Uncovering Shared Structures in Multiclass Classification

Abstract ture mapping appropriate for a given task. One method to
resolve this need is by manually designing a domain spe-
cific kernel (e.g. (Shpigelman et al., 2002)). When the
route of manual kernel design is not feasible one can at-
tempt to learn a data specific feature mapping (Crammer
et al., 2002). In practice, researchers often simply tast se
eral of the standard kernels in order to assess which attains
better performance on a validation set. These approaches,
however, fail to provide a clear mechanism for utilizing the
existence of structures in selecting the appropriate featu
mapping. We would therefore like to find an efficient way

We suggest a method for multi-class learning
with many classes by simultaneously learning
shared characteristics common to the classes, and
predictors for the classes in terms of these char-
acteristics. We cast this as a convex optimization
problem, usingrace-norm regularization, study
gradient-based optimization both for the linear
case and the kernelized setting, and show how
this approach can yield improved classification

accuracy. to learn feature mappings that capture the underlying-struc
ture of a given set of classes.
1. Introduction The observation that learning a hidden representation of

. . N ~ some shared characteristics can facilitate learning has a
In this paper we address the question of how to utilize hidiong history in multiclass learning (e.g. Dekel et al.
den structure in order to improve multiclass classification(2004)). This notion is often termed learning-to-learn or
accuracy. Our goal is to provide a mechanism for learningnterclass transfer (Thrun, 1996). While some approaches
the underlying characteristics that are shared between thgsume some information on the shared characteristics is
target classes, and to demonstrate the benefit of extractingovided to the learner in advance (Fink & Levi, 2004; Fink
common characteristics. We build upon the powerful no-et al., 2006), others rely on various learning heuristics in
tion of large margin linear classifiers, and specificallyfoc  order to extract the shared features (Torralba et al., 2004)

on the recent extensions to multiclass settings (Crammer & . . .
Singer, 2001). Simultaneously learning the underlying structure between

the classes and the class models is a challenging optimiza-
The challenge of accurate classification of an instance intéion task. Many of the heuristic approaches stated above
one of a large number of target classes surfaces in many deim at extracting powerful non-linear hidden characteris-
mains, such as object recognition, face identification, textics. However, this goal often entails non-convex optimiza
tual topic classification, and phoneme recognition. In manytion tasks, prone to local minima problems. In contrast, we
of these domains it is natural to assume that even thougWill focus on modeling the shared characteristics, as tinea
there are a large number of classes (e.g. different peoplgansformations of the input space. Thus, our model will
in a face recognition task), classes are related and builgostulate a linear mapping of shared features, followed by a
on some underlying common characteristics. For exammulticlass linear classifier. We will show that such models
ple, many different mammals share characteristics such asan be efficiently learned in a convex optimization scheme
a striped texture or an elongated snout, and people’s facegd that they can significantly improve the accuracy of mul-
can be identified based on underlying characteristics sucliclass linear classifiers, despite the fact that they are re
as gender, being Caucasian, or having red hair. Recovestricted to simple linear mappings of the instance space.
ing the true underlying characteristics of a domain can sig- . . . .
nificantly reduce the effective complexity of the multidas _The rest of this paper is organized as follows. We begin by

problem and by that transfer knowledge between related700UCINg our learning setting, motivating our approach
classes and formulating the suggested learning rule (Sec. 2). By

studying the dual of the resulting optimization problem, we
The obvious question that arises is how to select the feashow, in Section 3, how to “kernalize” our learning rule.
Then, in Section 4, we discuss the learning rule in the con-
text of learning a latent feature representation. In Sadio

Preliminary work. Under review by the International Comefece . o . .
y y we derive an optimization scheme and in Section 7 demon-

on Machine Learning (ICML). Do not distribute.
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strate our approach on picture classification and handwritef the vectorF*x of common characteristics, instead of a

ten letter recognition tasks. linear function of the input vectors. Formally our model
substitutes the weight matri¥’ € R™** with the product
2. Formulation W = FG of a weight matrixi" € R™*?, whose columns

define the common characteristics, agie R***, whose
The goal of multiclass classification is to learn a mappingcolumns predict the classes based on the common charac-
H : X — Y from instances int to labels inYy = teristics:
{1,...,k}. We consider linear classifiers ovat = R",

_ t t.) t
parametrized by a weight vectdr, ¢ R" for each class He,p(x) = argmax G, - (F'z) = argmax (FG), =,

yey yey
y € Y, and which take the form: (5)
Hy (z) = argmax W -z . (1) Itshould be emphasized thatiifand are not constrained
yey Y in any way, the hypothesis space defined by Eq. (1) and

by Eqg. (5) is identical, since any linear transformations in
duced by applying” and then can always be attained by
a single linear transformatidfy. We aim to show that nev-

We wish to learn the weights from a setreflabeled train-
ing examplegx;,y;) € X x ), which we summarize in

i X i ; . . g .
a m‘.”‘”'é(g( eh R}n § Whosg columnsha;e g|\|/en ?% . _ertheless, regularizing the decompositiBtyr, as we dis-
Inspired by the large margin approach for classification, shortly, instead of the Frobenius norm of the weight

Cram_m_er_ a_nd Singer (2001) suggest learning the W_Ei_ghtf’ﬁatrixw, can yield a significant generalization advantage.
by minimizing a trade-off between an average empirical

loss (to be discussed shortly) and a regularizer of the formWhen the common characteristiés are known, we can
replace the input instances with the vectorsFx; and
S IW|1? = Wi (2)  revert back to our original formulation Eq. (4), with the
y matrix G taking the role of the weight matrix. Each char-
] ) acteristicr is now afeature (F'x;),. in this transformed
where||[ W[ is the Frobenius norm of the matrik whose  roplem. The challenge we address in this paper is of si-

columns are the vectoi’,. The loss function suggested myjtaneously learning the common characteristics (or la-
by Crammeret alis the maximal hinge loss over all com- ot featuresy and the class weights'.

parisons between the correct class and an incorrect class: _ )
In order for the regularizéfG/||s to be meaningful, we must

(W5 (x,y)) = max [1+ ng/ “X — ng . x]Jr (3) also control the magnitude df, suggesting regularizing,
el in addition to||G||g, also}" || F||*> = || F|| yielding the
where[z]; = max(0, z). For a trade-off parametet, the ~ l€aming rule:

weights are then given by the following learning rule: m
: 1 2 1 2
Iggl§|\F||F+§|\G||F+C E C(FG; (xi,v:)) - (6)

1 ) Ui _ i=1
R 2 Wiz +c ;g (W5 (i, i) “) The norm of eacl¥;. determines how “easy” it is for class
predictors to use this characteristic: increasing the norm
For a binary classification problery, = {1, 2}, this for- || F,.|| allows smaller values ofy,,. to yield the same pre-
mulation reduces to the familiar Support Vector Machinediction, making it “cheaper” to use the characteristic st i
(SVM) formulation (withW; = —W, = fwsmatthe op-  thus beneficial for useful characteristics to have high norm

timum, andC' appropriately scaled). For larger number of But generalization ability is ensured by limiting the ovéra
classes, the formulation generalizes SVMs by requiring anorm of characteristics. It is important to note that, as we
margin between every pair of classes, and penalizing, foare accustomed to in large-margin methods, we do not have
each training example, the amount by which the margirto also limit the number of characteristics/\Ve are relying
constraing it violated. Similarly to SVMs the optimiza- here on thenormof F andG for regularization, rather than
tion problem Eqg. (4) is convex, and by introducing a “slack their dimensionality.

variable” for each example, it can be written as quadrati
programming. Crammet aldiscuss practical optimization
approaches.

C'I'he optimization objective of Eq. (6) is non-convex, and
involves matrices of unbounded dimensionality. However,
instead of explicitly learning”, G, the optimization prob-
Recall that our goal is to lea¥’ better by modeling char-  |em Eq. (6) can also be written directly as a convex learning
acteristics shared among multiple classes. We restriet ourule for1W. Following Srebro et al. (2005), we consider the
selves to modelling each common characteristies lin-  trace-norm of a matriV:

ear functionsF!x of the input vectors:.. The activation of 1

each clasg is then taken to be a linear functia, (F*x) IWlls =  min_ §(HF||§ + G117 ()
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The trace-norm is a convex functiondf, and can be char- Although Eqg. (10) is not a semi-definite program, it is a
acterized as the sum of its singular values (Boyd & Vandeneonvex problem or that involves a semi-definite con-

berghe, 2004). straint (the spectral-norm constraint) on a matrix whose
|Wls = Z Vil (8)  size is independent of the size of the training set, and only
P depends on the number of clasges
Using Eq. (7), we can rewrite Eq. (6) as: The following Representer Theorem describes the opti-
m mum weight matrixi¥ in terms of the dual optimung,
: . and allows the use of the kernel mechanism for prediction.
mV[l/nHWHE"'CZZ(W’ (xi,yi)) - ) P

=1

Furthermore, following Fazel et al. (2001) and Srebro et al.Theorem 1 Let () be the optimumof Eg. (10) and V' be the
(2005), the optimization problem Eq. (9) can be formulatedmatrix of eignevectors of Q' K@, then for some diagonal
as a semi-definite program (SDP). D € R¥*F the matrix W = X (QV*DV) is an optimum

To summarize, we saw how learning to classify based or%)f Bq. (9), with [Wl» = 32, [Dr |-

shared characteristics yields a learning rule in which the
Frobenius-norm regularization is replaced with a trace-pyggf Using complementary slackness and following ar-

norm regularization. guments similar to those of Srebro et al. (2005), it can be
shown thatX @ and the optimuniV of Eq. (9) share the
3. Dualization and Kernelization same singular vectors. That is, XfQ = U SV is the sin-

) gular value decomposition ofQ, thenW = UDYV for
So far, we assumed we have direct access to the featutgme diagonal matri®. FurthermoreD,, = 0 whenever

representatiox. However, much of the success of large- ¢ #1,i.e. SD = D. Note also that the right singular
margin methods stems form the fact that one does not ”eeiﬁéctorsv of XQ = USV are precisely the eigenvectors of
access to the feature representation itself, but only to th?XQ)t(XQ) = Q!XtXQ = Q'K Q. We can now express
inner product between feature vectors, specified key el W as follows: First note thai’ = UDV. SinceD = SD
function k(x,x’). In order to obtain a kernelized form of ;¢ may expres$l asUSDV. SinceVV' = I we may
trace-norm regularized multi-class learning, we firstityie  ¢,rther expand this expressionteSV VDV . Finally, re-

describe the dual of Eqg. (9), and how the optimUmcan placingU SV with X Q we obtainX (QVtDV).
be obtained from the dual optimum.

By applying standard Lagrange duality we deduce the dual , sk ,
of Eq. (9) is given by the following optimization problem, corollaryl Thereexisisa & R™*% st. W = Xaisan
which may also be written as a semi-definite program: optimumoof Eq. (9)

Vijty: Qij >0 L :
The situation is perhaps not as pleasing as for standard
max 3 (- Q) st Vi (—Quy) =Y Qi <c SVMs where the weight vector can be explicitly repre-
Z J#yi sented in terms of the dual optimum solution. Here, even
|XQll2 <1 after obtaining the dual optimur®, we still need to re-
cover the diagonal matri®. However, substitutindgl” =
where Q € R"** denotes the dual Lagrange variable XQV'DV into Eq. (9), the first term becomés, |D, .|,
and || X Q|2 is the spectral norm o @ (i.e. the maxi- while the second is piecewise linear KQV!DV. We
mal singular value of this matrix). The spectral norm con-therefore obtain a linear program (LP) in theunknown
straint can be equivalently specified[HsX Q)!(X Q)]s =  entries on the diagonal d?, which can be easily solved to
|QT(X*X)Q|2 < 1. This form is particularly interesting, recoverD, and hencéV. It is important to stress that the
since it allows us to write the dual in terms of the Gram number of variables of this LP depends only on the number
matrix K = XX instead of the feature representati&n  of classes, and not on the size of the data set, and that the
explicitly: entire procedure (solving Eq. (10), extractivigand recov-
ering D) uses only the Gram matri& and does not require
Vij#y, Qij =20 direct access to the explicit feature vectdrs

max Z(—Qiyi) st Vi (—Quy)= Z Qij <c Even if the dual is not directly tackled, the representation
7 J#yi of the optimumWW guaranteed by Thm. 1 can be used to
IQ'KQl2 <1 solve the primal Eq. (9) using the Gram matfixinstead
(10)  of the feature vectorX, as we discuss in Section 5.
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4. Learning a Latent Feature Representation

As alluded to above, learning can be thought of as learn-
ing a latent feature spacE’X, which is useful for pre-
diction. SinceF is learned jointly over all classes, it ef-

fectively transfers knowledge between the classes. Low- ©2
norm decompositions were previously discussed in these

terms by Srebro et al. (2005). More recently, Argyriou

15
\\
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et al. (2007) studied a formulation equivalent to using the

trace-norm explicitly for transfer learning between nmlti
tasks: considek binary classification tasks, and ugg as
a linear predictor for thgth task. Using an SVM to learn

each class independently corresponds to the learning rule;

. 1 1
min Z(§|\Wi||2+04j(Wj)) = min §|\W|\§+CZ (W)
J J
where/; (1) is the total (hinge) loss df/; on the training

examples for task. Replacing the Frobenius norm with
the trace norm :

min|[Wlls: + CZ@(WJ')

J

(11)

corresponds to learning a feature representation =
Ftx that allows good, low-norm prediction for all task,
where the linear predictor for tagkin this feature space, is

Figure 1.Left: The smoothed absolute value functipnSmaller
values ofr translate to a sharper function and a better estimate
of the absolute values. Right: The binary version of theltxs

in comparison with the binary hinge-loss. Larger values af-
crease the accuracy of the log-loss approximation.

Eq. (6). What wecan calculate is the singular value de-
composition ofa! Ka = o! X! Xa = W'W = VID?V,
and thus obtainD and V' (but notU). Now, note that
D V2ValK = D2V (ot X)X = DTV2VWEX =
D-Y2yVvtDpUtX = DY?U'X = F'X, providing us
with an explicit representation of the learned feature spac
that we can calculate frotR anda alone.

In either case, we should note the optimum of Eq. (6) is not
unigue, and so also the learned feature space is not unique:
if F,G is an optimum of Eq. (6), thedFR), (R!G) is

also an optimum, for any unitary matri® R* In-

given byV;. After such a feature representation is learnedstead of learning the explicit feature representafita) =
a new task can be learned directly using the feature vecE''x, we can therefore think of trace-norm regularization

tors F'x using standard SVM machinery, taking advantageas learning the implied kerndl, (x’, x)

(F'x', F'x).

of the transfered knowledge from the other, previously-Even whenF is rotated (and reflected) b, the learned

learned, tasks.

In the multi-class setting, the predictd#g, are never inde-
pendent, as even in the standard Frobenius norm formul
tion Eq. (4), the loss couples together the predictors fer th

kernelk, is unaffected.

. Optimization

The optimization problem Eg. (9) can be formulated as a

different classes. However, the between-class transfer afami_qefinite program (SDP) and off-the-shelf SDP solvers

forded by implicitly learning shared characteristics isamu
stronger. As will be demonstrated later, such transfertis pa
ticularly important if only a few number of examples are
available from some class of interest.

can be used to recover the optini&l. However, such off-
the-shelf solvers based on interior point methods scale ver
poorly with the size of the problem and typically cannot
handle problems with more than several hundred dimen-

Although this paper studies multi-class learning, the techsions, classes and training points. Moreover, the abifity o
nical contributions, inc|uding the Optimization approach interior point methods to obtain very accurate solutions to
study of the dual problem, and kernelization, apply equallyEd- (9) is not particularly important in a machine learning
well also to the multi-task formulation Eq. (11). application as the objective based on the training datats ju
o ) a stochastic approximation of our true interest in general-
Itis interesting to note that we can learn a feature represen, 4tion apility, and so obtaining a very precise solution to
tation¢(x) = F'x even when we are not given the feature y,;s anroximation does not typically yield significant im-
representatio” explicitly, but only a kernek fromwhich . ements in classification accuracy. Instead, we choose

. 2 . me . . :
we can obtain the Gram matrik’ = X'X. Inthis sit- 1, gniimize Eq. (9) using simple, but powerful gradient-
uation we do not have accessXa nor can we obtaid” based methods.

explicitly. As discussed above, what vean obtain is a
matrix « such thati = X« is an optimum of Eq. (9).
Let W = UDYV be the singular value decomposition of
W (which we cannot calculate, since we do not have acThe optimization problem Eg. (9) is non-differentiable and
cess toX). We have that = U+/D is an optimum of so not immediately amenable to gradient-based optimiza-

5.1. Gradient based optimization
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tion. In order to perform the optimization, we consider a 307
smoothed approximation to Eq. (9). © 25
We begin by replacing the trace-norm with a smooth proxy. % 20¢
Eq. (8) characterizes the trace-norm as the sum of the sin- © 15!

; is)
gular values of/’. Although the singular values are non- 5
negative, the absolute value in Eq. (8) emphasizes the rea: ~ 10[-

son the trace-norm is non-differentiable when a singular 5
value is zero and a singular vector abruptly changes di-
rection. In order to obtain a smooth approximation to the
trace-norm, we replace the non-smooth absolute value wit
a smooth functioy defined as

20 40 60 80
Y
Eigure 2.The values of the original (non-smooth) optimization
objective Eq. (9) for minima of the smoothed objective Edt)(1
42 as a function of the smoothing paramete(solid) compared to
9(7) = {W +3 =7 o the true optimum of Eq. (9) (dotted).
|v] otherwise

Wherer is a some predefined cutoff point. Fig. 1 illustrates féature vectors using a weight matrix that is the product
the functiong and the effect of the parameter We can of two randoml16 x 4 matrices. For each value of and

easily see thajis continuously differentiable, and that : @ fixedr = 0.01 we compared the weight matri¥’ re-
|g(x) _ |x|| < . Our smoothed proxy for the trace norm covere(_:i using conjugate grad|e_nt deS(_:ent on Eq. (14) to
is: the optimizer of Eq. (9) found using an interior point SDP
W |s = Zg(%) (12) solver . The figure plots the value of the original (non-
Z smooth) objective of both solutions. For large values of

the smoothed optimization solves the original problem to

where~; are the singular values &¥. Its gradientcan be = .° °
within very good accuracy.

calculated as:
AW s
oW

— Ug'(D)V (13) 5.2. Kernelized gradient optimization

We now turn to devising a gradient-based optimization ap-
whereW = UDV is the SVD of W and ¢’(D) is an  proach appropriate when only the Gram mafkix= XX
element-wise computation of the derivatiyeof ¢ on the is available, but not the feature vectols themselves.
diagonal ofD. Corollary 1 assures us that the optimum of Eq. (9) is of the
We now turn our attention on the non-differentiable multi- form X.Of’ a?”d S0 We can substltgw ~ Xfl into Eq. (14)

and minimize over.. To do so using gradient methods, we

class hinge-loss of Eq. (.3)' Sln.ce neither the hifjgenor need to be able to compute both the smoothed objective and
themax operators are differentiable we employ an adapta- o i
. . . its derivative fromK anda alone, without reference t&
tion of the log-loss for the multiclass setting (Dekel et al.

2003), with a parametey controlling its sharpness (in- explicitly.
spired by Zhang and Oles (2001)): We first tackle the smoothed trace normXoé: Let Xa =
UDV denote the SVD off o then the SVD ofa! K« is
1 given byV*D?V. We can thus recovep from the SVD of
ls (W; (xiyi)) = ylog | 1+ D MWW | o, and use Eq. (12) to calculael o -

T£Y; . .
In order to compute the gradient b o s with respect to

This is a convex and continuously differentiable functién o «, we calculate:
W which approaches the multiclass hinge-loss.as ~o o

. . . X a| X
(Fig. 1). In summary, instead of Eq. (9) we consider the I BOéHs =Xt |19Xa”5
following optimization problem: @ @

= X'Ug (D)V

insertingD(VV')D~! = DID™' =1TI:

in||W Cy» ls(W;(xi,9i 14 -
min| Vs + ; s (W5 (%, 91)) (14) = X'U(DVV'D )¢ (D)V

—_ Yyt ty—1 1
which is a convex and continuously differentiable function X(UDV)VID™ g (D)V
Fig. 2 shows how optimization of the smoothed objectiveand sinceXo = UDV":

Eq. (14) approximately optimizes Eq. (9). We generated . PN 1

160 training instances with 16 classes and 16-dimensional = X (Xa)V'D™ ¢ (D)V = KaV'D™ ¢ (D)V" (15)
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Recall that boti” andD can be obtained from the SVD of
oK, and so Eg. (15) provides a calculation of the gradi-
ent in terms ofK” anda.

Singular Value Magnitude

6. Spectral properties of the trace norm
regularization

One way to appreciate the difference between the Frobe-° = W@ w0 M0 20 w0 40 s0 e 70
nius norm and the trace norm of a mat¥ix is by observ- . . : .
y Figure 3.Spectra of learned matrices in the synthetic (left) and

ing that th_e squared Frobeglus norm equals the sum of threeal (right) experiments. The weight matrix resulting frerace
squared singular valuey,,; 77, while the trace norm is the

< regularization (solid), and the weight matrix resultingrfr Frobe-
sum of the singular values themselvgs, vi. Thus, choos- s regularization (dotted). The weight matrix that geted the

ing to minimize||U||%.,., + |[V|[%,, rather tharf| W|[2, im-  gataw™ (dashed) in the synthetic experiment only.
poses a regularization preference for annorm on the

spectrum oV (rather than ar., norm). When the various

target classes share common characteristics we expect the

spectrum ofi¥’ to be non-uniform, since a large portion of

the spectrum must be concentrated on few eigenvalues. In

these cases thi, spectrum regularization imposed by the ces using the leading singular values and vectogs €
Frobenius norm will tend to attenuate the spectrum. Inconi, 2, ..., 100). Performance of the reconstructed weight
trast, theL, spectrum regularization imposed by the tracematrices was evaluated on the test set. It was observed
norm does not share this tendency, and is thus better suitedat any SVD dimensionality reduction deteriorated the tes
to preserve underlying structures of characteristicsah@at performance. Moreover, the generalization error for the re
shared between the target classes. ducedWr,, was consistently worse than the performance

In order to illustrate this effect we generated 100 classeglc the fed“_ce‘W?- It _COUId the_refore be concluded that
over R'2° and randomly sampled 4500 training instances_pOSt'hOC dlmen_5|o_nallty reductlon_ could not attenuat_e the
from a 120-dimensional normal distribution. 180 % 100 importance of finding the underlying structure as an inte-
matrix W* was then used to label the data, by choosingd'@! Part of the learning procedure.

for each instance the labely = argmax W - z. The

rey i
matrix W* was selected to have a sigmoidal pattern of sin-7' Experiments

gular values, depicted in the dashed spectrum on Fig. 3z.1. Experiment I: Letter recognition

We then recovered two matricéBr,., and Wy using the ) - o )
Frobenius norm optimization from Eq. (4) and the traceBY @nalyzing over 100 writing systems, Changizi and Shi-
norm optimization from Eq. (9). The generalization error M0j0 (2005) have demonstrated the fact that each writing
over 500 new test instances, was significantly higher foSyStém can be characterized by a set of underlying strokes.
Wivo (47%) than forWs, (31%). The spectrum of the two Therefore our first experllmentfocuses on recognition of the
learned models is depicted in Fig. 3. It could be observed@® characters made available in the Uéiter dataset. The

that Frobenius based regularization leads to the atteguatélata was composed of 2000 instances, roughly distributed
spectrum ofVz over the 26 classes. The data was partitioned to three sets:
TO"

_ _ _ _ 1000 were used as a training set, 500 were held out and
A question may arise whether it was possible to encourysed to select the optimal value 6fand 500 were used

age the underlying common structure between the classeg a test set. Data was represented using a Gaussian kernel
by applying a dimensionality reduction procedure to thewith & = 0.07.

weight matrix. In order to show this is not necessarily the ] _
case, we repeated the experiment described abovéybut e then recovered two matricé€,., (Frobenius norm

was selected to have the singular values form a harmonigegularization) from Eq. (4) an@s; (trace norm regular-
series &,1,..., 155). We similarly recovered two matri- ization) from Eq. (9). The trade-off paramet@rwas de-
cesWr,, andWs, using the Frobenius norm optimization termined exhaustively by searching ouérvalues between

 the Fi "o : ; .
and the trace norm optimization . It was observed that the ~ and2”. The value was later fine tuned by searching

. . . . ithi i ithi —1.5 1.5
generalization error over 500 new test instances, was sig¥ithin @ smaller window withirC’ - 27~ andC’ - 2. All
nificantly higher foriVe,., (26%) than forWs, (17%). values were tested on the fixed holdout set. Performance

was evaluated over 500 new test instances, and the gener-

Next, a singular value decomposition was performed oryjization error was significantly higher ¥ ,., (10.1%)
Ws and Wr,, followed by reconstructing these matri- than forivs, (8.7%).
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termined using the same procedure used in Experiment 7.1
The accuracy of the multiclass SVM based on trace norm
regularization §3%) is observed to be higher than that at-
tained using the Frobenius norm regularizati29Cf).

Caribou **

In the previous sections it was suggested that leariing
can be thought of as learning a latent feature sgackg,
which is useful for prediction. Sincg' is learned jointly

) i over all classes, it can be thought of as transferring knowl-
Bobeat . e edge between the classes. Under these conditions a new
m ; /5 class can be acquired from fairly few training examples.
E— We therefore predict that classes with few training exam-
ples will, on average gain more from applying trace norm
Deer+ouse o regularization. This effect is depicted in Fig. 5. Specifi-
ﬂ NTLT cally, it could be observed that of the few classes that gain
from Frobenius regularization, four are of the top six most

. o . frequent mammals.
Figure 4.Representative images Deer (Addax, Caribou, Com-

mon Deer), Canines (African Wild Dog, Dingo, Hyena), Fetine In order to verify this phenomenon we selected the most
(Cheetah, Bobcat, Serval), and Rodents (Black Rat, Deeisklou frequent class (Wombat), containing 30 training examples
Flying Squirrel). and repeatedly relearnddi’z,, and Wy, while gradually
reducing the number of wombat examples to 24, 18, and
12. Under these conditions the accuracy of correct clas-
7.2. Experiment IIl: Mammal recognition dataset sification of wombats naturally deteriorated, but the dffec

Our second experiment focused on the challenging task Jyas noticeably less severe for the trace norm regularizatio
classifying mammal images. We chose the 72 mamma|¥Vh"e the Frobenius norm regularization performed better
that have at least 12 profile instances in the mammal bencfjYNen all 30 instances where available during learning (by

mark made available by (Fink & Ullman, 2007). Of these, 2.2%), when 24 instances where available the gap haq nar-
approximately 1,000 images were used for training and owed to 1.2%. When even fewer examples where available

similar number were used for testing. The test set was furghe leads where reversed and the trace norm outperformed

ther partitioned, where half was held out and used to sethe Frobenius norm by 1.4% for 18 instances and 3.7% for

lect C' and the rest where used for testing. The numbert2 instances. It should be noted that the false alarm rate
of instances of each class varied significantly from 6 to 3¢°Ver the remaining classes remained fairly constant. These
training examples. It should be noted that the 72 targe_[esults suggest that the Ie_a_rrjed common characteristics ca
classes are expected to share many common characteristifdeed facilitate the agqU|S|t|0n ofla_novel class when only
due to genetic resemblance and evolutionary convergencEe.W examples are available for training.

Four genetically related families (Deer, Canines, Felinesinally, the spectrum of the two learned models (Fig. 3),
and Rodents), are depicted in Fig. 4. depicts the fact that Frobenius based regularization feads

We build upon the comparison performed in (Zhang et al. 1€ a:gnuf?ted spe(_?trum ﬁfF“a It might ?e suggested
2006) in selecting an image representation suitable for thgwlt,t IS € gct mani gsts the a \{antage of trace norm reg-
high degree of intraclass variability present in the mammaPI""r'Z"’Itlon in preserving underlying structure between th

dataset. This representation is based on extracting a|visug1ammal classes.

signature from the images. The visual signatures include

40 clusters of local descriptors, extracted from interest r 8. Discussion

gions of the image. The resulting signatures are comparin%v _ i ) o _
using an Earth Moving Distance (EMD) Kernel. The EMD e stud|e_d alearning rule fqr m_ultl-class Iear_nlng in Wh|c_h
distance between signature-A and signature-B is found bym magnltude of the factorlzat|0r_1 of the we|ght_ matrix 1s
solving the transportation problem, namely, by finding the'®9ularized, rather then the magnitude of the weights them-
minimal Euclidean distance necessary for converting th&€lVes. This is equivalent to regularizing the trace-norm

descriptors in signature-A to be identical to the descripto ©f the weight matrix, instead of its Frobenius norm. We
of signature-B. showed how this formulation can be kernelized, and solved

_ _ efficiently either with direct access to the feature vectors
Using the above representation we learned the two matrin a kernelized setting. We demonstrated the effectiveness

cesWp,, (Frobenius norm regularization) atly. (trace  of the formulation, particularly for classes with only a few
norm regularization). The trade-off parameféwas de-
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