
Treinin Lab
Worm Movement Analyzer

Table of Contents
1. Installation and Setup ... 2

System Requirements ... 2
2. Running an Analysis... 3

Inputs ... 3
Parameters .. 3

Executing the Program ... 6
3. Reading the Output of the Analysis .. 7

The wxs.txt File .. 7
The wxo.txt File ... 9

The wxd.txt File ... 12
The spd.txt File... 12

The dsp.txt File... 13
The ang.txt File .. 13

The track.bmp File ... 13
The wave.bmp File ... 15

4. Development .. 17

2011/02/11 0.01 Basic functionality: reading movie, binarization, skeleton, head-

tail identification, motion analysis, all based on using OpenCV

2011/02/20 0.02 Skip loops and don‟t crash

2011/03/22 0.03 Add begin mark in track; calculate displacements differently

2011/09/18 0.04 Improve loop handling, improve skeleton detection at ends, add

initial eggs identification

2011/10/26 0.05 Assume separate mmpix for stage to get both metrics and track

right (workaround for possible bug in tracker data)

2011/11/01 0.06 Fix bugs with movement segments and resulting displacement and

speed calculations

2011/11/28 0.07 Add measurement of angle on large segments, frequency, and

option to avoid edge detection. Add scale on wave output. Scale

track to fframe to lframe segment only.

1. Installation and Setup

To install the software you only need to copy the executable.

Note that the software itself is only a small part of the disk space that you will use. There

are also the movies and the results of the analysis. It may therefore be advisable to use a

separate disk or partition for this project. In this manual we‟ll assume this is disk D.

Alternatively, you can just use a folder such as C:\worms. The only restriction is that

there can be no spaces anywhere in the folders or file names. In other words, a folder

under My Documents is out.

It is suggested to create two folders:

 D:\movies

 D:\analysis

Copy the installation files into D:\analysis. This includes the following:

 The executable, which is called TLWMA.exe. This is the only file that is really

required.

 A sample parameters file, called params.txt. This is provided as an example that you

can edit for your needs. Alternatively, you can create one from scratch.

 This user manual.

Copy the movies you want to analyze (and the associated stage movement data files) into

D:\movies.

System Requirements

This software was developed for a PC running Windows XP.

The movies and analysis require lots of memory. In our setup, a 1 minute movie

occupies about 25 MB of disk space. The output files also require several MB.

It is recommended to run this program on a system with plenty of RAM, say 1 GB or

more.

2. Running an Analysis

Inputs

The analysis requires three input files:

 A parameters file as specified below. Among other things, it tells the program where

to find the two files specified next. The parameters file must be located in the same

folder as the executable.

 The movie to be analyzed. This must be an AVI file with suffix “.avi”. The codec

used must be supported by the system; in our system this was MJPG.

 A data file describing the movements of the stage as it follows the worm. This should

have the same name as the movie itself, but with a suffix of “.log.csv”. The format of

this file is comma-separated values. The first line gives the headers of the different

columns. In subsequent lines there are 5 fields separated by commas, providing the

following data:

1. Timestamp (min:sec or date and hr:min:sec)

2. Media time (min:sec or hr:min:sec), i.e. the same timestamps but starting from 0

3. The word “STAGE”

4. X coordinate in microns

5. Y coordinate in microns

Seconds and microns are given as decimal values.

Parameters

Analysis parameters are given in the parameters file. This file is called params.txt. It

must be located in the same folder where the program is being run.

The format of the parameters file is a sequence of lines, where each line has the format

name = value

lines starting with „#‟ are comments and ignored.

At the end of the analysis, the parameters used are saved in a file together with the results

files. This is in the same format as the original parameters file, and can be used as input

to repeat the analysis. However, some parameter values may be overwritten with actual

computed values (e.g. lframe will be the actual last frame analyzed).

Most analysis parameters have reasonable defaults. Using an empty parameter (that is,

not providing the value) is equivalent to not specifying the parameter at all, and the

default will be used. Unrecognized parameters (including spelling errors) are simply

ignored.

Parameters for specifying the input movie are:

 moviedir: [Required] directory in which movie(s) are located. May not include

spaces. String.

 moviename: [Required] movie file to analyze, without suffix (for example, if the

movie name is n2_2010_06_01__08_21_38__1.avi, this parameter should be

n2_2010_06_01__08_21_38__1). May not include spaces. String.

 fframe: [0] first frame to analyze. Integer.

 lframe: [0] last frame to analyze. If 0, analyze till end of movie. Integer.

fframe and lframe are used to analyze the movie in parts, or to stop the analysis in

time if the worm is known to crawl out of the frame (which makes the program

crash).

 ignorefrm: frames that should be ignored in the analysis. Use this to redo an

analysis that failed on some frames. For a single frame, just give its number. For a

sequence of frames, use the format from-to (inclusive). This parameter may be

repeated as many times as needed, and all the specified frames will be ignored. If

multiple frames are specified, they should be given in the correct order with no

repetitions.

 mmpix: [Required] magnification used in recording the movie, expressed as pixels

per millimeter. This parameter is extremely important in order to measure distances

and speeds correctly. To obtain it, create a short movie of a ruler in the same

magnification as used to record moving worms. Do not change the magnification.

Integer.

 frmps: [-1] frame rate to use. If specified, this overrides the data in the movie.

Should not be used unless the movie data is clearly wrong, as it affects all speed

calculations. Default (-1) is to use data from the movie. Floating point.

Parameters affecting the analysis are:

 smooth: [4] smoothing factor when creating a histogram of grey levels to find a

suitable threshold. Should be an integer that divides 256, e.g. 1 (=use all gray levels

without smoothing), 2, 4, or 8. Integer.

 thresh: [-1] the threshold to use in binarization. This overrides the calculation using

the histogram; leave empty or use -1 to use the histogram-based threshold. Integer.

 useedges: [1] use edge detection as part of the binarization. This usually helps

identify the worm better, especially in the head region that sometimes has very light

areas. However, it may cause problems in movies where the worm leaves very

pronounced tracks, because these tracks may be identified as part of the worm. If this

happens and many frames are flaged as bad, try turning edge detection off by setting

this parameter to 0. Boolean.

 track: [stage] given that the camera is set up on a moving stage, we need to know its

location in each frame to calculate movement correctly. Regrettably, the provided

data is not completely reliable. Therefore two options are given. One is to use the

stage data anyway, indicated by a value of stage. The other is to calculate the

correlation between pairs of successive frames, and try to find the displacement that

gives the best correlation. This is indicated by a value of corr. Experience indicates it

is not really better, but is a lot slower. String.

 stageskip: [1] as the timestamps associated with stage movement may be

inaccurate, it is possible to skip several frames before and after each indicated

movement. Skipping like this avoids bogus movements that are a result of the stage

moving in one frame, but we think it moved in another frame. This parameter

specified how many to skip. Integer.

 mmpixstage: [-1] empirically it seems that the data about stage movement is off by

a factor of 2. In order to avoid hardcoding a correction for this, this parameter allows

you to define a separate mmpix value for use in tracking the movement. If it is -1 (or

just left undefined) then the regular mmpix is used. Integer.

 seglen: [0.5] the motion analysis is based on dividing the movie into short segments,

and analyzing the motion in each such segment. Later, successive segments with

consistent motion are united into longer segments. seglen is the length in seconds of

the basic short segments. This is also used for smoothed speed measurements.

Floating point.

 pausespdlim: [0.05] one of the motion types identified is a pause, where the worm

does not move. This parameter sets the pause speed limit: if the motion is slower, it

will be considered a pause. The units are millimeter per second. Correct calculation

of the speed depends on correct setting of the mmpix parameter. Floating point.

 displen: [0.5] displacement measurements are done over a certain interval. This is

that interval, in seconds. Floating point.

 anglen: [10] track angle measurements are done over a certain interval. This is half

of that interval, in seconds (the angle at a point is the angle between lines connecting

it to points that are a half-interval in either direction). Floating point.

 minloopradius: [0.02] minimum loop radius in mm, and reflects the flexibility of the

worm. If the value is too big then small loops won‟t be recognized, and if it is too

small then gloss might be recognized by mistake as a loop.

Parameters affecting the output are:

 outdir: [Required] directory in which output files will be stored. Actually a

subdirectory named after the movie will be created, and all the output files will be

stored there. May not include spaces. String.

 shade: [0.2] level of shading to add to tracking image, for each frame of the movie.

Floating point.

 star: [0] if 1, put a star „*‟ to mark the starting position in the track image and an „x‟

to mark the ending position. Boolean.

 maxskellen: [350] maximum skeleton length in pixels. This is used to set the Y

dimension of the wave image. Integer.

 distbox [0]: if 1, create data for boxplots to show distributions of metrics. 0 means

to create percentiles. Boolean.

 emptyrows [0]: if 1 include empty rows to indicate that data about certain

movement types (backwards, omega) is missing, because there was no such

movement. The default is not to show such rows with no data, but including them

may be helpful if the data is loaded into a spreadsheet. Boolean.

 eggs:[0] if 1, finds eggs that were laid, marks them with circles on the track image,

and generates an output file listing them. Works only if the stage movements are

reported correctly. Boolean.

Parameters useful for debugging are:

 screenop: [0] if set to 1, details of the analysis will be displayed on screen during

execution. 0 means not to show such details. Boolean.

 debugimg: [0] show images of binarization, skeleton, and head-identification at

runtime.

Executing the Program

To execute the program, simply double-click on its icon. This will cause a console

window to open – a small black window where the program displays text output during

its execution.

The program will read the parameters file, and start analyzing the movie. Note that the

parameters file must reside in the directory (folder) where you run the program.

As the program runs, it will first print the name of the movie it is analyzing:

 Analyzing D:\movies\n2_2010_06_01__08_21_38__1.avi

Then, after a short pause, it will print the number of each frame it is working on:

 #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 …

If the screenop parameter is set, more data will be printed out.

If the debugimg option is set, the movie will be shown at a reduced size such that all

movements can be accommodated within the frame. Thus if the worm moves large

distances the original frames will be reduced a lot, but if it only moves a bit the reduction

will be mild. Importantly, when the stage moves you should see the background jump,

but the worm should stay more or less in the same place. If the worm jumps back and

forth, consider increasing stageskip. Another window with the current frame,

binarization, and skeleton will also be shown.

When the program finishes reading the movie, you need to close the output images to

allow it to finish the analysis.

3. Reading the Output of the Analysis

The output of the analysis is contained in several text files and some picture files. All

these files are located in the results folder named after the movie, under the outdir

folder. In our example this would be

 D:\analysis\n2_2010_06_01__08_21_38__1\

All output file names are also prefixed with the movie name. This enables them to later

be copied elsewhere without losing their identity or clobbering each other. For example,

you can copy all the wave.bmp files to a single folder and still know which belongs to

which movie.

The files are

 params.txt – a copy of the parameters used in the analysis, for the record. This file

can also be used as the parameters file for a new analysis, to check that the results are

reproduced.

 wxs.txt – output concerning worm movement metrics, as described below.

 wxo.txt – output concerning worm shape metrics, as described below.

 wxd.txt – a dump of the raw data used to create wxo.txt.

 spd.txt – output giving the speed in each frame.

 dsp.txt – output giving displacement in successive segments of length displen.

 ang.txt – output giving angles in successive segments of length anglen.

 eggs.txt – output listing of eggs that were found, if the eggs parameter was set.

 track.bmp – a picture of the worm‟s track throughout the movie, as described below.

 wave.bmp – a picture mapping the worm‟s curvature over time, as described below.

 skel.csv – a record of the skeleton points found in each frame of the movie. This

enables further analysis of the movement and posture without repeating all the image-

processing part of the analysis. The format is a line for each point, with the X and Y

coordinates separated by a comma.

The wxs.txt File

This file contains data about the worm‟s movement throughput the movie.

The first part of the file is a listing of the movement segments identified in the movie. As

explained above, the program works by first dividing the movie into short segments of

length seglen seconds (this is a parameter; the default is 0.5). It then classifies these

segments into five types:

 Forward movement. This is identified by computing the distance from the worm‟s

midpoint to its head in the first frame, and comparing it with the distance from the

worm‟s midpoint in the last frame to the head in the first frame. If the midpoint

moved towards the head, this is forward movement.

 Backward movement: if the midpoint moved away from the head.

 Pause. This is defined as movement slower than pausespdlim, which is a

parameter (default of 0.05 mm/sec). Note that movement is measured at the

midpoint. Thus the head can perform foraging movements but the segment will still

be classified as a pause. This can be verified by looking at the midpoint of the

skeleton, which is specially marked in the output frames.

 Omega. This label is used if three shape-related conditions are met:

o There are only two cutpoints, i.e. the worm‟s skeleton does not intersect the

straight line from its head to its tail, and

o Its amplitude (the maximal distance from the head-tail line to any point on the

skeleton) is at least 33% of the skeleton length, and

o The average distance of skeleton points from the head-tail line is at least half the

maximal amplitude.

Note that “omega” is contagious – if any frame in the segment is an omega, the

whole segment is classified as omega.

 Loop. This is used when the skeleton is misformed and doubles on to itself. “Loop” is

even more contagious than omega; it spreads to any adjacent frames that are

“inconsistent”, meaning that their skeleton length varies by more than 9% from the

median. All of them are considered a single segment.

After labeling the short segments, the program attempts to unify adjacent segments into

longer segments. This is done according to the following rules:

 Adjacent movement segments are unified if they are both in the same direction (that

is, both are forward or both are backward).

 Adjacent pause segments are unified.

 Adjacent omega segments are unified.

After the list of movement segments some statistics of the movement are given (average

forward speed, average backward speed, percent time moving forward, moving

backward, or pausing, etc.). These are self explanatory.

The last metric listed is the roam ratio (or, rather, a better name may be the dwell ratio).

This attempts to quantify the degree to which the worm moved consistently in the same

direction and covered some distance, as opposed to moving back and forth in the same

area or pausing a lot. It is calculated by the following formula:

 roam_ratio = 1 –

where

 end_to_end_dist is the distance along a straight line from the midpoint in the first

frame of the movie to the midpoint in the last frame of the movie.

 accum_dist is the cumulative distance covered in all the movement segments in the

movie (that is, in all segments of length seglen, including those labeled as a pause,

before adjacent similar segments are unified). The distance in each segment is

measured along a straight line from the skeleton midpoint in the first frame of the

segment to the skeleton midpoint in the last frame of the segment, and these are

summed to get the cumulative distance.

end_to_end_dist

accum_dist

Thus if the end_to_end_dist is very small relative to the accum_dist, meaning that the

worm moved a lot but essentially stayed in the same place, the roam_ratio will be close to

1. If the worm moved consistently and managed to cover considerable distance, the

end_to_end_dist will be close to the accum_dist, and the roam_ratio will be low. Thus the

roam ratio actually measures the degree to which the worm tends to dwell in the same

place. However, it will never reach 0 because accum_dist accounts for the sinusoidal

pattern of the midpoint‟s movement to some degree, and will always be bigger than the

end_to_end_dist. Somewhat counterintuitively, the roam ratio will also be low for

worms that hardly move at all, because then both the end_to_end_dist and the accum_dist

are small.

Note that the roam ratio depends on the movie length, and it is dangerous to compare

roam ratios from movies with different lengths (which reflect movements for different

durations).

The wxo.txt File

This file contains data about the worm‟s shape and how it changed throughout the movie.

A slew of metrics are evaluated. Each is measured separately for the different types of

movement (moving forward, moving backward, pausing, or looping to form an omega

shape) that were defined above, and also for the whole movie together. Movement is

measured at the worm‟s midpoint, so foraging movements of the head do not count.

Pauses are defined to be movement of up to pausespdlim mm/sec, which is a definable

parameter, as measured over a duration of seglen (another parameter).

For each metric/movement combination, the program calculates the average of the metric

over those segments of the movie that exhibit this type of movement. It also

characterizes the distribution of metric values, by providing either data for a boxplot or

deciles. If the parameter distbox is set, the data provided will include the minimum

value, the 5
th
, 25

th
, 50

th
, 75

th
, and 95

th
 percentiles, and the maximum. Otherwise deciles

will be given, meaning the minimum value, the 10
th
, 20

th
, 30

th
, 40

th
, …, 90

th
 percentiles,

and the maximum.

The metrics are the following.

numsklpts is the number of pixels in the skeleton. It thus depends on the resolution of

the movie.

len is the length of the worm in pixels. The difference from numsklpts is that len takes

into account the actual distances involved, and doesn‟t just count pixels (pixels along a

diagonal represent a larger distance than pixels along a horizontal line). It is calculated as

follows:

 Divide the skeleton into 20 parts with the same number of pixels in each.

 Calculate the length of each part as the distance from the first pixel to the last one,

using Pythagoras‟s theorem, and sum these distances

 If any pixels were left over in the first step, add this number of pixels.

cutpnums is the number of cutpoints. This is the number of times the worm‟s skeleton

cuts a straight line from its nose to its tail, including the end points. As pixels are

discrete, “cuts” means a distance of less than a pixel. A sequence of 3 or more skeleton

points at a distance of more than 1.4 pixels is required between successive cutpoints.

avgamp is the average amplitude, in pixels. This is the average distance of the points on

the skeleton from the straight line connecting the nose to the tail.

ampsym is a metric for symmetry that is related to avgamp. It is the average of the

signed amplitudes of skeleton points, i.e. their distances from the straight line connecting

the head to the tail where a distance to one side of this line is considered positive and a

distance to the other side negative. A value near 0 implies symmetry.

maxampL and maxampR are the maximal amplitudes to the left and to the right. This is

the maximal distance of any point on the skeleton from the straight line connecting the

nose to the tail. “Left” and “right” are relative to the direction from the nose towards the

tail.

Navgamp is the average amplitude as above, divided by the skeleton length (len).

NmaxampL and NmaxampR are the maximal amplitudes to the left and to the right as

above, divided by the skeleton length (len).

avgangle is the average angle, which is a measure of the curvature along the worm.

Angles are measured from the head towards the tail, and are in the range of ±180°,

indicating an inclination to the left (positive) or to the right (negative).

Angles are measured by defining a step size that is one twelfth of the skeleton length (in

pixels). Consider three skeleton points a, b, and c, that are one step apart. The angle at

point b is the angle between the line from a to b and the line from b to c. Thus if the

worm is completely straight, the angle will be 0.

The average angle is the average of the absolute value of the angle as measured for all

skeleton points (except near the ends). Due to using the absolute value, positive and

negative angles (inclination to left or right) do not cancel out.

anglesym is another metric symmetry, this time related to avgangle. It is based on

averaging the actual values, which may be positive or negative depending on whether the

worm tends to the left or the right at each point. Thus a value near 0 implies symmetry.

If the worm does an omega-like shape all the angles will be in the same direction, leading

to a large (positive or negative) value.

maxangL and maxangR are the maximal positive and negative angles, respectively.

area is the number of pixels covered by the worm.

thickness is the average “width” of the worm in pixels: it is the area divided by the

length of the skeleton (len). Both these metrics depend on the resolution.

wavelen is the wavelength of the worm‟s shape, measured in pixels. It is only calculated

in frames where the shape is roughly sinusoidal; if not, it is given as an undefined value.

To determine the shape, the program divides the skeleton into two parts at the midpoint.

It then looks for the maximal and minimal curvature angle in both parts. If there are two

such maxima or two such minima, they are considered as extremum points of the

waveform and the distance between them is the wavelength.

Nwavelen – a normalized version of the wavelength, i.e. wavelen / len.

freq – frequency of worm undulations. This is calculated as the speed of propagation

divided by the wavelength, so is undefined if the wavelength was undefined. Speed is

calculated based on the movement of the center of mass of the binary silhouette of the

worm from the previous frame to this one. The whole thing is only done for frames that

are consistent.

disp is the displacement, in pixel units, of the midpoint, over a time of dispLen seconds.

Unlike other parameters, this is not measured for every frame, but rather once at the

beginning of each such time interval.

straightfs is an attempt to quantify how straight the worm is. It is a normalized metric in

the range [0..1], with values above 0.9 indicating that the worm is “straight”.

The original metric was calculated as 1-(stamp
2
 + stang

2
), where stamp = max(0.707,

1.5*maxamp), and stang = max(0.707, avgangle/40). The limit to 0.707 is designed to

limit each term to ½ when squared, so that their sum will be limited to 1.

Currently this metric is calculated in a simpler manner, which divides the distance from

the nose to the tail by the actual length of the worm (len). A value near 1 thus indicates

straightness, whereas a value near 0 indicates a loop.

sinusfs is an attempt to quantify how “sinus-like” the worm is, but actually it is more of a

metric of symmetry. It is also normalized to [0..1], with values above 0.8 considered

“sinus like”. It uses the symmetry metrics defined above, with the notion that symmetry

implies sinusoidal shape. It is calculated as 1-(sinamp
2
 + sinang

2
)/2, where sinamp =

ampsym / avgamp, and sinang = anglesym / avgangle. Thus if the amplitudes and

angles tend to cancel out, we will get a value near 1. If they do not, the value will be low.

The wxd.txt File

This file contains a dump of all the above data fields for every frame of the movie. The

fields are separated by commas. This may be useful for further analysis.

The spd.txt File

This file provides data about the momentary speed of the worm in each frame. Positive

values indicate forward movement, and negative values indicate backwards movement.

The classification of movement segments is also indicated.

Two values are given for each frame. The first is the speed as calculated between this

frame and the previous frame. The second is the speed as calculated between this frame

and the frame seglen time ago (for example, for movies captured at 10 frames per

second, and a parameter seglen of 0.5 seconds, this would be 5 frames back). In either

case, the speed is calculated as the distance traveled by the midpoint divided by the time

span. The units are millimeter per second, and depend on correct setting of the mmpix

parameter.

The data is tab-delimited. It can be loaded into Excel and plotted (or plotted using some

other program). A typical output is as follows:

-1.5

-1

-0.5

0

0.5

1

0 100 200 300 400 500 600

frame

s
p

e
e
d

 [
m

m
/s

]

per frame

per 0.5 sec (5 frames)

The dsp.txt File

This file provides data about the worm‟s displacement in adjacent, non-overlapping

segments of duration displen seconds. Each line has two values: the frame number and

the displacement from the previous one. The units are mm.

Displacements are only calculated between consistent frames. If the desired one or the

one displen away are inconsistent, the following frames are used. If a duration of

displen/2 is scanned and consistent frames are not found, this point is skipped. Thus

given data is never more than displen/2 away from the specified points.

The ang.txt File

This file provides data about the worm track large-scale curvature, to enable the

identification and quantification of situations where the worm seems to be moving

consistently in large circles. Given three points on the track that are anglen apart, the

value given is the angle between the continuation of the first segment and the second

segment. Like displacements, this is calculated once per anglen interval.

In more detail, the calculation issubject to the following:

1. The frames at the three points must be consistent and not ignored.

2. The distances between them must be at least 0.9 anglen.

3. The average speed in each of the two segments must be above the pausespdlim

threshold. This average is calculated as the end-to-end distance traveled in the

segment divided by its exact duration. Thus angles are not calculated during pauses.

The track.bmp File

This picture gives a visual summary of the worm‟s movement throughput the movie (or

rather, in the segment defined by fframe and lframe). A typical picture (of a worm that

mostly moved back and forth in the same place) looks like this:

The shading shows the worm‟s movements. Areas where the worm paused for a long

time, or visited repeatedly, will have a darker shading. Areas that were only passed

through once will have a light shading.

The degree of shading is controlled by the shade parameter. If the worm moves all the

time the default value might be too low, and you might want to raise it to make the track

darker. If it stays in the same area the track might become saturated, and you might need

to reduce the shading so as not to lose detail.

Another example, where the worm moved quite a lot, looks like the following. Note that

the scale is much smaller in order to accommodate all the movement:

If the star parameter is set to 1, an asterisk will mark the beginning of the track, and an x

will mark its end. This is useful then the worm moves a large distance. If eggs is set, a

circle will mark the location of each egg that was identified.

The scale bar shows one millimeter. Its accuracy depends on the mmpix parameter.

The wave.bmp File

This picture gives a visual summary of the worm‟s curvature throughout the movie.

The X axis is the frame number – one pixel for each frame. To help keep track, a black

line is drawn every 100 frames (pixels), and an indication is given every minute.

The Y axis represents the worm‟s skeleton points. It is governed by the input parameter

maxskellen, which should be adjusted if different magnifications are used. The

midpoint is centered to the middle of the Y axis. If you don‟t get a gray boundary at the

top and bottom, increase maxskellen. If the boundary is too wide, decrease it.

The gray level represents the curvature, with light shades signifying positive angles (to

the left), and dark shades signifying negative angles (to the right). They are normalized to

use the full range of gray values from the middle level (meaning angle near 0) to the

maximal angle that was measured in the movie.

If the worm moves with a regular sinusoidal movement, we will get relatively straight

diagonal lines with alternative light and dark shading. The vertical distance between

adjacent lines is the wavelength, and the horizontal distance correlates with speed. The

angle of the lines represents direction of body-bend propagation; thus if the worm moves

back and forth we get a zig-zag pattern.

If the worm shape and movement are irregular, we will get a much messier picture.

pause forward backwards forward

4. Development
This program is developed under Microsoft Visual Studio 2008 in Visual C++. It uses the

OpenCV library of image processing functions from Intel.

To set up the development environment, the following steps were taken:

1. Download and install OpenCV version 2.1.

The download file was OpenCV-2.1.0-win32-vs2008.exe.

When run, it installs OpenCV in C:\OpenCV2.1.

2. in Microsoft Visual Studio, create a new project of type “Win32 Condole

Application”.

The project name used was TLWMA.

3. In the Tools menu, open the Options item (near the bottom) and navigate to

Projects and Solutions → VC++ Directories

In the “Show directories for” selection box on the right, select Include files.

Add the following line to the list:

C:\OpenCV2.1\include\opencv

In the “Show directories for” selection box on the right, now select Library files.

Add the following line to the list:

C:\OpenCV2.1\lib

4. In the project menu, open the TLWMA Properties item (located at the bottom), and

navigate to Configuration Properties → Linker → Input

In the Additional Dependencies field, make the entry

"cv210.lib" "cxcore210.lib" "highgui210.lib"

