [27, 25, 11].
For example, we provide distance oracles with linear storage
and strong scaling local stretch Õ(log k) (that is the stretch
for the kth nearest neighbor) under weak growth bound as-
sumptions.

2. PRELIMINARIES
Some of our results apply to a restricted family of metric

spaces with bounded growth rate. We use the following:

Definition 3 (Growth bound). Let (X, d) be a met-
ric space and χ ≥ 1 a fixed real constant.

• X has a χ growth bound if |B(u, 2r)| ≤ 2χ|B(u, r)|
for all u, r > 0.

• X has a χ weak growth bound if |B(u, log |B(u, r)|r)| ≤
|B(u, r)|χ for all u, r > 0 such that |B(u, r)| > 1.

• X has a χ very weak growth bound if |B(u, 2r)| ≤
|B(u, r)|χ for all u, r > 0 such that |B(u, r)| > 1.

Note that the very weak growth bound is an extremely weak
property that even constant-degree expanders satisfy.

In many of our scaling results we shall use the following
family Ξ of functions: A function ϑ : R+ → R+ is in Ξ if it
is a monotone non-decreasing function satisfying∫ ∞

1

dx

ϑ(x)
= 1 . (1)

For example if we define log(0) n = n, and for any i > 0
define recursively log(i) n = log(log(i−1) n), then we can
take for any constants θ > 0, t ∈ N the function ϑ(n) =

ĉ
∏t−1

j=0 log(j)(n) ·
(
log(t)(n)

)1+θ

, for sufficiently small con-

stant ĉ > 0, and it will satisfy the conditions.

3. LOCAL PROBABILISTIC PARTITIONS
Several of our results use probabilistic partitions [7]. In

this section we review some definitions and results concern-
ing these tools, extending the notions from [2].

Definition 4. The local growth rate of x ∈ X at radius
r > 0 for given scale factors γ1 ≥ γ2 > 0 is defined as
ρ(x, r, γ1, γ2) = |B(x, rγ1)|/|B(x, rγ2)|. Given a scale factor
γ is it useful to denote ρ(x, r, γ) = ρ(x, r, γ, 1/γ). Given
a subspace Z ⊆ X, the minimum local growth rate of Z
at radius r > 0 and scale γ > 0 is defined as ρ(Z, r, γ) =
minx∈Z ρ(x, r, γ). the minimum local growth rate at radius
r > 0 and scale γ > 0 is defined as ρ̄(x, r, γ) = ρ(B(x, r), r, γ).

Claim 1. Let x, y ∈ X, let γ > 0 and let r be such that
2(1 + 1/γ)r < d(x, y) ≤ (γ − 2− 1/γ)r, then

max{ρ̄(x, r, γ), ρ̄(y, r, γ)} ≥ 2.

Definition 5 (Partition). Let (X, d) be a finite met-
ric space. A partition P of X is a collection of disjoint
set of non-empty clusters C(P ) = {C1, C2, . . . , Ct} such that
X = ∪jCj. The sets Ci are called clusters. For x ∈ X we
denote by P (x) the cluster containing x. Define υ : P → X
as υ(Ci) = ci, where ci ∈ Ci is an arbitrary point. Given
∆ > 0, a partition is ∆-bounded if for all 1 ≤ j ≤ t,
diam(Cj) ≤ ∆. A function f defined on X is called uniform
with respect to P if for any x, y ∈ X such that P (x) = P (y)
we have f(x) = f(y). For Z ⊆ X we denote by P|Z the
restriction of P to points in Z.

Definition 6 (Probabilistic Partition). A probabilis-

tic partition P̂ consists of a probability distribution over a
set of partitions P. P̂ is called ∆-bounded if every P ∈ P
is ∆-bounded. Given a collection of functions η = {ηP :

X → [0, 1] | P ∈ P}, a ∆-bounded probabilistic partition P̂
is called η-padded if for every x ∈ X:

Pr[B(x, ηP (x)) ⊆ P (x)] ≥ 1/2

Definition 7 (Uniformly Padded Local PP). Given

∆ > 0, let P̂ be a ∆-bounded probabilistic partition of (X, d).
Given collection of functions η = {ηP : X → [0, 1]|P ∈ P}
such that ηP is a uniform function with respect to P . We say
that P̂ is a η-uniformly padded local probabilistic partition
if the event B(x, ηP (x)∆) ⊆ P (x) occurs with probability
1/2 and is independent of the structure of the partition out-
side B(x, 2∆). Formally for all C ⊆ X \ B(x, 2∆) and all
partitions P ′ of C,

Pr[B(x, ηP (x)∆) ⊆ P (x) | P|C = P ′] ≥ 1/2

Definition 8. Let (X, d) be a finite metric space. Let
τ ∈ (0, 1]. We say that X admits a τ -decomposition if for
every 0 < ∆ ≤ diam(X) there exists a ∆-bounded probabilis-

tic partition P̂ of X such that P̂ is τ -padded.

It is known that λ-doubling metrics admit a Ω(log−1 λ)-
decomposition and Kr-minor excluded graphs admit a Ω(r−2)-
decomposition.

The following Lemma with local properties is proven in
[3].

Lemma 2 (Uniform Padding Lemma). Let (X, d) be
a finite metric space. Let 0 < ∆ ≤ diam(X). Let Γ ≥ 64.



There exists a ∆-bounded probabilistic partition P̂ of (X, d)
and a collection of uniform functions {ξP : X → {0, 1} |
P ∈ P} and η = {ηP : X → (0, 1] | P ∈ P} such that

the probabilistic partition P̂ is a η-uniformly padded local
probabilistic partition; and the following conditions hold for
any P ∈ P and any x ∈ X:

1. If ξP (x) = 1 then: 2−7/ ln ρ(x, 8∆, Γ) ≤ ηP (x) ≤ 2−7.
2. If ξP (x) = 0 then: ηP (x) = 2−7 and ρ̄(x, 8∆, Γ) < 2.

Furthermore, if X admits a τ -decomposition then the prob-
abilistic partition P̂ is a η-uniformly padded probabilistic
partition; and in addition to conditions 1. and 2. the fol-
lowing additional condition holds for any P ∈ P and any
x ∈ X:

3. ηP (x) ≥ τ/2.

4. BASIC RESULTS

4.1 Embedding into an ultrametric with
scaling local distortion

The following theorem is a strengthening of the known
embeddings of metrics into an ultrametric [7, 12, 19]:

Theorem 1. For any finite metric space (X, d) on n points
there exists an embedding into an ultrametric T with strong
scaling local distortion k.

Proof. Let G = (V, E, w) be some graph with weights
w on the edges, whose shortest-path metric is the metric
of X, and let M = (V, E′, w) be its minimum spanning
tree. We now define a recursive process for constructing the
ultrametric T given M :

Let e ∈ E′ be the largest edge in M . Create the root
of T with label w(e1), the root will have 2 children
which are the ultrametrics created recursively on the
spanning trees M1 and M2, which are the 2 connected
components of M \ {e}. Note that the removal of e
divides M into 2 disjoint trees M1, M2, and each is
indeed a minimum spanning tree on its vertices.

From the choice of e any e′ ∈ M \{e} satisfy w(e′) ≤ w(e),
hence T is indeed an ultra-metric. It remains to show that
the k-local distortion is at most k, for all k > 0 simultane-
ously. Let u, v ∈ X such that v ∈ B(u, rk(u)), and assume
they were first separated in the i-th step, meaning that if
M (i) is the MST of a connected component containing u
and v after i− 1 recursive applications of the process, then
their distance in T is fixed to be ` = w(ei) (where ei is the

largest edge in M (i)). Removing ei from M (i) divides it to

M
(i)
1 and M

(i)
2 .

A known property of minimum spanning trees is that the
largest edge in any cycle of G cannot be in M , hence it can
be inferred that there is no edge shorter than ` connecting

M
(i)
1 to M

(i)
2 , hence dT (u, v) = ` ≤ dX(u, v). Assume by

contradiction that dX(u, v) > k · dT (u, v) = k · `, then for
each i = 0, . . . , k let Bi = BX(u, i · `) and consider the
shells Si = Bi+1 \ Bi. Since there are at most k vertices in
B(u, dX(u, v)) and dX(u, v) > k · `, there are at most k − 1
points other than u in B(u, k · `). Hence there exists i ∈ [k]
such that Si is empty. Therefore to connect u and v by a
path in M (i) we must use an edge greater than ` in M (i) -
contradiction to the choice of ei.

To get a strong scaling local distortion, one simply replace
in the lower bound analysis dX(u, v) with rk′(u) for some
k′ ≤ k.

4.2 Embedding into `p with k-local distortion

Theorem 2. For any finite metric space X on n points
there exists an embedding into `p with strong k-local distor-
tion O( log k

p
) and dimension O(2p log n).

The embedding is a variant of the partition-based embed-
dings of [10, 2]. A simpler proof based on Bourgain’s em-
bedding [14] and Matoušek’s improvements for `p [24] gives
a slightly larger dimension of O(2p log n log k). The most
basic result is obtained simply by taking the first θ(log k)
coordinates of Bourgain’s embedding. We defer the proof to
the full paper. We give stronger results in Section 6 where
the dimension is only O(log k) given a very weak growth
bound.

4.3 Embedding into `p with scaling local
distortion

Our embedding is based on Bourgain’s embedding [14]
and Matoušek’s improvements for `p [24]. We use a function
ϑ ∈ Ξ to scale each coordinate as described below.

Theorem 3. For any finite metric space (X, d) on n points
and ϑ ∈ Ξ there exists an embedding into `p with strong

scaling local distortion O

((
log k

p

)1− 1
p
(
ϑ
(

log k
p

)) 1
p

)
, worse

case distortion O((1/p) log n) and dimension O(2p log2 n).

Proof. Let s = 2p,t = logs n, T = {i | 1 ≤ i ≤ t},
q = O(s log n) and Q = {j | 1 ≤ j ≤ q}. Choose random
subsets Aij for i ∈ T , j ∈ Q, such that each point included
in Aij independently with probability 1

si . We now define

the embedding φ : X → `t·q
p by defining for each i ∈ T ,

j ∈ Q a function φi,j : X → R+ by φi,j(u) =
d(u,Aij)

ϑ(i)1/p , and

φ(u) =
⊕t

i=1

⊕q
j=1 φi,j(u)

For any k, let u, v ∈ X be such that v ∈ B(u, rk(u)). Let
rsi = max{rsi(u), rsi(v)} and set δi = rsi − rsi−1 . Let t′

be the smallest such that rst′ + rst′−1 ≥ d(u, v)/4. If rst′ ≥
d(u, v)/2 set rst′ = d(u, v)/2. Notice that t′ ≤ dlogs ke and

that rst′ ≥ d(u, v)/8, hence
∑t′

i=1 δi = rst′ ≥ d(u, v)/8. As

v ∈ B(u, rk(u)) we have for all 1 ≤ i ≤ t′ that si ≤ k.
By standard arguments it can shown that with constant
probability for any such pair u, v and scale i ∈ T there exists
a subset J = J(u, v, i) ⊆ Q such that |J | ≥ log n

16
and for any

j ∈ J : |d(u, Aij)− d(v, Aij)| ≥ δi.

‖φ(u)− φ(v)‖p
p =

q∑
j=1

t∑
i=1

∣∣∣∣d(u, Aij)− d(v, Aij)

ϑ(i)1/p

∣∣∣∣p

≤ q · d(u, v)p
t∑

i=1

1

ϑ(i)
= O(q) · d(u, v)p



‖φ(u)− φ(v)‖p
p =

q∑
j=1

t∑
i=1

∣∣∣∣d(u, Aij)− d(v, Aij)

ϑ(i)1/p

∣∣∣∣p

≥ log n

16ϑ(logs k)

t′∑
i=1

δp
i

≥ log n

16(t′)p−1ϑ(logs k)

 t′∑
i=1

δi

p

≥ log n

16(t′)p−1ϑ(logs k)
(d(u, v)/8)p,

after appropriate scaling we get the claimed local distor-
tion.

To see the worse case distortion of O(logs n), let ϑ̄(i) =

min{ϑ(i), logs n} and use ϑ̄−1/p as the scaling factor in the
embedding.

We showed that the embedding has scaling local distor-
tion, the strong version follows similarly.

Note that for any ε > 0 there exists ĉ such that ϑ(k) =
ĉ·k(log k)1+ε and ϑ ∈ Ξ, hence the bound on the distortion in

Theorem 3 can be upper bounded by O
(

log k
p

(log log k)
1+ε

p

)
.

4.4 Lower dimension for 1-local distortion
Theorem 4. For any finite metric space X there exists

an embedding into `3p with 1-local distortion p
√

3

Proof sketch. Let G = (V, E) be an unweighed graph
with vertices corresponding to the points of X, and a pair
(u, v) ∈ E, iff v ∈ N1(u) of u. Since the outgoing degree
of each node is one, each connected component in G has at
most one cycle. Fix some component H and, let rH be an
arbitrary node of H, and if there is a cycle, let wH be the
farthest point on the cycle from rH (breaking ties arbitrar-
ily).

Define 2 sets A1, A2 as follows: for any connected compo-
nent H in G, insert into A1 all the vertices in even distance
from rH , and into A2 all the vertices in odd distance from
rH . Define the embedding into R3 as

f(u) = (d(u, A1), d(u, A2), g(u)) ,

where g(u) is d(u, N1(u)) if u = wH and 0 otherwise. It can
be checked that f is non-expansive and that the distortion
of nearest neighbors is at most p

√
3

5. PROBABILISTIC LOCAL EMBEDDING
INTO ULTRAMETRICS

Probabilistic embedding of metrics into ultrametrics [7]
has many applications in online and approximation algo-
rithms. The basic theorem states that every metric space
probabilistically embeds into an ultrametrics with O(log n)
distortion [8, 18, 9]. Here we extend this result to local
embeddings.

5.1 Probabilistic embedding into trees with
k-local distortion

Theorem 5. For any finite metric space (X, d) on n points
there exists a probabilistic embedding into a distribution of
ultrametrics with strong k-local distortion O(log k).

We defer the proof to the full version.

5.2 Probabilistic embedding into trees with
scaling local distortion

Theorem 6. For any finite metric space (X, d) on n points
and ϑ ∈ Ξ there exists a probabilistic embedding into a dis-
tribution of ultra-metrics with strong scaling local distortion
O(ϑ(log k)), and worst case distortion O(log n).

We recall the following lemma implicitly proved in [15, 18]
(a similar lemma appears in [2]).

Lemma 3. Given a finite metric space (X, d) and 0 <
∆ ≤ diam(X), there exists a ∆-bounded probabilistic parti-

tion P̂ of X such that for any x ∈ X and any 0 < η ≤ 1/8:

Pr[B(x, η∆) ⊆ P (x)] ≥ 1− η log (ρ(x, ∆, 8, 1)) .

Let ∆0 = diam(X) and for any integer i > 0 let ∆i =
∆02

−i. For all i > 0 create a ∆i-bounded probabilistic
partition P̂i as in Lemma 3. Since every cluster C ∈ Pi in
the partition is created by a ball with radius in the range
[∆i/4, ∆i/2], around a center point c, assume w.l.o.g that
υ(C) = c, and define for each Pi ∈ Pi and any cluster C ∈ Pi

b(C) = log (|B(υ(C), 2∆i)|) .

Fix some collection of partitions P = {Pi ∈ Pi | i > 0}, and
let the label of a cluster C ∈ Pi be α(C) = ∆i

ϑ(b(C))
.

Claim 4. For all i > 0, if C ∈ Pi, D ∈ Pi−1 and C∩D 6=
∅ then α(D) ≤ 2α(C).

Proof. Since d(υ(C), υ(D)) ≤ ∆i−1/2 + ∆i/2 ≤ ∆i−1

and 2∆i = ∆i−1, we get B(υ(C), 2∆i) ⊆ B(υ(D), 2∆i−1)
which suggests that b(C) ≤ b(D) hence α(C) = ∆i

ϑ(b(C))
=

∆i−1
2ϑ(b(C))

≥ α(D)/2.

Note that a cluster C ∈ Pi may have a label smaller than
a cluster D ∈ Pj for j > i and C ∩ D 6= ∅, hence creat-
ing a laminar family from the partition in the usual manner
will not maintain the weak monotonicity property of labels.
To overcome this hurdle we recursively define a sequence of
hierarchical partitions Q(1), . . . ,Q(log ∆0) where for each i,
Q(i) is a sequence of i partitions for scales ∆1 to ∆i. Ini-

tially Q(1) = {Q(1)
1 = P1}. Given a hierarchical partition

Q(i−1) = {Q(i−1)
1 , . . . , Q

(i−1)
i−1 } and Pi we define a hierarchi-

cal partition Qi = {Q(i)
1 , . . . , Q

(i)
i } in the following manner.

1. “Beam up” phase: For any C ∈ Pi and j < i let

Rj(C) = {D ∈ Q
(i−1)
j | D ∩ C 6= ∅ ∧ α(D) < α(C)},

let sj(C) = C ∩
⋃

D∈Rj(C) D. Intuitively, We want to

“beam up” each sj(C) to be a cluster in Qj . Formally,

for any j < i, let Q
(i)
j = {D \

⋃
{C|D∈Rj(C)} C | D ∈

Q
(i−1)
j } ∪ {sj(C) | C ∈ Pi}. The labels are naturally

maintained: each cluster D\
⋃
{C|D∈Rj(C)} C gets label

α(D) and each cluster sj(C) gets label α(C).

2. “Laminarization” phase: Let Q
(i)
i = {C ∩D | C ∈

Pi, D ∈ Q
(i)
i−1}. Each cluster C ∩D gets label α(C).

For each set of partitions P ∈ P denote Q = Q(log ∆0) =
{Q1, . . . , Qlog ∆0}. Note that the “laminarization” phase
guarantees that Q is indeed hierarchical. Construct a la-
belled tree T from Q and its labels in the natural man-
ner. Note that T indeed represents an ultrametric, since the
“beam up” phase guarantees that if C ∈ Qi, D ∈ Qi−1 such
that C ⊆ D then α(D) ≥ α(C).



Claim 5. For any pair (x, y), such that y ∈ B(x, rk(x)):

dT (x, y) ≥ Ω
(

d(x,y)
ϑ(log k)

)
.

Proof. Let i be the smallest integer such that 3∆i ≤
d(x, y), it is immediate that (x, y) are separated in the par-
tition Pi. Let v = υ(Pi(x)), then

B(v, 2∆i) ⊆ B(x, 3∆i) ⊆ B(x, d(x, y)) ⊆ B(x, rk(x)),

which implies that b(Pi(x)) ≤ log k, hence α(Pi(x)) ≥ ∆i
ϑ(log k)

≥

Ω
(

d(x,y)
ϑ(log k)

)
. Now we claim that α(Qi(x)) ≥ α(Pi(x)), which

holds since if some cluster replaced the part of Pi(x) that
contained x it must have had a larger label than α(Pi(x)),
and its radius is smaller than the radius of Pi(x) therefore
it cannot contain y. This implies the claim.

Claim 6. For any pair (x, y): E[dT (x, y)] ≤ O(d(x, y)).

Proof. Fix some partition P ∈ P. For every x, y ∈ X,
let αi(x, y) = max{α(Pi(x)), α(Pi(y))}. Define the events

Ci(x, y) = {Pi(x) 6= Pi(y)} ,

Mi(x, y) =
{
Ci(x, y) ∧

∧
j>i αi(x, y) ≥ αj(x, y)

}
.

Notice that if for some scale i event Ci(x, y) holds butMi(x, y)
does not then consider the scale j > i maximizing αj(x, y)
(w.l.o.g αj(x, y) = α(Pj(x))). Then some part of Pi(x) that
contains x will be replaced by some part of Pj(x) containing
x, and the event that Qi(x) 6= Qi(y) will depend only on
the event Pj(x) 6= Pj(y). So when considering the sum over
all scales we need not take into account scale i since we al-
ready accounted for scale j. Let bi = bi(x) = log |B(x, ∆i)|,
bi is monotonic decreasing with i. Note that we can bound
Ci(x, y) by the probability that either B(x, d(x, y)) or
B(y, d(x, y)) is cut (using Lemma 3), hence if αi(x, y) =
α(Pi(x)) we will take B(x, d(x, y)) and vice versa. this im-
plies that we can assume w.l.o.g that αi(x, y) = α(Pi(x)).
For all i > 0 since d(x, υ(Pi(x))) ≤ ∆i it follows that
b(Pi(x)) ≥ bi. Let ` be the largest integer such that ∆` >
8d(x, y).

ET [dT (x, y)]

≤
∑
i>0

Pr[Mi(x, y)]E[αi−1(x, y) | Mi(x, y)]

≤
∑
i>0

Pr[Ci(x, y)]2E[αi(x, y) | Mi(x, y)]

≤ 4d(x, y)
∑̀
i=1

bi − bi+3

∆i
E
[

∆i

ϑ(b(Pi(x)))
|Mi(x, y)

]
+2
∑
i>`

∆i

≤ 4d(x, y)
∑̀
i=1

bi∑
j=bi+3+1

1/ϑ(bi) + 2∆`

≤ 26d(x, y)
∑
j>0

1/ϑ(j) = O(d(x, y)).

The second inequality follows from Claim 4, the third in-
equality follows from Lemma 3. This concludes the proof of
scaling local distortion O(ϑ(log k)).

By using ϑ̄(x) = min{ϑ(x), log n} we can show that the
worst case distortion can be bounded by O(log n).

We showed that the embedding has scaling local distortion,
the strong version follows similarly.

5.3 Lower bound for spanning trees
An important variant in embedding into trees occurs in a

graph setting, when we seek an embedding into a spanning
tree of the graph. Probabilistic embedding into spanning
trees has been studied in [5, 17]. In [4] embeddings into
a single spanning tree and into a distribution on spanning
trees, with constant average distortion are shown. How-
ever, local embedding into a single spanning tree can incur
distortion n − 1 even for k = 1 (take the cycle graph, find-
ing a spanning tree is done by removing some edge, which
will incur the distortion for an adversarial choice of nearest
neighbors). Probabilistic embedding into a distribution of
spanning trees cannot overcome the Ω(log n) lower bound
even for k = 1.

Theorem 7. There exists a metric space (X, d) derived
from a graph G such that any embedding into a distribu-
tion of spanning trees of G will incur 1-local distortion of
Ω(log n).

6. EMBEDDING INTO `P WITH K-LOCAL
DISTORTION AND LOW DIMENSION

To achieve low dimension for k-local embeddings into `p

we use local probabilistic partitions, a method of embedding
based on uniform probabilistic partitions [2] , and the Lovász
Local Lemma. In the full version of the paper we give an
algorithmic version of this theorem.

Theorem 8. For any finite metric space (X, d) on n points
with a χ very weak growth bound there exists an embed-
ding into `p with k-local distortion O(log k) 2 and dimension
O(log k).

Let D = c′ ln k, for some constant c′ to be defined later.
Assume that k ≥ 2 and χ ≥ 2. We will define an embedding
f : X → `D

p with k-local distortion O(log k). We define f by

defining for each 1 ≤ t ≤ D, a function f (t) : X → R+, and
letting f = D−1/p⊕

1≤t≤D f (t). Fix t, 1 ≤ t ≤ D. In what

follows we define f (t). Let ∆0 = diam(X), let I = {i ∈ N |
i ∈ [1, log8 ∆0]} and for every i ∈ I let ∆i = ∆08

−i. We
construct for all i ∈ I a uniformly ∆i-bounded ηi-padded
probabilistic partition P̂i as in Lemma 2 with parameter
Γ = 83, and let ξi be as defined in the lemma. Since every
cluster C ∈ Pi in the partition is created by a ball with
radius in the range [∆i/4, ∆i/2], around a center point c,
assume w.l.o.g that υ(C) = c, Denote by Ω the probability
space of all possible embeddings f . Now for every i ∈ I fix a
partition Pi ∈ Pi. We define the embedding by defining the
coordinates for each x ∈ X. Let `(x) ∈ I be the minimal

such that |B(υ(P`(x)(x)), 9Γ∆`(x))| ≤ kχ7
.

We now define ξ̄ in the following manner :

ξ̄P,i(x) =

{
0 i < `(x)

ξP,i(x) otherwise
.

Define for x ∈ X, 0 < i ∈ I, φ
(t)
i : X → R+, by φ

(t)
i (x) =

ξ̄P,i(x)ηP,i(x)−1. Lemma 2 and the definition of `(x) ensures
that ξ̄i and ηi are uniform functions with respect to Pi. By
the properties of Lemma 2 and the definition of `(x), ξ̄P,i(x)
it can be shown that:

2In fact we show this bound for all u, v ∈ X such that v ∈
B(u, rk(u))



Claim 7. For any x ∈ X, t ∈ [D],∑
i∈I

φ
(t)
i (x) ≤ 210χ7 log k.

For each 0 < i ∈ I we define a function f
(t)
i : X → R+

and for x ∈ X, let f (t)(x) =
∑

i∈I f
(t)
i (x). Let {σ(t)

i (C)|C ∈
Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli
random variables. The embedding is defined as follows: for
each x ∈ X:

• For each 0 < i ∈ I, let f
(t)
i (x) = σ

(t)
i (Pi(x))·min{φ(t)

i (x)·
d(x, X \ Pi(x)), ∆i}.

The following claim was proved in [2]

Claim 8. For any x, y ∈ X and 0 < i ∈ I : f
(t)
i (x) −

f
(t)
i (y) ≤ min{φ(t)

i (x) · d(x, y), ∆i}.

From Claims 7 and 8 we get

Lemma 9. There exists a universal constant C1 = C1(χ) >
0 such that for any x, y ∈ X:

|f (t)(x)− f (t)(y)| ≤ C1 log k · d(x, y).

6.1 Lower bound analysis
Let Ni = {(x, y) | x, y ∈ X ∧ y ∈ B(x, rk(x)) ∧ d(x, y) ∈

[∆i−2, ∆i−3)} and let N =
⋃

i>0 Ni. For all i > 0, x, y ∈ Ni

and t ∈ [D] let Z(i,x,y,t) be the event that(
|f (t)

i (x)− f
(t)
i (y)| ≥ ∆i ∧

∣∣∣∣∣∑
j<i

f
(t)
j (x)− f

(t)
j (y)

∣∣∣∣∣ ≤ ∆i

2

)∨
(

f
(t)
i (x) = f

(t)
i (y) = 0 ∧

∣∣∣∣∣∑
j<i

f
(t)
j (x)− f

(t)
j (y)

∣∣∣∣∣ >
∆i

2

)
.

For any embedding f and i ∈ I define a function gi : Ni →
2D as follows

gi(x, y) =
{
t ∈ [D] | Z(i,x,y,t)

}
,

and let Z(i,x,y) be the event that |gi(x, y)| ≥ D/16. Notice
that for both events Z(i,x,y),Z(i,x,y,t) we could have omitted
the index i since it can be inferred uniquely from d(x, y),
we explicitly write this index for ease of presentation. Let
Z =

⋂
(x,y)∈N Z(i,x,y), then

Lemma 10. Pr[Z] > 0.

Before showing the proof of this Lemma, let us see that it
is sufficient to show the lower bound.

Claim 11. Fix x, y ∈ Ni and t ∈ gi(x, y), then |f (t)(x)−
f (t)(y)| > d(x, y)/211.

Proof. By Claim 8 and since ∆j is a geometric series

|
∑

j>i f
(t)
j (x)− f

(t)
j (y)| ≤

∑
j>i ∆j ≤ ∆i/4...

Since Z(i,x,y,t) holds |
∑

j≤i f
(t)
j (x) − f

(t)
j (y)| ≥ ∆i/2 so

|
∑

j>0 f
(t)
j (x)− f

(t)
j (y)| ≥ ∆i/4 ≥ d(x, y)/211.

Lemma 12. There exists a universal constant C2 and an
embedding f ∈ Ω such that for any x, y ∈ N :

|f(x)− f(y)| ≥ C2d(x, y).

Proof. Using Lemma 10, let f ∈ Ω such that event Z
took place. Consider any (x, y) ∈ Ni. Using Claim 11 and
the fact that |gi(x, y)| ≥ D/16

‖f(x)− f(y)‖p
p =

1

D

∑
t∈D

|f (t)(x)− f (t)(y)|

≥ 1

D

∑
t∈gi(x,y)

|f (t)(x)− f (t)(y)|

≥ (1/16)
d(x, y)

211
.

Proof of Lemma 10. We shall make use the following
variation of the Local Lemma due to Erdos and Lovász.

Lemma 13 (Local Lemma). Let A1,A2, . . .An be events
in some probability space. Let G(V, E) be a directed graph
on n vertices with out-degree at most d, each vertex corre-
sponding to an event. Let c : V → [m] be a rating function
of events, such that if (Ai,Aj) ∈ E then c(Ai) ≤ c(Aj). As-

sume that for any i = 1, . . . , n Pr
[
Ai |

∧
j∈Q ¬Aj

]
≤ p for

all Q ⊆ {j : (Ai,Aj) /∈ E∧c(Ai) ≥ c(Aj)}. If ep(d+1) ≤ 1,
then

Pr

[
n∧

i=1

¬Ai

]
> 0.

Define a graph G = (V, E) where V = {Z(i,x,y) | i >
0∧(x, y) ∈ Ni}, define the ranking function as c(Z(i,x,y)) = i
and (

Z(i,x,y),Z(i′,x′,y′)

)
∈ E ⇔

d(x, x′) ≤ 16rk(x) ∧ c(Z(i,x,y)) ≤ c(Z(i′,x′,y′)).

Note that the definition is not symmetric, G is a directed
graph, and that the rating matches the requirements of
Lemma 13.

Claim 14. The out-degree of G is bounded by kχ5
.

Proof. Fix any vertex Z(i,x,y) ∈ V . By the very weak

growth bound condition |B(x, 16rk(x))| ≤ |B(x, rk(x))|χ
4

=

kχ4
, and for each x′ ∈ B(x, 16rk(x)) there are at most k

possible values of y′ such that (x′, y′) ∈ N , hence the out

degree is bounded by kχ5
.

Claim 15. Let (x, y) ∈ Ni. If (x′, y′) ∈ Ni such that
(Z(i,x,y),Z(i,x′,y′)) /∈ E then d({x, y}, {x′, y′}) > 2∆i.

Proof. By definition of Ni both d(x, y), d(x′, y′) < ∆i−3.
By definition of G, d(x, x′) > 16rk(x). As y ∈ rk(x) we
have d(x, y) ≤ rk(x), hence d(x′, y) ≥ d(x, x′) − d(x, y) ≥
15d(x, y) > 2∆i, and d(y′, y) ≥ d(x′, y)−d(y′, x′) ≥ 15d(x, y)−
∆i−3 ≥ 15∆i−2 − 8∆i−2 > 2∆i. The proof for x is similar
and easier.

We now show a claim about event Z(i,x,y,t) which lies in
the heart of using the local Lemma.

Claim 16. For all (x, y) ∈ Ni:

Pr

¬Z(i,x,y,t) |
∧

(i′,x′,y′)∈Q

Z(i′,x′,y′)

 ≤ 7/8

for all Q ⊆ {(i′, x′, y′) : (Z(i,x,y),Z(i′,x′,y′)) /∈ E∧c(Z(i,x,y)) ≥
c(Z(i′,x′,y′))}.



Proof. Fix (x, y) ∈ Ni, t ∈ [D]. For i′ < i and any
x′, y′ ∈ Ni′ the events Z(i′,x′,y′) depend only on the first i′

scales of the probabilistic partition, so the padding in scale
i and choice of σi will be independent of these events.

Otherwise assume i′ = i. For any x′, y′ ∈ Ni such that
(Z(i,x,y),Z(i,x′,y′)) /∈ E, by Claim 15 d({x, y}, {x′, y′}) >
2∆i. This suggests that x, y and x′, y′ fall into different
clusters in scale i, hence the choice of σi is independent
for each. By the locality of our partition we have that the
padding in scale i for x, y is independent of the padding for
x′, y′.

Even though the event Z(i,x,y) depend on scales j < i, we
will show that there is probability at least 1/8 to succeed no
matter what partitions were created in scales j < i:

We claim that |B(υ(Pi(y)), 9Γ∆i)| ≤ kχ7
. As d(x, υ(Pi(y))) ≤

d(x, y)+∆i ≤ 2d(x, y), due the very weak growth bound as-
sumption, |B(υ(Pi(y)), 9Γ∆i)| ≤ |B(x, 72∆i−2+2d(x, y))| ≤
|B(x, 74d(x, y))| ≤ |B(x, 27rk(x))| ≤ |B(x, rk(x))|χ

7
= kχ7

.
The same argument holds for |B(υ(Pi(x)), 9Γ∆i)|. This sug-
gests that ξ̄i(y) = ξi(y) and ξ̄i(x) = ξi(x).

By Claim 1 max{ρ̄(x, ∆i−1, Γ), ρ̄(y, ∆i−1, Γ)} ≥ 2. W.l.o.g
ρ̄(x, ∆i−1, Γ) ≥ 2 which suggests that ξ̄i(x) = ξi(x) = 1,

hence φ
(t)
i (x) = η−1

P,i(x).

If it is the case that
∣∣∣∑j<i f

(t)
j (x)− f

(t)
j (y)

∣∣∣ ≤ ∆i
2

, then

it is enough that the following will hold

• B(x, ηP,i(x)∆i) ⊆ Pi(x),

• σ
(t)
i (Pi(x)) = 1, σ

(t)
i (Pi(y)) = 0.

By Lemma 2, the definition of σ and the fact that Pi(x) 6=
Pi(y), the probability of each of these events is indepen-

dently at least 1/2. If all these events occur then |f (t)
i (x)−

f
(t)
i (y)| ≥ min{η−1

P,i(x) · d(x, X \ Pi(x)), ∆i} ≥ ∆i.

If on the other hand
∣∣∣∑j<i f

(t)
j (x)− f

(t)
j (y)

∣∣∣ > ∆i
2

, then

we just need

• σ
(t)
i (Pi(x)) = σ

(t)
i (Pi(y)) = 0,

which again holds with probability 1/4. In any case with
probability at least 1/8 event Z(x,y,t) holds.

Notice that events Z(i,x,y,t) are independent of events Z(i,x,y,t′)

for t 6= t′. For any x, y ∈ Ni let Bt be the indicator event
for Z(i,x,y,t), and B =

∑
t∈D Bt. Then E[B] ≥ D/8. By

Chernoff bound we get that

Pr [B < D/16] ≤ k−χ6
.

Let p = k−χ6
. To conclude, using Claim 16

Pr

¬Z(i,x,y) |
∧

(i′,x′,y′)∈Q

Z(i′,x′,y′)

 ≤ p

for all Q ⊆ {(i′, x′, y′) | (Z(i,x,y),Z(i′,x′,y′)) /∈ E∧c(Z(i,x,y)) ≥
c(Z(i′,x′,y′))}. Note that ep(kχ5

+1) ≤ 1, and apply Lemma 13.

7. PARTITION BASED EMBEDDINGS INTO
`P

For decomposable metrics, we improve the scaling local
distortion. Using partition based embeddings [2, 10] we get
the following:

Theorem 9. For any finite metric space (X, d) on n points
and any ϑ ∈ Ξ there exists an embedding into `p with strong

scaling local distortion O(ϑ(log k)
p

), worse case distortion O( log n
p

)

and dimension O(2p log n).

Theorem 10. For any metric space X on n points ad-
mitting a τ -padded decomposition, for any p ≥ 1 and ϑ ∈ Ξ
there exists an embedding into `p with strong scaling lo-

cal distortion O
(
τ−1+1/pϑ(log k)1/p

)
, worse case distortion

O(τ−1+1/p(log n)1/p) and dimension O(log n log Φ), where
Φ denotes the aspect ratio of X 3.

8. LOCAL METRIC RAMSEY THEOREMS
In this section we extend the work of [12, 25, 11] to give

metric Ramsey theorems with improved local guarantees.
The main step is generating metric Ramsey partitions [25]
with local guarantees. These are later used to get improved
local distance oracles and approximate ranking.

The following lemma follows directly from the uniform
padding lemma in [2], a different proof also appears in [25]:

Lemma 17. For any metric space (X, d), ∆ > 0 there

exists a ∆-bounded probabilistic partition P̂ of X such that
for all η ∈ (0, 1/C] and x ∈ X:

Pr[B(x, η∆) ⊆ P (x)] ≥ ρ(x, ∆, γ1, γ2)
−Cη,

for some constants γ1, γ2 and C.

Definition 9. Let (X, d) be a metrics space and ϑ ∈ Ξ.
Let P be a hierarchical partition of X, let t be a parameter.

• A point x ∈ X is k-locally padded with parameter t if
B(x, 2i/t) ⊆ Pi(x) for all i > 0 such that 2i ≤ rk(x).

• A point x ∈ X is completely locally padded with pa-
rameter t if B(x, 2i/ti) ⊆ Pi(x) for ti =
min{t, ϑ(log |B(x, 2i)|)} for all i.

The following Lemmas extends a similar lemma of [25], by
giving better padding parameters depending on the locality.
We have a k-local and scaling versions:

Lemma 18. For any finite metric space (X, d), k ∈ N and
parameter t > 1, there exists a distribution on ultrametrics
such that any point x ∈ X is k-locally padded with parameter
t with probability kΩ(−1/t).

Lemma 19. For any finite metric space (X, d) and pa-
rameter t > 1, there exists a distribution on ultrametrics
such that any point x ∈ X is completely locally padded with
parameter t with probability nΩ(−1/t).

Using Lemma 18 and Lemma 19 we obtain the following
metric Ramsey theorems:

Theorem 11. The following holds for any n point metric
space X with weak growth bound χ:

• There exists a subspace Y of X of size n · k−O(χ/t)

and an embedding f into an ultrametric U such f has
strong k-local distortion t for pairs in Y .4

3The dimension can be bounded by O(log2 n) using a more
involved argument.
4I.e., for every x, y ∈ Y , dU (f(x), f(y)) ≥
min{dY (x, y), rk(x)}/t (where rk(x) is defined with
respect to X).



• There exists a subspace Y of X of size n1−O(1/t) and an
embedding f into an ultrametric U such f has strong
scaling local distortion min{t, χ · ϑ(log k)} for pairs in
Y .5

9. EMBEDDING WITH PROXIMITY
DISTORTION

In this section we provide proximity distortion results re-
sult where the distortion is bounded in terms of the distance
between the points (see Definition 2).

For decomposable metrics we have the following result.

Theorem 12. For any finite metric (X, d) on n points
that admits a τ -padded decomposition and ϑ ∈ Ξ there ex-
ists an embedding into `p with scaling proximity distortion
O(τ−1ϑ(log t)) and dimension O(log n).

We also show that for growth bounded metrics local dis-
tortion results can be translated into proximity distortion.
Recall that a metric (X, d) is said to be χ-growth bounded
if for all x ∈ X, r > 0 : |B(x, 2r)| ≤ 2χ|B(x, r)|. Given
x, y ∈ X such that d(x, y) ≤ t we have |B(x, t)| ≤ tχ. Hence
we can translate local distortion results into proximity dis-
tortion as demonstrated in the following theorem:

Claim 20. Let (X, d) be an χ-growth bounded metric, then
there exists an embedding into `p with scaling proximity dis-
tortion O(ϑ(χ log t)).

10. APPLICATIONS

10.1 Small world model
Given a metric space (X, d) and a distribution Π on

(
X
2

)
,

such that local pairs are given higher probability, then using
our embedding techniques yields constant average distortion
with respect to Π.

For example, for α > 0, our embedding gives constant
average distortion for any of Kleinberg’s “small world” dis-

tributions Π(x, y | x) = k−(1+α)∑n
i=1 i−(1+α) .

Lemma 21. Let (X, d) be a metric space, and Π a prob-
ability distribution satisfying that given x, the conditional
probability Π(x, y | x) to choose y with d(x, y) = rk(x) is
bounded by 1

ϑ(k)·ϑ(log k)
. Then there exists an embedding f

into `p or a distribution over ultrametrics with avgdist(Π)(f) =

E(x,y)∼Π

[
d(x,y)

‖f(x)−f(y)‖p

]
= O(1).

Proof. Let f : X → `p be a scaling local embedding
with distortion c · ϑ(log k).

avgdist(Π)(f)

=
∑
x∈X

Π(x, ·)
∑
y∈X

Π(x, y | x)
d(x, y)

‖f(x)− f(y)‖p

≤
∑
x∈X

Π(x, ·)
n∑

k=1

∑
y∈X

Π(x, y |x ∧ d(x, y) = rk(x))cϑ(log k)

≤ c

n∑
k=1

ϑ(log k)

ϑ(k) · ϑ(log k)
= c

n∑
k=1

1/ϑ(k) = O(1).

5I.e., for every x, y ∈ Y , and k ∈ N, if y /∈ B(x, rk(x)) then
dU (f(x), f(y)) ≥ rk(x)/ min{t, χ · ϑ(log k)} (where rk(x) is
defined with respect to X).

Lemma 22. Let (X, d) be a metric space, and Π a prob-
ability distribution satisfying that given x, the conditional
probability Π(x, y | x) to choose y with d(x, y) = rk(x) is

Z
d(x,y)·ϑ(k)·ϑ(log k)

, where Z is a scaling factor. Then there

exists an embedding f into `p or a distribution over ultra-

metrics with distavg(Π)(f) =
E(x,y)∼Π[d(x,y)]

E(x,y)∼Π[‖f(x)−f(y)‖p]
= O(1).

10.2 Online problems
Consider any online problem defined on a metric space,

which has poly-logarithmic competitive ratio algorithm based
on probabilistic embedding into a distribution of ultramet-
rics, e.g. the metrical task system, file allocation. Obtaining
poly-logarithmic approximation is desirable, but it may be
desirable, in addition, to obtain better results if the demand
sequence happens to have a local nature.

Instead of using the standard embedding of [7, 18] we can
use the embedding given in Theorem 6. This provides the
following local strengthening to the standard competitive
ratio bound: if the request sequence is such that the objec-
tive function contains only distances between pairs u, v such
that v is the kth nearest neighbor of u then the competi-
tive ratio improves as a function of k, that is the O(log n)
overhead due to the embedding is replaced by an overhead
of only ϑ(log k).

10.3 Local distance oracles
In [25, 11] metric Ramsey decompositions are used to ob-

tain efficient proximity data structures. Using our local met-
ric Ramsey partitions with the same data structure as [25]
we can get local variations on distance oracles under a weak
growth bound assumption.

Claim 23. Let (X, d) be a metric space with χ weak growth
bound, fix some t > 1, x ∈ X and let T be an ultra metric in
which x is completely locally padded with parameter t, then
for all y ∈ X, if k = k(y) ∈ N is such that d(x, y) = rk(x)
then d(x, y) ≤ dT (x, y) ≤ O(d(x, y)ϑ(log k)).

If the metric space does not have the weak growth bound,
we can use our embedding into Euclidean space as distance
oracles. The proofs follow from our results on local embed-
ding and partitions, we omit the details.

Theorem 13. For any finite metric space there exists the
following type of distance oracles:

1. For a fixed k: O(log k) strong local stretch6 , O(log n)
query time, and O(n log n) memory.

2. Scaling: O(ϑ(log k)) strong scaling local stretch7, O(log n)
query time, O(n log n) memory.

3. Scaling: k strong scaling local stretch, O(1) query time,
O(n) memory.

If the metric space has a χ weak growth bound then for
any t > 1 there exists a distance oracle as follows

6I.e., for any y ∈ B(x, rk(x)) the stretch is O(log k)
and for any y /∈ B(x, rk(x)) the oracles returns a value
Ω(rk(x)/ log k)
7I.e., for any k ∈ N and y /∈ B(x, rk(x)) the oracles returns
a value Ω(rk(x)/ log k)



4. For a fixed k: O(t) strong local stretch for, O(1) query

time, O(n · kχ/t) memory.
5. Scaling: min{O(χ · ϑ(log k)), O(t)} strong scaling local

stretch, O(1) query time, O(n1+1/t) memory.

10.4 Approximate ranking
The ranking problem is defined as follows: Given a met-

ric space (X, d) on {1, . . . , n} points, find for any x ∈ X

a permutation π(x) of X, such that for all y, z ∈ X: if
y = π(x)(i), z = π(x)(j) and i < j then d(x, y) ≤ d(x, z).
An s-approximate ranking is relaxing the last condition to
d(x, y) ≤ s · d(x, z). It is shown in [25] via a probabilistic
construction and a deterministic construction in [11] that for
any s > 1 there exist a data structure with O(s)-approximate

ranking which can be pre-processed in O(sn2+1/s log n) time,

uses O(sn1+1/s) space, and support queries for finding i ∈
[n] such that π(x)(i) = y in O(1) time. We show a varia-
tion on this result, in which the approximation factor scales
according to the locality of the query points. We provide
a theorem similar to Theorem 13 for approximate ranking.
The complete details appear in the full version of the paper.

11. OPEN PROBLEMS
Most of the results in this paper are either tight or nearly

tight. The tightness of our k-local results follows from known
metric embedding lower bounds. There are several obvi-
ous questions. The is a small gap between our scaling lo-
cal distortion upper bounds (such as in theorems 3,6) .
Is the very weak growth bound assumption in Theorem 8
necessary? Are the weak growth bound assumptions of
theorem 13 necessary? Is there a k-local analogue to the
Johnson-Lidenstrauss lemma: does every finite metric space
in `2 have a k-local embedding into `d

2 with (1+ε) distortion,
where d = O(log k/ε2) ?
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