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Abstract. Competitive equilibrium, the central equilibrium notion in
markets with indivisible goods, is based on pricing each good such that
the demand for goods equals their supply and the market clears. This
equilibrium notion is not guaranteed to exist beyond the narrow case
of substitute goods, might result in zero revenue even when consumers
value the goods highly, and overlooks the widespread practice of pric-
ing bundles rather than individual goods. Alternative equilibrium no-
tions proposed to address these shortcomings have either made a strong
assumption on the ability to withhold supply in equilibrium, or have
allowed an exponential number of prices.
In this paper we study the notion of competitive bundling equilibrium
– a competitive equilibrium over the market induced by partitioning
the goods into bundles. Such an equilibrium is guaranteed to exist, is
succinct, and satisfies the fundamental economic condition of market
clearance. We establish positive welfare and revenue guarantees for this
solution concept: For welfare we show that in markets with homoge-
neous goods, there always exists a competitive bundling equilibrium that
achieves a logarithmic fraction of the optimal welfare. We also extend this
result to establish nontrivial welfare guarantees for markets with hetero-
geneous goods. For revenue we show that in a natural class of markets
for which competitive equilibrium does not guarantee positive revenue,
there always exists a competitive bundling equilibrium that extracts as
revenue a logarithmic fraction of the optimal welfare. Both results are
tight.

1 Introduction

Competitive equilibria play a fundamental role in market theory and design –
they capture the market’s steady states, in which each participant maximizes
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his profit at equilibrium prices, and supply equals demand such that the market
clears [14, Parts III and IV].

This paper focuses on the well-known combinatorial markets model, which
consists of a set M of m indivisible goods (or items), and a set N of n consumers.
We consider both the extensively studied case of homogeneous goods, and its
generalization to heterogeneous goods. Each consumer i has a valuation vi :
2M → R+ over bundles of goods. The standard assumptions are that each vi is
normalized (vi(∅) = 0) and monotone non-decreasing. A competitive equilibrium
is an allocation of the goods to the consumers, denoted by (S1, . . . , Sn), together
with supporting item prices, denoted by pj for good j, such that the following
two conditions hold:

1. Profit Maximization: The profit of every consumer i is maximized by his
allocation Si; i.e., for every alternative set of goods T , vi(Si)−

∑
j∈Si

pj ≥
vi(T )−

∑
j∈T pj .

2. Market Clearance: All items are allocated; i.e.,
⋃
i Si = M .

Unfortunately, despite their fundamental role, competitive equilibria are only
guaranteed to exist in limited classes of combinatorial markets, most notably
those in which all valuations are gross substitutes [10, 16]. Intuitively this means
that consumers do not view the goods as complementary, so that if the price of
one good rises, the demand for other goods does not decline (see Section 2 for a
formal definition of gross substitutes and other valuation classes).

The standard market model described above implicitly assumes that the
goods on the market are exogenously determined, yet in many markets this is
not true. For example, there is no inherent reason for beer to be sold in 6-packs
rather than, say, 8-packs. This practice of bundling is ubiquitous in real-life
markets: It is a well-known method for revenue extraction [13] – e.g., for this
reason many airlines set the price of a one-way ticket to be equal to the price of a
round-trip ticket. It is also a common mean for avoiding the “exposure” problem
due to complementarities – e.g., in the online market for concert ticket resale
StubHub.com, a seller holding two tickets may prohibit their separate resale so
that if there is no demand for both, she may still enjoy the concert with a friend.

In this paper we study the role of bundling in steadying the market. We
will see that bundling introduces new equilibria, and thus can recover stability
in markets that lack a competitive equilibrium. The main challenge is whether
“good” bundlings exist, i.e., those which result in nearly optimal social efficiency
and/or revenue extraction.

1.1 Related Work and Definition of Our Equilibrium Concept

There have been several suggestions in the literature as to how to extend com-
petitive equilibria to accommodate bundling. One direction initiated in [3] is
the study of competitive equilibria over bundles that are supported by 2m non-
linear bundle prices, possibly personalized per consumer.5 Auctions that reach

5 In the full version available on arXiv.org we use linear programming to show that
our solution concept actually applies more widely than this one.
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such equilibria with personalized prices are studied in [20, 1], while anonymous
supporting prices and auctions that reach them for classes of valuations are
studied in [11, 22] (see also [19, 21, 18, 24]).

In contrast to this direction, consider perhaps the simplest possible extension
of competitive equilibria, in which supporting prices are linear and anonymous.
We define a competitive bundling equilibrium to consist of a partition of the
goods into bundles, denoted by B = (B1, . . . , Bm′) and referred to as a bundling,
in addition to an allocation (S1, . . . , Sn) of the bundles to the consumers, and a
price pBj for each bundle Bj . Similar to competitive equilibria, two conditions
must hold:

1. Profit Maximization: For every consumer i and alternative set of bundles
T , vi(Si)−

∑
Bj∈Si

pBj ≥ vi(T )−
∑
Bj∈T pBj .

2. Market Clearance:
⋃
i Si = M .

An advantage of competitive bundling equilibria is that they always exist.
This can be seen, e.g., by naively bundling all goods together and allocating
the bundle to the highest-valuing consumer. The social efficiency, however, may
reach only a 1/n-fraction of that achieved by the optimal allocation. Hence we
will mainly be occupied with seeking better competitive bundling equilibria than
the naive one.

A previously studied notion that is closely related to, and inspires, our com-
petitive bundling equilibrium notion is the solution concept known as combi-
natorial Walrasian equilibrium, introduced in [8]. In this solution concept, only
the profit maximization condition must hold and not the market clearance one,
and in this sense it is closer in spirit to an algorithmic pricing solution than to
a classic market-stabilizing equilibrium.6 The main result in [8] is that if one
ignores the requirement to sell all the goods, then there is always a bundling
together with anonymous and linear bundle prices that achieve at least half of
the optimal welfare. The main open problem posed in [8] is whether their re-
sult can be extended under the market clearance requirement, and in this paper
we address this open question, among others. The open question of [8] received
partial treatment also in [9], but with respect to only two restricted classes of
valuations. In this work we consider a much more general setting, and in passing
generalize the results obtained in [9] for these two classes.7

6 To emphasize this distinction we propose a different name – competitive bundling
equilibrium – for the solution concept we focus on in this paper.

7 The classes addressed in [9] are a strict subclass of budget-additive valuations, and
superadditive valuations. We provide a general treatment of budget-additive valua-
tions in the full version of this paper [6], and re-derive the result for super-additive
valuations as a corollary of a more general argument in the full version: It was ob-
served in [19] that the linear program introduced by [3] has an integrality gap of
1 for superadditive valuations, guaranteeing the existence of non-linear supporting
prices; we show that an integrality gap of 1 also implies the existence of a competitive
bundling equilibrium with optimal welfare.
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Applicability The notion of competitive bundling equilibrium is applicable
when bundling is legally or effectively irrevocable. In the seminal paper of [3]
this property is referred to as “crates cannot be opened”. Retail markets where
bundles are explicitly marked as “not for individual sale” are one example of
markets with this property, as is the market for air tickets mentioned above.
Sterilized products are another case in which the physical packaging cannot be
opened. As another example consider attraction passes – companies like Disney
sell bundles of several day passes which are activated upon first entrance, when
identification is required from the visitor; the rest of the passes can then only
be used by the same visitor. It is even common practice for different producers
to bundle together their goods; for example, a travel website can offer bundles
of air tickets, hotel rooms and car rental.8

A second condition for the applicability of competitive bundling equilibrium
is that the market clears. This condition is sometimes violated in markets domi-
nated by a single monopolist, who may attempt to enforce an outcome in which
goods are withheld despite positive demand (note this will only succeed if, de-
spite the fact that such markets are often regulated, the monopolist can credibly
commit not to sell the goods in the future – see the classic paper of [5] for failure
of a monopolist to do so). In competitive markets, however, market clearance
is necessary for stability. The standard argument is that in uncleared markets,
competing producers have incentive to undercut prices, thus leaving the market
unstable (for a thorough discussion see Section 10.B of [14]). In addition, mar-
kets for resources like spectrum or public land will necessarily clear, since the
governmental seller cannot withhold supply arbitrarily.

1.2 Our Results

We establish the existence of competitive bundling equilibria that are approx-
imately optimal with respect to social efficiency and also revenue, where the
approximation factors depend on the size of the combinatorial market’s shorter
side µ = min{n,m}. While our main focus is on existence of good equilibria, our
results are constructive and often tractable.

(I) Welfare for Homogeneous Goods We refer to combinatorial markets
with homogeneous goods as multi-unit settings; in such settings the consumers’
values depend on the number of units they receive. Multi-unit settings have
been studied extensively in the literature (e.g., [23, 15, 2, 4]), since this model
captures important goods like Treasury bills, electricity and telecommunications
spectrum, as well as online advertising. For a recent survey dedicated to multi-
unit settings see [17].

The classic result of Vickrey [23] shows that if the consumers’ valuations
exhibit decreasing marginal utilities (i.e., the added value from adding a single
unit decreases in the size of the existing bundle), then there always exists a

8 An interesting future direction is trying to better understand the market processes
leading to such bundling.
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competitive equilibrium. This no longer holds in the more general case where
valuations exhibit complements among units. We give a complete analysis for
competitive bundling equilibria in multi-unit settings and establish the following
theorem.

Theorem [Main] (Section 4): For every multi-unit market there exists a
competitive bundling equilibrium that provides an O(logµ)-approximation to
the optimal welfare. There exist such markets in which the approximation ratio
of every competitive bundling equilibrium is Ω(logµ).

The lower bound in this theorem applies even if all valuations but one exhibit
decreasing marginal utilities, and all are subadditive (see Section 2 for a defini-
tion).9

(II) Welfare for Heterogeneous Goods Our techniques developed for ho-
mogeneous goods apply to combinatorial markets with heterogeneous goods as
well, yielding the following results.

Theorem [General Markets] (Section 5): For every combinatorial mar-
ket there exists a competitive bundling equilibrium that provides an Õ(

√
µ)-

approximation to the optimal welfare. There exist such markets in which the
approximation ratio of every competitive bundling equilibrium is Ω(logµ).

Theorem [Budget-Additive Consumers] (Section 6): For every combina-
torial market with budget-additive valuations there exists a competitive bundling
equilibrium that provides an O(logµ)-approximation to the optimal welfare.
There exist such markets in which the approximation ratio of every competitive
bundling equilibrium is no better than 5

4 .

The gap between the upper and lower bounds is one of two main open questions
that arise from this paper.

Theorem [Two Consumers] (See the full version [6]): For every com-
binatorial market with n = 2 consumers there exists a competitive bundling
equilibrium that provides a 3

2 -approximation to the optimal welfare. There exist
such markets in which the approximation ratio of every competitive bundling
equilibrium is no better than 3

2 .

(III) Revenue We use our techniques to show a positive result for revenue, in
order to highlight the role of bundling in revenue extraction and to demonstrate

9 This shows that even for slightly more complicated valuations than those considered
by Vickrey, not only is it the case that a standard competitive equilibrium may not
exist, but also no competitive bundling equilibrium necessarily provides a constant
fraction of the optimal welfare. In the full version we also show that randomization –
in the form of correlated lotteries – does not improve the logarithmic approximation
factor. This tight and robust bound can be seen as a kind of price of stability result,
which establishes a clear separation between the optimal welfare and the optimal
stable welfare in markets with indivisible items.
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how the competitive bundling equilibrium notion can be useful even in gross
substitutes markets (for which standard equilibria are guaranteed to exist but
may possibly extract zero revenue).

Theorem [Revenue] (See the full version [6]): For every combinatorial
market with valuations belonging to a subclass of gross substitutes there ex-
ists a competitive bundling equilibrium that extracts as revenue an Ω(1/ logµ)-
fraction of the optimal welfare. There exist such markets in which the revenue of
every competitive bundling equilibrium is an O(1/ logµ)-fraction of the optimal
welfare.

The second main open question that arises from this paper is whether the above
result extends to the entire class of gross substitutes.

2 Preliminaries

We briefly address the standard issue of valuation representation and review
certain classes of valuations. The expert reader can safely skip this section.

A näıve representation of a valuation is exponential; the standard assumption
is thus that valuations are accessed by a succinct oracle. One standard kind
of oracle is a demand oracle: Given a consumer valuation v and item prices
p, an item set T is in the consumer’s demand set if it maximizes his profit,
i.e., v(T ) −

∑
j∈T pj = maxU⊆M{v(U) −

∑
j∈U pj}. A demand query returns a

member of the demand set under the given prices. The other standard kind of
oracle is a value oracle: For a given valuation and bundle, a value query returns
the value of the bundle. Even in multi-unit settings, demand queries are known
to be strictly stronger than value queries.

An important class of valuations is gross substitutes valuations. A valuation
v is a gross substitutes valuation if for every pair of price vectors q ≥ p, for
every item set T in the demand set of p, there exists an item set U in the
demand set of q such that U includes every item j ∈ T whose price did not
increase. A unit-demand valuation v is a kind of gross substitutes valuation for
which the value of every bundle T is the maximum value of some item in T . A
superclass of gross substitutes valuations is subadditive valuations. A valuation v
is subadditive if for every two bundles T,U it holds that v(T )+v(U) ≥ v(T ∪U).
A class of subadditive valuations that are not gross substitutes is budget-additive
valuations. A valuation v is budget-additive if there exists b such that for every
bundle T we have that v(T ) = min{

∑
j∈T v({j}), b}.

3 Technical Tools

In this section we prepare our main workhorses: Lemmas 1 and 2. These lemmas
identify structures – described in Definitions 1 and 2 – from which a competitive
bundling equilibrium with certain welfare guarantees can be found in polynomial
time utilizing a result of [8]. Subsequent sections of the paper devise and analyze
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algorithms to construct these structures. We first present the lemmas and then
prove them in Section 3.1.

Definition 1. A high-demand priced bundling consists of a bundling B and
bundle prices p, such that for every bundle B ∈ B, there is a set NB of at least
|B| consumers for whom vi(B)− pB > 0, i.e., B is strictly profitable.

Lemma 1. For every high-demand priced bundling (B,p), there exists a com-
petitive bundling equilibrium with allocation S′ = (S′1, . . . , S

′
n), whose welfare∑

i∈N vi(S
′
i) is at least the sum of prices

∑
B∈B pB. Moreover, it can be found

in poly(m,n) time using demand queries given (B,p).

Definition 2. A bundling B, bundle prices p and allocation S over B form a
partial competitive bundling equilibrium if they constitute a competitive bundling
equilibrium for a consumer subset N ′ ⊆ N .

Lemma 2. For every partial competitive bundling equilibrium with bundling B
and prices p, there exists a competitive bundling equilibrium with allocation
S′ = (S′1, . . . , S

′
n), whose welfare

∑
i∈N vi(S

′
i) is at least the revenue

∑
B∈B pB.

Moreover, it can be found in poly(m,n) time using demand queries given the
partial competitive bundling equilibrium.

3.1 Proofs

The proofs of Lemmas 1 and 2 use the following result that is a reinterpretation
of [8].

Theorem 1 ([8]). In a combinatorial market with general, possibly non-monotone
valuations, let B be a bundling with bundle prices p. There exist a further
bundling B′ over bundles in B 10, and prices p′ and an allocation S = (S1, . . . , Sn)
over bundling B′, such that:

1. For every i, let Ti ⊆ B be the set of original bundles Si is combined from, and
let Ui ⊆ B′ be the set of new bundles Si is combined from. Then ΣB∈Ui

p′B ≥
ΣB∈TipB.

2. Si is in consumer i’s demand set given prices p′, i.e., vi(Si) − ΣB∈Ui
p′B

maximizes i’s profit among all subsets of B′.
3. For every bundle B ∈ B′ unallocated in S, B ∈ B and p′B = pB.

The bundling, prices and allocation can be found in poly(m,n) time using de-
mand queries given B and p.

Note that the bundling, prices and allocation guaranteed to exist by the above
theorem do not form a competitive bundling equilibrium, as they do not satisfy
the market clearance condition.

We will also need the following lemma, which formulates a standard argument
and is proven for completeness in the full version of this paper [6].

10 i.e., a coarser bundling of the original m items.
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Lemma 3 (Bucketing – folklore). For every allocation S = (S1, . . . , Sn) of
items M , there exists a value v and an allocation S′ = (S′1, . . . , S

′
n) of M ′ ⊆M ,

such that vi(S
′
i) ∈ [v, 2v) for every S′i 6= ∅, and a logarithmic fraction of the

welfare is maintained, i.e.,
∑
i∈N vi(S

′
i) ≥ 1

2(log µ+2)

∑
i∈N vi(Si) where µ =

min{m,n}. The value v and allocation S′ can be found in poly(m,n) time using
value queries given S.

Proof (Lemma 1). We will show that after applying Theorem 1 to the high-
demand priced bundling, all bundles in B are allocated. Assume towards contra-
diction there is a bundle B ∈ B that is not allocated. Then its price remaines
unchanged by property (3) of Theorem 1. But there are at least |B| consumers
for which B is profitable at this price, hence for property (2) to hold, each of
these consumers must be allocated an alternative bundle (otherwise their profit
would be 0). However, there are only |B| − 1 bundles except for B, a contradic-
tion. ut

Proof (Lemma 2). Fix some ε > 0. Consider the partial competitive bundling
equilibrium and denote its consumer subset by N ′. For every consumer i ∈ N ′
for which Si is not empty, define a new valuation vεi that is identical to vi except
for a shift of ε in the value of Si, i.e., vεi (Si) = vi(Si) + ε (the new valuation may
no longer be monotone). For every other consumer i simply set vεi = vi. Observe
that the partial competitive bundling equilibrium is still a partial competitive
bundling equilibrium with respect to the vεi ’s. Now apply Theorem 1 to get a
bundling B′, allocation (S′1, . . . , S

′
n) and prices p′. We show that since we started

with a partial competitive bundling equilibrium, these bundling, allocation and
prices form a competitive bundling equilibrium with respect to the vεi ’s, that is,
all bundles in B are allocated. By the latter fact and by properties (1) and (2)
of Theorem 1,

∑
i∈N vi(S

′
i) ≥

∑
B∈B pB .

To show that we get a competitive bundling equilibrium, since property (2)
of Theorem 1 is guaranteed, the only missing component is to show market clear-
ance, i.e., that ∪iSi = M . Suppose towards a contradiction that there is a bundle
B ∈ B that was not allocated. Let i be the consumer that was allocated that
bundle in the partial competitive bundling equilibrium. Observe that under the
prices of the partial competitive bundling equilibrium, B is the most profitable
bundle of i. Now since B is unallocated, its price remaines the same by property
(3) of Theorem 1, while the prices of the other bundles can only increase by
properties (1) and (3). Thus B is the most preferred bundle for i (with valuation
vi it is only a most preferred bundle), and by property (2) consumer i must be
allocated this bundle.

We would now like to show the existence of a competitive bundling equi-
librium with respect to the vi’s and not just with respect to the vεi ’s. When
taking ε to 0, we get an infinite sequence of allocations and prices. Since the
number of allocations is finite and since all prices are bounded between 0 and
max{maxi vi(M),maxB(pB)}, there exists a subsequence in which one allocation
S̃ repeats and the prices converge to a price vector p̃. Note that it still holds
that

∑
i∈N vi(S̃i) ≥

∑
B∈B pB .
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To finish the proof we now claim that this allocation S̃ and prices p̃ are a
competitive bundling equilibrium with respect to the vi’s. Observe that for every
ε in the converging subsequence, if consumer i receives S̃i, then S̃i is the unique
bundle that maximizes his profit; otherwise, for smaller values of ε, S̃i is no
longer the most profitable bundle for i in contradiction to the assumption that
we have a competitive bundling equilibrium for the vεi ’s. Since this is true for
every ε > 0, for ε = 0 we get that S̃i is one of the most profitable bundles for i,
which is enough to prove that S̃ and p̃ form a competitive bundling equilibrium
with respect to the bundling B. ut

4 Welfare for Homogeneous Goods

This section focuses on multi-unit markets, where units of a single good may be
treated by different consumers as both substitutes and complements. We show
existence of a competitive bundling equilibrium that logarithmically approxi-
mates the optimal social welfare; this result is tight even when all valuations are
subadditive.

Theorem 2. For every multi-unit market with n consumers and m items, there
exists a competitive bundling equilibrium that provides an O(logµ)-approximation
to the optimal welfare OPT, where µ = min{m,n}. Moreover, it can be found in
poly(logm,n) time using value queries.11

Proof. Our goal is to show there exists a high-demand priced bundling whose
aggregate price is an O(logµ)-approximation to OPT; the proof of existence then
follows by applying Lemma 1.

Consider a welfare-optimal allocation (O1, . . . , On). We begin by applying
Lemma 3, by which there exist a value v and an allocation (O′1, . . . , O

′
n) of

an item subset M ′, such that (1) for every consumer i with non-empty alloca-
tion, vi(O

′
i) ∈ [v, 2v); (2) a logarithmic fraction of the welfare is preserved, i.e.,∑

i≤n vi(O
′
i) ≥ OPT /Θ(logµ).

Without loss of generality assume |O′1| ≥ · · · ≥ |O′n|, and let n′ be the largest
index such that O′n′ 6= ∅. If n′ = 1, the proof is complete by allocating the grand
bundle to consumer 1 for price v1(M). Assuming from now on n′ > 1, we show
how allocation O′ can be used to construct a high-demand priced bundling.

Let B be a partition of all m items into k := bn′/2c ≥ 1 bundles of roughly
equal size – if k does not divide m, place leftover items in one of the bundles
arbitrarily. Observe that every bundle B ∈ B has size at least |O′k+1|. Set the
price of every such bundle to pB = v − ε for some small ε = ε(v). Then all k
bundles are strictly profitable for consumers k+ 1, . . . , n′, and since there are at
least k such consumers we have a high-demand priced bundling.

It remains to show that the aggregate price, k(v−ε), is a logarithmic fraction
of OPT: By choosing ε ≤ v/5, we have that k(v − ε) ≥ v(2k + 2)/5. Plugging in

11 A tractable algorithm for multi-unit market runs in time poly(logm,n) and not
poly(m,n) – see [7].
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2k + 2 ≥ n′ we get k(v − ε) ≥ 2vn′/10, which by the fact that vi(O
′
i) < 2v is at

least 1
10

∑
i≤n vi(O

′
i) ≥ OPT /Θ(logµ), completing the existence proof.

We now sketch the proof of the computational result. Assuming m� n (the
case of interest), we add a preprocessing stage in which units are partitioned
into equal-sized bundles of size m/n2 (ignoring leftovers for simplicity). [7] show
that the welfare-optimal allocation of such bundles achieves a 2-approximation
to the welfare of an optimal unconstrained allocation. Further recall that in any
multi-unit setting, there is a computationally efficient constant-approximation
to OPT. Together with the computational guarantees of Lemmas 1 and 3, this
implies that a competitive bundling equilibrium which provides an O(logµ)-
approximation to the optimal welfare can be found in poly(logm,n) time using
demand queries. It is left to show that a demand query in the new setting can
be simulated by poly(logm,n) value queries. Since the total number of original
units in any bundle is now a multiple of m/n2, one can use dynamic programming
to simulate a demand query as required. ut

Theorem 3. There exists a multi-unit market where m = n and valuations are
subadditive, such that every competitive bundling equilibrium has welfare that is
a 1/Ω(logm)-fraction of the optimal.

Table 1. A lower bound for multi-unit markets with subadditive consumers

Consumer Valuation

i = 1 vi(B) =

{
2(1 + ε) if B = M
1 + ε if B ⊂M

i ∈ {2, . . . , n} vi(B) = 1/i for every B ⊆M

Proof. Consider the multi-unit market in which m = n and consumer valuations
are as described in Table 1. Note that all consumers are subadditive (in fact
consumers 2 to n are unit-demand). The optimal allocation in this market allo-
cates each of the consumers a single unit, achieving welfare Ω(logm). We will
show that in every competitive bundling equilibrium, consumer 1 is allocated all
units, and thus the welfare is only 2 + 2ε.

Consider a competitive bundling equilibrium with allocation S over bundling
B, and bundle prices p. Let i′ be the smallest index of a consumer whose alloca-
tion is non-empty. Observe that all bundles B ∈ B must have a common price
p ≤ 1/i′: Clearly consumer i′ cannot be charged more than 1/i′, and if the price
of any bundle > 1/i′, then some consumer’s profit is not being maximized. Now
assume towards contradiction that i′ > 1. By the market clearance property,
|B| ≤ i′, and so the total price for all bundles in B is at most 1. Consumer 1
will thus strictly increase his profit by buying all bundles in B, in contradiction
to the profit maximization property of a competitive bundling equilibrium. This
completes the proof. ut
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In the full version we strengthen Theorem 3 by showing it holds even when
lotteries are allowed.

5 Welfare for Heterogeneous Goods

In this section we consider general combinatorial markets, and show that for
every such market there exists a competitive bundling equilibrium whose alloca-
tion achieves a Õ(

√
µ)-approximation to the optimal welfare. In the full version

of this paper, we also address computational aspects (see [6]).

Theorem 4. For every combinatorial market with n consumers and m goods,
there exists a competitive bundling equilibrium with welfare that is a Õ(

√
µ)-

approximation to the optimal welfare OPT, where µ = min{m,n}.

Proof. Apply Lemma 3 to the welfare-optimal allocation (O1, . . . , On) to get a
value v and an allocation S = (S1, . . . , Sn) of itemsM ′ ⊆M . Without loss of gen-
erality, assume that exactly the first r allocated parts in S are non-empty (r must
be ≤ µ), so that (1) for every consumer i ∈ [r], vi(Si) ∈ [v, 2v); (2) a logarithmic
fraction of the welfare is preserved, i.e.,

∑
i∈[r] vi(Si) ≥

1
O(log µ)

∑
i vi(Oi). By

applying Lemma 4 below to the value v and allocation S, we get an O(
√
r) =

O(
√
µ)-approximation to the welfare of S, which is an Õ(

√
µ)-approximation to

OPT. ut

The proof of Theorem 4 relies on the following lemma.

Lemma 4. Let v be a value and S = (S1, S2, . . . , Sr) an allocation of items
M ′ ⊆ M to the first r consumers, such that ∀i ∈ [r], Si 6= ∅ and vi(Si) ∈
[v, 2v). Then there is a competitive bundling equilibrium that achieves an O(

√
r)-

approximation to the welfare of S.

Proof. We show how to construct a high-demand priced bundling whose aggre-
gate price is an O(

√
r)-approximation to the welfare of S. The proof is then

established by invoking Lemma 1.
Beginning with S1, . . . , Sr, we create new bundles by joining sets of d

√
re Sis,

adding leftovers to the last bundle (which contains between d
√
re and 2d

√
re)

Sis). Items in M\M ′ are also added to the last bundle. Let B denote the resulting
bundling, and set a price pB = v for every B ∈ B. The pair (B,p) is a high-
demand priced bundling: By construction, |B| ≤

√
r, and every bundle B ∈ B

is profitable for at least
√
r consumers (those who were originally allocated the

Sis it contains).
Now, recall that

∑
i∈[r] vi(Si) ≤ 2vr. Since no bundle B ∈ B contains more

than 2d
√
re ≤ 2

√
r+2 Sis, then |B| ≥ r/(2

√
r+2), and so the proof is complete:∑

B∈B
pB = |B|v ≥ rv

2
√
r + 2

≥ 1

4
√
r + 4

∑
i∈[r]

vi(Si).

ut
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6 Welfare for Budget-Additive

In Section 5 we showed that every combinatorial market admits a competitive
bundling equilibrium that provides an approximation ratio of Õ(

√
m) to the

social welfare. A natural next step is to understand whether we can get better
approximation ratios for specific subclasses. We make progress towards this goal
by showing that if the valuations are all budget-additive then we can get a
logarithmic approximation. The best lower bound we currently know shows that
no market with budget-additive valuations can achieve an approximation ratio
better than 5

4 (for the proof, see the full version of this paper [6]).

Theorem 5. In every combinatorial market with budget-additive valuations,
there is a competitive bundling equilibrium with welfare that is an O(logm)-
approximation to the optimal welfare.

We henceforth describe a high-level proof of Theorem 5 (see the full version
of this paper [6] for details). Our proof is constructive and proceeds as follows:
We first compute an allocation A = (A1, . . . , An) by running (a slight variation
of) the greedy algorithm of [12] for submodular valuations. This algorithm con-
siders the items one by one in an arbitrary order, and allocates each item to a
consumer that maximizes the marginal value for it given the items he received
until now. This allocation is known to achieve a constant approximation to OPT
for submodular valuations.

Next, our goal is to identify a subset of the bundles (Ai’s) that can be con-
verted into a partial equilibrium on the one hand, and give (at least) a logarithmic
approximation to OPT on the other hand. Given such a subset, we can then ap-
ply Lemma 2 to complete the proof. The non-trivial challenges are: (1) how to
allocate the items that do not belong to the identified subset of bundles, and (2)
how to price the bundles to ensure profit maximization for the corresponding
consumers.

To address these challenges, we distinguish between two cases: If most of
the welfare of A comes from consumers who have exhausted their budgets (i.e,
vi(Ai) = bi), we identify a subset of the buyers Sb with budgets bi ∈ (b, 2b]
for some b, who contribute a logarithmic fraction of the welfare of A. Then, for
every consumer i ∈ Sb, we bundle up the items in Ai into a bundle, and add the
remaining items (i.e., those not belonging to any of the consumers in Sb) to an
arbitrary consumer in Sb. We then price each bundle at a uniform price of b. It is
not too difficult to verify that this is a partial competitive bundling equilibrium
with respect to the consumers in Sb.

If most of the welfare of A comes from consumers who have not exhausted
their budgets (i.e, vi(Ai) < bi), for every non-exhaustive consumer i, we bun-
dle up the items in Ai into a bundle, and add the remaining items, T , to the
non-exhaustive consumer i∗ who maximizes the value vi(Ai ∪ T ). We charge ev-
ery consumer exactly his valuation for the allocated bundle (so each one gains
zero utility). The greediness of the initial algorithm ensures that every non-
exhaustive consumer maximizes his profit over all allocations Ai given to other



XIII

non-exhaustive consumers. It remains to show that this holds also with respect
to the consumer i∗. But this is clear by the definition of i∗ as the consumer who
maximizes the valuation for this bundle. It follows that this is a partial compet-
itive bundling equilibrium with respect to the non-exhaustive consumers.
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