
Optimal Resilience Asynchronous Approximate
Agreement

Ittai Abraham, Yonatan Amit, and Danny Dolev

School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Israel
{ittaia, mitmit, dolev}@cs.huji.ac.il

Abstract. Consider an asynchronous system where each process begins
with an arbitrary real value. Given some fixed ε > 0, an approximate
agreement algorithm must have all non-faulty processes decide on values
that are at most ε from each other and are in the range of the initial
values of the non-faulty processes.

Previous constructions solved asynchronous approximate agreement
only when there were at least 5t+1 processes, t of which may be Byzan-
tine. In this paper we close an open problem raised by Dolev et al. in
1983. We present a deterministic optimal resilience approximate agree-
ment algorithm that can tolerate any t Byzantine faults while requiring
only 3t + 1 processes.

The algorithm’s rate of convergence and total message complexity
are efficiently bounded as a function of the range of the initial values of
the non-faulty processes. All previous asynchronous algorithms that are
resilient to Byzantine failures may require arbitrarily many messages to
be sent.

Keywords: approximate agreement, Byzantine agreement, asynchronous
systems.

1 Introduction

In the classical Byzantine Generals problem a set of processes begin with some
initial value and must reach agreement on one of the initial values is spite of
having some faulty processes. In the approximate version it is required that the
values of all non-faulty processes eventually converge to a range that is bounded
by some predefined ε > 0.

It is well know that in asynchronous communication models reaching agree-
ment is impossible under the possibility of having even one faulty process [8]. In
sharp contrast, Dolev et al. [3, 4], show that approximate agreement is possible
in asynchronous systems that have 5t+1 processes, t of which may be Byzantine.

In this paper we solve the open question raised by [3, 4]. We show that Ap-
proximate Agreement can be reached with 3t + 1 processes, t of which may be
Byzantine. Fischer et al. [7] show that there is no approximate agreement pro-
tocol with 3t or less processes that can tolerate t Byzantine failure. Hence our
algorithm has optimal resilience.

T. Higashino (Ed.): OPODIS 2004, LNCS 3544, pp. 229–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 I. Abraham, Y. Amit, and D. Dolev

The results are further strengthened by bounding the total number of rounds
and the total number of messages sent. We bound the number of rounds until
termination as a function of the range of initial values of the non-faulty processes.
Our round and message efficiency is in contrast to all previous asynchronous
solutions [4] in which the faulty processes can cause the protocol to run for an
arbitrarily high (yet final) number of rounds.

The results presented in this paper are obtained using two building blocks.
One is an asynchronous version of the Reliable-Broadcast protocol of Srikanth
and Toueg [11]. The other building block is a novel witness technique. The wit-
ness technique limits the ability of faulty processes to lie about the range of
values they were able to collect. This building block seems to be very powerful
and it enables the non-faulty processes to rapidly converge their values.

There is a large body of work on stronger assumptions or weaker properties
of the Approximate Agreement problem. In the synchronous version of approx-
imate agreement, Mahaney and Schneider [10] improve the time complexity by
using the Crusader Agreement protocol of Dolev [2] as a building block. Fekete
[5] gives algorithms with asymptotically optimal convergence rates for the syn-
chronous version of the problem. Fekete [6] also gives efficient algorithms for the
asynchronous approximate agrement problem that is resilient against weaker ad-
versaries of failure by omission and crash-failures. Kieckhafer and Azadmanesh
[9] give a hybrid synchronous algorithm that can withstand both Byzantine and
benign failures.

Another alternative for weakening the properties of Agreement is to require
a probabilistic termination property that only guarantees a finite expectancy
of termination (but there may exist infinite executions). Bracha [1] presents a
randomized 3t + 1 resilient Byzantine Agreement protocol with probabilistic
termination. In contrast, our protocol is deterministic and always guarantees
termination.

1.1 Model and Problem Definition

Consider a set of n processes. Processes communicate by a fully connected asyn-
chronous network with reliable FIFO channels. Messages sent will eventually
arrive after a finite unbounded amount of time. The channels between any two
processes maintain FIFO property, if p sends to q message m and later sends
message m′ then q will first receive m and only later receive m′.

We assume that t of the processes may be Byzantine. All other processes
follow the algorithm and are denoted as non-faulty.

Assume each non-faulty process begins with an arbitrary real input value
and fix some (arbitrarily small) pre-agreed ε > 0. An Approximate Agreement
Algorithm must satisfy the following two conditions:
Agreement. All non-faulty processes eventually halt with output values that

are within ε of each other;
Validity. The value output by each non-faulty process must be within the range

of the initial values of non-faulty processes.

Optimal Resilience Asynchronous Approximate Agreement 231

1.2 Notations

Let V denote the set of processes, and G the set of non-faulty processes. Hence
n = |V | and |G| ≥ n − t.

Let S denote a finite multiset of reals. Intuitively S can be thought of as a
set of real numbers in which repetitions are considered. For example {1, 1, 3}
equals {1, 3, 1} but differs from {1, 3}. Formally let R denote the set of reals
and N the set of natural numbers then S is a function S : R �→ N such that
{r ∈ R | S(r) �= 0} is finite. Define |S| =

∑
r∈R

S(r), min S = minS(r) �=0{r ∈ R},
max S = maxS(r) �=0{r ∈ R}, and the range of S as δ(S) = max S − min S.

Given a multiset S denote s1, s2, . . . , s|S| the values of S ordered in a non
decreasing order. For any t < |S|/2, define trim(S, t) as the multiset containing
the values st+1, st+2, . . . , s|S|−t−1 (removing the t largest and t smallest values
from S). Define

reduce(S, t) =
max(trim(S, t)) + min(trim(S, t))

2
.

Given a set of processes V , let P be a set of (process,value) pairs. Formally,
P ⊂ (V × R). Define P|2 as the multiset of values of the second coordinate in
P . To shorten notations, we extend the multiset operators to P , for example
max P = max P|2, reduce(P, t) = reduce(P|2, t).

We use the following conventions for defining the value of a variable during the
execution of a protocol. All our protocols have explicit round numbers starting
with 1 and incrementing by one each iteration. Given a variable x we denote xh

p

as the value of the variable x on process p when p completes its h-th round.

2 Reliable Broadcast and a 4t + 1 Resiliency

The basic idea of [4] is to gather at least n − t values, trim the t largest and t
smallest of the gathered values, and then compute some averaging function of
the remaining values as the next approximation. We begin by noting why the
algorithm of Dolev et al. [4] fails for 4t + 1 processes of which at most t may
be Byzantine. Suppose t + 1 non faulty processes begin with 0 and another 2t
non faulty processes begin with 1. The problem is that the remaining t Byzan-
tine processes may send conflicting values to different processes. Specifically, all
processes that begin with value i ∈ {0, 1} may gather at least 2t + 1 values that
equal i so the trimming will cause them to see the same value i and never to
converge. We overcome this difficulty by using Reliable-Broadcast.

Instead of gathering directly n− t values, the simple 4t+1 algorithm gathers
n − t values that have been sent by Reliable-Broadcast.

The properties of the Reliable-Broadcast above are a variation of the asyn-
chronous Reliable-Broadcast of [11]:

Correctness. If a non-faulty process p with a message m on round h per-
forms Reliable-Broadcast(m,h) then all non-faulty processes will eventually
Reliable-Accept(p,m, h).

232 I. Abraham, Y. Amit, and D. Dolev

Reliable-Broadcast code for process p with message m on round h:
send (p, m, h) to all processes;

Echo() method for process q:
upon receiving (p, m, h) from p

if q never sent a message of the form (p, ·, h) then
send (p, m, h) to all processes;

upon receiving (p, m, h) from at least t + 1 unique processes;
if q never sent a message of the form (p, ·, h) then

send (p, m, h) to all processes;

Condition for Reliable-Accept(p, m, h) at process q:
Received (p, m, h) from at least n − t unique processes;

Fig. 1. Code for Reliable-Broadcast(m) and Reliable-Accept(p, m)

Non-forgeability. If a non-faulty process p does not perform at round h the
task Reliable-Broadcast(m,h) then no non-faulty process will ever perform
Reliable-Accept(p,m, h).

Uniqueness. If a non-faulty process performs Reliable-Accept(p,m, h) and an-
other non-faulty process performs Reliable-Accept(p,m′, h) then m = m′;

Lemma 1. The algorithm in Figure 1 realizes Correctness, Non-forgeability,
and Uniqueness.

Proof. Non-forgeability holds since non-faulty processes will never receive the
non existent message directly and hence may receive at most t indirect messages.
Therefore a non-faulty process will never echo a nonexisting messages and clearly
will never accept such a message.

Correctness holds since eventually every non-faulty process will receive either
a direct message from p or t + 1 indirect messages and due to non-forgeability
these are the only two options.

For uniqueness, suppose that the condition Reliable-Accept(p,m, h) holds for
a non-faulty process q then at least t+1 non-faulty processes have sent (p,m, h)
hence any other non-faulty process can gather at most n − (t + 1) messages of
the form (p,m′, h) with m′ �= m, hence such m′ will never be accepted. ��

Given the Reliable-Broadcast primitive we present a simple 4t + 1 resilient
Approximate Agreement protocol. In each round, each process waits until it
performs Reliable-Accept on n − t different values.

Theorem 1. Let U denote the multiset of initial values of non-faulty processes.
If all non-faulty processes run the algorithm in Figure 2 for at least log2(δ(U)/ε)
rounds then their values are at most ε for each other and in the range of the initial
values.

Optimal Resilience Asynchronous Approximate Agreement 233

Code for process p:

Local variables:
values ⊂ (V × R) initially values = ⊥;
init ∈ R; // the initial value;
val ∈ R initially val = init;
round ∈ N initially round = 1;

repeat:
Reliable-Broadcast(‘value’, p, val, round);
values := ⊥;
repeat

upon Reliable-Accept(‘value’, q, u, h) and h = round // the first time
values := values ∪ (q, u);

until |values| ≥ n − t;
val := reduce(values, t);
round := round + 1;

Fig. 2. The simple 4t + 1 algorithm

The proof of this theorem can be derived as a simple exercise from the lemmata
given for the 3t + 1 algorithm and the fact that due to the Reliable-Broadcast
mechanism, every two non-faulty processes accept at least n−2t ≥ 2t+1 common
values in each round.

3 The 3t + 1 Algorithm

We note that for 3t+1 resilience, simply using Reliable-Broadcast and trimming
is not enough. In the worst case, two processes may accept a multiset of values
that intersect only at one value, and after trimming the resulting multisets will
not intersect. For example, suppose n = 4, t = 1 and let the values be 0, 0, 1, 1;
the faulty process can arrange that all processes with value i ∈ {0, 1} will receive
3 values and after trimming the median will equal i and no progress will be made.

Hence, for the 3t + 1 resilient algorithm we use an additional mechanism of
gathering witnesses. A witness for process p is a process whose first n−t accepted
values were also accepted by p. Process p waits to gather n − t witnesses. Since
each process gathers n − t witnesses, every two processes have at least t + 1
common witnesses, and thus at least one non-faulty witness. Having a common
non-faulty witness implies that every pair of non-faulty processes have at least
n − t commonly accepted values.

Each message is associated with a specific round. Given a message with a
higher round number than the current round, the receiving process saves it and
will treat it as a new message when the process will reach the relevant round.

We also need a mechanism that allows processes to know when to decide
on their value and halt. Let U denote the multiset of initial values of non-faulty

234 I. Abraham, Y. Amit, and D. Dolev

processes, ideally we aim to bound the number of rounds (and hence the number
of messages sent) as a function of δ(U), the range of the initial values of the non-
faulty processes (non-faulty range).

We note that in the asynchronous algorithm of [4] the Byzantine process can
induce arbitrarily high and low values that will cause the protocol to run for an
arbitrarily large (but finite) number of rounds.

In order to achieve round and message efficiency we employ a special ini-
tial round protocol that estimates the non-faulty range. The idea is to force
all processes (even Byzantine ones) to Reliable-Broadcast the vector of values
they gathered. This enforces a process to send values that are all inside the
range of the initial values U . We show that the estimation of δ(U) by any non-
faulty process is adequate to ensure that the resulting values are within ε of each
other.

Different processes may have different estimations on the number of rounds
required. Hence, care should be taken so that processes do not halt too early
and cause others never to terminate. Specifically, a process waits until it
Reliable-Accepts at least t + 1 ‘halt’ messages and it reaches a round larger

Local variables:
values ⊂ (V × R) initially values = ⊥;
init ∈ R; // the initial value;
val ∈ R initially val = init;
(∀x ∈ V) : report[x], proof [x] ⊂ (V × R) initially proof [x] := ⊥;
witnesses, proven ⊂ V ;
round, enough ∈ N initially round = 1;
L ⊂ N initially L = ⊥;

Code for process p:
init();
repeat

Reliable-Broadcast(‘value’, p, val, round);
values := ⊥;
(∀x ∈ V) : report[x] := ⊥;
repeat

// delay high round messages, discard low round messages
upon Reliable-Accept(‘value’, q, u, h) and h = round

FIFO-Broadcast(‘report’, q, u, h) to all;
values := values ∪ (q, u);

upon FIFO-Accept(‘report’, q, u, h) from process r and h = round
report[r] := report[r] ∪ (q, u);

witnesses := {x ∈ V | report[x] ⊆ values and |report[x]| ≥ n − t} ;
check/decide();

until |witnesses| ≥ n − t;
val := reduce(values, t);
round := round + 1;

Fig. 3. The 3t + 1 algorithm

Optimal Resilience Asynchronous Approximate Agreement 235

Code for init()
Reliable-Broadcast(‘init’, p, val);
repeat

upon Reliable-Accept(‘init’, q, u) (The first value from q)
then values := values ∪ (q, u);

until |values| ≥ n − t;
Reliable-Broadcast(‘proof’, p, values);
repeat

upon Reliable-Accept(‘init’, q, u) (The first value from q)
then values := values ∪ (q, u);

upon Reliable-Accept(‘proof’, q, vals) (The first proof from q)
then proof [q] := vals;

proven := {v ∈ V | proof [v] �= ⊥ and proof [v] ⊆ values};
until |proven| ≥ n − t;
values := {(q, reduce(proof [q], t)) | q ∈ proven};
val := reduce(values, t);
enough := 	log2(δ(values)/ε)
 + 1;

Code for check/decide()
if (round = enough) then Reliable-Broadcast(‘halt’, p, round) to all;
upon Reliable-Accept(‘halt’, q, h) (the first halt from q) then L := L ∪ {h};
if |L| ≥ t + 1 and round > min(trim(L, t)) then decide val and halt;

Fig. 4. The init() and check/decide() methods for process p

than the estimation of at least one non-faulty process whose ‘halt’ message it
accepted.

The code for the 3t + 1 algorithm appears in Figure 3 and Figure 4.

4 Analysis

4.1 Informal Properties of Witness:

In order to advance in a round a process p requires at least n − t witnesses.
Process x is a witness for process p if the first n − t values that x claimed to
accept were accepted by p.

Since ‘report’ messages are sent via FIFO-Broadcast then if x is a non-faulty
witness for both p, q then both p and q must have accepted the first n− t values
that x has accepted.

4.2 Liveness

Lemma 2. If no non-faulty process halts before or during round h and all of
them reach round h, then all non-faulty processes eventually advance to round
h + 1.

Proof. Seeking a contradiction, let S ⊆ G be the set of non-faulty processes that
never advance to round h + 1.

236 I. Abraham, Y. Amit, and D. Dolev

Eventually every p ∈ G will Reliable-Broadcast its value. Hence eventually
every p ∈ G will Reliable-Accept at least n − t values. Therefore every p ∈
G will send at least n − t ‘report’ messages. Hence eventually all p ∈ S will
Reliable-Accept each value in these ‘report’ messages. Hence all p ∈ G will
eventually have at least n − t witnesses, and must advance. ��

Lemma 3. All non-faulty processes eventually decide and halt.

Proof. Seeking a contradiction, suppose some set of non-faulty processes S ⊆ G
never decides.

We begin by showing that at least one process must halt. Eventually by
Lemma 2 the round number will be higher than the enough values of t + 1 non-
faulty processes and so at least t + 1 ‘halt’ messages will be sent. Recall that
a process p halts when its round number is larger than min(trim(Lp, t)) and
|Lp| ≥ t + 1 (see the last line of the check/decide method). Hence eventually
some non-faulty process will halt.

Let h be the minimum round that some process p ∈ G halts at, hence by
Lemma 2 all non-faulty processes will eventually reach round h. Since ‘halt’
messages are sent via Reliable-Broadcast, all other non-faulty processes will
eventually receive the same set of ‘halt’ messages (with the same round val-
ues) that caused p to halt. Hence all non-faulty processes will eventually have
min(trim(Lp, t)) ≤ h and so must eventually halt. ��

4.3 Safety

Lemma 4 (Validity). For all p ∈ G and round h,

min U ≤ valhp ≤ max U .

Proof. The proof is by induction on round numbers. Clearly the initial values
are in U by definition. Assuming that all the values of the previous round (or
the initial values for h = 1) for all p ∈ G are in the range, then the next
value valh is a product of reduce(valuesh−1, t) for some set of values that were
sent by Reliable-Broadcast (or in the init method, their proofs were sent via
Reliable-Broadcast). Since there are at most t Byzantine processes, and reduce
trims the t largest and t smallest accepted values, the maximal and minimal
remaining values will always be inside the range of the maximal and minimal
values of set of values of the non-faulty processes at the previous round. Hence
the averaging in reduce(values, t) will be on values that are in the range of U
by the induction hypothesis. ��

The witness property is stated as follows:

Lemma 5. Every pair of non-faulty processes p, q that complete round h, main-
tain that ∣∣valuesh

p ∩ valuesh
q

∣∣ ≥ n − t .

Optimal Resilience Asynchronous Approximate Agreement 237

Proof. If non-faulty processes p, q finish round h, they have at least t+1 common
witnesses. This follows from the fact that each has at least n − t witnesses, and
every n− t quorum has a t + 1 intersection with every other quorum. Hence p, q
have at least one common non-faulty witness r.

By the definition of witnesses and the FIFO properties of the ‘report’ mes-
sages, the first n − t values accepted by r will appear both in valuesp and in
valuesq. ��

Define Ui =
⋃

p∈G valip be the multiset containing the val values of all the non-
faulty processes after they all completed round i. We now show an exponential
decrease in the range.

Lemma 6. The range of non-faulty processes is cut by at least a half

δ(Ui) ≤ δ(Ui−1)
2

.

Proof. By Lemma 5 we know that every two processes have in common at
least n − t accepted values. Let p, q be two arbitrary non-faulty processes, with
valuesi

p, valuesi
q as their multiset of values. Without loss of generality we assume

that valip ≥ valiq. Denote m = min(Ui−1) and M = max(Ui−1). It is sufficient to
prove the following:

Claim: valip − valiq ≤ M−m
2

Proof: Denote R = valuesi
p ∩ valuesi

q, thus |R| ≥ n − t and denote Vp =
trim(valuesi

p, t), Vq = trim(valuesi
q, t).

Let x be the median of R, then x ∈ Vq because R has at least n− t elements
and we only trim t from each side. Hence max(Vq) ≥ x. In addition, min(Vq) ≥ m
because trim removes the t smallest elements in valuesi

q. Therefore valq ≥ m+x
2 .

In a similar fashion, x ∈ Vp, which implies min(Vp) ≤ x and max(Vp) ≤ M
and thus valp ≤ M+x

2 . Combining with the above we get valp − valq ≤ M−m
2 .

��

4.4 Termination Detection

We now show that the algorithm runs for sufficiently many rounds to ensure
non-faulty values are at most ε of each other.

Lemma 7. Let k denote the minimal round estimation k = min{enoughr | r ∈
G}. Then if all p ∈ G complete round k then

(∀p, q ∈ G) |valkp − valkq | ≤ ε .

Proof. Let p be a process such that enoughp = k. Examine the n − t values in
valuesp at the end of the init method. Consider a non-faulty process q, it also
gathers valuesq by the end of its init method. Due to the fact that the values
and proofs are sent via Reliable-Broadcast, process q can receive and accept at
most t values that are not in valuesp, all other values that q accepts must agree

238 I. Abraham, Y. Amit, and D. Dolev

with valuesp. Hence if we trim the t largest and t smallest values in valuesq the
range of the remaining values is inside the range of valuesp. Formally, we have

min valuesp ≤ reduce(valuesq, t) ≤ max valuesp .

Then by iteratively applying Lemma 6, after all non-faulty processes run for
log2(δ(valuesp)/ε) rounds, their values will be close enough. ��

Let U be the set of initial values of non-faulty processes and A be the set
of all the initial values that are eventually accepted by Reliable-Accept by the
end of the initial round (so U ⊆ A). Let C = trim(A, t). Clearly δ(C) ≤ δ(U)
because removing the t largest and t smallest elements from A results in a range
that is at most the range of U .

Lemma 8. The number of rounds that any non-faulty process completes is at
most

log2

(
δ(U)

ε

)
.

Proof. For any process q, and prover r ∈ provenq we have

min C ≤ reduce(proof [r]q, t) ≤ max C

Notice that r may be faulty. This is true since proof [r] is a set of n − t val-
ues that were sent by Reliable-Broadcast, hence proof [r] ⊆ A and trimming
proof [r] results in a range that is smaller than δ(C). Hence min U ≤ min valuesq

and max valuesq ≤ max U, because valuesq is set in init to be the set of

reduce(proof [r], t), for all r ∈ provenq. Therefore enoughp ≤ log2

(
δ(U)

ε

)
for

all p ∈ G.
Let E =

⋃
p∈G enoughp then all p ∈ G halt after at most min(trim(E, t))

rounds. This is true because they will eventually receive t + 1 ‘halt’ messages
and decide. However after round min(trim(E, t)) no process can gather n − t
replies and hence cannot advance further. ��

Theorem 2. All non-faulty processes terminate after at most log2(δ(U))/ε)
rounds, with values that are at most ε of each other, in the range of the ini-
tial values.

Proof. All non-faulty processes halt by Lemma 3. Termination is in at most
log2(δ(U)/ε) rounds, deduced from Lemma 8. Since termination requires t + 1
halt messages, it occurs at a round that is larger than enoughp for some p ∈ G,
hence from Lemma 6 and Lemma 7 the decision values are ε from each other.
Finally, Lemma 4 proves that the decision values are inside the initial values of
the non-faulty processes. ��

Optimal Resilience Asynchronous Approximate Agreement 239

5 Conclusions

In this paper we solve the open question left from the original paper solving the
Approximate Agreement problem. The protocol presented limits the ability of
the faulty processes to influence the convergence of the non-faulty processes.

The novel witness technique used in the paper seems to be very powerful.
We wonder how useful it is in solving other problems. For example, what impact
can it have for solving clock synchronization problems?

An interesting topic is the bounds on the rate of convergence. Now that it
is only depends on the range of values of the non-faulty processes, one can look
for an optimal convergence rate.

References

1. G. Bracha. An asynchronous �(n − 1)/3�-resilient consensus protocol. In Proceed-
ings of the third annual ACM symposium on Principles of distributed computing,
pages 154–162. ACM Press, 1984.

2. D. Dolev. The byzantine generals strike again. J. Algorithms, 3(1), 1982.
3. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching ap-

proximate agreement in the presence of faults. In Proceedings of the 3rd Symposium
on Reliability in Distributed Systems, 1983.

4. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching
approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.

5. A. D. Fekete. Asymptotically optimal algorithms for approximate agreement. In
Proceedings of the fifth annual ACM symposium on Principles of distributed com-
puting, pages 73–87. ACM Press, 1986.

6. A. D. Fekete. Asynchronous approximate agreement. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, pages 64–76. ACM
Press, 1987.

7. M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for dis-
tributed consensus problems. In Proceedings of the fourth annual ACM symposium
on Principles of distributed computing, pages 59–70. ACM Press, 1985.

8. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

9. R. M. Kieckhafer and M. H. Azadmanesh. Reaching approximate agreement with
mixed-mode faults. IEEE Trans. Parallel Distrib. Syst., 5(1):53–63, 1994.

10. S. R. Mahaney and F. B. Schneider. Inexact agreement: accuracy, precision, and
graceful degradation. In Proceedings of the fourth annual ACM symposium on
Principles of distributed computing, pages 237–249. ACM Press, 1985.

11. T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing, 2(2):80–94, 1987.

	Introduction
	Model and Problem Definition
	Notations

	Reliable Broadcast and a 4t+1 Resiliency
	The 3t+1 Algorithm
	Analysis
	Informal Properties of Witness:
	Liveness
	Safety
	Termination Detection

	Conclusions

