Beyond Worst-Case Analysis in Algorithmic Game Theory

Inbal Talgam-Cohen, Technion CS Games, Optimization & Optimism: Workshop in Honor of Uri Feige Weizmann Institute, January 2020

Q1: What did you appreciate most about Uri as an advisor?

Q2: What did you learn from him that has proved most meaningful over the years?

- "Uri has scientific x-ray eyes. As a student, I observed with admiration his extraordinary capabilities of abstraction and presentation.
- Whenever I write a paper, or prepare a talk, I always use the Uri_Feige[™] Latex/PowerPoint package."

- Dan Vilenchik, BGU

- "Working with Uri as an advisor was an inspiring experience, which helped me grow tremendously as a researcher.
- Privately, I used to call him "the oracle", for his tendency to spontaneously generate surprising insights and proof ideas almost mid-sentence, seemingly without any offline computational time."

- Eden Chlamtac, BGU

- "My main insight from Uri is to keep it simple and look for simple and elegant solutions. His ability to simplify complicated problems never stopped amazing me.
- To see Uri solve mathematical questions was similar to listen to Glenn Gould play Bach: everything is so accurate and crystal clear."

- Daniel Reichman, WPI

What I learned: Be accurate, be modest

From: Uriel.Feige@weizmann.ac.il

- "In Section 1.4 and elsewhere there are claims of the form `will be of independent interest'.
- I recommend to write instead `may be of independent interest'...
- ...unless you know for sure that (a) it will be of interest, and
 (b) the interest will be independent of the application in the current paper."

Beyond worst-case analysis in Uri's Work

- Semi-random models:
 - A worst-case/average-case hybrid
 - Adversary and nature jointly produce problem instances
- [Feige-Krauthgamer'00, Feige-Kilian'01]:
 - Semi-random models for planted independent set
 - Insight into what properties of an IS make finding it easy
- Many additional works of Uri
 - Check out Uri's forthcoming book chapter "Introduction to Semi-Random Models"

In this talk

- Some recent applications of the semi-random approach in algorithmic game theory (AGT)
 - [Carroll'17, Eden-Feldman-Friedler-T.C.-Weinberg'17, Duetting-Roughgarden-T.C.'19]
- A mystery in AGT:
 - Simple economic mechanisms are ubiquitous in practice...
 - ... but suboptimal in the worst-case and average-case sense
- Semi-random models help explain, quantify and improve

Intersection of disciplinary approaches

Mechanism design

Algorithm design with incentives, private information

- Agents use private information to maximize own utility
- Mechanisms use payments to maximize mechanism designer's utility a.k.a. revenue

Auction and contract design

1. Auctions:

- Agents are buyers (e.g., online advertisers)
- <u>Private info</u>: Buyers' values
- Incentives: Auction induces buyers to bid their values
- 2. Contracts:
 - Agent hired to perform a task (e.g., online marketing)
 - Private info: Agent's effort level
 - <u>Incentives</u>: Contract induces efficient effort level

Simple ubiquitous mechanisms

1. Auctions:

- 2nd-price auction winner charged 2nd-highest bid
- No incentive to underbid
- <u>As seen on</u>: eBay
- 2. Contracts:
 - Linear contract agent gets a cut of her effort's outcome
 - No incentive to slack off
 - <u>As seen in</u>: venture capital

Semi-random models for auctions In what senses is the 2nd-price auction optimal for multi-item

revenue?

Multi-item auction setting

Bayesian (average-case) model

- Priors F_1, \ldots, F_m known to auction
- Values sampled independently
- Auction gets bids, allocates items, charges payments

Average-case auction design?

- <u>Design problem</u>: Maximize <u>expected</u> revenue (total payment) subject to incentive compatibility (IC)
 - Expectation over priors F_1, \ldots, F_m
 - IC = true bids maximize buyer utilities
- <u>Notation</u>: $OPT_{F_1,...,F_m}$
- Auctions achieving $OPT_{F_1,...,F_m}$ unrealistically complex for ≥ 2 items, and brittle even for 1 item

Worst-case auction design?

Nonstarter even for 1 item, 1 buyer with value v

- <u>Design problem</u>: Maximize revenue by setting reserve price p
- <u>But</u>: $\forall p \exists$ worst-case value v s.t. revenue = 0

Semi-random to the rescue

- Semi-random models recall:
 - A worst-case/average-case hybrid
 - Adversary and nature jointly produce problem instances

- In auctions:
 - Class of priors $\mathcal F$ known to auction
 - Adversary chooses worst-case prior $F \in \mathcal{F}$
 - Nature samples instance $v \sim F$

Semi-random instance generation

Two performance measures

Consider mechanism *M*

Recall $OPT_F = \mathbb{E}_F$ [revenue of optimal mechanism for prior F]

Approximation ratio
1. Relative:
$$\min_{F \in \mathcal{F}} \left\{ \frac{\mathbb{E}_F[\text{revenue of } M]}{\text{OPT}_F} \right\}$$

2. <u>Absolute</u>: $\min_{F \in \mathcal{F}} \{\mathbb{E}_F [\text{revenue of } M]\}$

Two design goals

- 1. Maximize relative performance
 - Find *M* that approximates OPT_F simultaneously $\forall F \in \mathcal{F}$
 - <u>Terminology</u>: *M* is prior-independent [Dhangwatnotai'15]
- 2. Maximize absolute performance
 - Find *M* that achieves $\max_{M'} \min_{F \in \mathcal{F}} \{\mathbb{E}_F [\text{revenue of } M']\}$
 - <u>Terminology</u>: *M* is max-min optimal [Bertsimas'10, Carroll'19]

Choice of \mathcal{F} is crucial

Recent results

- Prior-independent auctions
 - 1. Via extra buyers:
 - [Feldman-Friedler-Rubinstein EC'18] (1ϵ) -approximation
 - [Beyhaghi-Weinberg STOC'19] Improved and tight bounds
 - [Liu-Psomas SODA'18] Dynamic auctions
 - [Roughgarden-T.C.-Yan OR'19] Unit-demand buyers
 - 2. Via sampling + approximation:
 - [Allouah-Besbes EC'18] Lower bounds
 - [Babaioff-Gonczarowski-Mansour-Moran EC'18] Two samples
 - [Guo-Huang-Zhang STOC'19] Settling sample complexity
- Max-min optimal auctions
 - [Gravin-Lu SODA'18] With budgets
 - [Bei-Gravin-Lu-Tang SODA'19] Posted prices

Result 1: Max-min optimality [Carroll'17]

<u>Setting</u>: 1 buyer, *m* items with priors $F_1, ..., F_m$ \mathcal{F} = all correlated distributions with marginals $F_1, ..., F_m$

<u>Theorem [Carroll]</u>: Selling each item *j* separately by 2nd-price auction with optimal reserve for F_j is max-min optimal wrt \mathcal{F}

Intuition: Selling separately is robust to correlation

Towards result 2: What more do we want?

<u>Recall theorem</u>: Selling each item *j* separately by 2nd-price auction with optimal reserve for F_j is max-min optimal wrt \mathcal{F}

<u>Want</u>: Prior-independence

- No reserve price tailored to F_i
- Revenue guarantee relative to $OPT_{F_1,...,F_m}$

Willing to: assume values are independent

First attempt

Setting: n buyers, m items

 \mathcal{F} = all product distributions $F_1 \times \cdots \times F_m$ with regular marginals

<u>"Theorem"</u>: Selling each item *j* separately by 2nd-price auction approximates $OPT_{F_1,...,F_m}$ simultaneously $\forall F_1 \times \cdots \times F_m \in \mathcal{F}$

<u>Counterexample</u>: 1 buyer

Resource augmentation

- Another beyond worst-case approach
- To compete with a powerful benchmark, the algorithm is allowed extra resources [Sleator-Tarjan'85]
- <u>In our context</u> [BulowKlemperer'96]:
 - Powerful benchmark is $OPT_{F_1,...,F_m}$
 - Resources are buyers competing for the items

Result 2: Prior-independence [Eden+'17]

<u>Theorem</u>: With O(m) extra buyers, selling each item jseparately by 2nd-price auction matches $OPT_{F_1,...,F_m}$ simultaneously $\forall F_1 \times \cdots \times F_m \in \mathcal{F}$

Result 2: Prior-independence [Eden+'17]

<u>Theorem</u>: With O(m) extra buyers, selling each item jseparately by 2nd-price auction matches $OPT_{F_1,...,F_m}$ simultaneously $\forall F_1 \times \cdots \times F_m \in \mathcal{F}$

- [Feldman-Friedler-Rubinstein'18]: $\Omega(m)$ extra buyers necessary for $m = \Theta(n)$
- [Beyhaghi-Weinberg'19]: Additional tight results for other *n*, *m* regimes

Auctions Recap

- For the canonical problem of maximizing revenue from *m* items, semi-random models show that simple auctions are optimal
- Simple = selling each item by 2nd-price auction with reserve or more buyers
- Optimal =
 - Max-min optimal over adversarily chosen correlation or
 - Match OPT_F simultaneously for any regular product distribution F

Semi-random models for contracts

In what sense are linear contracts optimal?

Bayesian model for contracts

- Agent has *n* possible effort levels (hidden)
- Level *i* induces a distribution over *m* (observable) outcomes
 - μ_i = expected outcome
 - *c_i* = cost
- Example:

	Low outcome \$4	Med. outcome \$50	High outcome \$100	
Low effort \$0	0.6	0.3	0.1	$\mu_1 = 27.4$
Med. effort \$2	0.4	0.4	0.2	$\mu_2 = 41.6$
High effort \$9	0.1	0.5	0.4	$\mu_3 = 65.4$

Bayesian model for contracts

- Contract = non-negative payment for every outcome
- **Revenue** = outcome minus payment
 - Measured in expectation over outcome distribution given effort

Contract:	\$2	\$30	\$45
	Low outcome \$4	Med. outcome \$50	High outcome \$100
Low effort \$0	0.6	0.3	0.1
Med. effort \$2	0.4	0.4	0.2
High effort \$9	0.1	0.5	0.4

Linear contracts

- A linear contract is defined by a parameter $\alpha \leq 1$
- Agent chooses level i^* that maximizes $\alpha \mu_i c_i$
- Expected revenue is $(1 \alpha)\mu_{i^*}$

Contract:	4 <i>α</i> =\$2	50 <i>α</i> =\$25	$100\alpha = 50
	Low outcome \$4	Med. outcome \$50	High outcome \$100
Low effort \$0	0.6	0.3	0.1
Med. effort \$2	0.4	0.4	0.2
High effort \$9	0.1	0.5	0.4

Result 3: Max-min optimality [Duetting+'19]

<u>Setting</u>: *n* effort levels with expected outcomes $\mu_1, ..., \mu_n$ \mathcal{F} = distributions $F_1, ..., F_n$ with expectations $\mu_1, ..., \mu_n$

<u>Theorem</u>: The optimal linear contract for μ_1, \dots, μ_n is max-min optimal wrt \mathcal{F}

See also [Carroll'15, Dai-Toikka'18, Carroll-Walton'20]

Same intuition as Result 1 for auctions

Same intuition as Result 1 for auctions

Adversary takes advantage of any non-robustness

<u>Main lemma</u>: \forall contract, \exists distributions with expectations μ_1, \dots, μ_n s.t. \exists linear contract with better expected revenue

Take-away

Lots of recent beyond worst-case activity in AGT leading to new insights

"It is probably the great robustness of [simple mechanisms] that accounts for their popularity.

That point is not made as effectively as we would like by our model; we suspect that it cannot be made effectively in any traditional Bayesian model."

[Holmstrom-Milgrom'87]

Open problems

- 1. Auctions: beyond additive buyers?
- 2. Contracts: relative guarantees a la prior-independence?
- 3. General framework for max-min robustness?

Thanks for listening!