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ABSTRACT
Metric Embedding plays an important role in a vast range
of application areas such as computer vision, computational
biology, machine learning, networking, statistics, and math-
ematical psychology, to name a few.

The theory of metric embedding received much attention
in recent years by mathematicians as well as computer scien-
tists and has been applied in many algorithmic applications.

A cornerstone of the field is a celebrated theorem of Bour-
gain which states that every finite metric space on n points
embeds in Euclidean space with O(logn) distortion.

Bourgain’s result is best possible when considering the
worst case distortion over all pairs of points in the metric
space. Yet, it is possible that an embedding can do much
better in terms of the average distortion.

Indeed, in most practical applications of metric embed-
ding the main criteria for the quality of an embedding is its
average distortion over all pairs.

In this paper we provide an embedding with constant aver-
age distortion for arbitrary metric spaces, while maintaining
the same worst case bound provided by Bourgain’s theorem.

In fact, our embedding possesses a much stronger prop-
erty. We define the `q-distortion of a uniformly distributed
pair of points. Our embedding achieves the best possible
`q-distortion for all 1 ≤ q ≤ ∞ simultaneously.

These results have several algorithmic implications, e.g.
an O(1) approximation for the unweighted uncapacitated
quadratic assignment problem.

The results are based on novel embedding methods which
improve on previous methods in another important aspect:
the dimension.

The dimension of an embedding is of very high impor-
tance in particular in applications and much effort has been
invested in analyzing it. However, no previous result im-
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proved the bound on the dimension which can be derived
from Bourgain’s embedding.

We prove that any metric space on n points embeds into
Lp with distortion O(logn) in dimension O(logn). This pro-
vides an optimal bound on the dimension of the embedding.

Somewhat surprisingly, we show that a further small im-
provement is possible at a small price in the distortion, ob-
taining an embedding with distortion O(log1+θ n) in optimal
dimension O(θ−1 logn/ log logn), for any θ > 0. It is worth
noting that with the small loss in the distortion this im-
proves upon the best known embedding of arbitrary spaces
into Euclidean space, where dimension reduction is used.

Our techniques also allow to obtain the optimal distortion
for embedding into Lp with nearly tight dimension. For any
1 ≤ p ≤ ∞ and any 1 ≤ k ≤ p, we give an embedding into
Lp with distortion O(dlogn/ke) in dimension 2O(k) logn.

Underlying our results is a novel embedding method. Prob-
abilistic metric decomposition techniques have played a cen-
tral role in the field of finite metric embedding in recent
years. Here we introduce a novel notion of probabilistic
metric decompositions which comes particularly natural in
the context of embedding. Our new methodology provides
a unified approach to all known results on embedding of ar-
bitrary metric spaces. Moreover, as described above, with
some additional ideas they allow to get far stronger results.
These metric decompositions seem of independent interest.1

Categories and Subject Descriptors: F.2.0 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity – General

General Terms: Algorithms, Theory

Keywords: Metric Embedding

1. INTRODUCTION
The theory of embeddings of finite metric spaces has at-

tracted much attention in recent decades by several commu-
nities: mathematicians, researchers in theoretical Computer
Science as well as researchers in the networking community
and other applied fields of Computer Science.

The main objective of the field is to find embeddings of
metric spaces into other more simple and structured spaces
that have low distortion.

Given two metric spaces (X, dX) and (Y, dY ) an injective
mapping f : X → Y is called an embedding of X into
Y . An embedding is non-contractive if for any u 6= v ∈
X: dY (f(u), f(v)) ≥ dX(u, v). The distortion of a non-

1The paper is based on the papers [2] and [10].



contractive embedding f is: dist(f) = supu 6=v∈X distf (u, v),

where distf (u, v) = dY (f(u),f(v))
dX (u,v)

.

We say that X embeds in Y with distortion α if there
exists an embedding of X into Y with distortion α.

In Computer Science, embeddings of finite metric spaces
have played an important role, in recent years, in the de-
velopment of algorithms. More general practical use of em-
beddings can be found in a vast range of application areas
including computer vision, computational biology, machine
learning, networking, statistics, and mathematical psychol-
ogy to name a few.

From a mathematical perspective embeddings of finite
metric spaces into normed spaces are considered natural
non-linear analogues to the local theory of Banach spaces.
The most classic fundamental question is that of embedding
metric spaces into Hilbert Space.

Major effort has been put into investigating embeddings
into Lp normed spaces (see the surveys [41, 30, 31] and the
book [47] for an exposition of many of the known results).

The main cornerstone of the field has been the following
theorem by Bourgain [15]:

Theorem 1 (Bourgain). For every n-point metric space
there exists an embedding into Euclidean space with distor-
tion O(logn).

This theorem has been the basis on which the theory of
embedding into finite metric spaces has been built. In [42] it
is shown that Bourgain’s embedding provides an embedding
into Lp with distortion O(logn) and dimension O(log2 n).
In this paper we improve this result in two ways: we present
an embedding with average distortion O(1) and dimension
O(logn).

1.1 Novel Embedding Methods
There are few general methods of embedding finite metric

spaces that appear throughout the literature. One is indeed
the method introduced in Bourgain’s proof. This may be
described as a Fréchet-style embedding where coordinates
are defined as distances to randomly chosen sets in the space.
Some examples of its use include [15, 42, 45, 46], essentially
providing the best known bounds on embedding arbitrary
metric spaces into Lp.

The other embedding method which has been extensively
used in recent years, is based on probabilistic partitions of
metric spaces [7] originally defined in the context of proba-
bilistic embedding of metric spaces. Probabilistic partitions
for arbitrary metric spaces were also given in [7] and similar
constructions appeared in [43].

The probabilistic embedding of [7] (and later improve-
ments in [8, 22, 9]) provide in particular embeddings into
L1 and serve as the first use of probabilistic partitions in
the context of embeddings into normed spaces.

A major step was done in a paper by Rao [52] where he
shows that a certain padding property of such partitions can
be used to obtain embeddings into L2. Informally, a prob-
abilistic partition is padded if every ball of a certain radius
depending on some padding parameter has a good chance of
being contained in a cluster. Rao’s embedding defines coor-
dinates which may be described as the distance from a point
to the edge of its cluster in the partition and the padding
parameter provides a lower bound on this quantity (with
some associated probability). While Rao’s original proof

was done in the context of embedding planar metrics, it has
since been observed by many researchers that his methods
are more general and in fact provide the first decomposition-
based embedding into Lp. However, the resulting distortion
bound still did not match those achievable by Bourgain’s
original techniques.

This gap has been recently closed by Krauthgamer et. al
[35]. Their embedding, however, is already far more complex
than the original decomposition-based argument by Rao.
Their proof exploits special properties of the probabilistic
partition of [22] which was also originally developed in the
context of probabilistic embedding. This partition is based
on an algorithm of [16] and further improvements by [21]. In
particular, the main property of the probabilistic partition
of [22] is that the padding parameter is defined separately
at each point of the space and depends in a delicate fashion
on the growth of the space in the local surrounding of that
point.

This paper introduces novel probabilistic partitions with
even more refined properties which allow stronger and more
general results on embedding of finite metric spaces which
could not be achieved using the previous methods. They
also lead to relatively elegant embeddings and analysis.

Decomposition based embeddings also play a fundamental
role in the recently developed metric Ramsey theory [11, 14].
In [13] it is shown that the standard Fréchet style embed-
dings do not allow similar results. One indication that our
approach significantly differs from the previous embedding
methods discussed above is that our new theorems crucially
rely on the use of non-Fréchet embeddings.

The main idea is the construction of uniformly padded
probabilistic partitions. That is the padding parameter is
uniform over all points within a cluster. The key is that
having this property allows partition-based embeddings to
use the value of the padding parameter in the definition
of the embedding in the most natural way. In particular,
the most natural definition is to let a coordinate be the
distance from a point to the edge of the cluster (as in [52])
multiplied by the inverse of the padding parameter. This
provides an alternate embedding method with essentially
similar benefits as the approach of [35].

We present a construction of uniformly padded probabilis-
tic partitions which still posses intricate properties similar to
those of [22]. The construction is mainly based on a decom-
position lemma similar in spirit to a lemma which appeared
in [9], which by itself is a generalization of the original prob-
abilistic partitions of [7, 43]. However the proof that the
new construction obeys the desired properties is quite tech-
nically involved and requires several new ideas that have not
previously appeared.

We also give constructions of uniformly padded hierarchi-
cal probabilistic partitions. The idea is that these partitions
are padded in a hierarchical manner – a much stronger de-
mand than for only a single level partition. Although these
are not strictly necessary for the proof of our main theorems
they capture a stronger property of our partitions and play a
central role in showing that arbitrary metric spaces embed
in Lp with constant average distortion, while maintaining
the best worst case distortion bounds. The embeddings in
this paper demonstrate the versatility of these techniques
and we expect that more applications will be found in the
near future.



1.2 Low-Dimension Embeddings
Our new embeddings into Lp beat the previous embedding

methods by achieving optimal dimension.
Recall that Bourgain proved that every n point metric

space embeds into into Lp with O(logn) distortion. One
of the most important parameters of the embedding into a
normed space is the dimension of the embedding. This is of
particular important in applications and has been the main
object of study in the paper by Linial, London and Rabi-
novich [42] In particular, they ask: what is the dimension of
the embedding in Theorem 1 ?

For embedding into Euclidean space, this can be answered
by applying the Johnson and Lindenstrauss [32] dimension
reduction lemma which states that any n-point metric space
in L2 can be embedded in Euclidean space of dimension
O(logn) with constant distortion. This reduces the dimen-
sion in Bourgain’s theorem to O(logn).

However, dimension reduction techniques cannot be used
to generalize the low dimension bound to Lp for all p2. In
particular, while every metric space embeds isometrically in
L∞ there are non-constant lower bounds on the distortion of
embedding specific metric spaces into low dimensional L∞
space [44].

This problem has been addressed by Linial, London, and
Rabinovich [42] and separately by Matoušek [45] where they
observe that the embedding given in Bourgain’s proof of
Theorem 1 can be used to bound the dimension of the em-
bedding into Lp by O(log2 n).

In this paper we prove the following:

Theorem 2. For any 1 ≤ p ≤ ∞, every n-point metric
space embeds in Lp with distortion O(logn) in dimension
O(logn).

In addition to the new embedding techniques discussed
above the proof of Theorem 2 introduces a new trick of sum-
ming up the components of the embedding over all scales.
This is in contrast to previous embeddings where such com-
ponents were allocated separate coordinates. This saves us
the extra logarithmic factor in dimension.

Moreover, with only a small price to pay in distortion, we
provide an embedding into dimension O(logn/ log logn) :

Theorem 3. For any 1 ≤ p ≤ ∞, and θ > 0, every n-
point metric space embeds in Lp with distortion O(log1+θ n)
in dimension O(θ−1 logn/ log logn).

The proof of Theorem 3 is considerably more involved and
requires several more ideas, one of which, is that we make
non-standard use of the padded decompositions in that we
exploit a padding property with probability that may be
very close to 1.

The bounds in theorems 2 and 3 are tight for the metric
of an expander.

Theorem 4. For any fixed 1 ≤ p < ∞ and any θ > 0,
if the metric of an n-node constant degree expander embeds
into Lp with distortion O(log1+θ n) then the dimension of
the embedding is Ω(logn/dθ log logne).

Matoušek extended Bouragin’s proof to improve the dis-
tortion bound into Lp for large p to O(d log n

p
e). He also

2For 1 ≤ p < 2, a combination of lemmas of [32] and [23]
can be used to obtain an embedding in dimension O(logn).

showed this bound is tight [46]. The dimension obtained in

Matoušek’s analysis of the embedding into Lp is eO(p) log2 n.
Our methods extend to give the following improvement:

Theorem 5. For any 1 ≤ p ≤ ∞ and any 1 ≤ k ≤
p, every n-point metric space embeds in Lp with distortion
O(dlogn/ke) in dimension eO(k) logn.

The bound on the dimension in Theorem 5 is nearly tight
(up to lower order terms) as follows from volume arguments
by Matoušek [44] (based on original methods of Bourgain
[15]).

1.3 On the Average Distortion of Metric Em-
beddings

The O(logn) distortion guarantied by Bourgain’s theorem
is tight in the worst case. A somewhat weaker bound was
already shown in Bourgain’s paper and later Linial, London
and Rabinovich [42] proved that embedding the metrics of
constant-degree expander graphs into Euclidean space re-
quires Ω(logn) distortion.

Yet, this lower bound on the distortion is a worst case
bound, i.e., it means that there exists a pair of points whose
distortion is large. However, the average case is often more
significant in terms of evaluating the quality of the embed-
ding, in particular in relation to practical applications.

Formally, the average distortion of an embedding f is de-
fined as: avgdist(f) = 1

(n
2)

P
u 6=v∈X distf (u, v).

Indeed, in most real-world applications of metric embed-
dings average distortion and similar notions are used for
evaluating the embedding’s performance in practice, for ex-
ample see [28, 29, 6, 27, 54, 55]. Moreover, in some cases
it is desired that the average distortion would be small and
the worst case distortion would still be reasonably bounded
as well. While these papers provide some indication that
such embeddings are possible in practice, the classic theory
of metric embedding fails to address this natural question.

In particular, applying Bourgain’s embedding to the met-
ric of a constant-degree expander graph results in Ω(logn)
distortion for a constant fraction of the pairs3.

In this paper we prove the following theorem which pro-
vides a qualitative strengthening of Bourgain’s theorem:

Theorem 6 (Average Distortion). For every n-point
metric space there exists an embedding into Euclidean space
with distortion O(logn) and average distortion O(1).

In fact our results are even stronger. For 1 ≤ q ≤ ∞,
define the `q-distortion of an embedding f as:

distq(f) = ‖distf (u, v)‖(U)
q = E[distf (u, v)q]1/q,

where the expectation is taken according to the uniform dis-
tribution U over

�
X
2

�
. The classic notion of distortion is ex-

pressed by the `∞-distortion and the average distortion is
expressed by the `1-distortion. Theorem 6 follows from the
following:

Theorem 7 (`q-Distortion). For every n-point met-
ric space (X, d) there exists an embedding f of X into Eu-
clidean space such that for any 1 ≤ q ≤ ∞, distq(f) =
O(min{q, logn}).
3Similar statements hold for the more recent metric embed-
dings of [52, 35] as well.



A variant of average distortion that is natural is what we

call distortion of average: distavg(f) =
P

u 6=v∈X dY (f(u),f(v))
P

u 6=v∈X d(u,v)
,

which can be naturally extended to its `q-normed extension
termed distortion of `q-norm. Theorems 6 and 7 extend to
those notions as well.

Besides q = ∞ and q = 1, the case of q = 2 provides a par-
ticularly natural measure. It is closely related to the notion
of stress which is a standard measure in multidimensional
scaling methods, invented by Kruskal [36] and later stud-
ied in many models and variants. Multidimensional scaling
methods (see [37, 28]) are based on embedding of a metric
representing the relations between entities into low dimen-
sional space to allow feature extraction and are often used
for indexing, clustering, nearest neighbor searching and vi-
sualization in many application areas including psychology
and computational biology [29].

Previous work on average distortion. Related no-
tions to the ones studied in this paper have been considered
before in several theoretical papers. Most notably, Yuri Ra-
binovich [50] studied the notion of distortion of average4

motivated by its application to the Sparsest Cut problem.
This however places the restriction that the embedding is
Lipschitz or non-expansive. Other recent papers have ad-
dress this version of distortion of average and its extension to
weighted average. In particular, it has been recently shown
(see for instance [20]) that the work of Arora, Rao and Vazi-
rani on Sparsest Cut [5] can be rephrased as an embedding
theorem using these notions.

In his paper, Rabinovich observes that for Lipschitz em-
beddings the lower bound of Ω(logn) still holds. It is there-
fore crucial in our theorems that the embeddings are co-
Lipschitz 5 (a notion defined by Gromov [26]) (and w.l.o.g
non-contractive).

To the best of our knowledge the only paper addressing
such embeddings prior to this work is by Lee, Mendel and
Naor [38] where they seek to bound the average distortion of
embedding n-point L1 metrics into Euclidean space. How-
ever, even for this special case they do not give a constant
bound on the average distortion6.

Network embedding. Our work is largely motivated by
a surge of interest in the networking community on perform-
ing passive distance estimation (see e.g. [24, 48, 40, 18, 54,
17]), assigning nodes with short labels in such a way that
the network latency between nodes can be approximated ef-
ficiently by extracting information from the labels without
the need to incur active network overhead. The motivation
for such labelling schemes are many emerging large-scale de-
centralized applications that require locality awareness, the
ability to know the relative distance between nodes. For ex-
ample, in peer-to-peer networks, finding the nearest copy of
a file may significantly reduce network load, or finding the
nearest server in a distributed replicated application may
improve response time. One promising approach for dis-
tance labelling is network embedding (see [18]). In this ap-
proach nodes are assigned coordinates in a low dimensional
Euclidean space. The node coordinates form simple and ef-

4Usually this notion was called average distortion but the
name is somewhat confusing.
5This notion is used here somewhat differently than its orig-
inal purpose.
6The bound given in [38] is O(

√
logn) which applies to a

somewhat weaker notion.

ficient distance labels. Instead of repeatedly measuring the
distance between nodes, these labels allow to extract an ap-
proximate measure of the latency between nodes. Hence
these network coordinates can be used as an efficient build-
ing block for locality aware networks that significantly re-
duce network load.

As mentioned above the natural measure of efficiency in
the networking research is how the embedding performs on
average, where the notion of average distortion comes in
several variations can be phrased in terms of the definitions
given above. The phenomenon observed in measurements of
network distances is that the average distortion of network
embeddings was bounded by a small constant. Our work
gives the first full theoretical explanation for this intriguing
phenomenon.

Embedding with relaxed guaranties. The theoreti-
cal study of such phenomena was initiated by the work of
Kleinberg, Slivkins and Wexler [34]. They mainly focus on
the fact reported in the networking papers that the distor-
tion of almost all pairwise distances is bounded by some
small constant. In an attempt to provide theoretical jus-
tification for such phenomena [34] define the notion of a
(1− ε)-partial embedding7 where the distortion is bounded
for at least some (1 − ε) fraction of the pairwise distances.
They obtained some initial results for metrics which have
constant doubling dimension [34]. In Abraham et. al. [1] is
was shown that any finite metric space has a (1− ε)-partial
embedding into Euclidean space with O(log 1

ε
) distortion.

While this result is very appealing it has the disadvan-
tage of lacking any promise for some fraction of the pairwise
distances. This may be critical for applications - that is we
really desire an embedding which in a sense does “as well
as possible” for all distances. To question whether such an
embedding exists [34] define a stronger notion of scaling dis-
tortion8. An embedding has scaling distortion of α(ε) if it
provides this bound on the distortion of a (1− ε) fraction of
the pairwise distances, for any ε. In [34], such embeddings
with α(ε) = O(log 1

ε
) were shown for metrics of bounded

growth dimension, this was extended in [1] to metrics of
bounded doubling dimension. In addition [1] give a rather
simple probabilistic embedding with scaling distortion, im-
plying an embedding into (high-dimensional) L1.

The most important question arising from the work of [34,
1] is whether embeddings with small scaling distortion exist
for embedding into Euclidean space. We give the following
theorem9 which lies in the heart of the proof of Theorem 7:

Theorem 8. For every finite metric space (X, d), there
exists an embedding of X into Euclidean space with scaling
distortion O(log 1

ε
).

Techniques. While [1] certainly uses the state of the art
methods in finite metric embedding, it appears these tech-
niques break when attempting to prove Theorem 8. Indeed,
to prove the theorem and its generalizations we present novel
embedding techniques.

Our embeddings are based on the new decomposition based
methods described in Section 1.1. Here we make a more so-
phisticated use of these techniques. This is not surprising
7Called “embeddings with ε-slack” in [34].
8Called “gracefully degrading distortion” in [34].
9In fact in this theorem the definition of scaling distortion is
even stronger. This is explained in detail in the appropriate
section.



given that here we desire to obtain distortions which depend
solely on ε rather than on n. This requires clever ways of
defining the embeddings so that the contribution would be
limited as a function of ε. In particular, in our results for
large p, in addition to the decomposition based embedding,
a second component of our embedding uses a similar ap-
proach to that of Bourgain’s original embedding. However
using it in straightforward manner is impossible. It is here
that we crucially rely on the hierarchical structure of our
decompositions in order to do this in a way that will allow
us to bound the contribution appropriately.

Additional Results and Applications. In addition
to our main result, our paper contains several other con-
tributions: we extend the results on average distortion to
weighted averages. We show the bound is O(log Φ) where Φ
is the effective aspect ratio of the weight distribution. We
also obtain average distortion results for embeddings into
ultrametrics. In addition we provide a solution for another
open problem from [34, 1] regarding partial embedding into
trees.

Finally, we demonstrate some basic algorithmic applica-
tions of our theorems, mostly due to their extensions to gen-
eral weighted averages. Among others is an application to
uncapacitated quadratic assignment [49, 33]. We also ex-
tend our concepts to analyze Distance Oracles of Thorup
and Zwick [56] providing results with strong relation to the
questions addressed by [34]. We however feel that our cur-
rent applications do not make full use of the strength of our
theorems and techniques and it remains to be seen if such
applications will arise.

1.3.1 `q-Distortion and the Main Theorem
Given two metric spaces (X, dX) and (Y, dY ) an injective

mapping f : X → Y is called an embedding of X into Y . In
what follows we define novel notions of distortion. In order
to do that we start with the definition of the classic notion.

An embedding f is called c-co-Lipschitz [26] if for any u 6=
v ∈ X: dY (f(u), f(v)) ≥ c · dX(u, v) and non-contractive if
c = 1. In the context of this paper we will restrict attention
to co-Lipschitz embeddings, which due to scaling may be
further restricted to non-contractive embeddings. This has
no difference for the classic notion of distortion but has a
crucial role for the results presented in this paper. We will
elaborate more on this issue in the sequel.

For a non-contractive embedding define the distortion func-
tion of f , distf :

�
X
2

�
→ R+, where for u 6= v ∈ X: distf (u, v) =

dY (f(u),f(v))
dX (u,v)

. The distortion of f is defined as dist(f) =

supu 6=v∈X distf (u, v).

Definition 1 (`q-Distortion). Given a distribution Π
over

�
X
2

�
define for 1 ≤ q ≤ ∞ the `q-distortion of f with

respect to Π:

dist(Π)
q (f) = ‖distf (u, v)‖(Π)

q = EΠ[distf (u, v)q]1/q,

where ‖·‖(Π)
q denotes the normalized q norm over the distri-

bution (Π), defined as in the equation above. Let U denote
the uniform distribution over

�
X
2

�
. The `q-distortion of f is

defined as: distq(f) = dist
(U)
q (f).

In particular the classic distortion may be viewed as the `∞-
distortion: dist(f) = dist∞(f). An important special case
of `q-distortion is when q = 1:

Definition 2 (Average Distortion). Given a distri-
bution Π over

�
X
2

�
define for 1 ≤ q ≤ ∞ the averagedistor-

tion of f with respect to Π is defined as: avgdist(Π)(f) =

dist
(Π)
1 (f), and the average distortion of f is given by:

avgdist(f) = dist1(f).

Another natural notion is the following:

Definition 3 (Distortion of `q-Norm). Given a dis-
tribution Π over

�
X
2

�
define the distortion of `q-norm of f

with respect to Π:

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))q]1/q

EΠ[dX(u, v)q]1/q
,

and let distnormq(f) = distnorm
(U)
q (f).

Again, an important special case of distortion of `q-norm
is when q = 1:

Definition 4 (Distortion of Average). Given a dis-
tribution Π over

�
X
2

�
define the distortion of average of f

with respect to Π as: distavg(Π)(f) = distnorm
(Π)
1 (f) and

the distortion of average of f is given by: distavg(f) =
distnorm1(f).

For simplicity of the presentation of our main results we
use the following notation:

dist
∗(Π)
q (f) = max{dist

(Π)
q (f),distnorm

(Π)
q (f)}, dist∗q(f) =

max{distq(f),distnormq(f)}, and
avgdist∗(f) = max{avgdist(f),distavg(f)}.

Definition 5. A probability distribution Π over
�

X
2

�
, with

probability function π :
�

X
2

�
→ [0, 1], is called non-degenerate

if for every u 6= v ∈ X: π(u, v) > 0. The aspect ratio of a
non-degenerate probability distribution Π is defined as:

Φ(Π) =
maxu 6=v∈X π(u, v)

minu 6=v∈X π(u, v)
.

In particular Φ(U) = 1. If Π is not non-degenerate then
Φ(Π) = ∞.

For an arbitrary probability distribution Π over
�

X
2

�
, de-

fine its effective aspect ratio as:10 Φ̂(Π) = 2min{Φ(Π),
�

n
2

�
}

.

Theorem 9 (Embedding into Lp). Let (X, d) an n-
point metric space, and let 1 ≤ p ≤ ∞. There exists an
embedding f of X into Lp in dimension eO(p) logn, such
that for every 1 ≤ q ≤ ∞, and any distribution Π over�

X
2

�
: dist

∗(Π)
q (f) = O(min{q, logn}/p + log Φ̂(Π)). In par-

ticular, avgdist∗(Π)(f) = O(log Φ̂(Π)). Also: dist(f) =
O(dlogn/pe), dist∗q(f) = O(dq/pe) and avgdist∗(f) = O(1).

We show that all the bounds in the theorem above are
tight.

In the full paper we also give a stronger version of the
bounds for decomposable metrics. Recall that metric spaces
(X, d) can be characterized by their decomposability param-
eter τX where it is known that τX = O(log λX), where λX is
the doubling constant of X, and for metrics of Ks,s-excluded
minor graphs. τX = O(s2). For metrics with a bounded de-
composability parameter we extend Theorem 9 by showing

10The factor of 2 in the definition is placed solely for the sake
of technical convenience.



an embedding with dist
∗(Π)
q (f) =

O(min{q, (log λX)
1− 1

p (logn)1/p}+ log Φ̂(Π)).
The proof of Theorem 9 follows directly from results on

embedding with scaling distortion, discussed in the next
paragraph.

1.3.2 Partial Embedding, Scaling Distortion and Ad-
ditional Results

Following [34] we define:

Definition 6 (Partial Embedding). Given two met-
ric spaces (X, dX) and (Y, dY ), a partial embedding is a
pair (f,G), where f is a non-contractive embedding of X
into Y , and G ⊆

�
X
2

�
. The distortion of (f,G) is defined as:

dist(f,G) = sup{u,v}∈G distf (u, v).
For ε ∈ [0, 1), a (1 − ε)-partial embedding is a partial

embedding such that |G| ≥ (1− ε)
�

n
2

�
.11

Next, we would like to define a special type of (1 − ε)-
partial embeddings. For this aim we need a few more def-
initions. Let rε(x) denote the minimal radius r such that

|B(x, r)|/n ≥ ε. Let Ĝ(ε) = {{x, y} ∈
�

X
2

�
| d(x, y) ≥

max{rε/2(x), rε/2(y)}}.
A coarsely (1− ε)-partial embedding f is a partial embed-

ding (f, Ĝ(ε))12.

Definition 7 (Scaling Distortion). Given two met-
ric spaces (X, dX) and (Y, dY ) and a function α : [0, 1) →
R+, we say that an embedding f : X → Y has scaling dis-
tortion α if for any ε ∈ [0, 1), there is some set G(ε) such
that (f,G(ε)) is a (1 − ε)-partial embedding with distortion
at most α(ε). We say that f has coarsely scaling distortion

if for every ε, G(ε) = Ĝ(ε).

We can extend the notions of partial probabilistic em-
beddings and scaling distortion to probabilistic embeddings.
For simplicity we will restrict to coarsely partial embed-
dings.13

Definition 8 (Partial/Scaling Prob. Embedding).
Given (X, dX) and a set of metric spaces S, for ε ∈ [0, 1), a
coarsely (1 − ε)-partial probabilistic embedding consists of

a distribution F̂ over a set F of coarsely (1− ε)-partial em-

beddings from X into Y ∈ S. The distortion of F̂ is defined
as: dist(F̂) = sup{u,v}∈Ĝ(ε) E(f,Ĝ(ε))∼F̂ [distf (u, v)].

The notion of scaling distortion is extended to probabilistic
embedding in the obvious way.

We observe the following relation between partial embed-
ding, scaling distortion and the `q-distortion.

Lemma 1 (Scaling Distortion vs. `q-Distortion).
Given an n-point metric space (X, dX) and a metric space
(Y, dY ). If there exists an embedding f : X → Y with scaling

11Note that the embedding is strictly partial only if ε ≥
1/
�

n
2

�
.

12It is elementary to verify that indeed this defines a (1− ε)-
partial embedding. We also note that in most of the proofs

we can use a min rather than max in the definition of Ĝ(ε).
However, this definition seems more natural and of more
general applicability.

13Our upper bounds use this definition, while our lower
bounds hold also for the non-coarsely case.

distortion α then for any distribution Π over
�

X
2

�
:14

dist(Π)
q (f) ≤

 
2

Z 1

1
2 (n

2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

!1/q

+α(Φ̂(Π)−1).

In the case of coarsely scaling distortion this bound holds

for dist
∗(Π)
q (f).

Combined with the following theorem we obtain Theo-
rem 9. We note that when applying the lemma we use
α(ε) = O(log 1

ε
) and the bounds in the theorem mentioned

above follow from bounding the corresponding integral.

Theorem 10 (Scaling Distortion Theorem into Lp).
Let 1 ≤ p ≤ ∞. For any n-point metric space (X, d) there
exists an embedding f : X → Lp with coarsely scaling dis-
tortion O(d(log 1

ε
)/pe) and dimension eO(p) logn.

For metrics with a decomposability parameter τX the dis-

tortion improves to: O(min{τ1−1/p
X (log 1

ε
)1/p, log 1

ε
}).

Applying the lemma on the probabilistic embedding into
ultrametrics with scaling distortionO(log 1

ε
) of [1] we obtain:

Theorem 11 (Prob. Embedding into Ultrametrics).
Let (X, d) an n-point metric space. There exists a probabilis-

tic embedding F̂ of X into ultrametrics, such that for every

1 ≤ q ≤ ∞, and any distribution Π over
�

X
2

�
: dist

∗(Π)
q (F̂) =

O(min{q, logn}+ log Φ̂(Π)).

For q = 1 and for a given fixed distribution Theorem 11
can be given a classic embedding (deterministic) version:

Theorem 12 (Embedding into Ultrametrics). Given
an arbitrary fixed distribution Π over

�
X
2

�
, for any finite met-

ric space (X, d) there exists embeddings f, f ′ into ultramet-

rics, such that avgdist(Π)(f) = O(log Φ̂(Π)) and

distavg(Π)(f ′) = O(log Φ̂(Π)).

The results in [1] leave as an open question the distortion
of partial embedding into an ultrametric. While the upper
bound which follows from [1] by applying [7, 14] is O( 1

ε
),

the lower bound which follows from [1] by applying the Ω(n)
lower bound on embedding into trees of [51] is only Ω( 1√

ε
).

We show that the correct answer to this question is the
latter bound which is achievable by embedding into ultra-
metrics. In fact we can obtain embeddings into low-degree
k-HSTs [7]. This result is related both in spirit and tech-
niques to recently developed metric Ramsey theorems [11,
14] where embeddings into ultrametrics and k-HSTs play a
central role.

Theorem 13 (Partial Embedding into Ultrametrics).
For every n-point metric space (X, d) and any ε ∈ (0, 1)
there exists a (1 − ε) partial embedding into an ultrametric
with distortion O( 1√

ε
).

1.3.3 Algorithmic Applications
We demonstrate some basic applications of our main theo-

rems. We must stress however that our current applications
do not use the full strength of these theorems. Most of our
applications are based on the bound given on the distortion

14Assuming the integral is defined. We note that lemma is
stated using the integral for presentation reasons.



of average for general distributions of embeddings f into
Lp and into ultrametrics with distavg(Π)(f) = O(log Φ̂(Π)).
In some of these applications it is crucial that the result
holds for all such distributions Π This is useful for problems
which are defined with respect to weights c(u, v) in a graph
or in a metric space, where the solution involves minimiz-
ing the sum over distances weighted according to c. This is
common for many optimization problem either as part of the
objective function or alternatively it may come up in the lin-
ear programming relaxation of the problem. These weights
can be normalized to define the distribution Π. Using this
paradigm we obtain O(log Φ̂(c)) approximation algorithms,
improving on the general bound which depends on n in the
case that Φ̂(c) is small. This is the first result of this nature.

We are able to obtain such results for the following group
of problems: general sparsest cut [39, 4, 42, 5, 3], multi cut
[25], minimum linear arrangement [19, 53], embedding in d-
dimensional meshes [19, 9], multiple sequence alignment [57]
and uncapacitated quadratic assignment [49, 33].

We would like to emphasize that the notion of bounded
weights is in particular natural in the last application men-
tioned above. The problem of uncapacitated quadratic as-
signment is one of the most basic problems in operations
research (see the survey [49]) and has been one of the main
motivations for the work of Kleinberg and Tardos on metric
labelling [33].

We also give a different use of our results for the problem
of min-sum k-clustering [12].

1.3.4 Distance Oracles
Thorup and Zwick [56] study the problem of creating dis-

tance oracles for a given metric space. A distance oracle is
a space efficient data structure which allows efficient queries
for the approximate distance between pairs of points.

They give a distance oracle of space O(kn1+1/k), query
time of O(k) and worst case distortion (also called stretch)
of 2k − 1. They also show that this is nearly best possible
in terms of the space-distortion tradeoff.

We extend the new notions of distortion in the context
of distance oracles. In particular, we can define the `q-
distortion of a distance oracle. Of particular interest are
the average distortion and distortion of average notion. We
also define partial distance oracles, distance oracle scaling
distortion, and extend our results to distance labels and dis-
tributed labeled compact routing schemes in a similar fash-
ion. Our main result is the following strengthening of [56]:

Theorem 14. Let (X, d) be a finite metric space. Let
k = O(lnn) be a parameter. The metric space can be pre-
processed in polynomial time, producing a data structure of
O(n1+1/k logn) size, such that distance queries can be an-
swered in O(k) time. The distance oracle has worst case
distortion 2k − 1. Given any distribution Π, its average
distortion (and distortion of average) with respect to Π is

O(log Φ̂(Π)). In particular the average distortion (and dis-
tortion of average) is O(1).

1.4 Organization of the Paper
In Section 3 we define the new probabilistic partitions.

The constructions are described in Section 3.1. In Section 4
we present the proof of Theorem 2, providing an embedding
in O(logn) dimension. We also give its extension to scaling
distortion which implies O(1) average distortion, as stated in

Theorem 6. Section 5 includes the proof of Theorem 3, pro-
viding better bounds on the dimension. Section 6 provides
better scaling distortion embeddings for large p, as stated
in Theorem 5. Finally, we describe the relations between
scaling distortion, partial embedding and the `q-distortion
in Section 7.

2. PRELIMINARIES
Consider a finite metric space (X, d) and let n = |X|. The

diameter of X is denoted diam(X) = maxx,y∈X d(x, y). For
a point x and r ≥ 0, the ball at radius r around x is defined
as BX(x, r) = {z ∈ X|d(x, z) ≤ r}. We omit the subscript
X when it is clear form the context.

The following definitions are used in the context of partition-
based embeddings into Lp:

Definition 9. The local growth rate of x ∈ X at radius
r > 0 for a given scale γ > 0 is defined as

ρ(x, r, γ) = |B(x, rγ)|/|B(x, r/γ)|.

Given a subspace Z ⊆ X, the minimum local growth rate
of Z at radius r > 0 and scale γ > 0 is defined as ρ(Z, r, γ) =
minx∈Z ρ(x, r, γ). The minimum local growth rate of x ∈ X
at radius r > 0 and scale γ > 0 is defined as ρ̄(x, r, γ) =
ρ(B(x, r), r, γ).

We make use of the following simple fact (the proof is
omitted).

Claim 2. Let x, y ∈ X, let γ > 0 and let r be such that
2(1 + 1/γ)r < d(x, y) ≤ (γ − 2− 1/γ)r, then

max{ρ̄(x, r, γ), ρ̄(y, r, γ)} ≥ 2.

3. PROBABILISTIC PARTITIONS

Definition 10 (Partition). Let (X, d) be a finite met-
ric space. A partition P of X is a collection of disjoint sets
C(P ) = {C1, C2, . . . , Ct} such that X = ∪jCj. The sets
Cj ⊆ X are called clusters. For x ∈ X we denote by P (x)
the cluster containing x. Given ∆ > 0, a partition is ∆-
bounded if for all 1 ≤ j ≤ t, diam(Cj) ≤ ∆.

Definition 11 (Uniform Function). Given a parti-
tion P of a metric space (X, d), a function f defined on X
is called uniform with respect to P if for any x, y ∈ X such
that P (x) = P (y) we have f(x) = f(y).

Definition 12 (Hierarchical Partition). Fix some
integer L > 0. Let I = {0 ≤ i ≤ L|i ∈ Z}. A hierarchical
partition P of a finite metric space (X, d) is a hierarchical
collection of partitions {Pi}i∈I where P0 consists of a sin-
gle cluster equal to X and for any 0 < i ∈ I and x ∈ X,
Pi(x) ⊆ Pi−1(x). Given k > 1, let L = dlogk(diam(X))e
and set ∆0 = diam(X), and for each 0 < i ∈ I, ∆i =
∆i−1/k. We say that P is k-hierarchical if for each i ∈ I,
Pi ∈ P , Pi is ∆i-bounded.

Definition 13 (Prob. Hierarchical Partition). A

probabilistic k-hierarchical partition Ĥ of a finite metric
space (X, d) consists of a probability distribution over a set
H of k-hierarchical partitions.

A collection of functions defined on X, f = {fP,i|P ∈
H, i ∈ I} is uniform with respect to H if for every P ∈ H
and i ∈ I, fP,i is uniform with respect to Pi.



Definition 14 (Uniformly Padded PHP). Let Ĥ be
a probabilistic k-hierarchical partition. Given collection of
functions η = {ηP,i : X → [0, 1]|i ∈ I, Pi ∈ P, P ∈ H} and

δ ∈ (0, 1], Ĥ is called (η, δ)-padded if the following condition
holds for all i ∈ I and for any x ∈ X:

Pr[B(x, ηP,i(x)∆i) ⊆ Pi(x)] ≥ δ.

We say Ĥ is uniformly padded if η is uniform with respect
to H.

We now present the main lemma on the existence of hier-
archical partitions which are the main building block of our
embeddings.

Lemma 3 (Hierarchical Uniform Padding Lemma).
Let Γ = 64. Let δ ∈ (0, 1

2
]. Given a finite metric space

(X, d), there exists a probabilistic 4-hierarchical partition Ĥ
of (X, d) and a uniform collection of functions ξ = {ξP,i :
X → {0, 1}|P ∈ H, i ∈ I}, such that for the collection of

functions η, defined below, we have that Ĥ is (η, δ)-uniformly
padded, and the following properties hold for any P ∈ H,
0 < i ∈ I, Pi ∈ P :

•
P

j≤i ξP,j(x)ηP,j(x)
−1 ≤ 210 ln

�
n

|B(x,∆i+4)|

�
/ ln(1/δ).

• If ξP,i(x) = 1 then: ηP,i(x) ≤ 2−7.

• If ξP,i(x) = 0 then: ηP,i(x) ≥ 2−7 and ρ̄(x,∆i−1,Γ) <
1/δ.

The proof of Lemma 3 is described below. The rest of the
paper is based only on the statement of the lemma.

3.1 The Constructions
In this section we provide details on the proof of Lemma 3.
The main building block in the proof of the lemma is a

lemma about uniformly padded probabilistic partitions.

Definition 15 (Probabilistic Partition). A proba-

bilistic partition P̂ of a finite metric space (X, d) is a dis-

tribution over a set P of partitions of X. Given ∆ > 0, P̂
is ∆-bounded if each P ∈ P is ∆-bounded.

Definition 16 (Uniformly Padded PP). Given ∆ >

0, let P̂ be a ∆-bounded probabilistic partition of (X, d).
Given collection of functions η = {ηP : X → [0, 1]|P ∈ P}
and δ ∈ (0, 1], is called (η, δ)-padded if the following condi-
tion holds for any x ∈ X:

Pr[B(x, ηP (x)∆) ⊆ P (x)] ≥ δ.

We say P̂ is uniformly padded if for any P ∈ P the function
ηP is uniform with respect to P .

Lemma 4 (Uniform Padding Lemma). Let (X, d) be
a finite metric space. Let Z ⊆ X. Let ∆̄ be such that
diam(Z) ≤ ∆̄. Let ∆ be such that ∆ ≤ ∆̄/4 and let Γ

be such that Γ ≥ 4∆̄/∆. Let δ̂ ∈ (0, 1
2
]. There exists

a ∆-bounded probabilistic partition P̂ of (Z, d) and a col-
lection of uniform functions {ξP : X → {0, 1}|P ∈ P}
and {η̂P : X → {0, 1/ ln(1/δ̂)}|P ∈ P}, such that for any

δ̂ ≤ δ ≤ 1, and η(δ) defined by η
(δ)
P (x) = η̂P (x) ln(1/δ), the

probabilistic partition P̂ is (η(δ), δ)-uniformly padded, and
the following conditions hold for any P ∈ P and any x ∈ Z:

• If ξP (x) = 1 then: 2−6/ ln ρ(x, ∆̄,Γ) ≤ η̂P (x) ≤
2−6/ ln(1/δ̂).

• If ξP (x) = 0 then: η̂
(δ)
P (x) = 2−6/ ln(1/δ̂) and ρ̄(x, ∆̄,Γ)

< 1/δ̂.

The proof of Lemma 4 is based on a the following techni-
cal lemma, non-trivial generalization of arguments of [7, 9],
which lies in the heart of the constructions.

Given a finite metric space (X, d), and a subspace Z ⊆ X,
we define a decomposition of Z into (S, S̄), where S ⊆ Z.
For some given parameter 0 < ∆ < diam(Z), the decompo-
sition creates a cluster S of diameter in the range [∆/2,∆]
as follows. For short we use the notation A ./ (S, S̄) to
abbreviate A ∩ S 6= ∅ and A ∩ S̄ 6= ∅.

Lemma 5 (Probabilistic Decomposition). Let (X, d)
be a metric space and Z ⊆ X. let χ ≥ 2 be a parameter.
Given 0 < ∆ < diam(Z) and a center point v ∈ Z, there
exists a probability distribution over partitions (S, S̄) of Z
such that S = BZ(v, r), and r is chosen from a probabil-
ity distribution in the interval [∆/4,∆/2], such that for any
θ ∈ (0, 1) satisfying θ ≥ χ−1, let η = 1

16
ln(1/θ)/ lnχ then

for any x ∈ Z, the following holds:

Pr[BZ(x, η∆) ./ (S, S̄)] ≤
(1− θ)

�
Pr[BZ(x, η∆) * S̄] + 2χ−2� .

Proof. Let R = ∆/8. Choose a radius r in the interval

[2R, 4R] according to the distribution p(r) = ( χ2

1−χ−2 ) ln χ
R
χ−

r
R .

Now define a partition (S, S̄) where S = BZ(v, r) and S̄ =
Z \ S.

Let y and z be the nearest and farthest points to v in
BZ(x, η∆), respectively. We have:

Pr[BZ(x, η∆) ./ (S, S̄)] =Z d(v,z)

d(v,y)

p(r)dr = ( χ2

1−χ−2 )χ−
d(v,y)

R (1− χ−
d(v,z)−d(v,y)

R )

≤ ( χ2

1−χ−2 )χ−
d(v,y)

R (1− θ), (1)

which follows since:

d(v, z)− d(v, y)

R
≤ d(y, z)

R
≤ 2η∆

R
= 16η = lnχ(1/θ).

Pr[BZ(x, η∆) * S̄] =Z 4R

d(v,y)

p(r)dr = ( χ2

1−χ−2 )(χ−
d(v,y)

R − χ−4). (2)

Therefore we have:

Pr[BZ(x, η∆) ./ (S, S̄)]− (1− θ) · Pr[BZ(x, η∆) * S̄]

≤ (1− θ)( χ2

1−χ−2 )χ−4 ≤ (1− θ) · 2χ−2,

where in the last inequality we have used the assumption
that χ > 2. This completes the proof of the lemma.

We are now ready to prove Lemma 4:

Proof of Lemma 4. We generate a probabilistic par-
tition P̂ of Z by invoking the probabilistic decomposition



Lemma 5 iteratively. Define the partition P of Z into clus-
ters by generating a sequence of clusters: C1, C2, . . . Ct. No-
tice that we are generating a distribution over partitions and
therefore t and the generated clusters are random variables.

Let Z1 = Z. The clusters are created as follows: For
j ≥ 1, let vj be a random variable equal to the point x ∈ Zj

minimizing ρ(x, ∆̄,Γ). Define the random variables χ̂j =

ρ(vj , ∆̄,Γ) = ρ(Zj , ∆̄,Γ) and χj = max{χ̂j , 2/δ̂
1/2}.

Throughout the analysis fix some δ ≥ δ̂ and let θ = δ1/2.
Note that θ ≥ 2χ−1

j as required.
Invoke Lemma 5 to construct a probabilistic decompo-

sition for Zj with v = vj as center and the parameter
χ = χj defined above. Recall that ηj = 2−4 ln(1/θ)/ lnχj =
2−5 ln(1/δ)/ lnχj . This results in a partition (Svj , S̄vj ) where
vj is the center of Svj = BZj (vj , rj), for rj ∈ [∆/4,∆/2] cho-
sen from the distribution defined in Lemma 5. Set Cj = Svj ,
Zj+1 = Zj \ Svj . For every x ∈ Svj (i.e., P (x) = Svj ), de-

fine: η̂P (x) = 2−6/max{ln χ̂j , ln(1/δ̂)} and let η
(δ)
P (x) =

η̂P (x) ln(1/δ) (it is easy to verify that η
(δ)
P (x) ≤ ηj). If

χ̂j ≥ 1/δ̂ let ξP (x) = 1 otherwise ξP (x) = 0. Clearly, ξP

and ηP are uniform functions with respect to P . Continue
the process while Zj+1 6= ∅, otherwise t = j.

We now prove the properties in the lemma for some x ∈ Z.
We will consider the distribution over partitions of Z into
clusters C1, C2, . . . Ct as defined above. For 1 ≤ m ≤ t,
define the events:

Zm = {∀j, 1 ≤ j < m, BZ(x, ηj∆) ⊆ Zj+1},
Em = {∃j, m ≤ j < t s.t. BZ(x, ηj∆) ./ (Svj , S̄vj )|Zm}.

Also let T = B(x, 2∆). We prove the following inductive
claim: For every 1 ≤ m ≤ t:

Pr[Em] ≤ (1− θ)(1 + θE[
X

j≥m,vj∈T

χ−1
j |Zm]). (3)

Note that Pr[Et] = 0. Assume the claim holds for m+1 and
we will prove for m. Define the events:

Fm = {BZ(x, ηm∆) ./ (Svm , S̄vm)|Zm},
Gm = {BZ(x, ηm∆) ⊆ S̄vm |Zm} = {Zm+1|Zm}.

First we bound Pr[Fm]. Assume first a particular choice of
the clusters C1, . . . Cm−1 such that event Zm occurs. Call
this specific event A, then given that A occurred the center
vm of Cm is now determined deterministically, and so is the
value of χj . Notice that since rj ≤ ∆, if BZ(x, ηm∆) ./
(Svm , S̄vm) then d(vm, x) ≤ ∆ + ηm∆ ≤ 2∆, and thus vm ∈
T . Now, applying Lemma 5 we get

Pr[BZ(x, ηm∆) ./ (Svm , S̄vm)|A] ≤
(1− θ)(Pr[BZ(x, ηm∆) * S̄vm |A] + 1T (vm)θχ−1

m .

It follows that

Pr[Fm] ≤ (1− θ)(Pr[Ḡm] + θE[1T (vm)χm|Zm]).

Using the induction hypothesis we prove the inductive claim:

Pr[Em] ≤ Pr[Fm] + Pr[Gm] Pr[Em+1]

≤ (1− θ)(Pr[Ḡm] + θE[1T (vm)χ−1
m |Zm]) +

Pr[Gm] · (1− θ)(1 + θE[
X

j≥m+1,vj∈T

χ−1
j |Zm+1])

≤ (1− θ)(1 + θE[
X

j≥m,vj∈T

χ−1
j |Zm]),

Now consider a fixed choice of partition P . Observe that
for all vj ∈ T , d(vj , x) ≤ 2∆, and so we get B(vj , ∆̄/Γ) ⊆
B(x, 3∆). On other hand B(vj , ∆̄Γ) ⊇ B(x, 3∆). Also
since the radius of the ball defining Svj is at least ∆/4 we

have that for any j 6= j′, d(vj , v
′
j) > ∆/4 ≥ ∆̄/Γ, so that

B(vj , ∆̄/Γ) ∩B(vj′ , ∆̄/Γ) = ∅. Hence, we get:X
j≥m,vj∈T

χ−1
j ≤

X
j≥m,vj∈T

χ̂j
−1 =

X
j≥m,vj∈T

|B(vj , ∆̄/Γ)|
|B(vj , ∆̄Γ)|

≤
X

j≥m,vj∈T

|B(vj , ∆̄/Γ)|
|B(x, 3∆)| ≤ 1.

For x ∈ X, if P (x) = Svj then by definition η
(δ)
P (x) ≤ ηj

and so B(x, (η
(δ)
P (x))∆) ⊆ B(x, ηj∆). We conclude from the

claim (3) for m = 1 that:

Pr[B(x, (η
(δ)
P (x))∆) * P (x)] = Pr[E1] ≤

(1− θ)(1 + θ · E[
X

j≥m,vj∈T

χ−1
j ]) ≤ (1− θ)(1 + θ) = 1− δ.

It follows that P̂ is uniformly padded. Finally, we show
the properties states in the lemma. Recall that η̂P (x) =

2−6/max{ln χ̂j , ln(1/δ̂)}. By the choice of vj , χ̂j = ρ(Zj , ∆̄,Γ).
As x ∈ Zj we have that χ̂j ≤ ρ(x, ∆̄,Γ). If follows that if

ξP (x) = 1 then χ̂j ≥ 1/δ̂ and therefore η̂P (x) ≥ 2−6/ ln χ̂j ≥
2−6 ln(1/δ)/ ln ρ(x, ∆̄,Γ).

On the other hand if ξP (x) = 0 then χ̂j < 1/δ̂ and

η̂P (x) = 2−6/ ln(1/δ̂). Since diam(Zj) ≤ diam(Z) ≤ ∆̄
we have that Zj ⊆ B(x, ∆̄), and therefore ρ̄(x, ∆̄,Γ) ≤ χ̂j <

1/δ̂.

Using this lemma we can prove the following lemma on
uniformly padded hierarchical probabilistic partitions from
which Lemma 3 is derived.

Lemma 6 (Hierarchical Uniform Padding Lemma).

Let Γ = 64. Let δ̂ ∈ (0, 1
2
]. Given a finite metric space

(X, d), there exists a probabilistic 4-hierarchical partition Ĥ
of (X, d) and uniform collections of functions ξ = {ξP,i :
X → {0, 1}|P ∈ H, i ∈ I} and

η̂ = {η̂P,i : X → {0, 1/ ln(1/δ̂)}|P ∈ H, i ∈ I}, such that for

any δ̂ ≤ δ ≤ 1 and η(δ) defined by η(δ)(x) = η̂(δ)(x) ln(1/δ),

we have that Ĥ is (η(δ), δ)-uniformly padded, and the follow-
ing properties hold:

• X
j≤i

ξP,j(x)η
(δ)
P,j(x)

−1 ≤ 210 ln

�
n

|B(x,∆i+4)|

�
/ ln(1/δ).

and for any P ∈ H, 0 < i ∈ I, Pi ∈ P :

• If ξP,i(x) = 1 then: η̂P,i(x) ≤ 2−7/ ln(1/δ̂).

• If ξP,i(x) = 0 then: η̂P,i(x) ≥ 2−7/ ln(1/δ̂) and

ρ̄(x,∆i−1,Γ) < 1/δ̂.

Proof. We create a random hierarchical partition P .
By definition P0 consists of a single cluster equal to X.
Set for all x ∈ X, ∆0 = diam(X), η̂P,0(x) = 1/ ln(1/δ̂),
ξP,0(x) = 0. For each i ∈ Z we set ∆i = 4−i∆0. The
rest of the levels of the partition are created by invoking



iteratively Lemma 4. For 0 < i ∈ I, assume we have cre-
ated clusters in Pi−1. Set ∆̄ = ∆i−1. Now, for each cluster
S ∈ Pi−1, invoke Lemma 4 to create a ∆i-bounded proba-
bilistic partition Q[S] of (S, d). Let Q[S] be the generated

partition. Set Pi = Q[S]. Let ξ′Q[S], η̂
′
Q[S] be the uni-

form functions defined in Lemma 4. Recall that for δ′ ≥ δ̂

we have that Q[S] is (η′
(δ′)

, δ′)-uniformly padded, where

η′
(δ′)
Q[S](x) = η̂′Q[S](x) ln(1/δ′). Define η̂P,i(x) = min{ 1

2
·

η̂′Q[S](x), 2·η̂P,i−1(x)} and let η
(δ)
P,i(x) = η̂P,i(x) ln(1/δ). If it

is the case that η̂P,i(x) = 1
2
· η̂′Q[S](x) and also ξ′Q[S](x) = 0

then set ξP,i(x) = 0, otherwise ξP,i(x) = 1.

Setting δ′ = δ1/2 ≥ δ̂, observe that by definition: η
(δ)
P,i(x) =

min{η′(δ
′)

Q[S](x), 2η
(δ)
P,i−1(x)}.

Note, that for i ∈ I, x, y ∈ X such that Pi(x) = Pi(y),
it follows by induction that η̂P,i(x) = η̂P,i(y) (and hence

η
(δ)
P,i(x) = η

(δ)
P,i(y)) and ξP,i(x) = ξP,i(y), by using the fact

that η̂′ and ξ′ are uniform functions with respect to Q[S],
where S = Pi−1(x) = Pi−1(y).

We prove by induction on i that Pi is (η(δ), δ)-uniformly

padded for all δ ≥ δ̂. Assume it holds for i − 1 and we
will prove for i. Now fix some appropriate value of δ. Let

Bi = B(x, η
(δ)
P,i(x)∆i). We have:

Pr[Bi ⊆ Pi(x)] =

Pr[Bi ⊆ Pi−1(x)] · Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)]. (4)

As η
(δ)
P,i(x) ≤ η′

(δ′)
Q[Pi−1(x)](x) we haveB(x, η′

(δ′)
Q[Pi−1(x)](x)∆i) ⊇

Bi. It follows that if Bi ⊆ Pi−1(x) then it also holds that

Bi ⊆ BPi−1(x, η
′(δ′)
Q[Pi−1(x)](x)∆i). Using Lemma 4 we have

Pr[Bi ⊆ Pi(x)|Bi ⊆ Pi−1(x)] ≥ δ′.

Next observe that by definition η
(δ)
P,i(x) ≤ 2η

(δ)
P,i−1(x) and

η
(δ)
P,i−1(x) = 2η

(δ1/2)
P,i−1 (x). Since ∆i = ∆i−1/4 we get that

η
(δ)
P,i(x)∆i ≤ η

(δ′)
P,i−1(x)∆i−1 for δ′ = δ1/2. We therefore ob-

tain that Bi ⊆ B(x, η
(δ′)
P,i−1(x)∆i−1). Using the induction

hypothesis we get Pr[Bi ⊆ Pi−1(x)] ≥ δ′. We conclude
from (4) above that the inductive claim holds: Pr[Bi ⊆
Pi(x)] ≥ δ′ · δ′ = δ.

This completes the proof that H is (η(δ), δ)-uniformly
padded.

We now turn to prove the properties stated in the lemma.
Consider some i ∈ I and x ∈ X. The second property holds
as η̂P,i(x) ≤ 1

2
η̂′Q[Pi−1(x)](x) ≤ 2−7/ ln(1/δ̂), using Lemma 4.

Let us prove the third property. By definition if ξP,i(x) =
0 then η̂P,i(x) = 1

2
η̂′Q[Pi−1(x)](x) and ξ′Q[Pi−1(x)](x) = 0.

Using Lemma 4 we have that η̂P,i(x) ≥ 2−7/ ln(1/δ̂) and

that ρ̄(x,∆i−1,Γ) < 1/δ̂.
It remains to prove the first property of the lemma. Define

ψP,i(x) = 2−7 · ξP,i(x)η̂P,i(x)
−1. It is easy to derive the fol-

lowing recursion: ψP,i(x) ≤ ln ρ(x,∆i−1,Γ) + ψP,i−1(x)/2.
A simple induction on t shows that for any 0 ≤ t < i:P

t<j≤i ψP,j(x) ≤ 2
P

t<j≤i ln ρ(x,∆j−1,Γ)+(1−2t−i)ψP,t(x).
Now observe that as Γ = 64, and that for any j ∈ I:

ln ρ(x,∆j ,Γ) = ln

�
|B(x,∆jΓ)|
|B(x,∆j/Γ)|

�

=

3X
h=−4

ln

�
|B(x, 4∆j+h)|
|B(x,∆j+h)|

�
.

It follows thatX
0<j≤i

ψP,j(x) ≤ 2
X

0<j≤i

ln ρ(x,∆j−1,Γ)

= 2
X

0<j≤i

3X
h=−4

ln

�
|B(x, 4∆j+h)|
|B(x,∆j+h)|

�

= 2

3X
h=−4

X
0<j≤i

ln

�
|B(x, 4∆j+h)|
|B(x,∆j+h)|

�

= 8 ln

�
n

|B(x,∆i+4)|

�
.

This completes the proof of the first property of the lemma.

4. THE MAIN THEOREM
In this section we prove Theorem 2 and its scaling distor-

tion version: every n-point metric space embeds in Lp with
scaling distortion O(log 1

ε
) and dimension O(logn). In par-

ticular, this theorem implies O(1) average distortion (The-
orem 6).

The start with the basic theorem of O(logn) distortion
and dimension. The proof relies on Lemma 3.

In this section we construct an embedding into Lp. Let
D = Θ(lnn). We will define an embedding f : X →
lDp with distortion O(lnn). We define f by defining for

each 1 ≤ t ≤ D, a function f (t) : X → R+ and let f =
D−1/pL

1≤t≤D f (t).

Fix t, 1 ≤ t ≤ D. In what follows we define f (t). We con-
struct a uniformly (η, 1/2)-padded probabilistic 4-hierarchical
partition H̄ as in Lemma 3, and let ξ be as defined in the
lemma. Now fix a hierarchical partition P ∈ H. We de-
fine the embedding by defining the coordinates for each

x ∈ X. Define for x ∈ X, 0 < i ∈ I, φ
(t)
i : X → R+,

by φ
(t)
i (x) = ξP,i(x)ηP,i(x)

−1.
Lemma 3 ensures that ξ and η are uniform functions with

respect to H so we have:

Claim 7. For any x, y ∈ X and i ∈ I if Pi(x) = Pi(y)

then φ
(t)
i (x) = φ

(t)
i (y).

For each 0 < i ∈ I we define a function ψ
(t)
i : X → R+

and for x ∈ X, let f (t)(x) =
P

i∈I ψ
(t)
i (x).

Let {σ(t)
i (C)|C ∈ Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-

valued Bernoulli random variables. The embedding is de-
fined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let ψ
(t)
i (x) = σ

(t)
i (Pi(x)) · φ(t)

i (x) ·
d(x,X \ Pi(x)).

Claim 8. For any 0 < i ∈ I and x, y ∈ X: ψ
(t)
i (x) −

ψ
(t)
i (y) ≤ φ

(t)
i (x) · d(x, y).

Proof. We have two cases. In Case 1, assume Pi(x) =

Pi(y). By Claim 7 φ
(t)
i (y) = φ

(t)
i (x). It follows that

ψ
(t)
i (x)− ψ

(t)
i (y) =

σ
(t)
i (Pi(x)) · φ(t)

i (x) · (d(x,X \ Pi(x))− d(y,X \ Pi(x))) ≤

φ
(t)
i (x) · d(x, y).

Next, consider Case 2 where Pi(x) 6= Pi(y). In this case
we have that d(x,X \ Pi(x)) ≤ d(x, y) which implies that

ψ
(t)
i (x)− ψ

(t)
i (y) ≤ ψ

(t)
i (x) ≤ φ

(t)
i (x) · d(x, y).



Lemma 9. There exists a universal constant C1 > 0 such
that for any x, y ∈ X:

|f (t)(x)− f (t)(y)| ≤ C1 lnn · d(x, y).

Proof. From Claim 8 and using Lemma 3 we getX
0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y)) ≤

X
0<i∈I

φ
(t)
i (x) · d(x, y)

≤ 211 lnn · d(x, y).

It follows that |f (t)(x)−f (t)(y)| = |
P

0<i∈I(ψ
(t)
i (x)−ψ(t)

i (y))|
≤ 211 lnn · d(x, y).

Lemma 10. There exists a universal constant C2 > 0
such that for any x, y ∈ X, with probability at least 1/8:

|f (t)(x)− f (t)(y)| ≥ C2 · d(x, y).

Proof. Let 0 < ` ∈ I be such that 4∆`−1 ≤ d(x, y) ≤
16∆`−1. By Claim 2 we have
max{ρ̄(x,∆`−1,Γ), ρ̄(y,∆`−1,Γ)} ≥ 2. Assume w.l.o.g that
ρ̄(x,∆`−1,Γ) ≥ 2. It follows from Lemma 3 that ξP,`(x) = 1

which implies that φ
(t)
` (x) = ηP,`(x)

−1. As Ĥ is (η, 1/2)-
padded we have the following bound

Pr[B(x, ηP,`(x)∆`) ⊆ P`(x)] ≥ 1/2.

Therefore with probability at least 1/2:

φ
(t)
` (x) · d(x,X \ P`(x)) ≥ φ

(t)
` (x) · ηP,`(x)∆` ≥ ∆`.

Assume that this event occurs. We distinguish between
two cases:

• |
P

0<i6=`(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 1

2
∆`. In this case there

is probability at least 1/4 that σ
(t)
` (P`(x)) = σ

(t)
` (P`(y))

= 0, so that ψ
(t)
` (x) = ψ

(t)
` (y) = 0.

• |
P

0<i6=`(ψ
(t)
i (x)− ψ

(t)
i (y))| ≤ 1

2
∆`.

Since diam(P`(x)) ≤ ∆` < d(x, y) we have that P`(y) 6=
P`(x). We get that there is probability 1/4 that

σ
(t)
` (P`(x)) = 1 and σ

(t)
` (P`(y)) = 0 so that ψ

(t)
` (x) −

ψ
(t)
` (y) ≥ ∆`.

We conclude that with probability at least 1/8:

|
X

0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 1

2
∆`.

It follows that with probability at least 1/8:

|f (t)(x)− f (t)(y)| = |
X

0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 2−7d(x, y).

Lemma 11. There exist universal constants C′
1, C

′
2 > 0

such that w.h.p for any x, y ∈ X:

C′
2 · d(x, y) ≤ ‖f(x)− f(y)‖p ≤ C′

1 lnn · d(x, y).

Proof. By definition
‖f(x)− f(y)‖p

p = D−1P
1≤t≤D |f (t)(x)− f (t)(y)|p.

Lemma 9 implies that ‖f(x)−f(y)‖p
p ≤ (C1 lnn)p d(x, y)p.

Using Lemma 10 and applying Chernoff bounds we get
w.h.p for any x, y ∈ X: ‖f(x)−f(y)‖p

p ≥ 1
16

(C2d(x, y))
p .

4.1 Scaling Distortion Embedding
The proof for scaling distortion version of the theorem fol-

lows the same structure above. The embedding is modified
using the following definition:

• For each 0 < i ∈ I, let ψ
(t)
i (x) = σ

(t)
i (Pi(x)) · g(t)

i (x),

where g
(t)
i : X → R+ is defined as: g

(t)
i (x) = min{φ(t)

i (x)·
d(x,X \ Pi(x)),∆i}.

It is easy to see that the new definition does not affect
the lower bound part of the proof (Lemma 10). The upper
bound is described below:

Define ḡ
(t)
i : X×X → R+ as follows: ḡ

(t)
i (x, y) = min{φ(t)

i (x)·
d(x, y),∆i} (Note that ḡ

(t)
i is nonsymmetric).

Claim 12. For any 0 < i ∈ I and x, y ∈ X:

ψ
(t)
i (x)− ψ

(t)
i (y) ≤ ḡ

(t)
i (x, y).

Proof. We have two cases. In Case 1, assume Pi(x) =
Pi(y). It follows that

ψ
(t)
i (x)− ψ

(t)
i (y) = σ

(t)
i (Pi(x)) · (g(t)

i (x)− g
(t)
i (y)).

We will show that g
(t)
i (x)− g

(t)
i (y) ≤ ḡ

(t)
i (x, y). The bound

g
(t)
i (x) − g

(t)
i (y) ≤ ∆i is immediate. To prove g

(t)
i (x) −

g
(t)
i (y) ≤ φ

(t)
i (x) · d(x, y) consider the value of g

(t)
i (y). As-

sume first g
(t)
i (y) = φ

(t)
i (y) · d(y,X \ Pi(x)). By Claim 7

φ
(t)
i (y) = φ

(t)
i (x) and therefore

g
(t)
i (x)− g

(t)
i (y) ≤ φ

(t)
i (x) · (d(x,X \ Pi(x))− d(y,X \ Pi(x)))

≤ φ
(t)
i (x) · d(x, y).

In the second case g
(t)
i (y) = ∆i and therefore g

(t)
i (x) −

g
(t)
i (y) ≤ ∆i −∆i = 0, proving the claim in this case.
Next, consider Case 2 where Pi(x) 6= Pi(y). In this case

we have that d(x,X \ Pi(x)) ≤ d(x, y) which implies that

ψ
(t)
i (x)− ψ

(t)
i (y) ≤ ψ

(t)
i (x) ≤ g

(t)
i (x) ≤ ḡ

(t)
i (x, y).

Lemma 13. There exists a universal constant C1 > 0
such that for any ε > 0 and any (x, y) ∈ Ĝ(ε):

|f (t)(x)− f (t)(y)| ≤ C1 ln(1/ε) · d(x, y).

Proof. From Claim 12 we getX
0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y)) ≤

X
0<i∈I

ḡ
(t)
i (x, y).

Now, define ` to be largest such that ∆`+4 ≥ d(x, y) ≥
max{rε/2(x), rε/2(y)}. If no such ` exists then let ` = 0.

By Lemma 3 we haveX
0<i≤`

ḡ
(t)
i (x, y) ≤

X
0<i≤`

φ
(t)
i (x) · d(x, y)

≤ 211 · ln
�

n

|B(x,∆`+4)|

�
· d(x, y)

≤ (211 ln(2/ε)) · d(x, y).

We also have thatX
`<i∈I

ḡ
(t)
i (x, y) ≤

X
`<i∈I

∆i ≤ ∆` ≤ 45d(x, y).



It follows that

|f (t)(x)− f (t)(y)| = |
X

0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y))|

≤
�
211 ln(2/ε) + 45� · d(x, y).

5. TIGHT BOUNDS ON THE DIMENSION
In this section we provide an embedding in optimal dimen-

sion, proving Theorem 3. The proof relies on the following
slightly strengthened version of Lemma 3. We first require
a claim based on a simple technique from [7].

Claim 14. Given a finite metric space (X, d) and let ε >

0, there exists a metric space (X(ε), d(ε)) (where X(ε) is a

quotient of X) and a mapping ν(ε) : X → X(ε) such that:

• For any x, y ∈ X: if d(x, y) ≤ ε then ν(ε)(x) = ν(ε)(y).

• For any x, y ∈ X: d(ε)(ν(ε)(x), ν(ε)(y)) ≤ d(x, y) ≤
d(ε)(ν(ε)(x), ν(ε)(y)) + 2εn.

The proof is left for the full version. We obtain the following
lemma (the proof is omitted).

Lemma 15. Let c ≥ 2. Given a finite metric space (X, d),

there exists a probabilistic 4-hierarchical partition Ĥ of (X, d)
and uniform collections of functions
ξ = {ξP,i : X → {0, 1}|P ∈ H, i ∈ I} and η̂ = {η̂P,i : X →
{0, 1/ ln(1/δ̂)}|P ∈ H, i ∈ I}, such that for any δ̂ ≤ δ ≤ 1

and η(δ) defined by:

• η
(δ)
P,i(x) = max{η̂(δ)

P,i(x) ln(1/δ), 1/(cn)},

we have that Ĥ is (η(δ), δ)-uniformly padded, and η̂ satisfies
the same properties as in Lemma 6.

The Embedding. Let θ > 0. LetD = d8·θ−1 lnn/ ln lnne.
We will define an embedding f : X → lDp with distortion

O(ln1+2θ n). We define f by defining for each 1 ≤ t ≤ D, a

function f (t) : X → R+ and let f = D−1/pL
1≤t≤D f (t).

In what follows we define the functions f (t).
Let ε = ln−θ n (we may assume ε ≤ 1/2). We construct a

uniformly (η, 1−ε)-padded probabilistic 4-hierarchical parti-

tion H̄(t) by applying Lemma 15 with δ̂ = 1/2 and δ = 1−ε,
let ξ be as defined in the lemma. Now fix a hierarchical par-
tition P (t) ∈ H(t). We define the embedding by defining the
coordinates for each x ∈ X. Define for x ∈ X, 0 < i ∈ I,

φ
(t)
i : X → R+, by φ

(t)
i (x) = ξP (t),i(x)ηP (t),i(x)

−1.
As in Section 4 we have Claim 7.
Let {σ(t)

m |1 ≤ t ≤ D, 1 ≤ m ≤ n} be i.i.d random variables

uniformly distributed in [0, 1]. Let {σ̄(t)
i |1 ≤ t ≤ D, 0 ≤ i <

2c logn} be i.i.d symmetric {0, 1}-valued Bernoulli random
variables, and extend it into a periodic sequence so that for

i ∈ N, σ̄
(t)
i = σ̄

(t)

i mod d2c log ne, where c is determined later in

the proof.

Let C1, . . . Cni be the clusters of P
(t)
i . Define for Cj ∈

P
(t)
i : σ̂

(t)
i (Cj) = σ

(t)
j σ̄

(t)
i .

For each 0 < i ∈ I we define a function ψ
(t)
i : X → R+

and for x ∈ X, let f (t)(x) =
P

i∈I ψ
(t)
i (x).

To define the embedding we need to make use of some
parameters in the construction of the probabilistic partition
as described in Lemma 15. Denote εi = ∆i/(cn) and let

ν
(εi)
i be the mapping as in Claim 14. The embedding is

defined as follows: for each x ∈ X:

• For each 0 < i ∈ I, let ψ
(t)
i (x) = σ

(t)
i (P

(t)
i (x)) · g(t)

i (x),

where g
(t)
i : X → R+ is defined as: g

(t)
i (x) = min{φ(t)

i (x)·
d(ν

(εi)
i (x), X \ P (t)

i (x)),∆i}.

We have the corresponding variant of Claim 12 from Sec-

tion 4.1 . Define ḡ
(t)
i : X ×X → R+ as follows: ḡ

(t)
i (x, y) =

min{φ(t)
i (x) · d(x, y),∆i}.

Claim 16. For any 0 < i ∈ I and x, y ∈ X: ψ
(t)
i (x) −

ψ
(t)
i (y) ≤ ḡ

(t)
i (x, y).

Proof. The proof is the same as in Claim 12, by using

d(ν
(εi)
i (x), ν

(εi)
i (y)) ≤ d(x, y).

Lemma 17. There exists a universal constant C1 > 0
such that for any x, y ∈ X:

‖f(x)− f(y)‖p ≤ C1 ln1+θ n · d(x, y).
Proof. From Claim 16 and using Lemma 3 we getX

0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y)) ≤

X
0<i∈I

ḡ
(t)
i (x, y) ≤

X
0<i∈I

φ
(t)
i (x) · d(x, y) ≤ 210 lnn/ ln(

1

1− ε
) · d(x, y) ≤

211 lnn/ε · d(x, y) = 211 ln1+θ n · d(x, y).

It follows that |f (t)(x)−f (t)(y)| = |
P

0<i∈I(ψ
(t)
i (x)−ψ(t)

i (y))|
≤ 211 ln1+θ n · d(x, y),and therefore

‖f(x)− f(y)‖p
p =

D−1
X

1≤t≤D

|f (t)(x)− f (t)(y)|p ≤
�
C1 ln1+θ n

�p

d(x, y)p.

The next Lemma makes use of the following simple tech-
nical claim.

Claim 18. Let A,B ∈ R+ and let α, β be i.i.d random
variables uniformly distributed in [0, 1]. Then for any ε > 0:

Pr[|Aα−Bβ| < ε ·max{A,B}] < 2ε.

Lemma 19. There exists a universal constant C2 > 0
such that with constant probability for any x, y ∈ X:

‖f(x)− f(y)‖p ≥ C2 ln−θ n · d(x, y).
Proof. We will prove that with constant probability for

every x, y ∈ X, there exists a set T (x, y) ⊆ {1, . . . , D} of
size at least D/16 such that for any t ∈ T (x, y):

|f (t)(x)− f (t)(y)| ≥ 2−9ε · d(x, y). (5)

The theorem follows directly:

‖f(x)− f(y)‖p
p = D−1

X
1≤t≤D

|f (t)(x)− f (t)(y)|p

≥ D−1|T (x, y)| ·
�
2−9ε · d(x, y)

�p
≥ 1

16

�
2−9 log−θ n · d(x, y)

�p

.



The proof follows the general principle of Lemma 10. In
order to do this we need to make more delicate analysis of
the probability that certain events occur.

Fix some x, y ∈ X. Let 0 < ` = `(x, y) ∈ I be such
that 4∆`−1 ≤ d(x, y) ≤ 16∆`−1. By Claim 2 we have that
max{ρ̄(x,∆`−1,Γ), ρ̄(y,∆`−1,Γ)} ≥ 2. Assume w.l.o.g that
ρ̄(x,∆`−1,Γ) ≥ 2. It follows from Lemma 3 that ξP (t),`(x) =

1 which implies that φ
(t)
` (x) = ηP (t),`(x)

−1. As Ĥ(t) is (η, 1−
ε)-padded we have the following bound

Pr[B(x, ηP (t),`(x)∆`) ⊆ P
(t)
` (x)] ≥ 1− ε.

Therefore with probability at least 1− ε:

φ
(t)
` (x) · d(ν(ε`)

` (x), X \ P (t)
` (x)) ≥

φ
(t)
` (x) · (d(x,X \ P (t)

` (x))− d(x, ν
(ε`)
` (x)) ≥

φ
(t)
` (x) · (ηP (t),`(x)−

1

cn
)∆` ≥

1

2
∆`, (6)

for an appropriate choice of c as φ
(t)
` (x) ≤ c lnn/2. It follows

that also g
(t)
` (x) ≥ 1

2
∆`.

Let A denote the event that (6) occurs. Recall that:

|ψ(t)
` (x)− ψ

(t)
` (y)| =

|σ̂(t)
` (P

(t)
` (x)) · g(t)

` (x)− σ̂
(t)
` (P

(t)
` (y)) · g(t)

` (y)|.

Since diam(P
(t)
` (x)) ≤ ∆` < d(x, y) we have that P

(t)
` (y) 6=

P
(t)
` (x). It follows that there are a 6= b such that σ̂

(t)
` (P

(t)
` (x)) =

σ̄
(t)
` · σ(t)

a and σ̂
(t)
` (P

(t)
` (y)) = σ̄

(t)
` · σ(t)

b . Hence,

|ψ(t)
` (x)− ψ

(t)
` (y)| = σ̄

(t)
` · |σ(t)

a · g(t)
` (x)− σ

(t)
b · g(t)

` (y)|.

By Claim 18 and using (6) we have:

Pr[|σ(t)
a · g(t)

` (x)− σ
(t)
b · g(t)

` (y)|] < ε · 1

2
∆`|A] < 2ε.

Therefore with probability at least 1− 3ε:

|ψ(t)
` (x)− ψ

(t)
` (y)| ≥ σ̄

(t)
` · 1

2
ε ·∆`. (7)

We are now ready to prove (5). Specifically, we will prove
that with constant probability for every x, y ∈ X there exists
T (x, y) of size at least D/16 such that for any t ∈ T (x, y):

|f (t)(x)− f (t)(y)| =

|
X

0<i∈I

(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 1

8
ε ·∆`(x,y). (8)

Inequality (5) now follows as ∆`(x,y) ≥ 4−3 · d(x, y).
For each x, y ∈ X define I(x, y) = {0 < i ∈ I|`(x, y) −

log(cn) ≤ i < `(x, y) + log(cn)} and let I∗(x, y) = I(x, y) \
{`(x, y)}. We will first show that with constant probability
for every x, y ∈ X there exists T (x, y) of size at least D/16
such that for any t ∈ T (x, y):

|
X

i∈I(x,y)

(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 1

4
ε ·∆`(x,y). (9)

Consider the set TL(x, y) = {t ∈ {1, . . . , D}|
|
P

i∈I∗(x,y)(ψ
(t)
i (x)−ψ(t)

i (y))| ≥ 1
4
ε ·∆`(x,y)}. We partition

the pairs of points in X as follows. Let W = {{x, y} ∈�
X
2

�
||TL(x, y)| ≥ D/2} and W̄ = {{x, y} ∈

�
X
2

�
||TL(x, y)| <

D/2}. Let Wl = {{x, y} ∈ W |`(x, y) = l} and W̄l =
{{x, y} ∈ W̄ |`(x, y) = l}. The analysis proceeds according
to this partition:

• {x, y} ∈ Wl. If for some t ∈ TL(x, y), σ̄
(t)
l = 0 then

|
P

i∈I(x,y)(ψ
(t)
i (x)−ψ(t)

i (y))| ≥ 1
4
ε·∆l. Using Chernoff

bounds, we have that the probability that this fails to
hold for at least D/8 values of t is at most 2−D/8.

• {x, y} ∈ W̄l. If for some t /∈ TL(x, y), σ̄
(t)
l = 1 then

according to inequality (7) with probability at least

1− 3ε, |
P

i∈I(x,y)(ψ
(t)
i (x)− ψ

(t)
i (y))| ≥ 1

4
ε ·∆l. Using

Chernoff bounds, we have that the probability that

σ̄
(t)
l = 1 fails to hold for at least D/8 values of t is at

most 2−D/8.

As there are O(logn) independent values for σ̄
(t)
l we get

that with constant probability for every x, y there are at
least D/8 values of t for which there is probability at least

1 − 3ε that |
P

i∈I(x,y)(ψ
(t)
i (x) − ψ

(t)
i (y))| ≥ 1

4
ε · ∆l holds.

By Chernoff bounds, the probability that this fails for more
than D/16 values of t is at most (6eε)−D/16 = O(n−2). This
argument implies claim (9).

Now, notice that for i < `(x, y)−log(cn), d(x, y) ≤ ∆i/cn.

It follows that ν
(εi)
i (x) = ν

(εi)
i (y) and as ηP (t),i(x) ≥ 1/cn

we have P
(t)
i (x) = P

(t)
i (y) implying φ

(t)
i (x) = φ

(t)
i (y) so

that:

g
(t)
i (x) = min{φ(t)

i (x) · d(ν(εi)
i (x), X \ P (t)

i (x)),∆i} =

min{φ(t)
i (y) · d(ν(εi)

i (y), X \ P (t)
i (y)),∆i} = g

(t)
i (y),

and

|ψ(t)
i (x)− ψ

(t)
i (y)| =

|σ̂(t)
i (P

(t)
i (x)) · g(t)

i (x)− σ̂
(t)
i (P

(t)
i (y)) · g(t)

i (y)| = 0.

On the other hand we have������
X

i≥`+log(cn)

(ψ
(t)
i (x)− ψ

(t)
i (y))

������ ≤X
i≥`+log(cn)

max{g(t)
i (x), g

(t)
i (y)} ≤

X
i≥`+log(cn)

∆i ≤
∆`

cn
≤ 1

8
ε ·∆`,

where ` = `(x, y), for an appropriate choice of c. From
claim (9) and the above inequalities we now easily derive
claim (8) which complete the proof.

6. BETTER EMBEDDINGS INTO LP

In this section we prove the following generalization of
Theorem 10.

Theorem 15. Let 1 ≤ p ≤ ∞ and let 1 ≤ κ ≤ p. For
any n-point metric space (X, d) there exists an embedding
f : X → Lp with coarsely scaling distortion O(d(log 1

ε
)/κe)

and dimension eO(κ) logn.

The proof relies on Lemma 3.
Let 1 ≤ κ ≤ p. Let s = eκ. Let D = eΘ(κ) lnn. We

will define an embedding f : X → lDp , by defining for each

1 ≤ t ≤ D, function f (t), ψ(t), µ(t) : X → R+ and let f (t) =
ψ(t) + µ(t) and f = D−1/pL

1≤t≤D f (t).

Fix t, 1 ≤ t ≤ D. In what follows we define ψ(t). We con-
struct a uniformly (η, 1/s)-padded probabilistic 4-hierarchical



partition H̄ as in Lemma 3, and let ξ be as defined in the
lemma. Now fix a hierarchical partition P ∈ H. We de-
fine the embedding by defining the coordinates for each

x ∈ X. Define for x ∈ X, 0 < i ∈ I, φ
(t)
i : X → R+,

by φ
(t)
i (x) = ξP,i(x)ηP,i(x)

−1.

For each 0 < i ∈ I we define a function ψ
(t)
i : X → R+

and for x ∈ X, let ψ(t)(x) =
P

i∈I ψ
(t)
i (x). Let {σ(t)

i (C)|C ∈
Pi, 0 < i ∈ I} be i.i.d symmetric {0, 1}-valued Bernoulli
random variables. For each x ∈ X: For each 0 < i ∈ I,

let ψ
(t)
i (x) = σ

(t)
i (Pi(x)) · g(t)

i (x), where g
(t)
i : X → R+ is

defined as: g
(t)
i (x) = min{φ(t)

i (x) · d(x,X \ Pi(x)),∆i}.
Next, we define the function µ(t), based on the embedding

technique of Bourgain [15] and its generalization by Ma-
toušek [45]. Let T ′ = dlogs ne and K = {k ∈ N|1 ≤ k ≤ T ′}.
For each k ∈ K define a randomly chosen subset A

(t)
k ⊆ X,

with each point of X included in A
(t)
k independently with

probability s−k. For each k ∈ K and x ∈ X, define:

Ik(x) = {i ∈ I|∀u ∈ Pi(x), s
k−2 < |B(u, 16∆i−1)| ≤ sk}.

We make the following two simple observations:

Claim 20. For every i ∈ I: (1) For any x ∈ X: |{k|i ∈
Ik(x)}| ≤ 2. (2) For every k ∈ K: the function i ∈ Ik(x) is
uniform with respect to Pi.

We define ik : X → I, where ik(x) = 0 if Ik(x) = ∅ and
ik(x) = min{i|i ∈ Ik(x)} otherwise. For each k ∈ K we

define a function µ
(t)
k : X → R+ and for x ∈ X let µ(t)(x) =P

k∈K µ
(t)
k (x). Let Φ0 = 27. The function µ

(t)
k is defined

as follows: for each x ∈ X: For each k ∈ K, let µ
(t)
k (x) =

min{ 1
4
d(x,A

(t)
k ), h

(t)

ik(x)(x)}, where h
(t)
i : X → R+ is defined

as: h
(t)
i (x) = min{Φ0 · d(x,X \ Pi(x)),∆i}. Define h̄

(t)
i :

X × X → R+ as follows: h̄
(t)
i (x, y) = min{Φ0 · d(x, y),∆i}

(Note that h̄
(t)
i is nonsymmetric). We have the following

analogue of Claim 8:

Claim 21. For any k ∈ K and x, y ∈ X: µ
(t)
k (x) −

µ
(t)
k (y) ≤ h̄

(t)

ik(x)(x, y).

Lemma 22. There exists a universal constant C1 > 0
such that for any ε > 0 and any (x, y) ∈ Ĝ(ε):

|f (t)(x)− f (t)(y)| ≤ C1 (ln(1/ε)/κ+ 1) · d(x, y).

The proof is left for the full version of the paper.

Lemma 23. There exists a universal constant C2 > 0
such that for any x, y ∈ X, with probability at least e−5κ/4:

|f (t)(x)− f (t)(y)| ≥ C2 · d(x, y).

Proof. Let 0 < ` ∈ I be such that 4∆`−1 ≤ d(x, y) ≤
16∆`−1. We distinguish between the following two cases:
• Case 1: Either ξP,`(x) = 1 or ξP,`(y) = 1.

Assume w.l.o.g that ξP,`(x) = 1. It follows that φ
(t)
` (x) =

ηP,`(x)
−1. As Ĥ is (η, δ)-padded we have the following

bound Pr[B(x, ηP,`(x)∆`) ⊆ P`(x)] ≥ 1/s.Therefore with
probability at least 1/s:

φ
(t)
` (x) · d(x,X \ P`(x)) ≥ φ

(t)
` (x) · ηP,`(x)∆` ≥ ∆`.

Assume that this event occurs.

We distinguish between two cases according to whether

|f (t)(x)−f (t)(y)− (ψ
(t)
` (x)−ψ(t)

` (y))| ≥ 1
2
∆` and show that

with probability at least 1/4s: |f (t)(x)− f (t)(y)| ≥ 1
2
∆`.

• Case 2: ξP,`(x) = ξP,`(y) = 0
From Lemma 3, max{ρ̄(x,∆`−1,Γ), ρ̄(y,∆`−1,Γ)} < s.

Let x′ ∈ B(x,∆`−1) and y′ ∈ B(y,∆`−1) such that
ρ(x′,∆`−1,Γ) = ρ̄(x,∆`−1,Γ) and
ρ(y′,∆`−1,Γ) = ρ̄(y,∆`−1,Γ). For z ∈ {x′, y′} we have:

s >
|B(z,Γ∆`−1)|
|B(z,∆`−1/Γ)| ≥

|B(x, 32∆`−1)|
|B(z,∆`−1/Γ)| ,

using that d(x, x′) ≤ ∆`−1 and d(x, y′) ≤ d(x, y)+d(y, y′) ≤
17∆`−1, and Γ = 64, so that B(x, 32∆`−1) ⊆ B(z,Γ∆`−1).
Let k ∈ K be such that sk−1 < |B(x, 32∆`−1)| ≤ sk. We
deduce that for z ∈ {x′, y′}, |B(z,∆`−1/Γ)| > sk−2. Con-
sider an arbitrary point u ∈ P`(x) as d(x, u) ≤ ∆` < ∆`−1 it
follows that sk−2 < |B(u, 16∆`−1)| ≤ sk. This implies that

` ∈ Ik(x) and therefore ik(x) ≤ `. As Ĥ is (η, δ)-padded we
have the following bound

Pr[B(x, ηP,`(x)∆`) ⊆ P`(x)] ≥ 1/s.

Assume that this event occurs. Since P is hierarchical we
get that for every i ≤ ` B(x, ηP,`(x)∆`) ⊆ P`(x) ⊆ Pi(x)
and in particular this holds for i = ik(x). As ξP,`(x) = 0 we
have that ηP,`(x) ≥ 2−7 = 1/Φ0. Hence,

Φ0 · d(x,X \ Pi(x)) ≥ Φ0 · ηP,`(x)∆` ≥ ∆`.

Implying: µ
(t)
k (x) = min{ 1

4
d(x,A

(t)
k ),Φ0 ·d(x,X\Pi(x)),∆i}

≥ min{ 1
4
d(x,A

(t)
k ),∆`}.

The following is a variant on the original argument in [15,

45]. Define the events: A1 = B(y′,∆`−1/Γ) ∩ A
(t)
k 6= ∅,

A2 = B(x′,∆`−1/Γ) ∩ A(t)
k 6= ∅ and A′

2 = [B(x, 32∆`−1) \
B(y′,∆`−1)] ∩A(t)

k = ∅. Then for m ∈ {1, 2}:

Pr[Am] ≥ 1−
�
1− s−k

�sk−2

≥ 1− e−s−k·sk−2

≥ 1− e−s−2
≥ s−2/2,

Pr[A′
2] ≥

�
1− s−k

�sk

≥ 1/4,

using s ≥ 2. Observe that d(x′, y′) ≥ d(x, y) − 2∆`−1/Γ ≥
(1− 2/Γ)∆`−1 > 2∆`−1/Γ, implying
B(y′,∆`−1/Γ) ∩ B(x′,∆`−1/Γ) = ∅. It follows that event
A1 is independent of either event A2 or A′

2.

Assume event A1 occurs. It follows that d(y,A
(t)
k ) ≤

d(y, y′) + ∆`−1/Γ ≤ (1 + 1/Γ)∆`−1.
We distinguish between two cases according to whether

|f (t)(x)− f (t)(y)− (µ
(t)
k (x)− µ

(t)
k (y))| ≥ 3/2 ·∆` and show

that given A1, with probability at least s−2/2: |f (t)(x) −
f (t)(y)| ≥ ∆`/4. This concludes case 2.

It follows that with probability at least s−5/4: |f (t)(x)−
f (t)(y)| ≥ 1

4
∆` ≥ 1

4
4−3d(x, y) = 2−8d(x, y).

Lemma 24. There exist universal constants C′
1, C

′
2 > 0

such that w.h.p for any ε > 0 and any (x, y) ∈ Ĝ(ε):

C′
2 · d(x, y) ≤ ‖f(x)− f(y)‖p ≤ C′

1 (ln(1/ε)/κ+ 1) · d(x, y).



7. PARTIAL EMBEDDING, SCALING DIS-
TORTION AND THE `Q-DISTORTION

The following lemma states that lower bounds on the lq-
distortion follow from lower bound on (1−ε)-partial embed-
dings. Applying this on the lower bound results from [1] we
obtain the tightness of our bounds.

Lemma 25 (Partial Embedding vs. `q-Distortion).
Let Y be a target metric space, let X be a family of metric
spaces. If for any ε ∈ [0, 1), there is a lower bound of α(ε) on
the distortion of (1 − ε) partial embedding of metric spaces
in X into Y , then for any 1 ≤ q ≤ ∞, there is a lower bound
of 1

2
α(2−q) on the `q-distortion of embedding metric spaces

in X into Y .

Proof. For any 1 ≤ q ≤ ∞ set ε = 2−q and let X ∈ X be
a metric space such that any (1− ε) partial embedding into
Y has distortion at least α(ε). Now, let f be an embedding
of X into Y . It follows that there are at least ε

�
n
2

�
pairs

{u, v} ∈
�

X
2

�
such that distf (u, v) ≥ α(ε). Therefore:

(E [distf (u, v)q])1/q ≥ (εα(ε)q)1/q

≥
�
2−qα

�
2−q�q�1/q

=
1

2
α
�
2−q� .

In what follows we prove Lemma 1. We give here the
proof for the distortion of average. The proof for the average
distortion is somewhat simpler.

Proof. We may restrict to the case Φ(Π) ≤
�

n
2

�
. Other-

wise Φ̂(Π) >
�

n
2

�
and therefore distnorm

(Π)
q (f) ≤ dist(f) ≤

α(Φ̂(Π)−1). Recall that

distnorm(Π)
q (f) =

EΠ[dY (f(u), f(v))q]1/q

EΠ[dX(u, v)q]1/q
.

For ε ∈ [0, 1) recall that Ĝ(ε) = {{x, y} ∈
�

X
2

�
|d(x, y) ≥

max{rε/2(x), rε/2(y)}}. Since (f, Ĝ) is a (1− ε)-partial em-
bedding for any ε ∈ [0, 1) we have that for each {u, v} ∈
Ĝ(ε), distf (u, v) ≤ α(ε). Let Ĝi = Ĝ(2−iΦ̂(Π)−1) \
Ĝ(2−(i−1)Φ̂(Π)−1). We first need to prove the following
property:X

{u,v}∈Ĝi

dX(u, v)q ≤ 2−iΦ̂(Π)−1
X

u 6=v∈X

dX(u, v)q. (10)

To prove this fix some u ∈ X. Let S = {v|{u, v} /∈
Ĝ(2−(i−1)Φ̂(Π)−1)}. Then S = B(u, r2−iΦ̂(Π)−1(u)). Thus,

|S|/
�

n
2

�
2−iΦ̂(Π)−1 and for each v ∈ S, v′ ∈ S̄ we have

d(u, v) ≤ d(u, v′). It follows that:X
v;u 6=v∈X

dX(u, v)q =
X
v∈S

dX(u, v)q +
X
v∈S̄

dX(u, v)q

≥ |S| ·
P

v∈S dX(u, v)q

|S| + |S̄| ·
P

v∈S dX(u, v)q

|S|

=

�
n
2

�
|S|

X
v∈S

dX(u, v)q.

Denote T = blog
��

n
2

�
Φ̂(Π)−1

�
c. Since α is a monotonic

non-increasing function, it follows that

EΠ[dY (f(u), f(v))q] =
X

u 6=v∈X

π(u, v)dY (f(u), f(v))q =

X
u 6=v∈X

π(u, v)dX(u, v)qdistf (u, v)q

≤
X

{u,v}∈Ĝ(Φ̂(Π)−1)

π(u, v)dX(u, v)qα(Φ̂(Π)−1)q +

TX
i=1

X
{u,v}∈Ĝi

π(u, v)dX(u, v)qα(2−iΦ̂(Π)−1)q

≤
X

u 6=v∈X

π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q + min
w 6=z∈X

π(w, z) ·

TX
i=1

X
{u,v}∈Ĝi

dX(u, v)q · Φ̂(Π) · α(2−iΦ̂(Π)−1)q.

Now using (10) we get that

EΠ[dY (f(u), f(v))q]

≤
X

u 6=v∈X

π(u, v)dX(u, v)q · α(Φ̂(Π)−1)q +

TX
i=1

X
u 6=v∈X

π(u, v)dX(u, v)q · 2−i · α(2−iΦ̂(Π)−1)q

≤

"
α(Φ̂(Π)−1)q +

 
2

Z 1

1
2 (n

2)
−1

Φ̂(Π)

α(xΦ̂(Π)−1)qdx

!#

·EΠ[dX(u, v)q].

8. ALGORITHMIC APPLICATIONS
Consider an optimization problem defined with respect to

weights c(u, v) in a graph or in a metric space, where the so-
lution involves minimizing the sum over distances weighted
according to c:

P
u,v c(u, v)d(u, v). It is common for many

optimization problem that such a term appears either in the
objective function or in its LP relaxation.

Define Φ̂(c) = min{n, maxu,v c(u,v)

minu,v c(u,v)
}. The lemma below,

based on Theorem 9 and Theorem 11, summarizes the propo-
sitions which yields O(log Φ̂(c)) approximation algorithms
for the optimization problems mentioned in Section 1.3.3.

Lemma 26. Let X be a metric space, with a weight func-
tion on the pairs c :

�
X
2

�
→ R+ . Then:

1. There exists an embedding f : X → Lp such that for
any weight function c:P

{u,v}∈(X
2 ) c(u, v)‖f(u)− f(v)‖pP

{u,v}∈(X
2 ) c(u, v)dX(u, v)

≤ O(log Φ̂(c)).

2. There exist a set of ultrametrics S and a probabilistic
embedding F̂ of X into S such that for any weight
function c:

Ef∼F̂

hP
{u,v}∈(X

2 ) c(u, v)dY (f(u), f(v))
i

P
{u,v}∈(X

2 ) c(u, v)dX(u, v)
≤ O(log Φ̂(c)).
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