Approximate Modularity Revisited

Uriel Feige, Michal Feldman, Inbal Talgam-Cohen
YoungEC Workshop, Tel-Aviv, January 2017
Part of this work was done at Microsoft Research Herzliya

*Many slides from Uri’s talk at NY Theory Day
Motivation: Robustness

Mechanism and market design as a “data-driven enterprise”.

- "Nice" valuations -> Mechanism -> Good outcome
- Small errors
- Data on "nice" valuations

- "Close" to "nice" valuations -> Mechanism
- Good outcome???
Motivation: Robustness

Mechanism and market design as a “data-driven enterprise”.

“Nice” set functions → Optimization algorithm → Good outcome

Data on “nice” set functions → Small errors → “Close” to “nice” set functions

Optimization algorithm → Good outcome???
Motivation: Robustness

Mechanism and market design as a “data-driven enterprise”.

“Nice” set functions → Learning algorithm → Good outcome

Data on “nice” set functions → Small errors

“Close” to “nice” set functions → Learning algorithm → Good outcome???
Research agenda

What happens when set functions are only “close” to being “nice”?

Many sub-questions:

- Notions of closeness.
- Optimization – can good approximation ratios still be achieved?
- Mechanism design – do good economic properties continue to hold?
- Learning – can nice set functions be recovered?

- One take-away: Basic questions still open; interesting math involved
Set functions

Universe of n items.
Function $f: \{0,1\}^n \to \mathbb{R}$ assigns values $f(S)$ to sets of items.

Examples:

• Items for sale in a *combinatorial auction*. Value of set (bundle) for a bidder – arbitrary valuation over bundles.

• Items can be *vertices* in an edge-weighted graph. Value of set: sum of weights of *cut* edges.
Representation of set functions

Explicit: 2^n entries.

Value queries: upon query S learn $f(S)$.

- In a combinatorial auctions, one may ask a bidder how much she is willing to pay for the bundle.
- Given a set S of vertices, one can compute in polynomial time the total weight of edges in the cut (S, \overline{S}).

Other types of queries (such as demand queries) have been studied.
Classes of “nice” set functions

Some classes of set functions have polynomial representations:

Additive \(f(S) = \sum_{i \in S} f(i) \), and \(f(\emptyset) = 0 \).

Linear \(f(S) = f(\emptyset) + \sum_{i \in S} f(i) \).

Capped additive \(f(S) = \min[1, g(S)] \) where \(g \) is additive.

Useful properties but not necessarily a polynomial representation:

Submodular \(f(S) + f(T) \geq f(S \cap T) + f(S \cup T) \).

Subadditive \(f(S) + f(T) \geq f(S \cup T) \), and \(f(\emptyset) = 0 \).
Optimization problems for “nice” set functions

Linear set functions:

- Many optimization problems are easy.

Submodular set functions (cuts, valuations with diminishing returns):

- **Maximization** subject to constraints (e.g., a cardinality constraint) can be solved approximately.

General set functions:

- Many optimization problems are computationally hard to approximate.
Motivations for “close to nice” set functions

• Answers to value queries might not be exact (due to noise in measurements).
• Rounding errors.
• Computing approximate values may be cheaper than computing exact values.
• The functions might not be exactly nice (e.g., valuation functions of bidders need not be exactly submodular).
Some related work

Functions on continuous domains (rather than discrete hypercube):
 • Hyers [1941], ...

Data-driven optimization:
 • Bertsimas and Thiele [2014], Singer and Vondrak [2015], Hassidim and Singer [2016], Balkanski, Rubinstein, and Singer [2016], ...

Approximate submodularity, convexity, substitutes:
 • Das and Kempe [2011], Belloni, Liang, Narayanan, and Rakhlin [2015], Roughgarden, T.C., and Vondrak [2016], ...

Learning submodular functions:
 • Balcan and Harvey [2011], ...

...
Results
Suggested to start with an “easy” case: a function f close to linear.

Considered 2 questions:

- To what extent are different measures of closeness to linearity related to each other? Specifically, compare between:
 - being pointwise close to a linear function,
 - nearly satisfying properties of linear functions.

- How to learn a linear function h that is close to f?
Δ-linear set functions

Linear set function: $f(S) = f(\emptyset) + \sum_{i \in S} f(i)$.

Given $\Delta \geq 0$, a set function f is Δ-linear if there is a linear set function g such that $|f(S) - g(S)| \leq \Delta$ for every set S.
\(\varepsilon \)-modular set functions

A set function is linear if and only if it is modular:
\[
f(S) + f(T) = f(S \cap T) + f(S \cup T)
\]
for all sets \(S \) and \(T \).

A set function is \(\varepsilon \)-modular if
\[
|f(S) + f(T) - f(S \cap T) - f(S \cup T)| \leq \varepsilon
\]
for all sets \(S \) and \(T \).

Every \(\Delta \)-linear function is \(\varepsilon \)-modular for \(\varepsilon \leq 4\Delta \).

Is it true that every \(\varepsilon \)-modular function is \(\Delta \)-linear for \(\Delta \leq O(\varepsilon) \)?
Results for ε-modularity

ε-modular is Δ-linear for:

$\Delta \leq O(\varepsilon \log n)$ [Chierichetti, Das, Dasgupta, and Kumar; 2015]

$\Delta \leq 44.5\varepsilon$ [Kalton and Roberts; 1983] (Assaf Naor directed us to this)

$\Delta \leq 35.8\varepsilon$ [Bondarenko, Prymak and Radchenko; 2013]

Our results:

• For every set function $\Delta < 13\varepsilon$.

• Improved bounds for special classes. E.g., for symmetric functions $\Delta \leq \frac{1}{2}\varepsilon$.

• There are set functions (with $n = 70$) for which $\Delta \geq \varepsilon$.

Δ-linear: pointwise close to linear up to $\pm \Delta$

ε-modular: satisfies modularity eqs. up to $\pm \varepsilon$
Learning Δ-linear set functions

Suppose we are given value query access to a Δ-linear function f. Using polynomially many value queries, output a linear function h satisfying $|f(S) - h(S)| \leq \delta$ for every set S.

How small can we make δ as a function of Δ and n?
Results for learning Δ-linear set functions

Results of [Chierichetti et al.]:

• A randomized algorithm making $O(n^2 \log n)$ nonadaptive queries and achieving $\delta \leq O(\Delta \sqrt{n})$ w.h.p.

• Even randomized adaptive algorithms require $\delta \geq \Omega(\Delta \sqrt{\frac{n}{\log n}})$.

Useful when f is very close to linear (e.g. rounding errors).

Our result:

• A deterministic algorithm making $O(n)$ nonadaptive queries and achieving $\delta \leq O(\Delta \sqrt{n})$.

Δ-linear: pointwise close to linear up to $\pm \Delta$
Sketch of Main Proof
Plan for main proof

W.l.o.g. let f be a 1-modular function whose closest linear function is $g = 0$. Let $M = \max_{S} [f(S)] = -\min_{S} [f(S)]$.

[Chierichetti et al.] characterize such f. Show that $M = \Delta$ is bounded, independent of n.

(For simplicity suppose $f(\emptyset) = 0$.)

Δ-linear: pointwise close to linear up to $\pm \Delta$

ϵ-modular: satisfies modularity eqs. up to $\pm \epsilon$

$\Delta < 13\epsilon$
Tool: (r, θ) split-and-merge of k sets

Source sets: S_1, S_2, \ldots, S_k.

Split each source set into several intermediate sets (in a clever way).

Intermediate sets: I_1, I_2, \ldots, I_{rk}.

Merge together disjoint intermediate sets into target sets.

Target sets: $T_1, T_2, \ldots, T_{\theta k}$ for $\theta < 1$.
Example: \((r, \theta)\) split-and-merge of \(k\) sets

\(k = 3\) source sets:
\[(1,2,3,4,7)\] \[(1,2,5,6)\] \[(3,4,5,7)\]

\(rk = 6\) intermediate sets (hence \(r = 2\)):
\[(1,2,7) (3,4)\] \[(1,2) (5,6)\] \[(3,4) (5,7)\]

\(\theta k = 2\) target sets (hence \(\theta = \frac{2}{3}\)):
\[(1,2,7,5,6,3,4)\] \[(3,4,1,2,5,7)\]
Implications of 1-modularity

If source set S is the disjoint union of r intermediate sets $I_1, ..., I_r$. Then $\sum_j f(I_j) \geq f(S) - r + 1$.

If target set T is the disjoint union of r/θ intermediate sets $I_1, ..., I_{r/\theta}$. Then $\sum_j f(I_j) \leq f(T) + r/\theta - 1$.

Summing up over source, target sets and combining we get $\sum_j f(S_j) - rk + k \leq \sum_j f(I_j) \leq \sum_j f(T_j) + rk - \theta k$.
(r, \theta) split-and-merge of k sets with value M

From prev. slide: \[\sum_j f(S_j) - rk + k \leq \sum_j f(T_j) + rk - \theta k. \]

Suppose that \(f(S_j) = M \) for every \(S_j \).

This implies \(kM - rk + k \leq \theta kM + rk - \theta k \), and thus \(M \leq \frac{2r - 1 - \theta}{1 - \theta} \).

Thus if \(r \) is constant and \(\theta < 1 \), we derive that \(M (=\Delta) \) is constant.

What condition ensures that \(k \) sets have an (r, \theta) split-and-merge?
α-sparse collections

For $\alpha < 1$, a collection of k sets is α-sparse if each item appears in at most αk sets.

Lemma [Kalton and Roberts, 1983]: For any α-sparse collection there is an (r, θ) split-and-merge as required, where r and $\theta < 1$ depend on parameters of bipartite expander graphs.

Corollary: To show $M = O(1)$ it remains to show an α-sparse collection of sets with value (nearly) M.
Example: From α-sparse to split-and-merge via expanders

\begin{itemize}
 \item $(1,2,3,4,7)$
 \item $(1,2,5,6)$
 \item $(3,4,5,7)$
\end{itemize}

$\frac{2}{3}$-sparse collection

Expander:
Every set with $\leq \frac{2}{3}$ of the top vertices has a matching to the bottom vertices.
Example: From α-sparse to split-and-merge via expanders

$\frac{2}{3}$-sparse collection

Expander:
Every set with $\leq \frac{2}{3}$ of the top vertices has a matching to the bottom vertices.
Example: From α-sparse to split-and-merge via expanders

\(\frac{2}{3}\)-sparse collection

Expander:
Every set with \(\leq \frac{2}{3}\) of the top vertices has a matching to the bottom vertices.
Example: From α-sparse to split-and-merge via expanders

$\frac{2}{3}$-sparse collection

Expander:
Every set with $\leq \frac{2}{3}$ of the top vertices has a matching to the bottom vertices.
Example: From α-sparse to split-and-merge via expanders

Source sets (k)

Intermediate sets (rk)

Target sets (θk)
Existence of α-sparse collection with value $\approx M$

Lemma [only “morally” correct]: for every 1-modular function f whose closest linear function is 0, there is a $\frac{1}{2}$-sparse collection of sets of average value $M - d$, where deficit $d \leq \frac{1}{2}$.

This implies $M \leq \frac{2r+d-1-\theta}{1-\theta} \leq 26.8$, where the last inequality is by existence of expanders such that every set with $\leq \frac{1}{2}$ of the top vertices has a matching, there are $rk = 5.05k$ edges and $\hat{\theta}k = \frac{2}{3}k$ bottom vertices [BPR 2013].
The road to substantial improvements

Key observation: if we require “less expansion” (i.e., that only “smaller” subsets of top vertices have matchings), then there exist expanders with relatively less edges and bottom vertices \Rightarrow smaller r, θ.

We can pair these with sparser collections of sets – as long as their average value is still $M - d'$ for small d' – \Rightarrow better upper bound $\frac{2r + d' - 1 - \theta}{1 - \theta} \geq M$.
Example of implementation

Goal: lowering α of α-sparse collection while controlling the deficit

We already have a $\frac{1}{2}$-sparse collection of sets S_1, S_2, \ldots of average value $M - d$, where $d \leq \frac{1}{2}$.

Consider a collection composed of all pairwise intersections.

Observe it is $\frac{1}{4}$-sparse.

Its average value can be bounded by:

$$f(S_i \cap S_j) \geq f(S_i) + f(S_j) - f(S_i \cup S_j) - 1 \geq M - 2d - 1$$
Summary

Relating two notions of “close to” linear functions:
• Every ε-modular set function is Δ-linear for $\Delta \leq O(\varepsilon)$.
• Current bounds are $\varepsilon \leq \Delta < 13\varepsilon$.
• Proof based on expander graphs.

Learning close to linear functions – only when really close
• A linear function h that is $O(\Delta\sqrt{n})$-close to a Δ-linear function f can be learned by making $O(n)$ value queries non-adaptively.
• Nearly best possible.