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Abstract: This paper describes mass personalization, a framework for combining mass media with a highly personalized
Web-based experience. We introduce four applications for mass personalization: personalized content layers,
ad hoc social communities, real-time popularity ratings and virtual media library services. Using the ambient
audio originating from the television, the four applications are available with no more effort than simple
television channel surfing. Our audio identification system does not use dedicated interactive TV hardware
and does not compromise the user’s privacy. Feasibility tests of the proposed applications are provided both
with controlled conversational interference and with “living-room” evaluations.

1 Introduction

“Mass media is the term used to denote, as a class,
that section of the media specifically conceived and
designed to reach a very large audience [ ... ] form-
ing a mass society with special characteristics, no-
tably atomization or lack of social connections” (en.
wikipedia.org). These characteristics of mass media
contrast sharply with the World Wide Web. Mass-
media channels typically provide limited content to
many people; the Web provides vast amounts of infor-
mation, most of interest to few. Mass-media channels
typically beget passive, largely anonymous, consump-
tion, while the Web provides many interactive oppor-
tunities like chatting, emailing, and trading. Our goal
is to combine the best of both worlds: integrating the
relaxing and effortless experience of mass-media con-
tent with the interactive and personalized potential of
the Web, providing mass personalization.

Beyond presenting mass personalization applica-
tions, our main technical contribution is in creating a
system that does not rely on future hardware or physi-
cal connections between TVs and computers. Instead,
we introduce a system that can simply ‘listen’ to am-
bient audio and connect the viewer with services and
related content on the Web. As shown in Figure 1,
our system consists of three distinct components: a
client-side interface, an audio-database server (with
mass-media audio statistics), and a social-application
web server. The client-side interface samples and
irreversibly compresses the viewer’s ambient audio
to summary statistics. These statistics are streamed
from the viewer’s personal computer to the audio-
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Figure 1: Flow chart for mass-personalization applications.

database server for identification of the background
audio (e.g., ‘Seinfeld’ episode 6101, minute 3:03).
The audio database transmits this information to the
social-application server which provides personalized
and interactive content back to the viewer. Continu-
ing with the previous example, if friends of the viewer
were watching the same episode of ‘Seinfield’ at the
same time, the social-application server could auto-
matically create an on-line ad hoc community of these
“buddies”. This community allows members to com-
ment on the broadcast material in real time.

The viewer’s acoustic privacy is maintained by the
irreversibility of the mapping from audio to summary
statistics. No one receiving (or intercepting) these
statistics is able to eavesdrop, since the original au-
dio does not leave the viewer’s computer and the sum-



Figure 2: Dynamic output from the proposed mass-personalization
applications. Personalized information layers are shown as
“wH@T’s Layers” (top) and as sponsored links (right-side middle).
Ad-hoc chat is shown under “ChaT.V.” (left-side middle). Real-time
popularity ratings are the line graphs on the top panels. The video
bookmarks are under “My Video Library” (bottom).

mary statistics are insufficient to provide a reconstruc-
tion. Further, the system can easily be designed to use
an explicit ‘mute/unmute’ button, to give the viewer
full control of when acoustic statistics are collected
for transmission.

Although we apply our techniques to television, we
do not use the visual channel as our data source. In-
stead, we use audio for three pragmatic reasons. First,
with visual data, the viewer either must have a TV-
tuner card installed in her laptop (which is rare), or
must have a camera pointed towards the TV screen
(which is cumbersome). In contrast, non-directional
microphones are built into almost all laptops (and
are shipped with desktops). Second, audio recording
does not require the careful normalization and calibra-
tion needed for video sources (camera alignment, im-
age registration, etc.). Third, processing audio takes
less computation than processing video, due to lower
input-data rates. This is especially important since we
process the raw data on the client’s machine (for pri-
vacy reasons), and would like to keep computation
there to a minimum.

In the next section (Section 2), we describe four ap-
plications, all aimed at supplementing television ma-
terial with personal and social interactions related to
the television content. Section 3 describes some of
the infrastructure required to deploy these applica-

tions. We then describe the core technology needed
for ambient-sound matching (Section 4). We provide
quantitative measures of the robustness and precision
of the audio matching (Section 5.1) as well as the
complete system (Section 5.2). The paper concludes
with a discussion on the scope, limitations, and future
extensions of this application area.

2 Personalizing Broadcast Content:
Four Applications

In this section, we describe four applications to
make TV more personalized, interactive and social:
personalized information layers, ad hoc social peer
communities, real-time popularity ratings, and TV-
based bookmarks.

2.1 Personalized Information Layers

The first application provides information that is com-
plementary to the mass-media channel (e.g., TV or ra-
dio) in an effortless manner. These additional layers
of information might include: fashion, politics, busi-
ness, health, or traveling. For example, while watch-
ing a news segment on Tom Cruise, a fashion layer



might provide information on what designer clothes
and accessories the presented celebrities are wearing
(see “wH@T’s Layers” in Figure 2).

The feasibility of providing the complementary
layers of information is related to the cost of annotat-
ing the database of mass-media content and the num-
ber of times any given piece of content is retransmit-
ted. We evaluated how often content is retransmitted
for the ground-truth data, used in the evaluations pre-
sented in Section 5. We found that 1/3 (for traditional
stations) to 1/2 (for CNN Headlines) of the content
was retransmitted within 4 days, with higher rates ex-
pected for longer time windows.

Thus, if ‘Seinfeld’ is annotated once, years of re-
runs would benefit from relevant information layers.
Interestingly, a channel like MTV (VH-1), where con-
tent is often repeated, has internally introduced the
concept of pop-ups that accompany music clips and
provide additional entertaining information. The con-
cept of complementary information has passed the
feasibility test, at least in the music-video domain.

In textual searches, complementary information
providing relevant products and services is often as-
sociated via a bidding process (e.g., sponsored links
on Web search sites such as Google.com). A similar
procedure could be adapted to mass-personalization
applications. Thus, content providers or advertisers
might bid for specific television segments. For exam-
ple, local theaters or DVD rental stores might bid on
audio from a movie trailer (see “Sponsored Links” in
the center right panels of Figure 2).

In many mass-media channels, textual information
(closed captioning) accompanies the audio stream.
In these cases, the closed captions provide keywords
useful for searching for related material. The search
results can be combined with a viewer’s personal pro-
file and preferences (ZIP code and ‘fashion’) in or-
der to display a web-page with textual information,
images and commercials automatically obtained from
web-pages or advertisement repositories using the ex-
tracted keywords. A method for implementing this
process is described by (Henzinger et al., 2003).

In the output of our prototype system, shown in the
top right panels of Figure 2, we hand labeled the con-
tent indices corresponding to an hour of footage that
was taped and replayed. This annotation provided
short summaries and associated URLs for the fash-
ion preferences of celebrities appearing on the TV
screen during the corresponding 5-second segment.
While we did this summarization manually within
our experiment, automatic summarization technolo-
gies (Kupiec et al., 1995) could be used to avoid man-
ual summarization, or bidding techniques described
above could be used in a production system to pro-
vide related ads.

2.2 Ad-hoc Peer Communities

As evidenced by the popularity of message boards re-
lating to TV shows and current events, people often
want to comment on the content of mass-media broad-
casts. However, it is difficult to know with whom to
chat during the actual broadcast. The second appli-
cation provides another venue for commentary, an ad
hoc social community.

This ad hoc community includes viewers watching
the same show on TV. We create this community from
the set of viewers whose audio statistics matched the
same content in our audio database. These viewers are
automatically linked by the social-application server.
Thus, a viewer who is watching the latest CNN head-
lines can chat, comment on, or read other people’s
responses to the ongoing broadcast. The group mem-
bers can be selected to contain only people in the
viewer’s social network (i.e., on-line friend commu-
nity) or to contain established experts on the topic.

Importantly, as the viewer’s viewing context
changes (by changing channels), the community is
automatically changed by resampling the ambient au-
dio. The viewer need never indicate what program
is being watched; this is particularly helpful for the
viewer who changes channels often, and is often not
aware of the exact show or channel that is currently
being viewed.

This application differs dramatically from the per-
sonalized information layers. This service provides a
commenting medium (chat room, message board, wiki
page or video link) where responses of other view-
ers that are currently watching the same channel can
be shared (see “ChaT.V.” in the center left panels of
Figure 2). Personalized information layers allow only
limited interaction by the viewer and are effectively
scripted prior to broadcast according to annotations or
auction results. In contrast, the content presented by
this application is created by an ongoing collaborative
(or combative!) efforts by the viewer and community
responses.

As an extension, these chat sessions also have an
interesting intersection with Personalized Information
Layers. Program-specific chat sessions can be re-
played synchronously with the program during reruns
of that content, giving the viewer of this later showing
access to the comments of previous viewers, with the
correct timing relative to the program content.

To enable this application, the social-application
server simply maintains a list of viewers currently
‘listening to’ similar audio, with further restrictions as
indicated by the viewer’s personal preferences. Alter-
nately, these personalized chat rooms can self assem-
ble by matching viewers with shared historical view-
ing preferences (e.g., daily viewings of ‘Star Trek’),
as is commonly done in “collaborative filtering” ap-
plications (Pennock et al., 2000).



2.3 Real-Time Popularity Ratings

Popularity ratings of broadcasting events are of inter-
est to viewers, broadcasters, and advertisers. These
needs are partially filled by measurement systems like
the Nielsen ratings. However, these ratings require
dedicated hardware installation and tedious cooper-
ation from the participating individuals. The third
application is aimed at providing ratings information
(similar to Nielsen’s systems) but with low latency,
easy adoption, and for presentation to the viewers as
well as the content providers. For example, a viewer
can instantaneously be provided with a real time pop-
ularity rating of which channels are being watched
by her social network or alternatively by people with
similar demographics (see ratings graphs in top left
panels of Figure 2).

Given the matching system described to this point,
the popularity ratings are easily derived by simply
maintaining counters on each of the shows being
monitored. The counters can be intersected with de-
mographic group data or geographic group data.

Having real-time, fine-grain ratings is more valu-
able than ratings achieved by the Nielsen system.
Real-time ratings can be used by viewers to “see
what’s hot” while it is still ongoing (for example, by
noticing an increased rating during the 2004 super-
bowl half-time). They can be used by advertisers and
content providers to dynamically adjust what mate-
rial is being shown to respond to drops in viewership.
This is especially true for ads: the unit length is short
and unpopular ads are easily replaced by other ver-
sions from the same campaign, in response to viewer
rating levels.

2.4 Video ‘Bookmarks’

Television broadcasters, such as CBS and NBC, are
starting to allow content to be (re-)viewed on demand,
for a fee, over other channels (e.g., iPoD video down-
loads or video streaming), allowing viewers to create
personalized libraries of their favorite broadcast con-
tent (Mann, 2005). The fourth application provides a
low-effort way to create these video libraries.

When a viewer sees a segment of interest, she sim-
ply presses a button on her client machine, to “book-
mark” that point in that broadcast. The current snip-
pet of the ambient audio is recorded, processed and
saved. This snippet provides a unique signature into
the program being watched. This bookmark can either
be used to retrieve the program for later viewing or to
mark that specific portion of the program as being of
interest. As with other bookmarks, the reference can
then be shared with friends or saved for future per-
sonal retrieval.

Figure 2 shows an example of the selection inter-
face under “My Video Library” at bottom of the sec-

ond screen shot. The red “record” button adds the
current program episode to her favorites library. Two
video bookmarks are shown as green “play” buttons,
with the program name and record date attached.

The program material associated with the book-
marks can be viewed-on-demand through a Web-
based streaming application, among other access
methods, according to the policies set by the content
owner. Depending on these policies, the streaming
service can provide free single-viewing playback, col-
lect payments as the agent for the content owners, or
insert advertisements that would provide payment to
the content owners.

3 Supporting Infrastructure

The four applications described in the previous sec-
tion share the same client-side and audio-database
components and differ only in what information
is collected and presented by the social-application
server. We describe these common components in
this section. We also provide a brief description of
how these were implemented in our test setup.

3.1 Client-interface setup

The client-side setup uses a laptop (or desktop) to
(1) sample the ambient audio, (2) irreversibly convert
short segments of that audio into distinctive and ro-
bust summary statistics, and (3) transmit these sum-
mary statistics in real-time to the audio database
server.

We used a version of the audio-fingerprinting soft-
ware created by (Ke et al., 2005) to provide these
conversions. The transmitted audio statistics also in-
clude a unique identifier for the client machine to
ensure that the correct content-to-client mapping is
made by the social-application server. The client soft-
ware continually records 5-second audio segments
and converts each snippet to 415 frames of 32-bit de-
scriptors, according to the method described in Sec-
tion 4. The descriptors, not the audio itself, are sent
to the audio server. By sending only summary statis-
tics, the viewer’s acoustic privacy is maintained: the
highly compressive many-to-one mapping from audio
to statistics is not invertible.

Although a variety of setups are possible, for our
experiments, we used an Apple iBook laptop as the
client computer and its built-in microphone for sam-
pling the viewer’s ambient audio.

3.2 Audio-database server setup

The audio-database server accepts audio statistics (as-
sociated with the client id) and compares those re-



ceived “fingerprints” to its database of recent broad-
cast media. It then sends the best-match information,
along with a match confidence and the client id, to the
social-application server.

In order to perform its function, the audio-database
server must have access to a database of broadcast au-
dio data. However, the actual audio stream does not
need to be stored. Instead, only the compressed rep-
resentation (the 32-bit descriptors) are stored. This
allows as much as a year of broadcast fingerprints to
be stored in less than 1 GB of memory.

The audio database was implemented on a single-
processor, 3.4GHz Pentium 4 workstation, with 3 GB
of memory. The audio-database server received a
query from the viewer each 5 seconds. As will be
described in Section 4, each 5-second query was in-
dependently matched against the database.

3.3 Social-application server setup

The final component is the social-application server.
The social-application server accepts web-browser
connections (associated with client computers). Us-
ing the content-match results provided by the audio-
database server, the social-application server collects
personalized content for each viewer and presents that
content using an open web browser on the client ma-
chine. This personalized content can include the ma-
terial presented earlier: ads, information layers, popu-
larity information, video “bookmarking” capabilities,
and links to broadcast-related chat rooms and ad-hoc
social communities.

For simplicity, in our experiments, the social-
application server was set up on the same worksta-
tion as the audio-database server. The social-app
server receives the viewer/content-index matching in-
formation, with the confidence score, from the audio-
database server as the audio-database server deter-
mines those matches. It maintains client-session-
specific state information, such as the current and pre-
vious match values and their confidence, the viewer
profile (if available), recently presented chat mes-
sages (to provide conversational context), and pre-
viously viewed content (to avoid repetition). With
this information, it dynamically creates web pages for
each client session, which include the personalized
information derived from the viewer profile (if avail-
able) and her audio-match content.

4 Audio Fingerprinting

For our system, the main challenge is accurately
matching an audio query to a large database of au-
dio snippets, in real-time and with low latency. High
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Figure 3: Audio (A) is con-
verted into a spectrogram (B).
The spectrogram frames (C)
are processed by 32 con-
trast filters and thresholded
to produce a 32-bit descriptor
(D). Contrast filters subtract
neighboring rectangular spec-
trogram regions (white re-
gions - black regions), and
can be calculated using the
integral-image technique.

accuracy requires discriminative audio representa-
tions that are resistant to the expected distortions
introduced by compression, broadcasting and client
recording. This paper adapts the music-identification
system proposed by (Ke et al., 2005) to handle TV
audio data and queries. Other audio identification
systems are also applicable (e.g., (Shazam Entertain-
ment, Inc., 2005)) but the system by (Ke et al., 2005)
has the advantage of being compact, efficient, and
non-proprietary (allowing reproduction of results).

The audio-identification system starts by decom-
posing each query snippet (e.g., five-seconds of
recorded audio) into overlapping frames, spaced
roughly 12 ms apart. Each frame is converted into
a highly discriminative 32-bit descriptor, specifically
trained to overcome typical audio noise and distor-
tion. These identifying statistics are sent to a server,
where they are matched to a database of statistics
taken from mass-media clips. The returned hits de-
fine the candidate list from the database. These candi-
dates are evaluated using a first-order hidden Markov
model, which provides high scores to candidate se-
quences that are temporally consistent with the query
snippet. If the consistency score is sufficiently high,
the database snippet is returned as a match. The next
two subsections provide a description of the main
components of the method.

4.1 Hashing Descriptors

(Ke et al., 2005) used a powerful machine learning
technique, called boosting, to find highly discrimi-
native, compact statistics for audio. Their procedure
trained on labeled pairs of positive examples (where� and � are noisy versions of the same audio) and
negative examples ( � and � are from different audio).
During this training phase, boosting uses the labeled
pairs to select a combination of 32 filters and thresh-
olds that jointly create a highly discriminative statis-
tic. The filters localize changes in the spectrogram
magnitude, using first- and second-order differences
across time and frequency (see Figure 3). One bene-
fit of using these simple difference filters is that they



can be calculated efficiently using the integral image
technique suggested by (Viola and Jones, 2002).

The outputs of these filters are thresholded, giving
a single bit per filter at each audio frame. These 32
threshold results form the only transmitted descrip-
tion of that frame of audio. This sparsity in encod-
ing ensures the privacy of the viewer to unauthorized
eavesdropping. Further, these 32-bit output statis-
tics are robust to the audio distortions in the train-
ing data, so that positive examples (matching frames)
have small hamming distances (distance measuring
differing number of bits) and negative examples (mis-
matched frames) have large hamming distances.

The 32-bit descriptor itself is used as a hash key for
direct hashing. The boosting procedure generates a
descriptor that is itself a well-balanced hash function.
Retrieval rates are further improved by querying not
only the query descriptor itself, but also a small set of
similar descriptors (up to a hamming distance of 2).

4.2 Within-query consistency

Once the query frames are individually matched to
the audio database, using the hashing procedure, the
potential matches are validated. Simply counting
the number of frame matches is inadequate, since a
database snippet might have many frames matched to
the query snippet but with completely wrong tempo-
ral structure.

To insure temporal consistency, each hit is viewed
as support for a match at a specific query-to-database
offset. For example, if the eighth descriptor ( ��� ) in
the 5-second, 415-frame-long ‘Seinfeld’ query snip-
pet, � , hits the 1008 � � database descriptor ( ���	�
� � ),
this supports a candidate match between the 5-second
query and frames 1001 through 1415 in the database.
Other matches mapping ��� to � �	���
�� � ( ������������� )
would support this same candidate match.

In addition to temporal consistency, we need to
account for frames when conversations temporarily
drown out the ambient audio. We model this inter-
ference as an exclusive switch between ambient audio
and interfering sounds. For each query frame � , there
is a hidden variable, ��� : if ��� �"! , the �#� � frame of
the query is modeled as interference only; if ���$�%� ,
the �#� � frame is modeled as from clean ambient au-
dio. Taking this extreme view (pure ambient or pure
interference) is justified by the extremely low preci-
sion with which each audio frame is represented (32
bits) and is softened by providing additional bit-flip
probabilities for each of the 32 positions of the frame
vector under each of the two hypotheses ( ���&�'! and���(�)� ). Finally, we model the between-frame tran-
sitions between ambient-only and interference-only
states as a hidden first-order Markov process, with
transition probabilities derived from training data.

We re-used the 66-parameter probability model given
by (Ke et al., 2005).

Our final model of the match probability between a
query vector, � , and an ambient-database vector at an
offset of * frames, �,+ , is:-/. �10 � +32 � 4 �657�98 � -/.	: �;�=< � +  �?>@0 � � 2 -/. � �A0 � �CB � 2
where

: �D�=< �,E > denotes the bit differences be-
tween the two 32-bit frame vectors ��� and �FE .
This model incorporates both the temporal consis-
tency constraint and the ambient/interference hidden
Markov model.

4.3 Post-match consistency filtering

People often talk with others while watching televi-
sion, resulting in sporadic but strong acoustic inter-
ference, especially when using laptop-based micro-
phones for sampling the ambient audio. Given that
most conversational utterances are two to three sec-
onds in duration (Buttery and Korhonen, 2005), a sim-
ple exchange might render a 5-second query unrecog-
nizable.

To handle these intermittent low-confidence mis-
matches, we use post-match filtering. We use a
continuous-time hidden Markov model of channel
switching with an expected dwell time (i.e., time be-
tween channel changes) of G seconds. The social-
application server indicates the highest-confidence
match within the recent past (along with its “dis-
counted” confidence) as part of the state information
associated with each client session. Using this in-
formation, the server selects either the content-index
match from the recent past or the current index match,
based on whichever has the higher confidence.

We use H � and I � to refer to the best match for
the previous time step (5 seconds ago) and its log-
likelihood confidence score. If we simply apply the
Markov model to this previous best match, without
taking another observation, then our expectation is
that the best match for the current time is that same
program sequence, just 5 seconds further along, and
our confidence in this expectation is I � JLK#M G whereK �N� seconds is the query timestep. This discount ofKOM G in the log likelihood corresponds to the Markov
model probability, P B,QSR�T , of not switching channels
during the K -length time step.

An alternative hypothesis is generated by the audio
match for the current query. We use UV� to refer to
the best match for the current audio snippet: that is,
the match that is generated by the audio fingerprinting
software. W � is the log-likelihood confidence score
given by the audio fingerprinting software.

If these two matches (the updated historical expec-
tation and the current snippet observation) give differ-



ent matches, we select the hypothesis with the higher
confidence score:X H"� < IY�[Z3�]\ X H � < I � J^K#M G 2 Z if I � J^K#M G > W �X U � < W � Z otherwise

where H � is the match that is used by the social-
application server for selecting related content andH"� and IY� are carried forward on the next time step
as H � and I � .
5 Evaluation of System Performance

In this section, we provide a quantitative evaluation
of our ambient-audio identification system. The first
set of experiments provide in-depth results with our
matching system. The second set of results provide an
overview of the performance of an integrated system
running in a live environment.

5.1 Empirical Evaluation

Here, we examine the performance of our audio-
matching system in detail. We ran a series of experi-
ments using 4 days of video footage. The footage was
captured from three days of one broadcast station and
one day from a different station. We jack-knifed this
data to provide disjoint query/database sets: whenever
we used a query to probe the database, we removed
the minute that contained that query audio from con-
sideration. In this way, we were able to test 4 days of
queries against 4 days (minus one minute) of data.

We hand labeled the 4 days of video, marking the
repeated material. This included most advertisements
(1348 minutes worth), but omitted the 12.5% of the
advertisements that were aired only once during this
four-day sample. The marked material also included
repeated programs (487 minutes worth), such as re-
peated news programs or repeated segments within a
program (e.g., repeated showings of the same footage
on a home-video rating program). We also marked as
repeats those segments within a single program (e.g.,
the movie “Treasure Island”) where the only sounds
were theme music and the repetitions were indistin-
guishable to a human listener, even if the visual track
was distinct. This typically occurred during the start
and end credits of movies or series programs and dur-
ing news programs which replayed sound bites with
different graphics.

We did not label as repeats: similar sounding mu-
sic that occurred in different programs (e.g., the sus-
pense music during “Harry Potter” and random soap
operas) or silence periods (e.g., between segments,
within some suspenseful scenes).

Table 1 shows our results from this experiment, un-
der “clean” acoustic conditions, using 5-second and

Table 1: Performance results on 4 days of 5-second and
10-second queries operating against 4 days of mass me-
dia. False-positive rate = FP/(TN+FP); False-negative
rate = FN/(TP+FN); Precision = TP/(TP+FP); Recall =
TP/(TP+FN).

Query quality / length
clean noisy

5 sec 10 sec 5 sec 10 sec
False-pos. rate 6.4% 4.7% 1.1% 2.7%
False-neg. rate 6.3% 6.0% 83% 10%
Precision 87% 90% 88% 94%
Recall 94% 94% 17% 90%

10-second query snippets. Under these “clean” con-
ditions, we jack-knifed the captured broadcast audio
without added interference. We found that most of the
false positive results on the 5-second snippets were
during silence periods, during suspense-setting music
(which tended to have sustained minor cords and little
other structure).

To examine the performance under noisy condi-
tions, we compare these results to those obtained
from audio that includes a competing conversation.
We used a 4.5-second dialog, taken from Kaplan’s
TOEFL material (Rymniak, 1997).1 We scaled this
dialog and mixed it into each query snippet. This re-
sulted in 1/2 and 5 1/2 seconds of each 5- and 10-
second query being uncorrupted by competing noise.
The perceived sound level of the interference was
roughly matched to that of the broadcast audio, giving
an interference peak amplitude four times larger than
the peak amplitude of the broadcast audio, due to the
richer acoustic structure of the broadcast audio.

The results reported in Table 1 under “noisy” show
similar performance levels to those observed in our
experiments reported in Section 5.2. The improve-
ment in precision (that is, the drop in false positive
rate from that seen under “clean” conditions) is a
result of the interfering sounds preventing incorrect
matches between silent portions of the broadcast au-
dio.

Due to the manner in which we constructed these
examples, longer query lengths correspond to more
sporadic discussion, since the competing discussion
is active about half the time, with short bursts corre-
sponding to each conversational exchange. It is this
type of sporadic discussion that we actually observed
in our “in-living-room” experiments (described in the
next section). Using these longer query lengths,
our recall rate returns to near the rate seen for the
interference-free version.

1 The dialog was: (woman’s voice) “Do you think I
could borrow ten dollars until Thursday?”, (man’s voice)
“Why not, it’s no big deal.”.



5.2 “In-Living-Room” Experiments

Television viewing generally occurs in one of three
distinct physical configurations: remote viewing, solo
seated viewing, and partnered seated viewing. We
used the system described in Section 3 in a complete
end-to-end matching system within a “real” living-
space environment, using a partnered seated config-
uration. We chose this configuration since it is the
most challenging, acoustically.

Remote viewing generally occurs from a distance
(e.g., from the other side of a kitchen counter), while
completing other tasks. In this cases, we expect
the ambient audio to be sampled by a desktop com-
puter placed somewhere in the same room as the tele-
vision. The viewer is away from the microphone,
making the noise she generates less problematic for
the audio identification system. She is distracted
(e.g., by preparing dinner), making errors in match-
ing less problematic. Finally, she is less likely to be
actively channel surfing, making historical matches
more likely to be valid.

In contrast with remote viewing, during seated
viewing, we expect the ambient audio to be sampled
by an laptop, held in the viewer’s lap. Further, dur-
ing partnered, seated viewing, the viewer is likely to
talk with her viewing partner, very close to the sam-
pling microphone. Nearby, structured interference
(e.g., voices) is more difficult to overcome than re-
mote spectrally flat interference (e.g., oven-fan noise).
This makes the partnered seated viewing, with sam-
pling done by laptop, the most acoustically challeng-
ing and, therefore, the configuration that we chose for
our tests.

To allow repeated testing of the system, we
recorded approximately one hour of broadcast
footage onto VHS tape prior to running the experi-
ment. This tape was then replayed and the resulting
ambient audio was sampled by a client machine (the
Apple iBook laptop mentioned in Section 3.1).

The processed data was then sent to our audio
server for matching. For the test described in this
section, the audio-server was loaded with the descrip-
tors from 24 hours of broadcast footage, including the
one hour recorded to VCR tape. With this size audio
database, the matching of each 5-second query snip-
pet took consistently less than 1/4 second, even with-
out statistical sampling (e.g.RANSAC (Fischler and
Bolles, 1981)).

During this experiment, the laptop was held on the
lap of one of the viewers. We ran five tests of five min-
utes each, one for each of 2-foot increase in distance
from the television set, from two- to ten-feet. During
these tests, the viewer holding the iBook laptop and
a nearby viewer conversed sporadically. In all cases,
these conversations started 1/2 to 1 minute after the
start of the test. The laptop-television distance and

Table 2: Match results
on 30 minutes of in-living
room data after filtering
using the channel surfing
model. The incorrect label
rate before filtering was
80%.

Surf Dwell Incorrect
Time (sec) labels

1.25 0%
1.00 22%
0.75 22%
0.50 14%
0.25 18%

the sporadic conversation resulted in recordings with
acoustic interference louder than the television audio
whenever either viewer spoke.

The interference created by the competing conver-
sation, resulted in incorrect best matches with low
confidence scores for up to 80% of the matches, de-
pending on the conversational pattern. However, we
avoided presenting the unrelated content that would
have been selected by these random associations, by
using the simple model of channel watching/surfing
behavior described in Section 4.2 with an expected
dwell time (time between channel changes) of 2 sec-
onds. This consistent improvement was due to cor-
rect and strong matches, made before the start of the
conversation: these matches correctly carried forward
through the remainder of the 5 minute experiment. No
incorrect information or chat associations were visi-
ble to the viewer: our presentation was 100% correct.

We informally compared the viewer experience
using the post-match filtering corresponding to the
channel-surfing model to that of longer (10-second)
query lengths, which did not require the post-
match filtering. The channel-surfing model gave the
more consistent performance, avoiding the occasional
“flashing” between contexts that was sometimes seen
with the unfiltered, longer-query lengths.

To further test the post-match surfing model, we
took a single recording of 30 minutes at a distance
of 8 feet, using the same physical and conversational
set-up as described above. On this experiment, 80%
of the direct matching scores were incorrect, prior
to post-match filtering. Table 2 shows the results
of varying the expected dwell time within the chan-
nel surfing model on this data. The results are non-
monotonic in the dwell time due to the non-linearity
in the filtering process: for example, between G_�`��a !
and !1acb9� , an incorrect match overshadows a later,
weaker correct match, making for a long incorrect run
of labels but, at GV�d!�a � , the range of influence of that
incorrect match is reduced and the later, weaker cor-
rect match shortens the incorrect run length.

Post-match filtering introduces one to five seconds
of latency in the reaction time to channel changes
during casual conversation. However, the effects of
this latency are usually mitigated because a viewer’s
attention typically is not directed at the web-server-
provided information during channel changes; rather,
it is typically focused on the newly selected TV chan-



nel, making these delays largely transparent to the
viewer.

These experiments validate the use of the audio fin-
gerprinting method developed by (Ke et al., 2005) for
audio associated with television. The precision lev-
els are lower than for the music retrieval application
that they have described since broadcast television is
not providing the type of distinctive sound experience
that most music strives for. Nevertheless, the recall
characteristic are sufficient for using this method in a
living room environment.

6 Discussion

The proposed applications rely on personalizing
the mass-media experience by matching ambient-
audio statistics. The applications provide the viewer
with personalized layers of information, new avenues
for social interaction, real time indications on show
popularity and the ability to maintain a library of the
favorite content through a virtual recording service.
These personalization applications can be modified in
order to provide the degree of privacy each viewer
feels comfortable with. Similarly, the applications
can vary according to viewer-specific technical con-
straints, such as bandwidth and CPU time.

The paper emphasizes two contributions. The first
is that audio fingerprinting can provide a feasible
method for identifying which mass-media content is
experienced by viewers. Several audio fingerprint-
ing techniques might be used for achieving this goal,
the proposed framework adapted the system proposed
by (Ke et al., 2005). Once the link between the viewer
and the mass-media content is made, the second con-
tribution follows, by completing the mass media ex-
perience with personalized Web content and commu-
nities. These two contributions work jointly in pro-
viding both simplicity and personalization in the pro-
posed applications.

The proposed applications were described using a
setup of ambient audio originating from a TV and en-
coded by a nearby personal computer. As compu-
tational capacities proliferate to portable appliances,
like cellphones and PDAs, the fingerprinting process
could naturally be carried out on such platforms. For
example, SMS responses of a cellphone based com-
munity watching the same show can be one such im-
plementation. In addition, the mass-media content
can originate from other sources like radio, movies
or in scenarios where viewers share a location with a
common auditory background (e.g., an airport termi-
nal, party, or music concert).
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