
Practical Locality-Awareness for Large Scale
Information Sharing?

Ittai Abraham1, Ankur Badola2, Danny Bickson1, Dahlia Malkhi3, Sharad
Maloo2, and Saar Ron1

1 The Hebrew University of Jerusalem, Jerusalem, Israel.
{ittaia,daniel51,ender}@cs.huji.ac.il

2 IIT Bombay, India.
{badola,maloo}@cse.iitb.ac.in

3 Microsoft Research Silicon Valley and The Hebrew University of Jerusalem, Israel.
dalia@microsoft.com

Abstract. Tulip is an overlay for routing, searching and publish-lookup
information sharing. It offers a unique combination of the advantages
of both structured and unstructured overlays, that does not co-exist in
any previous solution. Tulip features locality awareness (stretch 2) and
fault tolerance (nodes can route around failures). It supports under the
same roof exact keyed-lookup, nearest copy location, and global informa-
tion search. Tulip has been deployed and its locality and fault tolerance
properties verified over a real wide-area network.

1 Introduction

Driven by the need to bridge the gap between practically deployable P2P
systems, which should be easy and robust, and academic designs which have
nice scalability properties, we present the Tulip overlay. The Tulip information
sharing overlay obtains a combination of features not previously met simulta-
neously in any system. In a nutshell, these can be characterized as follows:
Locality-awareness: The algorithms for searching and retrieving information
are designed to provably contain every load as locally as possible. Formally,
this is expressed using the standard network-theoretical measure stretch, which
bounds the ratio between routes taken in the algorithm and optimal routes.
Formally, the Tulip overlay guarantees stretch-2 routing.
Flexibility and Simplicity: All protocols have firm, formal basis, but
intentionally accommodate fuzzy deployment which applies optimizations that
deviate from the theory, in order to cope with high churn and scalability.
Diverse tools: Tulip addresses under the same roof exact-match keyed lookup,
nearest object location, and global data search.

? Work supported in part by EC Evergrow.



Experimentation: In addition to formal proofs of locality and fault
tolerance we analyze Tulip’s performance with real measurements on a real
planetary-scale deployment. Tulip is deployed and tested over PlanetLab. Its
locality awareness and fault tolerance properties are evaluated in a WAN
setting. Furthermore, experience gained from practical deployment is fed back
in Tulip to the formal design.

Tulip adopts the successful space-to-communication tradeoff introduced by
Kelips [4], which allows nodes to maintain links to many, but not to all other
nodes, and achieve highly efficient information dissemination paths. In Tulip,
each node maintains roughly 2

√
n log n links, where n is the number of nodes.

Routes take 2 hops. Search or event data can be disseminated to O(
√

n) nodes,
and retrieved from O(

√
n) nodes.

We believe this tradeoff is the right one for P2P overlays. In terms of space,
even a large system of several millions of nodes requires storing only several
thousands node addresses, which is not a significant burden. That said, this
does not lead us to attempt at maintaining global information as in [3]. Indeed,
we maintain sufficient slack to tolerate a large degree of stale and/or missing
information. As a result of this design choice, Tulip exhibits extremely good fault
tolerance (see Section 4). Furthermore, this slack also enables static resilience,
which means that even as the system undergoes repair it can continue routing
data efficiently. Some previous DHTs like Kademlia [5] and Babmboo [6] appear
to cope well with churn with a lower node degree and more rigid structure.
However, we believe that having O(

√
n) links with a semi-structured two hop

network may give a very high level of resiliency.
Tulip enhances the Kelips approach in a number of important ways, de-

tailed henceforth. The first feature in Tulip is locality awareness. Building
self maintaining overlay networks for information sharing in a manner that ex-
hibits locality-awareness is crucial for the viability of large internets.

Tulip guarantees that the costs of finding and retrieving information are
proportional to the actual distances of the interacting parties. Building on the
formal foundations laid by Abraham et al. in [1], Tulip provides provable stretch
2 round-trip routing between all sources and destinations 4. Tulip extends the
formal algorithm in [1] with methods that accommodate changes in the network.
These include background communication mechanisms that bring links up to
date with provably sub-linear costs.

The second feature of Tulip is its flexibility and simplicity. Structured
p2p overlays often appear difficult to deploy in practical, Internet-size networks.
In particular, they are sensitive to changes and require substantial repair under
churn. They lack flexibility in that they require very accurate links in order to
operate correctly. And faced with high dynamism, they may break quite easily.

4 The standard definition of stretch, as in [1], looks at source-destination routing but
in a DHT it is natural to examine round-trip routing since the source requires a
reply from the target.



By maintaining O(
√

n log n) links at each node and a simple two hop design,
Tulip has sufficient redundancy to maintain a good level of service even when
some links are broken, missing or misplaced. A multi-hop algorithm similar to
Kelips [4] allows routing around failed or missing links with O(1) communication
costs. Furthermore, the repair procedures can be done in the background, while
heuristics keep Tulip’s service quality even while it is under repair.

The third feature of our system is its support of diverse tools for information
sharing. This goal stems from our vision of a convergence of technologies empow-
ering network leaf-nodes. These technologies include overlay networks supporting
Grid and p2p file sharing, web caching, and large scale content delivery services.
Though these are different services, the overlays that support them are converg-
ing toward a common set of protocols. The Tulip routing overlay can be utilized
as an overlay for keyed lookup, for finding nearest copies of, replicated objects,
for event notification and for global searching.

We have built a real deployment of the Tulip overlay and have conducted
experimentation on wide area networks (WANs). All of our protocols are de-
ployed and tested extensively over the PlanetLab WAN test-bed. In particular,
Tulip’s locality behavior, its stretch factor, distance measurements and fault tol-
erance are all ascertained over a real-life, planetary-wide network. To the best of
our knowledge, our stretch performance data are the first to be measured over a
real WAN, not via synthetic simulation. We also assess Tulip’s behavior under
intentional and unintentional churn.

2 Formal foundations

The Tulip system builds on the locality-aware compact routing algorithm of
Abraham et al. in [1]. It uses O(

√
n log n) space per node, where n is the num-

ber of nodes in the system. It provides a 2-hop routing strategy whose cost over
optimal routing (the stretch) is at most 2. Continuous background gossip mech-
anism with a reasonable overhead is used to maintain and update the system
and guarantee quick convergence after changes in the system.

Let d(s, t) denote the communication cost between nodes s and t. It is nat-
ural to assume that d() forms a metric space. However, to be precise, our lookup
stretch result requires only that d() is symmetric, or that it upholds the triangle
inequality. In addition, the analysis of message complexity of the join algorithm
and the protocol for finding nearest copies of data assume growth bounded den-
sities, defined as follows. A growth-bound limits the number of nodes in a ball
of radius 2r by a constant multiple of the number of nodes within radius r.

Vicinity balls. For every node u ∈ V , let the vicinity of u be the set of
√

n log n
closest nodes to u according to d(), breaking ties by lexicographical order of node
names.

Coloring. Our construction uses a partition of nodes into
√

n color-sets, with
the following two properties:



(i) Every color-set has at most 2
√

n nodes.
(ii) Every node has in its vicinity at least one node from every other color-set.

Each node belongs to one of the color groups determined by using a consistent
hashing function to map node’s identifier (IP address and port number) to one
of the

√
n values. This mapping is done by taking the first log

√
n bits of the

hash value. We denote by c(u) node u’s color. The use of cryptographic hash
function such as SHA-1 ensures that the expected number of nodes in each group
is around

√
n, and is under

√
n log n with high probability.

Routing information. Each node u maintains information classified under:
•Vicinity list: From each of the other color groups in the system, node u main-
tains information about the closest log n nodes of a particular color.
• Color list: A list containing information about all nodes belonging to the same
color as u, i.e, to the color-set c(u).

Each entry also carries an additional field of network distance. Each of the
lists is sorted based on the relative distance value from the node.

Keyed Lookup. The lookup tool supports exact-match keyed lookup and routing
for objects or nodes whose names are known precisely. It guarantees locating
any target with lookup stretch of at most 2, and with up to 2 lookup hops.

An object is stored on the node whose identifier is the longest prefix of the
object’s hash value. Objects are also mapped to colors by taking the first log

√
n

bits of their hash. Given a source node s that is looking for an object o with
color c(o) that is stored in node t:
• First hop: Node s routes to the node w in s’s vicinity list that has the same
color as the object c(w) = c(o), and whose identifier is closest to the object’s
hash. If this node contains the object then the lookup has stretch 1.
• Second hop: Otherwise, using w’s color list, s routes to node t (this is possible
since c(o) = c(w) = c(t)). In this case we have d(s, w) ≤ d(s, t) and from
symmetry the cost of the path s Ã w Ã s Ã t Ã s is at most twice the cost of
the path s Ã t Ã s (see Figure 1).

Note that, the above scheme is iterative, and achieves stretch 2 without re-
quiring triangle inequality. A recursive version would give stretch 2 but require
triangle inequality, without requiring symmetry.

Finding nearest copy. This mechanism allows objects to be stored on any node
the designer wants. Moreover, several copies of the same object may exist on
different nodes. Assuming latencies form a metric space, we guarantee to retrieve
the copy closest to the initiator of the searching node, with lookup stretch of at
most 4, and with up to 2 hops.

Let node x store a replica of object o. A pointer of the form 〈o → x〉 is
stored in the following nodes:



s

t

w1

2

Fig. 1. Example of a 2 hop, stretch 2 round-trip path from source s to destination
t and back.

• Vicinity pointers: All nodes u such that x is in u’s vicinity list store a
pointer 〈o → x〉. Under the growth bound assumption, only O(

√
n) nodes will

store such a pointer.
• Color pointers: All nodes u such that c(u) = c(o) store a pointer 〈o → u(o)〉
where u(o) is the name of the node closest to u that stores a replica of o.

Lookup uses the pointers to shortcut directly to a replica. If the source does
not have a direct pointer to the desired object it routes to the node w in its
vicinity such that c(w) = c(o). In such a case, node w will have a pointer to the
closest replica from w.
• Analysis. Given source s searching for object o, let u be the closest node to s
storing a replica of o, let w be the node in the vicinity of s such that c(w) = c(o)
let v be the closest node to w storing a replica of o. Then d(w, v) ≤ d(w, u) and by
triangle inequality d(s, v) ≤ d(s, w) + d(w, v) ≤ 3d(s, u), summing up and using
symmetry d(s, w)+d(w, s)+d(s, v)+d(v, s) ≤ d(s, u)+d(s, u)+3d(s, u)+3d(s, u),
hence the ratio between the cost of lookup and the cost of directly accessing the
closest replica (stretch) is at most 4 (see Figure 2).

Global information search. This tool builds a locality aware quorum system.
Information can be published to a global shared memory and later users can
perform arbitrary search queries on all the published information. The search
mechanism is locality aware, it requires communication only with nodes in the
vicinity of the query.

Publishing an object o is done by storing information about o on all the
nodes whose color is the closest to o’s hash value. Each node may either store
the full o content, or summary data used for searching o, along with a pointer to
the actual stored location. This creates roughly

√
n replicas of the information.

Global searching is done in a locality aware manner. An initiator sends a
query only to the nodes that are in its vicinity list. The computation of a query



s

v

w1

2

u

Fig. 2. Example of 2 hop, stretch 4, nearest copy search from s to v and back.

is maintained locally since each search involves only the
√

n closest nodes. This
is the first read/write quorum system whose read operations are locality aware.

3 Maintaining Locality under Churn

Considerable effort is invested in Tulip’s deployment in order to deal with the
dynamics of scalable and wide spread networks. This includes protocols for node
joining and deletion, and a background refresh mechanism that maintains local-
ity under churn. Surprisingly, under reasonable assumptions, all of these mecha-
nisms have sub-linear complexity. Our deployment also entails multi-hop query
routing to cope with churn simultaneously with ongoing repair. The evaluation
of this heuristical protocol is done experimentally.

Joining: A joining node requires one existing contact node in the system. The
mechanism for obtaining a contact node can be a web site or a distributed
directory such as DNS. Our approach for handling joins is for the joiner to first
acquire a somewhat rough initial vicinity. Then, through normal background
refresh mechanism (detailed below), the joiner gathers more accurate information
about its vicinity and its color list.

More specifically, a joiner u first queries its contact point for the list of nodes
in its vicinity. From this list, u selects a random node x. It then finds a node w
from x’s color list that is closest to u. Under reasonable growth bounded density
assumptions w’s vicinity has a sizable overlap with the u’s vicinity. Node u
adopts w’s vicinity as its own initial vicinity, and informs its vicinity about its
own arrival.

The communication complexity of the approximate closest-node finding and
the establishment of an initial vicinity is O(1) and O(

√
n log n) computational

complexity.

Deletion: A departing or a failed node gradually automatically disappears from
the routing tables of all other nodes, once they fail to communicate with it.



Naturally, the departure of a node also means the loss of the data it holds.
Clearly, any robust information system must replicate the critical information it
stores. We leave out of the discussion in this short paper such issues.

Refresh mechanisms: Existing view and contact information is refreshed peri-
odically within and across color groups. During each cycle, a node re-evaluates
the distance of some nodes in its two lists (vicinity and color), and refreshes
entries in them. Formally, these mechanisms maintain the following property:
An individual node that misses information or has incorrect information (e.g.,
this is the case of a new joiner) learns information that significantly improves
its vicinity and color list with O(1) communication overhead and O(

√
n log n)

computation overhead.
All our methods have sub linear communication complexity of O(1) and

O(
√

n log n) computational complexity. The three methods used in each cycle
for refresh are as follows:

• Vicinity list merging: Node u chooses a random node x in its vicinity
list and requests for x’s vicinity list, while sending its own vicinity list to
that random node (a combined push and pull flat model gossip). Both nodes
merge the two vicinities, while keeping the list sorted according to distance
and maintaining (if possible) at least one member from each existing color in
the list. Intuitively, due to the expected overlap between the vicinities of close
nodes, this step provides for quick propagation of knowledge about changes
within the vicinity. This mechanism is quick and efficient in practice. However,
formally it cannot guarantee by itself that nodes obtain all relevant vicinity
information.

• Same color merging: Node u contacts a random node x from its color
list and and requests for x’s color list, while sending its own color list to that
random node. Again, both nodes merge the two color lists.

• Failed nodes detection: When a failed node is detected (a node that had
failed to respond to an outgoing communication), that node is immediately re-
moved from all active nodes’ lists. That node is then inserted into a failed nodes
list, which also holds information about the failure detection time (a node’s
”death certificate”). This list is being propagated in two methods:

1. Passive fault tolerance mechanism: a node which is refreshing its color or
vicinity list also sends its failed nodes list with its request and receives the
other node’s failed nodes list with the response. Both nodes then merge both
lists, and remove all new found failed nodes from all their active nodes lists.

2. Active fault tolerance mechanism: a node that sends a routing info request
to a node x also pushes its failed nodes list as a part of the request. Before
processing the request, the receiving node merges its own failed nodes list
with the received list, and removes the new found failed nodes from all active



nodes lists. This somewhat prevents x from sending a next hop route data
which includes a newly detected failed node.

A node is removed from the failed nodes list only after a period of time which
is greater then the estimated gossip propagation time in the network.

Multi-Hop Query Routing: The scale and wide spreading of the systems we en-
vision implies that the information held at nodes’ routing lists at any snapshot
in time may contain inaccessible nodes, failed links, and inaccurate distances.
Although eventually the refresh mechanisms repair such errors, the system must
continue routing data meanwhile. To this end, we adopt similar, heuristic strate-
gies as in Kelips [4] to accommodate changes, while enhancing them with locality
consideration, and in addition, evaluating them with real wide-area experimen-
tation (in the next section).

Given a source node s that is looking for an object that is stored in node t,
the two heuristics employed are as follows:
• If s cannot contact any node with color c(t) from its vicinity list, then it
contacts a random node x in the vicinity list and forwards the query for x to
handle.
• If during a lookup, an interim node w with the target’s color c(t) = c(w) does
not have t in its color list, then w responds with sending the details of a node v
from its vicinity list, drawn randomly with preference to closer nodes.

4 Experimental Results

The Tulip client is implemented in C++ and the overlay is fully operational.
Tulip is deployed in 220 nodes over the PlanetLab wide-area testbed [2] as of
October 2004.

Figure 3 depicts the actual routing stretch experienced in our deployed sys-
tem. The graph plots the cumulative density function of the stretch factor of
one thousand experiments. In each experiment, one pair of nodes is picked at
random and the routing stretch factor between them is measured. The measured
stretch factor is the ratio between lookup duration and the direct access dura-
tion: The lookup duration is the time a lookup takes to establish connections,
reach the destination node storing the object via the Tulip overlay, and return
to the source. The direct access duration is the time it takes to form a direct
(source to destination) TCP connection and to get a reply back to the source.

The graph shows that about 60 percent of the routes has stretch 1, and
therefore experience nearly optimal delay. Over 90 percent of the routes incur
stretch lower than 2, and stretch 3 is achieved in nearly 98 percent of the routes.
These results are comparable, and to some extent better, than the simulation
stretch results provided for Pastry [7] and Bamboo [6].

The graph also demonstrates that due to dynamic nature of the network and
due to fuzziness, stretch 4 is exceeded in about one percent of the cases. The



graph is cut at stretch 4, and thus excludes a very small number of extremely
costly routes; these do occur, unfortunately, in the real world deployment, due
to failures and drastic changes in the network conditions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF

Fig. 3. Cumulative density of lookup stretch.

Figure 4 depicts fault tolerance tests results on the PlanetLab testbed. We
have used 200 Tulip nodes on different computers. Lookup requests were induced
into the system at a rate of 2 per second. The graph depicts average stretch of
every 4 lookup requests (reflecting two seconds each). At time 150 we randomly
killed half the nodes in the system. The results show that after time 300 the
systems has almost completely regained its locality properties.

0 50 100 150 200 250 300 350 400 450 500 550 600
0

1

2

3

4

5

6

Time (sec)

S
tr

et
ch

 fa
ct

or

Fig. 4. Average stretch over time while randomly killing half the nodes at time
150.



References

1. I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-
independent routing with minimum stretch. The Sixteenth ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 04).

2. Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage
services. SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.

3. A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for peer-to-peer overlays.
In Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX), pages 7–12,
Lihue, Hawaii, May 2003.

4. I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. Kelips: Building an
efficient and stable P2P DHT through increased memory and background overhead.
In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), 2003.

5. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In Proceedings of IPTPS02, March 2002.

6. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a dht. Tech-
nical Report Technical Report UCB//CSD-03-1299, The University of California,
Berkeley, December 2003.

7. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, 2001.


