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Preface

In 1994 I wrote a long survey about parallel job scheduling [229]. This work described
and classified the scheduling schemes of 76 systems, as well as many others that were
proposed but never implemented, backed by 638 references. In retrospect, one of the
things that struck me was that practically any paper that proposed a new scheme also
proved it to be better than competing schemes. Upon reflection, my conclusion was
that the source of the problem was in different assumptions and mindsets, including
about the properties of the workloads that would run on these systems. The operational
conclusion was that it may be more important to understand the workloads than to design
new scheduling schemes.

At about the same time, in work on parallel I/O, I was exposed to the Charisma I/O
traces collected by David Kotz and Nils Nieuwejaar [517]. Among the voluminous data
on I/O operations were a few records about the jobs to which they belonged. This led to
an interaction with Bill Nitzberg who provided me with data regarding three months of
jobs from the NASA Ames iPSC/860 system, and to the publication of the first analysis
of such a workload log [244]. Several years later, this log became one of the first to be
included in the Parallel Workloads Archive [534]. This archive has been instrumental in
facilitating research based on real data rather than on baseless assumptions.

Fast forward to 2014. It is now widely accepted that workload characterization and
workload modeling are very important for reliable performance evaluations of computer
systems. If the workload is wrong, the results will be wrong too — not in the mathemat-
ical sense, but in the sense that they will not apply to the situation at hand. Regrettably,
workloads are sometimes (and maybe often) still treated as an afterthought, despite a lot
of work that has been done on this topic.

At least part of the problem is that there is a gap between what is studied in ba-
sic probability and statistics courses and what needs to be used in workload modeling
and performance evaluation. In particular, topics such as heavy-tailed distributions and
self-similarity are advanced statistical concepts that are not covered in basic courses. To
make matters worse, books and research papers on these topics tend to start at a level of
mathematical sophistication that is beyond that achieved in basic probability and statis-
tics courses. This makes much of the relevant material inaccessible to many practitioners
who want to use the ideas, but not spend a lot of time studying all the underlying theory.

One goal of this book is to fill this gap. Specifically, I attempt to make definitions

ix



x

and techniques accessible to practitioners by emphasizing the intuition behind them. Al-
though math is used to avoid misunderstandings and explain derivations, this is typically
done at a rather elementary level, forgoing mathematical rigor in the interest of making
the material more understandable. The book does assume a basic working knowledge of
probability, but beyond that it provides a relatively detailed discussion that does not as-
sume the reader can fill in the details. Moreover, we specifically avoid a full and detailed
discussion of all the latest bleeding-edge research on advanced statistics.

A further problem with the workloads used in performance evaluation studies is that
they are often based on assumptions rather than measurements. Therefore another goal
of this book is to encourage and promote the experimental aspects of computer science.
To further this goal, the book emphasizes the use of real data and contains numerous
examples based on real datasets. The datasets used are listed in the Appendix and linked
from the book’s website.

Using real data to illustrate various concepts is also a means to help build an intu-
ition of what definitions mean and how real data behaves — including cases where data
tends to misbehave. This is extremely important, because mathematical techniques will
provide some sort of results even when they are misapplied. Developing an intuition
regarding your data is therefore an important first step in successful evaluations, and
knowing how to look at the data, and in particular how to create illuminating statistical
graphs, is an important skill.

In developing my ideas about computer workloads and their modeling I was privi-
leged to work with several outstanding students. The ones who contributed the most to
this subject were Uri Lublin, Dan Tsafrir, David Talby, Edi Shmueli, Yoav Etsion, and
Netanel Zakay.

By far the most mathematically advanced material is contained in Chapter 7 on self-
similarity. In writing about this material (and understanding it myself) I received im-
mense help from Benjamin Yakir, both in explaining the mathematical procedures and
in bringing to light the insights behind them. Thanks also to Thomas Mikosch for set-
ting me straight in some places. Daniel Nevo did his best to proofread the statistical
parts of the text and tried to convince me to make it more rigorous. Naturally errors and
misrepresentations remain my responsibility.

Heartfelt thanks are due to all those who have made their workload data available on
the Internet for the benefit of the research community. I hope that in the future this will
be taken for granted, and much more data will be available for use. The book’s website
is at http://www.cs.huji.ac.il/%7Efeit/wlmod and includes links to data sources. Updates
and errata will be posted there as well.

The book can be used as the basis for a course on workload modeling or as a sup-
plementary text for a course on performance evaluation. However, it is intended for use
by practitioners no less than by academics. I wrote it because I found no source from
which I myself could learn and understand the more advanced concepts, based on data
and intuition rather than formal proofs. I do not know of any other book like it. I hope
you find it useful.

Dror Feitelson
Jerusalem, February 2014
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1
Introduction

Performance evaluation is a basic element of experimental computer science. It is used
to compare design alternatives when building new systems, to tune parameter values
of existing systems, and to assess capacity requirements when setting up systems for
production use. Lack of adequate performance evaluation can lead to bad decisions,
which result either in an inability to accomplish mission objectives or an inefficient use
of resources. A good evaluation study, in contrast, can be instrumental in the design and
realization of an efficient and useful system.

There are three main factors that affect the performance of a computer system:

1. The system’s design

2. The system’s implementation

3. The workload to which the system is subjected

The first two factors are typically covered with some depth in vocational training and
academic computer science curricula. Courses on data structures and algorithms provide
the theoretical background for a solid design, and courses on computer architecture and
operating systems provide case studies and examples of successful designs. Courses on
performance-oriented programming, on object-oriented design, and programming labs
provide the working knowledge required to create and evaluate implementations. But
there is typically little or no coverage of performance evaluation methodology in general
and of workload modeling in particular.

Regrettably, performance evaluation is similar to many other endeavors in that it fol-
lows the GIGO principle: garbage-in-garbage-out. Evaluating a system with the wrong
workloads will most probably lead to irrelevant results, which cannot be relied upon.
This motivates the quest for the “correct” workload model [717, 256, 654, 19, 733, 103,
235, 636]. It is the goal of this book to help propagate the knowledge and experience
that have accumulated in the research community regarding workload modeling, and to
make it accessible to practitioners of performance evaluation.

To read more: Although performance evaluation in general and workload modeling in particular
are typically not given much consideration in vocational and academic curricula, there has nev-
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ertheless been much research activity in this area. Good places to read about this are textbooks
on performance evaluation, including the following:

• Jain [367] cites arguments about what workload is most appropriate as the deepest rat-hole
that an evaluation project may fall into (page 161). Nevertheless, he does provide several
chapters that deal with the characterization and selection of a workload.

• Law and Kelton [427] provide a very detailed presentation of distribution fitting, which is
arguably at the core of workload modeling.

• Le Boudec [429] has perhaps the most practical and down-to-earth exposition of perfor-
mance evaluation, including a discussion of model fitting and heavy-tailed distributions.
And it has the advantage of being available for free from http://perfeval.epfl.ch/.

• The book on self-similar network traffic edited by Park and Willinger [537] provides good
coverage of heavy tails and self-similarity.

In addition there are numerous research papers, many of which are cited in this book and appear
in the bibliography. For an overview, see the survey papers by Calzarossa and co-authors [103,
101]. Another good read is the classic paper by Ferrari [258]. This book has its roots in a tutorial
presented at Performance 2002 [234].

1.1 The Importance of Workloads

The study of algorithms involves an analysis of their performance. When we say that
one sorting algorithm is O(n log n), whereas another is O(n2), we mean that the first is
faster and therefore better. But this is typically a worst-case analysis, which may occur,
for example, only for a specific ordering of the input array. In fact, different inputs may
lead to very different performance results. The same algorithm may terminate in linear
time if the input is already sorted to begin with, but may require quadratic time if the
input is sorted in the opposite order.

The same phenomena may happen when evaluating complete systems: they may
perform well for one workload, but not for another1. To demonstrate the importance of
workloads we therefore describe three examples in which the workload makes a large
difference to the evaluation results.

Example 1: Scheduling Parallel Jobs by Size

A simple model of parallel jobs considers them as rectangles in processors×time space:
each job needs a certain number of processors for a certain interval of time. Scheduling
is then the packing of these job-rectangles into a larger rectangle that represents the
available resources.

It is well known that average response time is reduced by scheduling short jobs first
(the SJF algorithm). The problem is that the runtime is typically not known in advance.

1Incidentally, this is true for all types of systems, not only for computer systems. A female computer
scientist once told me that an important side benefit of her chosen career is that she typically does not have
to wait in line for the ladies room during breaks in male-dominated computer science conferences. But
this benefit was lost when she attended a conference dedicated to encouraging female students to pursue a
career in computer science...
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1.1. THE IMPORTANCE OF WORKLOADS 3

But in parallel systems, scheduling according to job size may unintentionally also lead
to scheduling by duration, if there is some statistical correlation between these two job
attributes.

As it turns out, the question of whether such a correlation exists is not easy to settle.
Three application scaling models have been proposed in the literature [742, 630]:

• Fixed work. This assumes that the work done by a job is fixed, and parallelism
is used to solve the same problems faster. Therefore the runtime is assumed to
be inversely proportional to the degree of parallelism (negative correlation). This
model is the basis for Amdahl’s law.

• Fixed time. Here it is assumed that parallelism is used to solve increasingly larger
problems, under the constraint that the total runtime stays fixed. In this case, the
runtime distribution is independent of the degree of parallelism (no correlation).

• Memory bound. If the problem size is increased to fill the available memory asso-
ciated with a larger number of processors, the amount of productive work typically
grows at least linearly with the parallelism. The overheads associated with paral-
lelism always grow superlinearly. Thus the total execution time actually increases
with added parallelism (a positive correlation).

Evaluating job scheduling schemes with workloads that conform to the different models
leads to drastically different results. Consider a workload that is composed of jobs that
use power-of-two processors. In this case a reasonable scheduling algorithm is to cycle
through the different sizes, because the jobs of each size pack well together [419]. This
works well for negatively correlated and even uncorrelated workloads, but is bad for
positively correlated workloads [419, 450]. The reason is that under a positive correla-
tion the largest jobs dominate the machine for a long time, blocking out all others. As a
result, the average response time of all other jobs grows considerably.

But which model actually reflects reality? Evaluation results depend on the selected
model of scaling; without knowing which model is more realistic, we cannot use the
performance evaluation results. As it turns out, the constant time or memory-bound
models are more realistic than the constant work model. Therefore scheduling parallel
jobs by size with a preference for large jobs is at odds with the desire to schedule short
jobs first, and can be expected to lead to high average response times.

Example 2: Processor Allocation Using a Buddy System

Gang scheduling is a method for scheduling parallel jobs using time slicing, with coor-
dinated context switching on all the processors. In other words, first the processes of
one job are scheduled on all the processors, and then they are all switched simultane-
ously with the processes of another job. The data structure used to describe this is an
Ousterhout matrix [529], in which columns represent processors and rows represent time
slots.

An important question is how to pack jobs into rows of the matrix. One example
is provided by the DHC scheme [245], in which a buddy system is used for processor
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Figure 1.1: Simulation results showing normalized response time (slowdown) as a func-
tion of load for processor allocation to parallel jobs using DHC, from [245]. The three
curves are for exactly the same system — the only difference is in the distribution of job
sizes. The dashed lines are proven bounds on the achievable utilization for these three
workloads.

allocation: each request is extended to the next power of two, and allocations are always
done in power-of-two blocks of processors. This scheme leads to using the same blocks
of processors in different slots, which is desirable because it enables a job to run in more
than one slot if its processors happen to be free in another slot.

The quality of the produced packing obviously depends on the distribution of job
sizes. The DHC scheme has been evaluated with three different distributions: a uniform
distribution in which all sizes are equally likely, a harmonic distribution in which the
probability of size s is proportional to 1/s, and a uniform distribution on powers of two.
Both analysis and simulations showed significant differences between the utilizations
that could be achieved for the three distributions (Figure 1.1) [245]. These differences
corresponds to different degrees of fragmentation that are inherent to packing jobs that
come from these distributions. For example, with a uniform distribution, rounding each
request size up to the next power of two leads to a 25% loss to fragmentation — the
average between no loss (if the request is an exact power of two) and a nearly 50% loss
(if the request is just above a power of two, and we round up to the next one). The DHC
scheme recovers part of this lost space, so there is actually only 20% loss, as shown in
Figure 1.1.

Note that this analysis tells us what to expect in terms of performance, provided we
know the distribution of job sizes. But what is a typical distribution encountered in real
systems in production use? Without such knowledge, the evaluation cannot provide a
definitive answer. As it turns out, empirical distributions have many small jobs (similar
to the harmonic distribution) and many jobs that are powers of two. Thus using a buddy
system is indeed effective for real workloads, but it would not be if workloads were more
uniform with respect to job size.
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1.1. THE IMPORTANCE OF WORKLOADS 5

Example 3: Load Balancing on a Unix Cluster

A process running on an overloaded machine will receive worse service than a process
running on an unloaded machine. Load balancing is the activity of migrating a running
process from an overloaded machine to an underloaded one. When loads are balanced,
processes receive equitable levels of service.

One problem with load balancing is choosing which process to migrate. Migration
involves considerable overhead. If the process terminates soon after being migrated, that
overhead has been wasted. In addition, the process cannot run during the time it is being
migrated. Again, if it terminates soon after the migration, it would have been better off
staying in its place.

Thus it would be most beneficial if we could identify processes that may be expected
to continue to run for a long time, and select them for migration. But how can we know
in advance whether a process is going to terminate soon or not? The answer is that it
depends on the statistics of process runtimes.

It is well known that the exponential distribution is memoryless. Therefore if we
assume that process runtimes are exponentially distributed, we cannot use the time that a
process has run so far to learn how much longer it is expected to run: this expectation is
always equal to the mean of the distribution. In mathematical terms the probability that
the runtime T of a process will grow by an additional τ , given that it has already run for
time t, is equal to the probability that it will run for more than τ in the first place:

Pr(T > t+ τ | T > t) = Pr(T > τ)

But the runtimes of real processes on Unix systems, at least long-lived processes, are
not exponentially distributed. In fact, they are heavy-tailed [435, 320]. Specifically, the
probability that a process run for more than τ time has been found to decay polynomially
rather than exponentially:

Pr(T > τ) ∝ τ−α α ≈ 1

This means that most processes are short, but a small number are very long. If we condi-
tion the probability that a process will run for additional time on how much it has already
run, we find that a process that has already run for t time may be expected to run for an
additional t time: the expectation actually grows with how long the process has already
run! (The derivation is given in Section 5.2.1.) This makes the long-lived processes easy
to identify: they are the ones that have run the longest so far. And selecting processes
for migration based on runtime will be much better than selecting at random, because a
random process will most likely be very short. But note that selection based on runtime
depends on a detailed characterization of the workload, which in fact is valid only for
the specific workload that is indeed observed empirically.

Sensitivity to Workloads

The above three examples are, of course, not unique. There are many examples in which
workload features have a significant effect on performance. Importantly, not every work-
load feature has the same effect: in some cases it is one specific workload feature that is
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the most important. The problem is that it is not always obvious in advance which feature
is the most important, and even if it seems obvious, we might be wrong [237, 439, 248].
This motivates the practice of conservative workload modeling, where an attempt is
made to correctly model all known workload features, regardless of their perceived im-
portance [248]. Alternatively, it motivates the use of real workloads to drive evaluations,
because real workloads may contain features that we do not know about and therefore
cannot model.

1.2 Types of Workloads

Workloads appear in many contexts and therefore have many different types.

1.2.1 Workloads in Different Domains

The previous three examples are all from the field of scheduling by an operating system,
where the workload items are jobs that are submitted by users. This type of workload
is characterized by many attributes. If only the scheduling of the CPU is of interest,
the relevant attributes are each job’s arrival and running times. If memory usage is
also being investigated, the total memory usage and locality of reference also come into
play, because memory pressure can have an important effect on scheduling and lead to
swapping. I/O can also have a great effect on scheduling. Modeling it involves the
distribution of I/O sizes and how they interleave with the computation. For parallel jobs,
the number of processors used is an additional parameter, which influences how well
jobs pack together.

The level of detail needed in workload characterization depends on the goal of the
evaluation. For example, in the context of operating system scheduling, it is enough
to consider a process as “computing” for a certain time. But when studying CPU ar-
chitectures and instruction sets, a much more detailed characterization is required. The
instruction mix is important in determining the effect of adding more functional units of
different types. Dependencies among instructions determine the benefits of pipelining,
branch prediction, and out-of-order execution. Loop sizes determine the effectiveness
of instruction caching. When evaluating the performance of a complete CPU, all these
details have to be correct. Importantly, many of these attributes are input dependent,
so representative workloads must include not only representative applications but also
representative inputs [204].

I/O provides another example of workloads that can be quite complex. Attributes
include the distribution of I/O sizes, the patterns of file access, and the use of read vs.
write operations. It is interesting to note the duality between modeling I/O and compu-
tation, depending on the point of view. When modeling processes for scheduling, I/O is
typically modeled as just taking some time between CPU bursts (if it is modeled at all).
When modeling I/O, computation is modeled as just taking some time between consec-
utive I/O operations. Of course, it is possible to construct a fully detailed joint model,
but the number of possible parameter combinations may grow too much for this to be
practical.
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Application-level workloads are also of interest for performance evaluation. A prime
example is the sequence of transactions handled by a database. Databases account for
a large part of the usage of large-scale computer systems such as mainframes, and are
critical for many enterprise-level operations. Ensuring that systems meet desired perfor-
mance goals without excessive (and expensive) over-provisioning is therefore of great
importance. Again, reliable workload models are needed. For example, the transactions
fielded by the database of a large bank can be expected to be quite different from those
fielded by a database that provides data to a dynamic web server. The differences may
lie in the behavior of the transactions (e.g. how many locks they hold and for how long,
how many records they read and modify) and in the structure of the database itself (the
number of tables, their sizes, and relationships among them).

The workload on web servers has provided a fertile ground for research, as has net-
work traffic in general. Of major interest is the arrival process of packets. Research
in the early 1990s showed that packet arrivals are correlated over long periods, as mani-
fested by burstiness at many different time scales. This finding was in stark contrast with
the Poisson model that was routinely assumed until that time. The new models based
on this finding led to different performance evaluation results, especially with respect to
queueing and packet loss under high loads.

The world wide web is especially interesting in terms of workload modeling because
the workloads seen at the two ends of a connection are quite different. First, there is the
many-to-many mapping of clients to servers. A given client only interacts with a limited
number of servers, whereas the population as a whole may interact with many more
servers and display rather different statistics. Servers, in contrast, typically interact with
many clients at a time, so the statistics they see are closer to the population statistics
than to the statistics of a single client. In addition, caching by proxies modifies the
stream of requests en route [271, 266]. The stream between a client and a cache has
more repetitions than the stream from the cache to the server. Uncacheable objects may
also be expected to be more prevalent between the cache and the server than between the
clients and the cache, because in the latter case they are intermixed with more cacheable
objects.

1.2.2 Dynamic vs. Static Workloads

An important difference between workload types is their rate of events. A desktop ma-
chine used by a single user may process several hundreds of commands per day. This
may correspond to thousands or millions of I/O operations, and to many billions of CPU
instructions and memory accesses. A large-scale parallel supercomputer may serve only
several hundred jobs a day from all users combined. A router on the Internet may handle
billions of packets in the same time frame.

Note that in this discussion we talk of rates rather than sizes. A size implies that
something is absolute and finite. A rate is a size per unit of time, and implies continuity.
This is related to the distinction between static and dynamic workloads. A static work-
load is one in which a certain amount of work is given, and when it is done that is it. A
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dynamic workload, in contrast, is one in which work continues to arrive all the time; it
is never “done”.

The differences between static and dynamic workloads may have the following sub-
tle implications for performance evaluation.

• A dynamic workload requires the performance evaluator to create a changing mix
of workload items (e.g., jobs). At the very minimum, doing so requires an identi-
fication of all possible jobs, and data regarding the popularity of each one, which
may not be available. With static workloads you can use several combinations of
a small set of given applications. For example, given applications A, B, and C,
you can run three copies of each in isolation, or a combination of one job from
each type. This is much simpler, but most probably further from being realistic.
Benchmarks (discussed in the next section) are often static.

• A major difficulty with dynamic workloads is that they include an arrival process,
which has to be characterized and analyzed in addition to the workload items
themselves. A static workload does not impose this additional burden. Instead, it
is assumed that all the work arrives at once at the outset.

• Distributions describing static or dynamic workloads may differ. For example, a
snapshot of a running system may be quite different from a sample of the input
distribution, due to correlations of workload attributes with residence time. Thus
if the input includes many short jobs and few long jobs, sampling from a trace of
all the jobs that were executed on the system (effectively sampling from the input
distribution) will display a significant advantage for short jobs. But observing a
snapshot of the live system may indicate that long jobs are more common, simply
because they stay in the system longer, and therefore have a higher probability of
being seen in a random sample.

• Perhaps the most important difference occurs because performance often depends
on the system’s state. A static workload being processed by a “clean” system may
then be very different from the same set of jobs being processed by a system that
had previously processed many other jobs in a dynamic manner. The reason is
system aging, e.g., the fragmentation of resources [639].

• Aging is especially important when working on age-related failures (e.g., those
due to memory leaks). Static workloads are incapable of supporting work on
topics such as software rejuvenation [692]. A related example is the study of
thrashing in paging systems [173]. Such effects cannot be seen when studying the
page replacement of a single application with a fixed allocation. Rather, they only
occur due to the dynamic interaction of multiple competing applications.

Several of these considerations indicate that static workloads cannot be considered
as valid samples of real dynamic workloads. This book focuses on dynamic workloads.
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1.2.3 Benchmarks

One of the important uses of performance evaluation is to compare different systems to
each other, typically when trying to decide which one to buy. However, such compar-
isons are meaningful only if the systems are evaluated under equivalent conditions, and,
in particular, with the same workload. This motivates the canonization of a select set of
workloads that are then ported to different systems and used as the basis for comparison.
Such standardized workloads are called benchmarks.

Benchmarks have a huge impact on the computer industry, because they are often
used in marketing campaigns [723]. Moreover, they are also used in performance evalu-
ation during the design of new systems and even in academic research, so their properties
(and deficiencies) may shape the direction of new developments. It is thus of crucial im-
portance that benchmarks be representative of real needs. To ensure the combination of
representativeness and industry consensus, several independent benchmarking organiza-
tions have been created. Two of the best known are SPEC and TPC.

SPEC is the Systems Performance Evaluation Consortium [655]. This organiza-
tion defines several benchmark suites aimed at evaluating computer systems. The most
important of these suites is SPEC CPU, which dominates the field of evaluating the
microarchitecture of computer processors. This benchmark comprises a set of applica-
tions, divided into two groups: one emphasizing integer and symbolic processing, and
the other emphasizing floating point scientific processing. To ensure that the benchmark
is representative of current needs, the set of applications is replaced every few years.
New applications are selected from those submitted in an open competition.

TPC is the Transaction Processing Performance Council. This organization defines
several benchmarks for evaluating database systems. Perhaps the most commonly used
is TPC-C, which is used to evaluate online transaction processing. The benchmark sim-
ulates an environment in which sales clerks execute transactions at a warehouse. The
simulation has to comply with realistic assumptions regarding how quickly human users
can enter information.

The SPEC CPU suite and TPC-C are essentially complete, real applications. Other
benchmarks are composed of kernels or of synthetic applications. Both of these ap-
proaches reduce realism in the interest of economy or focus on specific aspects of the
system. Kernels are small parts of applications in which most of the processing oc-
curs (e.g., the inner loops of scientific applications). Their measurement focuses on the
performance of the processor in the most intensive part of the computation. Synthetic ap-
plications mimic the behavior of real applications without actually computing anything
useful. Using them enables the measurement of distinct parts of the system in isolation
or in carefully regulated mixtures; this is often facilitated by parameterizing the synthetic
application, with parameter values governing various aspects of the program’s behavior
(e.g., the ratio of computation to I/O) [93]. Taking this to the extreme, microbenchmarks
are small synthetic programs designed to measure a single system feature, such as mem-
ory bandwidth or the overhead to access a file. In this case there is no pretense of being
representative of real workloads.

Benchmarking is often a contentious affair. Much argument and discussion are spent
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on methodological issues, as vendors contend to promote features that will show their
systems in a favorable light. There is also the problem of the benchmark becoming
an end in itself, when vendors optimize their systems to cater to the benchmark, at the
possible expense of other application types. It is therefore especially important to define
what the benchmark is supposed to capture. There are two main options: to span the
spectrum of possible workloads, or to be representative of real workloads.

Covering the space of possible workloads is useful for basic scientific insights and
when confronted with completely new systems. In designing such benchmarks, work-
load attributes have to be identified and quantified, and then combinations of realistic
values are used. The goal is to choose attributes and values that cover all important op-
tions, but without undue redundancy [193, 388]. The problem with this approach is that,
by definition, it only measures what the benchmark designers dreamed up in advance. In
other words, there is no guarantee that the benchmarks indeed cover all possibilities.

The other approach requires that benchmarks reflect real usage, and be representative
of real workloads. To ensure that this is the case, workloads have to be analyzed and
modeled. This should be done with considerable care and an eye to detail. For example,
when designing a benchmark for CPUs, it is not enough to consider the instruction mix
and their interdependencies — it is also necessary to consider the interaction of the
benchmark with the memory hierarchy and its working set size.

Although benchmarks are not discussed in detail in this book, the methodologies
covered are expected to be useful as background for the definition of benchmarks.

To read more: Several surveys on benchmarks were written by Weicker [724, 723]. One of the
reasons they are interesting is that they show how benchmarks change over time.

1.3 Workload Modeling

Workload modeling is the attempt to create a simple and general model, which can
then be used to generate synthetic workloads at will, possibly with slight (but well-
controlled!) modifications. The goal is typically to be able to create workloads that can
be used in performance evaluation studies, and the synthetic workload is supposed to be
similar to those that occur in practice on real systems. This is a generalization of the
concept of benchmarks, which is applicable when the consensus regarding the precise
workload is less important.

1.3.1 What It Is

Workload modeling always starts with measured data about the workload. This data is
often recorded as a trace, or log, of workload-related events that happened in a certain
system. For example, a job log may include data about the arrival times of jobs, who ran
them, and how many resources they required. Basing evaluations on such observations,
rather than on baseless assumptions, is a basic principle of the scientific method.

The suggestion that workload modeling should be based on measurements has been
made at least since the 1970s [256, 654, 19]. However, for a long time relatively few

Version 1.0.4, typeset on June 10, 2023



1.3. WORKLOAD MODELING 11

models based on actual measurements were published. As a result, many performance
studies did not use experimental workload models at all (and do not to this day). The cur-
rent wave of using measurements to create detailed and sophisticated models started in
the 1990s. It was based on two observations: one, that real workloads tend to differ from
those often assumed in mathematical analyses, and two, that this makes a difference.

There are two common ways to use a measured workload to analyze or evaluate a
system design [127, 256, 612]:

1. Use the traced workload directly to drive a simulation.

2. Create a model from the trace and use the model for either analysis or simulation.

For example, trace-driven simulations based on large address traces are often used to
evaluate cache designs [635, 410, 401, 705]. But models of how applications traverse
their address space have also been proposed, and provide interesting insights into pro-
gram behavior [683, 684].

The essence of modeling, as opposed to just observing and recording, is one of
abstraction. This means two things: generalization and simplification.

Measurements are inherently limited. Collecting data may be inconvenient or costly,
and instrumentation may introduce overhead. The conditions under which data is col-
lected may lead to a rather small sample of the space of interest. For example, given
a server with 128 nodes, it is not possible to collect data about systems with 64 or 256
nodes. We need models to transcend these limitations.

But at the same time, we also want the models to be simpler than the recorded work-
load. A log with data about tens of thousands of jobs may contain hundreds of thousands
of numbers. It is ludicrous to claim that the exact values of all these numbers are impor-
tant. What is important are the underlying patterns. It is these patterns that we seek to
uncover and articulate, typically in the form of statistical distributions. And we want the
model to be parsimonious, meaning that it uses as few parameters as possible.

To read more: For an exposition on mathematical modeling, see the essay by McLaughlin
[480]. The book on data analysis by Berthold et al. [71] combines motivation with modeling
methodology.

1.3.2 Why Do It?

The main use of workload models is for performance evaluation. But there are other uses
as well, e.g. to characterize normal operation conditions, with the goal of being able to
recognize abnormal conditions.

Modeling for Performance Evaluation

As noted above, traced data about a workload can be used directly in an evaluation, or
else it can be used as the basis for a model. The advantage of using a trace directly
is that it is the most “real” test of the system: the workload reflects a real workload
precisely, with all its complexities, even if they are not known to the person performing
the analysis.
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The drawback is that the trace reflects only a specific workload, and there is always
the question of whether the results generalize to other systems or load conditions. In
particular, there are cases where the workload depends on the system configuration, and
therefore a given workload is not necessarily representative of workloads on systems
with other configurations. Obviously, this makes the comparison of different config-
urations problematic. In addition, traces are often misleading if we have incomplete
information about the circumstances in which they were collected. For example, work-
load traces may contain intervals when the machine was down or part of it was dedicated
to a specific project, but this information is often not be available.

Workload models have a number of advantages over traces [190, 234, 629]:

Adjustment — Using a model, it is possible to adjust the workload to fit a certain sit-
uation. For example, consider a situation in which we have data from a 128-node
machine, and we want to evaluate a 256-node machine. Using the data directly
will result in a workload where the maximal job size is only half the system size.
But with a model that accepts the system size as a parameter, we can create a new
workload that matches the larger size.

Controlled modification — It is possible to modify the values of model parameters
one at a time, in order to investigate the influence of each one, while keeping other
parameters constant. This allows for direct measurement of system sensitivity to
the different parameters. It is also possible to select model parameters that are
expected to match the specific workload at a given site.

In general it is not possible to manipulate traces in this way, and even when it
is possible, doing so can be problematic. For example, it is common practice to
increase the modeled load on a system by reducing the average interarrival time.
But this practice has the undesirable consequence of shrinking the daily load cycle
as well. With a workload model, we can control the load independent of the daily
cycle.

Repetitions — Using a model, it is possible to repeat experiments under statistically
similar conditions that are nevertheless not identical. For example, a simulation
can be run several times with workloads generated using different seeds for the
random number generator. This is needed in order to compute confidence inter-
vals. With a log, you only have a single data point.

Stationarity — In a related vein, models are better for computing confidence intervals
because the workload is stationary by definition (that is, it does not change with
time). Real workloads, in contrast, tend to be nonstationary: the workload param-
eters fluctuate with time, as usage patterns change (Figure 1.2). This raises serious
questions regarding the common methodology of calculating confidence intervals
based on the standard deviation of performance metrics.

Generalization — Models provide a generalization and avoid overfitting to a specific
dataset. For example, Figure 1.3 shows the variability in the arrival process at
different large-scale parallel supercomputers. Each plot gives the number of jobs
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Figure 1.2: Real workloads tend to be nonstationary, as opposed to workload models, as
demonstrated by these graphs of the moving average of job runtimes in different logs and
models of parallel jobs. A window size of 3000 jobs was used to calculate the average.
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Figure 1.3: Arrival patterns at four large-scale parallel machines exhibit a similar struc-
ture but different details.

that arrived at different times of the day, averaged over the duration of the avail-
able trace (typically one or two years). Although all the graphs show a similar
daily cycle with low activity at night and more activity during the day, the details
are different. For example, the sharp rise in load in the CTC SP2 data is very dif-
ferent from the incremental growth in the SDSC Paragon. Thus using any of these
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patterns as is risks overfitting and discriminating against some other pattern. This
danger is reduced by using a model that generalizes all the observed patterns.

Avoiding noise — Logs may not represent the real workload due to various problems.
For example, an administrative policy that places a limit of four hours may force
users to break long jobs into multiple short jobs. Another example is that jobs
killed by the system may be resubmitted. Often we don’t know about such prob-
lems, so taking the data at face value may be misleading. Conversely, a modeler
has full knowledge of model workload characteristics. For example, it is easy
to know which workload parameters are correlated with each other because this
information is part of the model.

In general, we may observe that when using a log the default is to include various
abnormal situations that occurred when the log was recorded. These do not reflect
normal usage, but we don’t know about them and therefore cannot remove them.
When using a model the situation is reversed: abnormal conditions will only occur
if they are inserted explicitly as part of the model [249].

Understanding — Modeling also increases our understanding and can lead to new de-
signs based on this understanding. For example, identifying the repetitive nature
of job submittals can be used to learn about job requirements from the history.
One can design a resource management policy that is parameterized by a work-
load model, and then use measured values for the local workload to tune the policy.
As another example, knowing that certain workload parameters are heavy-tailed
leads to resource management algorithms that exploit the big differences among
jobs [154].

Added features — Models can also include features that cannot be included in logs.
For example, a model can include an explicit feedback loop in which system per-
formance affects subsequent load generation [614]. A log only contains a list of
load items, and we don’t know if and how they may have depended on whatever
happened before.

Efficiency — Using models can be more efficient than using a trace. For starters, the
description of a model is typically much more concise, because it only includes
some model parameters; a trace, in contrast, may include thousands or even mil-
lions of individual numbers. And due to the stationarity and uniformity of a model,
it may be possible to run much shorter simulations and still get convergent results
[200, 198].

Privacy — Finally, real workload traces have the drawback that they may disclose pro-
prietary information. As a result enterprises that operate large-scale systems are
often loath to release workload data. But a model may gloss over the sensitive
parts and still provide useful information [195, 564].
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Modeling for Capacity Planning

A special case of performance evaluations that deserves individual attention is capacity
planning. In a sense, capacity planning is performance evaluation in reverse: instead of
deriving the performance of a given system configuration, we seek the configuration that
will provide the desired performance [485]. This is central to provisioning resources so
as to fulfill service-level agreements. Thus it is especially important for cloud infrastruc-
tures [275].

The required system capacity obviously depends on the workload intensity: we need
more capacity to do more work. But the relationship is often not linear. Moreover,
intensity is not the only factor that affects performance, and thus the required capacity.

Perhaps the most important workload attribute in terms of capacity planning is bursti-
ness [110, 109]. Burstiness means that there are large fluctuations in the workload inten-
sity, and therefore the average workload intensity is not representative of what we will
observe in practice at different times. This burstiness can take either of two forms (or a
combination of both): the arrival rate of new work can change, or the amount of work
required to service each job can change. In order to provide adequate performance in
worst-case load situations, significant over-provisioning may be necessary. Thus a good
characterization and understanding of burstiness in the workload are crucial.

Modeling for Online Control

Another reason for modeling workloads is as part of predicting what will happen in the
near future. Such predictions then allow for an optimization of the system’s performance
by the insightful allocation of resources.

In the simplest version, measuring the current workload online allows systems to
adjust to their workload. This can take the form of tuning system parameters [243, 757],
or switching among alternative algorithms [669]. In a sense, the system is learning its
workload and taking steps to best serve it.

A more sophisticated approach is to actually include a model of the system behavior
in the tuning procedure. To use this model, the workload is measured online. Combin-
ing the workload model with the system model allows for an analysis of the system’s
performance, including the effect of various changes to the system configuration. The
results of the analysis are then used for automatic online control, thus optimizing the
performance in accordance with the characteristics of the current workload, and with the
ways in which they interact with the system design [756].

A special case of online control is providing the required quality of service so as
to satisfy service-level agreements. For example, Internet service providers need to be
able to estimate the available network bandwidth before they can commit to carrying
additional traffic. This estimation can be based on models that use measured current
conditions as an input, as is done in the network weather service [739].
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Figure 1.4: The Internet exhibited a surge of ICMP traffic starting on 18 August 2003,
when the Welchia worm started to spread.

Modeling for Anomaly Detection

A fourth reason for workload modeling is the desire to characterize the “normal” us-
age patterns of a system. This information is useful for the identification of abnormal
patterns, such as those that occur in the following situations:

• When a system is attacked its workload may be significantly different from the
normal workload [96, 665, 709, 117]. For example, this happens with distributed
denial-of-service (DDoS) attacks, and may also happen when it is infected by a
computer virus.

• When a system is misconfigured or a software upgrade includes a new bug, its
behavior may change significantly [58, 128]. Such situations may also lead to
misconceptions regarding system capacity requirements and ultimately to exces-
sive equipment procurement.

Identifying such situations is a necessary first step for dealing with them.
An example is shown in Figure 1.4. This displays monthly averages of the relative

fraction of packets using different protocols in the Internet, as observed on access point B
of the WIDE backbone (which is a transpacific link). Starting on 18 August 2003, there
was a huge surge of ICMP packets, which resulted from the spread of the Welchia worm.
This continued until the worm shut itself down on 1 January 2004. A preponderance of
ICMP packets could thus serve as an indicator for infection by the worm.

The main problem with using statistical modeling for the detection of attacks is that
it relies on the assumption that the characteristics of the attack lie beyond the normal
variability of the workload (as was obviously the case for the Welchia worm). In many
cases, however, the normal variability may be very big. Legitimate high activity may
therefore be erroneously flagged as an attack.

A possible solution to this problem is to use more sophisticated multifaceted work-
load models. For example, identifying the spread of a virus solely based on the level
of activity is risky, because high traffic may occur for legitimate reasons, and the nor-
mal variability between prime time and non-prime time is very big. An alternative is to
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devise several independent tests for abnormality and use them together. In the context
of virus spreading by email, these tests can include user cliques (the sets of users that
typically communicate with each other), the relative popularity of different users (not all
users receive the same amount of email), and the rates at which emails are sent (again
different users have different profiles) [665]. If several of these change, virus activity
may be suspected.

An even more sophisticated solution is to use machine learning techniques to learn to
identify normal behavior based on training data; observed behavior that does not match
what we have learned is then flagged as a possible attack [457, 709, 117]. Particular
attention can be paid to patterns that are rare but still legitimate, so as to reduce false
positives. This approach has the advantage of being able to flag suspicious behaviors
even if they had not been seen before, thus alleviating one of the main drawbacks of
systems that rely on identifying signatures of known attacks.

1.3.3 How It Is Done

Workload modeling is based on data analysis. While the models are typically statistical
in nature [480, 427], it is in general impossible to extract all the required data by purely
statistical means. Thus using graphical methods to observe and analyze the data is of
great importance [31, 699, 700, 701, 702, 71]. Using common sense is also highly
recommended [120].

Descriptive Modeling

Workload models fall into two classes: descriptive models and generative models. The
difference is that descriptive models just try to mimic the phenomena observed in the
workload, whereas generative models try to emulate the process that generated the work-
load in the first place.

The most common approach used in descriptive modeling is to create a statistical
summary of an observed workload. This summarization is applied to all the workload
attributes, e.g. computation, memory usage, I/O behavior, communication, etc. [654,
412]. It is typically assumed that the longer the observation period, the better. Thus
we can summarize an entire year’s workload by analyzing a record of all the jobs that
ran on a given system during this year, and fitting distributions to the observed values
of the different parameters (the topic of Chapter 4). A synthetic workload can then be
generated according to the model, by sampling from the distributions that constitute the
model (Figure 1.5). The model can also be used directly to parameterize a mathematical
analysis.

Within the class of descriptive models, one finds different levels of abstraction on the
one hand, and different levels of faithfulness to the original data on the other hand. The
most strictly faithful models try to mimic the data directly (e.g., by using a distribution
that has exactly the same shape as the empirical distribution). An example is the re-
creation of a distribution’s tail by using a detailed hyper-exponential model, as described
in Section 4.4.3. The other alternative is to use the simplest abstract mathematical model
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Figure 1.5: Workload modeling based on a statistical summary of the workload that
occurred on a real system (top), and its use in performance evaluation (bottom).

that has certain properties that are considered to be the most important. For example,
instead of describing a distribution by its shape, we can decide to focus on its moments
(this is explained in more detail in Section 4.2.2). We can then select a distribution that
matches say the first three moments, disregarding the question of whether or not it fits
the shape of the original distribution.

Contrary to what might be thought, the question of preferring abstraction or strict
faithfulness is more practical than philosophical. The main consideration in workload
modeling is not necessarily striving for the “truth”. Rather, it is the desire to capture a
certain workload feature in a way that is good enough for a specific evaluation. However,
if the effect of different workload features is not known, it is safer to try and mimic the
observed workload as closely as possible [248].

To read more: In statistics the process leading to descriptive modeling is often called ex-
ploratory data analysis. The classic in this area is Tukey’s book [702]. A modern exposition
including pointers to software implementations is given by Berthold et al. [71]. Regrettably,
these do not cover data with highly skewed distributions as is common in computer workloads.
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Figure 1.6: Generative workload modeling based on analyzing how users behave when
submitting jobs to a real system (top), and re-creating such behavior in performance
evaluation (bottom).

Generative Modeling

Generative models are indirect, in the sense that they do not model the workload dis-
tributions explicitly. Instead, they model the process that is supposed to have generated
the workload. If this modeling is done well, it is expected that the correct distributions
will be produced automatically. For example, assuming that files are created by modify-
ing previous files, and that this can be modeled as multiplying the file size by a certain
factor, leads to a lognormal file-size distribution [188]. Figure 1.6 compares this with
the statistical approach. Note that the framework is the same as in Figure 1.5; the only
difference is that the model is not a statistical summary of workload attributes but rather
an operational description of how users behave when they generate the workload (e.g.,
how their behavior depends on the time of day and on system performance).

An important benefit of the indirect modeling achieved by the generative approach is
that it facilitates manipulations of the workload. It is often desirable to be able to change
the workload conditions in some way as part of the evaluation. Descriptive models do
not offer any clues regarding how to do so. But with generative models, we can modify
the workload-generation process to fit the desired conditions, and the workload itself
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will follow suit. For example, we can model different types of file editing sessions, and
get different file-size distributions that match them.

Another important benefit of the generative approach is that it supports the modeling
and study of possible interactions between a system and its users. This is an extension
of the well-known distinction between open and closed system models: in open models
new work is completely independent of system conditions, whereas in closed models
new work arrives only as a direct consequence of a previous termination. But in real life
the situation is more complicated, and feedback from the system’s performance to the
users can affect the generation of additional work in various ways [614, 615].

Degree of Detail

The questions of what exactly to model and at what degree of detail are hard ones.
On one hand, we want to fully characterize all important workload attributes. On the
other hand a parsimonious model is more manageable, because there are less parameters
whose values need to be assessed and whose influence needs to be studied. Also, in a
detailed model there is a danger of overfitting a particular workload at the expense of
generality.

In statistical terms (applicable when we are using a statistical model) this can be
framed as a tradeoff between accuracy and complexity, as has been formulated using the
Bayes information criterion (BIC) [603, 512]. Given a set of model parameters θ, define

BIC(θ) = −2 logL(θ) + p

2
log n

where L is the likelihood of the data assuming the given parameters2, and represents the
goodness of the fit (that is, the accuracy), p is the number of parameters in the model,
namely the size of θ, and n the number of data samples used to fit the model. So the
second term reflects a penalty for the complexity of the modeling procedure. By select-
ing the model with the minimal BIC we trade off complexity and accuracy, and identify
the model that gives the best results for the minimal cost. Akaike’s information criterion
(AIC) uses a similar formula, the main difference being that the penalty does not depend
on n [20].

The main problem with models, as with traces, is that of representativeness. That
is, to what degree does the model really represent the workload that the system will en-
counter in practice? The answer depends in part on the degree of detail that is included.
For example, each job is composed of procedures that are built of instructions, and these
procedures and instructions interact with the computer at different levels. One option
is to model these levels explicitly, creating a hierarchy of interlocked models for the
different levels [103, 100, 558] (an example of generative modeling). This has the obvi-
ous advantage of conveying a full and detailed picture of the structure of the workload.
In fact, it is possible to create an entire spectrum of models spanning the range from
condensed rudimentary models to direct use of a detailed trace.

2These notions are explained later in the book.
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As another example, the sizes of parallel jobs need not be modeled independently.
Rather, they can be derived from a lower level model of the jobs’ structures [247]. Hence
the combined model will be useful both for evaluating systems in which jobs are exe-
cuted on predefined partitions, and for evaluating systems in which the partition size is
defined at runtime to reflect the current load and the specific requirements of jobs.

The drawback of this approach is that, as more detailed levels are added, the com-
plexity of the model increases. This is detrimental for three reasons. First, more detailed
traces are needed in order to create the lower levels of the model. Second, it is commonly
the case that there is greater diversity at lower levels. For example, there may be many
jobs that use 32 nodes, but at a finer detail, some of them are coded as data parallel with
serial and parallel phases, whereas others are written using MPI in an SPMD style. Cre-
ating a representative model that captures this diversity is hard, and possibly arbitrary
decisions regarding the relative weight of the various options have to be made. Third, it
is harder to handle such complex models. Although this consideration can be mitigated
by automation [629, 404], it leaves the problem of having to check the importance and
impact of very many different parameters.

The flip side of these considerations is that sometimes we actually want to fit a
specific workload, and not be generally representative. In fact, performance evaluations
may be roughly divided into two major categories:

• Evaluations of general approaches, as is typically done in academic research pa-
pers. Such evaluations strive to make general claims; hence they require generally
representative workloads. They focus on invariant aspects of the workload and
attempt to average out the differences.

• Evaluations of specific installations, as is typically done for tuning, adjusting con-
figurations, and making upgrade decisions. In this case the particulars of the local
workload may be more important than the features that are common with many
other installations [426].

A related issue is the variability between workloads observed at different times,
which may be just as big as the variability between workloads observed at different
locations [426]. In fact, one of the biggest risks of workload modeling is the tendency to
focus exclusively on invariants and averages and to disregard variability. The reason for
this tendency is that large variations in the workload often lead to large variations in per-
formance results, and subsequently to vague recommendations. But ignoring variability
in the interest of crisp results does not make the problematic variability go away — it
just makes the results unreliable.

Completeness

An important point that is often overlooked in workload modeling is that everything has
to be modeled. It is not good to model one attribute with great precision, but to use
baseless assumptions for the others.

The problem is that assumptions can be very tempting and reasonable, but still be
totally untrue. For example, it is reasonable to assume that parallel jobs are used for
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speedup, that is, to complete the computation faster. After all, this is the basis for Am-
dahl’s Law. But other possibilities also exist — for example, parallelism can be used
to solve the same problem with greater precision rather than faster. The problem is that
assuming that speedup is the goal leads to a model in which parallelism is inversely cor-
related with runtime, and this has an effect on scheduling [450, 233]. Observations of
real workloads indicate that this is not the case, as shown above. Thus it is important to
model the correlation between runtime and size correctly.

Another reasonable assumption is that the daily cycle of user activity does not have
much importance, because we are usually interested mainly in how the system operates
under peak load. However, in non-interactive settings the mere existence of a non-peak
period which can be used to make up for overload during the peak hours can make a
big difference [248]. When interactive and batch workloads are mixed, delaying batch
work and executing it at night may free up important resources for better support of the
interactive work during the day. Thus modeling the daily cycle may actually be crucial
for obtaining meaningful results.

The implications of assuming something is unimportant can be rather subtle. A case
in point is the issue of user runtime estimates in parallel system. The reasonable assump-
tion is that users will provide the system with accurate estimates of job runtimes when
asked to do so. At least on large-scale parallel systems, users indeed spend significant ef-
fort tuning their applications, and may be expected to have this information. Moreover,
backfilling schedulers reward low estimates but penalize underestimates, thus guiding
users toward convergence to accurate estimates. Nevertheless, studies of user estimates
reveal that they are often highly inaccurate, and may represent an overestimate by a full
order of magnitude [507, 431]. Surprisingly, this can sway the conclusions when com-
paring schedulers that use the estimates to decide whether to backfill jobs (that is, to use
them to fill holes in an existing schedule) [237, 697]. Thus assuming accurate estimates
may lead to misleading evaluations [693].

1.4 Roadmap

As noted earlier, workload modeling is based on workload data. The next chapter there-
fore contains a discussion of where the data comes from. The next three chapters after
that deal with distributions and fitting them to data: Chapter 3 provides essential back-
ground on commonly used distributions, Chapter 4 then presents the issues involved in
fitting distributions to data, and Chapter 5 extends this discussion to the special case of
heavy tails. Then come two chapters on correlation: first locality and correlation among
workload attributes in Chapter 6, and then long-range dependence and self-similarity in
Chapter 7. The book ends with chapters on hierarchical generative models (Chapter 8)
and case studies (Chapter 9).
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Workload Data

Workload modeling is based on the analysis of workload data. But where does the data
come from? There are two main options: analyze data that is available anyway, or
collect data specifically for the workload model. Collecting data can be done in two
ways, using active or passive instrumentation. Whatever its source, the data needs to be
carefully inspected to eliminate unrepresentative artifacts. Importantly, collected data
can and should be made publicly available for use by other researchers.

Issues such as representativeness necessarily relate to modeling approaches as dis-
cussed later in the book. Thus we sometimes make use of concepts here that will only
be defined and discussed in subsequent chapters. In most cases this should not be a
problem.

2.1 Data Sources

Data about workloads is collected from real systems. With luck, the data may already be
collected for you. Otherwise, you will need to instrument the system to collect the data
yourself.

2.1.1 Using Available Logs

The most readily available source of data is from accounting or activity logs [654]. Such
logs, which are kept by many systems for auditing, record selected attributes of all activi-
ties. For example, many computer systems keep a log of all executed jobs. In large-scale
parallel systems, these logs can be quite detailed and are a rich source of information for
workload studies. Web servers are also often configured to log all requests.

Note, however, that such logs do not always exist at the desired level of detail. For
example, even if all communication on a web server is logged, this is done at the request
level, not at the packet level. To obtain packet-level data, specialized instrumentation is
needed.
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Example: Analyzing an Accounting Log

A good example is provided by the analysis of activity on the 128-node NASA Ames
iPSC/860 hypercube supercomputer, based on an accounting log. This log contained
information about 42,264 jobs that were submitted over a period of three months. An
excerpt of the log is shown in Figure 2.1. For each job, the following data was available:

• User ID. Special users (such as system administrators and Intel personnel) were
singled out.

• Application identifier. Applications that were submitted directly were identified
consistently, meaning that if the same application was run more than once the
same identifier was used. This information was not available for jobs submitted
via the NQS batch system, so these jobs were just numbered sequentially. Unix
utilities (e.g. pwd, nsh) were identified explicitly.

• Number of nodes used by the job. Because each job has to run on a subcube, this
number is always a power of two. Zero nodes indicates that the job ran on the host
computer, rather than on a partition of the hypercube.

• Runtime in seconds.

• Start date and time.

In addition, the log contained special entries to record special situations, such as down-
time and dedicated time in which only a select user could access the machine. For exam-
ple, the special entry with code D in Figure 2.1 indicates nearly two hours of dedicated
time, which seems to have gone unused in this case.

At first glance it seems that the information about each job is rather puny. However,
an analysis of this log provided a wealth of data, part of which is shown in Figures 2.2 to
2.10 (for a full analysis, see [244]). At the time, all this represented new data regarding
the workload on parallel supercomputers. Highlights include the following.

A whopping 28,960 jobs (68.5%) ran on a single node (Figure 2.2). Of these, 24,025
(56.8% of the total) were invocations of the Unix pwd command1 by system support
staff — apparently a practice used to check that the system was operational. But all the
sequential jobs together used only 0.28% of the total node-seconds (Figure 2.3). Large
jobs with 32 nodes or more accounted for 12.4% of the total jobs, but 92.5% of the node-
seconds used. Thus the average resource usage of large jobs was higher than that of small
jobs (Figure 2.4). This was due not only to the fact that they used more processors, but
also to the fact that their runtimes tended to be longer. This also means that if you would
pick a random job on this system, it would most likely be sequential. But if you would
look at what a randomly-chosen node is running at an arbitrary instant, it would most
probably be running a process belonging to a large job.

1Unix employs a hierarchical file system, in which files are identified by their path from the root of the
file system. To make things simpler, the system supports the notion of a “working directory”. File names
that do not begin at the root are assumed to be relative to the working directory. pwd is a command that
prints the path of the working directory.
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user2 cmd2 1 13 10/19/93 18:05:14
sysadmin pwd 1 21 10/19/93 18:06:03
user8 cmd33 1 31 10/19/93 18:06:10
sysadmin pwd 1 16 10/19/93 18:06:57
sysadmin pwd 1 3 10/19/93 18:08:27
intel0 cmd11 64 165 10/19/93 18:11:36
user2 cmd2 1 19 10/19/93 18:11:59
user2 cmd2 1 11 10/19/93 18:12:28
user2 nsh 0 10 10/19/93 18:16:23
user2 cmd1 32 2482 10/19/93 18:16:37
intel0 cmd11 32 221 10/19/93 18:20:12
user2 cmd2 1 11 10/19/93 18:23:47
user6 cmd8 32 167 10/19/93 18:30:45
user6 cmd8 32 336 10/19/93 18:38:58
user6 cmd8 32 278 10/19/93 18:45:07
user6 cmd8 32 149 10/19/93 18:50:19
user6 cmd8 32 83 10/19/93 18:53:25
user6 cmd8 32 123 10/19/93 18:55:56
special CUBE D 6780 10/19/93 19:00:00
user11 nqs126 64 4791 10/19/93 20:53:58
user2 nqs127 64 10926 10/19/93 20:53:58
sysadmin pwd 1 3 10/19/93 22:14:50
sysadmin pwd 1 4 10/19/93 22:21:57
sysadmin pwd 1 3 10/19/93 22:29:15
user29 cmd211 64 29 10/19/93 22:31:46
user29 cmd211 64 4885 10/19/93 22:34:44
intel0 nsh 0 67 10/19/93 23:26:43
intel0 nsh 0 17 10/19/93 23:28:15
root nsh 0 31 10/19/93 23:28:47
user0 nqs128 128 8825 10/19/93 23:56:12
user1 nqs129 128 9771 10/20/93 02:23:21
sysadmin pwd 1 16 10/20/93 06:21:25
sysadmin pwd 1 16 10/20/93 06:21:52
sysadmin pwd 1 15 10/20/93 06:22:19
sysadmin pwd 1 16 10/20/93 06:22:45
sysadmin pwd 1 15 10/20/93 06:32:38
sysadmin pwd 1 15 10/20/93 06:33:07
sysadmin pwd 1 15 10/20/93 06:33:35
sysadmin pwd 1 14 10/20/93 06:34:08
user2 nsh 0 10 10/20/93 06:44:05
user2 cmd1 64 4474 10/20/93 06:44:18
user2 cmd2 1 20 10/20/93 06:57:59
user7 cmd9 8 110 10/20/93 07:05:19
user2 cmd2 1 15 10/20/93 07:08:46
user7 cmd9 8 78 10/20/93 07:45:41
user7 cmd9 32 11 10/20/93 07:47:24
user7 cmd9 8 203 10/20/93 07:47:42
user2 cmd2 1 16 10/20/93 07:50:51
user7 cmd9 8 175 10/20/93 07:53:24

Figure 2.1: Sanitized excerpt of data from the NASA Ames iPSC/860 log.
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Figure 2.2: The distribution of job sizes in the NASA Ames log, showing a classification
according to source (system vs. users at day, night, or weekend) or according to type
(direct interactive jobs vs. NQS batch jobs).
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Figure 2.3: The distribution of job sizes in the NASA log when jobs are weighted by
their resource requirements in total node-seconds.
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Figure 2.6: Job submittal pattern. Left: distribution of job arrivals at different times of
day. Right: average node-seconds required by jobs that arrive at different times.

An important observation is that the data about start day and time implicitly contains
information about what jobs ran during prime time or nonprime time and during the
weekend. Furthermore, it is possible to determine the detailed distribution of jobs at
different times of the day. This is also shown in Figures 2.2 and 2.3.

The average utilization of the machine over the whole log was 50%. It was higher
on workdays than on weekends, and higher at night when the NQS batch system was
active (Figure 2.5). The degree of multiprogramming tended to be higher during the
day, as more smaller jobs could run. Recall that 128-node jobs that block the whole
machine were typically run using NQS at night. Most jobs ran during work hours, with
a slight dip for lunch (Figure 2.6). But jobs running at night required more resources.
The distribution of interarrival times during the day seems to be more or less normal
(bell shaped) in log-space, with most of the mass between about 30 seconds to about 10
minutes. During the night and on weekends the distribution is flatter (Figure 2.7).

Although most applications were only run once, some were run many times, and
even on many different partition sizes (Figure 2.8). Moreover, the same application was
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Figure 2.10: Distribution of levels of activities of different users. Some submitted thou-
sands of jobs (note the logarithmic scale: bars represent increasing ranges of numbers).

often run repeatedly by the same user (Figure 2.9). Focusing on such situations, it seems
that the dispersion of runtimes is rather low, indicating that it is possible to predict future
runtimes based on past measurements. The level of activity displayed by different users
is also very varied: some ran few jobs and others thousands (Figure 2.10).

Details Box: Web Server Logs

Analysis is simplified if the analyzed log has a standard format. One such example is the
common log file format used by most web servers to log their HTTP activity. This format
specifies that the log file be a plain ASCII file, with a line for each entry. Each entry
includes the following space-separated fields.

Source — The hostname or IP address of the host from which the request was sent. This
may indeed represent the client machine, but it may also be some proxy along the
way. In particular, when clients access a web server via an ISP, it is possible for one
IP address to represent multiple clients, and also for the requests of a single client
to come from multiple IP addresses (if each one passes through a different proxy)
[579, 461].

User — The user name of the user on the source host. Note, however, that many instal-
lations do not record user data because of privacy concerns. This and the next fields
are then given as “-”.

Authentication — The user name by which the user has authenticated him- or herself on
the source host.

Timestamp — The date and time, surrounded by square brackets (e.g., [01/Jul/1995:00:00:01
-0400]). The -0400 is a time-zone offset — the difference from UTC (Coordinated
Universal Time, the new Greenwich time) at the time and place that the log was
recorded.

Request — The request itself, surrounded by double quotation marks (for example, “GET
/˜feit/wlmod/”). The request starts with the request type, also called the “method”.
Typical types are

GET — Retrieve the requested document. The GET can be conditional on some
property of the requested document, e.g., that it has been recently modified.
The document is always accompanied by HTTP headers.
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HEAD — Retrieve HTTP header that would accompany an identical GET request,
but do not retrieve the document itself. This can be used to check whether a
cached copy is up to date.

POST — Send data to the server. This is typically used when filling out a web
form.

Experience shows that the vast majority of requests are GET; even on a blogging
site, where POST is used to post new content or comments, only 2.5% of requests
are POST [377]. In addition there are PUT, DELETE, TRACE, and CONNECT
requests, but these are also seldom used.

Status — The HTTP status code returned to the client. Common codes include

200 — The request was executed successfully.
204 — The request succeeded, but no content is being returned.
206 — The request succeeded, but only partial content is being returned.
301 or 302 — The requested page was moved either permanently or temporarily
304 — The requested document has not been modified, so it does not have to be

returned again.
401 — The request failed because authorization is required. This may happen when

a login attempt fails.
403 — The request failed because access is forbidden.
404 — The request failed because the requested document was not found.
504 — The server failed to fulfill the request because it timed out trying to get

service from another server.

Size — The size in bytes of the contents of the document that was returned.

Regrettably, life is not always so simple. For starters, an extended common log format has
also been defined. This appends another two fields to each entry:

Referrer — The page that contained the link that was clicked to generate this request,
surrounded by double quotes. The semantics of this field are somewhat murky when
frames are used [579].

User agent — The name and version of the browser used by the user, surrounded by
double quotes. This sometimes indicates that the request does not come from a user
browser at all, but from some robot crawling the web. Note, however, that the data
may not be reliable, as some browsers may masquerade as others.

In addition, all web servers also have their own proprietary formats, which typically have
the option to record many more data fields.

End Box

2.1.2 Active Data Collection

If data is not readily available, it should be collected. This is done by instrumenting
the system with special facilities that record its activity. Major challenges with this
process are doing it without being obtrusive or modifying the behavior of the system
while measuring it.
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Passive Instrumentation

Passive instrumentation refers to designs in which the system itself is not modified. The
instrumentation is done by adding external components to the system that monitor sys-
tem activity but do not interfere with it. This approach is commonly used in studies of
communication, where it is relatively easy to add a node to a system that only listens to
the traffic on the communication network [436, 698, 303, 261, 279]. It is also possible
to monitor several locations in the network at the same time, and correlate the results
[738].

An important consideration when monitoring network traffic is that both directions
of flow should be monitored. Otherwise, one may see requests from a server but not
the replies, or vice versa. At a lower level, one may see packets but not the acknowl-
edgments, thereby losing important information on network conditions. Luckily, the
best place to observe both directions is at end nodes, where it is also easiest to deploy
monitoring devices [484].

When monitoring it is also possible to perform online analysis. For example, the
Tstat tool analyzes packet headers in order to follow TCP flows [484]. This enables
the identification of flows that were aborted without being closed properly. The tool can
also gather statistics regarding the relaitve use of different protocols, the values of header
fields such as time-to-live, which indicates how many hops the packet has passed, and
many other parameters. It can also identify Applications based on packet signatures,
finite-state machines, or more sophisticated classification schemes [261].

The amount of hardware needed for monitoring depends on the complexity of the
system and the desired data. For example, in 2007 commodity hardware could be used
to record packet traces on a 1 GB/s link, but not on a 10 GB/s link [597]. A rather
extreme example is a proposal to add a shadow parallel machine to a production parallel
machine, with each shadow node monitoring the corresponding production node, and all
of them cooperating to filter and summarize the data [585].

Active Instrumentation

Active instrumentation refers to the modification of a system so that it will collect data
about its activity. This instrumentation can be integrated into the original system de-
sign, as was done for example in the RP3 [403]. However, system modification is more
commonly done after the fact, when a need to collect some specific data arises.

A potential problem with instrumentation is that it requires the system to be rein-
stalled. A good example is the Charisma project, which set out to characterize the I/O
patterns on parallel machines [517]. This was done by instrumenting the I/O library and
requesting users to relink their applications; when running with the instrumented library,
all I/O activity was recorded for subsequent analysis. However, the activity of users who
did not relink their applications was not recorded.

In the specific case of libraries this problem may be avoided if the library is loaded
dynamically as is now common practice, rather than being compiled into the executable.
But a more general solution is to perform the instrumentation itself dynamically. This
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is the approach taken by the Dyninst framework, which can patch binaries of running
programs without requiring a recompilation or even a restart [339, 94]. The idea is to
first write a snippet of code that should be introduced into the running program (e.g.
to record the occurrence of a certain event). Then identify the point in the program
where the snippet should be inserted. Replace the instruction at that location by a branch
instruction to the new snippet; at the end of the snippet add the original instruction and
a branch back. This has the effect of running the snippet before the original instruction
each time control arrives at this point in the program.

When performing active instrumentation, an important consideration is the scope of
the collected information. An interesting example is provided by the PatchWrx toolset,
which was designed to collect information about applications running under Windows
NT. Such applications naturally make extensive use of libraries and system services.
Thus, to gain insight into the behavior of applications and their usage of the system, both
the applications themselves and the system need to be monitored. To do this, PatchWrx
modifies the Privileged Architecture Library to reserve a buffer of physical memory be-
fore the system is booted (this is specific to the Digital Alpha architecture) [112]. It also
patches the binary images of the kernel and all major libraries and adds instrumentation
code that uses the Privileged Architecture Library to record events in this buffer. Using
this pre-allocated buffer reduces overhead without having to make significant modifica-
tions to the system, because the system simply does not know about this memory at all.
Moreover, the same buffer is used to store information across all applications and the
operating system.

There are cases in which the required data is inaccessible, and clever techniques have
to be devised in order to extract it indirectly. A case in point is harvesting the addresses
of memory accesses. Modern microprocessors contain a sizable on-chip cache, so most
of the memory references are never seen off-chip [705]. Only the misses can be observed
directly, but the statistics of the misses can be quite different from the statistics of the
original address stream.

The growing recognition that performance is important but hard to understand has
led many modern systems to be designed with builtin performance monitors that can be
activated at will. For example, Pentium and later processors include counters that can be
configured to count a host of event types [122, 651, 652]. While most of these event types
relate to the processor’s performance (e.g., counting cache misses, various types of stalls,
and branch mispredictions), some can be used to characterize the workload. Examples
include counting multiplication operations, division operations, MMX operations, loads,
and stores. Significantly, counting can be limited to user mode or kernel mode, thus
enabling a characterization of user applications or of the operating system.

Example Box: Using Performance Counters with PAPI

A big problem with performance counters is that they are platform specific: the way to
activate and access the counter of floating-point multiplication instructions is different on
a Pentium, an Opteron, or a Power machine. Moreover, some architectures may not even
provide a certain counter, and in others the desired metric may not be available directly but
may be derived based on other counters that are available.
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To make life simpler, several projects provide high-level interfaces to these counters. One
is PAPI, which stands for “Performance API” (see URL icl.cs.utk.edu/projects/papi/).
This provides a large set of predefined events that one may want to count, functions in
C and Fortran to configure and access them, and implementations for a host of platforms
including all the more commonly used ones. In addition, it also supports direct access to
the platform’s original events.

As an example of the data that may be obtained, here is a list of the PAPI predefined events
relating to branch instructions:

PAPI BR INS total branch instructions
PAPI BR CN conditional branch instructions
PAPI BR TKN conditional branch instructions that were taken
PAPI BR NTK conditional branch instructions that were not taken
PAPI BR PRC conditional branch instructions that were predicted correctly
PAPI BR MSP conditional branch instructions that were mispredicted
PAPI BR UCN unconditional branch instructions

End Box

The examples just described all relate to servers and PCs. But how does one instru-
ment web-based activity? In that case the enterprises that operate the infrastructure have
an advantage: Google and Yahoo! can collect web search data from their systems, and
Facebook can collect data about social networking activity, but other researchers can-
not. But in some cases manipulations are actually possible. For example, Nazir et al.
wrote three Facebook applications using the Facebook Developer Platform [511]. The
architecture of such applications is that Facebook forward user requests to application
servers operated by the application writers. In this way they could collect data about
how millions of users used their applications, including about the users’ underlying so-
cial relations (one of the applications was for sending virtual hugs).

Reducing Interference

Obviously, instrumenting a system to collect data at runtime can affect the system’s
behavior and performance. This may not be very troublesome in the case of I/O activity,
which suffers from high overhead anyway, but may be very problematic for the study of
fine-grained events related to communication, synchronization, and memory usage.

Several procedures have been devised to reduce interference. One common approach
is to buffer data (as done in PatchWrx [112]). This is based on the observation that
recording events of interest can be partitioned into two steps: making a note of the event
and storing it for future analysis. Instead of doing both at once, it is possible to note the
event in an internal buffer and to output it later. This provides for more efficient data
transfer, and amortizes the overhead over many events. Double buffering can be used to
overlap the recording of events in one buffer with the storage of events already recorded
in the other. Naturally care must be taken not to overflow the buffers and not to lose
events.
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Figure 2.11: Relative share of Internet protocols at a daily resolution, based on a 15-
minute sample taken each day at 2:00 PM.

Yet another possible solution to the problem of interference is to model the effect
of the instrumentation, thereby enabling it to be factored out of the measurement results
[463]. This leads to results that reflect real system behavior (that is, unaffected by the
instrumentation), but does not address the problem of performance degradation while the
measurements are being taken. An alternative is to selectively activate only those parts
of the instrumentation that are needed at each instant, rather than collecting data about
the whole system all the time. Remarkably, this can be done efficiently by modifying
the system’s object code as it runs [339].

Sampling

A potential problem with both passive and active data collection is the sheer volume of
the data that are produced. For example, full address tracing for a microprocessor would
need to record several addresses for each instruction that is executed. Assuming about
109 instructions per second, each generating only one address, already leads to a data
rate of 4 GB/s. Handling this amount of data not only causes severe interference but can
also overwhelm typical storage systems.

A mechanism that is often used in data-intensive situations is sampling. For example,
recording only a small subset of the address data may reduce its volume considerably,
alleviating both the interference and storage problems. But sampling has to be done
correctly in order not to affect the integrity and usefulness of the data. On the one hand,
it is preferable to use random sampling rather than a deterministic sampling of, say, every
hundredth data item, which may lead to aliasing effects if the data happen to have some
periodicity. On the other hand, the approach of selecting a random subset of the data
may also be problematic.

An example of problems with sampling is shown in Figure 2.11. This shows the dis-
tribution of packets belonging to different Internet protocols, as recorded on a transpa-
cific high-speed link. As can be seen, the distribution changes significantly from day to
day. Moreover, there are occasional unique events such as the extremely high percentage
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Figure 2.12: Relative share of Internet protocols at a monthly resolution, comparing an
average over the entire month with using the first day of the month as a representative
sample.

of UDP packets on 14 October 2004. If we were to observe the traffic in detail on any
given day, we might get a distorted picture that is not generally representative.

In fact, the data as presented in Figure 2.11 may also be a victim of such sampling
distortion. Because of the high volume of data, the figure does not really reflect all the
traffic that flowed through the link on each day, but rather a 15-minute sample taken each
day from 2:00 PM to 2:15 PM. Thus, for example, it is possible that the extremely high
percentage of UDP packets observed on 14 October was a relatively short event that did
not really affect the whole day’s traffic in a significant way. To further illustrate this
point, Figure 2.12 compares monthly data about the distribution of Internet protocols,
using two approaches. On the left, each month is represented by the average of all its
daily samples. On the right, each month is represented by a single sample, taken from
the first day of the month. Obviously these single-day samples exhibit much more vari-
ability, including unique non-representative cases on 1 January 2002 and 1 December
2002. The aggregated data for each month is much smoother, leading to a feeling of sta-
tionarity and representativeness (these concepts are discussed at length later). However,
the monthly averaging loses the variability that exists in the original data.

Other problemss occur when the data stream is actually a combination of several
independent streams. Random sampling then allows us to estimate how many different
streams exist, but may prevent us from fully assessing the characteristics of any given
stream. For example, in address tracing, the addresses may be partitioned into disjoint
sets that are handled independently by a set-associative cache. Sampling may then re-
duce the effective locality, affecting the results of cache evaluations. Thus it may be
better to record a single associativity set fully than to sample the whole trace [401]. A
similar effect occurs in web and Internet traffic, where requests or packets are addressed
to different destinations.

The examples just described illustrate substreams that are addressed at distinct des-
tinations. Similar problems may occur when the substreams come from distinct sources.
For example, a stream of jobs submitted to a shared computer facility is actually the
merging of substreams generated by independent users. It may be that each user’s sub-
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stream displays significant predictability, because the user repeatedly executes the same
set of applications. Such predictability may be diminished or even lost if we sample
the whole job stream randomly; a better approach would be to sample at the user level,
retaining all the jobs belonging to a random subset of the users. Similar considerations
apply when trying to characterize user behavior on the web [98].

To summarize, random sampling may cause problems in all cases in which the data
include some internal structure. It is important to design the sampling strategy so as to
preserve such structure.

2.2 Data Usability

Once we have data at hand, we should still consider whether or not the data is actually
usable. Two concerns are the qualitative assessment of whether the data is representa-
tive and worth the effort of modeling, and the technical question of whether the data is
stationary and suitable for statistical analysis.

2.2.1 Representativeness

An underlying assumption of basing workload models on logs is that the logs contain
data about representative workloads. An important issue is therefore to determine the
degree to which data is generally representative. The fear is that the data may simply
be irrelevant for general models, because of the specific situation under which it was
collected, or due to changes in the technology.

A related issue concerns problems that arise from “bad” data. There are two types
of bad data. One is data that should simply be removed before the analysis. This is the
subject of Section 2.3, which deals with data cleaning (i.e., how to clean up the data
and remove the bad parts). The other is data that is missing or wrong; this problem
is obviously harder to handle, and, if it involves large amounts of data, may cause the
whole dataset to be unusable.

Missing Data

One problem that may occur is that not all the workload data appear in the log. This
often occurs in web server activity logs. Such logs list all the requests served by the
server, giving the timestamp, page served, page size, and status of each. The problem is
that many client requests do not get to the server at all and therefore are not logged —
they are served by proxies and caches along the way [579, 267, 266].

Note that whether this is a significant problem or not depends on the context. If you
are interested in the workload experienced by the server, the server log gives exactly
the right data. In fact, had client-side data been available, you would have faced the
considerable difficulty of adapting it to account for all the relevant caching effects. But
if you want to study caching, for example, you need client-side data, not server-side data.
Then the data available from server logs cannot be used directly, as it may be misleading
because of having significantly less repetitions than the original client-side workload
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[309]. To reconstruct the original client request stream requires a model of the effect of
the caches that filtered the requests that arrived at the server.

Another more general type of missing data is that of gaps in the log. Examples can
be seen in the recording of traffic on the WIDE B transpacific link shown in Figure 2.31.
The main reasons for such gaps are either that the system went down and there was
nothing to log, or else the logging infrastructure failed and data was lost.

The effect of missing data on the data quality depends on what you are looking at.
For example, when studying job lengths, having a small fraction of jobs go missing
does not affect the results. But if we are interested in interarrival times the situation is
different. Interarrivals are the intervals from one arrival to the next, so if the system
goes down a very long interval will be recorded [131]. But this outlier is an error in the
measurement, because it actually reflects the time needed to repair the system, not the
time between arrivals. Thus including it in the data makes the data unrepresentative of
the real workload.

Erroneous Data

In some cases the reported data may simply be wrong. One example is misinterpreting
downtime as interarrival time, as described above. But there are many others.

A concrete example of wrong data is provided by the HTTP log from the France’98
Soccer World Cup. This extensive log contains data about 1.3 billion HTTP requests
covering a span of about three months [35]. Among other data, each entry specifies
the size of the file that was retrieved. Surprisingly, for more than 125 million requests
this size is given as 4 GB, in stark contrast with the average file size of 15.5 KB and
the maximal size of 61.2 MB of all other requests. But given that these anomalous large
sizes are all exactly 232−1, they are actually probably the result of writing a signed value
of −1, meaning that the size is not known, in a field that is supposed to be unsigned. In
the vast majority of cases this is not a problem, because these entries in the log represent
requests that failed and therefore don’t have an associated file size. But 8335 of these
entries are for requests that were successful. While this is a vanishingly small number of
requests relative to the full log, assuming that these requests indeed represent downloads
of 4 GB each will completely distort the data.

Other cases may be harder to detect. An example again comes from traces of HTTP
requests and responses. As noted earlier, the HTTP header includes a field specifying
how much data is being transferred (the file size). But this can also be checked inde-
pendently by looking at the actual sizes of the underlying IP packets. A study that did
so revealed that the HTTP headers claimed to transmit 3.2 times as much data as was
actually transmitted in practice [596]. In addition, 35% of the content being transmitted
did not match the content type specified in the headers. But these errors in the headers
data could not be detected without having access to a trace of the packets themselves.

A special type of errors occurs when the data is actually OK, but it is misinterpreted.
For example, consider the data about MapReduce workloads at Facebook available from
the SWIM project [125]. MapReduce applications have two stages, a map stage and a
reduce stage (this is explained in the box on page 499). The workload data contains three

Version 1.0.4, typeset on June 10, 2023



38 CHAPTER 2. WORKLOAD DATA

pita − original data

runtime [s]

0.5 0.6 0.7 0.8 0.9 1

p
ro

c
e

s
s
e

s

0

20

40

60

80

100

120
pita − corrected data

runtime [s]

0.5 0.6 0.7 0.8 0.9 1

p
ro

c
e

s
s
e

s

0

20

40

60

80

100

120

Figure 2.13: Zoom into histogram of pita runtimes shows a resolution problem in the
original data.

fields that represent the data size at the input to the map stage, the data size transferred
from the map stage to the reduce stage, and the data size at the output of the reduce
stage. But for many jobs the input data is very small (only a few hundreds of bytes),
the transfer size is zero, and the output is huge (megabytes or even gigabytes). A more
correct interpretation may then be that these are reduce-only jobs and that the input is
not really input to the map stage, but rather input to the job as a whole that specifies what
the reduce should do.

Modified Data

Another problem that may occur is that the system modifies the data in some way, and
thus the traced data no longer reflects the original workload as it was submitted to the
system. Several examples can be found in networking:

• When large datasets are sent in a unit, they are typically fragmented by the under-
lying communication protocols to accommodate the network’s maximum trans-
mission unit. Moreover, fragmentation may happen more than once, with a lower
level protocol further fragmenting the fragments that were previously created by a
higher level protocol. If the evaluated system does not suffer from the same con-
straints that led to fragmentation on the traced system, the communication might
have been done differently.

• As far as the application is concerned, when it sends a large dataset all the data
is available for sending at once. However, the underlying protocols may pace the
transmission in order to avoid congestion on the network. For example, this is
done by the TCP congestion control mechanism. As a result, the arrival times
of packets do not reflect the time that they were made available for transmission.
Instead, they reflect the time that the network was ready to accept them [265].

Data can also be modified inadvertently when it is recorded. A bemusing example
occurs in the pita dataset of Unix process runtimes from 1998. This data came from a
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system log, as reported by the lastcomm command, which includes runtime in seconds
with a resolution of two decimal digits. Surprisingly, upon inspection it turned out that
there were no processes that ran for the following durations: 0.01, 0.04, 0.07, 0.10, 0.13,
0.15, 0.18, and so on. This is most probably due to using two decimal places to report
values that were originally recorded in binary with a resolution of 1/64 of a second.
Correcting this by increasing the resolution to six decimal digits leads to much more
reasonable data (Figure 2.13).

Local Constraints

The size of the maximum transfer unit of a network is but one example of local pro-
cedures and constraints that may affect the collected workload data. For example, data
on programs run on a machine equipped with only 512 MB of physical memory will
show that programs do not have larger resident sets, but this is probably an artifact of
this limit, and not a real characteristic of general workloads. Likewise, parallel jobs run
on a supercomputer with an administrative limit of 18 hours will not run longer, even
if the actual calculation takes several weeks. In this case users may use checkpointing
to record the achieved progress and restart the calculation whenever it is killed by the
system. The log will then show several 18-hour jobs instead of a single longer job.

Workload Evolution

Another problem is that workloads may evolve with time. For example, data from the
SDSC Paragon show that the distribution of job runtimes changed significantly from
1995 to 1996 (Figure 2.14 left). Note that each of these distributions represents an
entire year of activity by multiple users. So which of these two distributions is more
representative in general? In some cases such differences may be the result of changing
activity patterns, when users learn to use a new system or leave an old system in favor of
a newer one [346]. It is therefore important to capture data from a mature system, and
not a new (or legacy) one. On the other hand, one must expect workloads to evolve in
systems based on new technologies that have not been available in the past. Examples
from recent years include the introduction of Wi-Fi, P2P file sharing, microblogging,
social networks, and cloud computing.

Modifications can also occur when a system is in the midst of production use. Human
users are very adaptive, and quickly learn to exploit the characteristics of the system they
are using. Thus changes to the system may induce changes to the workload, as users
learn to adjust to the new conditions. For example, data from a Cray T3D supercomputer
at LLNL showed that when the scheduling software on the machine was changed, the
distribution of job sizes changed with it. January 1996 was the last full month in which
the Unicos MAX scheduler was used. This scheduler did not provide good support for
large jobs, so users learned to make do with smaller ones. It was replaced by a gang
scheduler that prioritized large jobs, and users soon started to take advantage of this
feature (Figure 2.14 right) [240]. The distribution of job sizes may also change due to a
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Figure 2.14: Left: The distributions of job runtimes on the SDSC Paragon in successive
years. 1996 had many more long jobs than 1995; is this representative? Right: Change
in distribution of job sizes after the scheduler on the LLNL Cray T3D parallel system
was replaced.

configuration change of the underlying hardware, as occurs when additional processing
nodes are added.

Another type of evolution occurs when the dominant applications of a system change.
For example, the characteristics of Internet traffic have changed over the years, as ap-
plications changed from email and ftp to world wide web downloads and peer-to-peer
file sharing [252, 328]. For instance, Park et al. report on a significant change in the
self-similarity of packet traces between 2002 and 2003 as a result of activity by a new
file-sharing application, that exhibited a unique pattern of small UDP packets for ping-
ing neighbors and performing searches [535]. Similar changes have also been observed
in wireless traffic [328]. Likewise, the structure of web traffic changed as more objects
were embedded in web pages, and as banner ads and delivery services caused more data
to be fetched from servers other than the one that served the “top-level” page [330].

Focus on Invariants

Deriving general workload models from data that is subject to local constraints or to evo-
lutionary changes is obviously problematic. The only way to alleviate such problems is
to try and collect data from several independent sources — different web servers, differ-
ent supercomputers, different Internet routers — and analyze all the collected workload
logs. Features that appear consistently in all the logs are probably “real” features that
deserve to make it into the final model [37, 230, 265, 106]. Features that are unique to
a single log are probably best left out. Throughout this book, we attempt to present data
from several distinct datasets in our examples, and comparisons of several workloads are
also used in the case studies of Chapter 9.

As a preview, consider Figure 2.15. This shows the following parallel workload
attributes, all of which show considerable consistency across different installations:
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Figure 2.15: Examples of invariants across distinct workloads.

• Job sizes (in number of processes) in parallel supercomputers, showing the pre-
dominance of serial jobs and powers of two.

• Daily cycle of job arrivals at parallel supercomputers, with low activity after mid-
night, high activity during working hours, and an intermediate level in the evening.

• Distributions of parallel job runtimes for jobs in different ranges of sizes, showing
that small jobs tend to have shorter runtimes, but serial jobs behave more like large
jobs.

Of course, even getting data from several sources may not be sufficient to produce a
general model. A counterexample is given in Figure 2.16, which shows the fraction of
jobs that are serial and powers of two on different parallel systems. The data reveal not
only large differences between different classes of systems, but also significant intraclass
variability. For example, despite being on costly large-scale parallel machines, the work-
loads often include a large number of serial jobs. But the fraction of serial jobs varies
from 11.6% to 43.5%. Likewise, the fraction of power-of-two jobs varies from 39.7% to
65.7%. It is hard to decide from this data what sort of distribution can be called “typical”
or “representative”. The systems with 77–97% serial jobs are those in which jobs are
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Figure 2.16: The fraction of serial and power-of-two jobs differs among systems. (Data
showing all jobs in each log, without cleaning.)

usually structured as large collections of individual — hence serial — processes, called
“bag-of-tasks”. These are typically grid systems. At the other extreme, systems with no
serial jobs are those in which the minimal unit of allocation is a node that has more than
one CPU. In this case some of the jobs may in fact be serial, but we don’t know it.

Finding Representative Slices

The question of representativeness is not unique to workload modeling. It also comes up
when using traces directly to drive a simulation. In particular, it is sometimes desirable
to find a representative slice of the trace, rather than using all of it. For example, this
happens in architecture studies, where a trace can contain billions of instructions. Sim-
ulating the whole trace can then take many hours. By finding a representative slice, we
can obtain good quality results at a fraction of the cost.

As concrete examples, in the context of evaluating computer architectures and cache
designs, Lafage and Seznec suggest using short slices of applications [422], and Sher-
wood et al. suggest using basic blocks [613]. In both cases these are then clustered to
find a small number of repeated segments that can represent the whole application. This
approach works because of the high degree of regularity exhibited by typical computer
programs, which iterate among a limited number of computational phases. It has an ad-
vntage over other approaches employed for trace reduction that use sampling to reduce
the effort needed to collect and process a trace, but disregard the effects on representa-
tiveness [705].
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Measuring Representativeness

The examples just discussed show that the question of representativeness is a difficult
one. But what exactly do we mean when we say that a workload or model is representa-
tive?

The formulaic approach is to require that a representative workload should lead to the
same results as the workloads it is supposed to represent [258, 705, 203, 420]. In other
words, workloadW is representative if using it leads to the same performance evaluation
results as would be obtained using other workloads. Model M is representative if using
it leads to the same results as would be obtained using real workloads. For example,
in the context of microarchitecture studies the workload is a benchmark application.
The superficial measure that a benchmark is representative is to check the instruction
mix, and verify that it is similar to the mix in other applications. But what we really
want is that the benchmark will lead to similar branch prediction behavior, similar data
and instruction cache miss rates, and similar performance in terms of instruction-level
parallelism and cycles per instruction [203].

The problem with this definition or representativeness is that it is not operational.
One reason for this is that it depends on context — a workload may lead to consistent
results in one context, i.e., for one specific set of performance measurements, but not
in another context. The context in which a workload is used has two components: the
system being evaluated, and the performance metric used in the evaluation. We can
assess whether a certain workload or model is representative of other workloads only if
we decide on a specific system and on a specific way in which to measure performance.

For example, if our workload consists of a sequence of web requests, the system
can be a web server with a single disk that serves the requests in the order they arrive,
and the performance metric can be the distribution of response times. A workload that
is representative in this context will not necessarily also be representative in another
context — for example, one in which the server stores its data on an array of a dozen
independent disks, incoming requests are served in an order based on the requested page
size, and the performance metric is the maximal response time experienced by a small
page.

If we are willing to restrict ourselves to one specific context, it is possible to distill
a “representative” workload model [420]. This is done by systematically considering
different workload attributes, and checking their effects on performance within the spec-
ified context. The process is described in Figure 2.17. Starting with an initial list of
workload attributes, these attributes are used to guide an analysis of a given workload,
and to create a model that matches these attributes in the original workload. For exam-
ple, an attribute can be the distribution of request sizes, and the model will be based on a
histogram of the sizes that appear in the given workload. A simulation of the target sys-
tem is then performed for both the original workload and the model. If the performance
results match for the selected performance metrics, the model is declared representative.
If they don’t, additional workload attributes are tried.

But in general such an approach is not practical. We therefore typically settle for a
definition that a workload is representative if it “looks like” the other workloads it is sup-
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Figure 2.17: Idealized process of distilling a representative workload (after [420]).

posed to represent. This is typically interpreted as the workloads having the same statis-
tics: the same distributions of important workload parameters, the same correlations,
and so on. Moreover, we may require that workload elements not only look the same but
that they appear in the correct context, i.e. that they experience the same competition and
interactions with other workload elements as they would in the other workloads [363].
This definition also corresponds to our notion of modeling, in which a good workload
model is one that captures the statistics of the real workloads [427].

2.2.2 Stationarity

Statistical modeling consists of finding a statistical model that fits given data. The sim-
plest case is fitting a distribution: we assume that the data is actually samples from an
unknown distribution, and try to find this distribution. Implied in this approach is the as-
sumption that the distribution does not change from one moment to the next. In technical
terms, this means that we assume that the data is stationary [256].

More intuitively, stationarity means that we assume the system is in a steady state.
Thus the assumption of stationarity is not only a statistical requirement, but often also a
prerequisite for meaningful performance evaluations. After all, if the system is not in a
steady state, meaning that its operating conditions change all the time, what exactly are
we evaluating? Nevertheless, some forms of nonstationarity, notably the daily cycle of
activity, may be important to model in certain situations.

To read more: Stationarity is a basic concept in stochastic processes. It is covered in basic
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probability modeling texts such as Ross [581, chap. 10] and in texts on time series analysis such
as Chatfield [121].

Definitions

More formally, stationarity is defined as follows. Let us describe the workload as a
stochastic process. Thus we have random variablesX1, X2, X3, . . ., whereXi represents
some property of the workload at instant i (the number of arrivals on day i, the runtime
of job i, etc.). A minimal requirement is that all theXis come from the same distribution,
independent of i. This suffices if we are only interested in fitting the distribution. But a
full statistical model also includes additional structure, namely all possible correlations
between different elements.

To include this additional structure in the definition, we start by selecting a number
n and set of indices i1, i2, . . . in of size n. This identifies a set of Xs: Xi1 , Xi2 , . . . Xin ,
which have a joint distribution. Next, we can shift the indices by an amount s, yielding a
different set of Xs: Xi1+s, Xi2+s, . . . Xin+s. The process is said to be stationary if this
new shifted set has the same joint distribution as the original set. Moreover, this property
has to hold for every size n, for every set of indices i1 . . . in, and for every shift s.

The above definition has many consequences. For example, by taking n = 1 and
different shifts s it implies that all the Xis come from the same distribution, so we do
not need to specify this separately. As a result, they all also have the same expected value
and variance. Likewise, the n = 2 case implies that they have the same covariance.

A simple example of a stationary process is when theXis are selected independently
from the same distribution, because in this case there are no correlations between them.
But a process where the Xis are indeed dependent on each other can still be stationary.
However, the requirement that all joint distributions be the same is a very strong one.
Therefore it is more common to use a weaker version of stationarity. The definition
of weak stationarity just requires that the first two moments and the covariance of the
process be the same, namely that

1. All Xs have the same expectation, E[Xi] = m, and

2. The covariance function γ of two Xs depends only on the difference of their in-
dices, and not on the indices themselves:

Cov(Xi, Xj) = γ(i− j)

(Covariance is related to correlation and measures the degree to which two vari-
ables deviate from their means in a coordinated manner. This is explained on page
267.)

Stationarity in Workloads

When we look at workload data we can never be completely sure that it is stationary,
because we always only see part of it and we don’t know how it may change in the
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future. But some types of workload data indeed seem to be (weakly) stationary, whereas
others do not.

Stationary workloads include those that are generated by a uniform process. For
example, the behavior of a single application is often stationary, and corresponds to
the inner loop of the application that is repeated over and over again. This applies to
architectural studies using instruction traces or address traces. If the application has
several computational phases, it may be piecewise stationary — each phase is stationary,
but different from the other phases.

High-throughput workloads that are actually the sum of very many individual con-
tributions also tend to be stationary, especially over short intervals. For example, HTTP
traffic on the Internet when observed for 90 seconds is practically the same as when ob-
served over 4 hours [330]. But it will not be stationary if observed over long periods;
at a minimum, the daily cycle implies that activity at night will be different from that
during peak hours.

The stationarity of high-throughput workloads is a result of the fact that a very large
number of independent workload items occur during a short period of time. But over
longer periods the patterns may nevertheless change. A possible solution to the lack of
stationarity in such cases is to settle again for piecewise stationarity. This means that
time is divided into segments, such that each is stationary; transitions in the workload
occur only at the boundaries of these segments [362]. For example, the daily cycle of
job arrivals can be partitioned into three segments, representing high levels of activity
during peak hours, intermediate levels in the evening, and low activity at night [131].

In low-throughput workloads a very long period of time is needed to collect large
numbers of workload items. During such long periods conditions may change, and dif-
ferent users may become active, leading to changes in the workload and therefore non-
stationarity. Examples of workload evolution were cited above, and shifting user activity
is covered in Chapter 8.

Another problem that occurs over long time spans is that workloads may contain
an inherent dispersiveness. As explained in Chapter 5, many distributions that describe
workloads are heavy-tailed. This means that occasionally something “big” happens,
which distorts the statistics of the workload seen before it occurred. Thus the workload
is always in a transient condition [157, 307], meaning that:

• It takes a very long time to converge to stable statistics,

• It may happen that another “big event” occurs before convergence is achieved, and

• Therefore the observed statistics are actually not representative, because they are
a combination of the “normal” workload and the “big events”.

Consequently it may be better to try and capture the heterogeneity of the workload rather
than trying to find a single representative configuration [264].

Dealing with Cycles

While modeling nonstationary data may be problematic, there exist simple types of non-
stationarity that can in fact be handled easily. The most common type of nonstationarity
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in computer workloads is to have a cycle — either the daily or the weekly cycle of activ-
ity. A workload with cycles can usually be modeled as a combination of a deterministic
cyclic component plus a random stationary component:

Xi = Ci mod T + Zi

where Z is the random part, C is the cyclic part, and T is its period or cycle time.
The first step in dealing with cycles is to identify them. This is done by the autocor-

relation function, which identifies lags at which the data is similar to itself. For example,
if we are looking at data that displays a daily cycle, the data will be similar to itself when
shifted by 24 hours. (How this works is described on page 292.)

Once we know the period T , we can proceed to characterize the complete workload
as a combination of its two components: the cyclic part and the random part. The first
component, denoted by Ct for 0 ≤ t ≤ T , gives the shape of the basic cycle. Given
t = i mod T , Ct is supposed to be the same from cycle to cycle. Note that this does
not have to be a nice mathematical function like a sine or polynomial. Thus an empirical
function can be obtained by averaging over all the cycles in the available data. This
is akin to finding the long-term average of the weather measured on the same date in
successive years.

The second component represents the random fluctuations that occur at each instant,
quantified as Zi = Xi − Ci mod T . This is akin to discussing the weather on a certain
day in terms of how it deviates from the long-term average of the weather measured on
the same date in successive years.

Of course, life is not always so simple. For example, there may be slow, long-
term changes from cycle to cycle, that preclude describing the cycles using the same
function Ct for each one. Instead, Ct must change with time in some way. Returning
to the weather analogy, this is analogous to weather patterns that change due to global
warming. When such effects exist, a more complicated model is needed.

Dealing with Trends

Another simple type of nonstationarity that can be handled easily is a linear (or more
generally, polynomial) trend. This means that the workload changes in a well-defined
way with time. If the trend is linear, a certain increment is added with each time unit.
Thus, if we subtract this trend, we are left with a stationary process. The full model is
then the residual stationary process plus the trend.

The reason for focusing on (or hoping for) polynomial trends is that differentiation
will eventually lead to a stationary process [83, 362]. Consider a process with a linear
trend. This means that we assume that the process has the structure

Xi = A0 +A · i+ Zi

where A represents the deterministic linear trend and Zi is a random stationary process.
The first differences of this process are

Xi+1 −Xi = A+ Z ′
i
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Figure 2.18: Hits to the WC’98 website, during four and a half weeks before the tourna-
ment actually started.

where Z ′
i = Zi+1 − Zi is stationary because it is the difference between two stationary

variables.

If the trend is quadratic, second differences need to be used, and so on for higher
order polynomials. A simple way to assess whether additional differencing is needed is
to look at the autocorrelation function; for a stationary process, it usually decreases to
zero pretty quickly. In most cases first differences or at most second differences suffice.

What to Model

An example with both a trend and cyclic behavior is shown in Figure 2.18. The data is
hits to the World Cup finals website from 1998, before the tournament actually started.
It shows a daily cycle, a weekly cycle, and a steady increasing trend, all superimposed
with random fluctuations.

Most of this book deals with techniques that are best applied to stationary data. This
could be taken as implying that if workload data includes trends or cycles, these features
should be removed before modeling. This is most likely an incorrect conclusion. If a
workload exhibits a trend or a cyclic behavior at the time scales that are of interest for
the evaluation at hand, then these features may be much more important than any other
attributes of the workload. Thus one may need to focus on the cycle and trend rather
than on what is left over after they are removed.

Modeling of data with trends and cycles, and specifically the data in Figure 2.18, is
discussed in more detail in Section 6.5.
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2.3 Data Filtering and Cleaning

Before data can be used to create a workload model, it often has to be cleaned up. This
may be done for one of four main reasons [249].

1. One type of data that should be removed is erroneous or unusable data. For exam-
ple, if a certain job has a start record but no end record, we cannot know how long
it ran. In many cases the data about the job start is then useless.

2. Another type of data that may be removed is data about erroneous or useless work,
e.g., jobs that were aborted or connections that failed. Their removal is justified
by a desire to only consider the “good” work performed by the system. However,
given that a real system also has to deal with “bad” work, removing such data
should be considered with care.

3. A third situation in which some data may be filtered out is when the workload
includes several classes, and we are only interested in some of them. In order to
focus on the type of workload in which we are interested, we need to filter out the
other classes.

4. Workload logs also sometimes include abnormal events that “don’t make sense”;
filtering them out enables us to focus on the “normal” workload and avoid artifacts
[249, 128]. Of course, the decision that something is “abnormal” is subjective.
The purist approach would be to leave everything in, because in fact it did happen
in a real system. But on the other hand, while strange things may happen, it is
difficult to argue for a specific one; if we leave it in a workload that is used to
analyze systems, we run the risk of promoting systems that specifically cater for a
singular unusual condition that is unlikely to ever occur again. And one must not
forget the possibility that the abnormal event was actually an error.

Cleaning data is sometimes shunned due to fears of being accused of tinkering with the
data. In such cases it may be useful to consider the opposite perspective of acceptance
testing. Given that data that is not filtered out is accepted, you should ask yourself
whether the quality of the data you are using is indeed acceptable. If you have doubts,
parts may need to be cleaned.

2.3.1 Noise and Errors

One simple aspect of workload cleaning involves handling errors. The simplest of all is
obvious logging errors, such as jobs that have a termination record but no initialization
record; there is little that can be done with such partial data, so it should be deleted.
Likewise, there is probably no use for jobs that had a negative runtime or used a negative
amount of memory (unless, perhaps, if you are only interested in arrival times).

Another simple case is measurement errors. For example, consider a study of the
process by which new work arrives, and specifically the tabulation of interarrival times
(that is, the intervals from one arrival to the next). If the system goes down for three

Version 1.0.4, typeset on June 10, 2023



50 CHAPTER 2. WORKLOAD DATA

CTC SP2

J

1996

J A S O N D J

1997

F M A M J

u
ti
li
z
a

ti
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ANL Intrepid

J
2009

F M A M J J A S O

u
ti
liz

a
ti
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SDSC DataStar

M

2004

A M J J A S O N D J

2005

F M A M

u
ti
li
z
a

ti
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Sandia Ross

N F

2002

M A N F

2003

M A N F

2004

M A N F

2005

u
ti
li
z
a

ti
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 2.19: Daily instantaneous utilization at several large-scale parallel systems ex-
hibits load anomalies. The Ross cluster apparently also underwent a configuration
change that reduced the number of processors.

hours, no new work will be recorded in this period. This will cause a very large inter-
arrival time to be tabulated, which should be removed from the interarrival time data
[131]. Such cleaning of the data may be facilitated by noticing that no jobs are actually
scheduled in this interval [521].

Regrettably, it is not always possible to identify the source of the errors. For example,
consider the instantaneous utilization data at several large parallel machines shown in
Figure 2.19, namely the fraction of processors that are actively serving some job at each
instant; it is calculated by tracking the start and end time of each job, and summing the
processors used by jobs that have started but have not yet terminated. Naturally, this
should be bounded by the number of processors in the system, but the data seems to
indicate that in many instances more than 100% of the processors were allocated [250].
However, such exceptions are not easily attributable to any specific subset of jobs, so it
is not clear which jobs should be removed to fix the problem.

In other cases the data may be corrected instead of being removed. An example
comes from the France’98 Soccer World Cup HTTP trace described above (page 37).
The problem was that some entries specified file sizes of 4 GB, probably as a result of
entering a value of−1 into an unsigned data field. In this specific case it is not necessary
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to remove these entries; instead, it is possible to search for other entries referring to the
same files and use the sizes specified there instead of the erroneous data.

Data logs may also include noise, i.e. data that is correct but irrelevant for the desired
need. An example that includes several types of problems comes from a log of Unix
sessions, as displayed using the last command (Figure 2.20). One major problem is the
pseudo-user “reboot”, which is logged whenever the system reboots. The session time
given in parentheses is then the time that the system was up, rather than a genuine session
time; in the example shown in the figure this is nearly a whole month. Related to this
problem are sessions that were disrupted by the reboot, and therefore do not represent the
real duration of a full user session (in such cases the end time of the session is given as
“crash”). There are also incomplete sessions that simply did not terminate yet when the
data was collected. Then there is the concern of how to regard two consecutive sessions
by the same user only a minute or two apart: are these indeed individual sessions, or
maybe only an artifact of an accidental disconnection, in which case their durations
should be summed up? Finally, another potential issue is that two types of sessions are
recorded here: some are local, but many are via dialup (as identified by the gateway’s
hostname).

As the example of crashed sessions demonstrates, workload logs may also contain
data about activities that failed to complete successfully. A common example is jobs that
were submitted and either failed or were killed by the user. Other examples are requests
from a browser to a web server that result in a failure status, including the notorious 404
file-not-found error code, the related 403 permission-denied, and others. Should these
jobs or requests be included or deleted from the data? On the one hand, they represent
work that the system had to handle, even if nothing came of it. On the other hand, they
do not represent useful work and may have been submitted again later. Thus keeping
them in the data may lead to double counting.

An interesting compromise is to keep such data and explicitly include it in the work-
load model [137]. In other words, part of the workload model will be to model how often
jobs fail or are aborted by the user who submitted them, or how often requests are made
to download non-existent files. This will enable the study of how failed work affects
system utilization and the performance of “good” work.

Distortions of real workloads due to double counting are not limited to repeating
requests that had failed. For example, this problem happens in web server logs when
redirection is employed to serve the requested page even if the client requested it using
an outdated URL. But redirection does not occur automatically at the server: instead,
the server returns the new URL, and the client’s browser automatically requests it. Thus
the request will appear twice in the server’s log. Luckily, this situation can be easily
identified because the original request will have a 301 or 302 status code [579]. A more
difficult situation occurs when pages are updated automatically. In this case the repeated
requests should probably be retained if we are interested in server load, but not if we are
interested in user activity [726].

Yet another example is provided by the Enron email archive. This is a unique large-
scale collection of email messages that was made public as part of the investigation into
the company’s collapse. It includes messages to and from about 150 users, organized
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user1 ipaddr1 ipaddr1 Tue Apr 29 17:00 - 17:53 (00:53)
user2 ipaddr2 ipaddr2 Tue Apr 29 13:27 still logged in
user3 pts/1 dialup Tue Apr 29 12:41 - 13:25 (00:43)
user4 pts/2 office1 Tue Apr 29 12:14 - 16:07 (03:52)
user5 pts/3 dialup Tue Apr 29 11:22 - 13:24 (02:01)
user6 pts/4 office2 Tue Apr 29 10:40 - 10:41 (00:00)
reboot system boot cluster1 Tue Apr 29 10:21 - 15:25 (28+05:04)
user3 pts/5 dialup Tue Apr 29 09:36 - crash (00:45)
user7 ipaddr3 ipaddr3 Tue Apr 29 09:00 - crash (01:21)
user8 pts/6 dialup Tue Apr 29 00:02 - 02:29 (02:26)
user3 pts/7 dialup Mon Apr 28 20:29 - 22:56 (02:27)
user9 pts/8 dialup Mon Apr 28 19:51 - 22:20 (02:29)
user10 pts/6 dialup Mon Apr 28 19:23 - 22:34 (03:11)
user11 pts/6 office3 Mon Apr 28 19:05 - 19:07 (00:02)
user11 pts/6 office3 Mon Apr 28 18:58 - 19:03 (00:04)
user1 pts/5 dialup Mon Apr 28 12:35 - 12:55 (00:20)
user12 pts/9 dialup Mon Apr 28 12:21 - 01:01 (12:40)
user13 ftpd0001 dialup Mon Apr 28 11:59 - 12:07 (00:07)
user14 ftpd0002 dialup Sun Apr 27 21:17 - 21:27 (00:10)
user12 pts/5 dialup Sun Apr 27 17:47 - 00:20 (06:33)
user15 pts/9 office4 Sun Apr 27 17:36 - 20:59 (03:22)
user16 pts/10 office5 Sun Apr 27 17:19 - crash (1+17:01)
user17 pts/1 dialup Sun Apr 27 16:38 - 16:41 (00:02)
user14 pts/1 office6 Sun Apr 27 14:21 - 14:24 (00:02)
user14 ftpd0003 dialup Sun Apr 27 09:18 - 09:19 (00:01)
user1 pts/1 dialup Sat Apr 26 21:28 - 21:30 (00:01)
user18 ftpd0004 dialup Sat Apr 26 19:39 - 19:49 (00:10)
user19 ftpd0005 dialup Sat Apr 26 14:06 - 14:23 (00:16)
user20 pts/10 dialup Sat Apr 26 13:29 - 22:26 (08:57)
user18 ftpd0006 dialup Sat Apr 26 12:51 - 13:01 (00:09)
user18 ftpd0007 dialup Sat Apr 26 12:42 - 12:52 (00:10)
user21 pts/1 dialup Sat Apr 26 11:27 - 14:02 (02:34)
user22 pts/1 dialup Sat Apr 26 08:42 - 10:43 (02:00)
user23 pts/1 dialup Fri Apr 25 18:05 - 18:12 (00:07)
user18 ftpd0008 dialup Fri Apr 25 13:10 - 13:20 (00:10)
user18 pts/1 dialup Fri Apr 25 11:25 - 14:05 (02:39)
user18 ftpd0009 dialup Fri Apr 25 11:10 - 11:20 (00:10)
user24 pts/1 dialup Thu Apr 24 21:47 - 21:54 (00:07)
user25 ftpd0010 dialup Thu Apr 24 21:24 - 21:29 (00:05)
user21 pts/1 dialup Thu Apr 24 17:33 - 21:40 (04:06)
user26 pts/1 dialup Thu Apr 24 16:15 - 16:20 (00:05)
user1 pts/1 dialup Thu Apr 24 13:57 - 14:07 (00:09)
user23 pts/1 dialup Thu Apr 24 07:01 - 08:19 (01:18)
user27 pts/1 dialup Thu Apr 24 01:51 - 02:00 (00:08)
user28 ftpd0011 dialup Thu Apr 24 01:02 - 01:02 (00:00)
user28 pts/1 dialup Thu Apr 24 00:35 - 00:36 (00:00)
user28 pts/1 dialup Thu Apr 24 00:17 - 00:21 (00:03)
user28 pts/1 dialup Wed Apr 23 23:40 - 23:49 (00:09)

Figure 2.20: Excerpt from data produced by the last command. User names, machine
names, etc. were sanitized.
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Figure 2.21: The workload during holidays, weekends, and nights is less intense, and
probably also statistically different from the workload during prime working hours. In
the right-hand graph, weekends are shaded.

into folders. While most of the folders represent genuine classification of messages by
the users, many users also have an “all documents” folder that includes copies of all the
messages in the other folders. These should, of course, be discounted when tabulating
various metrics of email activity, such as the number of messages sent and received, how
many were addressed to each recipient, and how they were classified into folders [407].

2.3.2 Multiclass Workloads

Even without errors and abnormal events, it is often necessary to filter the collected data.
One example where filtering is needed occurs when the workload is actually composed
of multiple classes of workloads that have been merged together (e.g., [717, 763, 249,
58]). If we want to model just one of these classes, we need to filter out the rest.

A straightforward example comes from hardware address tracing, which involves
recording all the addresses that the CPU places on the memory bus. Although most
of these are indeed memory addresses, some may be special addresses that are used to
activate and control various devices. Thus if we are interested in memory behavior and
caching, we should filter out the non-memory addresses (which are a different class of
addresses).

A common type of multiclass workload is the combination of prime time and non-
prime time workloads. Most users are active during normal work hours, say 9 to 5 on
weekdays. This is when most of the workload is generated (Figure 2.21). During the
night, on weekends, and on holidays, much less work is submitted. If we are interested
in modeling the characteristics of prime time load, we should focus on prime time data,
and filter out data that is generated at other times. Such filtering would also avoid admin-
istrative activity that is often performed at night or during weekends so as not to interfere
with the system’s intended work [129] (and see Figure 2.24).

As another example, consider the modeling of interactive user sessions. Data can be
collected from a Unix server using the last command, which lists all user logins since
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Figure 2.22: The distribution of session durations for different classes of users. Only
staff who have dedicated workstations generate sessions longer than 10 hours. (Data
truncated at 220 sessions; there are more sessions of 0 or 1 hour.)

the last reboot and the lengths of the ensuing sessions. Figure 2.22 shows the results of
doing so on a shared server. The data contains many short and intermediate sessions, and
a few extremely long ones. The longest sessions seem impossible, because they extend
for several days. This mystery is solved by noting that the workload is actually com-
posed of three classes: students working from student terminal labs, people accessing
the server via remote dial-up networking, and staff working from their offices. The first
two classes log off immediately when they complete their work and are responsible for
the bulk of the data. This is the data that truly characterizes interactive sessions. Mem-
bers of the third class, that of university staff, simply open windows to the server on their
desktop machines, and leave them open for days on end. This data is not representative
of interactive work, and should be filtered out.

Incidentally, it may also be the case that this dataset should be cleaned because it
contains non-representative items. In particular, the large number of 0-length and 1-
hour modem sessions may reflect connection problems and automatic termination of
nonactive sessions, respectively, rather than the real lengths of user sessions. Notably,
the interactive student sessions do not have these modes.

Multiclass workloads also occur in Internet traffic and web access. A well-known
problem is the identification of the source using IP addresses. Many addresses indeed
correspond to a specific computer and thereby identify a unique source. But if network
address translation (NAT) is used, a single IP address may actually represent an entire
network [461]. Likewise, if DHCP is used by the Internet service provider to assign IP
addresses dynamically, such addresses may be reused to represent different clients [458].
Moreover, even a single computer may actually represent multiple users. Thus, from a
workload analysis point of view, IP addresses come in two classes: those that represent
a single user and those that represent many users.

Of course, not all multiclass workloads need to be cleaned: sometimes we are in fact
interested in the complete workload, with all its complexities. For example, file-sharing
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Figure 2.23: Histogram of job sizes in the NASA Ames log, showing abnormal number
of sequential system jobs.

systems typically handle two very different types of files: audio clips and full-length
movies [309]. Although it might be interesting to evaluate the performance of each type
individually, this has to be done in the context of a system that supports both types.
Likewise, Internet traffic includes both legitimate traffic and “background radiation” —
the unproductive traffic generated by malicious activity (mainly automatic scanning of
addresses and ports in an attempt to find vulnerable systems) and system misconfigura-
tions [58]. Again, this traffic in itself is not very interesting, but an evaluation of service
received by legitimate traffic must take it into account.

2.3.3 Anomalous Behavior and Robots

A special case of multiclass workloads is when one class is normal and another is anoma-
lous [117]. Anomalous behavior is one that has a significant effect on the workload, but
is not representative of general workloads. Observations reflecting such behavior should
therefore be removed before starting the modeling. This is especially true if the source
of the anomalous behavior is the system or its administrators, and not its users.

One rather extreme example of anomalous behavior was shown in the analysis of
the NASA Ames iPSC/860 machine (repeated in Figure 2.23). Of the 42,264 jobs that
appeared in that log, 24,025 were executions of the pwd Unix command on a single
node. This anomaly was not due to users who forgot their working directory; rather, the
system’s administrators used these runs to verify that the system was up and responsive.
In other words, a full 56.8% of the data in the log are actually bogus. But once identified,
it is easy to remove.

Another example of a unique behavior is shown in Figure 2.24, which displays the
daily arrival patterns at five large-scale parallel machines, averaged over the complete
logs. While variations occur, all machines exhibit many more arrivals during work hours
than during the night, as might be expected. The one exception is the SDSC Paragon,
which also has very many arrivals between 3:30 and 4:00 AM — more than twice as
much as the average during peak hours. Upon inspection, this seems to be the result of
a set of 16 jobs that is run every day (Figure 2.25). The regularity in which these jobs
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Figure 2.24: Arrival patterns at five large-scale parallel machines. The large peak at 3:30
AM on the SDSC Paragon is an obvious anomaly.

appear leads to the assumption that they are executed automatically at this time so as
not to interfere with the work of real users. These jobs should therefore probably be
removed from the log if normal user activity is sought.

A similar example was reported in an analysis of wireless network activity from
Dartmouth College [414]. This showed an extreme spike of activity every Monday morn-
ing at 10 AM, that completely dominated wireless activity across the entire campus. This
was traced to a course held at that time in the business school. Again, this spike — al-
though real — was very atypical of normal usage, and should not be used to represent
normal behavior.

The set of jobs that are executed at the same time every day is an example of a
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user5 1 180 10/02/96 03:49:08
user5 1 248 10/02/96 03:49:29
user5 1 846 10/02/96 03:49:51
user5 1 3008 10/02/96 03:50:14
user5 1 715 10/02/96 03:50:37
user5 1 68 10/02/96 03:50:59
user5 1 455 10/02/96 03:51:22
user5 1 486 10/02/96 03:51:44
user5 1 50 10/02/96 03:52:05
user5 1 28 10/02/96 03:52:27
user5 1 101 10/02/96 03:52:50
user5 1 3524 10/02/96 03:53:13
user5 1 49 10/02/96 03:53:37
user5 1 81 10/02/96 03:54:00
user5 1 330 10/02/96 03:54:24
user5 1 826 10/02/96 03:54:57

user5 1 38 11/02/96 03:49:07
user12 64 22096 11/02/96 03:49:25
user5 1 252 11/02/96 03:49:29
user5 1 848 11/02/96 03:49:51
user2 16 22854 11/02/96 03:49:54
user5 1 3005 11/02/96 03:50:12
user5 1 1810 11/02/96 03:50:34
user5 1 66 11/02/96 03:50:56
user5 1 463 11/02/96 03:51:20
user5 1 639 11/02/96 03:51:43
user5 1 50 11/02/96 03:52:07
user5 1 26 11/02/96 03:52:32
user5 1 104 11/02/96 03:52:53
user5 1 3850 11/02/96 03:53:14
user5 1 48 11/02/96 03:53:35
user5 1 83 11/02/96 03:53:56
user5 1 336 11/02/96 03:54:18
user5 1 1157 11/02/96 03:54:44

user5 1 42 12/02/96 03:49:06
user5 1 311 12/02/96 03:49:27
user5 1 1076 12/02/96 03:49:48
user5 1 3037 12/02/96 03:50:09
user5 1 2603 12/02/96 03:50:33
user5 1 77 12/02/96 03:50:55
user5 1 468 12/02/96 03:51:18
user5 1 385 12/02/96 03:51:42
user5 1 59 12/02/96 03:52:05
user5 1 36 12/02/96 03:52:28
user5 1 116 12/02/96 03:52:51
user5 1 1733 12/02/96 03:53:12
user5 1 51 12/02/96 03:53:32
user5 1 88 12/02/96 03:53:54
user5 1 338 12/02/96 03:54:15
user5 1 1939 12/02/96 03:54:39

Figure 2.25: Three excerpts of data from the SDSC Paragon log.
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Figure 2.26: Robots in a Unix server workload.

robot: software that creates work automatically. A much more extreme example is the
following one, from a Unix server (Figure 2.26). This workload is actually composed of
three classes:

1. A set of more than 400 jobs submitted automatically by a root script each morn-
ing at 04:15 AM. These are all Unix rm commands, most probably issued by a
maintenance script used to clean up temporary disk space.

2. Massive activity by user 13, starting in the evening hours of December 22. Upon
closer inspection, this was found to consist of iterations among a half-dozen jobs,
totaling about 200, that are submitted every 10 minutes. In subsequent days, this
pattern started each day at 6:40 AM and continued until 2:50 AM the next day.
Again, such a regular pattern is obviously generated by a script.

3. Normal behavior by other users, with its fluctuations and daily cycle.

With the advances made in using software agents, robot workloads are becoming
prevalent in many areas. Examples of robot activity that may distort workload statistics
include the following:

• Spam email, where many messages are repeated and sender addresses are spoofed
to prevent the identification of the true sender.

• Spiders that crawl the web to create indexes for web search engines. Such crawls
tend to be much more uniform than human browsing activity, which displays lo-
cality and limited attention [180].

• Web monitors that repeatedly ping a site to verify its accessibility from different
locations. For example, one e-commerce site conducted a usage survey and were
pleased to find significant activity at night, which was thought to represent non-
U.S. clients. But on closer inspection this activity turned out to be largely due to
a web monitoring service that they themselves had enlisted and forgotten to factor
out [579].
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• Repeated searches for the same item, possibly intended to make it seem more im-
portant and rank high in the “most popular search” listings. For example, a log
of activity on the AltaVista search engine from 8 September 2002 included one
source that submitted 22,580 queries, of which 16,502 were for “britney spears”,
and another 868 for “sony dvd player”. Interestingly, another 4,305 were for
“dogs” and 615 for “halibut”. Many of these queries came in interleaved se-
quences, where the queries of each subsequence come at intervals of exactly five
minutes.

• Computer viruses, worms, and denial-of-service attacks, which create unique In-
ternet traffic patterns. It should be noted, though, that this sort of activity is so
common on Internet backbone links that it should probably not be considered to
be an anomaly [82].

In fact, the very fact that robots typically exhibit unique behavioral patterns can be used
to identify them. For example, it has been suggested that robots visiting web search
engines may be identified as those users that submit more than 100 queries a day [375,
372]. However, it is questionable whether a single sharp threshold is suitable for all
datasets. Note, also, that in some cases robots try to disguise themselves as humans, and
therefore explicitly try to mimic human behavior.

2.3.4 Workload Flurries and Flash Crowds

A more difficult situation is depicted in Figure 2.27 [249], which shows patterns of
activity across the whole log for four large-scale parallel machines. In the two years of
activity on the LANL CM-5 parallel supercomputer, for example, there were three bursts
of activity that were 5–10 times higher than normal and lasted for several weeks. Each
of these bursts can be attributed to one or two specific users2. It is thus relatively easy
to filter out this anomalous behavior and to retain only the normal behavior [249, 696].
However, it is hard to justify an outright cancellation of these three peaks of activity.
After all, they were created by three different users at different times, and account for a
non-negligible fraction of the total workload. Moreover, similar flurries of activity occur
in other logs. Therefore the phenomenon itself seems to be recurring, even if individual
flurries are all different from each other.

The problem is that such flurries of activity by individual users can have a significant
effect on the overall workload statistics. By definition, the existence of a flurry implies
the submittal of a very large number of jobs over a relatively short span of time. This
causes their interarrival times to be shorter than those observed under normal conditions.
Because the flurries may account for a sizable fraction of the total workload, they affect
the observed distribution of interarrival times for the entire log (Figure 2.28). The effect
is especially large in the LANL log, where the flurries account for a large fraction of the
activity, but is negligible in the CTC log, where there is only one rather small flurry.

2It is actually not completely clear in this case whether the first two of these are genuine users. One is
root and the other may be Thinking Machines personnel.
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Figure 2.27: Arrivals per week in long logs. Large flurries of activity can typically be
attributed to one or two users.

Flurries also affect other workload attributes, because the jobs in a flurry tend to
be much more homogeneous than those in the entire workload. An example is given
in Figure 2.29, focusing again on the LANL CM-5. This shows the effect of flurries
on the distributions of four different workload attributes: the interarrival times, the job
runtimes, the job sizes, and the average memory usage per node. In all the cases, the
distributions with the flurries tend to have modes that reflect the jobs that compose the
flurry itself.

More importantly, it is clear from the figure that the differences between the work-
load statistics observed in 1995 and those in 1996 stem from the flurries. When the
flurries are removed, the distributions for the two years are rather close to each other. It
is the flurries, which are each unique, that cause the workloads in the two years to look
different. In other words, the workload is actually composed of two components: the
“normal” workload, which is rather stable and representative, and the flurries, which are
anomalous and unrepresentative.

Although flurries as identified here are limited in time, long-term abnormal activity
by users may also occur. An example is shown in Figure 2.30. In this case, a single user
completely dominates the machine’s use for a whole year, and again for several months
two years later. All told, this user’s activity accounts for 57% of all the activity recorded
in the log. In addition, as shown in the scatterplot, the combinations of job size and
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Figure 2.28: Bursts of activity by hyper-active users bias the distribution of interarrival
times.

runtime that characterize this work are distinct and not like the combinations exhibited
by other users.

Abnormal workloads are not limited to the workloads on parallel supercomputers
such as those shown in these examples. Figure 2.31 shows five years worth of data from
access point B of the WIDE backbone (a transpacific link). On each day, a sample of 15
minutes was taken at 2 PM. Analyzing the protocols used by the observed packets shows
considerable variability in protocol usage. Some of this variability reflects changing
applications, such as the use of the Napster file-sharing service in 2001–2002. There
is also a prominent example of a worm attack in late 2003, when the Welchia worm
used ICMP packets to scan for hosts. But there are also many unexplained short-lived
anomalies, in which there is a surge of using UDP or some other protocol that is not one
of those that are commonly observed.

Another well-known example comes from web workloads, where surges of activity
called flash crowds may occur. The trigger is usually some external event that leads to
a convergence of traffic on an unsuspecting server. In many cases these are breaking
news stories, but scheduled events such as sporting events can also lead to similar traffic
patterns. The characteristics of flash crowds are discussed in Section 9.4.3.

A possible way to handle phenomena like flurries and flash crowds is not to erase
the anomalous behavior, but rather to model it separately. In other words, the log can be
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Figure 2.29: Flurries of activity have a strong effect on workload statistics. On the
LANL CM-5 the main difference between the 1995 and 1996 portions of the log is due
to flurries.
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Figure 2.30: Abnormal activity by a single user that accounts for 57% of the entire log.

partitioned into two disjoint classes: the normal workload and the anomalous workload.
Each of these is then modeled in isolation [249, 696, 76]. The models can then be used
separately or combined, according to need. Flurries, in particular, can be integrated into
user-based workload models, as discussed in Chapter 8.

It should be noted that flurries can be either intentional or the result of a bug (Figure
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Figure 2.31: Five years of Internet traffic data at daily resolution shows considerable
variability and many unique events.
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that run the Unix ps command, the result of a bug in implementing an operating systems
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2.32). But separate modeling of flurries is suitable in either case. If buggy flurries are
a common occurrence, they should be included in workload models. But they should
probably not be included in the mainstream workload model for which the system is
optimized.

Separate modeling is attractive because it can also be used for other situations, e.g.
attacks [96]. Given a log of activity on a server, large outbreaks may indicate automated
attacks. Identifying them and separating them from the general workload model then
achieves two objectives: it prevents optimization of the server to handle attack loads,
and it enables the development of tools that will identify and counteract attacks [665].

2.3.5 Identifying Noise and Anomalies

Given a data log, we would obviously want to be able to identify abnormal situations
such as those described above. All these examples were identified by hand (or, rather,
by eye): the data was presented graphically in different ways, and strange phenomena
became apparent. Once identified they could be removed by writing a script to filter out
the undesired data.

But can this identification be done automatically? It may be possible to devise rules
to identify known forms of deviations in specific circumstances. For example, the fol-
lowing criteria may be used to identify robots in web server logs [180, 281, 658]:

• Well-behaved robots often identify themselves in the data they provide for the user
agent field of the log (for real users, this field identifies the browser being used).

• Robots may also implicitly identify themselves by retrieving the file robots.txt,
which specifies the rules of conduct that robots are requested to follow on this
site. In addition, robots tend not to provide data in the referrer field.

• Web robots, especially those that crawl the web in the service of search engines,
are typically interested mainly in text. They tend to avoid downloading embed-
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ded images, because such images consume significant bandwidth and are hard to
classify.

• Robots may also have unique temporal activity patterns. On the one hand, they
may issue requests at a rapid rate that would be impossible for a human user. On
the other hand, they may spread out their activity and access the site at, say, precise
intervals of five minutes in order to reduce their impact.

A more general procedure that was advocated by Cirne and Berman is to use clus-
tering as a means to distinguish between “normal” and “abnormal” data [137]. The
methodology is to partition the workload log into days, and then to characterize each
day by a vector of length n (specifically, this was applied to the modeling of the daily
arrival cycle, and the vector contained the coefficients of a polynomial describing it).
These vectors are then clustered into two clusters in Rn. If the clustering procedure
distinguishes a single day and puts it in a cluster by itself, this day is removed, and the
procedure is repeated with the data that is left. Note, however, that this specific ap-
proach has its risks: first, abnormal behavior may span more than a single day, as the
above examples show; moreover, removing days may taint other data (e.g., when inter-
arrival times are considered). Still, clustering may in general be useful for separating out
rare abnormal data.

Another technique that has been proposed for removing anomalies from Internet
traffic data (or, rather, for negating their effect on evaluation results) is the following
[176]. First, hash the data into a number of groups based on some select workload
attribute, for example a flow’s source IP address or destination port. Take care that
all the packets of each flow are mapped together. Now analyze each of these groups
independently as you would analyze the full data. The crux of the method is to then use
the median of the results derived for the different groups as representing the whole data.
Assuming that anomalies map to less than half of the groups, the median results will
indeed represent clean data with no anomalies. The number of groups to use depends on
the workload length and the number of anomalies that may be expected. For short traces
of Internet traffic, a small number such as eight groups suffices.

One point that deserves to be emphasized is that outliers that are simply much larger
than other values are not necessarily anomalous. One sometimes sees data analyses in
which an upper bound on “good” data is postulated, and all higher values are discarded.
This may be justified only if the data is known to come from an appropriate distribution.
For example, if the data is known to come from a normal distribution, where the tails
decay exponentially, values that are several standard deviations from the mean are not
expected to appear under realistic conditions [686]. More generally, the bound may be
set based on Chauvenet’s criterion, which is to remove those samples whose probability
is less than 1

2n (where n is the number of samples).
A more sophisticated statistical consideration is to single out values that are both far

from the mean and far from their neighbors [119]. Thus a sample Xi is characterized by

Yi = |(Xi+1 −Xi)(Xi − X̄)|
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Figure 2.33: The sizes of TCP packets on LBL’s Internet connection in 1994 exhibit a
strong concentration in the range of 0–512 bytes, with very few larger packets of up to
1460 bytes.

The Yi values are then normalized by dividing by their standard deviation. Values that
are larger than a threshold depending on the number of samples are flagged as suspect.

In general, however, it is very dangerous to remove outliers based on such statistical
considerations. One reason is that in many cases these high values are very significant —
especially in positive and highly skewed distributions, which are common in computer
system workloads. We discuss this issue at length in Chapter 5, which deals with heavy
tails. But similar problems may also occur in distributions with a very limited support.
For example, Figure 2.33 shows the sizes of 677,846 TCP packets on LBL’s Internet
link during one hour on 28 January 1994. The vast majority of the packets are up to 512
bytes long, but some reach a maximal size of 1460 bytes. The average packet size is
138.86 and the standard deviation 219.90, so maximally sized packets are a whopping
six standard deviations from the mean; they are even farther away from the median,
which is only 2 bytes. But removing these larger packets on such statistical grounds is
obviously unjustified.

The sad truth is that outliers can take many different forms, and we do not have
good mechanisms to reliably detect and classify them. A possible conceptual definition
of outliers is that they are data points that are anomalous and therefore an uninteresting
distraction in a given modeling context, but may potentially have a significant effect on
the derived model. But in computer workloads, the anomalies that can change the model
are often very interesting and important for the analyst, and therefore should not be
regarded as noise [31, 117]. A careful manual inspection of the data, based on domain-
specific understanding, is still the best approach.

2.4 Educated Guessing

Using available logs or the active collection of information can only be done if the target
systems actually exist. But what if we want to characterize the workload on the En-
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Type Examples Good guess Bad guess
location access to memory addresses spatial locality uniform access

access to web servers temporal locality

size runtimes of processes heavy-tailed exponential
sizes of files modal uniform

arrivals requests arrive at server daily cycle Poisson process
self-similar

popularity pages delivered by server Zipf distribution uniform

Table 2.2: Summary of guidelines for educated guessing. The meanings of the different
guesses are discussed at length in subsequent chapters.

terprise’s “beam me up” mechanism? Although this specific device may still be some
distance from implementation, the rapid progress of technology continuously leads to
situations in which we need to evaluate systems that do not have working counterparts.
For example, the Internet protocols were developed long before any network carried
significant traffic, let alone the vast amounts of data that the Internet carries today. De-
velopment of services for mobile devices faces the same uncertainty, not to mention
cases where the devices themselves are completely new (e.g., [183]).

We therefore need to make assumptions about the workloads that systems will en-
counter without the benefit of data from similar systems [55]. One common approach
is to base the assumptions on mathematical convenience — assume a workload that is
easy to analyze. However, with the accumulation of knowledge about different types of
workloads, we can start to identify patterns that seem to be repeated in many different
contexts. These are general invariants that characterize not only different workloads of
the same type, but also different types of workloads. It is therefore relatively safe to
assume that these patterns will also appear in the workloads of future systems.

The best guess depends on the type of feature that is being considered. One type of
feature is related to locations that are visited one after the other — memory addresses,
web servers, and so on. It is well known that such sequences most often display locality
of reference, a pattern that was identified in the earliest computers and that lies at the
basis of all forms of caching. It is a good guess that future workloads will also display
locality. At the very least, departure from this practice should be justified. We will
discuss locality in Section 6.2.

Another type of feature relates to size. For example, process sizes are measured by
the seconds of runtime and file sizes are measured by bytes of disk space. In many cases,
real-life distributions turn out to be skewed: there are many small items and a few big
ones. Moreover, the big ones are sometimes VERY BIG. Distributions that include such
large values are called heavy-tailed and are discussed in Chapter 5. Note that the typical
distribution observed is continuous, and one does not see a clear distinction between the
small and large items. In other words, the distribution is not bimodal.

A major issue in dynamic workloads is the arrival process. A very common as-
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sumption is that work arrives uniformly over time, in a Poisson process. This has the
memoryless property, and is very convenient for analysis (these concepts are explained
in Section 3.2.1). However, in many cases it is not justified. The arrivals at many systems
turn out to be self-similar, as described in Chapter 7. Nevertheless, when load is high
and results from the interleaving of multiple sources, arrivals may appear independent
as in a Poisson process [105].

Finally, it is sometimes necessary to make assumptions about the relative popularity
of different items, such as web servers or pages within a single server. The distribution
of popularity turns out to also be very skewed, and often follows a Zipf distribution.

The above guidelines for educated guessing are summarized in Table 2.2. While they
are not universal truths, they deserve to be considered carefully when other information
is not available.

Note that guessing patterns based on past experience is better than just wild guessing,
but it is nevertheless still guessing. It is therefore important to accompany guessing with
sensitivity checking. This means that we need to check the sensitivity of performance
evaluation results against the details of the guess. This is done by modifying the guess
and checking the effect of the modification on the results. If the effect is large, we need
to be more careful with our guessing, or perhaps admit that we cannot provide a single
conclusive answer.

2.5 Sharing Data

Data acquisition is a major problem for workload modeling. Some data exists but is not
known or accessible to those who need it. In other cases data needs to be collected ex-
plicitly, which poses both technical and administrative challenges. Identifying anomalies
that should be removed is often a fortuitous affair.

The conclusion is that data should be made available and shared. Doing so will
promote the construction and use of good models, as well as the accumulation of infor-
mation. The easiest way to do so is to contribute data to an existing site [534, 259]. As
an alternative you can maintain your own archive, but that should be done only if there
is no established archive for your data, and you are willing to commit to maintain it for
many years to come.

Importantly, sharing the raw data is not enough. It is equally important to share meta-
data, meaning information about the shared data. This includes both context information
(from what system was the data captured? when was it captured?) and experience with
using it. For example, it is important to share information about problems in the data,
and any data cleaning that was performed [250].

Existing workload websites include the following. Most of them were set up to
share data collected and owned by the site managers. Some, like the Parallel Workloads
Archive, the Internet Traffic Archive (which regrettably seems to be dormant), and Dat-
Cat are intended to serve as a repository for data from multiple sources. A recurring
problem is that the sites do not survive past a single funding cycle or a change in in-
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terest of their initiators. As a community, we do not yet have the culture of supporting
centralized data repositories and maintaining them indefinitely.

Active — Sites that seem to continue to include new data last I checked

• The Parallel Workloads Archive, containing accounting logs from large-scale par-
allel supercomputers since 1993:
URL http://www.cs.huji.ac.il/labs/parallel/workload/

• The SNIA IOTTA repository, with extensive I/O traces:
URL http://iotta.snia.org/

• The Cooperative Association for Internet Data Analysis (CAIDA) site:
URL http://www.caida.org/

• RIPE Network Coordination Center Data Repository with Internet routing and
traffic data:
URL https://labs.ripe.net/datarepository/

• The MAWI backbone traffic archive with packet traces from transpacific links:
URL http://mawi.wide.ad.jp/mawi/

• The CRAWDAD archive of wireless data:
URL http://crawdad.org/

• Wikipedia hourly data on page views since December 2007:
URL http://dumps.wikimedia.org/other/pagecounts-raw/

Accessible — Sites from which data can be accessed, but there has been no activity for
some years

• DatCat, the Internet data measurement catalog, which includes some of the other
data sources listed here (e.g. the CAIDA and CRAWDAD datasets) and also some
others:
URL http://www.datcat.org/

• The Internet Traffic Archive.:
URL http://www.acm.org/sigcomm/ITA/

• The Grid Workloads Archive, containing accounting logs from large-scale grid
systems:
URL http://gwa.ewi.tudelft.nl/pmwiki/

• The LBNL/ICSI Enterprise Tracing Project, with Intranet rather than Internet traf-
fic data:
URL http://www.icir.org/enterprise-tracing/

• Video Frame Size Traces:
URL http://www-tkn.ee.tu-berlin.de/research/trace/trace.html

• Email corpus from Enron corporation:
URL http://www.cs.cmu.edu/%7Eenron/

Gone — Sites that used to exist but seem to be gone last I checked
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• The Tracefile Testbed, with logs of MPI calls and other events in parallel applica-
tions:
URL http://www.nacse.org/perfdb/

• The BYU Performance Evaluation Laboratory Trace Collection Center, with ad-
dress, instruction, and disk I/O traces:
URL http://traces.byu.edu/

• The New Mexico State University Trace Database, with address traces for proces-
sor architecture studies:
URL http://tracebase.nmsu.edu/tracebase.html

• The NLANR Internet traces:
URL http://moat.nlanr.net/

2.5.1 Data Formats

When preparing data, an important consideration is the format. Based on experience
with the Parallel Workloads Archive [534], the following suggestions can be made.

• When collecting data, it is best to use normal signed integers and double-precision
floats. The saved bits of unsigned values and lower precision are not worth the
trouble of subsequent conversion errors and irretrievably lost resolution.

• In the interest of portability, it is best to store the data in plain ASCII files, rather
than machine-specific binary formats or application-specific database formats. A
possible exception is when huge data volumes are being recorded [27]; however,
one needs to consider whether such large volumes are indeed needed, and in any
case compression can be used.

• Strive for uniformity, e.g. expressing the data for each item as a fixed set of space-
separated (or comma-separated) fields. If a standard format does not exist for
your domain, define one and stick to it. De facto standard formats may exist if the
data is collected by a standard tool, such as tcpdump. When designing a format,
consider the following:

– Different sources may produce different datasets, so you need to strike a
balance between using the intersection of all sources and their union.

– Some data items are “core” and universally useful, whereas others are only
needed for specialized tasks.

– Defining a format with lots of fields risks bloated data files that are devoted
mainly to saying “no data for this field”.

– Whatever data you decide to discard will be lost forever.
– The format should be readable by humans and easy to parse by computer.

• The simplest structure is to use uniform records in which each record (a row in
the file) contains all the fields. A file with such rows is equivalent to a single
table from a relational database. But in some cases it may make sense to use
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multiple files with different structures connected by specific key fields — similar
to having multiple tables in a database. One example is to have one table with
data about jobs, and another with data about the infrastructure (especially when
the configuration changed, parts were down, etc.). This complementary data may
be very important when analyzing the jobs’ data. Another example is having one
table with the general data about each job (submit time, runtime, etc.), and another
about the specifics of allocated resources. The key tying the two tables to each
other is the job ID. Each job has one entry in the first table, but multiple entries in
the second, allowing for a listing of all the different resources it used.

• Three examples of easy to parse formats are the following:

– Fields separated by whitespace. This has the advantage of also being easy
to look at for human users, especially if the fields are aligned. A potential
problem occurs if a field is a list of items; do not group them by surrounding
the field with quotation marks as in "item1 item2 item3", because this will
be impossible to parse by splitting on whitespace. It is therefore better to
concatenate them with commas (and no spaces!) as in item1,item2,item3.
However, this does not work for multiword strings.

– Separate the fields with commas, leading to the so-called “comma-separated
values” format (CSV, sometimes denoted by a .csv suffix). This supports
fields that are multiword strings with spaces, but is less convenient for human
users.

– Separate fields by tabs and allow spaces within a field. The problem with
this option is that it may be hard for humans to spot field boundaries.

• Another possible format is XML. This has the advantage of being a standard for-
mat, so many software packages that parse XML are available. In addition, it
supports nested fields and attributes. However, it tends to create bloated files that
are inconvenient for humans to read. Alternatives that are more human-friendly
are JSON and YAML. These too have many packages that generate and parse
them.

Note that the XML standard format pertains only to the way things are written, not
to the actual structure. For example, a user’s name may be expressed by a simple
tag such as

<username uid="13">John Smith</username>

or by a more complicated nested structure like

<user>
<firstname>John</firstname>
<lastname>Smith</lastname>
<userid>13</userid>

</user>
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This is an application-specific choice, and not defined by the standard. Thus ap-
plications that use the data must know in advance the intended semantics and the
set of tags and attributes that are used.

• Use the appropriate resolution for each field. For example, always using two dec-
imal places for numerical data is wrong, because fields with integral values (e.g.
number of processors) will always have a meaningless suffix of “.00”, whereas
fields with very small values might lose all their data or suffer from rounding
problems. Recall also that computers work in binary. If you see data fields with
decimal values that all end with 5 or 25 or 75, this most probably indicates that too
few bits are being used. In a related vein, appropriate units should be used. For ex-
ample, consider whether to record memory usage in bytes, kilobytes, megabytes,
or gigabytes.

• Pay special attention to timestamps. For jobs and other items related to user activ-
ity a resolution of seconds is sufficient. For networking and architecture a resolu-
tion of microseconds or even nanoseconds may be needed. Two common formats
for date and time are

– Seconds since some specific point in time, which is convenient for calcu-
lating the difference between timestamps. One common choice is to start
counting at the moment that recording of the log started, so the initial times-
tamp is 0. Another is to use Unix time, meaning seconds since the epoch of
00:00:00 on 1 January 1970 in Greenwich. Each second can then be labeled
with a date and time according to its local time zone, which should also be
noted in the log. Unix time is typically considered to be a 32-bit signed
value, so it will overflow in January 2038. However, it is expected that by
that time 64-bit values will be used.

– Wallclock date and time at the location where the log was recorded, which
is more convenient for human consumption. This should be accompanied
by a time-zone offset (i.e., the difference from UTC for this timestamp) to
enable reliable calculation of differences between timestamps. The offset
can change at different times of the year, depending on whether daylight
savings time is in effect or not.

• Strive for consistent semantics. A bad example comes from the AOL search logs,
where entries denote either queries or clicks on results. The format first identifies
the query using a source, timestamp, and query string. In case of a click, the
result rank and clicked URL are added. The unfortunate result is that clicks are
associated with the timestamp of when the query was submitted, rather than with
a timestamp of when the click occurred.

• Files should be self-documenting. Each file should start with header comments
that specify where the data comes from and the time frame over which it was
collected. Again, the format of the core header comments should be standardized.

• Files should have unique identifiers or names. These IDs should encode the source
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and time frame in an abbreviated form. Version numbers should be used if the
same dataset has several versions (e.g., a raw version and a cleaned version).

To illustrate these recommendations, Figure 2.34 contains an excerpt from the be-
ginning of a workload file from the Parallel Workloads Archive. This is in the archive’s
“standard workload format” (SWF) [118, 534]. Comment lines start with a “;”. Each
job is described by a single line with the following 18 space-separated fields:

1. Job number: a counter field, starting from 1.

2. Submit time in seconds, relative to the start of the log.

3. Wait time in the queue in seconds.

4. Runtime (wallclock) in seconds. “Wait time” and “runtime” are used instead of
the equivalent “start time” and “end time” because they are directly attributable
to the scheduler and application, and are also suitable for models where only the
runtime is relevant.

5. Number of allocated processors.

6. Average CPU time used per processor, both user and system, in seconds.

7. Average memory used per node in kilobytes.

8. Requested number of processors.

9. Requested runtime (or CPU time).

10. Requested memory (again kilobytes per processor).

11. Status: 1 if the job was completed, 0 if it failed, and 5 if canceled.

12. User ID: a number, between 1 and the number of different users.

13. Group ID: a number, between 1 and the number of different groups.

14. Executable (application): a number, between 1 and the number of different appli-
cations appearing in the log.

15. Queue: a number, between 1 and the number of different queues in the system.

16. Partition: a number, between 1 and the number of different partitions in the sys-
tem.

17. Preceding job number, used in case this job depends on the termination of a pre-
vious job.

18. Think time from preceding job.

2.5.2 Data Volume

An important consequence of the selected format is its effect on the volume of data that
needs to be stored. For example, XML is notorious for data bloat, because each datum is
surrounded by tags specifying its meaning. Thus a parallel job using 32 PEs (processing
elements) for 20 minutes may be represented by the record
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; SWFversion: 2
; Computer: Intel iPSC/860
; Installation: NASA Ames Research Center
; Acknowledge: Bill Nitzberg
; Information: http://www.nas.nasa.gov/
; http://www.cs.huji.ac.il/labs/parallel/workload/
; Conversion: Dror Feitelson (feit@cs.huji.ac.il) Nov 12 1999
; MaxJobs: 42264
; MaxRecords: 42264
; UnixStartTime: 749433603
; TimeZoneString: US/Pacific
; StartTime: Fri Oct 1 00:00:03 PST 1993
; EndTime: Fri Dec 31 23:03:45 PST 1993
; MaxNodes: 128
; Queues: queue=1 just means batch, while queue=0 is a direct job
; Note: There is no information on wait times - the given submit
; times are actually start times
; Note: group 1 is normal users
; group 2 is system personnel
;

1 0 0 1451 128 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1
2 1460 0 3726 128 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1
3 5198 0 1067 128 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1
4 6269 0 10927 128 -1 -1 -1 -1 -1 -1 2 1 -1 1 -1 -1 -1
5 17201 0 2927 128 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 -1 -1
6 20205 0 3 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
7 20582 0 3 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
8 20654 0 8 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
9 20996 0 17 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
10 21014 0 2 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
11 21043 0 19 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
12 21097 0 20 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
13 21142 0 14 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
14 21206 0 2 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
15 21360 0 14 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
16 21405 0 15 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
17 21449 0 16 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
18 21496 0 15 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
19 21568 0 2 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
20 21655 0 5 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
21 22008 0 3 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
22 22083 0 2 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
23 22418 0 16 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
24 22463 0 3 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1
25 22468 0 14 1 -1 -1 -1 -1 -1 -1 3 2 1 0 -1 -1 -1

Figure 2.34: Excerpt of data from the NASA Ames iPSC/860 log as converted to the
standard workload format of the Parallel Workloads Archive. Compare with the raw
data format in Figure 2.1.
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<job>
<PEs>32</PEs>
<runtime unit="minute">20</runtime>

</job>

This makes XML unsuitable for really large-scale datasets.
The main argument against using a plain ASCII format as suggested earlier is also

the concern about data volume [27]. Using a binary format can reduce the volume con-
siderably. For example, using the binary two’s complement representation, 4 bytes can
convey values from −231 up to 231−1. But if we use an ASCII representation we will
need 10 bytes to convey this full range of values.

A potentially more important consideration is how much data is really needed. The
common approach is the more, the better. This sometimes leads to the collection of
gigabytes of data. However, it is often hard to argue that all this data is indeed needed
and meaningful.

For example, consider the issue of memory references. Commonly used benchmark
programs run for many billions of cycles, generating many billions of memory refer-
ences. A full benchmark suite can easily create more than a trillion references. It is
ludicrous to suggest that each and every one of them is important when we want to
evaluate a system’s architecture; what we want is the general behavior (in this case, the
locality properties), not the details. In fact, emphasizing the details may lead to over-
fitting and results that are specific to the available data and do not generalize to other
situations.

Thus in situations in which a lot of data is available a good alternative to keeping all
of it is to just keep a sample. But this should be done subject to considerations regarding
the internal structure of the data, as described on page 34.

2.5.3 Privacy

Note that the standard workload format from the Parallel Workloads Archive maintains
no explicit user information, in the interest of privacy. It not only substitutes user IDs
with numbers, but also does the same for groups and applications. The numbers are
assigned in order of first appearance in the log. This process of hiding sensitive data
is sometimes called data sanitization. In addition to preserving privacy, it also helps
prevent the dissemination of commercially sensitive information [195, 564].

Data sanitization may be harder to apply in other situations, however. For example,
Internet packets may contain sensitive user information, so packet traces typically dis-
card the packet contents — leaving only the header. But one still needs to anonymize the
source and destination IP addresses. These can, of course, be replaced by arbitrary num-
bers, but such a practice results in the loss of all the topological information embedded
in the original addresses (e.g., different addresses that belong to the same subnet). The
alternative is to use a prefix-preserving mapping that preserves the topological informa-
tion [227, 560]. However, exposing the topological data may in some cases compromise
anonymity.
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In fact, comprehensive anonymization is not easy to achieve [533]. For example,
hosts can also be compromised by port numbers (if they support a unique service) or
even by packet timestamps (by fingerprinting a host’s clock drift [409]).

Perhaps the most sensitive user information is contained in web search query logs.
These logs may include sensitive information such as Social Security numbers and even
credit card numbers, as well as potentially damaging or embarrassing information about
search subjects [12, 386, 147].

An especially notorious example was the release of search logs by AOL in August
2006, which included some 20 million queries submitted by about 650,000 users over
a period of three months. The sources of the queries were dutifully anonymized, being
replaced by random numbers. However, the query contents were enough to identify
the users in some cases, and also to expose their most personal interests and anxieties
[53]. The resulting uproar caused AOL to withdraw the data within a few days, but
copies continue to be available on the Internet3. As a result, web search vendors are now
extremely wary about releasing their data.

Sanitizing web search data is more difficult than sanitizing communications data. It
is not enough to disguise the source of the queries (e.g., by anonymizing IP addresses):
it is also necessary to sever the association between the (anonymized) source and the
queries themselves, because the query contents may give away personal information.
The following approaches have been suggested or used [12, 147]:

• Shorten apparent user sessions by changing the (anonymized) user ID every so
often. Thus each user ID will be associated with only a relatively short sequence
of queries, and it will be harder to accumulate data about the user. However, this
obviously hurts the ability to perform user studies.

• Remove identifying queries, e.g., all queries that are unique or submitted by only
a handful of users.

• Hash all query words. As a result some statistical information may be retained,
but it will not be tied to identifiable terms.

• Erase all names that appear in queries. However, it may be desirable to retain the
names of celebrities, politicians, and the like. This can probably be achieved by
only removing rare names or name combinations.

• Erase all long numerical sequences in order to eliminate the risk of leaking Social
Security numbers and credit card numbers.

• Erase all queries altogether. This obviously eliminates the risk of leaking private
data, but may greatly reduce the usability of the log for research.

In short, there is no simple solution, and there is always the danger of unintended
exposure. But this risk does not justify the blocking of all data publication. Rather, a
privacy policy should be decided on, which will balance the usefulness of the data with
the risk of exposure [533, 147]. In certain cases — notably the recording of network

3This dataset is also used in this book in Section 9.4.6, but only for aggregate statistics.
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communications — there may also be specific laws that spell out exactly what is allowed
or not [523].
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Statistical Distributions

An observed workload is a set of observations of workload items: processes that ran
on a Unix workstation, requests fielded by a server, and so on. Each workload item
is characterized by certain attributes. For example, a Unix process is characterized by
its runtime, by how much memory it used, by which system calls it issued, and so on.
Different workload items have different values for these attributes: one process may run
for 7 ms, whereas another runs for 23 ms and a third for 5 whole seconds. The premise
of statistical workload modeling is that these values can be regarded as samples from an
underlying distribution. Thus if we find the distribution, we have a good model for how
the workload looks. The model enables us to create synthetic workloads that mimic the
original observed workload: we simply need to sample from the correct distributions.

This chapter reviews what distributions are and presents in detail those that are most
useful for workload modeling. The focus is on developing an understanding of the con-
cepts and of problems that occur in practice. The approach is to start with the data and
see how we can describe it. The treatment is by no means rigorous, preferring to build
intuition and understanding over plowing through minutiae of mathematical formalism.
For a more abstract mathematical treatment and for background in probability see prob-
ability textbooks such as [501, 691, 581, 305, 40].

Notation Box: Random Variables and Distributions

We will be using the following notational conventions:

X,Y, Z random variables
X1, X2, . . . Xi a series of random variables
x1, x2, y, z random variates (actual sampled values)
X̄ the (arithmetic) mean of random variables or samples
Var(X) the variance of random variables or samples
S(X) the standard deviation of random variables or samples
X(p) the p order statistic of random variables or samples
Pr(·) the probability of something
E[X] the expected value of a random variable
f(x) a probability density function (pdf), continuous distribution
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p(x) a probability mass function (pmf), discrete distribution
F (x) a cumulative distribution function (CDF)
F̄ (x) a survival function (or complementary CDF, CCDF)
µ the mean of a distribution
σ the standard deviation of a distribution
µ′
r the rth moment of a distribution
µr the rth central moment of a distribution
â an estimate of a parameter a

In brief, a random variable is a measurement that is indeterminate. In our context this
usually reflects the fact that we are measuring one particular workload item out of an
entire population of items. For example, “the runtime of a process” is a random variable
because we do not single out a specific process. The result of such a measurement, which
necessarily specifies a particular item (e.g., the process submitted by Joe at 8:37 AM,
which ran for 13 ms), is called a random variate.
A series of random variables represents an ordered set of measurements — for example,
the runtime of the first process, that of the second process, and so on. This is called a
stochastic process, because the index often denotes time.
Random variables are assumed to come from a distribution (e.g., the distribution of process
runtimes). Probability and statistics textbooks typically focus on the theory of distribu-
tions. Thus they use attributes such as the mean, or the “expected value” of the distribution,
which is defined as

µ = E[X] =

∞∑
i=1

xi p(xi)

where we have assumed there are an infinite number of possible discrete values denoted
by xi, and p(xi) denotes the probability to see value xi.
In this book our focus is less on theory and more on looking at real data. Such data may be
considered a sample from the distribution. A specific sample is actually a set of variates
x1, x2, . . . xn. (Note that these are not exactly the same xis as in the above formula for µ.
In the formula the xis denote all the possible values in the distribution. Here they denote
a set of samples from the distribution, so they are a subset with repetitions of the xis from
the formula.) The average of these variates can serve as an estimate for the mean of the
distribution

µ̂ = ¯⃗x =
1

n

n∑
i=1

xi

In general, the more samples we have the better such estimates become, at least for “well-
behaved” distributions.
Naturally, estimates such as ¯⃗x depend on the specific samples x1, . . . xn that were ob-
served. If another set of n samples is collected, they will be different, and so will their
average. When we want to discuss averages in general we therefore prefer to talk about
random variables representing the samples, and use them to define another random vari-
able, denoted X̄ , which is their average

X̄ =
1

n

n∑
i=1

Xi

This random variable then serves as the estimate (that is, µ̂ = X̄). In the following we use
such random variable notation extensively when discussing the analysis of samples.
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Other notations and concepts will be explained as they are introduced.

End Box

3.1 Describing a Distribution

Ultimately, it is desirable to describe a distribution using mathematical notation. For
example, we might describe the distribution of possible outcomes when tossing a coin
by a two-valued function, indicating that the probability of either heads or tails is one
half:

Pr(heads) = 0.5
Pr(tails) = 0.5

The nice thing about coins, at least fair ones, is that we know in advance what the
distribution should be. But in practically all real-life situations this is not the case. What
we have to work with are observed values, which are assumed to be samples from some
unknown distribution. For example, if we toss a coin 10 times and see heads 6 times and
tails 4 times, we may jump to the conclusion that the coin is biased and that it is actually
described by this distribution

Pr(heads) = 0.6
Pr(tails) = 0.4

However, an outcome of 6 heads out of 10 tosses is also possible with a fair coin — in
fact, it may be expected to occur 20.5% of the time (and in an additional 17.2% of the
time the outcome will be even more heads). So we cannot really be sure that the coin is
biased. This is what statistics is all about: given a certain set of observations (e.g., a set
of coin flips), test whether they support a given hypothesis (e.g., that the coin is biased).
Hypotheses that we can be confident about — typically taken to mean that the results
supporting them could occur by chance only 5% of the time or less — are then said to
be “statistically significant”. In the previous example, the evidence of 6 heads out of 10
tosses is not enough to support the hypothesis that the coin is biased.

Things become easier if we have very many samples. For example, if we toss a fair
coin 1000 times instead of just 10, the 5% mark is at about 525 heads: the probability
of seeing 526 heads or more is only 5%. The probability of seeing more than 550 heads
is less than 0.1%. So if we see 600 heads, we can be very sure that the coin is indeed
biased.

Moreover, if we have many samples, we can use the empirical results as an approx-
imation (or rather, an “estimation”) of the underlying distribution. For example, if 536
of the 1000 tosses were heads, we can characterize the coin by this distribution

P̂r(heads) = 0.536

P̂r(tails) = 0.464

which becomes increasingly accurate as more samples are added.
When characterizing a workload, very many different values are typically possible.

For example, the runtime of a process can be as short as a fraction of a second or as
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long as three weeks. If we have many samples, such as the runtimes of many processes,
we have what is called an empirical distribution. Luckily, we usually have a lot of
workload data, with many thousands or even millions of samples. Thus we can consider
the empirical distribution as a very good approximation of the real distribution. In this
book we often make do with empirical distributions. The remainder of this section deals
with ways to describe and characterize an empirical distribution.

An important difference between the empirical distribution and the “real” one is that
the real distribution may include values we have not seen in our sample. For example, in
skewed distributions extremely high values are possible, but they are rare. Our sample
may not include such very large values, but in real life the workload will occasionally
include them, so our empirical distribution is not really representative. The problem is
how to generalize it to a distribution that represents all possible runtime values. The
common solution is to find a mathematical distribution that is similar to the data, so it
is reasonable to assume that the empirical data came from this distribution. In Section
3.2 we introduce a number of useful mathematical distributions that are candidates for
fitting the empirical data. How to actually fit the data is discussed in Chapter 4.

Note that distributions can be continuous, as in the case of process runtimes, or dis-
crete, as for file sizes or packet sizes. In practice all workload distributions are actually
discrete, because of the limited resolution with which we can make measurements. But
we will often treat them as continuous anyway, because they have so many possible
values.

3.1.1 Histograms, pdfs, and CDFs

Histograms

The most direct way to represent an empirical distribution is with a histogram. This
is simply a graph of the frequency with which different values occur. It is especially
useful when the number of observed values is relatively small, and their range is limited.
An example is given in Figure 3.1, which shows the distribution of job sizes in parallel
machines. The X axis is the job sizes, and the height of the bars (the Y axis) indicates
the number of times that each size value was observed in the dataset. We will sometimes
use a line graph to show a histogram, but using bars is much more common.

Practice Box: Dealing with Large Ranges

A basic problem when rendering distributions is how to deal with large ranges — both
ranges of values and ranges of counts (or probabilities). This is immediately evident when
looking at the histograms of Figure 3.1, where most of the ink is concentrated in the bottom
left corner and near the axes.

In many cases, the values of interest are not uniformly spread over a large range. Rather,
they tend to be concentrated at the bottom of the range (recall that we typically deal with
non-negative values, so zero bounds the range from below). This enables us to use a log-
arithmic scale, in which a value of x is drawn at a distance of log x from the origin. For
example, the SDSC Paragon histogram will change its appearance like this when using a
logarithmic scale:
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Doing so indeed spreads out the values nicely, and even emphasizes the popular powers of
two as a side benefit.

Logarithmic scaling can also be applied to the counts (or probabilities) shown on the Y
axis, when there are many small values and few large ones. Using the SDSC Paragon job-
size distribution again as a test case, we get
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These histograms expose the existence of many small values that were all but indistin-
guishable on the coarse linear scale needed to show the few big values. However, note that
logarithmic scales are rather problematic in the sense that they are not intuitive to most
humans. The grid lines in the graph come at constant intervals, but they do not represent
constant increments; rather, they represent orders of magnitude. For example, 4-node jobs
are 10 times more frequent than 128-node jobs, and a hundred times more frequent than
256-node jobs. While this data exists in the plot, these large differences are belittled rather
than being emphasized.

An alternative is to use a second plot to zoom in on the small values. In effect, this presents
the same data twice, at different scales:
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This may be somewhat unusual, but is quite understandable.

End Box

The Probability Mass Function (pmf) and Probability Density Function (pdf)

Histograms show the distribution of data samples. But the exact same graph can also be
used to describe a mathematical distribution. Let us first consider a discrete distribution,
in which only a set of discrete values are possible. This can be described by a probability
mass function (pmf), defined intuitively as the probability to see each value x:

p(x) = Pr(X = x) (3.1)

When describing an empirical distribution of n samples, this can be estimated using

p̂(x) =
|{Xi |Xi = x}|

n

i.e., the fraction of samples that had the value x. This is the same as the histogram,
except that the Y axis is labeled differently.

Plotting all the individual values is not a useful approach when there are very many
different possible values. For example, when we look at the distribution of runtimes of
parallel jobs, we see that above a certain point all values occur only once, with large
gaps between them. Small values may occur many times, but this is actually a result of
quantization error, where measurements do not have sufficient resolution to distinguish
between nearby values. At the limit of considering values as continuous, the probability
for any specific value becomes zero. Therefore, in the context of continuous distribu-
tions, we use the probability density function (pdf). This captures the notion that the
probability of seeing a sample in a certain range of values is proportional to the width of
this range:

Pr(x ≤ X < x+ δx) = f(x)δx

The pdf f(x) is therefore not a probability, but the density of the probability; it is only
turned into a probability by multiplying by a range.

Indeed, one can also consider ranges of values when drawing a histogram, and tabu-
late the frequency (or probability) of samples falling in each range. In this context, the
ranges are usually called bins. The problem then is that the shape of the distribution we
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Figure 3.1: Histograms showing the distribution of job sizes in parallel machines.

get may depend on the number and sizes of the bins we select. At one extreme each
sample is in a bin by itself. At the other extreme all the samples are in a single bin. In
the middle, sets of nearby samples may either be grouped together, thus losing informa-
tion about the fine structure of the distribution, or spread over multiple distinct bins, thus
failing to observe that in fact they cluster in several groups. It is hard to find a scale that
brings out all the features that are of interest (for ideas, see Greenwald [301]). Moreover,
there may be no such single scale that is applicable to the whole distribution.

An example is given in Figure 3.2, which shows job arrivals for different times of
day to the SDSC Paragon parallel machine. At a resolution of 10 seconds, it is rare
that multiple jobs will arrive in the same bin, and this happens at random at all times of
day. At a resolution of 10 minutes, on the other hand, we see a prominent arrival event
that happens at around 5:50 AM — a set of 16 jobs that are submitted automatically
within a few minutes at the same time each day. At coarser resolutions this peak of
activity becomes diluted, and the most prominent feature of the arrival process becomes
the concentration of job arrivals during normal work hours.

Practice Box: Histograms with Logarithmic Bins

A special case occurs when the values are continuous, their range is very large, and the
vast majority of the samples are small. In this situation, it makes sense to use logarithmi-
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cally sized bins [482]. These are bins whose boundaries are not equally spaced; instead,
successive boundaries have a constant ratio.

A simple choice is to use a ratio of 2, leading to bins that correspond to powers of two:
the first bin will group values between 1 and 2, the next will group values between 2 and
4, the next between 4 and 8, and so on. An alternative that gives better resolution is to use
the Fibonacci numbers as bin boundaries, leading to ratios that converge to 1.618. More
generally, a formula can be used to map a sample value v to a bin b:

b = ⌊s · log(v) + 0.5⌋ (3.2)

where s is a scaling factor (the added 0.5 is used to turn truncation down to the next integer
into rounding to the nearest integer). The larger s is, the more bins are used, and the better
the resolution. This is demonstrated in the following two renditions of the same data from
the KTH SP2:
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Effectively, s changes the base of the logarithmic transformation, and thus the ratio be-
tween bin boundaries.

A problem with logarithmic scaling may occur when the values in question may tend to
zero. A logarithmic scale never reaches zero — it just keeps stretching indefinitely. Thus
a histogram that actually has very many small values may end up looking as if it has just a
few small values:
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In such situations it may be better to zoom in using a linear scale with a fine resolution.

It is important to note that when histograms are drawn with logarithmic bins, their shape
does not reflect the shape of the pdf (as opposed to using linear bins, where it does, but at
reduced resolution). The reason is that the pdf is a density, so the number of items in a bin
should be divided by the bin width. This can have a dramatic effect, significantly reducing
the bars corresponding to the higher bins (which represent a wide range):
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KTH SP2 counts
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KTH SP2 densities
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Depicting densities like this is important when one wants to give a mathematical descrip-
tion of the shape of the pdf. For just looking at the data, it may be better to use the original
histogram, but keep in mind that the mass seen at the right end of the distribution is actually
much more spread out.

End Box

To read more: Using histograms to estimate a distribution’s density has received some attention
in the literature [482, 71, sect. 4.3.1]. For example, Scott proposes a bin width of 3.49s

3
√
n

, where
s is the estimated standard deviation and n the number of samples [604]. This is justified by
an attempt to minimize the expected mean squared error. In this book, however, we often draw
detailed histograms and are less concerned with fitting a mathematical function.

The Cumulative Distribution Function (CDF)

An alternative to the histogram is to represent a distribution by its cumulative distribution
function (CDF). This is defined as the probability that a specific sample is smaller than
or equal to a given value:

F (x) = Pr(X ≤ x) (3.3)

Estimating this probability based on given samples is done by counting the fraction of
samples that are smaller than each possible value:

F̂ (x) = Fn(x) =
|{Xi |Xi ≤ x}|

n

where Fn(x) denotes the empirical distribution of n samples. Note that this is a step
function, because there is a finite number of samples. So sorting the samples by size,
such that X(1) ≤ X(2) . . . ≤ X(n), we can also write this as

F̂ (x) = Fn(x) =


0 if x < X(1)

i/n if X(i) ≤ x < X(i+1)

1 if x ≥ X(n)

(3.4)

(but note that if the distribution is discrete, and we observe multiple samples of the
same value, some steps may be larger than 1

n ). This book uses such empirical CDFs
extensively, but usually they are just called the CDF without stressing the “empirical”
qualifier.
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Figure 3.2: Example of how the shape of a histogram changes as a function of the bin
width. Job arrival data from the SDSC Paragon log, without cleaning.

The CDF starts at zero below the smallest possible value (and for distributions on
positive numbers, it is zero for x < 0). It is monotonically increasing and reaches one at
the highest possible value (or at infinity). It increases rapidly in ranges that have a high
probability and slowly in ranges that have a low probability. Figure 3.3 shows the CDFs
that correspond to the histograms of Figure 3.2, with their different resolutions. Note
that they are quite robust in shape, as opposed to the histograms that depend on the bin
width.

The complement of the cumulative distribution function is called the survival func-
tion; this is the probability of observing a sample that is bigger than the given value:

F̄ (x) = 1− F (x) = Pr(X > x) (3.5)

Naturally this is a monotonically decreasing function.
Using the CDF we can redefine the pdf in a way that explains the relationship be-

tween the two functions. For a continuous random variable, the CDF is still the proba-
bility of getting a value smaller than x, as per Equation (3.3). The pdf is defined as the
derivative of the CDF:

f(x) =
dF (x)

dx
= lim

δx→0

F (x+ δx)− F (x)
δx

(3.6)

This retains the interpretation of being a density — that when multiplied by a small
interval, δx, gives the probability of being in that interval:
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Figure 3.3: CDFs of the histograms shown in Figure 3.2 are relatively robust to bin
width.

f(x) δx = Pr(x < X ≤ x+ δx)

Conversely, the CDF is the integral of the pdf:

F (x) =

∫ x

0
f(t)dt (3.7)

where we assume that this is a distribution on positive values; in the general case, the
lower boundary of the integration is −∞.

Practice Box: Interpreting a CDF

Although CDFs have several advantages over histograms, they are somewhat less intuitive.
It takes some practice to read a CDF.

One point to keep in mind is that peaks in the histogram translate into steep slopes in the
CDF. In particular, a modal distribution (in which only a few discrete values appear) turns
into a stair shape. For example, the CDF of the job-size distribution looks like this:
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Note that only really large modes are seen as steps. Smaller modes can only be seen in the
histogram and tend to be lost in a CDF. In general, CDFs are not good at characterizing
modal distributions.

Even if the distribution is not strictly
modal, steep areas in the CDF help
identify where most of the mass is con-
centrated. Moreover, by noting the
span of the CDF covered, it is easy to
quantify exactly what fraction of the
distribution is involved. This would be
hard to do with the histogram — we
would need to sum the individual val-
ues.
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Another point to remember is that when one CDF is below and to the right of another, it
means that the distribution has more large values. For example, the distribution of interar-
rival times of very active users (such as user 374 on the SDSC SP2) tends to have shorter
interarrivals than the general population, so it is higher and to the left:
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In fact, exposing such differences in tendency is one of the major strengths of CDFs as op-
posed to histograms, especially when the distribution is noisy and multimodal.

An important benefit of using the CDF when looking at skewed data is that it allows the
size of the tail to be estimated easily. A histogram only enables us to see that there is a tail,
but we cannot know how many samples it includes. With a CDF, we can make statements
such as “50% of the files are smaller than 2 KB, and the top 5% are all larger than 32 KB”:
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Unix files 1993 − histogram
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Unix files 1993 − CDF
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In a related vein, the CDF allows one to easily distinguish between different types of tails.
For example, compare the preceding graphs with the following ones. The tails of the his-
tograms are impossible to distinguish, but this CDF is clearly uniform in log-space (i.e.,
after a logarithmic transformation), whereas the previous one is not.

CTC SP2 − histogram
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CTC SP2 − CDF
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Finally, there is the question of normalization. Empirical CDFs are typically normalized
to the range 0 to 1, regardless of the number of samples involved. Thus a CDF made up
of 13 samples covers the same range as a CDF made up of 72,000 samples, although it
might not be as smooth. Histograms, in contrast, typically show counts. But it is also
possible to normalize a histogram to show the fraction of samples in each bin. This is
especially useful when one wants to compare distributions without being distracted by
effects caused by different numbers of samples. One can also use “un-normalized CDFs”
(actually, cumulative histograms) when the number of samples is in fact important.

End Box

Shapes of Distributions

A histogram provides a graphic illustration of the shape of the distribution. However,
the observed shape depends on the resolution of the observation. An example is given
in Figure 3.41. This shows a distribution of memory usage, where the maximal possible
value is 32 MB. A logarithmic scale is used, and samples are grouped into logarithmi-
cally sized bins. This is done again using Equation (3.2), and the resolution depends on
s: when s = 4 only 23 bins are used, whereas s = 12 leads to 67 bins and far better

1This histogram does not approximate the pdf, because the counts have not been scaled by the range of
each bin.
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LANL CM−5 − histogram
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Figure 3.4: A histogram (left) depends on the granularity of the observation, as seen by
comparing logarithmic bins with a fine linear scale. A CDF (right) is more robust, but
loses detail. Data is per-processor memory usage from the LANL CM-5 log.

resolution. The interesting point is that multiple small peaks that are seen at a fine res-
olution may be united into one large peak when a coarse resolution is used, leading to
a different functional shape. The shape of the CDF is much more robust to the bin size
with which the distribution is observed. However, this comes at the price of losing most
of the details (i.e., the number and relative sizes of the peaks).

Different distributions naturally have different shapes. A commonly encountered
one is the so-called bell shape, like that of a normal distribution. Symmetrical normal
distributions are extremely important in statistics, and also provide a good model for
numerous datasets, such as the heights of individuals. But in computer workloads two
other types of distributions are much more common.

One type is asymmetrical, or skewed distributions. In many cases, the values of
interest are positive, so they are bounded from below by zero, but they are not bounded
from above. Thus we can have many small values and a few very big values. Such
distributions are said to possess a “right tail”, because their pdf is skewed and extends a
large distance to the right. For example, the distribution of process runtimes is skewed
with a long tail. Specific examples are described in Section 3.2.

The other common feature is that distributions may be modal, meaning that certain
discrete values are much more common than others. For example, the distribution of
job sizes on parallel supercomputers emphasizes powers of two, as shown earlier. The
distribution of packet sizes on a communications network tends to emphasize sizes used
by the protocols used on the network. Modal distributions are discussed in Section 4.4.2.

3.1.2 Central Tendency

Histograms can show a whole distribution. But how can we summarize the distribution
with a small amount of data?
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Arithmetic Geometric
System average average Median
CTC SP2 9.79 3.48 2
KTH SP2 7.44 3.44 3
SDSC Paragon 17.00 7.50 8
SDSC SP2 11.94 5.09 4

Table 3.2: Arithmetic average, geometric average, and median values for the distribu-
tions of job sizes shown in Figure 3.1.

The Average

The most concise way to describe a distribution is by a single number. This number
should convey the “center of mass” of the distribution, typically interpreted to be the
mean of the distribution, or the “expected” value. It is expected because it is the weighted
sum of all possible values, where the weights are the probabilities of seeing the different
values. For a discrete distribution this is

µ = E[X] =
∞∑
i=1

xi p(xi)

and for a continuous one

µ = E[X] =

∫ ∞

0
x f(x) dx

where we have assumed that the distribution is on positive values (otherwise the integra-
tion should start from −∞).

When we are dealing with a finite number of samples, the mean is estimated by their
average value, defined as

µ̂ = X̄ =
1

n

n∑
i=1

Xi (3.8)

According to the law of large numbers, the average converges to the true mean of the un-
derlying distribution as more samples are added. The averages of the job size histograms
of Figure 3.1 are shown in Table 3.2.

Details Box: Different Types of Means

The formula given in Equation (3.8) is called the arithmetic mean. There are other types
of means as well.
One alternative is the geometric mean. This is defined by the formula

X̄∗ = n

√√√√ n∏
i=1

Xi (3.9)

Note, however, that a naive calculation based on this equation is likely to overflow for a
large number of samples. A better approach is therefore to use the equivalent form:
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X̄∗ = e
(
1
n

∑n
i=1 logXi

)
The main reason to prefer the geometric mean is that it gives “equal weights” to all inputs.
Consider a case in which the values being averaged are very different, with many small
values and several large values. In this situation, the arithmetic mean is dominated by the
large values. Changing the largest value by, say, 10%, will have a noticeable effect on the
arithmetic mean, whereas changing the smallest value by the same factor of 10% will have
a negligible effect. On the other hand, changing any value by 10% will have the same
effect on the geometric mean: it will change by a factor of n

√
1.1. In addition, if the sample

values are ratios Xi/Yi, their geometric mean has the attractive property that the average
of the ratios is equal to the ratio of the averages:

n

√√√√ n∏
i=1

Xi

Yi
=

n
√∏n

i=1 Xi

n
√∏n

i=1 Yi

So why is the geometric mean so seldom used? One reason is that it may be non-monotonic
relative to the more intuitive arithmetic mean. This means that there are cases where the
sum (and hence arithmetic average) of a set of numbers is bigger than that of another set,
but the geometric mean is smaller. A simple example is the pair of numbers 10 and 10, for
which both the arithmetic and geometric means are 10. Compare this with the pair 1 and
49, which have an arithmetic mean of 25, but a geometric mean of only 7.
Nevertheless, as we see later, the geometric mean may be quite useful when characterizing
skewed distributions, because it is less responsive to large values. This is demonstrated for
the job-size distributions in Table 3.2.
Another alternative is the harmonic mean, defined by

X̄h =
1

1

n

n∑
i=1

1

Xi

(3.10)

This is useful when the xis represent rates rather than sizes. Consider driving to work
in the morning, where the first half of the trip (say 10 km) takes 10 minutes at 60 km/h,
but then traffic stalls and the next 10 km take 30 minutes at 20 km/h. The distance you
covered during those 40 minutes is 20 km, so your average speed was 30 km/h. This is
indeed the harmonic mean of 60 and 20. But taking the arithmetic average gives a much
more optimistic (and wrong) 40 km/h.
Actually, this example only worked because the two segments were of the same length —
10 km. The correct generalization is the weighted harmonic mean, in which the different
rates are weighted according to how much of the total they represent, rather than having
equal weights of 1

n . Thus if Xi = Yi/Zi, the weight of Xi will be proportional to Yi. The
weighted harmonic mean is then equivalent to the quotient of the sums of the numerators
and denominators

X̄h =
1

n∑
i=1

Yi∑n
j=1 Yj

Zi

Yi

=

n∑
j=1

Yj

n∑
i=1

Zi

In general, the geometric mean is smaller than the arithmetic mean, and the harmonic mean
is smaller yet. This is easy to see by calculating the three means of 6 and 8.
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To read more: Selecting the right type of mean is especially important when summarizing
benchmark results. This has been discussed by Fleming and Wallace [263], Smith [638],
and Giladi and Ahituv [284]. Lilja devotes an entire chapter to means [444, chap. 3]; see
also Jain [367, chap. 12].

End Box

A common problem with the mean is that it may not really be representative of the
complete dataset. In particular, the mean value is not necessarily the most common
value (the mode). For example, nearly everyone has more than the average number of
legs. This is so because the average is slightly less than two, due to a small number
of people with amputations. Likewise, the vast majority of people have less than the
average income, due to a small number of individuals who make much much much
more and thus pull the average upward.

Skewed distributions with some very large values may resemble a “reasonable” dis-
tribution with some outliers. When the large values are indeed outliers — that is, suspect
values that may not reflect real data — one wants to eliminate their effect on statistics
such as the mean. This can be done by using a trimmed mean, where, say, the top and
bottom 20% of the samples are removed before calculating the average [212]. How-
ever, this approach is not recommended in general for workload data, where skewed
distributions are the norm. In this situation, removing the top samples risks losing very
important information.

The Median

An alternative to the mean is the median, the value that divides the set into two equal
parts: half of the samples are smaller than this value, and half are larger2. In symmetrical
distributions, such as the normal distribution, the average and median are equal (but of
course, in any given set of samples, there may be a small difference between them). But
the distributions describing workloads are most often skewed, with a small probability
of very high values. In such cases the arithmetic average tends to be much larger than the
median (Table 3.2). It is therefore often thought that the median is a more representative
value of where many samples are concentrated.

Note that a careful choice of words was employed in the last sentence. In a skewed
distribution the median may be representative of where many samples are concentrated,
but this does not imply that it is also representative of where much of the mass of the
distribution is concentrated. On the contrary, much of the mass may be found in the few
very large samples from the tail of the distribution. When this happens the distribution
is called a heavy-tailed distribution. Such distributions are discussed in Chapter 5.

Practice Box: Calculating the Median

The mean of a set of samples is easy to calculate online. One simply accumulates the sum
of all the samples and their count, and then divides the sum by the count.

2“Half” is not strictly accurate if the number of samples is odd, but we usually have lots of samples and
ignore this.
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Finding the median is harder. For starters, one has to store all the samples. When all
are available, they can be sorted, and the middle sample is then identified; all other order
statistics can likewise be found. However, this comes at the cost of O(n) storage and
O(n log n) time (for n samples). But a linear time algorithm (running in O(n) time) is
also possible [150, sect. 9.2]. The idea is to partition the data recursively into parts that are
smaller and larger than a selected pivot element, as is done in Quicksort. The difference
is that instead of following both branches of the recursion, we only need to follow one of
them: the one that includes the median. The correct branch is identified based on the count
of values in each side of the partition.
An online algorithm, in which we do not store all the samples, was proposed by Jain
and Chlamtac [368]. This is based on approximating the shape of the CDF using five
“markers”. Assuming we want to find the p percentile (for the median p = 0.5), the
markers are placed at the minimal observation, the maximal observation, the p percentile,
and halfway between the p percentile and the extremes: at p/2 and at (1 + p)/2. As more
and more samples are seen, the minimal and maximal markers are updated in the obvious
manner. The middle markers are updated using a piecewise parabolic approximation of
the shape of the CDF. The approximation of the p percentile is read off this approximation
of the CDF.
While the above algorithm is very efficient, we do not have a bound on how far off it might
be from the real value of the desired percentile. An algorithm that does indeed provide
such a bound was proposed by Manku et al. [470]. The idea is to keep b arrays of k sample
values each. Initially these arrays are simply filled with samples. But when we run out
of space, we take a set of full buffers and collapse them into one by sorting and selecting
k equally spaced samples. This is done using the buffers that contain data that has been
collapsed in this way the minimal number of times. At the end, we have a set of equally
spaced samples that allow us to approximate various percentiles. The parameters b and k
are chosen so as to guarantee that we have enough samples to meet the desired bound on
the accuracy of the percentiles.

End Box

Minimizing the Distance from Samples

Another way to compare the mean and the median is the following. We are looking for
a number that describes the “middle” of a distribution [205]. Denote this by M . Given
a set of samples x1, x2, . . . xn we will say that M is a good representative of the middle
of the distribution if it is not too far from any of the samples. This can be formalized
by treating M as a variable, and then finding the value that minimizes the sum of its
distances from the n values that were sampled. But we don’t want positive and negative
differences to cancel out, so we will use the differences squared, to ensure they are all
positive. Our metric is then

D =

n∑
i=1

(M − xi)2

and we want to find the M that minimizes this expression. By differentiating and equat-
ing to zero, we find that

∂D

∂M
= 2

n∑
i=1

(M − xi) = 0
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and that M is the average of the sampled values: M = 1
n

∑n
i=1 xi.

But there is also another way to guarantee that positive and negative differences do
not cancel out: we could simply take their absolute values. This leads to formalizing the
sum of differences as

D =

n∑
i=1

|M − xi|

Now when we differentiate and equate to zero (in order to find the M that minimizes
this expression) we get

∂D

∂M
=

n∑
i=1

sgn(M − xi) = 0

where sgn is the sign function

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

To achieve a sum of zero, M must be exactly in the middle of the set of values, with half
of them bigger and half smaller. In other words, M is the median.

Thus the average minimizes the sum of squared deviations, whereas the median min-
imizes the sum of absolute deviations.

3.1.3 Dispersion

A more general problem is that the mean or median only gives a single characterization,
which cannot reflect the full distribution of possible values. For example, one can drown
in a lake with an average depth of 10 centimeters, because some parts of it are much
deeper.

The Variance and Standard Deviation

If we allow two numbers, we can also characterize the dispersion of the distribution in
addition to its center — i.e., how much the values differ from each other. The way to
do this is to look at the distances of the different values from the center (e.g., from the
mean). But we can’t just take the differences, because some values are larger than the
mean (positive difference) whereas others are smaller (negative difference), and they will
cancel out. As noted earlier, a simple way to make them all positive is to square them.
Thus the metric for dispersion is the expected square of the distance of the different
values from the average, known as the variance:

σ2 = E[(X − µ)2] =
∞∑
i=1

(xi − µ)2 p(xi)

(for the discrete case). Given n samples, this is estimated by
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σ̂2 = Var(X) =
1

n− 1

n∑
i=1

(Xi − X̄)2 (3.11)

where the estimate X̄ replaces the real mean µ, and the normalization is by n− 1 rather
than n.

The variance has the disadvantage of reflecting the squared distances. To better re-
flect the actual distances one therefore often uses the square root of the variance, known
as the standard deviation:

σ̂ = S(X) =
√
Var(X) =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2 (3.12)

which is the reason that the variance is denoted by σ2. A related metric is the coefficient
of variation (CV), which is defined as the quotient of the standard deviation divided by
the mean:

CV =
S(X)

X̄
(3.13)

This metric normalizes the units, essentially measuring the standard deviation in units of
the mean: a standard deviation of 1000 around an average of 17,000,000 is, of course,
much smaller (relatively speaking) than a standard deviation of 1000 around an average
of 1300.

Practice Box: Calculating the Variance

A common misconception is that calculating the variance requires two passes on the data
— one to calculate the average, and the other to calculate the variance based on each
value’s difference from the average. In fact, one pass is enough, using the identity

1

n

n∑
i=1

(Xi − X̄)2 =
1

n

n∑
i=1

X2
i − X̄2

which is easy to verify by opening the parentheses. The trick is to keep two running sums:
one of the individual values and another of their squares. The procedure is as follows:

1. Initially sum = 0 and sumsq = 0.
2. Scan the sampled data and update the running sums:

sum= sum+Xi

sumsq = sumsq +Xi ∗Xi

3. Calculate the average X̄ = sum/n, where n is the number of samples.
4. The variance is then given by

Var(X) =
1

n
sumsq − X̄2 (3.14)

Note that to estimate the variance from samples the normalization factor should be 1/(n−
1) rather than 1/n. This compensates for using X̄ rather than the true mean of the distribu-
tion in the formula. The samples naturally tend to be closer to the sample average X̄ than
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to the true mean, so using the distances to X̄ will lead to an underestimate; we compensate
by dividing by a smaller number. In the one-pass calculation, this can be achieved by using

Var(X) =
1

n− 1
sumsq − n

n− 1
X̄2

For large n the difference is, of course, negligible.
This procedure may run into trouble if the values are extremely large (leading to rounding
errors) or if the variance is much smaller than the mean. In particular, if the two terms in
Equation (3.14) are very close to each other, so that they share many digits, subtracting
one from the other will lead to a large loss of accuracy. An alternative is to maintain the
variance online [728]. Define Vn =

∑n
i=1(Xi − X̄)2, that is, the variance without the

normalization factor. This can then be updated as each new X value is obtained by the
formula

Vn = Vn−1 +
n− 1

n
(Xn −Mn−1)

2

where Mn = 1
n

∑n
i=1Xi is the mean calculated from the samples, which is also updated

using

Mn =
n− 1

n
Mn−1 +

1

n
Xn

To read more: A discussion of these and additional, related algorithms is given in the
Wikipedia article on “Algorithms for Calculating Variance”.

End Box

Figure 3.5 shows the result of calculating the standard deviation of one of the par-
allel job-size distributions from Figure 3.1, based on the average values given in Table
3.2 and the standard deviation values given in Table 3.3. Due to the skewed nature of
the distribution, using the standard deviation leads to invading the realm of negative
numbers.

Indeed, the variance is an example of a mathematical convenience that may have
unintended consequences. The reason that the variance is defined as the average of the
distances from the mean squared is to ensure that the values are all positive and do not
cancel out. Squaring is also a differentiable function, and the variance can be calculated
analytically for many useful mathematical distributions. But squaring also has the side
effect of giving larger weight to higher values: the contribution of each value to the sum
is the value squared, which can be seen as the value weighted by itself. If the distribution
is skewed, a small number of large values can lead to the impression that it has a very
wide dispersion, although most values are actually quite close to each other. Therefore
other metrics for dispersion may be more suitable in this case.

Another dangerous misconception is that about 68% of the mass of a distribution
may be found within a range of one standard deviation above and below the mean. This
is true for the normal distribution, but is not true in general. In particular, it can be way
off the mark for skewed distributions.

The common approach to handling a few large values is to assume they are outliers
and eliminate them. In particular, the suggested metric for dispersion is the Winsorized
variance [212]. This is analogous to the trimmed mean, with one important difference:
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Figure 3.5: The standard and absolute deviations as metrics for dispersion around the
mean, applied to a skewed positive distribution that is also largely modal (the sizes of
parallel jobs, shown using superimposed histogram and CDF). Note that the distribution
actually continues up to a maximal value of 400.

instead of eliminating the top and bottom 20% of the samples (or some other fraction), it
replaces them with the extremal values that are left. For example, if our original samples
are 0, 0, 1, 2, 3, 3, 5, 8, 15, 73, the Winsorized series will be 1, 1, 1, 2, 3, 3, 5, 8, 8, 8. The
Winsorized variance is then the variance of this Winsorized dataset. But this approach
is not recommended for workload data, in which skewed distributions are common, and
the large samples may in fact convey important information.

The Absolute Deviation

The problem with the standard deviation stems from the practice of using squared values
to make them all positive, so that deviations in one direction do not cancel out with
deviations in the other direction. An alternative is to use the absolute values of the
deviations, leading to the average absolute deviation:

AbsDev(X) =
1

n

n∑
i=1

|Xi − X̄| (3.15)

(Note that in this case it is of course improper to take a square root.) An alternative
definition uses the deviations from the median, rather than from the average. Comparing
this with the standard deviation for distributions such as those shown in Figure 3.1 leads
to the results shown in Table 3.3 and Figure 3.5 — the average absolute deviations are
significantly smaller. Although this does not guarantee that the range specified by the
average absolute deviation around the mean does not include negative values, it reduces
that danger.
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Figure 3.6: Quantifying dispersion using the geometric mean and multiplicative standard
deviation.

The Multiplicative Standard Deviation

The standard deviation and absolute deviation imply a symmetrical additive range around
the mean: they characterize the distribution as concentrated in the range X̄±S(X). This
is, of course, appropriate for symmetrical distributions such as the normal distribution.
But it is inappropriate for skewed distributions that extend a long way to the right. This
leads to the idea of using a multiplicative standard deviation (also called the geomet-
ric standard deviation) [445], where the range is given as X̄∗ ×/ S(X)∗. The symbol
×/ means “multiply-divide”, in analogy to the “plus-minus” used with the conventional
standard deviation. Thus the lower end of the range is defined by the average divided by
the multiplicative standard deviation, while the higher end is the average multiplied by
it:

X̄∗ ×/ S(X)∗ = [X̄∗/ S(X)∗ .. X̄∗ × S(X)∗]

To implement this idea we need to define X̄∗ and S(X)∗. Given the multiplicative
nature of the definition, it is natural to use the geometric mean X̄∗ as the centerpoint.
As for the multiplicative standard deviation, it should reflect the average quotient of the
different values and this centerpoint (that is, the average of Xi

X̄∗ ), where again the geo-
metric average is meant. But given that the values are distributed around the centerpoint,
some of these quotients will be smaller than 1, while others will be larger than 1. Thus
multiplying them by each other to find the geometric average may cancel them out. The
solution is to do the averaging in log-space, ensuring that all the logs are positive by us-
ing the common trick of squaring them. Then the square root of the result is used before
the inverse transformation. The final result of all this is

S(X)∗ = e

√
1
n

∑n
i=1

(
log Xi

X̄∗

)2
(3.16)

Figure 3.6 shows the result of applying this to one of the parallel job-size distribu-
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Mult
System Std dev Abs dev std dev SIQR Q1–Q3 95th%
CTC SP2 ±20.98 ±10.76 ×/3.84 ±4.0 1.0–9.0 33.0
KTH SP2 ±12.49 ±7.14 ×/3.21 ±3.5 1.0–8.0 32.0
SDSC Paragon ±27.00 ±16.30 ×/3.62 ±6.5 3.0–16.0 64.0
SDSC SP2 ±17.14 ±11.70 ×/3.78 ±7.5 1.0–16.0 64.0

Table 3.3: Comparison of metrics for dispersion, as applied to the distributions of par-
allel job sizes of Figure 3.1: the conventional and multiplicative standard deviation, the
absolute deviation, and percentile-related metrics such as the SIQR.

tions from Figure 3.1, based on the geometric average values given in Table 3.2 and the
multiplicative standard deviation values given in Table 3.3. Quite obviously, the multi-
plicative standard deviation does a better job at characterizing the distribution than the
conventional standard deviation shown in Figure 3.5. Interestingly, as shown in Table
3.3, the multiplicative standard deviation also indicates that the four job-size distribu-
tions have similar characteristics, which was not the case when using the conventional
standard deviation.

The (S)IQR and Quartiles

Yet another approach is to use the interquartile range, or IQR. Quartiles are the values
that divide the distribution into four equal parts: the first quartile (often denoted by Q1)
is that value that one-quarter of the distribution is below it, the second quartile is the
median, and the third quartile (Q3) is the value that three-quarters of the distribution is
below it. The Interquartile range is the difference between the first and third quartiles
(i.e., Q3 − Q1). Alternatively one can simply note these two quartiles, with the under-
standing that the middle half of the distribution is contained in the range from Q1 to Q3

(Figure 3.7). In either case, this is robust against rare large values that may distort the
variance.

Another possibility is to calculate the average of the distances from Q1 and Q3 to
the median. This is called the semi interquartile range, or SIQR, because it is half of
the IQR. The problem with this metric is that it implies a symmetry around the median.
With skewed positive distributions this measure is typically misleading, so it is better
to directly specify the range from the first to the third quartiles (as is done in the box
plots described later). The size of the resulting range is the same as when using ± the
SIQR, but it will typically be shifted to the right and therefore be asymmetrical around
the median.

Finally, taking an even more extreme approach, we may specifically take the nature
of positive skewed distributions into account. Being positive, the bottom end of such
distributions is always zero. Therefore the high values seen also specify the entire range
of the distribution. Because the very highest values are by definition rare, it is better
to use a somewhat lower point, such as the 90th or 95th percentile, as representing the
“top” of the distribution and also its dispersion [276]. An alternative that is also useful
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Figure 3.7: Percentile-based metrics for dispersion.

for less skewed distributions is to use a certain range of percentiles, for example the 90%
interval from the 5th percentile to the 95th percentile.

3.1.4 Moments and Order Statistics

By now you might be confused, or you might begin instead to see a pattern. In each
case, we have two basic approaches — one based on moments and the other on order
statistics.

Moments (or, rather, “sample moments”, because we base the discussion on data
samples and not on theoretical expressions using the pdf) are defined as the average
of the observations raised to some power. The first moment is the simple average of
Equation (3.8). The rth moment is

µ′r =
1

n

n∑
i=1

Xr
i (3.17)

The variance can be calculated from the first and second moments:

Var(X) = µ′2 −
(
µ′1
)2

Skewness, kurtosis, etc. are related to higher moments. Some distributions can be com-
pletely specified in terms of their moments; more on that later.

A related set of values are the central moments. These are the moments of the cen-
tered data, where Xis are taken relative to the mean (they are therefore also called “mo-
ments about the mean” as opposed to the moments defined above which are “moments
about the origin”) and are denoted without the ′:

µr =
1

n

n∑
i=1

(Xi − X̄)r (3.18)
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Figure 3.8: Example of finding percentiles from the CDF.

The reason for using central moments is that when we are studying fluctuations, it is
more useful to have data that assumes both positive and negative values, and has a 0
mean.

Order statistics are percentiles of the distribution. We already encountered three of
them: the median is the 50th percentile, and the first and third quartiles are the 25th
and 75th percentiles. In general, the p percentile is the value such that p percent of the
samples are smaller than this value. Percentiles are easy to find from a distribution’s
CDF (Figure 3.8), and in fact serve to describe the shape of the CDF.

Practice Box: Comparing Distributions with Box Plots

Like the CDF, order statistics are also useful for comparing distributions. This can be done
at a glance using box plots. Such plots describe the “body” of the distribution using a
box, with whiskers that describe the tails of the distribution. Specifically, the box typically
extends from the 25th percentile to the 75th percentile (i.e., the range from the first to the
third quartile), and the whiskers extend to the 5th and 95th percentiles. A special mark
indicates the median:
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Although this is a very cursory representation of the distribution, it may be more conve-
nient than the full CDF when making a quick comparison:
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End Box

So when does one use moments or percentiles? Statistical equations and theory
typically use moments, because of their mathematical properties. We’ll encounter them
again when we discuss distribution fitting using the method of moments in Section 4.2.2.
However, with skewed distributions in which we often see some very large samples
it is hard to estimate high moments, because the calculations become dominated by
the largest samples we happen to see. Order statistics such as the median and other
percentiles are much more stable, and therefore can be estimated with a higher degree of
confidence.

3.1.5 Focus on Skew

The classic approach to describing distributions is to first use the central tendency, and
possibly augment it with some measure of dispersion. This implicitly assumes a roughly
symmetric distribution.

As we saw earlier, many of the distributions encountered in workload examples are
not symmetric. They are skewed. This means that the right tail is much longer than the
left tail. In fact, in many cases there is no left tail, and the relevant values are bounded
by 0. (In principle distributions can also be skewed to the left, but in workloads this does
not happen.)

Skewed distributions have, of course, been recognized for many years. An indication
that a distribution is skewed is that the median is significantly different from the mean.
The conventional metric for skewness is

γ1 =
µ3

σ3 =

1

n

n∑
i=1

(Xi − X̄)3

(
1

n

n∑
i=1

(Xi − X̄)2

)3/2
(3.19)

This may be interpreted as the weighted average of the signed distances from the mean,
where large distances get much higher weights: the weights are equal to the distance
squared. This is then normalized by the standard deviation raised to the appropriate
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Figure 3.9: Paradigm shift in describing skewed positive distributions: use the shape of
the tail rather than the center of mass and dispersion.

power. Positive values of γ1 indicate that the distribution is skewed to the right, and
negative values indicate that it is skewed to the left.

The definition of skewness still retains the notion of a central mode, and characterizes
the asymmetry according to distances from the mean. An alternative approach suggested
by the Faloutsos brothers is to forgo the conventional metrics of central tendency and
dispersion, and to focus exclusively on the shape of the tail [226]. For example, as we
will see later in Chapter 5, an important class of skewed distributions have a heavy tail,
which is defined as a tail that decays polynomially. The exponent of the decay can then
be used to characterize the distribution as a whole (Figure 3.9). In particular, such a
polynomially decaying tail is completely different from an exponentially decaying tail.

Other alternatives also exist. For example, the reason that heavy tails are so im-
portant is that a significant fraction of the mass of a heavy-tailed distribution is spread
along the tail, as opposed to the more normal distributions where most of the mass is
concentrated around the center. The fact that so much mass is concentrated in rare large
samples leads to the mass-count disparity phenomenon, which can be quantified using
the joint ratio. This is a generalization of the Pareto principle (e.g., that 80% of the effect
come from 20% of the events). Thus the joint ratio may also be used to characterize a
distribution in a way that is more meaningful than a central tendency and a dispersion.

The joint ratio can also be combined with novel metrics that replace central tendency
and dispersion. An example is given in Figure 3.10, which shows data about the distri-
bution of file sizes in Unix systems from 1993. This distribution can be characterized by
the following three main attributes:

• The joint ratio is 11/89, meaning that 11% of the files account for 89% of the disk
space, and vice versa.

• The joint ratio occurs at a file size of 16 KB. This serves as a location parameter
similar to the geometric average. It strikes a balance between the typical file sizes,
which are around 0.5–10 KB, and the file sizes that account for most of the disk
space, which are around 100 KB to 10 MB.

• The median-median distance (“m-m dist” in the figure) is a factor of 490. This
serves as a metric for dispersion similar to the multiplicative standard deviation.
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Figure 3.10: Characterizing skewed distributions using metrics for mass-count disparity.

It gives the ratio between where most of the mass is (around 750 KB) and where
most of the files are (around 1.5 KB).

Mass count disparity and the associated metrics are discussed in detail in Section 5.2.2.

Practice Box: Looking at Skewed Data

Highly skewed data presents special challenges when one simply wants to look at it. Us-
ing a simple histogram or CDF often doesn’t work, because all the ink is found to be
concentrated along the axes.

One solution is to draw the histogram or CDF with logarithmic axes. This was demon-
strated above in the boxes on pages 81 and 84.

Still, at high values the histogram bins are all close to 0, and the CDF is close to 1. It may
therefore be useful to use some additional mechanism to focus on the small differences
that remain. One type of graph that does so is the log-log complementary distribution plot
(LLCD). This shows the difference between the CDF and 1 on log-log axes. For example,
the following graphs show the CDF of Unix file sizes from 1993 and the corresponding
LLCD:
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The Y axis of the LLCD is marked “survival probability”. This is because the LLCD
shows the complementary distribution (if the CDF is denoted by F (x) then the LLCD
shows F̄ (x) = 1 − F (x)). Thus it actually shows the probability of observing a value
larger than x. LLCDs are explained in depth in Section 5.3, and LLCDs that appear to be
a straight line as in this case are an indication of a heavy tail — the subject of Chapter 5.
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When looking at a time series of skewed data, even in log scale, the high values tend to hide
the small ones. An example is shown below, based on the request sizes from the University
of Saskatchewan HTTP log of 1995. A possible solution is to show the values relative to
the median rather than relative to 0 [315]. By doing so high values above the median are
shown separately from low values below the median, and it is easy to see clustering of both
types of values. The median is used rather than the average because it is less sensitive to
extreme values.
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End Box

3.2 Some Specific Distributions

Distributions of workload parameters typically have the following properties:

• The values are positive. There is no such thing as a negative runtime or negative
amount of memory.

• The distribution is skewed: there are many small values and few large values.

In this section we introduce several mathematical distributions that have these properties
and can therefore serve as good models.

The mathematical expressions used typically have various parameters. These param-
eters can be classified as the following:

• Location parameters, which specify where along the numbers line the distribution
is situated (e.g., the location of the mean or the largest mode). In many cases
the distribution does not have a built-in location parameter, but one can always be
added. For example, if a distribution f(x) has its mode at x0, then we can create
a shifted distribution f(x− c) that has its mode at x0 + c.

• Scale parameters, which specify how far the distribution is spread out (e.g., the
standard deviation). Again, if the distribution does not have such a parameter, it
can be added: given a distribution f(x), the scaled distribution f(x/c) is stretched
by a factor of c.
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Figure 3.11: The exponential distribution. The smaller θ is, the faster the tail decays.

• Shape parameters, which specify the shape of the distribution. In our case these
typically determine whether the distribution has a mode or not, or how heavy the
right tail is.

To read more: We only give a small sampling of distributions here. There are, in fact, many
more distributions, some of which also have the properties we are looking for. Additional in-
formation regarding statistical distributions and their properties can be found in books on per-
formance evaluation, such as Jain [367, chap. 29] or Law and Kelton [427, chap. 8]. There are
also complete books devoted to distributions, such as Evans et al. [221]. A similar collection
available online is the compendium by McLaughlin [481].

3.2.1 The Exponential Distribution

Definition

The exponential distribution (or, rather, the negative exponential distribution) is defined
by the pdf

f(x) = 1
θ e

−x/θ x ≥ 0 (3.20)

and the CDF
F (x) = 1− e−x/θ x ≥ 0 (3.21)

These functions are shown in Figure 3.11. θ is a scale parameter that determines how
quickly the probability decays; in effect, x is measured in units of θ. θ is also the mean
of the distribution, and satisfies θ > 0.

An alternative form of the definition uses λ = 1/θ as the parameter. The pdf is then
f(x) = λ e−λx and the CDF is F (x) = 1− e−λx. λ is interpreted as a rate parameter: it
measures how many things happen per unit of x. In the following, we will use the two
forms interchangeably as convenient.

Properties

The exponential distribution has several important properties. Let us focus on three
related ones: that the interarrival times of a Poisson process are exponentially distributed,
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that the exponential distribution is memoryless, and that interleaving Poisson processes
leads to a new Poisson process.

In a nutshell, a Poisson process is one in which events occur uniformly and inde-
pendently. More formally, consider a period of time T during which events occur at
an average rate of λ events per time unit. We say that this is a Poisson process if the
period T can be partitioned into very many equal small intervals such that the following
properties hold:

1. There is no more than a single event in each interval. This excludes bursts of
several events occurring at exactly the same time. Of course, many intervals will
have no events in them.

2. The probability of having an event is the same for all intervals. In other words, the
events are uniformly distributed in time.

3. The existence of an event in a specific interval is independent of whatever happens
in other intervals.

Note that we have (on average) λT events in a period of T time units. This implies that as
we divide T into more and more intervals of smaller and smaller size, the probability of
seeing an event in any given interval must shrink. In fact, this probability is proportional
to the lengths of the intervals.

What is the distribution of the time intervals between successive events? The proba-
bility that the time until the next event exceeds t is the same as the probability that there
will be no events in t time units. Let us define the random variable N(t) to be the num-
ber of events that occur in t time units. Given that the average rate is known to be λ, we
know that the expected value of N(t) is λt. We want to know the distribution of N(t),
and specifically, the probability that N(t) = 0. To find this, we divide our period of t
time units into n small intervals. The probability of an event occurring in each interval
is then p = λt/n. The probability that a total of k events occur is

Pr(N(t) = k) =

(
n
k

)
pk(1− p)n−k

=
n!

k!(n− k)!
(λt)k

nk

(
1− λt

n

)n−k

=
(n− k + 1) · · ·n

k!

(λt)k

nk

(
1− λt

n

)n( n

n− λt

)k

=
(n− k + 1) · · ·n

(n− λt)k
(λt)k

k!

(
1− λt

n

)n

As n tends to infinity the first factor tends to 1, and the last one tends to e−λt. We
therefore find that N(t) has a Poisson distribution:

Pr(N(t) = k) =
(λt)k

k!
e−λt for k = 0, 1, 2, . . .
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Equating k to 0, we find that the probability for zero events in t time units is Pr(N(t) =
0) = e−λt.

Let us call the random variable denoting the time until the next event X . We just
found that Pr(X > t) = e−λt. This means that Pr(X ≤ t) = 1 − e−λt. But this
is exactly the CDF of the exponential distribution. Thus X is exponentially distributed
with parameter θ = 1/λ. In terms of workload modeling, this means that if we create
events with exponentially distributed interarrival times, we get a Poisson process.

Note that item 2 in the list of properties defining a Poisson process implies that
events are spread uniformly over the period T . We have therefore also just shown that
the intervals between uniform samples are exponentially distributed.

The second important property of the exponential distribution is that it is memory-
less. This is easily explained by reference to Poisson processes. Consider a situation in
which you are waiting for the next event in a Poisson process. Time is divided into nu-
merous little intervals, and the probability that an event occurs in any of them is uniform
and independent of what happened in other (previous) intervals. Just after an event oc-
curs, you expect the wait time until the next event to be 1/λ, the mean of the exponential
inter-event times. But because of the independent and uniform probability for events at
each time interval, this stays the same as time goes by! For example, if λ is three events
per minute, you initially expect to have to wait 20 seconds. After 10 seconds have gone
by with no event, you still expect to wait another 20 seconds. If no event has occurred
for 5 minutes, you still expect another 20 seconds. The distribution of how much you
will have to wait is independent of how much you have already waited — it forgets the
past.

More formally, what we are doing is looking at the tail of the distribution, and ask-
ing about the distribution of the tail. Given an exponential random variable X , and a
threshold value τ , we are interested in the distribution of X given that we know that
X > τ . This is given by the conditional probability Pr(X ≤ τ + x | X > τ). For the
exponential distribution we get

Pr(X ≤ τ + x | X > τ) =
Pr(X ≤ τ + x)− Pr(X ≤ τ)

Pr(X > τ)

=
1− e−(τ+x)/θ − (1− e−τ/θ)

e−τ/θ

= 1− e−x/θ

So the distribution of the tail is the same as the distribution as a whole! The exponential
distribution is the only one with this property.

The third related property is that interleaving multiple Poisson processes creates a
new Poisson process. This is a direct result from the above derivations. For example, if
we have three Poisson processes with rates λ1, λ2, and λ3, we can still divide time into
ever finer intervals, and claim that the three properties of a Poisson process listed above
hold. The only difference from a single process is that now the probability of an event
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in an interval T is (λ1 +λ2 + λ3)T . This is a Poisson process with a rate that is the sum
of the rates of the constituent processes.

Finally, we note that the exponential distribution is the continuous version of the dis-
crete geometric distribution. In workload models based on Markov chains, the number
of consecutive steps during which the model remains in the same state is geometrically
distributed. When transition probabilities are low and very many time steps are consid-
ered, this tends to the exponential distribution.

Uses

A major use of the exponential distribution in workload modeling is to model interarrival
times. As we saw, this leads to a Poisson process, in which arrivals are independent
and uniformly distributed. This both seems like a reasonable assumption and leads to
simple mathematical analysis, due to the memoryless property. However, analysis of real
workloads often reveals that arrivals are not uniform and independent, but rather come
in bursts at many time scales. This phenomenon, known as self-similarity, is covered in
Chapter 7. Thus one should consider carefully whether to use exponential interarrival
times. Doing so may be justified only if arrivals can be argued to be independent.

The exponential distribution has also been used to model service times. This has
less justification, except for the fact that it simplifies the analysis and leads to simple
closed-form solutions for many queueing problems (e.g., the M/M/1 queue and others
[367, chap. 31]). However, analysis of real workloads often shows that service times
are heavy-tailed, a phenomenon discussed in Chapter 5. It is therefore preferable to use
other distributions, such as phase-type distributions, that have the right shape and are
nevertheless amenable to mathematical analysis.

Note that in some cases using an exponential distribution to model service times
(or lifetimes) may have a strong effect on performance evaluation results. In particular,
the memoryless property that makes analysis easier also precludes systems that try to
learn about their workload and classify it. This means that various optimizations be-
come meaningless, and therefore cannot be evaluated. For example, consider process
migration in a network of workstations. We would like to be able to identify long-living
processes and preferentially migrate them, because they have the biggest effect on the
load. If we assume that process runtimes are exponentially distributed, this becomes im-
possible. Luckily, the real distribution tends to be heavy-tailed, so long-lived processes
can indeed be identified leading to large benefits from migration [435, 320]. Another
example comes from garbage collection. Generational garbage collectors preferentially
scan newly allocated objects, based on the premise that most objects have short lifetimes.
But this strategy does not work if object lifetimes are exponentially distributed [45].

So when is the exponential distribution clearly justified? Take radioactive decay as
a mechanistic example. Define g(t) to be the relative decay during time t. This means
that if we start with an amount of material x, we will have xg(t) left after time t. If we
wait an additional s time, we will have (xg(t))g(s) left. But this should be the same as
what is left if we wait t+s time to begin with, namely xg(t+s). So the function g must
satisfy g(t + s) = g(t)g(s). The only function with this property is the exponential:
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Figure 3.12: Transforming a uniform distribution into another distribution using the
inverse of the CDF.

g(t) = e−t/θ. In computer systems, this reasoning leads to the use of the exponential
distribution to model time to failure, under the assumption that there is no mechanical
wear. In terms of workloads it is harder to find an analog of this situation. However,
if you encounter a situation in which a value may be split into two terms, such that the
probability of the sum is the same as the product of the probabilities of the terms, an
exponential distribution should be used.

Generation

A major use of workload models is to create a synthetic workload. When the model
specifies that certain distributions be used, it is then necessary to generate random vari-
ates from these distributions. Computers typically provide random number generators
that create a random number from a uniform distribution on [0, 1). This then has to be
converted to the desired distribution.

The conversion is actually quite simple, because a distribution’s CDF provides a one-
to-one mapping to the uniform distribution. Define F−1 to be the inverse of the CDF F
(i.e., F−1(F (x)) = x). The claim is that if we select values u uniformly on [0, 1), and
calculate x = F−1(u) for each one, we will get xs that are distributed according to F .
This is illustrated in Figure 3.12.

More formally, let us define a uniform random variable U , and apply the function
F−1 as suggested above to create a random variable X = F−1(U). To find the distri-
bution of X we need to evaluate Pr(X < x). Considering F−1 as just another function
that operates on values, let us select a value u and denote its mapping as x = F−1(u).
Then

Pr(X < x) = Pr(X < F−1(u))

The function F , being a CDF, is monotonic, and so is F−1. Therefore

Pr(X < F−1(u)) = Pr(U < u)

But U is uniformly distributed on [0, 1), so Pr(U < u) = u = F (x). In short, we found
that Pr(X < x) = F (x), which means that the distribution of X is F , as desired.
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In the case of the exponential distribution, the conversion is very simple. Writing
u = F (x) = 1 − e−x/θ, we can invert F to obtain x = −θ ln(u). (Note that if u is
uniformly distributed on [0, 1], so is 1−u.) We can therefore use the following two-step
procedure:

1. Select a value u uniformly from the interval [0, 1]. This is what random number
generators typically give. (If your random number generator provides random
integers from the set {0, 1, 2, . . . ,M}, simply divide them by M , the maximal
possible value.)

2. Apply the transformation x = −θ ln(u) to obtain x. Use this value.

By repeating this procedure many times we will obtain values that are exponentially
distributed with parameter θ.

3.2.2 Phase-Type Distributions

Definition

Assuming that we have a server with exponentially distributed service times, we can
generate exponential random variables using simulation. We simulate a client arriving at
the server, record its service time, and repeat the process. Graphically, we denote such a
server by a circle, with its average service rate written in it:

λ

This idea can be generalized by postulating a network of interconnected servers, and
recording the time required by the clients to traverse the network. The resulting dis-
tributions are called phase-type distributions, because they are composed of multiple
exponential phases.

An equivalent definition that is sometimes used is the following. Consider a continuous-
time Markov chain with one absorbing state, structured so that the absorbing state is
guaranteed to be reached eventually. The time until absorption is then given by a phase-
type distribution.

Different structures of the network of servers (or of the Markov chain) lead to dis-
tributions with different properties, and various structures have indeed been proposed,
analyzed, and used (e.g. [341]). For example, the servers can have different rates, clients
can enter “directly into the middle” of the network of servers, the network can have
loops in it, and so on. However, several simple variants are usually sufficient to pro-
vide good approximations of empirical distributions. These are the hyper-exponential
distribution, the Erlang distribution, and the hyper-Erlang distribution, which is actually
a generalization of the previous two.

Uses

Phase-type distributions can be used in practically any situation, because they can be
designed to be a close approximation of any empirical dataset. In particular, hyper-
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exponential distributions can be designed to capture the details of the tail of a distribu-
tion, which is very important for reliable performance evaluations (see the discussion in
Section 4.4.3).

Moreover, in the context of queueing networks, using phase-type distributions leads
to models that can be solved analytically using the matrix-analytic method [571]. In
these models, the “real” servers in the system being studied are represented by net-
works of exponential servers that together lead to the desired service-time distribution;
the transitions between them are made by networks that create the desired interarrival
distribution. This is an important extension over models that only use the exponential
distribution.

Generation

Generating random variables with a phase-type distribution is simple: we just simulate
the desired network of servers, generating and summing exponential service times along
the way as needed.

3.2.3 The Hyper-Exponential Distribution

Definition

The hyper-exponential distribution is obtained by selecting from a mixture of several
exponential distributions. The simplest variant has only two stages:

λ

λ

1

2

p

1−p

This means that each client either gets a service time from an exponential distribution
with rate λ1, which happens with probability p, or else it gets a service time from an
exponential distribution with rate λ2 (with probability 1 − p). Naturally, λ1 should be
different from λ2. In the general case (with k stages) the pdf is

f(x) =

k∑
i=1

pi λi e
−λix (3.22)

and the CDF

F (x) = 1−
k∑

i=1

pi e
−λix (3.23)

where
∑k

i=1 pi = 1 and pi > 0 for i = 1 . . . k.
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Figure 3.13: Two-stage hyper-exponential distribution compared with an exponential
distribution with the same mean.

Properties and Uses

The main difference between the hyper-exponential distribution and the exponential dis-
tribution is that the variance of the hyper-exponential distribution is larger relative to
its mean. This is often stated in terms of the CV. For the exponential distribution, both
the mean and the standard deviation are equal to the parameter θ (or 1/λ), so the CV
is identically 1. For a hyper-exponential distribution, the CV is larger than 1. It is thus
preferred over the exponential distribution if the empirical data has a large CV.

Because many distributions in workload modeling are highly skewed, the hyper-
exponential distribution is quite popular in performance evaluation studies (e.g. [580,
146, 717]). In many cases it is used not to model the whole distribution, but just its
tail. The hyper-exponential distribution is especially useful for such modeling because
it is based on exponential phases, and is thus suitable for Markovian modeling. In ad-
dition, several techniques have been devised to match hyper-exponential distributions to
empirical data. We review two such techniques in Section 4.4.3.

Figure 3.13 shows an example of a hyper-exponential distribution composed of two
exponential distributions with equal probabilities (that is, p = 0.5). For comparison, an
exponential distribution with the same mean is also shown. The hyper-exponential distri-
bution achieves the larger variability with the same mean by emphasizing the extremes:
it has a higher probability both of very small values and of very high values.

Details Box: The CV of the Hyper-Exponential Distribution

To show that the CV of a hyper-exponential distribution is larger than 1, we start by ex-
pressing the CV as a function of the moments:

CV =
σ

µ
=

√
µ′
2 − µ2

µ

By squaring this, we find that the condition for being larger than 1 is

µ′
2 − µ2

µ2
> 1 ←→ µ′

2 > 2µ2
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We will show this for the two-stage hyper-exponential distribution. Using the pdf of the
hyper-exponential we can calculate the mean

µ =

∫ ∞

0

x f(x) dx =
p

λ1
+

1− p
λ2

and the second moment

µ′
2 =

∫ ∞

0

x2 f(x) dx =
2p

λ21
+

2(1− p)
λ22

We then have

µ′
2 − 2µ2 =

2p

λ21
+

2(1− p)
λ22

− 2

(
p

λ1
+

1− p
λ2

)2

= 2

(
p− p2

λ21
+

(1− p)− (1− p)2

λ22
− 2p(1− p)

λ1λ2

)
= 2p(1− p)

(
1

λ21
− 2

λ1λ2
+

1

λ22

)
= 2p(1− p)

(
1

λ1
− 1

λ2

)2

≥ 0

Therefore the CV is indeed always greater than or equal to 1. It is equal only in the
degenerate case when λ1 = λ2 (or, equivalently, p = 0 or p = 1), and we are actually
dealing with an exponential distribution.

End Box

3.2.4 The Erlang Distribution

Definition

The Erlang distribution is obtained by summing several exponential service times:

λ λ λ

This means that each client passes through several servers in sequence. Note that all the
λs are equal to each other. In the general case of k stages, the pdf is

f(x) =
(λx)k−1

1
λ(k − 1)!

e−λx (3.24)

and the CDF is

F (x) = 1− e−λx
k−1∑
i=0

(λx)i

i!
(3.25)

The Erlang distribution is actually a special case of the hypo-exponential distribution,
which has the same structure, but with different λs in the different stages.
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Figure 3.14: The Erlang distribution. k = 1 is actually the exponential distribution. In
the top graphs θ = 1, and the mean grows with the number of stages. In the bottom ones
θ = 1/k, so the mean stays constant at 1. Additional stages then make the distribution
more concentrated about the mean.

Properties and Uses

The main difference between the Erlang distribution and the exponential distribution
is that the standard deviation of the Erlang distribution is smaller relative to its mean.
Intuitively, when we sum several random values, the deviations from the mean tend to
cancel out. Formally, this results from the fact that the standard deviation of the sum of
two independent and identically distributed random variables is

√
2 the standard devia-

tion of only one, whereas the mean of the sum is twice the mean of one. The quotient is
therefore smaller by a factor of 1/

√
2. As the CV of the exponential distribution is 1, the

CV of the Erlang distribution is smaller than 1, and it becomes smaller as more stages
are added (in fact, the CV of a k-stage Erlang distribution is 1/

√
k). It is thus preferred

over the exponential distribution if the empirical data has a small CV.

Figure 3.14 shows an example of Erlang distributions with an increasing number
of stages. When the number of stages is larger than 1, the distribution has a mode,
rather than being monotonically decreasing like the exponential and hyper-exponential
distributions.
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3.2.5 The Hyper-Erlang Distribution

Definition

The hyper-Erlang distribution is a mixture of several Erlang distributions, just as the
hyper-exponential is a mixture of several exponentials:

λ
2

λ
1

λ
1

λ
1

λ
2

p

1−p

Note that the number of stages in each Erlang distribution may be different from the
others. If they are all the same, it is called a hyper-Erlang distribution of common order.
The pdf of the general case is

f(x) =
k∑

i=1

pi
(λix)

ki−1

1
λi
(ki − 1)!

e−λix (3.26)

and the CDF

F (x) = 1−
k∑

i=1

pi

e−λix
ki−1∑
j=0

(λix)
j

j!

 (3.27)

(note the notation: k is the number of Erlang stages in the hyper-Erlang distribution, and
ki is the number of exponential stages in the ith Erlang).

Properties and Uses

Because each Erlang distribution is more localized than an exponential distribution, the
hyper-Erlang construction enables better control over the shape of the resulting distribu-
tion. In particular, it enables the construction of a multimodal distribution, in which the
pdf has multiple ridges and valleys (the hyper-exponential distribution, in contradistinc-
tion, has a monotonically decreasing pdf). With too few components, the distribution
tends to be modal even if this was not intended. Thus good control over the shape comes
at the expense of having a large number of components, and therefore a large number of
parameters.

An example is given in Figure 3.15, which shows two hyper-Erlang distributions,
each composed of two Erlang distributions. In both cases, the mean of the first stage
is 3 and the mean of the second stage is 18, and both occur with equal probabilities
(p = 0.5). The overall mean is therefore 10.5. The difference lies in the number of
stages used. When more stages are employed, the peaks become more concentrated.
However, when the scale parameter of the exponentials is bigger, many more stages are
required than when it is small.

Specific uses of a hyper-Erlang distribution for workload modeling include matching
the first three moments of empirical distributions [370], and creating a distribution with
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Figure 3.15: Example of hyper-Erlang distributions compared with an exponential dis-
tribution with the same mean. The hyper-Erlangs have two stages, each with probability
0.5.

a mode and a heavy tail (by actually combining an Erlang distribution and a hyper-
exponential distribution) [568].

3.2.6 Other Phase-Type Distributions

There are several additional structures of phase-type distributions that are often used.
The reason for their frequent use is that it can be proved that any distribution can be
approximated by these phase-type distributions arbitrarily closely.

The first is the Coxian distribution, proposed by Cox. This is a sequence of expo-
nential stages with an “escape path” that allows subsequent stages to be skipped:

1 − p
1

1
p p

2

1 − p
2 n−1

1 − p

p
n−1

λ
2

λnλn−11
λ

With n stages, this has 2n− 1 parameters: the mean service times of the n servers, and
the probabilities of using the escape path. A simplified version where all λs are equal
has also been proposed [97]. Coxian distributions can be constructed so as to match the
first three moments of the data using a minimal number of stages, thereby simplifying
the model [527].

The opposite approach has also been used: instead of an escape path, use an entry
path that allows you to “jump into” the sequence at a selected stage:
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The n stages in the sequence are ordered according to their mean service rates; that is
λ1 ≤ λ2 ≤ · · · ≤ λn. In addition, a set of m individual stages are added [342, 341].
Effectively, the sequence of the first n stages creates a mode that serves as the body
of the distribution, and the additional individual stages are actually a hyper-exponential
distribution used to construct a long tail for the distribution. This approach emphasizes
matching the distribution’s shape rather than its moments.

All the above are special cases of the general phase-type distribution, which includes
all the possible transitions between all the stages. In each special case, only a select
subset of transitions is used, and the rest have probability 0. Note that in the general case
a direct transition that bypasses all the stages is also included, and such a bypass can be
included in the special cases too. It adds the value 0 with probability p0.
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Details Box: Parameterizing Phase Type Distributions

In the preceding graphical representations of phase-type distributions, each exponential
stage is represented by its service rate, and the transitions from one stage to subsequent
ones are represented by probabilities. An alternative formulation is to number the stages
and specify the rates of the transitions:
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The two formulations are equivalent. The service rate of a stage is the sum of the transi-
tion rates out of it, and the transition rates are the overall rate multiplied by the relevant
probabilities. Thus in the example given above we have

λ1 = λ1,2 + λ1,3

λ1,2 = p λ1

λ1,3 = (1− p) λ1
To see this, consider the approach we used when discussing Poisson processes. Divide
time into many very small intervals, so that each transition happens in a distinct interval
(while of course in most intervals nothing happens). Denote by p1,2 the probability of
transitioning from state 1 to state 2, and by p1,3 the probability of transitioning from state
1 to state 3. Then obviously the probability of transitioning out of state 1 is p1,2 + p1,3.
The relationships between the rates follow.

End Box

3.2.7 The Normal Distribution

Definition

The pdf of the normal distribution is

f(x) =
1√
2π σ

e
− (x− µ)2

2σ2 −∞ < x <∞ (3.28)

where µ is the mean and σ the standard deviation. There is no closed form for the CDF.

Properties

The normal distribution is the omnipresent “bell curve” of popular science, so called in
reference to the shape of its pdf (the CDF is a sigmoid). It is of central importance in
probability and statistics, being the unique stable distribution that is the limiting distri-
bution when summing random variables with a finite variance. This is essentially the
central limit theorem.

In plain English, the above sentence means the following. Consider a sequence of
random variables X1, X2, . . . , Xn, which are independent and identically distributed.
Now define a new random variable Y , which is their average:

Y =
1

n

n∑
i=1

Xi

The central limit theorem states that, as n tends to infinity (that is, the number of Xs
grows), and provided that the Xs come from a distribution with finite variance, Y will
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come to have a normal distribution. Moreover, the normal distribution is the only dis-
tribution with this property. And because the normal distribution has a finite variance, a
special case is that this also works if you sum normal random variables. This is why the
distribution is called “stable”.

Uses

The central limit theorem is very important and useful in statistics. Any effect that is the
combination of multiple independent random effects can be expected to have a normal
distribution. However, this hinges on the assumption that the summed effects have a
finite variance. The distributions mentioned earlier, — the exponential and phase-type
distributions — indeed have this property. However, some of the distributions described
below do not. (Such heavy-tailed distributions are discussed at length in Chapter 5.)
Since heavy-tailed distributions (or at least strongly skewed distributions) are ubiquitous
in workloads, the central limit theorem may not apply. In addition, the symmetrical and
short-tailed normal distribution is inappropriate for matching skewed data directly. As a
result the normal distribution is rarely used in workload modeling.

Generation

Since there is no closed-form expression for the normal distribution’s CDF, we cannot
use the technique of inverting the CDF. The common way to generate standard normal
variates (with mean 0 and standard deviation 1) is to do so in pairs [581, sect. 11.3.1].
Start with a pair of uniform variates, u1 and u2. Now use them to generate a pair of
normal variates by computing

n1 =
√
−2 lnu1 sin(2πu2)

n2 =
√
−2 lnu1 cos(2πu2)

The justification for this somewhat strange formula is as follows. The sum of the squares
of two normal random variables has distribution χ2 with two degrees of freedom. The
square root of this has an exponential distribution. Using polar coordinates, the formula
selects a random point on the 2D plane with an exponentially distributed radius (distance
from the origin) and a uniformly distributed angle. Converting to Cartesian coordinates
then leads to two normal variates.

Given a standard normal variate n, a normal variate with mean µ and standard devi-
ation σ is obtained by

x = µ+ σn

3.2.8 The Lognormal Distribution

Definition

The lognormal distribution is a normal distribution in log-space — in other words, if
we take the logarithm of the data values, they will have a normal distribution. This is
evident from its pdf, which is based on the pdf of the normal distribution:
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Figure 3.16: Examples of the lognormal distribution with different parameters. The
graph on the right uses a logarithmic scale, showing the normal bell shape.

f(x) =
1

xσ
√
2π
e
− (lnx− µ)2

2σ2
x ≥ 0 (3.29)

There is no closed form for the CDF.
Note that µ and σ are the mean and standard deviation in log-space — not the mean

and standard deviation of the distribution. A good characterization of the distribution
itself is obtained by using the geometric mean and the multiplicative standard deviation
(as described on page 100) [445].

Properties

The shape of the lognormal distribution is modal and skewed, like that of the gamma and
Weibull distributions (discussed later) when their shape parameters satisfy α > 1. But
when viewed in a logarithmic scale, it displays the bell shape of the normal distribution
(Figure 3.16). This property has made it quite popular. It is standard practice to subject
skewed data with a long tail to a logarithmic transformation and to examine it in log-
space. If the result is modal and symmetric, like a normal distribution, it is natural to
assume a lognormal model. Moreover, the parameters of the distribution have a simple
intuitive meaning.

Two examples are shown in Figure 3.17. The LANL CM-5 interarrival times seem to
be lognormally distributed, provided the data is cleaned by removing workload flurries
(see Section 2.3.4). The file size data may also be roughly lognormal, at least for this
data set, albeit there are a few large modes at small values that do not fit. Note that
these histograms do not show the number of items falling within logarithmic bins, but
rather the probability density: the count in each bin is divided by both the total number of
observations and the bin width. As a result high values in the tail are strongly suppressed
and cannot be seen in the graph. Nevertheless, these histograms do have a long right tail.
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Figure 3.17: Examples of logarithmically-transformed datasets that seem reasonable to
model using a lognormal distribution.

Uses

The lognormal distribution is similar to the exponential, gamma, and Weibull distribu-
tions in that it is positive and has a tail that extends to infinity. It is distinguished from
them by virtue of matching the results of a specific mechanism of creating values. This
is based on an analogy with the normal distribution.

The normal distribution is well known because of its role in the central limit the-
orem: if we take a large number of random variables from the same distribution and
sum them up, we get a new random variable, and this new random variable is normally
distributed (at least if the original distribution had a finite variance). The lognormal dis-
tribution has a similar role. If we take multiple random variables and multiply them by
each other, the resulting random variable will have a lognormal distribution. This can
easily be seen by taking the log of the product. The logarithmic transformation turns the
product into a sum; the sum of the logs of the values will be normally distributed, so
the original product is therefore the exponentiation of a normally distributed value and
is itself lognormal.

At a more concrete level, the normal distribution may be regarded as the result of
a sequence of decisions (or random effects), in which each decision adds or subtracts a
certain value. The lognormal, in analogy, is the result of a similar sequence of decisions
(or random effects), but here each such decision either multiplies or divides by a certain
value [445].

The preceding argument has been used in a generative explanation of the distribution
of file sizes to justify the claim that a lognormal model is better than a heavy-tailed one
[188]. The idea is to initialize the model with a single file. Then, model the creation
of additional files by selecting a file at random, multiplying its size by a factor that is
also selected at random, and inserting a file with the new size. This is supposed to
model editing a file, translating it (as when a compiler produces an executable from a
program), or copying (the special case where the factor is 1). Thus file sizes are related
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to each other via a sequence of multiplications, and can be expected to have a lognormal
distribution.

Although this derivation is appealing, similar approaches may lead to alternative
distributions such as the Pareto distribution described below. Details of these contending
models, the generative processes that motivate them, and how to choose among them are
discussed in Sections 5.4.2 and 5.4.3.

Generation

The generation of a lognormal variate is simple if you already have a standard normal
variate n (that is, with mean 0 and standard deviation 1). If this is the case, compute

x = eµ+σn

and use this value.
The common way to generate standard normal variates is to do so in pairs, as de-

scribed above on page 122.

3.2.9 The Gamma Distribution

Definition

The gamma distribution is defined by the pdf

f(x) =
1

β Γ(α)

(
x

β

)α−1

e−x/β x ≥ 0 (3.30)

where the parameters satisfy α, β > 0 and the gamma function is defined as

Γ(α) =

∫ ∞

0
xα−1e−xdx (3.31)

This somewhat intimidating expression is actually quite straightforward. Note that the
definition of the gamma function is an integral with exactly the same factors as the pdf
(after scaling by a factor of β). Thus the Γ(α) in the denominator is just a normalization
factor.

There is no closed-form expression for the CDF unless α is an integer. However, the
CDF can be expressed using the gamma function as

F (x) =

∫ x

0
tα−1e−tdt∫ ∞

0
tα−1e−tdt

x ≥ 0

The denominator is the gamma function, and in the numerator the upper bound of the
integration is x rather than∞.
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Figure 3.18: Example of gamma distributions with different parameters.

Note also the following interesting property of the gamma function, which can be
derived by integration by parts:

Γ(α+ 1) =

∫ ∞

0
xαe−xdx

=
1

α+ 1

∫ ∞

0
xα+1e−xdx

=
1

α+ 1
Γ(α+ 2)

So Γ(α + 2) = (α + 1)Γ(α + 1). If α is an integer, the gamma function is therefore
identical to the factorial: Γ(α+1) = α(α−1)(α−2) · · · = α!. For non-integral values,
it provides a generalization of the factorial.

Properties

One reason for the interest in the gamma distribution is that it is very flexible. This means
that different parameter values lead to distributions with different shapes. This flexibility
is the result of having two competing terms in the pdf: a polynomial term (x/β)α−1 and
an exponential term e−x/β . In the long run, as x → ∞, the exponential term always
wins and f(x)→ 0. β is therefore called the scale parameter, and determines the spread
of the distribution, or more precisely, how quickly the tail will decay. This is illustrated
in Figure 3.18, where the only differences between the left and right graphs are the scale
and the value of β.

α is called the shape parameter. When α ≤ 1 the pdf is a monotonically decreasing
function. However, when α > 1 the polynomial factor “wins” over a certain range, and
the distribution has a hump. The peak then occurs at a value of (α−1)β. For low αs it is
skewed, but when α grows it becomes more symmetric. All this is illustrated in Figure
3.18.

Another reason for interest in the gamma distribution is that it is a generalization of
the exponential and Erlang distributions. Specifically, when α = 1 the gamma distribu-
tion is just an exponential distribution with parameter β, and when α is an integer k it is
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equivalent to a k-stage Erlang distribution (again with parameter β). This is evident by
comparing Figure 3.18 with Figure 3.14.

Uses

The gamma distribution is one of several versatile distributions that may be used to
model workload parameters. It is positive, has a tail that extends to ∞, and may be
adjusted to have a mode at some positive value, rather than being monotonically de-
creasing.

Generation

Generating random variates from a gamma distribution is rather involved. However,
in the special case that α is an integer, the gamma distribution is actually an Erlang
distribution (i.e., a sum of exponentials). In that case we can select α uniform random
variates u1, . . . , uα, and use the value

x = −β
α∑

i=1

ln(ui)

The Erlang distribution may sometimes be used as an approximation when α is not an
integer. Law and Kelton provide an extended discussion of the general case [427, sect.
8.3.4].

3.2.10 The Weibull Distribution

Definition

The Weibull distribution is defined by the pdf

f(x) =
α

β

(
x

β

)α−1

e−(x/β)α x ≥ 0 (3.32)

and the CDF

F (x) = 1− e−(x/β)α x ≥ 0 (3.33)

where α, β > 0. Focusing on the CDF, it is seen to be closely related to that of the expo-
nential distribution, the only difference being that the exponent is raised to the power α.
This causes the X axis to be distorted in a nonlinear manner (which is why the Weibull
distribution is sometimes also called a “stretched exponential”). When α < 1 the axis is
indeed stretched out, because it takes longer to arrive at high values. Conversely, when
α > 1, the axis is actually pulled in, and we arrive at high values faster.
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Figure 3.19: Example of Weibull distributions with different parameter values. Note that
the case α = 1 is the exponential distribution.

Properties and Uses

The Weibull distribution is similar to the gamma distribution in its flexibility and pos-
sible shapes, which result from a similar combination of a polynomial factor and an
exponential factor. α and β have the same interpretation as shape and scale parameters.
Large αs cause the mode to be more pronounced and symmetric. The location of the
mode is

(
1− 1

α

)1/α
β, and it exists only for α > 1. For small αs, in contrast, the tail

of the distribution becomes more pronounced. In fact, when α < 1, the Weibull distri-
bution is considered long-tailed, and as α → 0 we approach a power-law tail (long tails
are discussed in Section 5.1.3). At the boundary, when α = 1, the Weibull becomes a
simple exponential.

Several examples are shown in Figure 3.19. Note that although the Weibull and
gamma distributions have similar parameters, their shapes are actually quite different.
In particular, for large αs the Weibull is much more concentrated in a narrow range.

Generation

By inverting the expression for the CDF of the Weibull distribution, one can see that
random variates can be generated by creating a uniform random variate u and using the
transformed value

x = β(− ln(u))1/α

3.2.11 The Pareto Distribution

Definition

The Pareto distribution is defined by the pdf

f(x) =
a ka

xa+1
x ≥ k (3.34)

Version 1.0.4, typeset on June 10, 2023



3.2. SOME SPECIFIC DISTRIBUTIONS 129

and the CDF

F (x) = 1−
(
k

x

)a

x ≥ k (3.35)

where k is a location parameter — it specifies the minimal value possible (that is, x ≥
k > 0). a is a shape parameter that defines the tail of the distribution, commonly called
the tail index, and satiafying a > 0. The smaller a is, the heavier the tail, meaning that
there is a higher probability of sampling very large values.

Note that k is not a conventional location parameter; actually it is more of a scale
parameter, because it divides x rather than being added to x. Thus changing the value
of k does not only shift the distribution along the X axis, but also affects its shape (but,
of course, if we look at the distribution on a logarithmic scale changing k does induce
a shift). This allows us to also define a shifted Pareto distribution (also called a Pareto
distribution of the second kind, or a Lomax distribution) with a pdf of

f(x) =
a ka

(x+ k)a+1
(3.36)

and the CDF

F (x) = 1−
(

k

x+ k

)a

(3.37)

Here we used a shift of k, but in general this can be an independent parameter. However,
a shift of k has the nice property that now the distribution is defined for all x ≥ 0.

The heavy tail of the Pareto distribution can cause significant difficulties for analysis
and even for simulation. Therefore a truncated version is sometimes used. This postu-
lates a maximal possible value t and truncates the distribution at that point. Naturally
using this version requires a re-normalization. As the probability (of the original Pareto
distribution) of being in the range up to t is F (t) = 1 − (kt )

a, the pdf of the truncated
version is

f(x) =


a ka[

1−
(
k
t

)a]
xa+1

k ≤ x ≤ t

0 x < k, x > t

(3.38)

and the CDF is

F (x) =
1−

(
k
x

)a
1−

(
k
t

)a k ≤ x ≤ t (3.39)

and of course F (x) = 0 if x < k and F (x) = 1 if x > t. This is called either a truncated
or a bounded Pareto distribution.

The differences between these three versions are illustrated in Figure 3.20, where
a = 1 and k = 10. In this graph we look at the distribution’s survival function on
log-log scales, which is called a “log-log complementary distribution” (LLCD; this is
explained in detail in Section 5.3). The pure Pareto distribution has a straight LLCD,
because

log F̄ (x) = log(x−a) = −a log x
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Figure 3.20: LLCDs of variants of the Pareto distribution.

The shifted version rounds off the top part of the plot, and makes it start from 0. The
truncated version rounds off the tail of the distribution, and makes it converge asymptot-
ically to the truncation point, which is 105 in this case.

Properties

The Pareto distribution has a power-law tail: the probability of seeing big values drops
as x−a, which is slower than the exponential drop of, say, the exponential distribution.
Distributions with power-law tails are said to be “heavy-tailed”. In fact, the Pareto dis-
tribution is the archetype of heavy-tailed distributions. These distributions have many
important properties, and we devote all of Chapter 5 to discussing them.

In a nutshell, the main property of heavy-tailed distributions is that very large values
have a non-negligible probability. In fact, a large part of the total mass of the distribution
is found concentrated in these large items. This is a technical expression of the Pareto
principle, also known as the 80/20 rule. It originated with the work of Vilfredo Pareto,
an Italian economist, who found that 80% of the land in Italy was owned by only 20% of
the population. He also found that the tail of the distribution of wealth followed a power
law.

Uses

heavy-tailed distributions such as the Pareto distribution are ubiquitous in computer
workloads. Examples include the distributions of process runtimes and of file sizes.
In general, these are distributions of a “size” attribute of workload items. Such distri-
butions are also common in the natural sciences, especially in geophysics (earthquake
magnitudes, moon crater diameters, solar flares), and in human activity (city sizes, phone
calls received, distribution of wealth, and even casualties of war) [514].

It is interesting to speculate on why power-law tails are so common. A generative
explanation of how such distributions come about has been suggested for the case of
wealth; essentially, it says that money begets money. Interestingly, this is very similar to
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the multiplicative model that generates the lognormal distribution [497]. The idea is that
if an individual i has wealth wi, it may grow by a multiplicative factor f that comes from
some distribution. But in addition, it is also limited by terms that relate to the average
wealth w̄. On the one hand, due to social security, nobody’s wealth can fall below a
certain fraction of w̄. (Pareto himself put it more bluntly: he said that below a certain
level people just die.) On the other hand, because of the finite size of the economy,
nobody’s wealth can grow without bounds. Formalizing all this leads to a model in
which the wis turn out to have a power-law distribution [462].

Similar models have been suggested for various parameters of computer systems,
especially in the context of the world wide web. One such model postulates that the
probability that a new page links to an existing one is proportional to the number of links
the page already has [49, 9]. Another more abstract model considers the observed system
state as resulting from sampling individual processes that each grow exponentially [353,
562] (or similarly, from an exponentially growing number of sources that each grows
exponentially [207]).

A somewhat related approach links power-law tails with prioritization. Consider the
waiting time of tasks in a priority queue. High-priority tasks will be picked immediately
after entering the queue, so they will not have to wait very long. But low-priority tasks
will be skipped over many times and may suffer from very long wait times. Again, with
an appropriate formalization this leads to a power law [48].

The question of whether a Pareto distribution is the best model is a difficult one to
answer. Other options are often viable, including the Weibull and lognormal distribu-
tions described earlier. Truncated Pareto distributions have also been used. Again, this
discussion is deferred to Chapter 5, and specifically Sections 5.4.2 and 5.4.3. Section
5.4.3 also discusses derivations of the generative models mentioned above.

Generation

By inverting the CDF of the Pareto distribution, we find that a Pareto variate can be
created from a uniform variate u using

x =
k

u1/a

To get a shifted Pareto variate, simply subtract k. To get a truncated one, discard variates
that exceed the desired bound.

3.2.12 The Zipf Distribution

Definition

The Zipf distribution has its origins in linguistics. Start with a good book, and tabulate
the number of times that each word appears in it. Now sort the words in order of popu-
larity: the most common word first, the second most common next, and so on. Denoting
the number of occurrences of the ith word by c(i), you should find that c(i) ∝ 1/i. At
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Figure 3.21: The words in this chapter follow the Zipf distribution.

least, that is what Zipf found3 [764]. This result can be visualized by plotting c(i) as a
function of i on log-log axes (the so-called rank-size plot); Zipf’s law implies that this
should lead to a straight line with a slope of −1. As it turns out, it is also approximately
true for the words in this book (at least when the sample is not too large, as in Figure
3.21).

The generalized form of the Zipf distribution (also called the “Zipf-like distribution”)
is defined by the pdf

Pr(i) ∝ 1

iθ
(3.40)

where i is an index, not a value (so Pr(i) is the probability of observing the ith item, not
the probability of observing a value of i), and θ is a shape parameter (e.g. [737]). Setting
θ = 0 leads to the uniform distribution. Setting θ = 1 is the original Zipf distribution.
The range 0 < θ < 1 is less skewed than the original Zipf distribution, whereas the
range θ > 1 is more skewed.

Another variant, attributed to Mandelbrot [59], adds a constant b in the denominator:

Pr(i) ∝ 1

i+ b

This has the effect of reducing the count of the high-ranking items (i.e., the c(i) for low
values of i) and may lead to a better fit to some datasets.

The obvious problem with regarding any of these variants as a distribution is one
of normalization. For θ < 2, the sum

∑∞
i=1 1/i

θ does not converge. Therefore it can
only be defined on a finite set, with proper normalization. For θ = 1 and n items, the
expression becomes

3Although there has been active debate regarding the actual distribution of word frequencies [621, 59],
Zipf’s law is still a good approximation and has the advantage of being very simple.
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Pr(i) =
1

i lnn

Connection Box: Monkey Typing

An interesting observation is that Zipf’s law appears not only in natural languages but also
in random texts. This casts doubts on its importance in the context of linguistics [489, 441].
Consider an alphabet with M symbols and an additional space symbol. To generate a
random text using this alphabet, a sequence of symbols is selected at random with uni-
form probabilities (this is sometimes called “monkey typing”, based on the conjecture that
monkeys are good random number generators). Words are defined to be subsequences of
non-space symbols separated by the space symbol. The probability of seeing a word of
length ℓ is therefore geometrically distributed:

Pr(ℓ) =

(
M

M + 1

)ℓ
1

M + 1

But the number of distinct words of length ℓ is M ℓ, and they are equiprobable, so the
probability of seeing any specific word of length ℓ is simply ( 1

M+1 )
ℓ+1 — it falls off

exponentially with ℓ.
If we now rank the words according to their probability, words of length ℓ will be preceded
by all shorter words. There are M words of length 1, M2 of length 2, and so on, for
a total of

∑ℓ−1
i=1 M

i = M−Mℓ

1−M . Roughly speaking, we find that as the probability of a
word falls exponentially, its rank grows exponentially, and thus the probability is inversely
proportional to the rank. Miller gives the exact derivation, using the average rank of all
words with each length ℓ [489].
A problem with this derivation is that it assumes that all letters in the alphabet are equiprob-
able. Perline shows that if this is not the case, the distribution of randomly generated
words is not Zipfian, but lognormal [544]. However, a very large number of samples will
be needed to observe the difference from a Zipf distribution.

End Box

Properties

The Zipf distribution is actually a special case of the Pareto distribution [8, 85, 442].
Assume a set of items are ordered according to their popularity counts (i.e., according
to how many times each was selected). Zipf’s law is that the count c is inversely propor-
tional to the rank i, and can be written as

c = C i−θ (3.41)

where C is some constant that reflects the number of samples and the number of items
to choose from. Being in rank i means that there are i− 1 items with counts larger than
c. Using X to denote a random variable giving the count of an item, we then have

Pr(X > c) = i/n (3.42)

where n is the total number of items. We can express i as a function of c by inverting
the original expression (3.41), leading to i ≈ C c−1/θ (where C is a different constant
now). Substituting this into (3.42) gives a power-law tail:
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Pr(X > c) = C · c−1/θ (3.43)

(C has changed again, but is still constant). Note that if θ ≈ 1, as in the original Zipf
distribution, then 1/θ ≈ 1 as well.

The equations also allow us to estimate the count that should be expected at rank
i [226]. Assume there are n different items overall. Given the integral nature of the
distribution, the count of the last one (and actually a large number of items toward the
end) should be 1. Plugging this into Equation (3.41) leads to 1 = C n−θ, so the constant
is C = nθ. Equation (3.41) then becomes

c = nθ i−θ =
(n
i

)θ
Details Box: Three Plots for Power Laws

There are three common ways to plot power-law or Zipfian data. All exhibit straight lines
in log-log axes. They are illustrated here using data of HTTP requests for files from a
server at SDSC.

One plot is the rank-size plot introduced by Zipf. Here
the X axis is the rank of an item, and the Y axis is its
size (or number of requests or appearances, or prob-
ability). Hence the tail data appears on the top left.
These top-ranked items all have different sizes, and ac-
cording to Zipf’s Law they fall on a straight line in this
plot; by definition, the slope of this line is−θ, where θ
is the parameter of the Zipf distribution. Lower ranked
items may have the same sizes (e.g., there are many
items of size 2 or 3), leading to the characteristic step
shape at the bottom right of the plot.
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The simplest and most intuitive plot is the histogram:
the X axis is the size of an item (or how many times a
file is requested or a word appears), and the Y axis is a
count of how many such items (or files or words) there
are. There are very many items of size 1, fewer of size
2, and so on: these are actually the widths of the steps
at the bottom right of the Zipf plot. With log-log axes,
we get a straight line with a slope of −(1/θ + 1) (use
Equation (3.43) to derive the CDF, and differentiate to
get the pdf). But note that the tail of the distribution
is hard to characterize, because there are many unique
values that each appear only once (these are the dis-
tinct values at the top left of the Zipf plot and on the
extreme right of the histogram). This can be solved
by using logarithmic-sized bins when drawing the his-
togram [514] (Figure 5.18). However, such binning
loses some data fidelity.
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To better capture the tail, we can plot the survival func-
tion: the probability of seeing items bigger than a cer-
tain value (files that are requested more times, words
that appear more times, etc.). Again, we use log-log
axes. This is called a log-log complementary distribu-
tion plot, and is used in Chapter 5 as a tool to charac-
terize heavy tails. The X axis is the size, and the Y
axis is the probability of seeing larger sizes. This nat-
urally drops off for large sizes, and according to Equa-
tion (3.43) we should get a straight line with a slope
of −1/θ. The tail data appears on the bottom right,
which reflects the fact that this is actually the same as
the Zipf rank-size plot flipped on its side.

LLCD

requests per file

1 10 100 1000

p
ro

b
a
b
ili

ty
 f
o
r 

m
o
re

0.0001

0.001

0.01

0.1

1

End Box

An important property of this distribution is that the shape remains the same when
two sets of items are merged. For example, this book can be considered as using two vo-
cabularies: the conventional English vocabulary and the specific vocabulary of workload
modeling (for example, the word “distribution” is not in general the 12th most common
word in English; in fact, according to http://wordcount.org, its rank is 1637, right af-
ter “dinner”). Each vocabulary by itself follows the Zipf distribution, and so does the
combined set of words used in the whole book. In workloads, we might see requests
to many servers flowing through a network link. If the requests to each server follow
the Zipf distribution, so will the combined stream. The only difference will be in the
size of the support (the number of values for which the distribution is nonzero) and the
normalization constant.

The derivation showing this is simple. Starting with Equation (3.42), consider the
probability of being larger than a certain value x in each of two sets: a set of n1 items in
which x appears at rank i1, and a set of n2 items in which x appears at rank i2. Taken
together, we then have

Pr(X > x) =
i1 + i2
n1 + n2

But both i1 and i2 can be expressed as a function of x with appropriate constants C1 and
C2 (which depend on n1 and n2, but are nevertheless constants). We can then extract the
common factor x−1/θ and the result is

Pr(X > x) =
C1 + C2

n1 + n2
x−1/θ

Note, however, that this only works if the sets are Zipf distributed with the same θ.

Uses

The Zipf distribution turns out to describe the distribution of many varied human activi-
ties [442, 514]. As noted earlier, one example is the distribution of word frequencies in
natural language [764]. Other examples include the sizes of cities [273] and the produc-
tivity of authors of scientific papers [668, 207].

Version 1.0.4, typeset on June 10, 2023



136 CHAPTER 3. STATISTICAL DISTRIBUTIONS

In computer workloads, the Zipf distribution is often found to be a good model for
popularity distributions. A good example is the popularity of files stored on a server.
If the most popular file is accessed k times, the next most popular may be expected to
be accessed about k/2 times, the third most popular k/3 times, and so on. Another
example is the popularity of documents on a web server [57, 85, 572] or the websites
themselves [9, 10]. A third is the popularity of online games [116]. However, there are
exceptions. For example, it has been observed that the distribution of popularity on file
sharing services such as KaZaA is not Zipfian, and, specifically, that the most popular
items are downloaded much less than expected. This is attributed to the fact that the
shared media files are immutable, and therefore only downloaded once by each user
[309].

In addition, an important consideration is the size of the sample being considered
(or perhaps equivalently, the time scale of the observation period). If the real popularity
distribution has a heavy tail (that is, the tail of the distribution, but not necessarily the
whole distribution, is Pareto), it may look like a Zipf distribution when only a small
number of samples are considered [690]. The reason is that with few samples they will
be dominated by the Pareto (and hence, Zipfian) tail. But when we look at very many
samples we see the deviation from the Zipf distribution, because there are not enough
different items in the underlying population. This is discussed in more detail later in
relation to Figure 5.16.

Connection Box: The Value of a Network

Zipf’s law has also been linked with the question of the value of a network. The common
wisdom on this issue is summarized by Metcalfe’s law, which states that the value of a
network grows quadratically with the number of members; thus if the number of members
is doubled, the value quadruples. This is based on the simplistic model where n members
have about n2 connections (each one connects to all the others), and all these connections
have equal value.

An alternative is to postulate that connections are not all equally important. In particular,
we can assign them a value according to Zipf’s law. The most useful connection is given
a value of 1. the next most useful has a value of 1

2 , the third 1
3 , and so on. The sum of all

these values is then on the order of log n, and the total value of the network is only n log n,
not n2 [90].

An important outcome of this model is that most of the value is concentrated at the top. In
fact, in a network with n nodes, half of the value belongs to the top

√
n members [554]. In

certain contexts, this means that the high-value items can be found and used efficiently. An
example in point is the network of citations among scientific papers. In 1966 the Science
Citation Index covered 1573 out of an estimated total of 26,000 journals, which was a mere
6% of the journals. But assuming that these were the top cited journals, they are expected
to have contained 72% of the cited papers of that year [554]. Moreover, the payoff of
making significant extensions to the set of covered journals would be expected to be rather
small.

End Box
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Figure 3.22: Downey’s log-uniform model (dashed lines) of job runtimes.

Generation

If the range of i is finite and known, samples from a Zipf distribution can be easily
generated by using a precomputed table. For example, this is applicable for files stored
on a server, where we know that the number of files is n.

The value in the ith entry of the table is

Z[i] =

∑i
j=1 1/j

θ∑n
j=1 1/j

θ

that is, the relative size of the first i counts. Now generate a uniform random variate
u ∈ [0, 1]. Find the index i such that Z[i] ≤ u ≤ Z[i+ 1]. This is the index of the item
that should be selected. In effect, this is just like sampling from an empirical distribution.

3.2.13 Do It Yourself

The distributions described in this chapter are not a comprehensive list. Many more have
been defined and used (e.g. [221]), and it is also possible to create new constructions
based on the concepts described here.

For example, Downey has defined the log-uniform distribution to describe the run-
times of jobs on parallel supercomputers [186, 187]. This is inspired by the lognormal
distribution: first perform a logarithmic transformation, and then see what the resulting
distribution looks like. In this case, it looked like a uniform distribution on a certain
well-defined range. The data and the log-uniform model are compared for two systems
in Figure 3.22. At least for the CTC SP2, the model seems to be pretty good.

As another example, Lublin has defined what may be called a “hyper log-gamma”
distribution [454]. The log-gamma part comes from fitting log-transformed data to a
gamma distribution. The hyper part comes from actually fitting a mixture of two such
log-gamma distributions, so as to capture shapes that are bimodal — such as the SDSC
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Paragon data shown in Figure 3.22. A similar construction was used by Downey to fit
distributions of file sizes, but using the lognormal distribution as the basis [188].
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Fitting Distributions to Data

In this chapter we consider the problem of finding a distribution that fits given data. The
data has a so-called empirical distribution — a list of all the observed values and how
many times each one of them has occurred. The goal is to find a distribution function
that is a good match to this data, meaning that if we sample it we will get a list of
values similar to the observed list. Note, however, that we never expect to get a perfect
match. One reason is that randomness is at work — two different sets of samples from
the same distribution will nevertheless be different. More importantly, there is no reason
to believe that the original data was indeed sampled from our model distribution. The
running times of Unix processes are not samples from an exponential distribution, or
a Pareto distribution, or any other distribution function that has a nice mathematical
formulation.

But we can hope to find a distribution function that is a close enough match. The real
meaning of “close enough” is that it will produce reliable results if used in a performance
evaluation study. As this is impossible to assess in practice, we settle for statistical
definitions. For example, we may require that the distribution’s moments be close to
those of the data, or that its shape be close to that of the empirical distribution. Thus this
entire chapter is concerned with the basic methods of descriptive modeling.

To read more: Although we cover the basics of fitting distributions here, there is much more
to this subject. An excellent reference, including the description of many different distributions,
is the book by Law and Kelton [427], which also has the advantage of placing the discussion
in the context of modeling and simulation. There are many statistics texts that discuss fitting
distributions per se, e.g. DeGroot [169] and Montgomery and Runger [501]. Fitting distributions
is a special case of fitting data in general; a very accessible review was written by Christopoulos
and Lew [135], and a good book is by Berthold et al. [71].

4.1 Approaches to Fitting Distributions

There are two basic approaches to finding a distribution that fits a given dataset. One is to
limit the search to a specific type of distribution. In this case, only the parameters of the
distribution have to be found. If the type is not known, this can be generalized by trying
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to match a sequence of different distributions, and then selecting the one that provided
the best match. The alternative approach is to forgo the use of predefined distributions
and simply construct a distribution function with the desired shape.

A good example of the first approach is provided by a Poisson arrival process. Con-
sider the points in time in which users start new sessions with an interactive server. It is
reasonable to believe that such arrivals are independent of each other, and are uniformly
distributed over time. They therefore constitute a Poisson process. If this is true, then
the interarrival times are exponentially distributed. We can therefore assume this distri-
bution, and look for the parameter θ that best fits the data. This value turns out to be
equal to the average of the interarrival times.

A good example of the second approach, in which we do not use a known distribution
function, is provided by the distribution of job sizes in parallel supercomputers. This
distribution is quite unique, with many small jobs, few large jobs, and a strong emphasis
on powers of two. It is not similar to any commonly used mathematical distribution.
Therefore we have no alternative but to hand-carve a distribution function that has the
desired properties, or simply use the empirical distribution function.

The following sections discuss these approaches in detail. Section 4.2 provides the
basis, and covers the estimation of distribution parameters so as to match given data
samples. Section 4.3 extends this discussion to cases where a single distribution cannot
capture the data and a mixture is needed. Section 4.4 deals with cases where we simply
want to match the shape of the data (e.g., by using the empirical distribution directly).
After that we turn to tests for goodness of fit.

4.2 Parameter Estimation for a Single Distribution

The most common approach for fitting distributions is to use the following procedure
[427]:

1. Select a candidate distribution function.

2. Estimate the values of the distribution parameters based on the available data.

3. Check the goodness of fit.

We might expect that step 1 should be done based on the general shape of the distri-
bution; for example, if the histogram of the data is bell shaped, we might try a normal
distribution, whereas if it has a tail we would try an exponential one. However, there
are actually very many possible distribution functions with rather similar shapes that are
hard to distinguish from each other. The real considerations are therefore the availabil-
ity of prior knowledge regarding the distribution, the desire to perform a comprehensive
search, or practical considerations. These are all discussed in Section 4.2.1.

Step 2 may be based on calculating the moments of the data and using them as esti-
mators for the moments of the distribution, which is described in Section 4.2.2. Regret-
tably, this method has the drawback of being very sensitive to outliers, especially if high
moments are needed. An alternative is to look for maximum likelihood estimates, i.e.
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parameter values that are the most likely to have led to the observed data, as described
in Section 4.2.3.

Although step 2 finds the most reasonable parameter values for the given distribution
function, this still does not necessarily mean that this specific distribution is indeed a
good model of the data. We therefore need step 3, in which we assess the goodness of fit
in absolute terms. This is done by comparing the distribution function with the empirical
distribution of the data, as described in Section 4.5.

4.2.1 Justification

There are several possible justifications for trying to match a predefined distribution
function.

The first and best justification is knowing that this is indeed the correct distribution.
For example, if we have reason to believe that arrivals are a Poisson process, then the
interarrival times must be exponentially distributed. If a certain workload attribute is
known to be the sum of many contributions, which come from some distribution with
finite variance, then this attribute can be assumed to be normally distributed. Likewise,
if an attribute is the product of many contributions, it can be assumed to be lognormal.
Of course such assumptions should be checked, but they nevertheless provide a good
starting point.

If we do not know what the correct distribution is, it is nevertheless possible to use
the procedure of fitting a given distribution as a subroutine in an automated algorithm
to find the best match. In this case we have a large number of possible distributions,
and we try to find the best parameters for each one. We then run goodness-of-fit tests on
the resulting distributions. The distribution that achieves the best goodness-of-fit score is
selected as the best model for the data. This approach is used by many distribution-fitting
software packages.

Another possible justification is that the precise distribution does not matter. For
example, some queueing analysis results depend only on the first few moments of the
interarrival or service times. Thus the exact distribution that is used is not important, as
long as it has the correct moments. For example, it can be shown that in an M/G/1 queue
the average waiting time is [581, p. 383]

W =
λE[S2]

2(1− λE[S])

where λ is the arrival rate and E[S] and E[S2] are the first two moments of the service
time distribution. Note that, although the arrivals are assumed to be Poisson, the service
times can come from any distribution for which the first two moments are defined. This
enables one to choose from a family of distributions with different characteristics. Often,
a hyper-exponential distribution is used if the coefficient of variation is larger than 1, and
an Erlang distribution is used if it is smaller than 1.

The weakest justification is one of convenience. For example, one may select an
exponential distribution because of its memoryless property, which simplifies mathe-
matical analysis. Another example occurs when we have extra parameters that can be
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set to arbitrary values. For instance, a two-stage hyper-exponential distribution is defined
by three parameters: θ1, θ2, and p. If we want to match only the first two moments of
the distribution, we then have two equations with three unknowns. There are therefore
many possible solutions, and we can pick one of them.

However, it is typically inappropriate to select a distribution if we know outright
that it cannot be the correct one. For example, if interarrival times have a CV that is
significantly larger than 1, it is inappropriate both to model them using an exponential
distribution, and to assume that the arrivals constitute a Poisson process.

4.2.2 The Method of Moments

Obviously, given a distribution function, the moments can be calculated:

µ′r =

∫ ∞

−∞
xrf(x)dx (4.1)

Likewise, the central moments can be calculated

µr =

∫ ∞

−∞
(x− µ)rf(x)dx (4.2)

Calculating either of the integrals for a specific pdf typically leads to equations that
portray a functional relationship between the parameters of the distribution and the mo-
ments. For example, the exponential distribution has one parameter, θ, which is found to
equal its mean (i.e., the first moment). As another example, the gamma distribution has
two parameters, α and β. Its first moment (the mean) and second central moment (the
variance) are related to these parameters by the following equations:

X̄ = α β
Var(X) = α β2

Because the expressions specifying the moments as a function of the parameters can be
inverted, it is possible to estimate the parameters based on measured moments. Thus we
can compute the average and variance of a set of samples taken from a gamma distribu-
tion, and use them as estimators for the real average and variance. We then invert the
above equations to derive

α̂= X̄2/Var(X)

β̂ = Var(X)/X̄
(4.3)

If the distribution has more parameters, higher moments have to be used to provide the
required number of equations.

Note, however, that these are not exact values for the parameters. The problem is
that we do not really know the true moments — we can only estimate them from the
data samples. This is particularly problematic when the data is highly skewed, because
high moments are very sensitive to outliers. This issue is discussed further in Section
4.2.5.
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Nevertheless, the approach of matching moments is mathematically pleasing, and
several methodologies have been developed based on it. Osogami and Harchol-Balter
show how the first three moments of a distribution can be used to define a Coxian distri-
bution with minimal stages [527] or a combined Erlang-Coxian distribution [528]. Jann
et al. show how to match the first three moments to a hyper-Erlang distribution [370].
Johnson has proposed a parameterized family of distributions that can be used to match
the first four moments of the data by transforming it to the normal distribution (the spe-
cial case of a simple logarithmic transformation thus induces the lognormal distribution)
[383]. All these are examples of abstract modeling, which seeks to find the simplest
mathematical model with certain properties, in this case the values of several moments.

4.2.3 The Maximum Likelihood Method

Given a chosen family of distributions, the question is what parameter values will yield
the family member that best fits the data. The idea behind the maximum likelihood
method is to derive those parameter values that would lead to the highest probability of
sampling the given data values [480]. In the following we discuss a single parameter,
but the extension to multiple parameters is straightforward.

The likelihood function is the probability of observing a set of samples x1, . . . , xn
given that they come from a known distribution. If the distribution is defined by a pa-
rameter θ, we can write

L(θ |x1, . . . , xn) =
n∏

i=1

f(xi | θ) (4.4)

In other words, the likelihood of observing a set of samples is the product of the probabil-
ities of the individual values. This is based on the assumption that the random variables
of the sample are independent. But note the reversal of roles: the pdf reflects the prob-
ability for a value x given the parameter θ, whereas the likelihood of the parameter θ
depends on the given observations x.

Recall that we assume that the distribution from which the samples were drawn is
essentially known. Only the parameter of the distribution is not known. We want to find
the parameter value that is most likely to have given rise to these samples. To do so,
we simply differentiate the likelihood function with respect to the parameter. We then
equate the derivative to zero to find the value of θ that maximizes the likelihood.

When deriving maximum likelihood parameters, it is common to use a logarithmic
transformation and work with the so-called log-likelihood function. Since taking the
logarithm of a value is a monotonic transformation, the maximum of the log-likelihood
function is also the maximum of the likelihood function. In practice, it is often easier to
calculate the maximum of the log-likelihood function, because the logarithmic transfor-
mation turns a product into a sum and an exponent into a product.

The steps for estimating parameter values using the maximum likelihood method are
therefore as follows:

1. Given the assumed distribution function f , compute the likelihood function ac-
cording to Equation (4.4).
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2. Take the logarithm of this expression.

3. Differentiate with respect to θ.

4. Equate the result with zero.

5. Extract an expression for θ.

6. Verify that this is a maximum, by verifying that the second derivative is negative.

As a concrete example, consider the case of the exponential distribution. The likeli-
hood of sampling values x1, . . . , xn, given that they come from an exponential distribu-
tion with parameter θ, is (by Equation (4.4))

L(θ |x1, . . . , xn) =
n∏

i=1

1

θ
e−xi/θ

Taking a log and developing this equation leads to

ln(L(θ |x1, . . . , xn)) = ln

(
n∏

i=1

1

θ
e−xi/θ

)

=
n∑

i=1

(
ln(1/θ)− xi

θ

)
= n ln(1/θ)− 1

θ

n∑
i=1

xi

To find the θ that maximizes this expression we differentiate with respect to θ, and derive

∂

∂θ
ln(L) = −n 1

θ
+

1

θ2

n∑
i=1

xi

The extremum is obtained when this is equal to zero, leading to

n θ =
n∑

i=1

xi

and giving the solution that θ is equal to the mean of the samples. The second derivative
can be seen to be negative, so this is indeed a maximum.

Note that this methodology for finding maximum likelihood parameters cannot al-
ways be applied. Not every imaginable distribution leads to a closed-form solution. In
such cases, a numerical maximization procedure can be used in place of differentiation.
But maximum likelihood estimation is directly applicable to the exponential family of
distributions.

Background Box: The Exponential Family of Distributions
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The exponential family of distributions is the set of distributions whose pdf can be written
as an exponential of the product of two functions: a function of the argument x and a
function of the parameter θ. The most general expression is

f(x, θ) = ep(x)q(θ)+r(x)+s(θ)

The exponential distribution is, of course, a special case, which is easily seen by selecting
p(x) = x, q(θ) = 1/θ, r(x) = 0, and s(θ) = ln(1/θ). The hyper-exponential, Erlang,
hyper-Erlang, normal, lognormal, and gamma distributions also belong to this family.

The importance of this family is that it is easy to estimate the parameter values based
on samples from the distribution. In fact, each parameter can be expressed as a simple
function of the moments of the samples, and this gives maximum likelihood values. The
moments are said to be sufficient statistics, and completely define the distribution.

End Box

4.2.4 Estimation for Specific Distributions

Using the method of matching moments or the maximum likelihood method, the follow-
ing results can be obtained.

The Exponential Distribution

The exponential distribution is defined by a single parameter, θ, which is also the mean
of the distribution. It is therefore not surprising that when a set of data sampled from an
exponential distribution is given, the maximum likelihood estimator for θ is the average
of the samples. This was shown formally above.

The Hyper-Exponential Distribution

The number of parameters of a hyper-exponential distribution depends on the number
of stages it has. The two-stage hyper-exponential distribution has three parameters, so
in principle three moments are needed. If only the first two moments are calculated, we
therefore have two equations with three unknowns [428, 568]:

µ=
p

λ1
+

1− p
λ2

µ′2 =
2p

λ21
+

2(1− p)
λ22

This leaves us the freedom to choose one of an entire family of distributions that all
match these two moments.

One specific procedure for creating a hyper-exponential distribution that matches
given values for the first two moments is as follows: [21].

1. Calculate the CV squared: CV 2 =
µ′2 − µ2

µ2
.
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2. Calculate p =
1

2

(
1−

√
CV 2 − 1

CV 2 + 1

)
. Note that this requires CV ≥ 1.

3. Set λ1 =
2p

µ
and λ2 =

2(1− p)
µ

.

This formulation distributes the mass equally among the two stages, as p
λ1

= p µ
2p = µ

2 ,
and likewise for λ2.

Hyper-exponential distributions can also be used to match the shape of a monotonic
distribution (e.g., the tail of a heavy-tailed distribution). This application typically re-
quires more than two stages, and is described in Section 4.4.3.

The Erlang Distribution

The Erlang distribution is defined by two parameters: the rate λ of each exponential stage
and the number of stages k. A simple heuristic to find these parameters is as follows.
Because k uniquely defines the distribution’s coefficient of variation, it is easiest to start
by estimating k. The CV of a k-stage Erlang distribution is 1/

√
k. By calculating the

CV of the data, we can find the nearest value of k (Allen suggests using k = ⌊1/CV 2⌋
[21]). Given k, we can estimate 1/λ as 1/k of the mean of the samples.

A more formal approach is to match the first two moments of the distribution. These
are calculated as

µ =
k

λ

µ′2 =
k(k + 1)

λ2

providing two equations with two unknowns.

The Hyper-Erlang Distribution

The hyper-Erlang distribution is a generalization of the exponential, hyper-exponential,
and Erlang distributions. Jann et al. have developed a procedure to match the simplest
of these four distributions to given data [370]. This is done in two steps. First, check
whether the data satisfies distribution-specific constraints on the first three moments. For
example, the exponential distribution has only one parameter, so the moments must be
related to each other; in particular, the mean and the standard deviation are equal. For the
other distributions, the constraints are a set of inequalities. Second, find the parameters
of the selected distribution by matching the first three moments.

The Gamma Distribution

The gamma distribution has two parameters: the shape parameter α and the scale param-
eter β. Finding maximum likelihood values for these parameters requires the solution of
a pair of complicated equations — see Law and Kelton [427, p. 302]. A much simpler
alternative is to match the moments of the data, yielding the equations shown above on
page 142 (Equation (4.3)).
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The Weibull Distribution

The Weibull distribution has the same two parameters as the gamma distribution: the
shape parameter α and the scale parameter β. Finding maximum likelihood values for
these parameters again involves the solution of a pair of complicated equations — see
Law and Kelton [427, pp. 301 and 305].

The Lognormal Distribution

The lognormal distribution has two parameters: µ and σ, which are the mean and stan-
dard deviation of the logarithm of the values, respectively. Their estimation is therefore
very simple:

µ̂ =
1

n

n∑
i=1

lnxi

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(lnxi − µ̂)2

This is another one of the cases where matching moments in fact leads to maximum
likelihood estimates.

The Pareto Distribution

The Pareto distribution has two parameters: k and a. k is a location parameter, and
signifies where the distribution starts. It is estimated by the smallest sample seen: k̂ =
mini{xi}. Given k̂, the maximum likelihood estimate for a is

â =
1

1

n

n∑
i=1

ln
xi

k̂

This expression is justified, and other estimation methods are considered, in Section
5.4.1.

4.2.5 Sensitivity to Outliers

Calculation of moments sometimes plays an important part in fitting distributions. To
begin with, one may select suitable distributions based on moments, especially the mean
and the variance of the sample data. For example, these statistics typically indicate that
the distribution of job runtimes has a wide dispersion (the CV is greater than 1), leading
to a preference for a hyper-exponential model over an exponential one. More troubling is
the use of estimated moments to calculate parameter values with the method of moments.
Note that the number of equations needed is the number of unknown parameters of
the distribution. Thus if the number of parameters is large, high-order moments are
required. For example, the exponential distribution has only one parameter, which can
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Rec’s omitted Statistic (% change)
Dataset (% of total) Mean 2nd moment CV Median
KTH SP2 0 7.44 212.84 1.69 3
job size 2 (0.010%) 7.43 (-0.19%) 210.56 (-1.07%) 1.68 (-0.47%) 3 (0.00%)

4 (0.019%) 7.42 (-0.31%) 209.62 (-1.51%) 1.68 (-0.61%) 3 (0.00%)

8 (0.039%) 7.40 (-0.55%) 207.79 (-2.37%) 1.67 (-0.88%) 3 (0.00%)

16 (0.078%) 7.37 (-1.02%) 204.22 (-4.05%) 1.66 (-1.41%) 3 (0.00%)

32 (0.156%) 7.30 (-1.90%) 197.77 (-7.08%) 1.65 (-2.35%) 3 (0.00%)

64 (0.312%) 7.18 (-3.53%) 186.86 (-12.21%) 1.62 (-3.91%) 3 (0.00%)

KTH SP2 0 6145 247×106 2.36 583
runtime 2 (0.010%) 6125 (-0.33%) 243×106 (-1.78%) 2.34 (-0.67%) 582 (-0.17%)

4 (0.019%) 6105 (-0.65%) 239×106 (-3.51%) 2.33 (-1.33%) 582 (-0.17%)

8 (0.039%) 6065 (-1.29%) 230×106 (-6.91%) 2.29 (-2.66%) 582 (-0.17%)

16 (0.078%) 5987 (-2.57%) 214×106 (-13.6%) 2.23 (-5.47%) 582 (-0.17%)

32 (0.156%) 5840 (-4.97%) 184×106 (-25.6%) 2.10 (-10.97%) 581 (-0.34%)

64 (0.312%) 5623 (-8.48%) 151×106 (-38.8%) 1.95 (-17.39%) 577 (-1.03%)

proc94 0 0.37 25.05 13.51 0.02
runtime 4 (0.002%) 0.35 (-4.46%) 7.34 (-70.7%) 7.61 (-43.7%) 0.02 (0.00%)

8 (0.004%) 0.35 (-6.06%) 5.68 (-77.3%) 6.79 (-49.7%) 0.02 (0.00%)

16 (0.009%) 0.34 (-8.08%) 4.36 (-82.6%) 6.06 (-55.1%) 0.02 (0.00%)

32 (0.017%) 0.33 (-10.6%) 3.32 (-86.7%) 5.43 (-59.8%) 0.02 (0.00%)

64 (0.035%) 0.32 (-14.2%) 2.30 (-90.8%) 4.67 (-65.4%) 0.02 (0.00%)

128 (0.069%) 0.30 (-18.2%) 1.63 (-93.5%) 4.10 (-69.6%) 0.02 (0.00%)

256 (0.139%) 0.28 (-23.2%) 1.12 (-95.5%) 3.59 (-73.4%) 0.02 (0.00%)

512 (0.277%) 0.26 (-29.3%) 0.73 (-97.1%) 3.12 (-76.9%) 0.02 (0.00%)

Table 4.1: Sensitivity of statistics to the largest data points. The KTH dataset includes
only jobs that terminated successfully.

be estimated based on only the first moment (the mean). But the two-stage hyper-Erlang
distribution has five, so the fifth moment is also required.

The problem with using statistics based on high moments of the data is that they are
very sensitive to rare large samples [190]. In the skewed distributions that are character-
istic of workloads, there are always some samples that are much larger than all the others.
Such outliers tend to dominate the calculation of high moments, leading to a situation
in which most of the data is effectively ignored. Consider a sample with one outlier,
e.g. 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 15. The fifth moment, defined as µ′5 = 1

n

∑n
i=1 x

5
i ,

is 63,675.8. The sum itself, without the 1
n factor, is 764,110; 99.4% of this is due to

the outlier, 155 = 759, 375. Any parameters calculated based on the fifth moment are
therefore dominated by this single rare sample, which is not necessarily very representa-
tive. For example, if the outlier was 16 instead of 15, the sum would jump to 1,053,311
and the fifth moment to 87,775.9 — an increase of 37.8%! And we could add dozens of
samples with values of 1, 2, and 3, that would essentially have no effect.
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Examples based on real data are given in Table 4.1, which shows the first two mo-
ments, the CV, and the median for three datasets. To show the effect of the largest
samples, those samples are omitted and the statistics recalculated. This procedure is
repeated several times, as more and more samples are omitted.

In the KTH-SP2 job-size dataset, removing just 2 jobs from a total of 20,542 causes
the second moment to drop by a full percent; removing the 16 biggest jobs causes the
average to drop by more than 1%, the second moment to drop by more than 4%, and
the CV to drop by 1.4%. The runtime data shows a much larger drop in the second
moment, and, as a result, also in the CV: when the 16 longest jobs are removed, the
second moment and the CV drop by 13.6% and 5.5%, respectively. The results for the
heavy-tailed Unix process dataset from 1994 are even more extreme. For this dataset,
removing just the top 4 entries (out of 184,612) causes the average to drop by 4.5%,
the second moment by 70%, and the CV by 44%. In all these cases, the median, as a
representative of order statistics, hardly changes at all.

It should be understood that the sensitivity of higher moments to outliers is a real
problem, and not just a byproduct of artificially removing selected samples. The samples
omitted are from the extreme tail of the distribution. By definition, these samples are
rare. It is very likely that if we were to collect data for a different period of time, we
would have seen different samples from the tail. As a result, the computed moments
would have been different too.

In general, the maximum likelihood method for parameter estimation is less sen-
sitive to outliers than the moment matching method. When calculating the maximum
likelihood, all samples have the same weight. Maximum likelihood estimators are also
usually less biased. It is therefore preferable to use the maximum likelihood method
when possible.

4.2.6 Variations in Shape

Another problem with fitting distributions by using moments is that the fitted distribution
can have a rather different shape than the original one.

For example, Jann et al. have used hyper-Erlang distributions to create models that
match the first three moments of the modeled data [370] (in practice, differences of 30%
between moments calculated from the original data and from samples from the model
are common, but the order of magnitude is always correct). But these distributions turn
out to be distinctly bimodal, and do not reflect the shape of the original distributions
which are much more continuous (Figure 4.1).

The use of distributions with the right shape is not just an aesthetic issue. Back
in 1977 Lazowska showed that using models based on a hyper-exponential distribution
with matching moments to evaluate a simple queueing system failed to predict the perfor-
mance observed in practice [428]. Moreover, different hyper-exponentials that matched
the same two first moments led to different results. Similar observations were made by
Riska et al., who specifically showed that the queue length distribution was different for
different hyper-exponential models, and that none matched the queue length distribution
produced by the original data [568]. It may therefore be better to use distributions with
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Figure 4.1: Comparison of the CTC SP2 job runtime data for different ranges of job
sizes, and the Jann models of this data. The models use a hyper-Erlang distribution that
matches the first three moments, but fails to capture the shape.

matching percentiles instead. We consider creating distributions that match a desired
shape in Section 4.4

4.3 Parameter Estimation for a Mixture of Distributions

The previous section explained how a distribution is fitted to data. But in some cases,
this might be the wrong thing to do. If the data comes from a mixture of distributions,
we need to identify this mixture: doing so will both yield a better model and perhaps
provide a physical explanation of where the samples come from.

In a mixture, each sample comes from one (and only one) of the distributions form-
ing the mixture. But we don’t know which one, making it harder to assess the parameters
of the individual distributions. The problem of missing data regarding the association
of samples to distributions is side-stepped by using the iterative EM (expectation maxi-
mization) algorithm.

4.3.1 Examples of Mixtures

In the general case, the pdf of a mixture is expressed as
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Figure 4.2: Unix process runtimes from the pita and inferno datasets. On inferno, there
seems to be an additional class of processes that run for about 0.2–0.3 seconds.

f(x) =
k∑

i=1

pi fi(x)

This is a mixture of k distributions. The ith distribution of the mixture occurs with prob-
ability pi and has a pdf fi(x). This might seem familiar, and indeed we have already
encountered special cases of mixtures before: the hyper-exponential is a mixture of ex-
ponentials, and the hyper-Erlang is a mixture of Erlangs. But in general the constituent
distributions need not all be of the same type.

There are two main reasons to use mixtures. One is to hand-tailor the shape of a
distribution. For example, using a hyper-exponential distribution allows one to extend
the distribution’s tail, to approximate a heavy tail. This is demonstrated in Section 4.4.3.
Another common construction is to use a mixture of Gaussians (that is, a mixture of nor-
mal distributions) to approximate a distribution with many modes, as shown in Section
4.4.2.

The second is using a mixture when modeling a multiclass workload, where the
different classes have different distributions. As an example, consider the “inferno”
data shown in Figure 4.2. This is the distribution of runtimes on a departmental Unix
server during several hours one afternoon. It is obviously quite unusual, due to the
large number of processes that ran for about 0.2–0.3 seconds; the typical distribution is
monotonous and heavy-tailed (as in the “pita” dataset). We may therefore conjecture
that the distribution actually consists of a mixture, composed of two components: the
typical mix, plus a large group that ran for about 0.2–0.3 seconds.

To read more: Mixtures are typically not included in basic statistics textbooks or descriptions of
distributions. An exception is the compendium by McLaughlin [481], which lists many mixtures
and their properties. A book-length treatment is given by McLachlan and Peel [478].
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4.3.2 The Expectation-Maximization Algorithm

The EM algorithm is based on two assumptions: that the number of distributions in the
mixture and the functional form of each distribution are given, and that for each distribu-
tion estimating the parameters is not hard; it usually produces near-optimal results very
quickly.

To read more: The EM algorithm was originally proposed by Dempster et al. [170]. It has since
been the subject of a voluminous literature, including a review by Redner and Walker [561] and
a book by McLachlan and Krishnan [479].

The algorithm is iterative. Each iteration involves two steps, called the E-step and
the M-step. One version of the algorithm proceeds as follows:

1. Somehow initialize the parameters of the distributions.

2. E-Step: For each observation and for each distribution, decide what part of this
observation “belongs to” this distribution. Given that the parameters of the dis-
tributions are set, we can find for each distribution the probability of getting the
observation from that specific distribution. This probability is the “relative part”
of the observed value that is assigned to this distribution.

3. M-Step: For each distribution estimate its parameters, using the maximum like-
lihood estimation method. This estimation is done based on the observations (or
rather, their “parts”) that are believed to “belong to” this distribution.

4. Repeat E and M steps until the likelihood converges.

Alternatively, it might be easier to initially partition the samples into rough groups that
correspond to the different distributions. In this case, we start with the M-step:

1. Somehow partition the data into groups that are roughly characterized by the dif-
ferent distributions.

2. M-Step: For each distribution, estimate its parameters using the maximum likeli-
hood estimation method. This estimation is done based on the observations asso-
ciated with this distribution.

3. E-Step: For each observation and for each distribution, decide what part of this
observation belongs to this distribution.

4. Repeat the two steps until the likelihood converges.

The M-step (maximization step) essentially fits a distribution to observed data. Be-
cause we know the functional form of the distribution and only have to find its param-
eters, this can be done using any of the parameter estimation methods of Section 4.2.
EM is usually described using maximum likelihood estimation, which is also used in
the proofs regarding EM’s behavior. But in practice, matching moments also works
(at least in cases where the moments are not unduly influenced by outliers and lead to
representative parameter values).

The E-step is done as follows. For simplicity, we assume only two distributions in
the mixture, with pdfs f1(·) and f2(·).
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1. For an observed value x, find the probability densities that such a value is gener-
ated by either distribution. These are p1 = f1(x) and p2 = f2(x).

2. Find the total probability of such a value p = p1 + p2.

3. Assign a fraction p1
p of the sample to distribution 1, and a fraction p2

p to distribution
2.

4. Repeat this procedure for all other observations.

Background Box: Convergence of the EM Algorithm

To show the convergence we need to express the EM algorithm somewhat more formally.
We do this for a simplified version, in which each sample is assigned to a single distribution
in the mixture.

We start with a set of data samples x = {x1, x2, . . . , xn}. Assume that this comes from
a mixture of distributions that are described by a set of parameters θ = {θ1, θ2, . . . , θm}.
Some of these parameters belong to the first distribution, some to the second, and so on.

The idea of the EM algorithm is to postulate a set of latent random variables y = {y1, y2,
. . . , yn}. Each yi assigns the corresponding sample xi to one of the distributions: yi = j
means that we currently think that the ith sample comes from the jth distribution. Assum-
ing a mixture of only two distributions, yi ∈ {1, 2}. The problem is that we do not know
y. So in effect we need to infer y and estimate θ at the same time.

When executing the algorithm, the xs are actually constants. What we do is to iteratively
revise the values of the θs and ys so as to maximize the probability of observing the xs. As
in the maximum likelihood method, we do this in log-space. So the expression we want to
maximize is

logL(θ) = log Pr(x|θ)

The latent variables y are introduced by conditioning and summing over all the values that
y may assume:

logL(θ) = log

(∑
y

Pr(x|y, θ) Pr(y|θ)

)

In each iteration of the algorithm, we have a current estimate of θ that we shall denote
θc. We use this to infer what y may be (i.e., the assignment of the samples in x to the
different distributions). In short, we need to find the best y given x and θc. We introduce
this consideration by multiplying and dividing the log-likelihood by a factor Pr(y|x, θc).
This gives

logL(θ) = log

(∑
y Pr(x|y, θ) Pr(y|θ) Pr(y|x, θc)

Pr(y|x, θc)

)
We can now get rid of the “logarithm of a sum” structure using Jensen’s inequality, which
states that for

∑
j αj = 1 we have log

∑
j αjxj ≥

∑
j αj log xj . Applying this using

α = Pr(y|x, θc) we get

logL(θ) ≥
∑
y

Pr(y|x, θc) log

(
Pr(x|y, θ) Pr(y|θ)

Pr(y|x, θc)

)
By finding a new set of parameters θn that maximize the right-hand side, we will achieve a
log-likelihood that is at least as large. But note that θ is the argument of the expression, not
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its value. So what we are looking for is “the argument that leads to the maximum value”.
This is expressed as

θn = argmax
θ

∑
y

Pr(y|x, θc) log

(
Pr(x|y, θ) Pr(y|θ)

Pr(y|x, θc)

)

Let us simplify this expression. The numerator in the log is actually Pr(x, y|θ). The
denominator does not depend on θ, only on θc, so it does not change the maximization
and can be dropped. Finally, regarding Pr(y|x, θc) as a probability function, we find that∑

y Pr(y|x, θc) is actually a calculation of an expectation. Therefore we actually have

θn = argmax
θ

E [ log Pr(x, y|θ) ]

which is the essence of the EM algorithm: to maximize the expectation. (The current
values of the parameters, θc, are not lost — they are in the calculation of the expectation.)

But what about the convergence? In each iteration we maximize the expectation. So the
expectation for θn is at least as large as for θc. Because the log-likelihood is always larger
than this expectation, it too will be at least as large as it was before. In other words, it does
not decrease.

This goes on until we reach a maximum of the expectation. This is typically also a local
maximum of the log-likelihood. While not guaranteed to be a global maximum, practice
indicates that the results are typically very good. Although the algorithm may actually con-
verge to a local minimum or a saddle point, this rarely if ever occurs in practice. To verify
the result, one can repeat the entire procedure with a different initialization (either differ-
ent parameters or a different assignment of observations to distributions) and compare the
results.

End Box

Usage Example

As an example, let us use the EM algorithm to partition the “inferno” dataset shown
above in Figure 4.2 into two groups. For the typical background workload we will
assume a Pareto distribution, which has been shown to provide a good model of the tail
of Unix process runtimes. We burden it with modeling the full distribution. For the
added component we assume a normal distribution, based on its shape in the figure. To
initialize, we consider all the processes running from 0.2–0.5 seconds to be the special
group, and all those outside this range to be the conventional workload. This range is
somewhat off-center on purpose, to show how the EM algorithm corrects for this offset.

The progress of the algorithm is shown in Figure 4.3. It converges after two iterations
and gives what is intuitively a good partitioning of the data. In fact, it is also good in
comparison with the real classification. The original data includes the Unix command
name and user name of each process. This information can be used to identify the added
processes as repeated invocations of the Unix ps command by a small set of users. The
large number of these processes is a result of runaway processes that repeatedly execute
this command — a bug in the implementation of an exercise in the operating systems
course...
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Figure 4.3: Progress of the EM algorithm in classifying the processes into a background
class with a Pareto distribution and an abnormal class with a normal distribution.

4.4 Re-Creating the Shape of a Distribution

The previous sections showed two problems with parameter estimation: that it is sensi-
tive to outliers that are not necessarily representative, and that it may lead to distributions
that are quite different from the original data. An alternative is therefore to fashion a dis-
tribution with exactly the desired shape, or to use the empirical distribution function
directly. This is therefore a less abstract form of descriptive modeling.

4.4.1 Using an Empirical Distribution

The easiest way to re-create the shape of a distribution, which is always available, is not
to create a mathematical model but to use the raw data as is. This is called the empirical
distribution. It is especially useful when the data does not resemble any commonly used
mathematical distribution. An example is when the distribution has distinct modes, as
happens for parallel jobs sizes or packet sizes in computer networks.

Given a dataset, representing its empirical distribution is trivial — simply generate
a histogram of the observed values. Generating random variates according to this distri-
bution is also simple. Start with a random variable selected uniformly from the interval
[0, 1]. Then scan the histogram, until this fraction has been covered, and use the value
you have reached.
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More precisely, the procedure is as follows.

1. Start with a histogram h. This is a table indexed by the sampled values xi. h(xi)
is the number of times that the value xi was seen in the samples.

2. Convert this into a CDF-like form. To do so, create a table c also indexed by the
same set of xis, whose values are normalized cumulative sums of the values of h:

c(xi) =

∑
xj≤xi

h(xj)∑
xj
h(xj)

=
|{xj | xj ≤ xi}|

n

where n is the number of samples. Note that c(x) is monotonically increasing with
x, with values in the interval [0, 1]. In particular, for the highest sampled value xm
we have c(xm) = 1. In fact, this table embodies Fn(x) of Equation (3.4).

3. Select a value u uniformly from the interval [0, 1].

4. Find the smallest value xi such that c(xi) ≥ u. Such a value exists because of the
properties of c outlined above. Use this value.

Repeating steps 3 and 4 many times will generate a set of values that are distributed
according to the original histogram h.

This procedure is suitable as is if the xs come from a set of discrete values, such
as the number of processors used by a parallel job. But what about xs that are actually
continuous, such as the runtimes of jobs? In such cases we would probably prefer to
interpolate between the values xi that appeared in the original sample. The changes
from the previous procedure occur in steps 2–4:

2. Calculate the values of c thus:

c(xi) =

∑
xj<xi

h(xj)∑
xj
h(xj)− 1

=
|{xj | xj < xi}|

n− 1

This is again monotonically increasing to 1, but starts from 0 at the minimal value.

3. Select a value u uniformly from the interval [0, 1].

4. Find two consecutive values xi and xi+1 such that c(xi) < u ≤ c(xi+1). Calculate
x as

x = xi +
u− c(xi)

c(xi+1)− c(xi)
(xi+1 − xi)

Use this value.

An open question is whether we should also extrapolate. In other words, should
the minimal and maximal samples we started with be the minimal and maximal values
possible, or should we allow some leeway? Intuition argues for allowing values that
extend somewhat beyond the original samples, but does not say how much beyond.
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Handling Censored Data

The above procedure works when we indeed have multiple samples to work with. But
sometimes, we only have partial data. In particular, some of the data may be censored.
This means that some of the samples have been cut short, and thus do not reflect real
values. Examples of censored data include the following.

• One source of data for the distribution of interactive user sessions is a list of login
sessions maintained by the system; on Unix systems, such a list is available using
the last command. But issuing this command also returns data about ongoing
sessions or sessions that were interrupted by a system crash. For such sessions we
do not know their real duration; we only know that it is longer than the duration
observed so far.

• Data about process lifetimes from an accounting system typically includes pro-
cesses that were killed for various reasons. For example, some processes could be
killed because they exceeded their maximal CPU time. Again, this implies that
the “real” process lifetime should have been longer.

Censoring is especially common in medical statistics (e.g., in the study of survival after
being diagnosed with some disease). The censoring arises due to patients who die from
other causes, or patients who survive until the end of the study period. The terminology
used to discuss censoring borrows from this context.

Censored items contain some information, but cannot be used directly in a histogram.
The way to incorporate this information in the empirical distribution function is to note
its effect on the survival probability. Recall that the survival function expresses the
probability to exceed a value x:

F̄ (x) = Pr(X > x)

Given that you have survived until time x, what is the probability that you will die soon
thereafter? This is called the hazard, and may be expressed as the quotient of the pdf
(giving the probability of dying at time x) divided by the survival function (expressing
the condition of not dying before):

h(x) = Pr(x < X < x+ δ | X > x) =
f(x)

F̄ (x)

Applying these concepts to a set of samples that have been censored, denote the sampled
values by Xi. Let di represent the number of real samples with magnitude Xi (that
is, excluding any censored data items). Let ni represent the number of samples with
magnitude larger than or equal to Xi (both real and censored). The hazard, or risk of
surviving for time Xi and then dying, is then di/ni. Hence the probability of reaching
time Xi and surviving it is 1 − di

ni
. The general probability of surviving time Xi has to

account for the probability of reaching this time at all. Thus the probability of surviving
an arbitrary value x is the product of the probabilities of surviving all smaller values:
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F̄n(x) =
∏
Xi<x

(
1− di

ni

)
This is called the Kaplan-Meier formula [391]. The empirical distribution function is
then Fn(x) = 1− F̄n(x).

Note, however, that this formula depends on the assumption that censoring is ran-
dom. This has two implications. The first is that the formula is inapplicable if the data is
actually multiclass, and one class has a greater propensity for censoring than the other.
The other is that the formula assumes that censoring occurs independently and at random
at any given time instant, so that large samples have a higher probability to be censored.
The distribution of real samples is therefore biased toward lower values, and the Kaplan-
Meier formula attempts to correct this bias by using the censored values, which tend to
be larger. However, it cannot reconstruct the tail beyond the largest sampled value. This
can be a problem with distributions that have a long tail.

The Problem of Overfitting

Using an empirical distribution does not abstract away and generalize the data, but rather
uses all the data as is. Thus, by definition, it risks the danger of overfitting. This means
that evaluations using this data will be correct only for the specific conditions that existed
when the data was collected, but not for any other situations.

A possible way to avoid overfitting is to use cross-validation. Cross-validation is a
general technique to assess the degree to which a dataset is representative. The idea is
to partition the available data into two subsets, and to see how well an analysis based
on one subset can predict the properties of the other subset. This is often repeated with
several different partitions of the data.

A simple use of this idea in the context of using empirical distributions is to partition
the data into two, and then check the similarity between the two empirical distributions.
Because one of the main problems with workload data is that the workload changes with
time, in this case it is better to partition the data into the first half and the second half
rather than using a random partitioning. If the two parts are dissimilar one should suspect
that the nature of the workload changes with time. In such a situation the sensitivity of
performance evaluations to such evolution should be checked.

Using an empirical distribution is especially problematic if the data includes outliers.
This emphasizes the need to first clean the data as described in Section 2.3.

4.4.2 Modal Distributions

A special case of using empirical distribution functions is the modeling of modal distri-
butions. These are quite common in computer workloads.

A good example for a modal distribution is the distribution of job sizes on parallel
supercomputers (Figure 4.4). This distribution has prominent modes at powers of two,
although the reasons for this shape are not always clear. Some parallel machines, such
as hypercubes or the Thinking Machines CM-5, only support jobs that require a power-
of-two number of processors. But most architectures do not impose such restrictions,
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Figure 4.4: Histograms showing the distribution of job sizes on parallel machines.

and furthermore, users do not necessarily favor them either [136]. It may be that the
root of this behavior is the way commonly used to configure batch queueing systems,
in which different queues are assigned for different classes of jobs, often delimited by
binary orders of magnitude.

Another well-known example of a modal distribution is the distribution of packet
sizes on computer communication networks. In this case the sizes that will occur com-
monly are determined by various communication protocols. Each protocol has its char-
acteristic maximum transmission unit (MTU). For example, the MTU of an Ethernet is
1500 bytes. To this you need to add various headers; in Ethernet these include 6 bytes
of destination address, 6 bytes of source address, and 2 bytes to specify the length. Thus
many packets that originated on an Ethernet will have a size of 1514 bytes (possibly plus
some additional header bytes) also when they are transmitted across other networks.

A third example of a modal distribution is the distribution of memory object sizes
(meaning general structures that are stored in memory, not necessarily in the context of
object-oriented programming) [384]. Programs can in principle request memory alloca-
tions of arbitrary sizes, but in practice the requests tend to be repetitive, requesting the
same size over and again. Thus the vast majority of memory objects conform to a rela-
tively small repertoire of different sizes. The sizes may be even more limited if a single
phase of the computation is considered, rather than the full execution of the program.
And not only sizes tend to be repetitive — values stored in memory also tend to repeat
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Figure 4.5: The file size distribution in the Unix 1993 survey has a comb structure com-
bined with a strong emphasis on small sizes.

themselves [139, 759]. Characterization of stored data in Facebook servers, which is
organized as a key-value store, revealed that both keys and values tend to have modal
distributions [42].

File sizes also tend to be modal. For example, many file sizes on Unix are found to
be multiples of a single block or of 8 or 16 blocks (Figure 4.5). This leads to a comb-like
structure, rather than just a few discrete sizes as in previous examples. Again, the reason
for this structure is not clear, but it may be due to applications that allocate large blocks
of data in the interest of efficiency, because partial blocks would be lost to fragmentation
anyway. And incidentally, file-access size distributions also tend to be modal, because
they are generated by applications that access the same type of data structure over and
over again in a loop [634].

Modeling of modal distributions is essentially the same as using an empirical distri-
bution. However, there is an option to use some shortcuts if the modes can be character-
ized easily, or if it is considered sufficient to focus exclusively on the modes and ignore
other values.

Modeling with a Mixture of Gaussians

In some cases, modal distributions do not have strictly discrete modes. Rather, the modes
can exhibit some variance. For example, file sizes observed in P2P file-sharing systems
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Figure 4.6: Using a mixture of Gaussians to model a modal distribution. The quality
of the results depends on the number of components used. Data is job runtimes on the
HPC2N cluster.

tend to have two major modes, corresponding to relatively short music clips and rel-
atively long full-length feature movies [309]. Files in a corporate media server had
several modes that led to a relatively wide distribution [675].

A common way to model such distributions is by using a mixture of Gaussians, or,
in other words, a mixture of normal distributions — one normal distribution for each
mode. The parameters of the normal components can be found using the EM algorithm,
as described above in Section 4.3.2.

An example of this procedure is shown in Figure 4.6. The distribution in question
is the distribution of job runtimes from the HPC2N Linux cluster. This dataset contains
information about more than a half-million jobs submitted over a period of 31

2 years
(we use the full log here, not the cleaned version). As seen in the figure, there are a
number of prominent modes where very many jobs had similar runtimes. The fitting is
done in log-space, so it actually uses lognormal components rather than normal ones.
The degree to which these components of the mixture manage to model the original
distribution depends on the number of components used — the more components, the
better they can approximate individual modes. However, when the distribution has many
modes, this leads to a very complex model. Thus if the precise structure of the modes is
deemed important, it might be better to simply use the empirical distribution as described
in Section 4.4.1.

4.4.3 Constructing a Hyper-Exponential Tail

Although an empirical distribution can easily be used in simulations, it cannot be used in
a mathematical analysis. Moreover, in many cases such analysis can only be done based
on Markovian models (i.e., using exponential distributions). This is the reason for the
interest in phase-type distributions.

Of particular interest is the use of the hyper-exponential distribution to model the tail
of a dataset. Although the tail by definition contains only a small number of samples,
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these samples may be very big, and may therefore dominate the behavior of the system.
This is discussed at length in Chapter 5. For now it is enough to know that an accurate
representation of the tail is very important.

The Iterative Feldmann and Whitt Procedure

A simple algorithm has been proposed by Feldmann and Whitt. Given a desired number
of phases, it iteratively computes the parameters of each so as to match certain points
on the CDF [253]. The procedure starts from the tail and works its way toward the
origin, taking into account the phases that have already been defined and matching what
is left over. As each phase is an exponential, it has a characteristic scale given by the
parameter θ = 1/λ. The scale parameter of the last phase matches the end of the tail.
All the previous phases have a much smaller scale parameter, and moreover, they decay
exponentially. Therefore the last phase is the only one that is relevant for the end of the
tail, and all the others can be ignored. After matching the end of the tail, this last phase
is subtracted, and the procedure is repeated for the new (shorter) tail.

The procedure is based on the following parameters:

• k — the number of exponential phases to use. Given enough phases (e.g. 20 or
so) it is possible to achieve a very close match to the distribution being modeled,
but this comes at the price of a more complex model (i.e., a model with more
parameters).

• A set 0 < ck < ck−1 < · · · < c1 of points that divide the range of interest into
exponentially related subranges. Specifically,

– c1 represents the highest values that are of interest; higher values will not
appear in our model. The issue of setting an upper bound on the range of
interest is problematic and further discussed in Section 5.4.2. For now, we
assume that this is somewhat smaller than the largest sample observed in our
dataset.

– ck represents the smallest values that are of interest. Because we are typically
dealing with distributions that have “many small values”, ck should be one
of the smaller ones.

– The ratio ci/ci+1 is set to some constant b. This is determined by the number
of phases k and by the scale of interest c1/ck, because c1/ck = bk−1. In
other words, we select b = k−1

√
c1/ck.

• An arbitrary value q that satisfies 1 < q < b. For example, q =
√
b could be a

good choice. But there is a constraint that q c1 must not be larger than the highest
data point. (This is why c1 was chosen earlier to be smaller than the maximum.)

Armed with all these parameters, we set out to model a given survival function
F̄ (x) = Pr(X > x). This is done as follows.

1. Initially we match the first phase (i = 1) to the tail of the given survival function.
In other words, in step 1 we have F̄1(x) = F̄ (x).
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2. In general, in step i we match the ith phase to the tail of the remaining survival
function F̄i(x).

An exponential phase has two parameters, pi and λi. It is characterized by the sur-
vival function F̄ exp

i (x) = pi e
−λix. To find the values of the two parameters, we

equate this survival function to the survival function we are attempting to match
at two points: ci and q · ci. This gives two equations with two unknowns:

pi e
−λici = F̄i(ci)

pi e
−λiq ci = F̄i(q ci)

From the first equation we can easily extract an expression for pi:

pi = F̄ (ci) e
λici

Plugging this into the second equation and simplifying yields

λi =
1

(1− q)ci
ln
F̄ (qci)

F̄ (ci)

3. Given the parameters for phases 1 through i, we define the survival function that
we need to match in the next step. To do so, we simply subtract the contributions
of the first i phases that have already been done from the original survival function:

F̄i+1(ci+1) = F̄ (ci+1)−
i∑

j=1

pj e
−λjci+1

F̄i+1(q ci+1) = F̄ (q ci+1)−
i∑

j=1

pj e
−λjqci+1

We now reiterate step 2.

4. In the last step, when i = k, the procedure is slightly different. First, the value of
pk is set so that the probability of all phases equals 1:

pk = 1−
k−1∑
j=1

pj

Therefore only one equation is needed in order to define λk. It is

pk e
−λkck = F̄k(ck)

which yields the last missing parameter,

λk =
−1
ck

ln
F̄k(ck)

pk
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Figure 4.7: Approximations to a heavy tail using hyper-exponentials with increasing
numbers of phases, as computed by the Feldmann and Whitt procedure. These graphs
are LLCD plots, which portray the distribution’s tail by showing the survival probability
on log-log axes; they are explained on page 199.

As originally described, this procedure should be applied to a known survival func-
tion (e.g., to a Weibull distribution) [253]. This implies a two-step modeling proce-
dure: first fit some appropriate distribution to the data, and then approximate it with a
hyper-exponential. However, it is also possible to apply the procedure directly using the
empirical survival function of the data.

An example of using this procedure is given in Figure 4.7. The dataset is the runtimes
of Unix processes from 1994 [320]. These have a heavy tail, and figure prominently in
Chapter 5. But a hyper-exponential with as few as four or five stages seems to model the
tail of the distribution pretty well.

While this algorithm is simple and direct, it may actually generate a suboptimal
result. In particular, it has been criticized as not matching the moments of the data, and
as being sensitive to the chosen values of ci and q [208]. A visual inspection of the result
is therefore required, and some experimentation with values of ci (and especially the
largest one, c1) is recommended.
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Using the EM algorithm

The hyper-exponential distribution is a mixture of exponentials. Its parameters can there-
fore be estimated using the EM algorithm, which is a general technique for finding the
parameters of mixtures (as explained above in Section 4.3.2) [41].

The problem is that the EM algorithm only finds parameter values for known distri-
butions. Therefore, when applying it to find the parameters of a hyper-exponential tail,
we need to decide in advance how many phases to use. One approach is to start with a
small number, even just one (that is, an exponential distribution) [208]. Given this basic
version, find the parameter values that give the best fit to the data, and evaluate this fit.
Then iterate as follows:

1. Double the number of phases.

2. Find the parameter values that provide the best fit given the new number of phases,
and evaluate the quality of the resulting model.

3. If it is not significantly better than the previous model, stop. Otherwise, continue
refining the model further.

An alternative method is to first split the data into disjoint ranges, such that each
range has a relatively small variability (the suggested criterion is to strive for a CV
in the range of 1.2 to 1.5) [569]. Next, model the data in each range independently,
using the EM algorithm to find parameters for a hyper-exponential model. Given that
the variability in each range is limited, a modest number of phases will suffice (e.g. four
phases). The final model is then the union of the separate models for the different ranges,
with their probabilities adjusted to reflect the relative weight of each range.

Matching a Complete Distribution

The main drawback of the methods just outlined is that they only handle the tail of a dis-
tribution. What this means is that the pdf has to be monotonically decreasing throughout
the range. But many actual distributions have a mode near the origin.

To handle such distributions, it has been suggested that a slightly richer phase-type
distribution be used. The simplest (yet quite general) approach is to create a mixture
of hyper-exponential and Erlang distributions as shown in Section 3.2.6 [568, 341, 342].
The hyper-exponential part contributes the tail, and the Erlang part contributes the mode.

Alternatively, one can simply model the body of the distribution separately, and use
the hyper-exponential model only for the tail.

4.5 Tests for Goodness of Fit

The previous sections discussed various ways to find a distribution function that matches
given data. But how can we verify that this is indeed a good match? This section presents
four approaches: the qualitative graphical method of Q-Q plots, the more rigorous sta-
tistical tests devised by Kolmogorov and Smirnov and by Anderson and Darling, and the
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Figure 4.8: The construction of a Q-Q plot.

χ2 method. In essence, what all of them do is to compare two distributions (the data and
the model) and decide whether they are actually one and the same.

To read more: As with distribution fitting in general, the coverage of goodness of fit provided
by Law and Kelton is especially good [427]. In addition, there are books devoted specifically to
this subject, such as the volume edited by D’Agostino and Stephens [162].

4.5.1 Using Q-Q Plots

Q-Q plots are a simple graphical means to compare distributions. The idea is to find the
percentiles of the two distributions, and then plot one set as a function of the other set.
If the distributions match, the percentiles should come out at the same distances, leading
to a straight line with slope 1.

The process is illustrated in Figure 4.8, which compares the distribution of job run-
times on the KTH SP2 machine with a three-stage hyper-exponential model. We start
with the CDFs of the two distributions: the empirical CDF of the original data on the
bottom, and the CDF of the model on the left. We then generate the Q-Q plot by cre-
ating a point for each percentile. Take 0.4 as an example. In the original data, the 0.4
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Figure 4.9: Example of a Q-Q plot where the distributions don’t match.

percentile is achieved at a data value of 171 seconds. In the model, in contrast, this per-
centile is only achieved at a value of 297 seconds. The corresponding point in the Q-Q
plot is therefore drawn at (171, 297), slightly above the diagonal. Overall, the Q-Q plot
is pretty close to a straight line with slope 1, indicating that the model is a pretty good
match for the data. The main deviation is at the low end of the scale, for jobs that are
shorter than 10 seconds.

For comparison, Figure 4.9 shows a Q-Q plot in which the distributions do not match:
it compares the same runtime data from KTH to an exponential model. That model is
not a good model for this data, so we do not get a straight line with slope 1.

The procedure to construct the Q-Q plot is as follows:

1. Select the samples to use. It is possible to use all the samples that are available,
but if there are very many of them it is also possible to use a subsample. One
option is then to use a randomly selected subsample. Another is to select a set of
percentiles and to use the samples closest to them. For example, if we have 1000
samples, we can sort them and use every tenth sample, each of which represents a
percentile of the distribution.
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Distribution X value Y value
exponential X(i) −θ ln(1− pi)

Weibull ln(X(i))
1
α ln[− ln(1− pi)] + lnβ

Lognormal ln(X(i)) sgn(pi − 0.5)(1.238 t+ 0.0324 t2)

where t =
√
− ln[4pi(1− pi)]

Pareto ln(X(i)) ln k − 1
a ln(1− pi)

Table 4.2: Formulas for creating Q-Q plots for different model distributions. In all cases
pi =

i−0.5
n .

Sort the selected samples with X(i) denoting the ith sample. Denote the number
of (selected) samples n.

2. Find the model values that correspond to the samples. This is done in two steps.

(a) Associate each sample with the percentile it represents. Note that using the
fraction i/n leads to an asymmetrical situation, in which the last sample is
associated with 1 but no sample is associated with 0. It is therefore more
common to use

pi =
i− 0.5

n

(b) Calculate the model value that would be associated with this percentile. This
is done by inverting the model CDF, as is done when generating random
variates from the model distribution. Thus the model value corresponding to
sample i is F−1(pi).

3. Draw the Q-Q plot, using the n points(
X(i), F

−1

(
i− 0.5

n

))
1 ≤ i ≤ n

For example, if the model is the exponential distribution, the CDF is F (x) = 1 −
e−x/θ, and the inverse is F−1(p) = −θ ln(1 − p). Each sample X(i) is then associated
with a model value −θ ln

(
1− i−0.5

n

)
, and these are plotted for all i to generate the Q-Q

plot. This and the equations for other distributions are summarized in Table 4.2. The
expression for the lognormal distribution is based on an approximation of the normal,
because no closed-form expression is available. An alternative approach for this and
other cases where F (x) is not easily inverted (such as the hyper-exponential) is to gen-
erate a large number of samples from the model distribution, and then compare the two
empirical distributions directly.

Practice Box: Interpretation of Q-Q Plots

A Q-Q plot that turns out to be a straight line with slope 1 indicates that the two distribu-
tions match. But what can we learn from deviations from this straight line?
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The simplest deviation is a straight line with another slope. This means that the shape of
the distribution is correct, but the scale is not. If the slope is steeper than 1, the original
data is more condensed, and the scale of the model distribution should be reduced. If the
slope is flatter than 1, it is the other way around.

Deviations from a straight line indicate that the relative scale is different in different parts
of the range. For example, a Q-Q plot that tapers off to the right means that the tail of the
data exhibits much higher values than the tail of the model distribution. A model with a
heavier tail is therefore needed. Conversely, a Q-Q plot that goes straight up indicates that
the tail of the model is too long, and a distribution with a shorter tail is needed.

End Box

An alternative to the Q-Q plot is the P-P plot. The idea is very similar, but instead
of creating a point from the two values that correspond to each percentile, one creates
a point from the two percentiles that correspond to each value. As a result a Q-Q plot
deviates from a straight line due to the horizontal distance between the two compared
distributions (that is, between their CDFs), whereas a P-P plot deviates due to the ver-
tical distances. This makes the P-P plot more sensitive to variations in the body of the
distribution, where most of the mass is concentrated. A Q-Q plot, in contradistinction,
is more sensitive to variations in the tails of the distributions. In the context of workload
modeling the tails are often very important, so we prefer to use Q-Q plots.

However, the sensitivity to slight variations in the tails may at times be too much of a
good thing, because extreme values from the tail are rare by definition and therefore not
very representative. This sensitivity can be reduced by not using the extremal values. For
example, if we divide the samples into 100 percentiles, this gives 101 points that define
the 100 intervals. It may be better to use the internal 99 points for the Q-Q plot, and
ignore the two end points. However, this has the obvious shortcoming of not showing
whether or not the tail matches the model. A better option is to use a logarithmic scale,
as was indeed done in Figures 4.8 and 4.9.

The sensitivity to tail values is illustrated in Figure 4.10, using the Unix process
runtimes dataset from 1994, and comparing it to itself after trimming the top 10 data
points (of a total of 184,612). Because the distribution of process runtimes is heavy-
tailed, there are very many small samples; in fact, 34% of them are 0.005 seconds, and
an additional 17% are 0.02 seconds, but the longest process observed ran for 1573.50
seconds. As a result practically all the data in the Q-Q plot is concentrated at the origin,
and the entire plot actually only shows the tail (which in this derived dataset compares
the top 10 points to the next 10). If only the first 99 percentiles are used, much of
the data is still concentrated at the origin, but we see that the rest follows a straight
line. However, this comes at the expense of eliminating all information about the tail.
Using a logarithmic scale is a good compromise, because it shows both the body of the
distribution and its tail.
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Figure 4.10: Q-Q plots may be dominated by tail values (left). This effect can be elimi-
nated by not showing the tail (center) or reduced by using a logarithmic scale (right). In
all these plots there is one data point per percentile, plus the 10 largest values.

4.5.2 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is based on calculating the maximal distance between the
cumulative distribution function of the theoretical distribution and the sample’s empirical
distribution, over all the sampled values [659]. This is done as follows:

1. Sort the sampled observations to obtain the order statistics X(1) . . . X(n) such that
X(1) ≤ X(2) . . . ≤ X(n).

2. Define the samples’ empirical cumulative distribution function:

Fn(x) =


0 if x < X(1)

i/n if X(i) ≤ x < X(i+1)

1 if x ≥ X(n)

The empirical CDF Fn(x) is an estimator for the theoretical distribution F (x).
Furthermore, if the samples are indeed from the theoretical distribution F (x), then
Pr(limn→∞ |F (x) − Fn(x)| = 0) = 1. Note that we assume that F (x) is a
continuous distribution, and therefore there is a negligible probability that a given
value will be sampled more than once.

3. Define Dn = supx {|F (x)− Fn(x)|}. Since Fn(x) is a step function with all
steps of height 1/n, this is equivalent to

Dn = max
i=1...n

{∣∣∣∣ in − F (X(i))

∣∣∣∣ , ∣∣∣∣F (X(i))−
i− 1

n

∣∣∣∣} (4.5)

For each data point, we need to check if the distance is greatest to its left or to its
right.

4. If the value of Dn is large, we will reject the hypothesis that the theoretical and
empirical distributions are the same. If Dn is small enough we will not reject
that hypothesis. The actual threshold to use depends on the sample size n and the
desired confidence level α, and can be found in statistical tables [474, 659].
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The justification for focusing on the maximal difference is the following. Consider
two samples of the same size from the same distribution, and draw their empirical CDFs.
Given that the two samples come from the same distribution, the CDFs are expected to
be close to each other and even cross each other. The precise dynamics can be described
in terms of a random walk: at each sample, the distance between the CDFs either grows
or shrinks by one step. But at both ends the distance is constrained to be 0 (thus this
random walk is not like Brownian motion, but rather like a so-called “Brownian bridge”).
The greatest divergence is therefore expected in the middle, and assuming n samples it
should be proportional to

√
n. The Kolmogorov-Smirnov test flags a mismatch (the

distributions do not fit) if the maximal expected divergence is exceeded to such a degree
that it cannot be ascribed to chance fluctuations.

Of course, the test comes with some statistical fine print. The main caveat is that the
parameters of F (x) have to be known in advance, and are not estimated from the data
[427]. But in our case the whole point is that the parameters are not known in advance,
and we need to estimate them from the data. When this is the case, specialized tables
should be used [659], which exist only for select distributions. Using the general table
leads to a conservative test.

An alternative approach that solves this problem is to use bootstrapping [480, 205,
206, 178, 212]. In essence, this creates a threshold value tailored to the model and the
number of samples being considered. The idea is simple: given the model distribution
F (x), generate n samples from it. Now apply the Kolmogorov-Smirnov test to these
samples, which are known to come from the correct model. Repeat this a large number
of times, e.g. 1000 times. This gives us 1000 samples from the distribution of the K-S
metric for the situation at hand. We can now see where the K-S metric of the real data
falls in this distribution. If it falls in the body of the distribution, it is reasonable to
assume that the data is compatible with the model F (x). But if the metric falls in the
extreme tail of the distribution, we know that there is only a low probability that the data
comes from F (x).

Another problem with applying the K-S test to computer workload data is that it
always fails. The reason is that statistical tests are designed for moderate numbers of
samples, from several dozens to maybe a thousand. In computer workloads, however,
we may have from tens of thousands to millions of samples. As the tests require greater
precision when there are more samples, but the data never really comes from a mathe-
matical distribution, the test fails. The way to circumvent this problem is to check only
a subsample of the data. For example, randomly select 500 of the data points, and check
whether they conform to the proposed distribution.

Finally, the Kolmogorov-Smirnov test is rather insensitive to the tails of the dis-
tribution. The CDF in the tail is invariably close to 1, so the differences between the
distribution’s CDF and the empirical CDF are small. The test result is therefore deter-
mined by the body of the distribution, where most of the data resides, and not by the tail.
Using this test may mislead us into thinking that a distribution provides a good model,
despite the fact that it does not model the tail appropriately.
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4.5.3 The Anderson-Darling Test

The Anderson-Darling test is a variation on the Kolmogorov-Smirnov test, in which
more emphasis is placed on the tails of the distribution [29, 660]. This is done by com-
puting the weighted mean of the differences between the two CDFs, rather than the
maximal difference. The weight is defined to be f(x)

F (x) (1−F (x)) , so that it is big wherever
the distribution has significant mass and in either tail; in the case of workloads, only the
right tail is typically important. In addition, the difference between the CDFs is squared
to ensure that it is positive. The test statistic is thus

A2 = n

∫ ∞

−∞
(Fn(x)− F (x))2

f(x)

F (x) (1− F (x))
dx (4.6)

where F (x) is the CDF of the model distribution. To calculate this, divide the range into
n+ 1 segments using the order statistics as endpoints: −∞ to X(1), X(1) to X(2), X(2)

to X(3), and so on. In each such range Fn(x) is constant. By integrating and collecting
terms it is then possible to derive the expression

A2 = −n− 1

n

n∑
i=1

(2i− 1)
(
ln[F (X(i))] + ln[1− F (X(n−i+1))]

)
This statistic is then compared with values from a table to determine whether the data
indeed fit the proposed distribution to a given degree of confidence [659].

4.5.4 The χ2 Method

When F (x) is not available in the form of a simple equation, the alternative is to create
random samples from this distribution, and then to check whether it is reasonable to say
that the original data and these samples come from the same distribution. This is done
using the χ2 (read: “kai squared”) test. The number of samples generated should equal
the number of original data observations.

In this test, the range of values is partitioned into a certain number k of subranges
[502]. Then the number of observations that fall into each range (Oi) and the expected
number of observations that should fall into each range (Ei) are tabulated. If F (x) is
known, and denoting the beginning of range i by bi, this is Ei = n(F (bi+1) − F (bi)).
But in our caseEi is not based on the formula, but rather on the created random samples.
The metric is then

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei
(4.7)

This is then compared with statistics tables to ascertain if it is small enough to warrant
the conclusion that the distributions are probably the same. Alternatively, the bootstrap
method can be used as explained above.

The drawback is that there should be a minimal number of samples in each range
(e.g. at least five, preferably more). This means that there will only be a small number of
rather large ranges representing the tail of the distribution. Thus this method is not very
good for comparing heavy-tailed distributions.
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4.6 Software Packages for Distribution Fitting

A few commercial software packages exist that automatically test data against some 40
distributions, find optimal parameters values, and suggest which provides the best fit.
However, it is necessary to verify the results by inspecting the produced graphs (e.g.
Q-Q plots). These software products cannot handle mixtures of distributions, and in
particular do not include the hyper-exponential distribution.

• ExpertFit from Averill Law and associates. This is based on Law’s textbook,
which provides a detailed and extensive treatment of distribution fitting [427]:
http://www.averill-law.com/distribution-fitting/

• Stat::Fit from Geer Mountain Software Corp.: http://www.geerms.com/

• EasyFit from MathWave Technologies: http://www.mathwave.com/

• @Risk from Palisade Corp., which includes a distribution fitting package that used
to be available separately under the name BestFit: http://www.palisade.com/risk/

In addition, some research groups provide software for distribution fitting. Among
them are a tool for fitting phase-type distributions to heavy-tailed data called PhFit (avail-
able from http://webspn.hit.bme.hu/%7Etelek/tools.htm) [342], and another called EM-
pht that uses the EM algorithm (available from http://home.imf.au.dk/asmus/pspapers.html)
[41].
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5
Heavy Tails

There are several advanced topics in statistical modeling that are typically not encoun-
tered at the introductory level. However, they reflect real-life situations, so they cannot
be ignored. Probably the most prominent of them is heavy tails.

In fact, a very common situation is that distributions have many small elements and
few large elements. The question is how dominant are the large elements relative to the
small ones. In heavy-tailed distributions, the rare large elements (from the tail of the
distribution) dominate, leading to a skewed distribution. Examples where this is the case
include the following:

• The distribution of process runtimes [320].

• The distribution of file sizes in a file system or retrieved from a web server [361,
155, 57, 188].

• The distribution of popularity of items on a web server, and the distribution of
popularity of websites [57, 85, 572, 9, 525].

• The distribution of flows in the Internet, both in terms of size and in terms of
duration [610, 215].

• The distribution of think times for interactive users [146].

• The distribution of the number of queries sent by a peer on a P2P network, and the
distribution of session lengths [312].

• The distribution of register instance lifetimes (the time until a value in a register
is overwritten) [198].

• The distribution of in and out degrees in a social network [492].

• The distribution of in and out degrees in the Internet topology graph [226, 89].

The qualifier “rare” regarding the tail elements is actually somewhat confusing. For
example, the most popular page on a web server, the one that dominates the downloads,
is popular rather than rare when we look at the list of downloads. But it is rare if we
look at the population of web pages: there is only one such page. This duality leads to
the effect of mass-count disparity, discussed in Section 5.2.2.

174



5.1. THE DEFINITION OF HEAVY TAILS 175

Heavy-tailed data is not new. To quote from the preface of A Practical Guide to
Heavy Tails [16],

Ever since data has been collected, they have fallen into two quite distinct
groups: “good data”, which meant that their owners knew how to perform
the analysis, and “bad data”, which were difficult, if not impossible, to han-
dle. . . . This, in short, was data with heavy-tailed histograms.

Of course, heavy-tailed distributions are not limited to data regarding computer usage.
Heavy-tailed data has been observed in a variety of natural and human-related phenom-
ena [442, 514, 566, 142]. The main problem with such data is deciding how to deal with
the sparsity of data from the tail, and, specifically, how to model and extrapolate it. For
example, if so far we have only recorded earthquakes of magnitudes up to 9.5 on the
Richter scale, what can we say about the probability of an earthquake of magnitude 9.7?
The same applies for computer workloads, where we need to consider the effect of rare
events such as extremely long jobs, extremely large Internet flows, and so on.

To read more: Papers with good background material on heavy tails include the survey by New-
man [514], the classic regarding network traffic by Paxson and Floyd [540], and the overview by
Park and Willinger [538]. The volume edited by Adler et al. [16] is devoted to dealing with heavy
tails, but despite its name (A Practical Guide to Heavy Tails) it is still more on the mathematical
than the practical side. An even more general and theoretical mathematical treatment is given by
Samorodnitsky and Taqqu [590].

5.1 The Definition of Heavy Tails

Heavy tails are most commonly defined as those governed by power laws, and most of
this chapter is devoted to such tails. But other definitions also exist.

5.1.1 Power-Law Tails

The tail of an exponential distribution decays, well, exponentially. This means the prob-
ability of seeing large values decays very fast. In heavy-tailed distributions, this proba-
bility decays more slowly. Therefore large values are distinctly possible.

Formally, it is common to define heavy-tailed distributions as those whose tails decay
like a power law — the probability of sampling a value larger than x is proportional to 1
over x raised to some power [540]:

F̄ (x) = Pr(X > x) ∝ x−a 0 < a ≤ 2 (5.1)

where F̄ (x) is the survival function (that is, F̄ (x) = 1 − F (x)), and we use ∝ rather
than = because some normalization constant may be needed. The exponent a is called
the tail index. The smaller it is, the heavier the tail of the distribution.

Saying that the tail probability decays polynomially is a very strong statement. To
understand it, let us compare the tail of a heavy-tailed distribution with the tail of an
exponential distribution. With an exponential distribution, the probability of sampling
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a value larger than, say, 100 times the mean is e−100, which is totally negligible1. But
for a Pareto distribution with a = 2, this probability is 1/40, 000: one in every 40,000
samples will be bigger than 100 times the mean. Although rare, such events can certainly
happen. When the shape parameter is a = 1.1, and the tail is heavier, this probability
increases to one in 2,216 samples. This propensity for extreme samples has been called
the Noah effect [466, p. 248], referring to one of the earliest cases on record: the 40 days
and nights of rain of the deluge described in the book of Genesis.

The range of a is typically limited to 0 < a ≤ 2. When a > 2, this is still a power
law, but it has less striking characteristics. In particular, its mean and variance are finite,
and the central limit theorem applies (this is defined and explained later). In practical
terms, however, the distribution’s tail still decays slowly even for large as.

5.1.2 Properties of Power Laws

The fact that a distribution has a power law tail immediately sets it apart from the distri-
butions encountered in basic probability courses. For example, if the tail index is small
enough, the distribution does not have a mean, and the central limit theorem does not
hold, at least not in its simple and best-known version.

Infinite Moments

Consider data sampled from an exponential distribution. A running average of growing
numbers of data samples then quickly converges to the mean of the distribution. But
heavy-tailed data is ill behaved: it does not converge when averaged, but rather continues
to grow and fluctuate. In fact, the mean and variance might actually tend to infinity as
more samples are added.

How can a distribution have an infinite mean? It is best to start with a simple exam-
ple. Consider a distribution over powers of two, which is defined thus:

2 with a probability of 1/2
4 with a probability of 1/4
8 with a probability of 1/8

16 with a probability of 1/16
32 with a probability of 1/32
and so on.

This is a probability distribution function because the probabilities sum to 1:

1

2
+

1

4
+

1

8
+

1

16
+ · · · =

∞∑
i=1

1

2i
= 1

The expected value is calculated by multiplying each possible value by its probability
and summing up. This gives

1Assume you can observe a billion events per second. This is 3.15 × 1016 events a year. At this rate,
your chance of observing an event that occurs with probability e−100 within the current age of the universe
is only 0.000000000000000016.
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Figure 5.1: The averages of growing numbers of samples from a Pareto distribution with
a = 1 grow logarithmically, as opposed to the averages of an exponential distribution
which converges according to the law of large numbers.
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The result is infinity, because as the probabilities go down, the values go up fast enough
to compensate and make a non-negligible contribution to the sum.

With heavy-tailed distributions, not only the mean but other moments as well may
be infinite. Specifically, using the definition stated above, if a ≤ 1 the mean will be
infinite, and if a ≤ 2 the variance will be infinite. More generally, for each integer k, if
a ≤ k then the first k moments are infinite.

Of course, even when the mean (or another moment) of a distribution is infinite, we
can still calculate it for a set of samples. How does this mean behave? Consider a Pareto
distribution with a = 1, whose probability density is proportional to x−2. Trying to
evaluate its mean leads to

µ =

∫ ∞

1
cx

1

x2
dx = c lnx

∣∣∣∞
1

so the mean is infinite. But for any finite number of samples, their average obviously
exists. The answer is that the average grows logarithmically with the number of obser-
vations (note that this is for the specific case of a = 1; for a < 1 it grows faster, and
for a > 1 it grows slower). If we only have a few samples from the distribution, the
average will most probably be relatively small. As more samples are added, we have
a bigger chance of sampling from the tail of the distribution. Such samples from the
tail dominate the sum. Therefore the average grows when they are added. With more
and more samples, we delve deeper and deeper into the tail of the distribution, and the
average continues to grow.

The above is visualized in Figure 5.1. Start by creating 10 independent samples from
a Pareto distribution, and calculate their average. Repeat this 100 times. This gives 100
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Figure 5.2: Example of the running average of samples from a Pareto distribution.
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Figure 5.3: More examples of the running average of samples from a Pareto distribution,
over a long range and using different random number generator seeds.

averages of 10 samples each, and we can characterize the distribution of such averages
using a box plot. Now do this for larger numbers of samples: 100 samples, 1000 samples,
and so on up to a million samples. As shown in the figure, the distribution of averages
shifts up in direct proportion to the log of the number of samples, and moreover, it
remains disperse and skewed. With an exponential distribution, in contradistinction, the
distribution of averages quickly converges to the mean, in this case 1.

However, if we follow the running average of increasing numbers of samples, it does
not actually resemble the log function. In fact, it grows in big jumps every time a large
observation from the tail of the distribution is sampled, and then it slowly decays again
toward the log function. An example is found in Figure 5.2, which shows a thousand
samples from a Pareto distribution along with their running average. Most of the samples
are small, rarely more than 10, and concentrate near the X axis. But sample number 197
is an exceptionally high value: 1207.43. This is big enough to contribute 6.13 to the
running average, which indeed jumps up by this amount.
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The same thing continues to happen as we add more and more samples (Figure
5.3). We continue to see samples from the tail of the distribution that are big enough to
dominate all of the previous samples. Because these samples are unique and rare events,
their occurrence depends on the random number generator and the specific seed being
used. Thus different runs do not converge, and huge differences in the running average
can be observed even after 100,000,000 samples or more.

Details Box: Different Values of a

The above discussion alludes to logarithmic growth, but this is actually a special case that
occurs only for a Pareto distribution with a = 1. It is also a boundary case, because when
a > 1 the average actually exists and adding more and more samples will eventually lead
to convergence to this average. But when a < 1, in contradistinction, the averages diverge
more wildly. This is illustrated in the following extension of Figure 5.1:
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The Law of Large Numbers

The law of large numbers states that, given n samples drawn from a distribution with
a mean µ, the average of the samples converges to the mean as n grows. This makes
it easy to estimate the mean of an unknown distribution: just calculate the average of
enough samples.

But if the mean is infinite, the law of large numbers obviously does not apply. The
average of many samples will not converge to the mean, because there is no mean to
which to converge (Figure 5.1). Even if the mean is in fact finite (which happens if the
tail index satisfies a > 1), convergence may be very slow. In practice, the borderline
between convergence and lack thereof is not sharp [157, 307, 302]. Very close to the
borderline, an extremely large number of samples may be needed in order to converge
to the true value. The average may seem to converge, but then another sample from the
tail of the distribution will cause it to change.

A rough estimate of how many samples are needed is given by Crovella and Lipsky
[157]. As noted below, it is well known that the sum of n random variables with finite
variance tends to a normal distribution, and that the width of this distribution is propor-
tional to

√
n. The generalization for variables with an infinite variance, such as Pareto

variables with 1 < a < 2, is that
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n∑

i=1

Xi − µ

∣∣∣∣∣ ∝ n( 1a−1)

(note that for a = 2 we indeed get 1/
√
n). Now assume we want two-digit accuracy,

which means that we require ∣∣ 1
n

∑n
i=1Xi − µ

∣∣
µ

≤ 10−2

Putting the two expressions together and ignoring constants (including the specific value
of the mean µ), we then get

n(
1
a
−1) ≤ 10−2

Switching sides by inverting the signs of the exponents and then raising both sides to the
power 1/(1− 1

a) leads to the approximation

n ≥ 102/(1−
1
a
)

For a = 2, this indicates that 10,000 samples are needed to achieve two-digit accuracy.
For a = 1.5, the number grows to 1,000,000. As a → 1 this grows asymptotically to
infinity; at a = 1.1 it is already 1022.

So what happens if we are simulating a system in which job runtimes are heavy-
tailed, with a low value of the tail index a? Trying to find average performance results is
doomed to fail, because the average does not converge (either at all or within a reasonable
time frame). In effect, the simulation is perpetually in a transient state, never reaching
a steady state [156]. And the average results we obtain depend on the random number
generator and the length of the simulation.

It should be noted that the divergence of the moments is a direct consequence of the
power-law tail. Thus if the tail is truncated, as in the truncated version of the Pareto
distribution, all the moments become finite. In particular, the law of large numbers now
applies. But in practice, if the truncation is at a very high value, convergence may still
be very slow [307].

Background Box: Convergence in Probability and Convergence in Distribution

Convergence in probability deals with the convergence of a series of random variable
X1, X2, X3, . . . to a finite limit b. For every ϵ > 0, we find the probability that the differ-
ence between Xn and b is smaller than ϵ. The claim is that this probability tends to 1 as n
tends to∞, or symbolically

lim
n→∞

Pr(|Xn − b| < ϵ) = 1

A related concept is convergence in distribution. This deals with a set of distributions that
converge to a limit distribution. Thus if we have distributions F1(x), F2(x), F3(x), and so
on, we say that they converge to a limit distribution F ∗(x) if

lim
n→∞

Fn(x) = F ∗(x)

for all x where F ∗(x) is continuous.
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Note the difference between the two notions. Convergence in probability deals with the
convergence of random variables. In the case of the law of large numbers, the random
variables are the averages of increasing numbers of samples: X̄n = 1

n

∑n
i=1Xi. The

law essentially states that, as more samples are included, the estimate they provide for the
distribution’s mean improves. Convergence in distribution, in contrast, deals with complete
distributions. This lies at the base of the central limit theorem.

End Box

Limit Theorems

The central limit theorem is widely considered to be one of the most important results in
probability theory. Start with a set of independent random variablesX1, X2, . . . sampled
from any distribution with finite variance. Now create another random variable that is their
average. Then the distribution of this average will converge to a normal distribution.
The problem lies in the fine print: the original distribution must have a finite variance,
and heavy-tailed distributions do not fulfill this requirement. The central limit theorem
therefore does not apply.

However, generalizations of the central limit theorem do apply to such distributions.
A more general version is that the appropriately scaled sum of random variables con-
verges to a stable distribution. The normal distribution is a special case, but there are
others. In particular, the Pareto distribution (for a ≤ 2) converges to what is known as
an α-stable distribution, which has a Pareto tail, and specifically, one characterized by
the same tail index a.

Figure 5.4 shows and contrasts the convergence of samples from exponential and
Pareto distributions. In all cases, the distribution’s mean is 1, the average of 100 inde-
pendent samples is computed, and this is repeated 10,000 times. For the exponential
samples, the distribution of the obtained averages is indeed normal. The average of the
100 samples can be as low as 0.75 or as high as 1.25, but in most cases it is very close
to 1. For the Pareto samples, the distribution of the averages depends on the tail index.
When it is 2, the distribution is close to normal (it would be closer if we averaged over
more than 100 samples). But as the tail index goes down toward 1, the distribution of the
averages becomes more skewed, and the mode becomes distinctly smaller than the mean
of the underlying Pareto distribution. This occurs because the Pareto distribution itself is
very skewed and most of the samples are small. So when we take 100 samples, they are
typically small, leading to a small average. (When a = 1.15, the average of 100 samples
is typically around 0.5!) But occasionally the set of 100 samples includes one from the
tail of the Pareto distribution, and then the average is very large, and comes from the
tail of the α-stable distribution. Therefore the distribution of averages has a heavy tail
just like the initial Pareto distribution. That the tails are indeed different is shown in the
right-hand graph, using log-log complementary distribution plots (these are explained
later on page 199).

But if the typical observation of an average is so much smaller than the true mean,
why is the running average of the samples typically higher (as shown in Figure 5.3)?
The answer is that in the vast majority of cases the average of an isolated subset of,
say, 100 samples, is indeed small. But once we hit on a large sample as part of a long
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Figure 5.4: Left: distributions of the averages of 10,000 sets of 100 samples from expo-
nential and Pareto distributions. Right: LLCD plots of the tails of these distributions.

sequence, this affects the running average for a long time. The subsequent samples may
all be small, but when combined with the large one that came before them, we get a large
running average.

Background Box: Stable Distributions

Stable distributions are defined by the following procedure. Take n independent samples
from a distribution. Perform some operation on them to derive a single new random vari-
able. If the distribution of this newly produced random variable is the same as the original
distribution, the distribution is stable.
Depending on the operation that is applied, different distributions can be shown to be
stable. Examples include the following [495]:

Summation — The distribution of the sum of n samples is the same as that of a single
sample, with possible adjustments of scale and location:

X1 +X2 + · · ·+Xn
d∼ cnX1 + bn

This is the most commonly discussed type [520]. Distributions that satisfy this equa-
tion are the normal distribution and the α-stable distributions. Note that the adjust-
ments may depend on n. In fact, the only possible scaling constants are cn = n1/a.
The normal distribution corresponds to the special case where a = 2, so cn =

√
n.

Maximum — The distribution of the maximum of n samples is the same as that of a
single sample, with possible adjustments of scale and location:

max{X1, X2, . . . , Xn} d∼ cnX1 + bn

The extreme value distribution satisfies this equation.
Multiplication — The distribution of the product of n samples is the same as that of a

single sample, again with the appropriate adjustments:

X1X2 · · ·Xn
d∼ Xcn

1 bn

This equation is satisfied by the lognormal distribution.
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An important characteristic of stable distributions is that they each have a basin of attrac-
tion. Thus you can perform these operations on samples from another distribution, and
as n grows you will converge to the stable distribution. It is well known that the normal
distribution is the limit of all distributions with a finite variance, with respect to summing
independent samples. But other stable distributions are also the limit of sets of related dis-
tributions. For example, the α-stable distribution is the limit of distributions with a Pareto
tail. Indeed, the Pareto distribution is especially interesting, because it passes from one
basin of attraction to another depending on its tail index. For a ≤ 2 its variance is infinite.
In this case it converges to the α-stable distribution when aggregated. But if a > 2 the
variance is finite, and then summed samples converge to the normal distribution.

The α-stable distribution is characterized by no less than four parameters [519]. In general
the distribution has a single mode and possibly heavy tails. The parameters are

• α is the index of stability, which characterizes the distribution of mass between the
body of the distribution and its tails. For α < 2 the tails are Pareto distributed with
tail index α themselves.

• β is a skewness parameter, assuming values in the range [−1, 1]. β = 0 implies
symmetry, and β = ±1 maximal skewness in either direction.

• µ is a location parameter (but not the mean or mode).
• σ is a scale parameter (but not the standard deviation).

To read more: Stable distributions are not mentioned in basic probability textbooks. An
introduction and some intuition are provided by Crovella and Lipsky [157]. Stable distri-
butions are central to the discussion of Feller [254], with the basics introduced in Chapter
VI, and additional material presented later in the book. Even more advanced material on
stable distributions and their relationship to self-similarity is found in A Practical Guide to
Heavy Tails [16] and in the book by Samorodnitsky and Taqqu [590]. An extensive treatise
on stable distributions is being prepared by Nolan [520]. The original development of the
theory is largely due to Lévy.

End Box

Scale Invariance

What happens when we change the scale of observation? Changing the scale simply
means that we use a different unit of measurement; in mathematical terms it is just the
transformation of multiplying by a constant, and replacing x with mx. Does this change
the shape of the tail of the distribution? Plugging the transformation into the definition,
we get

F̄ (mx) = Pr(X > mx)∝ (mx)−a

∝m−ax−a

This requires re-normalization, but is of exactly the same functional form. The tail
decays with x in exactly the same manner as before: it is a power law with the exponent
−a. Thus this distribution is scale invariant — we can change the scale by a factor of m,
which might be large, and still observe the same behavior.

In contrast, other distributions are not scale invariant. For example, if we apply the
same transformation to the exponential distribution we get
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F̄ (mx) = Pr(X > mx)∝ e−(mx)/θ

∝ e−x(m/θ)

This changes the way in which the tail decays. Instead of decaying at a rate that is
proportional to θ, it now decays at a rate that is proportional to θ/m. The parameter of
the distribution actually specifies its characteristic scale. For an exponential distribution,
this scale is the range over which the value changes by 1/e. Scaling changes this attribute
of the distribution.

Connection Box: Pink Noise

Noise is characterized by its power spectrum: the power of the different frequencies that
make up the noise (see the explanation of the periodogram on page 351). White noise has
the same power at all frequencies. Pink noise has decreasing power at higher frequencies,
and specifically, the power is inversely proportional to the frequency; it is therefore also
called 1/f noise. Alternatively, it can be described as having equal power in bands of
frequency that constitute octaves (i.e., such that the top frequency is double the bottom
one).
What happens if you record pink noise on a tape, and then play it back at a different
speed? When you change the speed of the tape by a factor r, all the frequencies change
by the same factor r. But if the spectrum is described by a power law, it is scale invariant,
and the shape of the spectrum does not change! Therefore the noise will sound exactly
the same — only slightly stronger or weaker, depending on whether the tape was sped up
or slowed down [602]. In contrast, human voices, music, and non–power-law noises will
sound different when played back at the wrong speed, with their characteristic pitch altered
in correspondence with the change in speed.

End Box

An interesting property of scale-invariant functions is that they have the product
property [207]. Thus, the two following statements are equivalent:

1. f(x) is scale invariant, meaning that f(mx) = c1f(x).

2. f(x) has the product property, meaning that f(xy) = c2f(x)f(y).

It is easy to verify that these indeed hold for power laws of the form f(x) = axb.

5.1.3 Alternative Definitions

Although it is common to define heavy-tailed distributions as those having a tail that
decays according to a power law, this is not the only definition. A chief contender is
subexponential distributions [290], sometimes also called long-tailed [253]. This name
expresses the idea that the tail decays more slowly than exponentially. To explain this,
we consider the effect of multiplying the survival function by a factor that grows expo-
nentially. If the result diverges, it means that the exponential growth of the added factor
is “stronger” than the decay of the original tail, and hence that the tail decays more
slowly than exponentially.

In more detail, the survival function characterizes the tail because it is the comple-
ment of the CDF: F̄ (x) = 1− F (x) = Pr(X > x). We multiply this by an exponential
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Figure 5.5: Inclusion relations of classes of distributions with different tails.

factor eγx, with γ > 0. One possible outcome is that the result tends to 0 as x grows,
at least for some value of γ. This means that the tail decays fast enough to compensate
for the added exponential factor, or, in other words, that the tail decays exponentially (or
faster). For example, for the exponential distribution we have F̄ (x) = e−x/θ. Therefore

eγxF̄ (x) = eγxe−x/θ = e(γ−1/θ)x

and the limit is

lim
x→∞

eγxF̄ (x) = lim
x→∞

e(γ−1/θ)x =


0 for γ < 1/θ
1 for γ = 1/θ
∞ for γ > 1/θ

Because there exist values of γ for which the limit is 0, the exponential distribution is
short-tailed.

The other possible outcome is that the result diverges for all values of γ. For exam-
ple, consider the Weibull distribution, which has a survival function F̄ (x) = e(−x/β)α .
In the case that α < 1, the limit is

lim
x→∞

eγxF̄ (x) = lim
x→∞

eγx−(x/β)α =∞ for α < 1

Therefore Weibull distributions with parameter α < 1 are long-tailed.
Note that the class of long-tailed distributions is bigger than and contains the class

of heavy-tailed distributions (Figure 5.5). The Pareto distribution — and in fact any dis-
tribution with a power-law tail — is also long-tailed. The lognormal distribution, which
is not heavy-tailed, is nevertheless long-tailed [540], like the Weibull distribution. The
gamma distribution, in contrast, is not long-tailed. Neither are all the other distributions
in the exponential family.

Justification for using this definition rather than the power-law tail definition is based
on the following property. It turns out that a sufficient condition for being long-tailed is
that the following limit holds for all n:

lim
x→∞

Pr(X1 +X2 + · · ·+Xn > x)

Pr(max{X1, X2, . . . , Xn} > x)
= 1
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In plain English this means that the sum of n samples from the distribution is large if
and only if the biggest sample is large. This is a formal way of saying that the largest
samples dominate the lot — the hallmark of heavy-tailed distributions.

To read more: A comprehensive survey of subexponential distributions is given by Goldie and
Klüppelberg [290].

Terminology box: The Meaning of Long Tails

There is some confusion regarding the use of the term “long tail”.

First, not all authors make a clear distinction between heavy tails and long tails. In this
book, we use “heavy tail” to describe power-law tails and “long tail” to describe subexpo-
nential tails, but others sometimes use “long tail” to describe a power law.

Worse, there is a recent trend in the description of modern Internet-based economics to use
the term in reverse. In statistics (and in this book), the body of a distribution is the range
of values where most of the items are concentrated, whereas the tail is those few items that
are rare and have much higher values. In more precise statistical terms, this is actually the
“right tail” of the distribution. Using book sales as an example, most books have small or
modest sales, whereas Harry Potter has huge sales, and is therefore in the extreme tail of
the distribution, as shown in the following schematic (left):

Harry Potter
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But people involved with the new economy of the networked world do not really look at
the distribution as a statistician would. Instead, they look at book rankings, where the
books are ranked from the most popular to the least popular. Thus Harry Potter becomes
number one, followed by other bestsellers, and the “tail” becomes all those books that sell
only few copies because they cater to a niche (such as those few people who are interested
in computer workloads). This is illustrated in the right-hand schematic.

In the old economy, distribution to customers was the bottleneck. A book could only sell
many copies if it got shelf space in lots of book stores. So only books that could compete
for physical shelf space could return their investment, and it did not make economic sense
to stock books that only a few people might want. But with the Internet, you can finally find
such books even if they are stocked only in some remote warehouse. Therefore someone,
such as Amazon, will sell them. And if you sum up the numbers, it turns out that most of
Amazon’s revenue is from the “long tail” of low-volume, niche books that are relatively
unpopular. Of course, this is not unique to books. Chris Anderson, in his book The Long
Tail: Why the Future of Business Is Selling Less of More [24], brings many more examples,
mainly from the sales of music and movies in the entertainment industry.
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In effect, this situation therefore amounts to claiming that the distribution does not exhibit
the important characteristics of heavy-tailed distributions. In particular, instead of having
most of the mass concentrated in a very small number of hugely successful items, a large
part of the mass is distributed across myriad small items. So the majority of the mass is in
the (statistical) body of the distribution, not in its tail.
And if this is not complicated enough, here is the final twist: the new “long-tailed” dis-
tributions, where most of the mass is actually not in the tail, may nevertheless have a
(statistical) heavy tail. The point is that we are actually looking at two distinct statistical
phenomena:

1. Having a heavy tail, defined as a tail that decays as a power law (or a long tail that is
subexponential).

2. Exhibiting mass-count disparity, where most of the mass is concentrated in the tail
(mass-count disparity is discussed at length later).

Usually these two phenomena occur together, and heavy-tailed distributions exhibit mass-
count disparity. But it is possible for a distribution to have a heavy tail without mass-
count disparity, such that only a small part of the mass is in the tail. Referring to the
left schematic above, this can happen if the tail of the distribution (the part portraying
bestsellers) decays according to a power law, but nevertheless most of the mass is in the
body of the distribution (the books with low sales volume). This can occur when only the
extreme tip of the tail is heavy, say, not the top 1% but only the top 0.001%, and moreover,
the tail index is large (close to 2), so that the disparity between the body and the tail is
reduced. These conditions are enough to satisfy the mathematical definition, but may not
be enough to make a real difference in the distribution of mass in realistic situations where
the number of observations is finite.

End Box

5.2 The Importance of Heavy Tails

The definitions of heavy or long tails capture different properties and identify different
distributions. However, it is not clear that these properties are the most important in
practical terms. In fact, it has been suggested that the qualitative properties discussed
next are actually the hallmark of heavy-tailed distributions.

5.2.1 Conditional Expectation

In general, the relative importance of the tail of a distribution can be classified into one
of three cases [540]. Consider trying to estimate the length of a process, given that we
know that it has already run for a certain time, and that the mean of the distribution of
process lengths is m.

• If the distribution of process lengths has a short tail, then the more we have waited
already, the less additional time we expect to wait. The mean of the tail is smaller
than m. For example, this would be the case if the distribution has finite support
(i.e., it is zero beyond a certain point).

In technical terms, the hazard rate, which quantifies the probability that a process
has a specific length given that it is not shorter, grows with time.
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Figure 5.6: The expected additional mass as a function of how much has already been
seen, for sample short, memoryless, and heavy tails.

• If the distribution is memoryless, the expected additional time we need to wait
for the process to terminate is independent of how long we have waited already.
The mean length of the tail is always the same as the mean length of the entire
distribution; in other words, the hazard rate is constant. This is the case for the
exponential distribution.

• But if the distribution is heavy-tailed, the additional time we may expect to wait
until the process terminates grows with the time we have already waited. This
counterintuitive effect is called an “expectation paradox” by Mandelbrot [466,
p. 342]. The reason is that the mean of the tail is larger than m, the mean of the
entire distribution. And in terms of the hazard, it is decreasing with time. An
example of this type is the Pareto distribution.

These three cases are illustrated in Figure 5.6. In general, given a random variable
X and a threshold value τ , the amount by which X is expected to exceed τ , given that it
is larger than τ , is

E[X − τ |X > τ ] =

∫ ∞

τ
(x− τ) f(x)∫∞

τ f(t)dt
dx

=

∫∞
τ xf(x) dx∫∞
τ f(t) dt

− τ

The integral in the denominator re-normalizes f(x) for the range x > τ .

As an example of a short-tailed distribution let us use the uniform distribution on the
range [0, 2a]. In this range f(x) = 1

2a ; out of this range it is 0. Inserting this into the
formula we get
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E[X − τ |X > τ ] =

∫ 2a
τ x 1

2a dx∫ 2a
τ

1
2a dt

− τ

=
1
2((2a)

2 − τ2)
2a− τ

− τ

=
1

2
(2a− τ)

and the expected value drops linearly.
The exponential distribution is the only memoryless distribution. Plugging the pdf

f(x) = 1
ae

−x/a into the formula gives

E[X − τ |X > τ ] =

∫∞
τ xe−x/a dx∫∞
τ e−t/a dt

− τ

=
ae−τ/a(τ + a)

ae−τ/a
− τ

= a

and the expected value remains a regardless of τ .
For a heavy-tailed distribution we use the Pareto distribution with parameter a and

the pdf f(x) = a/xa+1, defined for x > 1. This leads to

E[X − τ |X > τ ] =

∫∞
τ

ax
xa+1 dx∫∞

τ
a

ta+1 dt
− τ

=

−1
(a−1)τa−1

−1
aτa

− τ

=
1

a− 1
τ

which grows linearly with τ .

Connection Box: Failure Models

The issue of conditional expectations has an interesting application in failure models,
which address the question of when a system may be expected to fail.
Failure is akin to mortality. A system that fails is dead, and the question is how long it will
live before this happens. Common failure models are the Gaussian and the exponential
[166]. The Gaussian model specifies lifetimes with a normal distribution. This implies an
increasing hazard rate, which increases sharply in the higher values of the distribution. A
special case is human mortality. This has a very low hazard rate for the first few decades
of life, starts to increase at about 40 to 50 years of age, and grows precipitously from about
70 years, with few surviving beyond 90. Other examples include parts that are subject to
wear, such as incandescent lamps, dry cell batteries, and new bus motors. Disk drives also
seem to have an increasing hazard rate, as the rate of disk replacements correlates with
their age [598].
The exponential model of lifetimes implies a constant hazard. This is typical of random
human errors, such as typing errors, errors in ledgers made by clerks, or forgotten ID
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badges (but not on the first day of a workweek, when more are forgotten). Exponential
lifetimes have also been found for radar components such as vacuum tubes and resistors,
indicating that the failures were random and not due to wear (the paper reporting these
findings [166] is from the 1950s).

There are also cases that combine the two models. For example, a full model for bus engine
failures includes a small initial phase of random failures due to manufacturing deficiencies
(exponential), a dominant second phase of first failures due to wear (Gaussian), and then
a phase of repeated failures that is again exponential because it results from a mixture of
both original and renovated components.

But there are other types of systems where the mortality rate, or hazard, is decreasing
with time. For example businesses have a relatively high infant mortality, because new
ones often do not succeed [451]. But the longer a business has survived, the higher the
probability is that it will stay in business for many more years to come. Thus business
lifetimes can be modeled by a Pareto distribution. In fact, this is the context in which the
Lomax distribution (the shifted Pareto) was first defined.

End Box

5.2.2 Mass-Count Disparity

An important consequence of heavy-tailed distributions is the mass-count disparity phe-
nomenon: a small number of samples account for the majority of mass, whereas all small
samples together only account for negligible mass [154]. Conversely, a typical sample
is small, but a typical unit of mass comes from a large sample. Using concrete examples
from computers, a typical process is short, but a typical second of CPU activity is part
of a long process; a typical file is small, but a typical byte of storage belongs to a large
file. This disparity is sometimes referred to as the “mice and elephants” phenomenon.
But this metaphor may conjure the image of a bimodal distribution2, which could be
misleading: in most cases, the progression is continuous.

A better characterization is obtained by comparing the “mass” distribution with the
“count” distribution. The count distribution is simply the CDF,

Fc(x) = Pr(X < x)

because this counts how many items are smaller than a certain size x. The mass distri-
bution weights each item by its size; instead of specifying the probability that an item is
smaller than x, it specifies the probability that a unit of mass belongs to an item smaller
than x. Assuming a pdf f(x), this can be expressed as [154]

Fm(x) =

∫ x
0 x

′f(x′) dx′∫∞
0 x′f(x′) dx′

(5.2)

(this is for positive distributions; in general, the lower bounds of the integrals should be
−∞).

2A typical mouse weighs about 28 grams, whereas an elephant weighs 3 to 6 tons, depending on whether
it is Indian or African. Cats, dogs, and zebras, which fall in between, are missing from this picture.
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Figure 5.7: The “count” and “mass” distributions of file sizes, showing the 90/10 and
50/0 rules.

The disparity between the mass and count distributions can be used to visualize the
Pareto principle, also known as the 80/20 rule or the 90/10 rule. An example is shown in
Figure 5.7. This shows data from a 1993 survey of 12 million Unix files [361]. The left
graph shows that the data is very close to the 90/10 rule: 10% of the files are big files,
and account for a full 90% of the disk space. At the same time, the remaining 90% of the
files are small, and together account for only 10% of the total disk space. The boundary
between big and small in this case is 16 KB. Less extreme datasets would be closer to a
ratio of 80/20.

An even more dramatic demonstration of mass-count disparity is the 50/0 rule [238].
As shown on the right-hand side of Figure 5.7, a full half of the files are so small, less
than 2 KB each, that together they account for a negligible fraction of the disk space.
At the other extreme, half of the disk space is occupied by a very small fraction of large
files (1 MB or more).

Implications

The implication of mass-count disparity is that it may be beneficial to focus on the few
large items, because they have the largest impact and in fact may dominate the outcome.
There are many examples of putting this principle to use.

An early example comes from load balancing. Process runtimes on Unix worksta-
tions have a Pareto tail, meaning that a small number of processes are extremely long.
Migrating such processes from overloaded workstations to underloaded ones therefore
will have a long-term beneficial effect on the load conditions. Moreover, it is easy to
identify the long processes due to the conditional expectation of heavy tails: they are
the processes that have run the longest so far [320, 435]. Moving a randomly chosen
process will only have a minor effect, because such a process will probably terminate
shortly after being moved.

Workloads that display such behavior have profound implications on system model-
ing. In particular, if the distribution of job sizes is heavy-tailed, there will be occasionally
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a job of such magnitude that it dwarfs all the other jobs put together. In effect, this means
that the system cannot be considered to be in a steady state, but rather is constantly in a
transient state [156, 157].

Another example comes from accounting for Internet usage. The elements of Inter-
net usage are flows (e.g., the servicing of a request from a web server). The sizes of flows
are heavy-tailed. Thus keeping track of all flows is extremely arduous: there are huge
numbers of very small flows, which together do not account for much resource usage,
and few large ones, which use most of the bandwidth. It has therefore been proposed
that it is best to keep track of only the large flows, and simply ignore all the small ones
[215]. Likewise, traffic engineering may benefit from focusing on the few large flows
that dominate the bandwidth consumption [92]. Even routing can benefit from offload-
ing the large flows to a fast hardware forwarding device, thereby freeing capacity on the
slower software-based router [591].

Several interesting examples relate to caching. In memory reference streams some
data blocks are much more popular than others — so much so, that sampling a block at
random will produce a block that is seldom used, but sampling a reference at random
will most probably identify a block that is highly used [216, 217, 218]. This can be used
to selectively insert only highly used blocks into the cache, without any need to maintain
historical information about access patterns to each block.

In the context of caching web pages, it has been pointed out that caching to reduce
the number of requests reaching a server is different from caching to reduce the number
of bytes requested from the server [37]. To reduce the number of requests, the most
popular items should be cached. But if they are small, this will only cause a marginal
reduction in the number of bytes served. To reduce the number of bytes, it is better
to cache the large items that use most of the bandwidth. Depending on whether the
bandwidth or the per-request processing is the bottleneck, either policy may be better.

Another subtle use of mass-count disparity comes from task assignment in the con-
text of server farms [319]. Consider a situation in which two servers are available to
serve a stream of incoming requests, as is done in many large websites (typically, many
more than two are used). Each new request has to be assigned to a server for handling.
A good policy turns out to be based on size: requests for small files are handled by one
server, whereas requests for large files are handled by another. This prevents situations
in which a small request may be held up waiting for a large one to complete. But the re-
ally interesting observation is that the division of labor should not necessarily be done so
as to balance the loads [317, 599]. Instead, it is better to assign a smaller fraction of the
load to the server handling the small requests. Due to mass-count disparity, we then have
a situation in which the vast majority of requests benefit from a relatively underloaded
server, while only a small fraction of requests suffer from loaded conditions.

The use of mass-count disparity is not limited to computer systems. In The 80/20
Principle: The Secret to Achieving More with Less, Richard Koch explains how you can
get twice as much done in 2/5 the time by getting rid of the ineffective 80% of what you
do, and doubling the effective 20% [408].
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Connection Box: Rare Events in Trading and Insurance

Heavy tails exist and have serious implications in areas outside of computer science, most
notably in finance.

A specific field where this is the case — apparently without being widely recognized —
is stock market trading. Traders may succeed for years, making huge profits by betting
that the market will continue to behave in the same way that it did before. But then,
when something that has never occurred before suddenly happens, they can suffer losses
that wipe them out completely within one day. The description of such rare events is the
subject of Taleb’s book Fooled by Randomness [672].

Another area where heavy tails are extremely important is insurance. Insurance companies
depend on their ability to calculate the odds against rare events. A large-scale destructive
event, such as an earthquake or hurricane, occurs only rarely. But when it does, it can
cause huge losses. The long-term survival of the insurance company depends on its ability
to balance the odds, collecting enough revenues during the good times to survive the losses
of the rare events. Interestingly, insurance is an area where highly improved modeling ca-
pabilities may ultimately undermine the whole industry: with perfect predictions, insurers
would not be willing to insure anyone or anything who is about to suffer destructive losses,
so being able to buy insurance would be a sign that you do not need it.

End Box

Metrics for Mass-Count Disparity

The impact of mass-count disparity is so great that it has been suggested that it is actually
the defining feature of heavy-tailed distributions [317]. It does not matter whether the
tail indeed decays according to a power law and how many orders of magnitude are
spanned. The important thing is that the data displays something similar to the 90/10 or
50/0 rules: a very small fraction of the samples are responsible for a sizable fraction of
the total mass.

Formalizing this idea, we can suggest several numerical measures that indicate the
degree to which a distribution exhibits mass-count disparity [238]. They are based on
comparing the CDFs of the items and the mass. In effect, they simply formalize the
notions presented in Figure 5.7. Although the names for these metrics are new, the
metrics themselves have been used by others (e.g., by Irlam in his descriptions of the
Unix files data from 1993 [361]).

The simplest metric is the joint ratio (also called the crossover [92]). This is a direct
generalization of the 90/10 rule and the 80/20 rule. The 90/10 rule, for example, says
two things at once: that 10% of the items account for a full 90% of the mass, and also
that 90% of the items account for only 10% of the mass. This is more extreme than the
80/20 rule, which says that 20% of the items account for 80% of the mass and 80% of
the items account for 20% of the mass. The generalization is to find the percentage p
such that p% of the items account for 100− p% of the mass, and 100− p% of the items
account for p% of the mass. The smaller p is, the stronger the mass-count disparity (and
the heavier the tail of the distribution).

In mathematical notation, this idea can be expressed as follows. Denote the count
CDF by Fc(x) and the mass CDF by Fm(x). Because CDFs are nondecreasing, the
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complement of a CDF is nonincreasing. Therefore there is a unique x that satisfies the
condition3

Fc(x) = 1− Fm(x)

Given this x, compute p = 100Fm(x). The joint ratio is then p/(100− p).
The 50/0 rule is generalized by two metrics. In practice, the 0 is not really 0; the

metrics quantify how close to 0 we get. The first metric is N1/2 (pronounced N -half).
This quantifies the percentage of items from the tail needed to account for half of the
mass:

N1/2 = 100(1− Fc(x)) such that Fm(x) = 0.5

The second is W1/2, which quantifies the percentage of the total mass due to the bottom
half of the items:

W1/2 = 100Fm(x) such that Fc(x) = 0.5

These expressions can also be written more directly as N1/2 = 100(1− Fc(F
−1
m (0.5)))

and W1/2 = 100Fm(F−1
c (0.5)), where F−1

c and F−1
m are the inverse of Fc and Fm,

respectively.
Note that all three metrics measure the vertical distance between the two distribu-

tions. This is because the vertical distance best characterizes the mass-count disparity.
But it may also be interesting to know how much larger the tail items are. This can be
measured by the median-median distance, that is, the distance between the medians of
the two distributions. The farther apart they are, the heavier the tail of the distribution.
Because absolute values depend on the units used, it makes sense to express this distance
as a ratio (or take the log of the ratio to express the distance as the number of orders of
magnitude that are spanned).

These metrics are illustrated for several datasets in Figures 5.8 and 5.9. The top
two plots in Figure 5.8 show data about files from Unix file systems. The top-left plot
is the 1993 survey mentioned earlier, with data about some 12 million files from more
than a thousand file systems. The right one is a departmental file system with more
than 18 million files sampled in June 2005. Despite the time gap, these two datasets
are amazingly similar, both in terms of their general shapes and in terms of the specific
values assumed by our metrics.

On the bottom is data for Unix process runtimes. The left plot is a dataset from 1994
used by Harchol-Balter and Downey, with about 185,000 processes that arrived over
eight hours [320]. The right-hand dataset contains more than 450,000 Unix processes
from a departmental server, covering about a month in 2005. This dataset is the most
extreme, especially in terms of the median-median distance.

These examples are all related to the sizes of workload items. But mass-count dis-
parity can also be applied to popularity — most items are not very popular, but a few are
very popular and enjoy most of the references. This can be visualized as follows. Rank
the items in order of popularity. Fc(x) is then the probability that a randomly chosen
item receives up to x references. Now look at references, and rank them according to

3The only problem may be if the distribution is modal, and this x value is a mode.
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Figure 5.8: Examples of the joint ratio, N1/2, W1/2, and median-median distance met-
rics, for size-related distributions.
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Figure 5.9: Examples of mass-count disparity metrics for popularity data.
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Figure 5.10: Mass-count disparity plots and metrics for the heavy-tailed Pareto distribu-
tion.

the popularity of the item to which they refer; thus first there will be those references
to items that are accessed only once, then references to items with some repetition, and
at the end all those references to the most popular item. Fm(x) is the probability that a
randomly chosen reference references an item that is accessed up to x times.

Figure 5.9 shows examples related to popularity, and, specifically, how many times
a web page was downloaded in a single day. The dataset shown on the left is from
an HTTP log from SDSC from 1995, and contains about 28,000 requests. The one on
the right is from the France’98 World Cup website. The World Cup data is much
more extreme than the SDSC data, indicating that the SDSC requests were more evenly
spread, whereas the traffic to the World Cup site was much more focused on a select set
of documents.

The above examples show mass-count plots for empirical data, and extract the met-
rics from these plots. But given a mathematical expression for a distribution, it may also
be possible to compute the metrics analytically. For example, the Pareto count distribu-
tion is

Fc(x) = 1−
(
k

x

)a

where k is the minimal value possible (that is, the distribution is defined for x ≥ k), and
a is the tail index. The mass distribution is then
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Fm(x) =

∫ x

0
x′
aka

x′a+1
dx′∫ ∞

0
x′
aka

x′a+1
dx′

= 1−
(
k

x

)a−1

The integrals only converge for the case when a > 1; if a is smaller, the tail is so heavy
that the mean is infinite. This is reflected in the shape of the plots (Figure 5.10). When
a is small, a significant part of the mass occurs in the few top samples, and we get very
high mass-count disparity. When a = 1, the mass distribution is a straight line. In both
cases, the shape of the graphs, and thus the metric values, actually depend on the number
of samples observed. For example, for a = 1 the slope changes to reflect the number of
samples, and correlates with how far into the tail we see (and if we are “lucky” to see a
rare sample from deep in the tail, we will get a broken line).

When a is larger (the case described by the equations) the metric values are rather
moderate — and in fact, indicate significantly lower mass-count disparity than observed
in the above examples of real data. A hint regarding a possible explanation for this is
given in Figure 5.8. Looking at the plots for file sizes and 1994 Unix processes, we see
the expected shape of the Pareto plots on the right of each plot, but a different behavior on
the left. This is because the data are actually not well modeled by a Pareto distribution:
only the tail is Pareto. The full dataset is a mixture of a Pareto tail with a body that
contains many more small items than in a Pareto distribution.

The Lorenz Curve and Gini Coefficient

Another way to display the relationship between the count distribution and the mass
distribution is the Lorenz curve, which has its roots in measuring inequality in the dis-
tribution of wealth [452]. This is essentially a P-P plot of these two distributions. Given
the two CDFs, a P-P plot is constructed by pairing percentiles that correspond to the
same value (as opposed to Q-Q plots, which pair values that correspond to the same
percentile). Thus in our case, for each value x we will find

pc = Fc(x) and pm = Fm(x)

and then use this to express the mass percentile as a function of the count percentile:

pm = Fm(x) = Fm( F−1
c (pc) )

where F−1
c is the inverse of Fc.

An example using the Unix 1993 file sizes and 1994 process runtimes is shown
in Figure 5.11. Focusing on the process runtime data, we can say that about 90% of
the processes consumed roughly 20% of the CPU time. In general, if mass is distributed
equitably the Lorenz curve would simply be the diagonal, because p% of the items would
also be responsible for p% of the mass. The greater the mass-count disparity, the farther
the curve is from the diagonal.

Based on the Lorenz curve, the Gini coefficient reduces the degree of inequality to
a single number. The calculation is simply the ratio of two areas: the area between the
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Figure 5.11: The Gini coefficient corresponds to the shaded area above the Lorenz curve.

equality line and the Lorenz curve, and all the area below the equality line. Denoting the
Lorenz curve by L(x), this is

G = 2

∫ 1

0
(x− L(x)) dx

(the factor of 2 reflects the area under the equality line, which is a triangle with area 1
2 ).

The closer the Lorenz curve is to the line of equality, the smaller the area between them;
in this case the Gini coefficient tends to 0. But when a small fraction of the items account
for most of the mass, the Lorenz curve is close to the axes, and the Gini coefficient is
close to 1. This is the case illustrated in Figure 5.11. Specifically, the Gini coefficient
for file sizes data is 0.913, and for the process runtime data it is 0.882. (Inequality of
wealth is typically lower, with Gini coefficients in the range 0.3–0.4.)

The Gini coefficient is popular, especially in economics, because of its frugality. But
Lorenz curves with different shapes, for example closer to the X axis or rather to the Y
axis, may lead to the same Gini coefficient. Thus the metrics presented previously do
indeed provide more information. In the context of the Lorenz curve, the W1/2 metric
measures the distance from the middle of the X axis, N1/2 measures the distance from
the middle of the Y axis, and the joint ratio measures the distance along the diagonal
from the bottom-right corner.

5.3 Testing for Heavy Tails

Testing for heavy tails depends on the definition you use. For example, if the existence
of significant mass-count disparity is used as the definition, a simple visual inspection
may suffice: plotting CDFs as in Figure 5.7 allows for easy verification whether the data
follows the 80/20 rule, the 90/10 rule, or the 50/0 rule. This can be strengthened by
computing the metrics of joint ratio, N1/2, and W1/2.

The most common definition, however, is the existence of a power-law tail. We
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therefore focus on tests for this feature. Note, however, that these tests assume a perfect
power-law tail, and may not work well if the tail is truncated.

LLCD Plots

Testing for a power-law tail can be done using log-log complementary distribution plots.
This is based on the definition of heavy tails as given in Equation (5.1). Taking the log
from both sides we observe that

log F̄ (x) = log x−a = −a log x (5.3)

So plotting log F̄ (x) (the log of the fraction of observations larger than x) as a function of
log x should lead to a straight line with slope−a. As we are plotting F̄ (x) in logarithmic
axes, the name “log-log complementary distribution plot” (LLCD) is a natural one4.

Practice Box: Drawing an LLCD

When drawing distributions from large datasets, it is common practice to use binning:
partition the data into bins of equal size, and draw a collective data point for each bin to
reduce the size of the dataset. But when drawing an LLCD we go down to the very low
probabilities associated with samples from the tail. It is therefore necessary to include all
the available samples from the tail individually. However, it is still possible to use binning
for the body of the distribution.
The LLCD actually shows the empirical survival function. Strictly speaking, the estimate
of the probability of seeing a value higher than a certain sample xi is the relative number
of samples (out of n) larger than it:

Pr(X > xi) =
|{xj | xj > xi}|

n

However, with this definition the probability of being higher than the largest sample is
zero, so we are essentially not going to use the largest sample, which may be the most
prominent representative of the tail.
This problem can be eliminated by increasing all probabilities by 1

2n and replacing the first
one by 1− 1

2n . To see why such an approach is reasonable, consider the case when we have
only a single sample x1. Using the original approach, the postulated survival function is a
step function: we would say that there is a probability of 1 of being bigger than any x that
satisfies x < x1, and a probability of 0 of being bigger than any x that satisfies x > x1. In
effect, we turn x1 into an upper bound on the distribution. The second approach essentially
regards the lone sample as the median, and postulates that there is a probability of 1

2 of
being either above or below it. Assuming we know nothing about the distribution, this is a
much more reasonable approach.
Another issue regarding the drawing of LLCD plots is their aspect ratio. Because we are
drawing a line and looking at its slope, the scales of both axes should be the same. This
way a line with slope −1 will indeed be seen to have a slope of −1.

End Box

4Note, however, that generally the term “survival function”, rather than “complementary distribution”,
is preferred in this book.
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Figure 5.12: LLCD plots for several datasets (the same ones as in Figure 5.8), and fitted
straight lines for the top 1%.

A number of examples of LLCD plots are shown in Figure 5.12. Recall that a straight
line indicates that a power law is present, and the slope of the line provides an estimate
of the tail index a. Note also that it is not necessary for the entire distribution to fall on
a straight line. This happens only for the Pareto distribution, which is characterized by a
power law across the entire range of values. But it is also possible to have a distribution
in which the body is described by some other function, and only the tail is governed by
a power law. In this case the transition from the body to the tail can be identified by the
point at which the LLCD begins to look like a straight line. It is customary to require
that the straight line segment covers several orders of magnitude.

In these examples we arbitrarily define the top 1% of the distribution to be the tail.
A linear regression (in log-space) then finds the best linear representation and its slope.
The results are that power-law tails appear to be present in all of them.

For comparison, LLCD plots of several statistical distributions are shown in Figure
5.13. The exponential distribution has a mean of θ = 100. Obviously its tail decays
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Figure 5.13: LLCD plots for distributions with different tail characteristics.

rapidly (in fact, exponentially) for higher values. Mathematically, the expression is as
follows. We know that F̄ (x) = e−x/θ. Therefore log F̄ (x) = −x/θ. But we want this
as a function of log x, not as a function of x. We therefore write

log F̄ (x) = −e
log x

θ

The plot is then the same as that of an exponential going to∞, but with a − sign, so it
goes down instead of up.

The Weibull distribution with α < 1 is long-tailed, and indeed in such cases the tail
decays more slowly, especially for small αs (for α = 1 it is actually equivalent to the
exponential). However, the slope of the LLCD plots still becomes steeper for higher
values of x. In all these examples, the scale parameter is β = 100.

The lognormal distribution is also long-tailed. Again, the decay of the tail depends
on the parameter values. In the examples shown the location parameter is µ = 4.6,
which leads to a mode at 100 (because 4.6 ≈ ln 100). The tail behavior then depends
on the relative size of σ. For smaller σ, the distribution becomes less disperse, and
consequently, the tail becomes less pronounced. For large σ, the tail becomes heavier,
and may look rather straight in the LLCD. To explain this, consider the logarithm of the
distribution’s pdf (given in Equation (3.29)) as a function of log x (of course, we should
actually look at the survival function, but it does not have a closed form) [497]. This is
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ln f(x) =− ln
(
xσ
√
2π
)
− (lnx− µ)2

2σ2

=
−1
2σ2

(lnx)2 +
( µ
σ2
− 1
)
lnx− µ2

2σ2
− lnσ

√
2π

If σ2 is large the quadratic term is small, and the linear one dominates.
The Pareto distribution is the only one with an LLCD that is a completely straight

line. This reflects its power-law form, and of course, the slope of this line corresponds
to the tail index.

Curvature

While the Pareto distribution has an LLCD that is completely straight, this is often not
observed in real data. In many cases, the whole distribution is not well modeled as Pareto
— only the tail is a Pareto tail. Thus the LLCD is not completely straight, but just has a
straight segment at the end.

Note, however, that the Weibull and lognormal distributions (with appropriate pa-
rameter values) can also have portions of the tail that look approximately linear across
two or three orders of magnitude. In principle the deviation from a straight line can be
found by continuing to higher values and lower probabilities, but in practice this is often
impossible because sufficient data is not available. It is therefore desirable to find a test
that can distinguish between a Pareto tail and a lognormal tail that look very similar.

Such a test has been proposed by Downey, based on a detailed measurement of the
curvature of the LLCD [189]. It is done in two steps. First, the curvature is estimated,
and then a check is made whether such a curvature may reasonably occur for a Pareto
distribution. If the answer is no, then another model such as a lognormal is preferred.

Measuring the curvature of the LLCD is done by computing a numerical first deriva-
tive — the ratios of the vertical and horizontal differences for successive points. If the
original plot is a straight line, these ratios should all be very similar to each other, so
plotting them should lead to a line with a slope near 0. Fitting a straight line using linear
regression provides the actual slope. Repeating this on multiple sets of samples from a
synthetic Pareto distribution with the same putative tail index shows whether this value
may have occurred by chance (another example of validation using the bootstrap method
[205, 206]).

A somewhat simpler procedure has been proposed by Eeckhout [196]. Its point of
departure is the observation that fitting a straight line to the right end of an LLCD plot
(or alternatively, to the left end of a Zipf size-rank plot) depends on the definition of the
starting point, which separates the body from the tail. Thus, using a sequence of different
starting points produces a sequence of estimates for the tail index. If the distribution is
indeed heavy-tailed, all these estimates should be more or less the same. But if it is, for
example, actually a lognormal distribution, the estimates should increase monotonically.

An example is shown in Figure 5.14. This intentionally starts off by defining a full
20% of the data to be the tail, in order to enable a wider view of the distribution before
focusing on the tail. Note that the results for the Unix 1994 processes are nevertheless
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Figure 5.14: Slope of the fitted line as a function of the definition of where the tail starts.

all consistent, giving a strong indication that this is indeed a Pareto tail. However, for
the CS file-size data the initial slopes are too shallow and do not reflect the tail; only
focusing on the last 1% of the data leads to more or less stable results (note that in the
graphs showing the fit slope as a function of how much of the data is considered to be
the tail, having less data belonging to the tail corresponds to moving left in the graph).
In fact, this example also shows that the technique can be used to judge where the tail
starts.

Aggregation

The LLCD technique can be further improved by aggregating successive observations.
This essentially means looking at the data at a coarser resolution, instead of looking at
individual samples:

X
(m)
i =

im∑
j=(i−1)m+1

Xj (5.4)

Distributions for which such aggregated random variables have essentially the same dis-
tribution as the original are called stable distributions. The normal distribution is the
only stable distribution with finite variance. This is a direct corollary of the central limit
theorem, which states that if we sum independent random variables from any distribution
with finite variance, the sums will be normally distributed.

But heavy-tailed distributions (according to definition of Equation (5.1)) have an in-
finite variance. Thus the central limit theorem does not apply, and the aggregated random
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Figure 5.15: LLCD plots with aggregation of data. The pita dataset on the left is heavy-
tailed, whereas the LANL dataset on the right is not.

variables do not have a normal distribution. Rather, they have an α-stable distribution,
which has a heavy right tail with the same tail index as the original (recall Figure 5.4).
This can be verified by creating LLCD plots of the aggregated samples, and checking
that they too are straight lines with the same slope as the original [158, 155]. If the dis-
tribution is not heavy-tailed, the aggregated samples will tend to be normally distributed
(the more so as the level of aggregation increases), and the slopes of the LLCD plots will
increase with the level of aggregation.

An example is given in Figure 5.15, which compares two datasets. The Unix pro-
cesses from pita seem to have a power-law tail: when aggregated by a factor of 10 or
100 we get the same straight line as for the original data. The job runtimes on the LANL
CM-5, in contrast, are not heavy-tailed. Although the tail in the original data leads to a
reasonably straight line, its slope is rather high, and it becomes steeper with aggregation.

Using the requirement that LLCDs of aggregated samples be straight and parallel,
Crovella and Taqqu suggest a methodology for identifying exactly that part of the tail
that behaves like a heavy tail [158] (described later). Interestingly, when this is applied
to data from various long-tailed distributions, the results are inconclusive. In particular,
large parts of the tail of a lognormal distribution look like a heavy tail, but not all of the
tails of Pareto and α-stable distributions pass the test.

Deviations From a Zipf Distribution

Until now the discussion has concerned the problem of characterizing the tail of a dis-
tribution in situations in which the large samples from the tail are extremely rare and
therefore we do not have enough data. For example, this happens when we want to char-
acterize the distribution of the largest files or the longest processes. But when we want
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Figure 5.16: When a popularity distribution has a heavy tail, taking only a small number
of samples makes it look like a Zipf distribution.

to characterize a popularity distribution, the situation is reversed, and the tail is easily
characterized.

In the context of popularity distributions, a heavy tail leads to a Zipf distribution.
This is typically rendered as a rank-size plot, in which items are sorted from the most
popular to the least popular, and the number of occurrences of each item is plotted as a
function of its rank in log-log axes (Figure 5.16). In such a plot, the tail of the popularity
distribution is represented by the high counts of the top-ranked items at the top left of
the graph. The body of the distribution is represented by the low-ranking items at the
bottom right.

An interesting effect occurs as the number of samples observed is increased. Initially,
when we only have a relatively small number of samples, we typically only see the most
popular items. Because the popularity distribution has a heavy tail, these items will
be Zipf distributed (the correspondence between the Zipf distribution and the Pareto
distribution was established on page 133). Assume a true Zipf distribution with a slope
of −1 in log-log axes. This implies that the axes are intersected at the same value: if the
top-ranked item is seen k times, the top rank is also k (i.e., we see a total of k different
items). As more and more samples are collected, a Zipf distribution implies that more
and more distinct items must be observed.

But in many cases the underlying population is actually finite. For example, when
looking at word frequencies, the underlying population is the vocabulary of the author.
Thus the distribution must be truncated at some point. When more and more samples are
observed, we will see a deviation from the straight line of the Zipf distribution, and the
greater the number of samples, the greater the deviation [690]. This is shown in Figure
5.16 for the distribution of words in this book. The heavy-tail statistics govern the few
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Figure 5.17: Using a k-transform leads to an apparent Zipf distribution. The dashed
lines used for reference have a slope of -1.

hundred most popular words. The 8,362 words of Section 3.1, which represent only
1,254 distinct words, are still nearly Zipf distributed. The 17,922 words of Chapter 3
(1,924 distinct words) begin to show a slight deviation. But when considering all 134,987
words in the book, comprising a vocabulary of 5,819 distinct words, the deviation from
the Zipf distribution is unmistakable.

The above discussion assumes that the distribution of popularity is fixed. But the ef-
fect of deviations is much stronger if the popularity of different items changes with time,
as it does for news stories or movies [382, 675]. In this case the distribution of popularity
on an average day may be Zipfian, but taken over a long period the popularities of all
the items do not conform to a Zipf distribution, because the popular movies in one week
are replaced by other movies a month later, rather than continuing to accrue additional
viewings. The same may happen in a professional text, where the unique vocabulary of
one chapter may be different from that of another.

Tang et al. have suggested using the k-transform to uncover the underlying Zipf
nature in such situations [675] (Figure 5.17). The idea is that, instead of considering the
items in isolation, one creates equivalence classes. For example, all the most popular
movies in the different weeks are one class, all the second most popular ones are a
second class, and so on. Technically this is achieved by assuming that the different
weekly distributions are perfectly merged with each other. Thus if there are k weekly
datasets, the first k elements will be the k top movies from the different weeks, and so
on. We therefore replace the elements by their group using the following transformation:
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x′=
x+ k − 1

k

y′=
y + k − 1

k

This is highly effective in producing a straight line when the rank-size plot is shown in
log-log axes, as illustrated in Figure 5.17. The slope can then be used to parameterize a
model [675].

5.4 Modeling Heavy Tails

By definition, a heavy tail is Pareto distributed. The way to model it is therefore to find
the appropriate parameters for a Pareto distribution that describes the tail data. This
often implies that the data is partitioned into two parts, and the body of the distribution
is modeled separately from its tail [473].

One should nevertheless bear in mind the possibility of using other distributions that
lead to effects such as mass-count disparity, even if they do not have a tail that decays
according to a power law. This is especially true when a single distribution provides a
reasonable fit to the complete dataset. In fact, this can also be done using variants of the
Pareto distribution, based on shifting and truncation.

5.4.1 Estimating the Parameters of a Power-Law Tail

The Pareto distribution has two parameters: k and a. k is a location parameter, and
signifies where the distribution starts. It is therefore easy to estimate using the smallest
sample seen. When we are modeling the tail of the distribution separately from its body,
k is set to the boundary point where the tail begins.

It is harder to estimate the value of the shape parameter a (also called the tail index
of the distribution). There are two major problems. First, by definition we do not have
many samples to work with, because we are only dealing with the tail of the whole
distribution. Second, the most important samples are the biggest ones, which are, of
course, the most rare. As a result it is often the case that it is hard to find exact values
for a, and that different techniques yield somewhat different results.

Graphical Methods

The simplest approach for estimating a is graphical, based on drawing the histogram of
the distribution on log-log axes. If the distribution follows a power law, it will yield a
straight line, and performing a linear regression (in log-space!) will find its slope and
provide an estimate for−(a+1). The problem with this approach is that the high values
only appear once (or a small number of times) each, leading to much noise and biased
estimates [291]. It is therefore necessary to use logarithmic binning when drawing the
histogram [514]. Figure 5.18 demonstrates the improvement when using logarithmic
binning. Note that counts have to be normalized by bin width to retain the correct shape
of the histogram.
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Figure 5.18: Raw and logarithmically binned histogram of heavy-tailed data, in this case
the popularity of web pages from SDSC.

A related technique is based on the LLCD plot. As shown earlier, if the tail indeed
follows a power law, the LLCD plot ends in a straight line. This time the slope of the
line is equal to −a, so finding a linear best fit for the data provides an estimate for a
(this was demonstrated in Figure 5.12). This method has two major advantages over the
previous one: it uses all the data from the tail, rather than fudging them due to the use
of binning, and it allows one to easily analyze the tail even if the distribution as a whole
does not subscribe to a power law.

Another graphical method is based on the relationship between the Pareto distribu-
tion and the exponential distribution. Consider a rescaled Pareto distribution, in which
the samples are divided by the minimal value k. Because the distribution is scale invari-
ant, it still has the same power-law tail. The survival function is

Pr(X > x) = x−a

This does not change if we apply some monotonic transformation to both the variable X
and the value x on the left-hand side. For example, we can use a logarithmic transfor-
mation:

Pr(lnX > lnx) = x−a

But if we apply a transformation only to the value x, we must apply the same transforma-
tion also to the x in the right-hand side. Let us do so with an exponential transformation.
This yields

Pr(lnX > x) = (ex)−a

which can be rewritten as
Pr(lnX > x) = e−ax
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which is the survival function of the exponential distribution with parameter 1/a! This
means that if we take the log of Pareto samples, they will be exponentially distributed.
We can therefore draw a Q-Q plot using log-transformed Pareto samples as the data, and
an exponential distribution as the model. This should yield a straight line, and the slope
will allow us to estimate the parameter value a [565].

Crovella and Taqqu’s aest Method

A central problem with all methods to find a distribution’s tail index is defining exactly
where the tail starts. In many cases the end of the LLCD is not completely straight, and
the transition from the body to the tail is gradual. Thus there is some leeway is choosing
what data to use, producing some uncertainty about the results.

The aest method (for “a estimation”) proposed by Crovella and Taqqu [158] solves
this problem by automatically identifying those parts of the distribution that most closely
follow the definition of a heavy tail. It does so by aggregating the data at several levels of
aggregation, and using those data points where the aggregated LLCDs exhibit the correct
relationship.

Consider a dataset X = (X1, X2, X3, . . .), and two aggregated series X(m1) and
X(m2), where aggregation is defined by

X
(m)
i =

im∑
j=(i−1)m+1

Xj

Assume m2 is a higher level of aggregation, for example m2 = m2
1 (Crovella and Taqqu

use powers of two to create up to 10 LLCDs with growing levels of aggregation). IfX is
heavy-tailed, and we plot the LLCDs of X(m1) and X(m2), we expect to get two parallel
straight lines with the same slope.

Now consider three points on these LLCDs,
as illustrated to the right. The first is on the
first LLCD, and indicates that with an aggregation
level of m1 there is a probability of p1 of seeing
values in excess of x1. The other two are on the
second LLCD, and correspond to the coordinates
of the first point. Specifically, x2 is identified as
the value that, when using an aggregation level
of m2, is exceeded with the same probability p1.
Likewise, p2 is the probability of exceeding the
original value x1.

log x2

log p1

log p2

log x1

The fact that the Xis are assumed to come from a stable distribution implies that
n∑

i=1

Xi
d∼ n

1
aX

where d∼ means “has the same distribution”. But n is just the level of aggregation, so
this is the same as writing
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X(m) d∼ m
1
aX

Now, by changing sides, we can find the relationship between different levels of aggre-
gation. This is simply

1

m
1/a
1

X(m1) d∼ 1

m
1/a
2

X(m2) (5.5)

This allows us to give expressions for the distances log p2 − log p1 and log x2 − log x1
between the two LLCDs just pictured. Let us start with the first one. Assuming the
distribution has a heavy tail, and that we are looking at x values that are large enough
to indeed be in the tail, then by definition Pr(X > x) = x−a. Upon aggregation by a
factor of m, this probability also grows by the same factor, because exceeding the value
x will typically be the result of just one of the samples being large enough to exceed
it by itself. Therefore Pr(X(m) > x) = mx−a. Calculating the vertical distance then
gives

log p2 − log p1 = log Pr(X(m2) > x)− log Pr(X(m1) > x)

= log(m2x
−a)− log(m1x

−a)

= (logm2 − a log x)− (logm1 − a log x)
= logm2 − logm1

Importantly, this calculation depends only on m1 and m2. It can therefore serve to
identify points where x is in the tail, and, moreover, exhibits heavy-tailed behavior.

Once we identify these points, we can calculate the horizontal distance. By con-
struction we know that Pr(X(m2) > x2) = Pr(X(m1) > x1). By using Equation (5.5),
we also know that for any x

Pr

(
m

1/a
1

m
1/a
2

X(m2) > x

)
= Pr

(
X(m1) > x

)
Using this for x1 in the above equation, we derive

Pr
(
X(m2) > x2

)
= Pr

(
m

1/a
1

m
1/a
2

X(m2) > x1

)

Therefore x2 =
(
m2
m1

)1/a
x1, and the distance is

log x2 − log x1 = log
(
m2
m1

)1/a
x1 − log x1

= 1
a(log

m2
m1

) + log x1 − log x1

= 1
a(logm2 − logm1)

Thus by measuring the horizontal distance, we can find the tail index a.
Putting this all together, the algorithm is as follows:

1. Create LLCD plots at multiple levels of aggregation (e.g., powers of 2).
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2. Select the upper 10% of the data as potential tail points.

3. For each tail point on each LLCD, do the following:

(a) Measure the vertical distance to the next LLCD. If it is within 10% of the
expected value based on the aggregation levels, accept this point. Otherwise
ignore it.

(b) If the point is accepted, measure the horizontal distance to the next LLCD
and use this to get an estimate for a.

4. Find the average of all the estimates of a that were generated.

Plotting the LLCDs and showing the accepted points also gives a qualitative view of how
many of the tail points were accepted.

Maximum Likelihood Estimation

The second approach is to use maximum likelihood estimation. Following the procedure
described in Section 4.2.3, we write the log-likelihood function for the Pareto distribu-
tion

lnL(a, k |x1, . . . , xn) =
n∑

i=1

ln
a ka

xa+1
i

Rewrite a ka

xa+1
i

= a
k

(
xi
k

)−(a+1) and then differentiate with respect to a:

∂
∂a ln(L) =

n∑
i=1

∂
∂a ln

a

k
+

n∑
i=1

∂
∂a ln

(xi
k

)−(a+1)

=
n∑

i=1

1

a
−

n∑
i=1

ln
(xi
k

)
Equating this to 0 reveals that the estimate for a is

â =
1

1
n

∑n
i=1 ln

xi
k

(5.6)

Note that only xi from the tail should be included, and that k is estimated as the minimal
value (that is, where the body ends and the tail begins).

If the distribution is discrete, as is the case for file sizes, for example, a better estima-
tion is obtained by using k− 1

2 rather than k [141]. However, this is typically meaningless
with the large values and number of samples typical of workload data.

The Hill Estimator

The Hill estimator is based on the largest k samples5. The formula is [334]
5This has nothing to do with the parameter k of the Pareto distribution; it is just one of those unlucky

coincidences of commonly used notation.
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Figure 5.19: The Hill estimator for several datasets used above.

âk =
1

1
k

∑k
i=1 ln

X(n−i)

X(n−k)

(5.7)

where X(m) is the mth order statistic (i.e., the mth largest sample; X(1) is the smallest
andX(n) the largest). This is actually the maximum likelihood estimate when only these
k samples are considered to be the tail.

The way The Hill estimator is used is to evaluate it for a sequence of values of k,
and then plot âk as a function of k. If the value seems to converge, this is taken as the
estimate for a (Figure 5.19).

However, in many cases the Hill estimator does not appear to converge, but rather
fluctuates in a certain range or even continues to change monotonically. For example,
consider the Unix 1993 file-size data shown in the top left plot of Figure 5.19, which
displays only the top 1% of the dataset. Figure 5.20 extends this to the top 50% (i.e.,
well into the body of the distribution). As the graph shows, the estimate continues to
drop as more data points are added, from about 1.33 for the top 0.1%, through about
1.08 when the top 1% are used, and down to a mere 0.66 when a full 50% of the data
are used. Although this last value is obviously bogus because it includes too much data,
there is no obvious indication of which value in the spanned range is the best to use.

It has therefore been proposed to use a rescaling for k, replacing it by a parameter θ
in the range [0, 1], and plotting â⌈nθ⌉ as a function of θ (where n is the total number of

Version 1.0.4, typeset on June 10, 2023



5.4. MODELING HEAVY TAILS 213

Unix files 1993

k

1 10     6 2x10         6 3x10         6 4x10         6 5x10         6 6x10         6

H
ill

 e
s
ti
m

a
te

0

1

2

3

4
log scale

k

1 10 100 1000 10     4 10     5 10     6

H
ill

 e
s
ti
m

a
te

0

1

2

3

4

Figure 5.20: Calculating the Hill estimator for an extended dataset.

samples, and therefore n ≥ k). In some cases this makes it easier to identify the plateau
in the graph [565]. Another alternative that has also been proposed is to simply use a
logarithmic scale, as shown in Figure 5.20.

Estimation for a Truncated Distribution

The above procedures may not work well for data that should be modeled by a truncated
Pareto distribution. Recall that the LLCD of a truncated Pareto distribution drops to-
wards the truncation point, rather than retaining the characteristic straight line (Figure
5.23). Thus using a graphical approach may seem to indicate that the correct model does
not have a heavy tail at all. Alternatively, when an analytic approach such as the Hill esti-
mator is used, we will get an overestimate of a due to trying to fit the reduced probability
for high values at the tail. Adaptations of the Hill estimator that take this into account
were developed by Beg [62], Aban et al. [1], and Chakrabarty and Samorodnitsky [115].
Chakrabarty and Samorodnitsky also suggest a statistic to determine whether or not the
data corresponds to a truncated heavy tail. In essence it is based on the ratio of the sum
of all samples to the largest sample, with a ratio close to 1 indicating an effective heavy
tail whereas a large ratio indicates truncation.

In a related vein, it may be that the distribution is in fact not truncated, but the
observations are. Of example, this may happen when the cost (or overhead) to obtain
tail samples is excessively high. Gomes et al. [292] have developed an adapted estimator
for this case.

Comparison of Results

Applying the methods described in this section to the four datasets used throughout
yields the results shown in Table 5.1. As we can see, the results obtained by different
methods exhibit a reasonable agreement with each other, which raises our confidence
in them. Indeed, it is recommended to use several methods and compare the results for
cross-validation.
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Dataset LLCD ML Hill
Unix files 1993 1.25 1.08 1.1–1.3
HU-CS files 2005 1.31 1.31 ∼1.25
Unix runtimes 1994 1.38 1.32 ∼1.35
HU-CS runtimes 2005 0.84 0.89 0.88

Table 5.1: Results of different methods to estimate the tail index of a heavy-tailed distri-
bution, when applied to the top 1% of samples.

5.4.2 Generalization and Extrapolation

The problem with all the procedures for modeling heavy tails is that data regarding the
tail is sparse by definition [295, 115]. For example, a single very large sample may
sway the decision in favor of “heavy” [131]. But is this the correct generalization?
The question is how to identify the nature of the underlying distribution without having
adequate data.

When the LLCD plot is a straight line, this implies a heavy (power-law) tail. For
example, Barford and Crovella made such an observation when studying early data re-
garding request sizes on the world wide web, where the maximal size was about 106

bytes. They therefore included a heavy tail as one of the features of their SURGE work-
load generator [57]. Years later this decision was justified when further data showed that
the heavy tail indeed extends at least up to a size of 109 bytes [330]. But in principle it
could also have been truncated at say 107.

Nevertheless, claiming a truly heavy-tailed distribution is unrealistic, because such
a claim means that unbounded samples should be expected as more and more data is
collected. In all real cases, samples must be bounded by some number. Therefore the
correct model, even if the data seems heavy-tailed, is a truncated Pareto distribution.
This leaves the question of where to put the bound.

Connection Box: Extreme Value Theory

The need to extrapolate beyond the available data is not unique to computer workload mod-
eling. Such extrapolation is extremely important in finance, insurance, and engineering.
For example, engineers may need to design structures that withstand “100-year storms”,
meaning storms of a force that is experienced on average only once every 100 years. Data
about such storms is necessarily very sketchy.
Extreme value theory provides some direction. Given n samples from some process, their
maximum is

Mn = max
n
{X1, X2, . . . , Xn}

Extreme value theory deals with the distribution ofMn, and also with the expected number
and magnitude of events above a given high threshold.
An interesting example comes from the sinking of the ship M. V. Derbyshire during a
typhoon in 1980. This was attributed to flooding due to a failure of the hatch cover of
Cargo Hold 1 (the foremost of nine holds running the length of the ship). The question
then became what was the probability that the typhoon had caused waves to pound on the
cover with a force that exceeded the safety standard of the time. A statistical analysis was
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conducted to assess this probability, based on a scale model, estimating wave conditions
from satellite data, and fitting a generalized Pareto distribution to the extreme values [326,
325]. It concluded that waves large enough to sink the ship were reasonably probable
provided the hold cover had already suffered prior damage.

End Box

Truncating the Pareto Distribution

The finite nature of all workload items clearly indicates that we need to postulate a cer-
tain upper bound on the distribution. Thus we should actually use the truncated version
of the Pareto distribution. But the question remains of where to truncate the distribution.
Should it be at the highest observed sample, or higher than that? If so, how much higher?

A lower bound on the truncation point is provided by the largest sample seen in the
data. Obviously, if such a sample exists, its probability is larger than 0. The assumption
that the appropriate truncation point coincides with the largest sample is implied in those
methods that fit a phase-type distribution to heavy-tailed data. The way they fit the heavy
tail is to use a set of exponentials, each of which extends the distribution beyond the point
at which the previous one decays into oblivion. But nothing extends the distribution
beyond the last exponential, which is typically designed to capture the last data points
(Figure 5.21).

However, we might not have enough samples. Maybe if we had twice as many
samples, or 10 times as many, we would have seen one that is much deeper into the
tail. Another option is therefore to assume that everything that is not excluded outright
is possible. The truncation point is then chosen to be some wild upper bound. For
example, if the total capacity of a storage system is 10 TB, then the maximal file size
is set to 10 TB (even though it is unrealistic to expect a single file to really occupy all
the available space). If the duration of funding research projects is four years, then the
maximal job runtime is set to four years (even though it is unrealistic for a computation
to take the full time of a project). In effect, we are using the functional shape of the
distribution (the power-law tail) to extrapolate way beyond what we have actually seen.

But what if the range from the largest observed sample to the upper bound is large?
If we choose the largest sample we might exclude larger samples that may in fact occur.
If we choose a wild upper bound we might introduce large samples that actually cannot
occur. In either case there is a danger that this decision will have a large impact on
performance evaluation results, because the largest samples dominate the workload.

Figure 5.21 shows how the two models diverge for a real dataset. In the dataset
(Unix 1994 process runtimes) there are 184,612 samples, the largest of which is 1573
seconds. If we need more samples for an evaluation, we need to extrapolate and extend
the distribution. If we need 10 million samples, for example, and use a hyper-exponential
model, the largest sample we may expect to see is about 3700 seconds. But if we choose
the Pareto model, we can expect samples as large as 25,000 seconds! If we need even
more samples, the difference continues to grow.
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Figure 5.21: LLCD plot comparing a hyper-exponential model and a Pareto model be-
yond the range covered by the data.

Dynamic Truncation

An intriguing option is to set the truncation point dynamically according to need. If we
only need a small number of samples from the distribution, there is a negligible chance
that we will get one from the tail. In fact, getting a large sample from the tail would not
be a characteristic outcome. To prevent this, we can truncate the distribution at a point
that depends on how many samples we need. For example, if we need n samples, we can
truncate the distribution at a point where F̄ (x) ≈ 1

2n (inspired by Chauvenet’s criterion
for removing outliers).

Obviously, this approach does not really solve the problem, because we still do not
know what is the correct truncation point. But it allows us to define a certain horizon,
characterized by the number of samples n. With this horizon, we should probably only
delve so far into the tail of the distribution, and no more. With a farther horizon, the
probability of seeing even larger samples becomes realistic, and we should delve deeper
into the tail. Controlling how far we go enables us to qualify the evaluation results, and
to claim that they are representative for the given horizon.

Dynamic truncation also allows us to empirically assess the effect of the truncation.
We can redo the evaluations using the unbounded Pareto distribution, and a version trun-
cated according to the expected horizon. If the results are consistent with each other, we
can probably rely on them, because the tail does not make much of a difference. If they
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RNG Bits Max
rand 16 32,768
random 32 ∼ 2 billion
drand48 48 ∼ 2.8× 1014

Table 5.2: The characteristics of three random number generators. These figures are for
the implementation on a BSD system around the year 2000. Current implementations
differ; in particular, rand is often an alias for random.

are not, we know that our results depend on the largest samples observed. But even so,
we can still precisely quantify the probability that the results for the limited horizon are
relevant. Similar to this, Greiner et al. employ truncation in the interest of tractability,
and compare the results obtained from truncated distributions with those of the limiting
heavy-tailed case [302].

Random Number Generator Limits

Pareto random variates are generated in two steps. First, generate a uniform variate u in
the range [0, 1]. Then calculate x = k

u1/a . The result is a Pareto variate with parameters
k and a.

Looking closer at this procedure, we note that essentially it uses the reciprocal of
a small number. In particular, the large samples from the tail of the distribution are
produced from the smallest numbers provided by the random number generator. But
because of the finite nature of computer arithmetic, there exists some minimal (nonzero)
number that can be produced. This then sets a limit on the maximal value from the tail
of the Pareto distribution that can be produced.

Table 5.2 lists the limits of three random number generators. Essentially, the limit is
related to the number of random bits produced; this sets the maximal value that can be
produced by a Pareto distribution with parameter a = 1. In effect, the random number
generator may impose an unintended truncation on the distribution. This is naturally
undesirable, because the samples from the tail have a dominant role in performance
evaluation results.

As a simple example of the effect of such limitations, Figure 5.22 shows the running
average of samples from a Pareto distribution generated using the three random number
generators. The rand generator is the most limited. As a result the samples do not
even begin to approximate a situation in which the mean is infinite; instead, the running
average quickly converges to about 11, which is close to ln(32,768).

The random and drand48 generators can create much larger values, so many more
samples are needed before their limitations become apparent. However, in the range of
billions of samples, the running average of the random generator is also seen to converge.
Only the drand48 generator is still usable if so many samples are required.

As a rule of thumb, it is recommended to always use double-precision floating-point
variables, as well as the best random number generator you have access to.
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Figure 5.22: The variability observed in samples from a Pareto distribution depends on
the capabilities of the random number generator used.

Distribution Mid-tail Far tail Moments
truncated Pareto polynomial truncated converge
phase-type polynomial exponential converge
lognormal near polynomial sub-exponential converge
Weibull near polynomial sub-exponential converge
Pareto polynomial polynomial diverge

Table 5.3: Tail characteristics of alternative model distributions.

The Lognormal and Other Candidate Distributions

Although heavy tails are by definition Pareto distributed, it is nevertheless sometimes
possible to model data that seems to be heavy-tailed using other distributions. This is es-
pecially appropriate when the original data does not quite fit a power-law tail (e.g., when
the end of the LLCD plot is not completely straight). Such a deviation may indicate
that a lognormal, Weibull, or truncated Pareto model may be more appropriate. These
models are especially appealing in the context of mathematical modeling, because all
their moments converge. The most commonly used alternatives are contrasted in Table
5.3. The choice of which alternative to use may be guided by goodness-of-fit considera-
tions (e.g., using the Kolmogorov-Smirnov test [141], but a test that is more sensitive to
deviations in the tail may be advisable).

The truncated version of the Pareto distribution was considered earlier. By also shift-
ing the distribution we obtain a combination of three desirable features (Figure 5.23):

1. It models both the body and the tail.

2. It displays a straight LLCD plot over several orders of magnitude.

3. It has finite moments.

Another possibility is that the tail has several components, so it is not a “smooth” Pareto
tail [332].
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Figure 5.23: LLCDs of variants of the Pareto distribution.
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Figure 5.24: LLCD plot comparing a lognormal model and Pareto model for file size
data.

Applying truncation implies a strict upper bound on the possible values. An al-
ternative is to use a phase-type hyper-exponential distribution that mimics the power-
law structure for a certain range of values, but then decays exponentially at the end
[253, 208]. The procedures for doing so were described in Section 4.4.3. Importantly,
it is also possible to construct mixtures of exponentials to fit distributions with various
modes, not only those with a monotonically decaying tail [97, 341, 568, 569].

Another possible model is provided by the lognormal distribution, which has been
shown to fit various datasets from different fields of study [445, 196, 189]. Like the
shifted and truncated Pareto distribution, this model has the additional benefits of poten-
tially fitting the whole distribution, rather than just the tail, and of having finite moments.

For example, there have been successful attempts to model file sizes using a log-
normal distribution rather than a Pareto distribution [188]. An example is given in Fig-
ure 5.24, which shows the /cs/par file system dataset, which has about a million files.
According to the LLCD plot, this dataset has a tail that does not quite conform to a
power law. To create a lognormal model, the mean and standard deviation of the log-
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transformed data were computed. While the result does not completely match the quirks
of the tail of the data, it does provide a reasonable fit for the distribution as a whole.

Finally, the Weibull distribution has characteristics that are similar to those of the
lognormal. Laherrére and Sornette present evidence that this distribution provides ex-
cellent fits for many phenomena in nature and society [423]. However, it has so far
not been used much in the context of workload modeling, perhaps because fitting the
distribution’s parameters is more complicated than for other candidate distributions.

The main consideration discussed so far when deciding what distribution to use was
the fit to the data. An additional consideration may be a possible underlying model of
how the data were generated. This is discussed next.

5.4.3 Generative Models

Given the typical sparsity of data, the choice of which distribution to use is a difficult
one. We typically do not have enough data, and the consequences of our choice might
be very serious. An alternative approach is therefore not to try to model the data itself,
but instead find a convincing model of how the data was generated.

The general framework of generative models is typically as follows. The model is
based on a dynamic population, and attempts to describe how this population grows and
changes with time. This is done by some growth rule that is applied iteratively: given the
population that exists at some point in time, the rule is applied to generate a new member
of the population. Using this rule, many new members may be generated one after
the other. Importantly, the rule depends on the existing population. Thus the observed
population cannot be considered to be a simple sampling from a given distribution [627].
Rather, the distribution characterizing the population changes as a result of applying the
rule and generating additional members. But in the models the distribution does in fact
converge to some asymptotic distribution, which would be reached if we would continue
to add members indefinitely. This is the distribution that is generated by the model.

Several models have been shown to lead to skewed distributions and possibly heavy
tails, including preferential attachment and multiplicative processes [497, 514]. And
they have been rediscovered multiple times, sometimes with slight variations [626]. We
review them here, but also note that it is not always clear that they are relevant for
workload modeling. For example, they do not seem to be applicable to the question of
why process runtimes are heavy-tailed.

Preferential Attachment

Preferential attachment has been proposed as the main mechanism leading to the for-
mation of scale-free networks, such as the network of HTML pages and hyperlinks that
form the world wide web. In the simplest version of the model, we start with a pop-
ulation of m items (pages). Then, at each step, we add a new item and link it to m
existing items. Preferential attachment is used when selecting the m items to link to:
they are selected at random, but with probabilities proportional to their current connec-
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tivity [49, 513]. Thus if there are currently n items in the system, and item i already has
ki links, the probability to select it will be

Pr(i) =
ki
n∑

j=1

kj

(5.8)

In other words, items that already have a relatively high number of links have a higher
probability of attracting even more links — a classic “the rich get richer” phenomenon.
This is justified in real settings by observing, for example, that sites that are highly
ranked by search engines have more visibility, and therefore have a better chance to be
linked from other sites, leading to even higher visibility [132]. The model can also be
extended to allow for link deletions [255]. Essentially the same model has also been
suggested in other domains (e.g., the creation of subdirectories in a file system [18]).

The following argument demonstrates that this process indeed leads to a heavy-tailed
distribution of node degrees [50]. Let ki denote the degree of node i (note that this
includes both links from this node to other nodes, which were selected at random when
the node was created, and links from other nodes to this one, which were added later).
At time t, m additional links will be added to the system. The expected number that will
point to node i is mki(t)/

∑
j kj(t) (note that it is possible for several parallel links to

be created). The denominator of this expression is actually twice the number of links in
the system, because each is counted on either end. As m links are added in each time
step, we have

∑
j kj(t) = 2mt. Putting this together leads to the following differential

equation giving the rate of growth of ki:

d

dt
ki(t) = m

ki(t)

2mt
=
ki(t)

2t

The solution of this differential equation is

ki(t) = m

√
t

ti
(5.9)

where ti is the time step when node i was added; assuming the nodes are simply num-
bered in the order they are added, ti = i. Thus the number of links to a node grows as
the square root of time, but for early nodes time effectively passes faster than for later
arriving nodes.

To characterize the tail of the distribution of node degrees, we need to find the dis-
tribution function Pr(ki(t) < k). By using Equation (5.9) and changing sides, we get

Pr(ki(t) < k) = Pr

(
m

√
t

ti
< k

)
= Pr

(
ti >

m2t

k2

)
But nodes are added uniformly over the time t, one in each time unit. Therefore

Pr

(
ti >

m2t

k2

)
= 1− Pr

(
ti ≤

m2t

k2

)
= 1− m2

k2
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(this is indeed a probability, because k must include the initial m outgoing links, so
k ≥ m). Combining these two equations we finally obtain the distribution

Pr(ki(t) < k) = 1− m2

k2

This is the CDF of the Pareto distribution, with a tail index of 2. A model in which
links are created also among existing nodes, and not only from new nodes, leads to a
distribution with a tail index of 1 (that is, a heavier tail) [148].

Note that this model has two important elements that are both required to produce
the heavy-tailed distribution of node degrees [49, 50]:

1. Preferential attachment is required in order to create nodes with very high degrees.
In more conventional random graph models, such as the celebrated model of Erdős
and Rényi, each pair is connected with a probability p. If p is above the critical
value of 1

n in an n-node graph, then the vast majority of nodes will form a single
large connected component. Moreover, the probability of having k links will be
Poisson distributed with mean pn. The tail of the distribution decays exponentially
with k and is not heavy.

The sequential nature of preferential attachment leads to positive feedback, and
allows nodes with a relatively large connectivity to continue to grow faster than
the others. This is what causes the distribution to become heavy-tailed.

2. Growth is needed because if edges are just added with no new nodes, eventually
all nodes will be highly connected and there will not be enough “small” nodes.
An example of this effect was shown in Figure 5.16, where an increasing number
of words selected from a finite vocabulary eventually cause a deviation from the
observed Zipf distribution.

Connection Box: Evolution, Linguistics, Economics, and Citations

The first to show that using a stochastic process to model the evolution of a population may
lead to a distribution with a power-law tail was Udny Yule [748]. Appropriately, this work
was done in the context of providing a mathematical model for the theory of evolution.
The motivation was to try and explain power-law tails in the distribution of the number of
species in different genera.
Yule’s work was later extended and updated by Simon [627]. Simon showed that essen-
tially the same model may be applied to diverse situations, including linguistics (explaining
the origin of Zipf’s law), geography (the distribution of city sizes), and economics (harking
back to Pareto’s work on the distribution of wealth).
In modern terminology, the basic model can be regarded as a balls and urns model. The
urns represent the members of the population, and the number of balls in an urn represent
a property of these members; for example, in Yule’s original work the urns were genera,
and the balls were species in each genus. The modification rule adds balls in the following
manner:

1. With probability α, create a new urn and place the new ball in it. In the evolutionary
context, this represents a speciation where the change from the original species is so
great that the new one is considered a new genus altogether. α is typically a very
small constant, close to zero.
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2. Alternatively, add a ball to an existing urn. The urn to which the ball is added is
selected at random, with probability proportional to the number of balls already in it
(exactly as in Equation (5.8)). In the evolutionary context this represents mutations
leading to the creation of a new species. Assuming that the new species originated
from some existing species, it is natural to assign it to a genus according to the
number of species already in that genus.

Applying this rule repeatedly for a long time leads to a heavy-tailed distribution of balls
in urns. The intuition is simple. Assuming we start with a single urn, it will accumulate
around 1

α balls before another urn is created. Even after a competing urn exists, the number
of balls in the first urn will continue to grow at a higher pace, because it already has more
balls in it. This positive feedback effect means that the initial head start of early urns is
essentially impossible to make up, leading to a distribution where the first urns accrue very
many balls while late urns mostly remain with a single ball or very few balls.

The following table shows Simon’s mapping of this model to different contexts [627].
Note that in the latter two or three examples it makes sense to only consider elements
larger than a certain threshold. Doing so requires a variant of the model in which new urns
are populated with multiple balls, rather than only with one.

Context New urn New ball
evolution speciation leading to a new

genus
speciation leading to a new species within
the same genus, proportional to number
that already exist

linguistics emergence of a new word use of existing word, based on imitation of
or association to existing text

science appearance of a new author publication of another paper by an estab-
lished author

geography a small town grows enough
to become a city

population of city grows naturally and
by migration, in proportion to existing
population

economics another person passes the
threshold of minimum in-
come for consideration

investment leads to generating new wealth
in proportion to existing wealth

Related models have also been studied by others [621, 273, 207], and the issue of word
frequencies has been the focus of a fierce debate between Simon and Mandelbrot [464,
628].

Other applications of preferential attachment have since been proposed in additional fields.
One example is the study of citations to scientific literature by Price [554]. The premise
there is that papers that already have multiple citations have higher visibility, and therefore
garner additional citations at a higher rate (and in fact, this can occur simply as a result
of citations being copied without the paper actually being read [625]). Obviously this is
essentially the same idea as the preferential attachment of web pages noted earlier.

End Box

A different approach suggests that the ubiquity of power-law tails is a result of ob-
serving a growing number of individual processes that each grow exponentially [562,
207]. Consider such a process X(t) = eµt. If we observe it at a certain instant in time
T , we will sample the valueXT = eµT . Now assume that there are many such processes
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in parallel, and that each is observed at a random time since its start. A process that is
observed a long time after it started thus represents an old process that has been going
on for a long time, whereas one that is observed soon after it started is a newly begun
process.

Assume the observations are done randomly, with a constant rate; in other words,
the sample point can occur at any instance with equal probability. It is therefore similar
to a Poisson arrival. The time T until the sample is therefore exponentially distributed,
say with parameter ν. We can now calculate the distribution of XT :

Pr(XT < x) = Pr(eµT < x)

= Pr(T < lnx
µ )

= 1− e−ν ln x
µ

= 1− x−ν/µ

which is a Pareto distribution with parameter a = ν/µ. The same result holds also if the
sampled process is not deterministic, but grows exponentially in expectation [562]. This
model has the advantage of producing a heavy-tailed distribution in the transient state,
as opposed to previous models that only produce such distributions asymptotically.

In short, different models can lead to the same end result, provided they combine
growth and increasing rates.

Multiplicative Processes

Another type of generative model is the multiplicative process. Such a model for file
sizes was proposed by Downey [188]. It starts with a single file of size s0. It then adds
new files by selecting an existing file of size s and a factor f from a given distribution,
and adding a new file with size f · s. This process is based on the intuition that new files
are typically created in one of three ways:

• By being copied from another file (the special case where f = 1).

• By some process of translation (e.g., when a program is compiled into an exe-
cutable).

• By editing an existing file.

Assume now that this process is applied repeatedly many times. The resulting distribu-
tion of file sizes is lognormal with a strong mode at the original file size, representing
copying and small changes. To see this, consider the following. In step iwe pick a file of
size si and a factor fi, to generate a new file of size snewi = fi · si. But si was generated
in the same way in some previous step, so actually snewi is the product of many factors:

snewi = s0 ·
∏

fj

Taking the log gives log snewi = log s0+
∑

log fj . Assuming that the fj are independent
and log fj has finite variance implies that log snewi will have a normal distribution (due
to the central limit theorem). Hence snewi will have a lognormal distribution.
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A multiplicative process such as this one can be visualized as a tree: each file is
a node, connected to the root by the path of intermediate files that participated in its
creation. The branches of the tree are labeled by the factors f , with the size of each file
given by the product of the factors along the branch from the root of the tree. Such a
view highlights a potential problem with the model: if one of the factors f near the root
happens to come from the tail of the distribution, this will have a strong effect on an
entire branch of the tree, leading to a more dispersive distribution of sizes. A possible
solution is to use a forest instead of a tree, that is, allow multiple initial files [498].

Model Selection and Sensitivity to Details

Although the previously discussed generative models may be used to justify one distri-
bution or another, this does not necessarily mean the choice of distribution is clear-cut.

One problem is that there are cases where different models may be claimed to apply
to the same situation. For example, when studying the distribution of city sizes, Gabaix
suggested a model leading to a heavy-tailed distribution [273], whereas Eeckhout pro-
posed a model leading to a lognormal distribution [196]. In the context of modeling the
world wide web, Barabási and Albert proposed the preferential attachment model in-
cluding system growth [49], whereas Huberman and Adamic proposed a multiplicative
model with different growth rates and system growth [353]. Interestingly these different
models lead to the same outcome — a heavy-tailed distribution.

Another problem is that all the models are fragile in the sense that minor changes
lead to different behavior. For example, Perline has shown that monkey typing where
letters have equal probabilities leads to Zipfian word frequencies (that is, a Pareto dis-
tribution), but with unequal letter probabilities the resulting distribution is lognormal
[544]. Likewise, the straightforward multiplicative model leads to a lognormal distribu-
tion, but it can be turned into a Pareto distribution using any of the following modifica-
tions [497, 295]:

• Allow the size of the system to grow with time, so that new items are introduced
continuously. This supply of small items offsets the older ones that continue to
grow and produce the tail [352].

• Use different growth rates (i.e., different distributions of multiplicative factors) for
different elements. Those that grow faster will then create the heavy tail.

• Introduce a normalization step in which after multiplication, the product may be
adjusted by comparing with the average of all current values [462].

• Enforce a lower limit, in effect allowing items to grow but not to shrink [462, 497].
This enhances the probability of strong relative growth enough to create a heavy
tail.

Thus the heavy-tail and lognormal models are actually closely related. Similar models
can also lead to a Weibull distribution [270, 423].

Moreover, the differences between the models may be small in practical situations.
Only when very many samples are observed do we see enough data from the tail to
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observe the difference between the distributions. In some cases this small difference is
good: if a moderate number of samples suffices for our needs, then it does not matter
what is the “true” model. But in other cases, notably when using mathematical analysis,
the inability to select a model may be very problematic.

To read more: There are many papers on generative models that do or do not lead to power-
law tails. A good survey with many references is given by Mitzenmacher [497]; another is by
Newman [514]. Preferential attachment is analyzed in detail in [50, 78, 148, 513].
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6
Correlations in Workloads

Modeling the distribution of each workload attribute in isolation is not enough. An
important issue that has to be considered is possible correlations between different at-
tributes, as well as between different samples from the same distribution.

Correlations are important because they can have a dramatic impact on system be-
havior. Consider the scheduling of parallel jobs on a massively parallel machine as an
example. Such scheduling is akin to 2D bin packing: each job is represented by a rect-
angle in processors×time space, and these rectangles have to be packed as tightly as
possible. Assuming that when each job is submitted we know how many processors it
needs, but do not know for how long it will run, it is natural to do the packing according
to size. Specifically, packing the bigger jobs first may be expected to lead to better per-
formance [144]. But what if there is a correlation between size and running time? If this
is an inverse correlation, we find a win-win situation: the larger jobs are also shorter, so
packing them first is statistically similar to using SJF (shortest job first), which is known
to lead to the minimal average runtime [419]. But if size and runtime are correlated, and
large jobs run longer, scheduling them first may cause significant delays for subsequent
smaller jobs, leading to dismal average performance results [450].

6.1 Types of Correlation

When we say that workload attributes are correlated, we mean that they exhibit similar
behavior. For example, if parallel jobs with more than the average number of processes
also run for longer than the average runtime, we say that size and runtime are correlated.
In probability theory such relationships are represented by the notion of dependence:
random variable X is said to be dependent on random variable Y if knowing Y tells us
something about the value of X . When X and Y are strongly correlated, we can use Y
to actually predict the value of X . If the correlation is weaker, knowing Y at least gives
us information about the distribution of X . For example, both small and large jobs have
similarly wide distributions of runtimes, but for small jobs the distribution is slightly
skewed toward lower runtimes.
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In the context of computer system workloads, we can identify three main types of
correlations that are worthy of study:

1. When successive instances of a workload attribute are correlated with each other,
rather than being independently drawn from the same distribution. As successive
instances are considered, this is called short-range dependence.

A well-known example is locality of reference. Consider the sequence of ad-
dresses in memory that are accessed by a computer program. We can collect all
these addresses, create a histogram showing how many times each address is ac-
cessed, and use this as a model. But it is well known that computer programs do
not access their memory in a random manner. Rather, each access tends to be near
a previous access. This phenomenon of locality lies at the base of using memory
hierarchies, in which a small fast memory can serve as a proxy for a much larger
(but slower) memory space.

The two classic forms of locality, spatial locality and temporal locality, are dis-
cussed in Section 6.2. This discussion is then generalized in Section 6.3, which
presents locality of sampling.

2. When cross-correlation exists among distinct workload attributes. For each work-
load item, if we know the value of one of its attributes, we already know something
about its other attributes as well.

This is the closest to the conventional notion of correlation. We saw an example
earlier. parallel jobs have two main attributes: size (number of processors) and
duration (runtime). These attributes may be correlated with each other, meaning
that large jobs, those that use more processors, also run longer. They may also be
inversely correlated, meaning that the larger jobs actually run for less time. It is
important to model such correlations because they may have a significant impact
on performance evaluation results.

Such cross-correlation among attributes and its modeling are discussed in Section
6.4. A special case, in which there exists a correlation with time, is discussed in
Section 6.5.

3. Long-range dependence leading to the phenomenon of self-similarity. Related to
the burstiness of workloads, it essentially states that bursts of activity occur at
many different scales.

Self-similarity was identified as a major element in modeling network traffic in
the early 1990s. It was shown that the commonly used Poisson models of network
traffic did not capture the burstiness observed in real data. The most important
consequence is that when many traffic flows pass through the same link bursts of
activity do not average out, as opposed to the predictions made based on Poisson
models. This has important implications regarding the sizes of buffers that are
needed and the probability of not being able to provide the required service.

Self-similarity is a large subject in itself, largely separate from the other types of
correlation discussed here. We therefore defer its treatment to Chapter 7.

Version 1.0.4, typeset on June 10, 2023



6.2. SPATIAL AND TEMPORAL LOCALITY 229

6.2 Spatial and Temporal Locality

Locality is a special case of correlation of a variable with itself over short to medium
ranges. It consists of sampling a local part of a distribution, rather than the entire distri-
bution, a concept that is elaborated on in the next section.

Locality is an ubiquitous phenomenon [173]. Examples from computer workloads
include the following:

• References to memory addresses by computer programs [95, 140, 306, 476], the
first type of locality identified, remain the best-known example. Improving local-
ity has also become one of the goals of algorithmic design, in the interest of better
using the memory hierarchy [424, 28, 335]. When considered at the granularity of
pages, locality lies at the basis of the working set model and of paging algorithms
[171, 174, 172].

• References to files on a file server display locality, in the form of reusing files.

• References to blocks in a single file also display locality, although other regular
patterns (e.g. sequential traversal) are also common.

• Accesses to the records of a database display locality, as do accesses to a key-value
store, which may be regarded as a simple case of a database [42].

• Communications in parallel computers have locality, which can be exploited when
mapping tasks to processors [77, 609, 472].

• Usage of addresses on a LAN or the Internet displays locality: if a message (or
packet) was sent to destination X , additional messages to this destination may be
expected [369, 366]. The same applies for sources.

• The same also applies at higher levels, e.g., retrieval of documents from servers of
the world wide web [23, 381, 267].

• Finally, another type of locality altogether is value locality. It turns out that func-
tions are often called repeatedly with the same parameter [139], and that as few as
10 distinct values occupy more than half of all memory locations [759].

The reason for this prevalence of forms of locality may be related to human work habits.
For example, locality of reference has been linked to the “divide and conquer” approach
of writing software, and, in particular, to the use of subroutines [173]. Many other types
of locality may be linked to the fact that human users of computer systems focus on one
thing at a time.

6.2.1 Definitions

The principle of locality was defined by Denning as having three features [174]:

1. There is a nonuniform distribution of references to memory pages.

2. The frequency with which a page is referenced changes slowly.
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3. The correlation between the immediate past and immediate future is high, and
tapers off as the distance increases.

But this is not a precise and measurable definition.
Locality necessarily deals with multiple samples, or instances, of the same entity.

Examples include a sequence of references to memory (as was the case in Denning’s
work), a sequence of accesses to files, or a sequence of requests from a web server. We
focus on the memory reference example for the sake of concreteness. In this case, the
possible values come out of an ordered set: the set of possible memory addresses. Each
memory reference is a sample from this set. As references happen one after the other,
the entire sequence can be represented by a sequence of random variables Xi, where i
is the number in the sequence and Xi is the address referenced at step i. We call such a
sequence a reference stream. We are interested in the relationship between Xi and Xj

for js that are “close to i”.

Practice Box: Compressing Traces

The way to study reference streams is by tracing all the addresses accessed by a running
computer program. The problem with doing this is that the amount of data may be huge, as
billions of addresses may be accessed each second. It is therefore necessary to compress
the traces, both to save storage space and not to overwhelm the bandwidth of storage
devices.

In principle, any lossless compression algorithm can be used. But the best compression
is achieved by specialized algorithms that exploit the special properties of address traces.
One such algorithm is Stream-Based Compression (SBC) [488]. This algorithm has dis-
tinct, special treatments for instructions and data. Instructions are encoded by creating a
table of basic instruction streams, which are sequentially executed instructions between
branch points (a similar idea is used for instruction caching in trace caches). The full
instruction stream can then be encoded by listing the indices of the basic streams that are
traversed. Data streams are encoded as the interleaving of multiple access vectors that have
a constant stride. Encoding the start address, stride, and number of occurrences, rather than
listing every individual address, may save considerable space.

End Box

Temporal Locality

One possible relationship in a reference stream is equality: we may find that Xj = Xi.
This means that the same address is referenced again after d steps, where d = j − i.
This is called temporal locality. Temporal locality is extremely important in computer
systems and forms the basis for all caching schemes. If temporal locality exists, we can
cache a requested item (e.g., the contents of a memory cell) and will thus have it at hand
when it is requested again.

Spatial Locality

Another possible relationship is nearness. If the distance s = |Xj−Xi| is small, it means
that soon after referencingXi we find a reference to the nearby addressXj . This is called
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spatial locality. It is important because it allows for prefetching. For example, upon a
request for Xi we may retrieve a whole set of nearby values, under the assumption that
there is a high probability that they will be requested too. This is why cache memories
store cache lines with several memory values, rather than a single memory value.

A special case occurs when the items in question come from an unordered set. For
example, there may be no natural order on the pages served by a web server. In this case
there is no natural definition for spatial locality. However, it is possible to identify sets
of pages that tend to be requested together, and define such groups as localities.

A variant of spatial locality is spatial regularity. This means that successive refer-
ences can be predicted because they obey a certain pattern, even though they are not
close to each other [499]. The most common example is strided access. Consider a ma-
trix that is stored in row-major format, but accessed by column. Successive elements in a
column are separated by an entire row, so they may be quite distant from each other. But
the access pattern is clearly deterministic, so this pattern can be detected and exploited
by sophisticated memory systems.

Popularity

An issue that is closely related to temporal locality is popularity [381]. In most cases,
not all items are equally popular. Some are used much more than others. For example,
consider the following reference stream:

A B C D A C D B D A C B D C A B C D B A D C A B

Each of the four items — A, B, C, and D — is referenced six times, in random order.
There is no appreciable locality. However, if the reference stream is reordered thus,

A A A A A A B B B B B B C C C C C C D D D D D D

significant temporal locality is immediately seen. But now consider a different stream,
derived from the first one by identifying C and D with A:

A B A A A A A B A A A B A A A B A A B A A A A B

In this case references to A exhibit a strong temporal locality, but this is due to the fact
that A is much more popular than B and appears three times more often. This pattern is
in fact a common occurrence. Popularity distributions are typically highly skewed, and
this accounts for a large part (but not all) of the temporal locality. The additional locality
is caused by correlations among nearby references, as in the second reference stream
above.

6.2.2 Statistical Measures of Locality

Locality can be visualized as a 2D probability surface p(s, d), showing the probability
that the first time an address s bytes away will be referenced will be in exactly d cycles
[306]. Such plots create various patterns: for example, sequential access to a range of
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memory locations creates a diagonal ridge of high probabilities. However, it does not
attach a numerical value that represents the degree of locality.

To obtain a numerical measurement that represents the degree of locality, we need
to analyze the reference stream. The character of the analysis depends on exactly what
it is we wish to measure.

Measuring Temporal Locality

The simplest measure of temporal locality looks at the reference stream through a pin-
hole. The idea is that if we have m possible locations, the probability of seeing any
given location (assuming uniformity) is 1

m . The probability of seeing two consecutive
references to a given location is then (assuming independence) 1

m2 . But this can happen
for any of the m locations, so the probability of seeing two consecutive references to
some location is 1

m . This probability is easy to measure: just scan the stream of refer-
ences, and count how many times two consecutive references are the same. If this is
significantly more than 1

m , the stream displays strong local correlation (i.e., locality of
reference) [369].

A possible drawback of this process is that m can be very big, but most of these
locations are seldom referenced. Therefore the test threshold of 1

m will be artificially
low. This drawback can be countered by only considering the subset of locations that
are the most popular, and thereby account for a large fraction of the total references.

Measuring Spatial Locality

The simplest way to demonstrate spatial locality is by counting unique substrings of the
reference stream. The reference stream can be regarded as a very long string, over a very
large alphabet: all the items that may be referenced (e.g. all the memory addresses).
Denote the number of unique items by m. There are then m2 possible combinations
of two consecutive items, m3 possible combinations of three, and so on. But if spatial
locality is present, some combinations may appear quite often, whereas others do not.
Counting the number of unique substrings of each length thereby provides an indication
of spatial locality, especially when compared with the same count for a scrambled refer-
ence stream in which the same references are ordered randomly [23]. Significantly, this
technique also works for items that do not have any natural ordering, such as web pages.

The problem with this approach is that it may be sensitive to the length of the trace
— as more and more references are observed, there is a bigger chance of seeing even
rare combinations. It is therefore desirable to limit the observations to a certain time
window.

Practice Box: Scrambling Data

A simple in-place algorithm to scramble data is as follows. Assume we initially have a
sequence of n items.

1. Loop on the items starting from the last one. Denote the index of the current item by
i.
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2. Select an index j in the range 1 to i uniformly and randomly.
3. Exchange the ith item with the jth item. In effect, this selects the jth item to be

the ith item in the scrambled sequence (but note that the current jth item may have
arrived at this location in some previous step).

4. Proceed to the next iteration of the loop in Step 1.

End Box

6.2.3 The Stack Distance and Temporal Locality

The most common way to quantify locality is not by statistical measures, but by its effect.
We do so by means of a simulation. Given a sequence of requests, we run it through a
simple simulation that is sensitive to locality, such as a simulation of caching. The
simulation result then provides a metric for the degree of locality found in the sequence.
To verify that the result is indeed due to locality, it is often compared to a result based on
a scrambled version of the same sequence. In the scrambled sequence the requests are
permuted, thus destroying any locality but preserving all the other attributes.

The most popular way to quantify temporal locality is by using a simulation of an
LRU (least recently used) stack [475, 649, 648, 38, 271, 23]. The stack is maintained
using a move-to-front discipline [66]: each item that is referenced is moved to the top of
the stack, and its previous location (called its stack distance or reuse distance) is noted.
If temporal locality exists, items will often be found near the top of the stack, and the
average stack distance will be small. If there is no temporal locality, the average stack
distance will be half the size of the stack, that is, linear in the size of the address space.

More precisely, the procedure is as follows:

1. Initially the stack is empty.

2. Loop on the reference stream. For each one,

(a) If the referenced item is not in the stack, because this is the first time it is
seen, place it on the top of the stack and proceed to the next reference.

(b) If it has already been seen, find it in the stack and note its stack distance (i.e.,
how far it is from the top).

(c) Move the item to the top of the stack.

3. The distribution of stack distances observed characterizes the degree of temporal
locality.

To read more: The most time-intensive step in this procedure is finding each reference in the
stack. The simplest approach is to perform a linear search. More efficient tree-based structures
reduce the complexity from O(nm) to O(n logm) [667, 22], where n is the length of the refer-
ence stream and m is the number of different addresses (note, however, that due to locality the
cost of the simple algorithm is typically significantly lower than nm). Ding and Zhong give an
approximate algorithm that reduces the time to O(n log logm) and the space to O(logm) [182].

Note that the distribution of stack distances immediately tells us how well an LRU
cache will perform on this reference stream. By definition, an LRU cache of size s holds
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Figure 6.1: Example of the stack distance distribution from a stream of requests to an
HTTP server. The bottom plots present the same data in log-log axes.

the s least recently referenced items. Thus references with a stack distance of up to s
will be found in the cache, and those with a larger stack distance will cause a cache
miss (to correctly count misses, insertions of new items at the top of the stack in step 2a
should be counted as if they were found at distance∞). Remarkably, a single simulation
run generating the distribution of stack distances provides all the data needed to find the
miss rate for any cache size s [475].

An example is shown in Figure 6.1, which displays the distribution of stack distances
calculated for the SDSC HTTP trace available from the Internet Traffic Archive. This
trace contained 25,430 successful requests to 1680 unique files, which were logged on
22 August 1995.

The figure shows a strong concentration at low values, indicating that small stack
distances are much more common than large ones (top-left plot). However, the same
qualitative effect remains if we scramble the reference stream, and calculate the stack
distances for the same requests when they come in a random order (top-right plot) [381].
This is because of the highly skewed nature of the request stream. Some files are much
more popular than others and have very many requests, so the previous request is never
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Figure 6.2: Difference between the distributions of stack distances and their statistics,
for the original and scrambled logs.

far away. The effect of correlation between nearby references is actually the difference
between the two plots.

To better see the difference, we plot the survival functions of the stack distances on
a logarithmic scale (Figure 6.2). This shows that the main difference occurs for stack
distances in the range from 50 to 1000. For example, the 90th percentile (0.1 probabil-
ity of survival) of the original stack distance distribution is 453, and in the scrambled
distribution it is 530. This means that in the original distribution the low values account
for more of the total weight. This can also be seen by calculating the median and av-
erage stack distance. Interestingly, the tails of the original and scrambled distributions
are essentially identical. This reflects those documents that are accessed very rarely in a
random manner.

A possible way to eliminate the strong effect of popularity on the distribution of
stack distances is to focus only on documents that are requested the same number of
times [381]. However, this only utilizes a small fraction of the available data. It also
raises the question of which part to focus on.

An additional set of examples is given in Figure 6.3, which shows the stack distance
histograms from several SPEC 2000 benchmarks. The data comes from monitoring
the execution of the benchmarks on Pentium III systems, and was available from the
Brigham Young University Trace Distribution Center. Note that these graphs show the
histogram on log-log axes, as in the bottom plots in Figure 6.1. They show that the
distributions may have various shapes, and some may have a heavy tail. They may
also have relatively sharp peaks like those in perl makerand. Such peaks may indicate
repeated access to sets of addresses in the same sequence.

An alternative to the distribution of stack distances is the distribution of inter-reference
distances [22]. In other words, count how many other references occurred between two
consecutive references to the item in question, rather than only counting unique refer-
ences. This number is easier to calculate, and has the advantage that the results for each
item are independent of how we deal with other items [267]. For example, considering
these two reference streams again:
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Figure 6.3: Examples of stack distance distributions from SPEC 2000 benchmarks, using
4 KB pages.

A B C D A C D B D A C B D C A B C D B A D C A B

and

A B A A A A A B A A A B A A A B A A B A A A A B

Note that B appears exactly at the same places in both of them. Therefore the inter-
reference distances for B would be the same. However, the stack distances for B would
be different in the two cases.

6.2.4 Working Sets and Spatial Locality

Spatial locality is measured by the size of the working set [471]. Intuitively, this counts
how many different addresses are being referenced in the current phase of the computa-
tion.

The definition of a working set has two parameters: the time t and the time window
τ , both of which are typically measured in machine cycles rather than in seconds. The
working set W (t, τ) is then defined to be the set of addresses accessed in the interval
(t − τ, t) [171]. Note the use of the notion of sets: if an address is accessed many
times, it only appears once in the working set, and there is no requirement of order of
the addresses. Given this definition, the size of the working set is a measure of locality:
the smaller the working set (for a given time window), the stronger the locality.
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Figure 6.4: Examples of memory accesses and working set sizes, from SPEC 2000
benchmarks.

A couple of examples are shown in Figure 6.4. The data is again from the Brigham-
Young repository of address traces of SPEC 2000 benchmarks. The top panels show
access maps, in which each small square corresponds to 1 MB of address space in the
vertical dimension, and 100,000 references in the horizontal dimension. In the bottom,
the working set size is approximated by the number of unique 4 KB pages accessed
within this window of 100,000 references.

Note that the definition of a working set includes all the addresses (or pages) ac-
cessed within a given window of time. But as we noted, some of these addresses are
much more popular than others. It has therefore been suggested that one should focus
on the “core” working set, defined to be those pages that are accessed repeatedly a large
number of times. The size of this select group is, of course, smaller, and may be claimed
to better reflect the locality of the reference stream [448, 216, 218].

A more elaborate approach is to simulate how a cache would handle the reference
stream, and to count the cache misses. Simulating a cache that only caches single items
can only capture temporal locality, and provides the base case. Simulating a cache with
a cache line of several items captures spatial locality as well, and the reduced miss-rate
can be used to quantify it. However, this has the disadvantage of depending on the
parameters of the cache being simulated. Also, it can only be applied for ordered items,
in which the neighborhood of each item is well defined.
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6.2.5 Measuring Skewed Distributions and Popularity

As noted earlier, a large part of locality is often just the result of a skewed popularity
distribution. It is therefore of interest to quantify how skewed is the popularity distribu-
tion.

The traditional metric for skewed popularity is the information-theoretic entropy.
Assume a set A of m items (memory addresses or whatever), identified by an index i.
Given a stream S of references to these items, we can find the fraction pi of references
to each item i. The empirical entropy of S is then defined to be

H(S) = −
m∑
i=1

pi log pi (6.1)

(note that pi < 1, so log pi < 0, and the minus sign makes the entropy positive). The
entropy is 0 when all the references are to only one of the items (i.e., the distribution
is completely skewed). It is logm when the references are distributed uniformly (i.e.,
when pi = 1

m ). This has led to the suggestion of using the normalized entropy, defined
to be the entropy divided by logm, making its value independent of the size of the set
[266].

Measuring the normalized entropy of network addresses on the world wide web leads
to a clear distinction between different types of nodes [266]. Clients have a relatively low
entropy (around 0.65), indicating a rather skewed distribution: many requests are being
sent to the same address in sequence. Proxies, in contrast, have a high entropy (in the
range 0.8 to 0.9), indicating a much more uniform distribution. This is due to filtering
out repeated requests, and to merging many different request streams. The entropy is
reduced again (to around 0.75) the closer we get to the specific servers being accessed.

Another possible measure of skewed popularity is the Zipf exponent. Recall that, in
the generalized Zipf distribution, when numbering the items according to their popular-
ity, we have pi ∝ 1

iθ
(Equation (3.40)). If the distribution is uniform rather than being

skewed, θ = 0. Conversely, the larger θ, the more skewed the distribution.

Considering the fact that the Zipf distribution is a special case of a heavy-tailed
distribution, another option is to apply the metrics for describing mass-count disparity
defined in Section 5.2.2. An example of doing so is shown in Figure 6.5. The joint
ratio is found to be 17/83, meaning that 17% of the addresses account for 83% of the
references, and vice versa. The less referenced 50% of the addresses account for only
4.2% of the references, whereas a full 50% of the references go to only 1.4% of the
addresses. For comparison, the figure also shows the mass and count distributions that
would be obtained if the same number of references were distributed uniformly among
the same number of addresses. These are essentially identical normal distributions cen-
tered around the average number of references per item, which happens to be 15.1.
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Figure 6.5: Example of applying metrics for mass-count disparity to popularity data.

6.2.6 Modeling Locality

Although the use of specialized metrics allows us to assess the degree of locality in a
stream of references, this is not enough. In a model we want to be able to generate a
stream of references that exhibits locality.

Independent Reference Model

The simplest way to generate a stream of references is to define a distribution that spec-
ifies the probability of referencing each address. Sampling from this distribution gen-
erates the desired stream. Note that the samples are done independently, meaning that
one sample does not affect another. This is then called the independent reference model
(IRM).

If the distribution is uniform, the generated reference stream will, of course, not
display any locality. But as we noted earlier, distributions of popularity are generally
highly skewed, and, in particular, follow a Zipf distribution [95, 57, 85]. When some
addresses are much more popular than others, they will be selected much more often,
leading to significant locality.

An example of the reference stream produced by such a model when using a Zipf
distribution for address popularity is shown in Figure 6.6. Obviously most references
are to the highly popular addresses, here drawn at the middle of the range. The degree of
concentration actually depends on the exponent θ (see page 132). If we use a Zipf-like
distribution with a lower exponent, for example θ = 0.5, the references are spread out
more evenly; the extreme case in which θ = 0 is the uniform distribution.

In addition to the Zipf-like model of popularity, some other simple models are some-
times used too, especially in the context of networking. One such model is a combination
of uniform traffic and hotspots. This means that most of the traffic is spread uniformly
across all destinations, but a certain fraction is directed at one specific destination (or a
small set of destinations) [547, 433, 17, 163, 546, 133]. A generalization of this model
is based on mass-count disparity: for example, 80% of the traffic can be directed at 20%
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Figure 6.6: Examples of an address trace generated by the independent reference model,
for a Zipf distribution of address popularity. The most popular addresses are drawn in
the middle for better visibility.

of the destinations, while the other 20% of the traffic is distributed across the remaining
80% of the destinations [133]. Or, 90% of the I/O operations can refer to 10% of the
files, while the remaining 10% of operations are spread across the remaining 90% of the
files [578].

Performance evaluation studies reveal, however, that real reference streams often
have more locality than that generated by the skewed popularity alone [23, 381]. This
model is therefore not recommended in general.

LRU Stack Model

Simulating an LRU stack is not only useful for quantifying locality, as described in
section 6.2.3. It can also be used as a generative model to create a reference stream with
locality.

The basic idea is that a list of references and a list of stack distances are actually
equivalent. We already saw one direction: given a reference stream, you can simulate an
LRU stack and generate a list of stack distances. But it also works in the other direction:
given a list of stack distances, we can generate the corresponding reference stream. This
is done as follows.

1. Initially the stack contains all the addresses.

2. Loop on the stack distance list. For each one,

(a) Find the address that appears at this distance into the stack, and use it as the
next address to be referenced.

(b) Move this address to the top of the stack.

To turn this process into a model, we just need to decide on which distribution of
stack distances to use. We then select stack distances from this distribution, and use
them to generate a reference stream. In order to have significant locality, small stack
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Figure 6.7: Example of an address trace generated by the simple LRU stack model for
a Pareto distribution of stack distances. The stack is initialized with addresses from the
middle of the range at the top for better visibility.

distances need to be much more common than big ones. Spirn suggests using a Pareto
distribution with parameter a = 2 as an approximation [648].

Examples of reference streams generated by this model, for Pareto distributions with
different values of the parameter a, are shown in Figure 6.7. When a is relatively low,
the distribution of stack distances has a heavy tail. Therefore “deep” addresses have a
non-negligible probability of being selected and moved up to the top of the stack. As
a result there is relatively little locality. When a is large (e.g. a = 2), the tail is much
lighter. In this case there is a much smaller probability of selecting an address from deep
down in the stack, and the locality is largely retained at the addresses that were initially
near the top. Use of this model comes with a problem of coverage: most of the address
range is never visited. But coverage actually depends on the length of the reference
stream: with a long enough stream, we will eventually visit more addresses and create a
stronger mixing, losing the focus on the addresses that were initially on top.

Observing Figure 6.7, and especially the top plots where a = 1.25 or a = 1.5, might
lead one to believe that such a reference stream displays a rapid mixing of addresses and
a loss of locality. It is important to understand that this is in fact not the case. What
we are observing is a continuous and gradual shift of locality, where occasionally a new
address is added and others are pushed one step further out. The reason that we do not

Version 1.0.4, typeset on June 10, 2023



242 CHAPTER 6. CORRELATIONS IN WORKLOADS

see locality at the right-hand edge of the plot, after 100,000 references, is not that it does
not exist, but that the addresses are not ordered in a manner that brings it out. If we were
to order the addresses differently, such that the addresses that happen to be near the top
at the end are grouped together, the plot would look as if locality was being generated
out of a random mixture.

The stack distance model has two main deficiencies. One, which it shares with the
IRM model, is the lack of structure in the reference stream. Real reference streams
contain structures such as the serial traversal of large data structures, which are not
generated by these random models. The other is that it leads to a sort of crawling phase
transition as described above. In real workloads, application phase transitions cause a
sharp shift in locality, in which many addresses become popular and many others become
unpopular at the same time. Still, the LRU stack model is better than the independent
reference model which has no shifts in locality at all.

Markov Reference Model

A more realistic model is obtained by considering localities explicitly, and modeling the
transitions from one locality to another. Thus as long as we are in the same phase, we
want successive references to be to nearby addresses. But once in a blue moon we want
to perform a transition to a different phase, with a different locality. This can be achieved
by a Markovian model.

Background Box: Markov Chains

Markov chains are used to model stochastic processes, i.e. processes where things change
dynamically with time.

At any moment, the process is in a certain state. The states are denoted by numbers: 1, 2, 3,
and so on (this implies the assumption that they are enumerable). Given that the process is
in state i, it has a certain probability pi,j to move to another state j. This can be represented
graphically, with states as circles and arrows denoting possible transitions. Equivalently, it
can be represented as a matrix of the pi,j values (called the transition matrix):
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The main characteristic of Markov processes is that these probabilities do not depend on
history. Whenever the process is, say, in state 4, it has a probability of 0.2 to move to state
3, and a probability of 0.8 to stay in state 4. It does not matter whether it arrived at state 4
from state 2, or from state 5, or whether it has been continuously in state 4 for the last 13
steps.

The formal way to express the fact that knowing the history is immaterial is by using
conditional probability. Saying that “there is a probability of 0.2 to move from state 4 to

Version 1.0.4, typeset on June 10, 2023



6.2. SPATIAL AND TEMPORAL LOCALITY 243

state 3” is the same as saying that “the probability of being in state 3 at the next step, given
that we are in state 4 now, is 0.2”. This is written as

Pr(st+1 = 3 | st = 4) = 0.2

where st denotes the state at step t. To indicate that the history does not matter, we say
that the probability given that we know the full history is the same as the probability given
that we know only the last step:

Pr(st+1 = x | st = xt, st−1 = xt−1, . . . , s0 = x0) = Pr(st+1 = x | st = xt)

This property is often interpreted as being “memoryless”. Note, however, that we may
actually know quite a bit about the process’s history (e.g., if we are in state 2 the previous
state must have been state 1). It is just that this knowledge is already encoded in the state,
so knowing it explicitly does not add any information.
One of the most interesting properties of Markov chains is that they have a limiting dis-
tribution. This means that if the process goes on and on and on for a very long time, the
probabilities of being in the different states will converge. Moreover, the limiting prob-
abilities, denoted πi, are stationary. This means that if we continue to apply transitions
the probabilities do not change. They can therefore be found by solving the following
equations:

∀i : πi =
n∑

j=1

πj pj,i

n∑
i=1

πi = 1

The first equation simply says that each step of the process maintains the same distribution,
and the second says that it is indeed a distribution.
In truth, not all Markov chains have this property. The requirement for having a limiting
distribution is that the Markov chain be ergodic. This means that there is a path from every
state to every other state, and that states are not periodic (i.e., it is not true that they can
only be visited on multiples of some number of steps).
The importance and consequences of ergodicity are subtle. Consider a given Markov chain,
defined by its transition matrix. When we talk of the “probability of being in state i” we
typically mean the average over many independent processes. This means that we may
perform a large number of repetitions of the process, using different random number seeds,
and then look at the probability of being in a certain state after, say, 100 steps. But if the
process is ergodic, we will get the same result if we only look at one process, and calculate
the probability of passing through state i as it evolves. Ergodicity means that averaging
across independent processes at the same time step is the same as averaging on time steps
within a single process.

To read more: Markov processes are covered in many probability texts. For example,
good introductions are provided by Ross [581] and Trivedi [691].

End Box

The idea is to use a Markov chain in which the states correspond to memory ad-
dresses. The evolution of the Markov process generates a stream of references to the
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corresponding addresses: being in state si generates a reference to address i. A tran-
sition from state si to state sj corresponds to a reference to address j that follows a
reference to address i. Having higher probabilities of moving to nearby states will lead
to a reference stream that exhibits locality.

In particular, the Markov reference model typically uses what is known as a “nearly
completely decomposable” transition matrix. This means that addresses are arranged in
blocks [152, 172]. The transition probabilities within a block are high, which represents
a phase of the computation in which we see repeated references to addresses in the
same locality. But there are also low probabilities of moving to other blocks. If such
a transition occurs, we become “trapped” in the new locality. Thus we will stop seeing
references to the previous locality, and instead we will see many references to the new
one. In this way Markovian models can capture different phases of computation, in
contrast to the independent reference model and LRU model.

It is also relatively easy to construct a Markov chain that directly models a given
address trace. Obviously, the states simply correspond to the addresses that appear in
the trace. The transition probabilities are computed by counting how many times each
address appears after each other address and normalizing. This will also lead naturally to
the observed popularity distribution. The drawback of this model is that the state space
is huge, because we need a state for each address. And the transition matrix is even
bigger. This may be alleviated by modeling accesses to pages, rather than to individual
addresses.

Although the Markov reference model is good at capturing the division of a pro-
gram’s execution into phases, it cannot model phases that have overlapping working
sets. Another deficiency of a simple Markov model is that it implies that runlengths of
the same item are geometrically distributed. Consider a state (representing an address)
s, which has a self-loop with probability ps. This means that the probability of seeing a
single visit to s between visits to other states is 1− ps. The probability of seeing exactly
two consecutive visits to s is (1 − ps)ps, three consecutive visits (1 − ps)p

2
s, and in

general i consecutive visits (1− ps)pi−1
s . Thus the probability of long runlengths drops

off exponentially.
There are two simple ways to get around this deficiency. One method to obtain an

arbitrary desired distribution instead of the exponential distribution is to use a hidden
Markov model (HMM) [557]. This severs the direct link between visits to a state and
references to the address represented by this state. Instead, a visit to a state generates a
sequence of references that come from the desired distribution. When this approach is
used, no self-loops are needed. The other method is to use a high-order Markov chain,
in which the next state depends on the last k states, rather than only on the last state.
For example, Phalke and Gopinath proposed a k-order Markov chain to model the inter-
reference gap distribution for a given memory address [548].

Fractal Model

An intriguing approach that combines both spatial and temporal aspects of locality, and
also characterizes it by a single number, is to measure the fractal dimension of the access
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pattern [712, 683]. This is based on the postulate that the memory reference pattern of
programs has a self-similar structure, i.e. often referenced addresses are grouped into
clusters, within which there are sub-clusters, etc. A more detailed treatment of self-
similarity will be presented in Chapter 7. For now, it is enough to know that it can be
characterized by a single number.

More precisely, the model is that a reference stream with locality may be viewed as
a fractal generated by a one-dimensional random walk. The “one dimensional” part is
easy — the memory addresses are ordered from 0 to some maximal possible address,
say m. A random walk is just what its name implies: start from some address r1, and
then move randomly to another, r2, and so on. Recording the addresses visited by the
random walk generates the desired reference stream: r1, r2, r3, . . ..

The crux of the model is how we choose the next address to visit. To get a self-similar
fractal, the jumps from one address to the next must be scale invariant. This is achieved
by using a (power-law) Pareto distribution [683, 684]. Thus most of the jumps will be
small, leading to nearby addresses. But occasionally we will get a big jump and move
to another part of the address space, and sometimes we will get really big jumps. How
often this happens depends on the parameter a of the Pareto distribution. In general, the
relevant range for a is 1 < a < 2. The closer a is to 1, the larger the jumps, and the
less locality we will see in the produced reference stream. The closer it is to 2, the more
infrequent the large jumps become, and we will get a reference stream with significant
locality. In effect, a is a parameter we can use to tune the desired degree of locality. An
example is given in Figure 6.8.

The procedure to create a reference stream is as follows. Start with some arbitrary
address, e.g. r0 = m/2. Given that you have ri, generate ri+1 as follows:

1. Create a Pareto random variable. As shown in Section 3.2.11, this is done by
following these two steps:

(a) Select a uniform random variate u from the range [0, 1). This is what random
number generators typically give.

(b) Calculate the jump: j = 1/ua. Successive js will then be Pareto distributed
with parameter a.

2. With probability 1
2 , make j negative (so that jumps go both ways).

3. Multiply j by the desired unit. For example, if you only want word addresses,
multiply by 4 (alternatively, it is possible to divide m by 4 and consider the whole
range as composed of word addresses).

4. Calculate the next address: ri+1 = ri + j.

5. Ensure that it is in the range [0,m] by taking the modulo of m+ 1.

Repeat this to generate as many references as desired.
As seen in Figure 6.8, the problem with this model is again one of coverage. When

a is close to 2, the references display a high degree of locality. As a result they tend not
to spread out across the address space. With the random number generator seed used
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Figure 6.8: Examples of address traces generated by the fractal model, for different
values of the parameter a. The range of addresses is M = 10, 000, and the unit is 2.
Different random number generator seeds would produce different reference streams.

in the example, this caused the range from 0 to about 3000 not to be visited even once
in the first 100,000 references. When using the model, one should consider whether it
is important to ensure that the different versions with the different degrees of locality
indeed cover the same range. If it is important, rather long reference streams may be
required.

The major deficiency of the fractal model is that it may violate the desired popularity
distribution. In fact, on a very long run, the observed distribution of the number of times
that different addresses have been referenced will tend to become uniform. Nevertheless,
the model is able to predict the dependence of cache misses on the cache configuration
under various circumstances [684, 631].

6.2.7 System Effects on Locality

It is important to realize that patterns of locality are not necessarily an intrinsic property
of various workloads. Rather, they may be affected by the system. Care must therefore
be taken to model the locality correctly at the source, and not to assume that the same
levels of locality apply elsewhere.

A case in point is the difference in locality observed by client and server caches in
a distributed file system [271]. The locality that is present in the original client request
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streams allows for efficient LRU caching at the client caches. But the request streams
from the clients to the server have much less locality, because many of the repetitions
have been filtered out by the client caches. Moreover, the merging of multiple client
streams that converge on the server destroys what little locality existed in each one of
them. As a result LRU is not suitable for the server cache. LFU (least frequently used),
which essentially caches more popular items, is better, because popularity survives better
than locality. Similar effects occur in the world wide web, where the patterns in which
caches are connected to each other are more complicated [572, 267, 266].

6.3 Locality of Sampling

Locality of sampling is a generalization of both temporal and spatial locality [234, 239].
It refers to the fact that workloads often display an internal structure: successive samples
are not independent of each other, but rather tend to be similar to each other. This applies
to all workload attributes, and not only to those that denote location, such as memory
addresses.

This section demonstrates this effect and shows how to quantify and model it.

6.3.1 Examples and Visualization

Perhaps the simplest way to visualize locality of sampling is by plotting the sequence
of values in question. For example, Figure 6.9 shows the sizes of files requested from
two web servers, in the order that they were served. Due to the skewed distribution
and the high variability a logarithmic scale is used, and the values are shown relative to
the median: higher values are shown as upward pulses, and lower values as downward
pulses. Thus sequences of requests for similarly sized files lead to wider blocks that
are either above or below the median line. Such blocks are especially prevalent in the
bottom log, from the University of Saskatchewan.

But a better approach is to actually plot the distribution as it is observed within
limited time slices [190]. This is shown in Figure 6.10. The data is the distributions
of job sizes on the LANL CM-5 in successive weeks. This machine used only 5 sizes,
which were powers of two between 32 and 512 processors. Obviously the distribution of
submitted jobs changes considerably from week to week, so they cannot all be similar to
“the distribution of job sizes” — despite the fact that each week is represented by many
hundreds of samples.

Looking at the distributions can be generalized by using scatterplots in which the
X axis is time, and the Y axis is a workload attribute. Such a plot shows how the
distribution of values of this attribute changes with time: a vertical slice of the plot
shows the distribution at the time (position along the X axis) of this slice. This allows
more data to be observed at once.

An example of such scatterplots is given in Figure 6.11, which shows the distribu-
tions of job runtimes and sizes on two parallel supercomputers, and how they change
over a period of up to two years. Significantly, these plots use cleaned versions of the
logs (without flurries). The concentrated blobs appearing in various locations testify that
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Figure 6.9: The sequence of requested file sizes from two web servers. In both, requests
for similarly sized files seem to be clustered together, but the effect is stronger in the
bottom plot.

a certain runtime or size value was very popular at that specific time. Horizontal streaks
indicate that a value was popular throughout the duration of the observation; this is es-
pecially common for powers of two in the size distribution. However, enlarged blobs
appear at certain times, as do gaps, which indicate that the value is absent at a certain
time. The vertical streaks in the graphs show periods of especially intense load, but do
not indicate anything about the distribution.

To better observe the concentration of certain values when sampling in a restricted
span of time, one can compare the given data with a scrambled version. Figure 6.12
shows an example. The panels on the left show the original data, with some prominent
concentrations of values (or gaps) marked with circles. The panels on the right are
scrambled, or randomized. This means that some random permutation was applied to
the jobs in the log (but keeping the original arrival times). As a result, jobs that used to
be next to each other may now be distant, and jobs that originally were unrelated are now
next to each other. The effect on the scatterplots is that the dependence on time is lost: at
every time, we now observe a random sample from the global distribution. In particular,
the concentrations of very many samples of related values are spread out uniformly in the
horizontal dimension, and gaps in existing horizontal streaks are filled in. The fact that
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Figure 6.10: Distributions of job sizes on the LANL CM-5 in successive weeks.

this is different from the original plots testifies to the fact that the original ones exhibit
locality of sampling.

While the above examples focus on the attributes of web requests and parallel jobs,
locality of sampling exists in various other domains as well. For example, the instruction
mix in different basic blocks of a program may differ [387]. This difference is important
because basic blocks with an emphasis on a particular instruction type may not be able to
use all the CPU’s functional units effectively, thus reducing the achievable instruction-
level parallelism.

Another example is the requests made of a memory allocator. In many cases the
same sizes of memory blocks are requested over and again. This is especially common
in applications written in object-oriented languages, in which new objects are created
repeatedly at runtime. Such behavior has important implications for memory manage-
ment. In particular, it makes sense to cache freed blocks in anticipation of additional
requests for the same size [734].

A third example comes from scheduling a sequence of jobs. It has been shown
that the relative performance of different scheduling schemes changes significantly for
different levels of correlation between successive jobs [314]. Thus to ensure optimal
performance the system should learn about the correlations in its workload, and select
the appropriate scheduler to use.
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Figure 6.11: Scatterplots with time as theX axis. It seems that at different times different
parts of the distribution are emphasized.

6.3.2 Quantification

The essence of locality of sampling is that, if we look at a short time scale, we see only
part of the global distribution. The distribution at a short time scale is different from that
at longer time scales: it is less diverse in the values that it contains, or in other words, it
is more modal. Moreover, this modality is time dependent: at different times we observe
different values.

The metrics for quantifying the degree of locality of sampling try to formalize these
intuitions. This formalization has to be done with care, because, at extremely short
time scales, a lack of diversity is expected: a single sample cannot represent the entire
distribution.

Workload Diversity at Different Time Scales

Locality of sampling implies that during short intervals we do not observe all the possible
different values. Note, however, that this is different from saying that the variance will
be low: the values can still be far apart, leading to a high variance. The point is that there
will be few distinct values, so that the diversity of values will be low.
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Figure 6.12: Verification of the existence of locality of sampling, by comparing the orig-
inal data with scrambled data after a random permutation along the time axis. Workloads
typically do not look like a random sampling from a global distribution. Data from the
SDSC Paragon.
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Figure 6.14: The distributions of job runtimes and sizes on select weeks tend to be modal
and different from each other and from the distribution of the entire log. Selected weeks
correspond to markings in Figure 6.12.

In the case of discrete distributions with few possible values, the diversity is mea-
sured by the number of different values observed in a certain interval of time — similar
to the size of the working set of a process, which is the number of distinct pages accessed
[171]. This is demonstrated in Figure 6.13 for the average number of job sizes and the
average number of distinct users seen in a time interval, as a function of the length of the
interval. In short intervals the number of distinct values is much smaller than in longer
intervals or in the entire log.

But, of course, with small intervals we also expect to see less distinct values even
if there is no locality of sampling. To check that the results are indeed significant, we
therefore repeat the measurement on a scrambled log. The scrambled log contains ex-
actly the same jobs and the same arrival times, but the association of a specific job to a
specific arrival time has been permuted randomly. The results, shown with dashed lines,
is that the number of distinct values still depends on the observation interval. However,
it is always much higher than the number observed in the original log. Thus the original
log has much less diversity at short time scales, and much more locality.

Slice vs. Global Distributions

For continuous distributions we need to come up with other metrics for diversity. The
inspiration comes from data such as shown in Figure 6.10. We start by dividing the
timeline into equal-duration slices, and find the distribution of workload items when
considering each slice independently. We call these slice distributions because they are
limited to a slice of time. The metrics are based on direct measurement of the difference
between the slice distributions and the global distribution.

Figure 6.14 shows distributions for three selected weeks of the SDSC Paragon log.
Because of the locality of sampling, these distributions tend to be different from each
other, different from the global distribution, and also much more modal than the global
distribution, as reflected by their more steplike shape. For example, the data for February
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1–7 indicates a preponderance of 16-node jobs, running for either a couple of minutes
or about one hour.

Based on this observation, we can propose an actual measure of the divergence of
the weekly (or other short-range) distributions from the global distribution. This uses a
combination of the χ2 test described in Section 4.5.4 and the Kolmogorov-Smirnov test
from Section 4.5.2. The difference is that here we use the tests in reverse: we want to
show that the distributions are different from each other, and then quantify how different
they are.

The χ2 test divides the range of possible values into subranges with equal probabil-
ities, and verifies that the number of samples observed in each are indeed nearly equal.
To quantify locality we modify this to divide the overall range into subranges that have
equal probabilities according to the global distribution, and observe the maximal prob-
ability for a single range according to the slice distributions. Doing so measures a mode
that is present in the slice distributions, but not in the global one. We use the maximal
deviation, as in the Kolmogorov-Smirnov test, because we are interested in the deviation
between the global and slice distributions.

In order to be meaningful, there should be at least a few samples in each subrange.
This places constraints on how the measurement is done. Assume the whole log contains
a total of n samples (e.g. parallel jobs). If the length of the log is d days, there are
n/d jobs per day on average. This number has to be large enough to apply the χ2 test
using enough subranges. If it is too small, we need to consider a larger basic time unit.
Using the 1995 SDSC Paragon log as an example, it contains 53,970 jobs (in the cleaned
version) and spans a full year, for an average of 147.9 jobs per day. This should be
enough for a resolution of more than 20 subranges. However, due to fluctuations in
activity, there will be much fewer jobs on some days. It may therefore be better to use a
somewhat longer time unit, say three days.

Given that we have selected a time unit t and a resolution r, the calculation proceeds
as follows [239].

1. Create a histogram of the complete (global) data, and partition it into r equally
likely ranges. This defines the boundary points of the ranges.

2. Partition the log into d/t successive slices of t time each (this need not be mea-
sured in days as in the previous example — the time unit should match the type of
data being considered).

3. For each of these slices of the log (indexed by i), do the following:

(a) Find the number of workload items ni in this slice of the log.
(b) Create the slice histogram of these ni workload items, and count how many

of them fall into each of the r ranges defined in step 1. Denote these counts
by o1, . . . , or.

(c) By construction, the expected number of items in each range (assuming the
global distribution) is ei = ni/r. We are interested in the deviations from
this, and, in particular, in the maximal relative deviation. Therefore we com-
pute
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Log M ′ M

LANL CM-5 0.059 0.039
SDSC Paragon 0.098 0.073
CTC SP2 0.063 0.046
KTH SP2 0.085 0.056
SDSC SP2 0.101 0.072
Blue Horizon 0.069 0.052
DataStar 0.085 0.068

Table 6.1: Results of measuring the degree of locality of sampling for the runtime dis-
tributions in different logs.

mi =

max
j=1..r

{
|oj − ei|

}
ni − ei

This is slightly different from the conventional expression used in the χ2 test.
First, we use the max, rather than a sum, to emphasize the concentration of
values in a subrange. Second, we use the absolute value rather than the
square to ensure that the result is positive, thereby avoiding the distortion
that results from squaring. Finally, we divide by ni − ei rather than by ei.
This normalizes the result to the range [0, 1], because the maximal value for
any oj is ni, which occurs if all the samples appear in the jth subrange.

4. Given all the mi, calculate the final metric as their median:

M ′ = m(d/2t)

The maximum could also be used, but it is more sensitive to details of the mea-
surement, such as the precise duration of the log or how it is divided into slices
[239].

Applying this procedure to the SDSC Paragon log, when using 24 subranges and
slices of three days, yields the following results. The observed range of results is from
0.031 to 0.470. This means that, in one of the slices, nearly half of the jobs were concen-
trated in a single subrange, rather than being equally dispersed among all 24 subranges.
The median is 0.098. Additional results are given in Table 6.1.

But are these results significant? Obviously, even if the slice distributions are iden-
tical to the global one, some deviations are to be expected in a random sampling. We
therefore need to validate our result by comparing it to one that would be obtained via
random sampling. This is done using the bootstrap method [205, 206, 178, 212].

The bootstrap method is very simple: we just repeat the measurement using a ran-
dom sampling from the global distribution a large number of times (say a thousand), and
find the distribution of the results. In our case, each experiment creates n samples from
the global distribution, partitions them into slices with sizes dictated by the nis, creates
their histograms, and finds the median of the resulting mis. Each repetition thus pro-
duces a single data point (the value of M ′) valid for a specific sampling from the global
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Figure 6.15: Results of 1000 random tests of the median deviation observed when sam-
ples come from the global distribution, compared to the median deviation observed in
the slice distributions.

distribution. Repeating this a thousand times allows us to approximate the distribution of
such results, that is, the distribution of M ′ for random sampling. We then check where
the result for the real slice distributions falls in this distribution of results. If it is at the
extreme end of the range, it is unlikely to have occurred by chance. The outcome of
following this procedure is shown in Figure 6.15. Obviously, the actual result for the log
is way out of the scale of results that are obtained for random sampling from the global
distribution. We can therefore claim that it is significant.

Note, however, that the absolute value of M ′ as computed above is not of interest.
Rather, locality of sampling is measured by the difference between M ′ and the value
that would be obtained by chance. We define the latter simply as the median of the
distribution of results obtained by the bootstrap method. Denote this median value by
M ′

g. Our final metric for locality of sampling is therefore

M =M ′ −M ′
g

This is demonstrated in Figure 6.15 and tabulated in Table 6.1.

Locality of Sampling and Autocorrelation

An alternative, much simpler methodology to measure locality of sampling is by using
autocorrelation. If workload items are independent, there will be no correlation between
them. But if we often see repetitions of the same type of work, the successive items will
appear correlated to each other.

Correlation and autocorrelation are explained in detail in subsequent sections of this
chapter. The idea is to check whether items deviate from the mean in a similar way.
For example, if successive items tend to be either both above the mean or both below
the mean, but not one above and one below, then they are correlated. Technically, this
illustrates an autocorrelation at a lag of 1, because we are looking at successive items.
Larger lags refer to correlations between items that are more distant from each other.
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Figure 6.16: Fluctuations in mi across the duration of the logs indicate a lack of unifor-
mity.

Although locality of sampling and autocorrelation are closely related, they are not in
fact equivalent. It is possible to construct sequences that exhibit significant locality of
sampling as quantified earlier, but still have zero autocorrelation [239].

6.3.3 Properties

Locality of sampling actually has four distinct properties: depth, focus, length, and uni-
formity.

The depth is a measure of how different the slice distributions are from the global
ones. It is the maximal value M that can be computed by the procedure outlined above,
using different (reasonable) choices of t and r. Depth relates to the effect that locality of
sampling may have on performance evaluation results: the bigger the depth, the bigger
the potential impact.

The focus is the degree to which the slice distributions are focused into a narrow
range of values; in other words, it is a measure of how modal they are. This can be
measured by the number of subranges that produce the maximal depth. If the maximum
occurs for a small r, the distributions are actually rather dispersed. If it occurs for a large
r, they are focused. Focus is related to the degree of predictability that can be expected
from workloads during short intervals.

The length is the span during which the slice distributions stay different; it corre-
sponds to the time unit t in the earlier derivation. Specifically, the length is the t for
which the metric is maximized. Length relates to the characteristic time scale affected
by locality of sampling. This time scale influences the degree to which we can exploit
the existence of such locality to make predictions about the future workload.

The uniformity is the degree to which different spans display the same locality of
sampling. This corresponds to the distribution of mis in the above derivation. If they
all have similar values, the data is considered uniform. But if high values only occur in
a small subset of ranges, and at other times the slice distribution is similar to the global
one, the data is non-uniform (Figure 6.16). Uniformity can be measured by the distri-
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bution of mi values measured for disjoint spans that all have the characteristic length.
It relates to the stability of performance evaluation results: if the workload is highly
non-uniform, there is a greater danger that different results would be obtained if we use
different parts of the workload data.

6.3.4 Importance

As noted earlier, the commonly used approach to the generation of synthetic workloads
is to sample from a distribution [427, 367]. In fact, such sampling is also implied in
mathematical analyses (e.g., using queueing networks) that accept the workload distri-
bution as an input parameter. But real workloads tend to have an internal structure, in
which job submittal patterns are not random [258]. One type of pattern is the repetitive-
ness that results from locality of sampling: on short time scales workloads have much
less diversity than on long time scales, leading to a much more modal distribution. It
is the conjugation of many such modal distributions that leads to the more continuous
distributions seen on long time scales.

This effect is potentially very important because it means that, on a short time scale,
workloads are relatively regular and predictable. This justifies the common assumption
that recent behavior is indicative of future behavior, and can be exploited to our ad-
vantage. For example, we may be able to make predictions about resource utilization
and availability, as is done in the Network Weather Service [739], and when predicting
queueing times [87], job runtimes [695], and user clicks on web search results [551].

Moreover, real systems operate in an online manner, and must contend with the
workload as it appears on a short time scale. Thus a model based on random sampling
from a global distribution subjects the system to a very different workload than one
based on localized sampling from the same distribution. In terms of system behavior
it is possible to envision schedulers that exploit the short-range regularity of localized
workloads, and adapt their behavior to best suit the current workload [243, 756, 669,
757, 695]. This is similar to recent approaches used in memory allocators, which cache
freed blocks in anticipation of future requests for the same block sizes [734].

On the flip side, it seems that repetitive workloads result in performance degradations
[439], and also cause performance evaluations to be more sensitive to small variations in
conditions [696]. Thus workloads with significant locality of sampling may be harder to
handle, and require more work to get reliable results.

An example of why this may happen is shown in Figure 6.17, which compares the
moving average of runtimes of parallel jobs generated by two workload models. The
Feitelson model creates locality of sampling, as explained later. In the Jann model, jobs
are independent. The results are that in the Feitelson model there is higher variability,
and one occasionally sees large fluctuations that are the result of a burst of many very
long jobs. Such large fluctuations in the workload are obviously hard to handle by a
scheduler, and also affect the stability of the results. In a model where jobs are indepen-
dent, in contrast, the probability of a sequence of extraordinary jobs is negligible, and
effects tend to cancel out.
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Figure 6.17: Moving average of runtime samples from the Feitelson model, which has
locality of sampling, and the Jann model, which does not, for different random number
generator seeds.

6.3.5 Modeling

A simple way to generate data that displays locality of sampling is to use repetitions.
Initially, we simply sample from the global distribution. But then, instead of using each
variate once, we repeat it a number of times. With enough repetitions we will get a
sequence of samples that has a modal slice distribution.

The justification for this approach comes from the original workloads. Analyzing
repetitions in workload logs leads to results such as those shown in Figure 6.18. In
this analysis, we scan the workload data and partition it into separate streams of jobs
submitted by different users. We then look for runs of equivalent jobs, defined to be jobs
that execute the same application and use the same number of nodes. The distribution
of runlengths shows that many jobs are independent or are part of a short run, but some
runs are very long. Plotting the data on log-log axes suggests a Zipf-like distribution,
with a power-law tail.

This intuition may be formalized as follows [230, 239]. We are given a global dis-
tribution described by the pdf f(x). In addition, we need the distribution of repetitions,
which we denote by frep(r). The procedure can then be described as follows:
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Figure 6.18: Histograms of runlengths of similar jobs in production workloads from
parallel supercomputers. Note the use of logarithmic axes; the dashed line used for
reference has a slope of −2.5.
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Figure 6.19: Modeling locality of sampling by repeating workload items.

1. Select a sample X from the distribution f(x).

2. Select a repetition factor R from the distribution frep(r).

3. Repeat the X variable R times. This distorts the distribution locally.

4. Return to step 1 until the desired number of samples have been generated.

With a large enough number of samples, the number of times we will see a value of x
will be proportional to f(x) (i.e., according to the global distribution, as desired). But
these samples will come in bursts rather than being distributed evenly (Figure 6.19).

As a concrete example, consider modeling the arrivals of jobs with a certain distri-
bution of runtimes. Using an independent sampling model leads to results such as those
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Figure 6.20: The measured locality of sampling as a function of the parameter θ of the
distribution of repetitions.

shown in the left of Figure 6.19: a smear of runtimes that matches the distribution. By
using repetitions we get the results shown in the middle. In this case the runlengths were
taken from a Zipf-like distribution with parameter θ = 2.5, chosen according to the data
in Figure 6.18. This means that the probability of a runlength of r is proportional to
r−2.5.

To generate a more realistic workload, it is necessary to incorporate time and inter-
leave the different sequences. Assume that each workload item is associated with an
arrival time, and has some duration. We then sample items as above, assigning them ar-
rival times. But the repetitions of each item are assigned arrival times that are staggered
according to each one’s duration. Assuming the durations are large enough relative to
the interarrival times, the result will be a more realistic interleaved workload (right-most
graph in Figure 6.19). It is also possible to add think times between the repetitions,
thereby modeling the case of manual repetitions, rather than repetitions generated by a
script.

Even further realism is obtained if the repetitions are not exact replicas of each other.
For example, Li et al. suggest that job attributes be represented by multivariate Gaussian
distributions, based on clustering the original job data. The top level of the sampling
(step 1) then selects the cluster to use, and the bottom level (step 3) creates multiple
samples from the respective distribution [440].

A nice feature of this modeling technique is that it affords control over the degree of
locality of sampling in the generated workload. The locality results from the repetitions,
which in turn come from a Zipf-like distribution with parameter θ. By modifying this
parameter we can change the distribution of the lengths of repeated sequences1. This is
illustrated in Figure 6.20, in which small θ lead to very long runlengths, whereas larger
θ cause the distribution of runlengths to decay quickly, producing few repetitions if any.

Modeling locality of sampling by using job repetitions as suggested here has two
important advantages: it is parsimonious, and it is generative.

Sampling with repetitions is as simple as a model can be, because it only requires

1This actually has a similar effect to the samples permutation procedure suggested by Li et al. [440].
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the distribution of repetitions, which is described by a single parameter — the slope
of the histogram (Figure 6.18). Other models for locality are typically more complex.
For example, Shi et al. find that the best model for a distribution of stack distances
is a mixture of a Weibull distribution and a Pareto distribution, so five parameters are
needed. Locality of sampling can also be achieved by a user behavior graph [258] or a
hidden Markov model (HMM) [557, 643]. However, this complicates the model because
it requires a description of the complete dynamics and what workload items correspond
to each state. For example, when using an HMM we need to define the transition matrix
among the states, as well as the output distribution for each state; the number of required
parameters is at least linear in the number of states. Sampling with repetitions is much
simpler, albeit this simplicity may come at the price of not capturing potential non-
repetition sequencing properties.

The fact that the model is generative is even more important than parsimony. The
alternative to a generative model is a descriptive one, which just describes a certain
situation, without explaining its mechanics. Thus descriptive models do not provide
any clues about how the model should change under different conditions. For example,
consider what may happen when the load on a system changes. If a (descriptive) stack
model is used, the same stack depth distribution would be used for all load conditions.
But a repetitions-based generative model shows that this is probably wrong. When the
load is extremely low, there is little if any overlap between repeated sequences of jobs,
so stack distances should be very small. But when the load is high, more other jobs
intervene between repetitions, leading to higher stack distances. With a generative model
we only need to create more sequences to increase the load, and the modification of the
locality follows automatically.

A more sophisticated approach is to use a hierarchical workload model: the top level
selects what part of the distribution to sample now, and the lower level does the actual
sampling from the designated region. For example, this can be based on modeling the
behavior of the user population. Such models are discussed in Chapter 8.

6.4 Cross-Correlation

Locality means that successive samples of the same random variable are correlated. Here
we deal with another situation, in which samples of distinct random variables are corre-
lated.

6.4.1 Joint Distributions and Scatterplots

It is not always obvious whether a correlation exists between two variables. We therefore
start by considering ways to describe the joint behavior of two variables.

Formally, the way to describe the relationship between two or more variables is to use
their joint distribution. The joint distribution specifies the probability of seeing various
combinations of values, just as each variable’s distribution specifies the probability of
seeing various values of that variable in isolation.
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Figure 6.21: Joint distributions of job size and runtime from different parallel supercom-
puters.

All the issues discussed in Section 3.1.1 regarding distributions of a single variable
are directly applicable to joint distributions as well. Assuming the variables are called
X and Y , their joint CDF is

F (x, y) = Pr(X ≤ x, Y ≤ y) (6.2)

The joint pdf is the double derivative of the joint CDF

f(x, y) =
∂2 F (x, y)

∂x ∂y
(6.3)

or, in the case of a discrete distribution, the probability that they are assigned specific
values:

p(x, y) = Pr(X = x, Y = y)

In short, these are 2D functions, and can be visualized as a 2D surface. An example is
given in Figure 6.21, which shows the joint distribution of the size (number of proces-
sors) and runtime of parallel jobs. Combinations that occur more commonly cause peaks
in the distribution. This can of course be generalized to higher dimensions, but that is
harder to visualize.

An important concept related to joint distributions is the marginal distribution. This
is the distribution of each of the variables by itself. The idea is that we can use the joint
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Figure 6.22: Example of a scatterplot and the related marginal distributions.

distribution of X and Y to find the distribution of, say, X , by summing over all possible
values of Y . Specifically, the probability that X will have a value of x is

pX(x) =
∑
y

p(X = x, Y = y) (6.4)

Recall that X and Y form the axes of a 2D area. Summing over all values of Y , for a
given value of X , means that we are summing along a line parallel to the Y axis. This
gives one value. Repeating this for all values of X yields the entire distribution of X . In
effect, we are summing on the whole area and producing the results along the X axis,
on the margin of the summation area. Hence the name “marginal distribution”.

Given sampled data, one can represent the joint distribution using a 2D histogram.
But a more common alternative is to use a scatterplot. In scatterplots the axes are the
possible values ofX and Y , as in a joint distribution. Each sample is represented by a dot
drawn at the coordinates of the sample’sX and Y values. This allows for a very detailed
observation of the data. The marginal distributions are then simply the 1D histograms of
the values assumed by X and Y (Figure 6.22). If the distributions are skewed, the axes
can be logarithmically scaled.

Practice Box: Scatterplots with Lots of Points

In its basic form, a scatterplot represents each data point by a small dot. For example, a
scatterplot of parallel job sizes and runtimes may look like this:
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The problem with such a rendering is that in many cases several data points fall on the
same location, and this information is lost. In other words, a dot may represent a single
job or a thousand jobs, and we will not know the difference. It is therefore necessary to
weight the dots according to the number of data points they represent.

One way of doing so is to enlarge the dots, so that their area corresponds to the number of
data points represented. This immediately guides the eye to those places where the weight
is concentrated:
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This gives a good feel for the spread of the data, but may run into trouble in crowded
areas. In particular, some fine detail may be lost as enlarged dots merge with each other
and subsume nearby smaller dots.

In some cases there are so many data points that the whole space seems to be filled. It may
then be necessary to use sampling to reduce the clutter. This means that instead of using
all the data points we use a random subset of, say, 20% of them. This has the additional
benefit of reducing the size of data and graphic files. Although removal of the majority of
dots results in the loss of data, it serves to bring out the main patterns:
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Note that data is removed randomly, so that crowded areas retain their distinction. Re-
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moving repetitive data points is counterproductive, because it specifically eliminates the
information about where weight is concentrated that we are seeking.

Another alternative is to use color coding. In this scheme the plotting area is pre-partitioned
into small squares, and each is colored according to the number of data points that fall in
it. The result is called a “heat map”:
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Depending on the size of the squares, this approach may also lose resolution relative to
the raw scatterplot, and a legend is required in order to specify what each color means.
Because it is hard to distinguish among too many colors, this approach may lead to some
loss of discrimination, and care should be taken not to use colors that are indistinguishable
for the colorblind. An alternative is to use a gray scale:
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This is less colorful, but might be clearer and easier to interpret.

To read more: The perception of color and its use for encoding quantities are subjects for
applied psychology, and have been studied by Spence [645] and others. A detailed account
is provided by Ware [721, chap. 4].

End Box

As an example, consider the scatterplots in Figure 6.23. The two variables plotted
here are the size and runtime of parallel jobs. The question is whether these two variables
are correlated: are large jobs, which use many processors, generally longer than small
jobs? Are they generally shorter? Although the scatterplots contain lots of information
(specifically, they show the sizes and runtimes of tens of thousands of jobs), it is still hard
to give any definite answer. In the following sections, we consider ways of extracting an
answer from the data.

One way to avoid the question is to simply use a bidimensional (or, in general, a
multidimensional) empirical distribution function, which simply describes the joint dis-
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Figure 6.23: scatterplots drawn in an attempt to assess the correlation between job sizes
and runtimes on parallel supercomputers.

tribution of the various attributes [654]. But this typically requires a very large number
of parameters. It is therefore more common to try and find a good model based on the
patterns observed in the scatterplot. In particular, there are two situations in which a
scatterplot can lead to the immediate identification of a good model. One is when a
functional relationship exists between the two variables (e.g., one is linearly dependent
on the other). The other is when the data points tend to cluster together in clumps that
are separated from each other.

6.4.2 The Correlation Coefficient and Linear Regression

A common way to measure the correlation between two variables is to compute the
correlation coefficient. The correlation coefficient is defined as the covariance divided
by the standard deviations. Let us see what this means.

Covariance and Correlation

Given n samples of X and of Y , the empirical covariance is calculated as
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Cov(X,Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) (6.5)

Note that each term in the sum has two factors: the difference between the X sample
and the average of all Xs, and the difference between the Y sample and the average of
Y s. Samples in which both X and Y are larger than their respective averages contribute
to the covariance. Samples in which both are smaller than their respective means also
contribute to the covariance. Samples in which one is larger and one is smaller detract
from the covariance. In short, ifX and Y consistently behave in the same way relative to
their averages, there will be a positive covariance. If they consistently behave differently,
the covariance will be negative. If they are inconsistent (i.e., sometimes behaving the
same and sometimes not) the covariance will be close to zero.

It is instructive to consider the covariance as a weighted sum, where the terms are the
differences of Y ’s samples from their average, and the weights are the differences ofX’s
samples from their average. If large deviations in Y correspond to large deviations inX ,
we find that the larger values get the higher weights, further increasing the covariance.
If there is no such correspondence, the absolute value of the covariance will be small.

Naturally the covariance (and correlation) can also be defined for any joint distribu-
tion on two variable, without resorting to sampling. The definition is then

Cov(X,Y ) = E[ (X − E[X]) (Y − E[Y ]) ]

=

∫∫
f(x, y) (x− E[X]) (y − E[Y ]) dxdy

where the expectation of X is calculated irrespective of Y , and vice versa:

E[X] =

∫∫
x f(x, y) dxdy

Practice Box: Calculating the Covariance

The covariance, just like the variance, can be calculated in one pass over the data. This is
based on the identity

Cov(X,Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

=
1

n− 1

n∑
i=1

Xi Yi − X̄ Ȳ

which is easily seen by opening the parentheses and collecting terms.

End Box

Dividing the covariance by the standard deviations of X and Y normalizes it to the
range between −1 and 1. This gives the correlation coefficient,

ρ =
1

n− 1

∑n
i=1(Xi − X̄)(Yi − Ȳ )

S(X) S(Y )
(6.6)

(also called Pearson’s correlation coefficient or the product moment correlation coeffi-
cient). In effect, the correlation coefficient measures the degree to which X and Y are
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linearly related. A correlation coefficient of 1 indicates a linear relationship. A coef-
ficient of −1 indicates an inverse relationship. More generally, correlation coefficients
with an absolute value near 1 indicate that when X grows, Y grows proportionally.
Small correlation coefficients indicate that no such linear relationship holds.

To understand what it means to “measure the degree to which X and Y are linearly
related”, note that the correlation coefficient is also a measure of the quality of a simple
linear model obtained by regression. In fact, the well-known R2 metric for regression
is simply the square of the correlation coefficient. Note, however, that a relatively high
correlation coefficient does not necessarily mean that a linear model is the correct one.
It is imperative to always look at the data.

Background Box: Linear Regression

The simplest model of a relationship between two variables is a linear2 one:

Y = a ·X + b

If such a relationship exists, then given a value of X one is able to predict the value of Y .
If we have a set of samples, each an (Xi, Yi) pair, we can try to fit such a linear model.
Linear regression is the process of finding the “best” values of a and b for the given sam-
ples. The metric used to determine which values are the best is that the prediction error of
the regression model will be minimal. This implies an asymmetry among the variables: X
is given, and Y needs to be predicted. The error for sample i is therefore not its shortest
distance from the regression line, but rather the vertical distance from the line:

erri = Yi − (a ·Xi + b)

We are looking for the a and b that will minimize all the errors at once. Note, however, that
each error may be either positive or negative. To prevent situations in which large errors
in both directions cancel out, leading to a seemingly good result, we minimize the sum
of the squares of the errors. The result is therefore sometimes qualified as being a least
squares model. This model has the additional benefit that the model line will tend to pass
“in the middle” between the data points, because any distance that is unduly large will cost
a quadratic price.
To find the a and b that yield the minimum, we differentiate the sum of squared errors with
respect to these two parameters and equate with zero:

∂

∂a

n∑
i=1

(Yi − (a ·Xi + b))
2
= 0

∂

∂b

n∑
i=1

(Yi − (a ·Xi + b))
2
= 0

Performing the differentiation yields

−2
n∑

i=1

Xi (Yi − (a ·Xi + b)) = 0

−2
n∑

i=1

(Yi − (a ·Xi + b)) = 0

2Linear appears twice here, in different contexts. In one we are talking about a linear model: Y =
a ·X + b. In the other, we are using linear regression, which means that the model parameters a and b are
found using a set of linear equations.
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The second equation is the simpler one. By opening the parentheses and dividing by n, we
find that

Ȳ = aX̄ + b

From this we extract an expression for b, and plug it onto the first equation. The somewhat
messy result is

n∑
i=1

XiYi −
n∑

i=1

aX2
i −

n∑
i=1

Xi

(
Ȳ − aX̄

)
= 0

from which we can extract an expression for a:

a =

n∑
i=1

XiYi −
n∑

i=1

XiȲ

n∑
i=1

X2
i −

n∑
i=1

XiX̄

=

n∑
i=1

XiYi − nX̄Ȳ

n∑
i=1

X2
i − nX̄2

=
Cov(X,Y )

Var(X)

and, given a, we can calculate b as

b = Ȳ − aX̄

The main point to understand regarding the formulas for a and b is that they are just that:
formulas. Given any set of samples {(Xi, Yi)}, plugging the data into the formulas will
yield values for a and b. This does not mean that a linear model is in any way appropriate.
Verifying that the model is meaningful is based on analysis of variation. The variation in
question is the sum of the squares of the differences between the Y values and their mean,
called the “sum squares total”:

SST =

n∑
i=1

(Yi − Ȳ )2

This sum reflects a situation of no prior knowledge regarding each sample, so the best we
can do is assume that it is represented by the mean. But the regression model claims that
we can do better: if we know Xi, we can predict Yi based on the formula Ŷi = aXi + b.
The difference between Yi and Ȳ can therefore be partitioned into two parts: one part
equaling Ŷi − Ȳ that is explained by the linear model, and the rest. Assuming we believe
in the model, the residual reflects the error made by the model.
The quality of the regression depends on how well the X values enable us to predict the
Y values. The model is good if a large part of the variation may be attributed to the
regression, and only a small part to the error. The metric is therefore the ratio between the
sum squares of the regression and the sum squares total:

R2 =

n∑
i=1

(Ŷi − Ȳ )2

n∑
i=1

(Yi − Ȳ )2
(6.7)

This is often called the coefficient of determination.
The interesting thing is that Ŷi can be expressed as a function of Xi, a, and b, and a and
b in turn can be expressed as functions of the Xis, Yis, and their means. Therefore R2
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can be expressed directly as a function of the original samples. Doing so involves some
tedious algebra. The end result is that R2 equals the square of the correlation coefficient
of X and Y . In this sense, the correlation coefficient reflects the degree to which a linear
relationship exists between X and Y .
Incidentally, this also implies that the roles of X and Y may be reversed. If we use Y to
predict X , we will typically get a different linear model (because we find a and b values
that minimize the horizontal distance from the regression line, rather than the vertical
distance). However, this alternative line will have the same quality as the first as measured
by R2.

Given the mathematics, one should also realize its
limitations. High R2 values do not necessarily mean
that the data indeed conforms to a straight line. For
example, if we perform a linear regression on the 101
points of the form (x, x2) with x going from 0 to 10 in
jumps of 0.1, we get a correlation coefficient of 0.97
and R2 = 0.94. Although the line is indeed close to
the data, this is obviously not the best model. It is
crucial to always look at the data first [31]. 0 2 4 6 8 10
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End Box

It is important to also note what the correlation coefficient does not measure. It does
not measure the slope of the regression line. A correlation coefficient of 0.7 does not
imply that the slope is steeper than when the correlation coefficient is 0.5. A relatively
flat sequence of points that lie close to a line will have a high correlation coefficient, but a
low slope. Conversely, an oblique cloud of points can have a low correlation coefficient,
but a high slope. The slope is given by a and can vary from −∞ to∞. The correlation
coefficient measures the quality of the linear model, and varies from −1 to 1.

However, a relationship between the slope and the correlation coefficient does exist.
Recall that the slope of the linear regression line is

a =

∑n
i=1XiYi − nX̄Ȳ∑n
i=1X

2
i − nX̄2

=
Cov(X,Y )

Var(X)

The correlation coefficient can be written as

ρ =

∑n
i=1XiYi − nX̄Ȳ√∑n

i=1X
2
i − nX̄2

√∑n
i=1 Y

2
i − nȲ 2

=
Cov(X,Y )

S(X)S(Y )

Note that the numerators in both expressions are the same, and the difference is only in
the denominator, which is the variance of X in the first one, and the product of the two
standard deviations in the second. Therefore the relationship is simply

a =
S(Y )

S(X)
ρ

This also explains why the sign of the correlation coefficient corresponds to the sign of
the slope.
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Figure 6.24: Outliers can have a very strong effect on regression results.

To read more: An extensive treatise on the correlation coefficient and its meaning, starting with
intuition and ending with alternative computation methods, was written by Rummel [588].

The correlation coefficient has two main drawbacks. One is that it may not be sen-
sitive enough, especially to forms of correlation that cannot be expressed as a linear
relationship. The other is that it is overly sensitive to outliers.

Sensitivity to Outliers

The sensitivity to outliers is demonstrated in Figure 6.24. This scatterplot was drawn to
investigate the relationship between the number of jobs submitted and the system load.
Data of the two-year log from the LANL CM-5 is partitioned into months, and for each
month we compute two variables: the number of jobs submitted during that month, and
the system load, measured as a fraction of capacity. The results for all the months but
one form a rather diffuse cloud. Performing a linear regression leads to a line with a very
shallow slope, and the correlation coefficient is also rather low at 0.146.

But the data also contains one outlier month, in which both the number of jobs and
the load are much higher. When this additional data point is included, the slope of the
regression line becomes steeper, and the correlation coefficient jumps up to a respectable
0.635. Taken at face value, these figures indicate that indeed there is a significant cor-
relation between jobs and load, and therefore differences in load may be modeled by
differences in the number of jobs. But this conclusion rests mainly on the effect of the
single outlier month.

The reason that a single outlier has such an effect is the quadratic nature of the
correlation coefficient and the regression analysis. The farther away a data point is from
the rest, the larger its effect. In particular, when there is a single outlier, the regression
line will tend to connect this outlier with the center of mass of the rest. The distribution
of the other data points will only have a small effect on the results.

Incidentally, the sensitivity to outliers also affects the use of linear regression for
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predictions. The common way to perform linear regression, described in the box on page
268, is based on minimizing the squares of the vertical deviations from the fitted line.
Doing so emphasizes the effect of the points with the biggest distance. The alternative
is to use the absolute values of the deviations in the optimization. Because it is more
natural to use the absolute value of the deviations as the metric of quality, the second
method leads to a better fit and better predictions [662].

The Rank Correlation Coefficient

The limitation of only measuring a linear relationship is reduced by using the rank corre-
lation coefficient. In this approach, instead of using the data values directly, we first sort
them, and than calculate the correlation between their ranks instead [644]. For example,
consider an item for which x = 13.2 and y = 25.7. If the rank of this x value is 19th
out of all the xs of the different items, and the rank of this y value is the 15th of all ys,
then the item will be represented by the pair (19, 15), instead of the pair (13.2, 25.7).
Calculating the correlation coefficient on the ranks then gives a measure of the degree
to which X can be used to predict Y . In particular, a full correlation is obtained for all
cases where the relationship between them is monotonic; it does not have to be linear.

The formula for the rank correlation coefficient is as follows. Denote the rank of Xi

by rXi , and the rank of Yi by rYi . Because the ranks are actually the integers from 1 to n,
the average ranks are n+1

2 for bothX and Y . The rank correlation coefficient (also called
Spearman’s rank correlation coefficient), which is simply the correlation coefficient of
Equation (6.6) applied to the ranks, is then

r =

n∑
i=1

(
rXi −

n+ 1

2

)(
rYi −

n+ 1

2

)
1
12(n

3 − n)
(6.8)

The denominator is simply the variance of the uniformly distributed ranks (it can be
derived using the equality

∑n
i=1 i

2 = 1
6 n (n+ 1)(2n+ 1)).

A simpler way to actually compute the rank correlation coefficient is the following
equivalent expression. For each item, calculate the difference between its X rank and its
Y rank, di = rXi − rYi . The rank correlation coefficient is then

r = 1−
6
∑n

i=1
d2i

n3 − n

The equivalence can be demonstrated by expressing the squared difference as d2i =(
(rXi − n+1

2 )− (rYi − n+1
2 )
)2, applying straightforward algebraic manipulations and

comparing with Equation (6.8), and using formulas for the sum and sum of squares
of the ranks, which are simply all the numbers from 1 to n.

Note that special care must be taken if several workload items have the same value.
This often happens for workload attributes that are discrete in nature, such as the size
of a parallel job, which is an integer. A set of items with the same value will then
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cover a range of ranks, but in reality they should all have the same rank. The common
approach is to use the middle of the range to represent all of them. Note, however, that
the denominator has to be adjusted too, because it is no longer the variance of uniformly
distributed ranks, but rather the variance of ranks that come in groups.

An alternative to Spearman’s rank correlation coefficient is Kendall’s τ [399]. Con-
sider any pair of elements i and j. We call them concordant if they are ranked in the
same order according to both X and Y ; that is, if either rXi < rXj and rYi < rYj , or
else rXi > rXj and rYi > rYj . Otherwise we call them discordant. Denote the number
of concordant pairs by C and the number of discordant pairs by D. Kendall’s τ is the
normalized difference between the number of concordant and discordant pairs, namely

τ =
2(C −D)

n(n− 1)

where the normalization factor is the number of possible pairs, which is 1
2n(n − 1).

An important advantage of this coefficient over Spearman’s is that it has an intuitive
meaning: it is the difference between the probability that a pair of observations appear
in the same order and the probability that they appear in different orders [518].

As with Spearman’s coefficient, here too one may need to deal with ties. Items with
the same X or Y values are neither concordant nor discordant, so they are not counted
in C or D. Therefore the normalization has to be done differently. The simplest solution
is to nevertheless use the sum of C and D, which would actually be correct if there were
no ties. This leads to

τ̂ =
C −D
C +D

An alternative is to use the geometric mean between the number of pairs after subtracting
the pairs with ties in X and in Y . Denote the number of different values of X by nX ,
and the number of occurrences of the jth value by tXj , and do so similarly for Y . The
expression for τ is then

τb =
C −D√(

n(n−1)
2 −

∑nX
j=1

tXj (tXj −1)

2

)(
n(n−1)

2 −
∑nY

j=1

tYj (tYj −1)

2

)
Given that all pairs of values need to be compared, calculating Kendall’s τ takes quadratic
time. However, efficient algorithms requiring only O(n log n) time have been given by
Christensen [134].

A variant of this metric is Kendall’s concordance, which measures the agreement
between m rankings rather than just two [400]. As ranks range from 1 to n, the mean
rank is n+1

2 . Denote the jth ranking of the ith item by rji , and consider the sum of all
ranks received by a certain item. The deviation of this sum from m times the mean is

di =

m∑
j=1

rji −
m(n+ 1)

2
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Rank CC
System CC Spearman Kendall Dist CC
KTH SP2 0.039 0.250 0.185 0.876
CTC SP2 0.057 0.244 0.186 0.892
SDSC Blue 0.121 0.411 0.373 0.993
SDSC SP2 0.146 0.360 0.276 0.962
NASA iPSC 0.157 0.242 0.198 0.884
SDSC Paragon 0.280 0.486 0.378 0.990

Table 6.2: Correlation coefficients of runtime and size for different parallel supercom-
puter workloads (using the cleaned versions).

The concordance is the normalized sum of the squares of these deviations:

W =
12
∑n

i=1
d2i

m2(n3 − n)

Comparison

We demonstrate the behavior of all these correlation coefficients by calculating the cor-
relation of the data shown in the scatterplots of Figure 6.23. The results for these and
additional datasets are given in Table 6.2. For the Pearson correlation coefficient the
results range from essentially zero (i.e., no correlation at all) to about 0.3 — a weak pos-
itive correlation. The results for the rank correlation coefficients are somewhat higher, in
one case nearly 0.5. In general, Spearman’s coefficient is slightly higher than Kendall’s
τ .

But looking at the scatterplots, it is hard to find any correspondence between these
results and the spread of the data. Moreover, sorting the systems by the rank correlation
coefficient would lead to a different order than the one used in the table, which is sorted
by the conventional correlation coefficient. For example, the NASA iPSC system has
a higher correlation coefficient than the SDSC Blue system, but a much lower rank
correlation coefficient.

For this type of data, we need the metric shown in the fourth column, which is
developed in the next section.

6.4.3 Distributional Correlation

The conventional correlation coefficients measure the degree to which one random vari-
able can be used to predict another. This can be generalized by using one variable to
predict the distribution of another.

Conditional Distributions

As we have seen, establishing whether or not a correlation exists is not always easy.
The commonly used correlation coefficient only yields high values if a strong linear
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Figure 6.25: Distributions of runtimes drawn for jobs with different degrees of paral-
lelism expose a weak correlation when serial jobs are excluded.

relationship exists between the variables. In the examples using the size and runtime
of parallel jobs the correlation coefficients are typically rather small (Table 6.2), and
scatterplots show no significant correlations as well (Figure 6.23).

However, these two attributes are sometimes actually correlated with each other in
the following sense. Consider the distributions of runtimes of small jobs and of large jobs
separately. These distributions cover essentially the same range, from a few seconds to
several hours. But the distribution of weight across this range is different. For small
jobs, much of the weight is concentrated at short runtimes. For large jobs, more of the
weight is spread across longer runtimes. Thus the distribution of the runtime depends on
the size.

This principle is demonstrated in Figure 6.25 for the four datasets used earlier. The
jobs in each log are partitioned into five groups according to size. The distribution of
runtimes is then plotted for each size independently. These are actually conditional
distributions: each one is a distribution of the runtimes, conditioned on the size being
in a given range. In general, the runtime distributions belonging to larger jobs tend to
be to the right and below those of smaller jobs. This means that there are more longer
runtimes and fewer short runtimes. The main deviations from this pattern are due to
serial jobs, which tend to be longer than small parallel jobs.

(Although this discussion indeed seems to be a good description of the correlations
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observed on parallel machines, there are exceptions. To illustrate this metric we focus
here on those examples that display distributional correlation. A more complete picture
regarding parallel workloads is given in Section 9.6.2.)

The Distributional Correlation Coefficient

To turn these observations into a quantified metric, we can suggest the following proce-
dure [236]. First, partition each workload log into just two equal parts: the half with the
smaller jobs, and the half with the larger jobs (where “small” or “large” relates to the
number of processors used). Then plot the cumulative distribution functions of runtimes
for the jobs in the two sets. If one CDF is consistently above the other, we say that a
distributional correlation exists. If the two repeatedly cross each other, there is no such
correlation.

Background Box: Stochastic Dominance

Distributional correlation is closely related to stochastic dominance, or, more precisely,
first-order stochastic dominance. In simple terms, dominance means that one random vari-
able tends to be bigger than the other. More formally, this is defined as follows. Consider
two random variables, XA from distribution A and XB from distribution B. We will say
that A dominates B if for every value x the probability that XA ≥ x is at least as high
as the probability that XB ≥ x. This will be denoted by XA ⪰ XB . If in addition there
is some x where the probability that XA ≥ x is strictly larger than the probability that
XB ≥ x, then we will denote this by XA ≻ XB .
Note that this definition is actually a relationship between the distributions from which the
two random variables come. The CDF of a distribution specifies the probability of being
smaller than a value x. So if the probability of being larger than x is higher, the CDF
should be lower. Thus the CDF of the dominating random variable should be lower and
to the right of the CDF of the dominated random variable. In mathematical notation, if
XA ⪰ XB , then FA(x) ≤ FB(x) for every x, and if XA ≻ XB , then for some x we also
have the stronger condition that FA(x) < FB(x).
Dominance as defined here is rather strong in the sense that the CDFs may never cross:
one should always be above the other (or they may overlap). If the CDFs cross each
other then neither distribution dominates the other. As a result this is not a full order.
For example, normal distributions with different standard deviations do not dominate each
other regardless of how far away their means are, because asymptotically the tails of the
one with the lower standard deviation will tend to zero faster, and at least one of them will
cross the tail of the distribution with the higher standard deviation.
Our notion of distributional correlation is less strict. Essentially, it can be understood as
quantifying how close we are to dominance, by estimating for what fraction of the values
(as weighted by their probability) one distribution dominates the other.

End Box

For the specific case of parallel job sizes and runtimes, example graphs are shown in
Figure 6.26. They show essentially the same data as in Figure 6.25, except for the fact
that the data is partitioned into only two sets (serial jobs are again excluded). Obviously,
this results in a clearer picture, and it is easy to see that one CDF is nearly always above
the other.
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Figure 6.26: Data for calculating the distributional correlation coefficient. Serial jobs
are excluded.

More precisely, the procedure to calculate the distributional correlation proceeds as
follows. We start with a set of n samples of pairs of variables, which we denote by
P = {(Xi, Yi)}.

1. Find the median of the Xis, and denote it by X(.5).

2. Partition the data into two equal subsets: one including those Xi that are smaller
than X(.5), and another in which they are larger. Samples for which Xi = X(.5)

are assigned at random to both subsets in a way that ensures that the subsets have
equal sizes.

3. Find the empirical distribution of Yi for each part of the data. The distribution
of Yi conditioned on Xi being smaller than its median will be denoted F⊥(y) =
|{Yi | Yi ≤ y ∧ Xi ≤ X(.5)}|. Similarly, F⊤(y) = |{Yi | Yi ≤ y ∧ Xi ≥ X(.5)}|.
Note that formally these are not really distributions but counts of samples, because
they are not normalized to sum to 1.

4. Calculate the distributional correlation coefficient as

distCC =
1

|P |
∑
i∈P ′

sgn
(
F⊥(Yi)− F⊤(Yi)

)
(6.9)

where |P | = n, and sgn is the sign function that gives each sample one vote:
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sgn(x) =

{
1 if x > 0
−1 if x < 0

The set of samples P ′ over which the sum in the last step is taken is important. In
principle it should be the set P of all sample points. But this choice is susceptible to high
values that occur by chance. To prevent this, one has to limit the sum to points where
the CDFs have some minimal distance from each other. Specifically, it is recommended
to use

P ′ =

{
i

∣∣∣∣ ∣∣∣F⊥(Yi)− F⊤(Yi)
∣∣∣ > 2

√
|{Yj | Yj ≤ Yi}|

}
The motivation for this expression stems from considering the two CDFs when samples
are randomly assigned to the small and large groups (thus simulating the case where the
two CDFs are actually samples from the same distribution). We start from the smallest
values and move upward. Both CDFs obviously start at zero. Each new sample has a
probability of 0.5 to either increase the CDF of the small group or to increase the CDF of
the large group. Thus the difference between the CDFs behaves like a random walk with
equal probabilities of taking a step in either direction. It is well known that the expected
distance that such a random walk covers after n steps is

√
n (as explained on page

325). Therefore fluctuations in the difference between the CDFs up to the square root of
the number of samples we have seen so far do not indicate any systematic divergence.
Adding a factor of 2 provides a safe margin, ensuring that only significant points are
used.

This definition of a distributional correlation coefficient leads to values in the range
[−1, 1], with 1 indicating the strongest correlation, −1 indicating an inverse correlation,
and values near 0 indicating little correlation — the same as for other coefficients. How-
ever, it has the drawback of not being symmetric, as opposed to conventional correlation
coefficients that are symmetric. The lack of symmetry is the result of choosing one vari-
able to split the observations into two, and then plotting the distributions of the other
variable. It is possible that different results would be obtained if we would choose the
variables the other way around [236].

The results of computing this metric for several parallel job logs are shown in Ta-
ble 6.2, and compared with the conventional correlation coefficients. Serial jobs are
again excluded because of their unique characteristics. Obviously the distributional co-
efficients are quite close to 1, as one would expect based on the distributions shown in
Figure 6.26.

6.4.4 Modeling Correlations by Clustering

A coarse way to model correlation, which avoids the problem altogether, is to represent
the workload as a set of points in a multidimensional space and then apply clustering
[19, 103]. For example, each job can be represented by a tuple including its runtime,
its I/O activity, its memory usage, and so on. By clustering we can then select a small
number of representative jobs, and use them as the basis for our workload model; each
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such job comes with a certain (representative) combination of values for the different
attributes [99].

Clustering is especially popular in the context of queueing analysis. In its simplest
form, queueing analysis assumes that all jobs come from the same class, and are gov-
erned by the same distributions. The next step toward realism is to assume a multiclass
workload, in which jobs from several classes are present, and each class has distinct
distributions. Clustering is used to identify and characterize the different classes [104].

There are many different clustering algorithms, but they share a general framework
[365]. The essence of clustering is to find a partitioning of the data into disjoint sets,
such that the points within each set are similar to each other, while the sets themselves
are dissimilar. The different algorithms use different definitions of what is similar or
dissimilar. They also differ in whether they find the appropriate number of clusters
automatically, or need this number to be specified in advance.

To read more: Clustering is treated in many textbooks on performance or data analysis, e.g.
Jain [367, sect. 6.8] and Berthold et al. [71, chap. 7]. A good review is provided by another
Jain [365]. There are also several book-length treatments devoted exclusively to clustering, e.g.
Everitt et al. [222].

Preprocessing for Clustering

Before applying a clustering algorithm, some preprocessing is typically required. The
main reason for this is that different attributes may have completely different units and
scales. To compare distances in the different dimensions, a common scale is needed.
The classical way to do scaling is to subtract the mean of each attribute and divide by
the standard deviation:

Z =
X − X̄
S(X)

(6.10)

Using this result, the deviations of all attributes from their respective averages are mea-
sured in units of their respective standard deviations (it is so common to denote this by
Z that it is known as the “Z score”). However, it has the disadvantage of being oblivious
to scale [556].

An alternative is to use a logarithmic transformation, which actually measures orders
of magnitude. A logarithmic transform is especially suitable for skewed distributions and
heavy tails, because it maintains the details of the myriad small values, while reducing
the huge variance caused by the few large values. Without it, there is a danger that the
clustering will group all the small values together and leave each of the large values in a
cluster by itself. If all attributes are log-transformed no scaling is needed, because orders
of magnitude serve as the common scale.

The k-means Clustering Algorithm

The simplest clustering algorithm is the k-means algorithm. This assumes that the
number of desired clusters, k, is known in advance. Assume there are n data points,
p1, . . . pn. Each data point has two attributes, corresponding to the X and Y variables
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discussed earlier: pi = (Xi, Yi). The procedure generalizes naturally to more than two
dimensions. The k clusters will be designatedC1 toCk. The algorithm works as follows.

1. Select k points at random and designate them as the initial centroids. Note that
it is undesirable just to use the first k points, because these may be very close to
each other if the data displays locality of sampling.

2. For each of the n points, find the cluster centroid that is nearest to it, and assign
the point to that cluster.

3. Calculate the new centroid of each cluster. This is the “center of mass” of the
points assigned to this cluster. Thus the coordinates of the centroid (cXj , c

Y
j ) of

cluster Cj will be the averages of the coordinates of these points:

cXj =
1

|Cj |
∑
pi∈Cj

Xi, cYj =
1

|Cj |
∑
pi∈Cj

Yi

4. If no point has been reassigned in step 2 (i.e. they were all already assigned to the
nearest cluster), this is it. Otherwise, return to step 2.

An alternative to the first step is to assign the n points to the k clusters at random, so
that each cluster has approximately the same number of points, and at least one point,
and then calculate their centroids. However, for large datasets, this runs a greater risk of
having all centroids next to each other and to the center of the whole dataset.

Details Box: Measuring Distance

Step 2 in the k-means algorithm assigns each data point to the “nearest” cluster. This
actually depends on how we measure distance.

The most common approach is to use the Euclidean distance. This is what we commonly
use in geometry. For d dimensional data, the definition is

||X − Y ||2 =

√√√√ d∑
i=1

(Xi − Yi)2

(note that here X and Y are samples and the index i refers to dimensions; thus X =
(X1, . . . Xd) and similarly for Y .) This is sometimes called the “2-norm” or the “ℓ2 dis-
tance” due to the use of the power of two in the expression; the double vertical bars are
similar to the notation for an absolute value.

A generalization of this idea is to use a power other than two. This leads to

||X − Y ||p = p

√√√√ d∑
i=1

∣∣Xi − Yi
∣∣p

(note that the absolute value of the differences is used to ensure that the result is always
positive.) In particular, when the power p is 1, we are actually summing the differences
along the different dimensions, so
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||X − Y ||1 =

d∑
i=1

|Xi − Yi|

This is sometimes called the Manhattan distance, based on the analogy to traveling in
Manhattan, where we can only move along streets and avenues but not in a diagonal. At
the other extreme, when p =∞, the largest difference dominates all the rest. We therefore
get

||X − Y ||∞ = max
i=1..d

|Xi − Yi|

These distance metrics assume that the attributes characterizing each element are numeri-
cal. But they can also be binary (interactive work vs. background work) or categorical (jobs
belonging to user group A, user group B, and so on). In such cases distance is usually taken
to reflect the degree of (dis)similarity, e.g. the fraction of attributes that are different [222].

In addition to defining the metric, we also need to decide how to apply it. The description
of the k-means algorithm stated that distance is measured from each point to the centroid
of each cluster. In hierarchical algorithms that operate on clusters rather than on individual
points (described later) there are several options for measuring the distance between two
clusters: the distance between the nearest two elements, the average distance between all
pairs of elements, the distance between the centroids, and so on. For categorical data, one
can consider the set of items in each cluster as a whole. The distance is then a function
of the differences in the fraction of items that occupy each level of each attribute. Using
different approaches will lead to the construction of different clusters.

End Box

An example of the results obtained by using the k-means algorithm is shown in
Figure 6.27. The data is the sizes and runtimes of jobs run by user 8 in the SDSC
Paragon log. In three of the clusters the centroid indeed corresponds to a concentrations
of jobs that have the same job sizes and similar runtimes. The fourth is between two
groups of jobs with different numbers of processors.

This example also exposes one of the subtle points of clustering. When using clus-
tering, the clusters are often represented by their centroids. As shown in Figure 6.27, this
may not be appropriate. In the parallel job data of this example, job sizes are typically
powers of two. But the centroids, which are an average of many jobs with different sizes,
may have sizes that are not powers of two, and even may not be integers. This may have
a strong impact on performance evaluations, because jobs that are not powers of two
are harder to pack efficiently. Therefore a size that is a power of two should perhaps be
chosen to represent each cluster, even if it is not exactly at the centroid.

Another issue with k-means clustering is the effect of the starting points. Unless
the points have a clear natural partitioning into k clusters, there is a strong probability
that the results will depend in some way on the initial points used. A good criterion for
selecting the initial points is that they provide a good coverage of the data. This can be
achieved by using synthetic scrambled midpoints rather than actual data points [573].
This method works as follows:

1. For each dimension, find its range (that is, the minimal and maximal values ob-
served in the data).
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Figure 6.27: Left: jobs of user 8 in the SDSC Paragon log, shown against a backdrop of
other jobs in the log. Right: results of clustering these jobs using the k-means clustering
algorithm for four clusters, after a logarithmic transform. Cluster centroids are indicated
by ×s.

2. Divide each dimension range into k equal partitions, and find their midpoints.

3. Create the first starting point by selecting one partition midpoint at random from
each of the dimensions.

4. Repeat this k times to create k initial starting points.

Hierarchical Clustering

The k-means algorithm is “flat” or “partitional”, in that it partitions the data into k dis-
joint clusters that all have equal standing, and k must be known in advance. The alter-
native is to use hierarchical clustering, in which clusters subsume each other in a nested
structure. There are two basic approaches used for hierarchical clustering: bottom-up
and top-down. The bottom-up (agglomerative) approach starts with all data points as
individual clusters, and iteratively unites existing clusters to create larger clusters. The
top-down (divisive) approach starts with all data points in one big cluster, and succes-
sively divides clusters into two.

A simple variant of the bottom-up approach proceeds as follows:

1. Initially each point is defined to be a cluster by itself.

2. Find the two clusters that are closest to each other. For example, this can be
defined to be the pair of clusters that have the closest points to each other (the so-
called “single link” algorithm), or the pair of clusters with the closest centroids.

3. Unify the two clusters. This means that a new cluster is formed, that contains all
the points in the original two clusters.

4. Find the centroid of the new cluster if needed, and return to step 2.

5. Continue the procedure until a single cluster is formed.
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Figure 6.28: Applying clustering to the activity of users 5 and 7 in the SDSC Paragon
log is much less convincing than that shown in Figure 6.27 for user 8.

A simple variant of the top-down approach is based on using the k-means algorithm
as a subroutine, with k = 2. The clustering algorithm is then as follows:

1. Initially all the points are in a single cluster.

2. Apply the k-means algorithm with k = 2 to partition this cluster into two smaller
clusters.

3. Repeat this step recursively until each cluster is divided into individual points.

Both of these procedures create a binary tree above the data points. The leaves of
the tree are single points. Each internal node in the tree represents a cluster including all
the points in the leaves of the subtree rooted at this node. Because the tree is binary, this
is the unification of two smaller clusters. The result is a set of clusters with inclusion
relationships. It is best represented by a dendogram, where the branches of the tree are
L-shaped and the vertical part represents distances. It can then be cut at a certain level to
obtain the desired number of clusters.

Applicability of Clustering

Blindly applying a clustering algorithm to data is guaranteed to produce a result. The
question is whether this result is meaningful. In many cases the distributions of workload
attribute values are not modal but continuous. Likewise, the combinations of different
attributes may not cluster naturally. For example, the scatterplots of parallel job sizes
and runtimes (Figure 6.23) do not seem to contain significant clusters.

If clustering is nevertheless applied in such situations, it will produce results that
are not representative. First, the clusters will not represent the full workload because
the full workload will contain many more combinations of values. Second, the clusters
themselves will be sensitive to the exact procedure used to find them; small variations in
procedure may lead to completely different clusters.

Clustering may work better when workload distributions are modal. This tends to
be the case when the workload generated by a single user is considered, because users
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Figure 6.29: Error as a function of the number of clusters, for the examples of Figures
6.27 and 6.28.

typically repeat the same work over and over again. It may therefore be possible to apply
clustering to the work of a single user, and to create a user behavior graph. The example
in Figure 6.27 was of this type, and showed how clustering identifies concentrations
of similar jobs. However, it should be remembered that this is not always the case, as
demonstrated in Figure 6.28. The unique properties of workloads generated by different
users are the topic of Chapter 8, and user behavior graphs are discussed in Section 8.3.3.

To assess whether clustering is applicable, it must be validated. The simplest ap-
proach is visual validation (the “eyeball method”): create a scatterplot of the data, and
verify that clusters indeed stand out. If they do not, as is the case in Figure 6.28, clusters
that are identified by automatic means will probably not be meaningful. One can also
partition the data randomly and apply the clustering to each part separately. Consistent
results bear witness to the validity of the clustering.

A more mechanical method to assess the quality of clustering is as follows. Given
a clustering of data, we can measure its quality by the “errors” involved. For example,
we can define the sum of the distances of the data points from the centroids of their
respective clusters as a metric of the error. We can then create different clusterings, with
different numbers of clusters (e.g., by running the k-means algorithm with successive
values of k). Plotting the error as a function of the number of clusters will generally
lead to a decreasing function: when all the points are in one cluster, the distances from
the centroid are large, but when each is in its own cluster the distances are zero. If this
function initially decreases rapidly, and then levels off at a low value (that is, the graph
has an L shape with an “elbow”), the clustering is considered effective, and the number
of clusters to use is the number at the elbow.

An example of using this scheme is given in Figure 6.29. The result for the clustering
of the user 8 data from Figure 6.27 is indeed very nice, clearly indicating that four
clusters should be used. Regrettably, the result for the user 7 data from Figure 6.28 is
not much worse, despite looking much less convincing in the scatterplot. The moral is
that one should always verify that tests indeed distinguish between “good” and “bad”
samples of the data at hand.

An alternative formalism uses the explained variance as the metric, rather than the
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errors. When the complete dataset is viewed together, its variance can be calculated
based on the distances of all the points from the center of gravity. But when the points
are assigned to clusters, the variance can be partitioned into two: one part that represents
the distances between the clusters, and another that represents the residual variance that
remains within each cluster. The difference between them is the variance that is ex-
plained by the clustering. The fraction of the total variance that is explained grows from
0 when all the points are in one cluster to 1 when each point has its own cluster. Again,
if initially the explained variance grows rapidly as the number of clusters is enlarged,
and then it levels off, the knee identifies the number of clusters to use.

The problem with visual (or even statistical) validation is that it is oblivious to the
goals of workload modeling. Given that we create models for performance evaluation,
good models are those that lead to reliable evaluations. This implies that clustering
should be validated by comparing evaluation results for the original workload and the
cluster-based model of the workload [99, 556]. If the results are compatible, the cluster-
ing is valid.

To read more: The formal framework for studying clustering is provided by graphs, where the
vertices are the items and the edges represent the distances. Clustering is then a partitioning
of the vertices such that each partition is dense, but connections among partitions are sparse.
An exposition along these lines, comparing metrics for the quality of the clustering, is given by
Gaertler [274].

Workload Modeling with Clusters

The pure form of clustering as described earlier implies a partitioning of the data: each
item belongs to one and only one cluster. This strict requirement is the source of some
of the problems with clustering, because in many cases the items being clustered do not
have modal distributions. Therefore the data does not partition naturally into disjoint
clusters.

But in workload modeling, it is often actually OK to have clusters that overlap (e.g.,
in relation to models based on using a mixture of distributions, a concept we reviewed
in Section 4.3). In particular, a mixture of multinormal distributions is often used.

The multinormal distribution (or multivariate normal distribution) is the joint dis-
tribution of multiple normal random variables. Thus if a workload is characterized by
k attributes, a “cluster” of workload items can be characterized by a set of k normal
distributions, each specifying the mean and standard deviation of one attribute. Work-
load items in this cluster are those that have a combination of attribute values that fits
the specified distributions. The set of k normal distributions defines a k-dimensional
multinormal distribution.

Returning to mixtures and clusters, by using multiple multinormal distributions (that
is, multiple sets of normal distributions of attribute values) we can describe multiple
clusters of workload items. The way to do this is as follows.

1. Starting with workload data, cluster it using your favorite clustering algorithm
(e.g., one of those described earlier).
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2. Use each cluster to define a multinormal distribution. To do so, iterate on the
workload attributes. For each attribute, fit a normal distribution to the attribute
values of jobs in this cluster. This combination of normal distributions (each with
its mean and standard deviation) defines the desired multinormal distribution.

3. Use the EM algorithm to reassign workload items to clusters (or rather, to multi-
normal distributions) and to adjust the parameters of these distributions. (The EM
algorithm is described in Section 4.3.2.)

Note that if the resulting clusters are close enough in all the dimensions, the distribu-
tions may overlap. This reflects a more continuous and less modal workload, where the
clusters do not stand out so much.

A 1D example was given in Figure 4.6 in Section 4.4.2. The attribute in question
was job runtimes. The distribution of job runtimes was multimodal, with some very
prominent peaks (many jobs with practically the same runtime) and some wider swells
(a collection of jobs with similar runtimes). Using the EM algorithm this distribution
was modeled as a mixture of normal distributions.

Modeling a workload based on sampling from a multinormal distribution represent-
ing clusters of workload items has the advantage of combining several desirable proper-
ties [440]:

• The marginal distributions of the different workload attributes are maintained by
the combinations of normal distributions representing each attribute in the differ-
ent multinormal distributions.

• The common combinations of attribute values that should appear are maintained
by using multinormal distributions that dictate specific combinations of distribu-
tions for the different attributes. This leads to the correct correlations, which is
what we started from.

• It is also possible to incorporate locality of sampling, by controlling the lengths of
sequences of samples from the same multinormal distribution.

However, this approach is not very good if workload attributes have continuous distribu-
tions rather than modal ones.

6.4.5 Modeling Correlations with Distributions

As noted earlier, many workloads do not cluster nicely — rather, attribute values come
from continuous distributions, and many different combinations are all possible. This
motivates the use of complete distributions rather than representative points. But the
distributions of the different attributes must be correlated in some way.

The direct way to model a correlation between two attributes is to use the joint distri-
bution of the two attributes. This approach suffers from two problems. One is that it may
be hard to find an analytical distribution function that matches the data. The other is that,
for a large part of the range, the data may be very sparse. For example, most parallel jobs
are small and run for a short time, so we have a lot of data about small, short jobs. But
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Figure 6.30: Modeling the dependence of runtimes on job size by using different distri-
butions for different sizes.

we may not have enough data about large long jobs to say anything meaningful about
the distribution — we just have a small set of unrelated samples.

A possible solution is therefore to divide the range of one attribute into subranges,
and model the distribution of the other attribute for each such subrange. For example, the
Jann model of supercomputer workloads divides the job size scale according to powers
of two, and creates an independent model of the runtimes for each range of sizes [370].
These models are completely independent and turn out to be quite different from each
other (Figure 6.30 left).

An alternative is to use the same model for all subranges, and define a functional
dependency of the model parameters on the subrange. For example, the Feitelson model
first selects the size of each job according to the distribution of job sizes; it then selects
a runtime from a distribution of runtimes that is conditioned on the selected size [230].
Specifically, the runtime is selected from a two-stage hyper-exponential distribution, and
the probability of using the exponential with the higher mean is linearly dependent on
the size:

p(n) = 0.95− 0.2(n/N)

Thus, for small jobs (the job size n is small relative to the machine sizeN ) the probability
of using the exponential with the smaller mean is 0.95, and for large jobs this drops to
0.75. The result is shown on the right of Figure 6.30.

An important advantage of modeling correlation with distributions is that this ap-
proach can handle categorical data, which are especially common when the workload
is actually a mixture of several workload classes. For example, consider Internet traffic
that is generated by multiple applications. Each of these applications has its own distri-
bution of packet sizes, leading to a correlation between the packet sizes and the protocol
being used. As the protocols are categorical, Internet traffic is best modeled by simply
multiplexing the distributions that characterize the different applications and protocols.
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6.4.6 Dynamic Workloads vs. Snapshots

Workload items typically have finite durations. Applications running on a workstation
or parallel jobs on a parallel supercomputer have their runtimes. Requests from a web
server have their service times. Flows on the Internet also exist only for a certain time.
Even files may be deleted after some time.

An important implication of correlations between the duration and any other work-
load attribute is that the distribution of such attributes depends on how we observe it. The
distribution of newly arriving items is different from the distribution of items currently
in the system [190].

For example, consider the relationship between runtime and size in parallel jobs. If
we look at a job log directly, we see one distribution of sizes. But if we simulate the
execution of the jobs, and look at the distribution of sizes during the simulation, we will
see a somewhat modified distribution (Figure 6.31). The reason is that long jobs tend to
be bigger, and they hang around in the system longer, so they have a higher chance of
being observed. In effect, the sizes are weighted by their average runtimes.

Feller calls such effects “waiting time paradoxes” [254, sect. I.4]. Consider buses
that arrive according to a Poisson process with exponential interarrival times that have a
mean θ. You arrive at the bus stop at some arbitrary time, that is uncorrelated with the
last bus. How long should you expect to wait? One answer is that due to the memoryless
property of the Poisson process, you can consider your moment of arrival as the begin-
ning of a wait, and therefore expect to wait θ time. But you actually arrived during some
interval that comes from a distribution with mean θ, so another answer is that by sym-
metry you may expect to wait only θ/2 time. The solution is that the second answer is
wrong, because the intervals are not chosen uniformly: if you arrive at an arbitrary time,
you have a higher chance to fall in a long interval than in a short one. With appropriate
weighting of the intervals, their mean turns out to be 2θ, and the symmetry argument
then indicates that you should again expect to wait θ time.

The consequence of all these considerations is that one needs to be careful when col-
lecting data. Accounting logs and activity logs, which contain data about each workload
item, are more reliable than sampling of active systems. If sampling must be used, then
weighting due to different durations should be factored out.

6.5 Correlation with Time

A special type of correlation is correlation with time. This means that the workload
changes with time: it is not stationary.

At human time scales, the most commonly encountered nonstationary phenomenon
is the daily work cycle. In many systems, the workload at night is quite different from
the workload during the day. Many workload models ignore this feature and focus on the
daytime workload, assuming that it is stationary. However, when the workload includes
items whose duration is on the scale of hours (such as parallel jobs), the daily cycle
cannot be ignored [248]. Also, in some cases it is wrong to assume that the daytime
workload is more important; for example, in web search workloads the activity of home
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Figure 6.31: The distribution of job sizes (left) changes if jobs are weighted by their
runtime (right).
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Figure 6.32: Nonstationarity in parallel job logs, as exemplified by the moving average
of job runtimes. The average is computed over a window of 3000 jobs.

users in the evening and at night is no less important than the activity of professionals
during the day [63].

Over long ranges, a nonstationary workload can be the result of changing usage
patterns as users get to know the system better. It can also result from changing missions,
e.g. when one project ends and another takes its place. Such effects are typically not
included in workload models, but they could affect the data on which models are based.
In business applications, seasonal effects may also change the workload.

In mathematical notation, nonstationarity is expressed by parameters that are a func-
tion of the time t. For example, in a stationary model the arrival rate is denoted by λ,
which is a constant. In a nonstationary model we have λ(t) (i.e., λ changes as a function
of t). Two common types of change are as follows:

• Periodic: the value of λ changes in a cyclic pattern and repeats itself after a period
T . An especially simple example is a sinusoidal pattern

λ(t) = λ0 + λδ sin

(
2πt

T

)
Here λ0 is the average rate, and λδ is the modulation (which should satisfy λδ ≤
λ0 in order to avoid negative values). In general, any periodic function can be used
instead of the sinus. In particular, it can be hand-carved to describe a single cycle,
as exemplified in the next section.

• Drift: the value of λ grows (or shrinks) with time. For example, a linear drift
would be expressed as

λ(t) = λ0 + λδ t

where λδ is the change per unit time.

Of course, real systems do not limit themselves to simple mathematical models like
these. For example, Figure 6.32 shows the moving average of job runtimes in several
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Figure 6.33: The daily number of active users on a parallel supercomputer shows clear
weekly cycles, as well as a yearly effect in the holiday season from Christmas to New
Year’s Day.

large parallel supercomputer logs. Some of these display large fluctuations, indicating
that the workload is nonstationary. However, they do not follow any clear pattern.

To read more: Correlation with time is the subject of time-series analysis. There are many
books on this subject. A concise introduction is given by Chatfield [121]; Another readable
exposition is Shumway and Stoffer [619].

6.5.1 Periodicity and the Diurnal Cycle

Cycles are well known in statistics. Perhaps the most common is the seasonal cycle,
which as its name suggests reflects yearlong weather patterns. It also relates to many
economic endeavors: retail chains may make most of their money in December, whereas
seaside resorts make theirs in July and August. For computer workloads, daily and
weekly cycles seem to be more important, but yearly effects may also be observed occa-
sionally (Figure 6.33).

The diurnal cycle is a well-known and widely recognized phenomenon, which ap-
pears in practically all workloads (e.g., [327, 321, 525, 63, 763, 747, 758, 382, 192, 42]).
An example from parallel supercomputers is shown in Figure 6.34. The cycle typically
shows higher activity during the day and lower activity during the night. However, de-
tails may differ among different types of workloads. For example, in work-related activ-
ities one often sees a dip in activity during lunchtime, but in recreational activities such
as watching video-on-demand there may be a peak of activity during lunchtime [747].
Also, the peak activity may be in the morning, in the afternoon, or in the evening — as
happens for Internet activity at some ISPs, where the peak activity occurs when people
return home after work [747, 382].
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Figure 6.34: Arrival patterns at four large-scale parallel machines.

Detecting Periodicity

But what about periodicity in general? Workloads may also contain other periods that
are not necessarily related to human activity. Such phenomena may be identified using
the workload’s autocorrelation.

Background Box: Time Series and Autocorrelation

A time series is a sequence of samples from a random variable, where the index denotes
time: X1, X2, X3, . . .. For example, X1 can be the number of packets that arrived in the
first second, X2 the number of packets that arrived in the next second, X3 the number in
the third second, and so on.

Given such a sequence, its autocorrelation is its correlation with itself, as a function of the
relative lag.

Let’s do this more slowly. To measure the correlation between two sequences, we want
to quantify how similar they are. If the sequences are correlated, they should have large
values at the same positions, as well as small values at the same positions. A good way
to measure this is as follows. First, center the data. This means that we calculate the
mean of the whole series, and subtract it from each sample. We now have a new sequence
Zi = Xi − X̄ , with values that are both positive and negative. The mean of this new
sequence is 0, because
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n∑
i=1

Zi =

n∑
i=1

(Xi − X̄) =

n∑
i=1

Xi − nX̄ = 0

Second, we perform an element-wise multiplication of the two centered sequences, and
find the average of the products. The idea is that, if the sequences are correlated, large
values will be multiplied by each other, leading to extra-large products. Because of the
centering, small values will be negative, and, when multiplied, will also lead to large
(positive) products. Thus the sum (and average) of all the products will be large. But if the
sequences are uncorrelated, we will get a mixture of products that are positive (both values
are large or small) and negative (one value is large and the other is small). As a result, they
will cancel out, and the sum will be close to zero. This is exactly the covariance of the two
series, as defined already on page 267. The correlation is the covariance divided by the
product of the standard deviations of the two series; this normalizes it to the range [−1, 1].
To derive the autocorrelation of a sequence, we simply perform this procedure using the
same sequence twice. But this is relatively uninteresting, because large values are guaran-
teed to match up with themselves, and small values with themselves, and the correlation is
identically 1. It becomes interesting only if we introduce a lag: one of the copies is shifted
by a certain number of locations k. The ith product is then not Z2

i but rather ZiZi+k. The
autocovariance at a lag of k is therefore3

γ(k) =
1

n− k

n−k∑
i=1

(Xi − X̄)(Xi+k − X̄)

(where we have written the full expression for the Zis).
The autocorrelation at a lag of k is the same expression divided by the product of the two
standard deviations. But the two sequences are one and the same, so this product is just
the variance:

r(k) =

1

n− k

n−k∑
i=1

(Xi − X̄)(Xi+k − X̄)

Var(X)
(6.11)

The main use of the autocorrelation function is to find periodicity. If the sequence is
periodic, with high values occurring, say, every ℓ samples, then r(ℓ) will be relatively
large whereas for other values it will be small.

End Box

An example is shown in Figure 6.35. The top part graphs page views of Wikipedia
at an hourly resolution over a period of 17 days. The daily cycle is clearly visible, even
though activity at night is still very high. The autocorrelation of this series based on a
whole year of data is shown below (a graph like this showing the autocorrelation function
is sometimes called a correlogram). The autocorrelation at a lag of 0 is 1, as may be
expected, because the sequence is being compared to itself and therefore produces an
exact match. The autocorrelation quickly decays when the lag is increased. At a lag
of 12 hours the autocorrelation is negative, because we are matching daytime activity
with nighttime activity. But then it peaks again at 24 hours; that is, at a lag of one day.

3An alternative form uses a normalization of 1
n

rather than 1
n−k

, because it has better properties that are
relevant when using spectral analysis; in any case, the difference is small for k small relative to n.
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Figure 6.35: Excerpt from hourly data on Wikipedia page views over time starting at 11
AM on 11/11/11 (top, dates are for Sundays), and the beginning of the autocorrelation
function of an entire year of data (bottom).

It also has peaks at multiples of this value, because the sequence tends to match itself
whenever the lag is some integral number of days. One can also pick out the weekly
cycle, in which the seventh peak is slightly higher than the others (and again, this repeats
at multiples of seven).

The Wikipedia data is very clean in the sense that the daily cycle is clearly visible.
As a result the oscillations in the autocorrelation function are also very pronounced.
But the autocorrelation function can also extract periodicity from much noisier data.
An example is shown in Figure 6.36, which displays the arrivals at the SDSC Paragon
machine at an hourly resolution over a period of eight days. The daily cycle is barely
discernible (note that at the grid lines denoting midnights the load is always very low).
But the autocorrelation of the arrivals in anentire year of the log (shown in the bottom
graph) clearly shows peaks at 24-hour intervals. For comparison the average runtimes
of the arriving jobs in each hour are also shown. In this case there is a very weak
autocorrelation if any, at all lags, and no peaks.

The peaks of the autocorrelation function in Figure 6.36 are rather flat and wide.
The reason is that the data itself is like that, exhibiting a wide surge in activity during
the daytime and a dip during the night. Thus if we match up 12 noon with 2 PM the next
day, rather than matching it with 12 noon the next day (a lag of 26 hours instead of 24
hours), we don’t lose much in terms of the correlation.

However, there are other domains in which autocorrelation functions do exhibit sharp
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Figure 6.36: Excerpt from data on arrivals and runtimes of jobs on a parallel supercom-
puter over time (top), and the autocorrelation functions of the entire series (bottom).

peaks. This happens if the data has an irregular fine pattern that nevertheless repeats
itself. Under such circumstances, only an exact match (that is, a lag of precisely some
integral number of cycles) will produce a high correlation.

Practice Box: Calculating the Autocorrelation

The autocorrelation, like the variance (see page 97), can be calculated in one pass on the
data. The required running estimate of the mean is calculated as

Mn =
n− 1

n
Mn−1 +

1

n
Xn

and the sum of the products of deviations from the mean at lag k as

Sn = Sn−1 +
n− 1

n
(Xn −Mn−1)(Xn−k −Mn−1)

To obtain the autocovariance divide this by n − k, and to obtain the autocorrelation fur-
ther divide by Var(X) (which should be estimated similarly). Note that this formulation
requires the last k samples to be stored, and that only a single lag is given.

To calculate the autocorrelation function efficiently for all lags, albeit not online as the
data is being read, the FFT algorithm is used [70, 150, chap. 30].

End Box

Categorical Data

The previous material described of how the autocorrelation function works for numerical
data, such as the arrival rate of new jobs. However, periodicity may also be apparent with
categorical data.
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Figure 6.37: The average job size correlates with time: larger jobs ran at night. Data
from the NASA Ames iPSC/860.

Examples of categorical data abound in workloads. The most prevalent is what type
of work is being done. For example, many people start their day with reading and re-
sponding to email or reading the news, but do this less often later in the day [382]. An
interesting study of web search behavior showed that the popularity of different search
topics changes at different times of day, with music searches peaking at 3–4 AM, porn
at 5–6 AM, and personal finance at 8–10 AM [63]. The largest shifts in popularity in
video-on-demand also occur during the early morning hours [747].

In fact, such correlation with an arrival pattern (and thus, with time) may also oc-
cur for numerical data. An example is given in Figure 6.37, which shows the average
demand (defined as the node-seconds consumed) of jobs that ran on the NASA Ames
iPSC/860. Obviously, large jobs ran only at night, whereas daytime hours were domi-
nated by relatively small jobs.

Modeling the Daily/Weekly Cycle

There are three main approaches for dealing with daily and weekly cycles. One is to
divide the day into a number of ranges and model each one separately, assuming that it
is stationary. Another is to find a function that models how the workload changes with
the time of day. The third is to use a generative model that includes a daily cycle.

Partitioning the day into a number of stationary periods has the advantage of also
being easily applicable to categorical data. For example, the following partitioning into
two or three relatively homogeneous intervals has been proposed [131]:

• Low rate from midnight to 8 AM on workdays and midnight to 9 AM on week-
ends.

• Intermediate rate from 5 PM to midnight on workdays and from 9 AM to midnight
on weekends.

• High load from 8 AM to 5 PM on workdays.

If this is insufficient, a finer resolution of one hour can be used [540, 42].
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Figure 6.38: Daily arrival pattern according to the model of Calzarossa and Serazzi.

The other approach is to use a parameterized distribution, and to model the daily
cycle by showing how the parameters change with the time of day. In particular, interar-
rival times can be modified such that more arrivals occur during prime time, and less at
night [321, 454]. This first requires a model of the level of activity as a function of the
time of day.

Calzarossa and Serazzi have proposed a polynomial of degree 8 for this, which cap-
tures the variations between the morning and the afternoon [102]. The proposed poly-
nomial for “normal” days is

λ(t) = 3.1−8.5t+24.7t2+130.8t3+107.7t4−804.2t5−2038.5t6+1856.8t7+4618.6t8

where λ(t) is the arrival rate at time t, and t is in the range [−0.5..0.5] and should
be scaled to the range from 8:30 AM to 6:00 PM; this is shown in Figure 6.38. This
expression represents the centroid for a set of polynomials that were obtained by fitting
measured results for different days. Slightly different polynomials were discovered for
abnormal days, in which the administrative office closed early, or were the first day after
a weekend or a holiday. The model is naturally smoother than the data shown above. It
has a pronounced peak in the morning hours and a large dip at lunchtime. Lublin has
proposed a simpler model, based on a gamma distribution, shifted so that the minimum
occurs at 5 AM [454].

Given a functional description of the arrival rate for different times of day, one still
needs to generate the arrivals themselves. Normally, with a homogeneous model, one
would generate interarrival times that are inversely proportional to the arrival rate. With
a uniform arrival rate, these interarrival times are exponentially distributed (as shown in
Section 3.2.1). So if the previous arrival occurred at time t, and the arrival rate is λ, we
can generate a uniform random variate u and set the next arrival to be at t − 1

λ ln(u).
(Because u < 1 we have ln(u) < 0, so the sign is correct.)

The problem is that, when arrival rates change, a low arrival rate does not imply
that additional arrivals should not occur until a long time into the future, because the
arrival rate my increase shortly thereafter. Rather, a low arrival rate means that there is
a low probability for an arrival now. In principle we can achieve this with a time-based
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model, where for each time unit an arrival is generated with a probability that is inversely
proportional to the momentary arrival rate. However, this has high overhead because we
need to consider each time instant, at the finest resolution, and most of them will be
empty (for example, if the arrival rate is one every 3threeseconds on average, and we are
working at a resolution of milliseconds, there will be one arrival every 3000 time units
on average).

A better solution is to generate arrivals at the maximal possible rate and reject the
extra ones. Denote the arrival rate at time t by λ(t), and the maximal arrival rate ever as
λ∗ = maxt λ(t). We then generate arrivals uniformly at a rate of λ∗ as described earlier.
But we don’t use all of these arrivals. Instead, for an arrival that occurs at time t, we use
it with probability λ(t)/λ∗. If λ∗ is not too high relative to the average arrival rate, the
overhead for wasted arrivals is acceptable.

A potentially better alternative is to use a user-based generative model, in which the
daily and weekly cycles are created by user sessions that are synchronized with these cy-
cles. For example, Zilber at al. propose a model with four user classes, corresponding to
combinations of users who are active at day or at night, and on weekdays or on weekends
[763]. Each user class has its characteristic combination of sessions types, and there are
more daytime users than nighttime users, leading to a daily cycle of fluctuations in the
load. Shmueli and Feitelson elaborate a model for daytime users. In their model, users
have a propensity to leave the system around 6 PM and return between 8 and 10 AM the
next day [616, 248]. This is done by keeping track of wallclock time when generating
new arrivals. When the arrivals model generates a new arrival that should occur too late,
the daily cycle model modifies it to shift it to the next day.

6.5.2 Trends

Nonperiodic correlation of a workload with time typically reflects the evolution of work-
load attributes. In some cases, this evolution can be a sequence of discrete changes, as
may occur when users move from one project to another. There is not much to say about
such changes from a modeling perspective. We therefore limit this discussion to cases
where the evolution of the workload follows a distinct trend.

An example of workload data with a trend is shown in Figure 6.39. This is the
activity experienced by the 1998 soccer World Cup website in the weeks preceding the
start of the tournament. As the beginning of the games drew closer, more and more
users visited the website in anticipation. As is often the case, the trend is superimposed
by a daily and weekly cycle. To analyze the cycles, we need to characterize and remove
the trend.

In order to observe the trend itself, without being distracted by the details of the
daily cycle, it is best to work at the granularity of complete cycles. To do so, we simply
sum over each 24-hour cycle (Figure 6.40). We can then take the differences between
these daily values. Although the differences fluctuate around zero, one should take care
not to jump to conclusions regarding their behavior. First, it is obvious that the average
difference must be positive, because the original data contains an unmistakable upward
trend. We therefore perform a linear regression on the differences, to find whether they
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Figure 6.39: Hits on the WC’98 website show a distinct increasing trend as the start of
the tournament approaches.
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Figure 6.40: The data from Figure 6.39 after summing over 24-hour intervals, and taking
first differences.

too display some trend. If they are well modeled by a horizontal line, then first differ-
ences suffice, and the trend in the original data is a linear trend. But if the differences
also display an upward trend, we should in principle check the second differences and
consider a quadratic model for the original data.

In our case, the slope of a regression line representing the first differences is -154,
which is minuscule considering the values involved (which are in the millions). Like-
wise, the correlation coefficient of the first differences with the time is only 0.034 (the
correlation coefficient of the original data with the time is 0.868). Thus it indeed seems
that we can use a linear model for the trend.

After removing the linear trend, we are left with the daily cycle, the weekly cycle,
and random fluctuations (Figure 6.41). The analysis can continue based on the observa-

Version 1.0.4, typeset on June 10, 2023



300 CHAPTER 6. CORRELATIONS IN WORKLOADS

WC’98 website

time [h]

0 168 336 504 672

re
s
id

u
a
l 
h
it
s
 p

e
r 

h
o
u
r

 [
th

o
u
s
a
n
d
s
]

−150
−100

−50
0

50
100
150
200
250

lag [h]

0 168 336 504 672

a
u
to

c
o
rr

e
la

ti
o
n

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.41: The data after removing the trend, and its autocorrelation function. 168
hours are one week.

tion that the amplitude of the daily and weekly cycles grows with time. This implies a
multiplicative effect, which can be turned into an additive effect by using a logarithmic
transformation. Such procedures are covered in texts on time series analysis; this is not
pursued further here.

However, it may be instructional to compute the autocorrelation function again, as
we did in the previous section. Here the data is much cleaner, so the peaks of the auto-
correlation are much higher. In addition, there is a bigger difference between weekdays
and weekends, so the seventh peak is noticeably higher than the others. The sixth and
eighth are also higher than the third, fourth, and fifth, because the weekend is two days
long, and matching one of them is better than not matching either.
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7
Self-Similarity and

Long-Range Dependence

Self-similarity and long-range dependence are, formally speaking, distinct phenomena.
However, in practice they typically come together. Self-similarity is about scaling: the
workload includes bursts of increased activity, and similar-looking bursts appear at many
different time scales. Thus the workload appears similar to itself when viewed at a
different scale (e.g., at a resolution of minutes rather than at a resolution of seconds).
Long-range dependence is about correlations: what happens now is correlated to what
happened a moment ago, and actually also with what happened in the more distant past.
Of course, the correlation with the past does in fact decay with time. However, it decays
slowly, and thus effects accumulate over a long period. As a result long-range correla-
tions may create the observed bursts of activity.

Even more so than heavy tails, these are advanced topics in statistical modeling that
are typically not encountered at the introductory level. In fact, the mathematical sophis-
tication of these topics is significantly higher than any other material in this book. But
these topics reflect real-life situations and cannot be ignored. In the interest of promoting
understanding, we emphasize gaining an intuition of what the different definitions mean.
This material is usually followed by some mathematical derivations, at least in outline.

The domain in which self-similarity and long-range dependence are encountered is
the arrival process: how work arrives at the system. This chapter begins by reviewing
Markovian arrival processes, such as the Poisson process. It then contrasts them with the
phenomena of self-similarity and long-range dependence.

To read more: There is now quite a bit of literature regarding self-similarity and long-range
dependence in workloads. A good place to start is the book edited by Park and Willinger [537],
in particular the introductory chapter by the editors that reviews the field and the underlying
mathematics [538]. Surveys include Cappé et al. [106], Abry et al. [3], and Samorodnitsky [589].
Barford has collected an annotated bibliography of the most important papers on the subject from
the late 1990s, which can be found at URL http://www.cs.bu.edu/pub/barford/ss lrd.html.

The study and modeling of self-similarity were actually started in hydrology, and later ap-
plied to other geophysical fields [469]. Another field in which self-similarity is in wide use is

301
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economics — based on the premise that if you can predict market fluctuations you can make
money. Books on econometrics are therefore good sources on the subject. In particular, Peters
provides a good introduction [545].

For the more mathematically inclined, detailed treatments have been written by Samorodnit-
sky and Taqqu [590] and by Beran [67].

7.1 Poisson Arrivals

A Markovian arrival process is based on a Markov chain: it can be in any of a given set of
states, and can move from one state to another with certain probabilities (for background
on Markov chains, see page 242). Certain transitions of the Markov chain are associated
with “arrival events”, meaning that, when such a transition happens, a new arrival is
generated by the model. As a result, interarrival times have a phase-type distribution.
The complexity of the model, and the variability of the generated workload, depend
on the state space of the underlying Markov chain and which transitions correspond to
arrivals.

7.1.1 The Poisson Process

The simplest Markovian arrival process is the Poisson process. It has only one state, so
arrivals are generated at a constant rate. It is defined more formally as follows (repeating
the definition in Section 3.2.1).

Consider a period of time T during which events occur at an average rate of λ events
per time unit. Partition the period T into very many small intervals. To qualify as a
Poisson process, the following three conditions must hold:

1. There is no more than a single event in each interval (of course, many intervals
will have no events in them).

2. The probability of having an event is the same for all intervals.

3. The existence of an event in a specific interval is independent of whatever happens
in other intervals.

Given a dataset (e.g., arrivals of jobs at a parallel supercomputer, or arrivals of pack-
ets at a network router), an important question is whether these arrivals can be modeled
as a Poisson process, or perhaps another more complicated model is required. This chap-
ter focuses on those other models, but first let us consider tests that can be applied to the
data to determine whether a Poisson model is appropriate.

The obvious approach is to test for the salient features of Poisson processes. In
Section 3.2.1 we showed that the interarrival times of a Poisson process are exponentially
distributed, with a mean of 1/λ time units. It is therefore possible to check whether
arrivals in a log conform to a Poisson process by verifying that their interarrival times
are exponentially distributed and independent. These properties can each be checked
individually [540].
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To check that interarrival times are exponentially distributed, the best parameter
value θ is estimated as the mean interarrival time. The data is then compared with an ex-
ponential distribution with parameter θ using the Kolmogorov-Smirnov (or some other)
goodness-of-fit test. To check for independence we can use the autocorrelation function.
The test is very simple: if the interarrivals are independent, there should be no corre-
lation between them. So it is enough to check the autocorrelation at lag 1 (the “serial”
correlation) and see that it is close to zero [320]. Additional tests for a Poisson process
are listed below in Section 7.4.1.

Another option is to use a graphical method. Start by counting the number of ar-
rivals in successive time units (e.g. seconds). Such counting defines a series of random
variables Xi, where X1 is the number of arrivals in the first second, X2 the number of
arrivals in the second second, and, in general, Xi is the number of arrivals in the ith
second. Such a series is called a time series, because the index denotes time. Now ag-
gregate this series. This means that we compute the sums of non-overlapping subseries.
For example, we can sum up the first 10 values, the next 10 values, and so on. Doing so
gives us the same data at a coarser granularity: instead of arrivals per second, we now
have arrivals per 10 seconds. And we can aggregate again and again, to get arrivals per
100 seconds and arrivals per 1000 seconds.

Figure 7.1 shows what happens when we perform such aggregation on a Poisson pro-
cess with a rate of λ = 5. The top-left graph shows that at a fine granularity arrivals are
bursty. Although there are five arrivals per second on average, some seconds have more
arrivals and others have fewer. But as we aggregate the data these deviations tend to can-
cel out, because they are independent. Therefore the aggregated data is much smoother.
As we see later, this smoothing does not happen (or rather, happens much more slowly)
for self-similar data, where the arrivals in successive seconds are correlated.

7.1.2 Nonhomogeneous Poisson Process

Before we start with self-similarity, it is appropriate to briefly describe a couple of more
advanced Poisson-based processes. The first is the nonhomogeneous Poisson process.
In this model, the arrival rate λ changes with time. This process is intended to capture
situations in which the assumption of a constant arrival rate is inappropriate.

Nonhomogeneous Poisson processes have been proposed for modeling the daily cy-
cle of activity (see Section 6.5.1). One way to do so is to find a function that models
the arrival rate as a function of the time of day [102, 454]. This changes the require-
ment that the probability of an arrival event be the same for all intervals, and replaces
it with different probabilities that reflect the different arrival rates. Another option is to
assume that the change is not continuous, but instead that different λs apply for different
periods, such as morning, evening, and night [540, 131]. Note that this is different from
having a Markovian process with several states with different λs, because the value of λ
is determined by the time, and not randomly by the underlying Markov chain.

Another class of nonhomogeneous Poisson processes includes those that are not pe-
riodic, such as the Markov-modulated Poisson process (MMPP). This model includes
an underlying Markov chain, and when this chain is in state i, arrivals occur at a rate λi

Version 1.0.4, typeset on June 10, 2023



304 CHAPTER 7. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

original data − Poisson

0 20 40 60 80 100

a
rr

iv
a
ls

 p
e
r 

s
e
c

0

5

10

15

aggregated X10

0 200 400 600 800 1000

a
rr

iv
a
ls

 p
e
r 

1
0
 s

e
c

0

50

100

150

aggregated X100

0 2000 4000 6000 8000 10000

a
rr

iv
a
ls

 p
e
r 

1
0
0
 s

e
c

0

500

1000

1500

aggregated X1000

seconds

0 20000 40000 60000 80000 100000

a
rr

iv
a
ls

 p
e
r 

1
0
0
0
 s

e
c

0

5000

10000

15000

original data − batch arrivals

0 20 40 60 80 100

0

5

10

15

20

25

30

aggregated X10

0 200 400 600 800 1000

0

50

100

150

aggregated X100

0 2000 4000 6000 8000 10000

0

500

1000

1500

aggregated X1000

seconds

0 20000 40000 60000 80000 100000

0

5000

10000

15000

Figure 7.1: A Poisson process shown at different levels of aggregation. Left: a simple
Poisson process with mean arrival rate of 5 arrivals per second. Right: a process with
batch arrivals. Batch sizes are exponentially distributed with a mean of 5, and the arrival
rate is reduced by a factor of 5 to compensate.
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[262]. Nonhomogeneous Poisson processes can also be used to model trends or work-
load evolution in general.

7.1.3 Batch Arrivals

Another extension of Poisson processes is to include batch arrivals. This increases the
burstiness of the arrivals by postulating that upon each arrival, not one but several items
will arrive together. The number of arrivals in each batch is selected from a distribution
that is also part of the model.

For example, batch arrivals may be used to model a situation in which customers
arrive by bus. The arrivals of buses is a Poisson process, but each bus brings with it
an entire batch of customers. In the context of computer workloads, such a model may
be used for requests arriving at an HTTP server. When a web page is downloaded,
it typically generates a set of additional requests to download embedded objects (e.g.
graphics) from the same server. These separate requests can be modeled as a batch of
requests that arrive together.

Although batch arrivals obviously increase the burstiness of arrivals, they still fail
to capture the type of burstiness that is actually observed in many arrival processes. As
shown in Figure 7.1, batch arrivals cause increased burstiness only at high resolution,
but they nevertheless average out when aggregated. In self-similar data, the arrivals in
successive seconds are correlated, and do not average out when aggregated. This is the
subject of the rest of this chapter.

7.2 The Phenomenon of Self-Similarity

The Poisson process shown in Figure 7.1 looks different at different scales. It looks
unchanging on a global scale, but bursty when we zoom in to investigate the short-term
fluctuations. A self-similar process, in contradistinction, looks nearly the same at all
scales.

Note that when we plot an arrival process, as in Figure 7.1 and Figure 7.3, the X
axis represents time and the Y axis represents intensity (arrivals per time unit). A central
question is what should be the relative scaling of these two axes. So far we have assumed
that they are both scaled together by the same factor: when we aggregate by a factor of
10, we also increase the intensity scale by a factor of 10. Such scaling is crucial in
making a Poisson process appear to be smooth upon aggregation. As we see later, the
definition of self-similarity (or more precisely, the degree of self-similarity) actually
depends on the relative scaling of the two axes.

7.2.1 Examples of Self-Similarity

Self-similarity refers to situations in which a phenomenon has the same general char-
acteristics at different scales [466, 602]; that is, if we zoom in, we will see the same
structure as we did before. This implies that parts of the whole are actually scaled-
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Figure 7.2: Examples of fractals: a 2D Cantor set, a tree in which each branch and sub-
branch are similar to the whole, and a 1D Cantor set with unequal weights that begins to
look like an arrival process.

down copies of the whole. This feature is the source of the name “self-similar”: the
phenomenon is similar to itself at a different scale.

Probably the best-known self-similar objects are fractals, geometrical constructions
such as those shown in Figure 7.2. Note that these fractals are purely mathematical
objects, and that their self similarity is precise and complete: the object contains exact
copies of itself at a smaller scale.

Background Box: Fractals

Fractals are geometric objects that have the following two (related) properties: they are
self-similar, and they do not have a characteristic scale.

Being self-similar means that parts of the object are similar (or, for pure mathematical
objects, identical) to the whole. If we enlarge the whole object we end up with several
copies of the original. This is also why there is no characteristic scale — it looks the same
at every scale.

The reason they are called fractals is that they can be defined to have a fractional dimen-
sion. This means that these objects fill space in a way that is different from what we are
used to. To explain this, we first need to define what we mean by “dimension”.
Consider a straight-line segment. If we double it, we get
two copies of the original.

If we take a square, which is composed of four lines, and
double the length of each of them, we get a larger square
that is equivalent to four copies of the original.

For a cube (which is composed of 12 line segments), dou-
bling each one creates a larger cube that is equivalent to 8
copies of the original.

Let us denote the factor by which we increase the length of the line segments by f , and
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the number of copies of the original that we get by n. These three examples motivate us to
define dimensionality as

d = logf n

With this definition, the line segment is one-dimensional (log2 2 = 1), the square is 2D
(log2 4 = 2), and the cube is 3D (log2 8 = 3). The intuition is that we multiply by a factor
of f in each dimension, and therefore the number of copies we get is fd.

Now apply the same definition to the endlessly recursive
Sierpinski triangle. Doubling each line segment by two
creates a larger triangle which contains three copies of the
original. Using our new definition, its dimension is there-
fore non-integral: log2 3 = 1.585. This motivates naming
it a fractal. A nice feature is that the dimension comes out
between 1 and 2: it is more than a line, but does not quite
fill out the plane.

While the above is a purely mathematical construction, examples of fractals from nature
abound [466]. They span the range of sizes from minute crystal formations to planetary
landscapes, including sea shells, composite leaves, and lungs along the way. Fractals also
occur in human-made artifacts, from Jackson Pollock’s drip paintings [680] to music [68],
stock market stock prices [545], and the scientific literature [207].

To read more: There are other definitions of fractal dimensions, with various mathemat-
ical justifications. For example, if you enlarge the tree in Figure 7.2 you do not get an
integral number of replicas of the same size, but rather a set of replicas at different sizes
plus some extra stems. For a detailed treatment of fractals, complete with anecdotes and
nice graphics, see the books by Mandelbrot [466] and Schroeder [602].

End Box

Self-similarity also occurs in nature. Of course, in natural phenomena we cannot
expect perfect copies of the whole, but we can expect the same statistical properties.
Maybe the most famous natural fractal is the coastline of Britain, which is reputed to
have inspired Mandelbrot’s investigation of the subject [465, 466]. The self-similarity
appears when we try to measure its length using yardsticks of decreasing length. The
shorter the yardstick, the more details we can observe, and the longer the coastline be-
comes. Thus we cannot really characterize it with a length; rather, we can characterize
it with a fractal dimension, which describes how the length grows as a function of the
yardstick.

Workloads often also display such behavior. The first demonstrations of self-similarity
in computer workloads were for LAN traffic, and used a striking visual demonstration
(reproduced in Figure 9.20) [436]. A time series representing the number of packets
transmitted during successive time units was recorded. At a fine granularity (i.e., when
using small time units), this series was seen to be bursty. But the same bursty behavior
persisted also when the time series was aggregated over several orders of magnitude,
by using larger and larger time units. This contradicted the common Poisson model of
packet arrivals, which predicted that the traffic should average out when aggregated.
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Figure 7.3: Job and process arrivals at the SDSC Paragon parallel supercomputer shown
at different levels of aggregation. Each parallel job is composed of many processes that
execute concurrently. In all the graphs time is in seconds; the duration of the full log is
two years, which is about 63 million seconds. Compare with the Poisson process shown
in Figure 7.1.
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Similar demonstrations have since been done for other types of workloads, including
the traffic in other networks, e.g. WANs [540]. Figure 7.3 gives an example of jobs
arriving at a parallel supercomputer (and see also [653, 670]). Self-similarity has also
been shown in file systems [304], web usage [155], and video traffic [69], to name a few.

7.2.2 Self-Similarity and Long-Range Dependence

As shown in Figure 7.3, self-similarity in workloads manifests itself in the form of bursti-
ness. Burstiness implies a highly variable load, which fluctuates between low loads and
high loads. The self-similarity means that not only do such fluctuations occur, but that
they also occur at all time scales. This implies that at the coarser time scales the fluctua-
tions also have to be bigger.

But burstiness also occurs in the Poisson process, at least when we zoom in and
observe it at a fine resolution. So what is the difference? How does a self-similar process
retain its burstiness when we aggregate it over several orders of magnitude?

The answer is that the samples in the self-similar process are not independent. Quite
the contrary — they are correlated with each other, and the correlation spans multiple
time scales. Not only are successive samples correlated to each other, but also samples
that are relatively far away from each other tend to be correlated.

As a result of this correlation, samples tend to come in long sequences of samples
that are similar to each other. Thus if a sample deviates from the mean, chances are that
it will be surrounded by other samples that deviate from the mean in the same direction.
Intuitively, this means that long sequences of similar samples tend to occur, and that
these sequences are further grouped into super-sequences. This intensifies the deviation
from the mean and leads to the bursty nature of the workload.

In mathematical terms the correlation among far-away samples is called “long-range
dependence”. Of course, sequences of similar samples may also occur by chance in
processes where each sample is independent. For example, if you toss a coin many
times, you may see sequences of throws that come out heads one after the other. When
using a fair coin, the lengths of such sequences are exponentially distributed. In long-
range dependent processes, the observed similar sequences tend to be much longer than
would be expected if they came from an exponential distribution. In fact, they come
from a heavy-tailed distribution.

So are self-similarity and long-range dependence just two faces of the same phe-
nomenon? The answer is no. In fact, self-similarity can arise from either of two
sources, which Mandelbrot picturesquely called the Noah effect and the Joseph effect
[466, p. 248]. The Noah effect refers to unique large-scale events, as happens when the
original (high resolution) samples are heavy-tailed. As we saw in Chapter 5, summing
heavy-tailed random variables does not average out, but rather leads to a heavy-tailed
sum. Thus when a process composed of heavy-tailed samples is aggregated, we will get
a process with similar statistics. In other words, it will be self-similar.

The other possible source of self-similarity, the Joseph effect, is long-range depen-
dence. As described above, this means that the events at a given time are correlated with
events that happened a long time before. This correlation prevents the averaging out of
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the process when it is aggregated, because the aggregation sums many samples that are
similar to each other: they are either mostly larger or mostly smaller than the mean.

The (mathematical) definitions of self-similarity, heavy tails, and long-range depen-
dence are independent of each other. In general we may have one without the other,
and in particular, one can construct self-similar processes that are not long-range depen-
dent. But in the practical situations of interest these two phenomena turn out to coincide,
and the self-similarity is typically a result of long-range dependence, and not a result of
heavy-tailed distributions [538].

7.2.3 The Importance of Self-Similarity

The effect of the high variability that is associated with self-similarity has been studied
mostly in the context of communication networks. Communication networks have often
been analyzed using Poisson-related models of traffic, which indicate that the variance
in load should smooth out over time and when multiple data sources are combined. This
property allows for precise evaluations of how much buffer space is needed to support
communications at a given average rate, as well as for the design of algorithms for
provisioning different levels of service to different users.

But in 1994 Leland and co-workers showed, based on extensive observations and
measurements from Ethernet LANs, that the load does not smooth out in practice [436].
Instead, they found that when traffic streams are aggregated or merged, they retain a
high level of burstiness. This behavior was consistent with self-similar models, and
such models were soon after shown to apply to other types of communications as well
[540, 155, 69].

Using self-similar workload models that capture the burstiness of network traffic
affects the results of performance evaluations. For example, such evaluations lead to
larger and more realistic estimates of required buffer space and other parameters [214].
They also cast doubt on the feasibility of various schemes for providing guaranteed levels
of service, because the high variability of the load prevents the system from being able
to estimate how much extra capacity is available [538].

Connection Box: Hydrology and Computer Networking

Two names are often associated with the development of the field of self-similarity: Harold
Edwin Hurst, who provided empirical data for many natural phenomena, and Benoit Man-
delbrot, who interpreted this data as reflecting long-range dependence.

The work of Hurst is especially interesting because of its close analogy with current models
of computer communications. Hurst was a hydrologist, who spent much of his professional
life in Egypt, studying the Nile River. His aim was to design a reservoir that would guar-
antee a steady flow of water, thereby overcoming yearly fluctuations in the rainfall over
the river’s basin. To do so, the reservoir had to be big enough to hold excess water from
years with lots of rain, and make up for the deficit in drought years. Using data spanning
1305 years (from 641 to 1946) Hurst showed that the fluctuations from the average were
much larger than what would be expected if the amount of water available each year was
an independent random variable [354]. Rather, rainy years and drought years come in long
sequences, as in the biblical story of Joseph (which is why Mandelbrot later called this the
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Joseph effect). This meant that a larger reservoir would have to be built — a reasoning that
eventually led to the construction of the high dam at Aswan in the 1960s.
Exactly the same considerations apply in computer communication networks. A router
connects several links with given maximal bandwidths. To optimally use this bandwidth,
the router should have buffers that are large enough to store excess data that arrives when
the output link is overly congested, thus allowing the data to be transmitted later when
the load abates. And indeed, one finds that the required buffers are larger than would be
expected if packet arrivals were independent random events. Although Hurst probably
did not foresee this specific analogy, the abstract of his 1951 paper ends with these words
[354]:

It is thought that the general theory [of scaling as presented in the paper] may
have other applications than the design of reservoirs for the storage of water.

End Box

At a more abstract level the phenomenon of self-similarity implies that the notion
of a “steady-state” workload is questionable. Assuming a steady state is the foundation
of queueing network models and many other types of analysis. But if significant fluctu-
ations may occur at many different time scales, the assumption of stability is violated.
This casts a shadow not only on analyses that assume stability, but also on simulations
that claim to use a single representative workload configuration. A better approach may
be to try and capture the heterogeneity of the workload, and the resulting diversity of
system behaviors and performance results [264].

7.2.4 Focus on Scaling

The figures commonly used to portray self-similarity, like Figure 7.3, are somewhat
misleading. It is not true that self-similar processes are bursty and a Poisson process is
not. The different processes are actually all quite similar. The difference lies only in
their scaling behavior.

In both Figure 7.1 (the Poisson process) and Figure 7.3 (the “self-similar” process),
the scale used in the different graphs grew in direct proportion to the level of aggrega-
tion. Thus in the Poisson process the scale at the most detailed view was 0 to 10, after
aggregating by a factor of 10 it was 0 to 100, and after aggregating by a further factor
of 10 it was 0 to 1000. Using such scales, it was possible to see that the average values
grow in direct proportion to the level of aggregation, as may be expected.

However, it is hard to quantify how the variance (or rather, the standard deviation)
changes with aggregation. To get a better view, we show the same data again in Fig-
ure 7.4, but this time the scale is set to fit the data. What we find is that in all cases
the variability actually grows with aggregation, and moreover, the Poisson process looks
self-similar when viewed at this vertical scale! However, the variability grows much
more slowly than the average. As a result the relative size of the variability, when com-
pared to the average as in the original figures, seems to decrease to the point where the
process looks completely stable.

By setting the scale to match the observed variability, we can get a rough estimate of
how the variability scales. The results are as follows:
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Figure 7.4: The Poisson date from Figure 7.1 on the left, and the same data again on the
right but shown at a different scale — namely a scale that corresponds to the variability
of the data.

Aggregation Range Relationship
1 5± 5 ≈ 5× (1±

√
1)

10 50± 15 ≈ 5× (10±
√
10)

100 500± 50 ≈ 5× (100±
√
100)

1000 5000± 150 ≈ 5× (1000±
√
1000)

Thus we see that when we aggregate by a factor of g, the average grows by a factor
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of g as well, but the variability grows only by a factor of
√
g. Hence if we draw the

process on a linear scale the variability seems to decrease as 1√
g . This result is in fact to

be expected. The Poisson distribution (which is the distribution of the actual number of
arrivals in each time unit of a Poisson process) has the property that its variance is equal
to its mean. Therefore its standard deviation, which is reflected by the variability we see,
is equal to the root of the mean.

In the self-similar process of Figure 7.3 the standard deviation also grows, and again,
it grows more slowly than the average. But in this case the difference in the rate of growth
is not as large as in the Poisson process. Therefore we do not see the variability disappear
as we increase the aggregation — at least not for the levels of aggregation shown in the
figure.

The commonly used model for self-similarity indicates that when the process is ag-
gregated by a factor of g the variability grows by a factor of gH . The Poisson process
is characterized by the exponent H = 0.5. More bursty processes are characterized by
higher exponents, e.g. H ≈ 0.7 or H ≈ 0.8. Thus H is a parameter that characterizes
the burstiness. This is the Hurst parameter, and it figures prominently in the rest of this
chapter.

As a matter of terminology, a process with H = 0.5 (such as the Poisson process)
satisfies the mathematical definition of self-similarity as given below. And indeed it
looks self-similar when drawn at the appropriate scale, as in Figure 7.4. However, com-
mon usage departs from mathematical precision in this case, and only processes with
H > 0.5 are typically called self-similar.

7.3 Mathematical Definitions

As noted earlier, the mathematical definitions of self-similarity, heavy tails, and long-
range dependence are independent of each other. But in the practical situations of in-
terest they turn out to coincide, and the self-similarity is typically a result of long-range
dependence and not of heavy-tailed distributions [538]. This starts with Hurst’s own
work, which demonstrated that self-similarity is observed even if the individual samples
are normally distributed [354]. Mandelbrot later showed how this self-similarity is due
to long-range dependence (as surveyed in [467]). Therefore procedures to measure ei-
ther self-similarity or long-range dependence can be used for the analysis of data, and
procedures to generate either one of them can be used in modeling.

The material in this section involves a higher level of mathematics than other parts
of the book. As we prefer to emphasize intuition and understanding rather than the exact
mathematical definitions, each subsection starts with a non-technical description of the
concepts being discussed.

7.3.1 Data Manipulations

The definitions of self-similarity and long-range dependence are based on some pre-
processing of the data. We therefore start by describing how data may be manipulated.
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Aggregation

In discrete processes the main tool used is aggregation. We start with a time series
X1, X2, . . . , Xn that is given at some specific resolution. For example, if the resolution
is milliseconds, X1 could be the number of packets that arrived in the first millisecond,
X2 the number of packets arriving in the second millisecond, and so on.

We then use aggregation to view the same data at a different resolution. For example,
we can sum up successive groups of 10 elements in the series, to derive a 10-fold aggre-
gation. The first element in the new, aggregated series will be X(10)

1 = X1 + · · ·+X10,
and it represents the number of arrivals in the first 10 milliseconds. The second element
will be X(10)

2 = X11 + · · · +X20, and so on. In general, the elements of a series with
m-fold aggregation are

X
(m)
i =

im∑
j=(i−1)m+1

Xj (7.1)

Increments and Accumulation

A basic distinction can be made between increments and accumulations. They are re-
lated to each other as a function and its integral, or as a derivative and its function: the
accumulations are the sums of the increments. In mathematical notation, we start with a
time series Xj and define

Yi =
i∑

j=1

Xj

that is, Yi is the sum of the first i elements of the series (Xj)j=1..n. The Yis are then
called the cumulative process associated with the Xjs, and the Xjs are called the incre-
ment process associated with the Yis. The name “increment process” derives from the
obvious relationship

Yi−1 +Xi = Yi

i.e., the Xs are the increments between successive Y s. Another name is the differences
(or first differences) of the Y s; yet another name is innovations. This relationship is
illustrated in the top two graphs of Figure 7.5.

Centering

The study of burstiness is concerned with deviations from the mean. We may know
the mean arrival rate, but what we are interested in are the bursts that deviate from this
mean. To focus on the deviations it is best to use centered data. To obtain centered
data we calculate the average of the whole series, and subtract it from each sample (or
in a theoretical framework, if we know the distribution, we would subtract the expected
value). We now have a new sequence:

Zi = Xi − X̄
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Figure 7.5: Centering and accumulation of data.

This transformation is illustrated in the third graph from the top of Figure 7.5. Note
that while the original data is typically positive (or at least non-negative, Xi ≥ 0), the
centered data can be negative.

Using the centered data we can define a new cumulative process
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Yi =

i∑
j=1

Zj =

i∑
j=1

(Xj − X̄) (7.2)

This has the unique property of starting and ending at 0, because the mean of the centered
data is 0:

Yn =
n∑

i=1

Zi =
n∑

i=1

(Xi − X̄) =
n∑

i=1

Xi − nX̄ = 0

This process is illustrated in the bottom graph of Figure 7.5.
The following discussions try to consistently use X or Z for increment processes,

and Y for cumulative processes, but sometimes X , Y , and Z are just arbitrary random
variables...

7.3.2 Exact Self-Similarity

Fractals such as those shown in Figure 7.2 are exactly self-similar because even when we
change their scale, the original and scaled versions are identical (strictly speaking, this
property only applies to infinite structures). To define the self-similarity of stochastic
processes, we must first be able to change their scale. This can be interpreted as being
able to view the phenomena of interest at different scales.

In a continuous stochastic process, the index is time. Viewing it at different scales
means viewing it at different resolutions, or with different time units. Formally, this is
achieved by scaling time: we replace Y (t) with Y (at). If a > 1 we move faster along
the time axis, and the process seems to be condensed; conversely, if a < 1 we move
more slowly and the process is diluted.

To qualify as self-similar, the scaled process should exhibit the same behavior as the
original one. Therefore only the magnitude is allowed to change. Such reasoning leads
to the following definition of exact self-similarity:

Y (t)
d≈ 1

aH
Y (at) (7.3)

Given that we are dealing with stochastic processes, we cannot expect both sides to be
really identical; they can only be identical in a statistical sense. Therefore we use d≈ ,
which means that the two sides have the same finite dimensional distributions.

Background Box: Finite Dimensional Distributions

Saying that two processes have identical finite dimensional distributions is a very strong
statement.
Consider the processes X and Y and observe them at the same time instant t. This gives
the random variables X(t) from process X , and Y (t) from Y . If they have the same
distribution, then for every value z we have

Pr(X(t) ≤ z) = Pr(Y (t) ≤ z)

Note that the distribution for a different time t′ may be different from that at time t; the
important thing is that it is the same for X(t′) and Y (t′). The distributions of single
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samples are known as first-order distributions. So if they are all the same we may say
that X and Y have identical first-order distributions. (If, in addition, the processes are
stationary, then the distribution will in fact be the same for all values of t.)
Now select a pair of samples from each process: (X(t1), X(t2)) fromX and (Y (t1), Y (t2))
from Y . Pairs of samples have a joint distribution. If the samples from the two processes
have the same joint distribution, than for every pair of values z1 and z2 we have

Pr(X(t1) ≤ z1, X(t2) ≤ z2) = Pr(Y (t1) ≤ z1, Y (t2) ≤ z2)

If this is true for every pair of samples, we say that X and Y have identical second-
order distributions. This in turn implies that they have the same covariances. This prop-
erty follows immediately from the definition of the covariance as γ(X(t1), X(t2)) =
E[(X(t1) − E[X(t1)])(X(t2) − E[X(t2)])], which is calculated as the double integral of
such products weighted by their joint (second-order) probability. (Covariance is discussed
at length later.)
In the general case, we sample the two processes at n different times, obtaining (X(t1), X(t2),
. . . , X(tn)) from X and (Y (t1), Y (t2), . . . , Y (tn)) from Y . Again, in each subset the
samples have some joint distribution. The requirement is that all these joint distributions
be the same, for all subsets of size n — and, moreover, for all sizes n. Hence the name
“finite dimensional distributions”.
Importantly, the behavior of an infinite series is fully defined by its finite dimensional
distributions. Thus considering them entails no loss of generality.

End Box

The use of Y is no accident — this definition applies to cumulative processes. In
effect, by scaling time we are looking at different levels of aggregation. Y (t) is the
sum of X up to time t. Y (at) is the sum up to time at, which can be regarded as the
aggregation of the sum up to t, the sum from t to 2t, the sum from 2t to 3t, and so on.

Cumulative processes are nonstationary by definition: the distribution of what we
see depends on t, the amount of time that we have been accumulating data. Thus in
such processes the magnitude changes monotonically with time, and scaling time can
lead to a similar process that simply grows at a different rate. The definition of self-
similarity cannot be applied to a stationary process, because stationarity implies that
X(t) andX(at) should have precisely the same distributions. There can be no correction
of magnitude to compensate for the change in scale.

Conversely, in a nonstationary cumulative process, we can have a change of scale.
The factor aH compensates for the change in rate resulting from the scaling. If a > 1
we move faster along the time axis and get to high values faster. We therefore divide by
aH > 1 to make up for this effect. The opposite happens when a < 1.

Note that we multiply time by a, but divide the effect on Y by aH . The reason is
that the effect is not linear. In fact, the way in which scaling time affects the process is
the whole point, as noted earlier in Section 7.2.4. The model is that the effect scales as
a raised to the power H . H is the Hurst parameter, which characterizes the degree of
self-similarity.

Importantly, the same exponentH applies to all scaling factors and to distributions of
all orders. Self-similar processes are fully characterized by this exponent, and are there-
fore denoted H-ss. In the more general case, different distributions may scale according
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to different exponents, but then the process is not called self-similar. Such complex
scaling is mentioned briefly at the end of this chapter.

Although the definition of self-similarity applies to cumulative processes, in prac-
tice, we are more often interested in increment processes than in cumulative processes.
One reason is that the increment process may be stationary, and thus makes for a better
model. As a result, we are often interested in self-similar processes that have stationary
increments, and specifically in the increments themselves. Such processes are denoted
H-sssi and form a subset of all self-similar processes.

7.3.3 Focus on the Covariance

Considering all the finite-dimensional distributions of the process gives a full character-
ization. If the distributions are identical in the original process and the scaled process,
then the process indeed possesses the property of exact self-similarity. But one can also
opt for a partial characterization. For example, one may require that only second-order
distributions be the same. Doing so greatly simplifies the description, and may also lead
to simpler models.

Although using only second-order distributions does not provide a full characteri-
zation, it does provide a good characterization of the basic behavior of the process. To
explain what this means we use the following analogy. Imagine some quantity has a
unimodal distribution without significant tails. This quantity is then well described by
its mean and its standard deviation. This does not provide all the information that the
distribution itself provides, but it succinctly describes the two most important features,
namely the expected magnitude and dispersion. Likewise, when we have a series of
values, the most important feature to characterize is the covariance.

Characterizing the covariance of a series does not mean summing it up to a single
number. Rather, we need to use the covariance matrix. Assume we are interested in
characterizing the series X1, X2, . . . , Xn. The covariance of any two elements, Xi and
Xj , is

γ(Xi, Xj) = E[ (Xi − E[Xi]) (Xj − E[Xj ]) ]

(see the box on page 292 for an explanation of this expression). The covariance matrix
is then

Σ =


γ(X1, X1) γ(X1, X2) . . . γ(X1, Xn)
γ(X2, X1) γ(X2, X2) . . . γ(X2, Xn)

...
...

γ(Xn, X1) γ(Xn, X2) . . . γ(Xn, Xn)


The diagonal elements of this matrix are the variances of the different elements in the
series. The off-diagonal elements give a characterization of their pairwise joint distribu-
tion. In particular, they quantify the degree to which pairs of elements tend to deviate
from their mean together in the same direction.

In many cases we can further assume that Xi is stationary and centered, so E[X1] =
E[X2] = . . . = E[Xn] = 0. In this case, the matrix is actually largely redundant. First,
the variances (the diagonal elements) are obviously all equal. But stationarity implies
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that other statistics are also not dependent on the index. In particular, the covariance of
X1 and X2 is the same as the covariance of X2 and X3, the covariance of X3 and X4,
and so on. Thus we find that for every diagonal, the elements on that diagonal are all
equal to each other.

When this is the case, it is possible to characterize the full covariance matrix by its
first row alone. This row gives the covariance of each element in the series with the first
element. This is then simply the autocovariance function. Thus for stationary processes
the autocovariance gives a good characterization of the entire joint distribution.

(There is also one case where the autocovariance, and second-order statistics in gen-
eral, actually provide the full characterization, and not just a good characterization of the
main features. This is when the process is Gaussian, andX1, . . . , Xn have a multinormal
(or multivariate normal) distribution. Because this distribution is completely specified
by its vector of expectations and its covariance matrix, ignoring higher-order statistics
does not entail any loss of information.)

In the following two sections we focus on characterizations based on the autocovari-
ance rather than the full distributions. This material is highly technical. To continue with
the intuition of what it all means, skip to Section 7.3.6.

7.3.4 Long-Range Dependence

The property that typically leads to self-similarity is long-range dependence. This is
defined directly in terms of the increments X , as opposed to self-similarity, which was
defined in terms of the cumulative process Y . We assume that these increments are
stationary.

The “dependence” part means that successive elements are not independent of each
other, as is often assumed. Rather, each event is dependent on previous ones. If we see
some low-load elements, we therefore expect to see more low-load elements. If we are
observing high load levels, we expect to see more of the same.

The “long-range” part means that this dependence is far-reaching, and elements that
are very far apart may nevertheless be correlated with each other. However, correlation
does actually taper off with distance. The point is that it decays very slowly. When the
correlation decays exponentially with distance, there is short-range dependence. But if
it decays according to a power law, we have long-range dependence. This is similar to
the distinction between short tails and long tails considered in Chapter 5.

More formally, long-range dependence is defined as having an autocorrelation func-
tion that falls off polynomially, with an exponent smaller than 1 [69]. To define this, we
start with the autocovariance:

γ(k) = E[ (Xt+k − E[X]) (Xt − E[X]) ] (7.4)

This is independent of t and depends only on the lag k, because Xt is stationary. The
autocorrelation is simply the autocovariance normalized by dividing by the variance.
This can be expressed as r(k) = γ(k)/γ(0). The property of long-range dependence
then states that this function (and also the covariance) decays according to a power law:
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r(k) ≈ k−β 0 < β < 1 (7.5)

Such an autocorrelation decays as the lag k grows: there is a stronger correlation across
short distances than across long distances. But the correlation across long distances is
still strong enough to have a significant influence. In particular, it causes the autocorre-
lation function to be nonsummable, meaning that the sum of the autocorrelation function
diverges:

∞∑
k=1

r(k) =∞ (7.6)

Alternatively, if the autocorrelation falls off more rapidly, and, as a result, it is summable
(that is, the sum is finite), we call the process short-range dependent.

Note that the summability of the autocorrelation function is only an issue for infinite
series. With a finite series, as all real data is, correlations beyond the length of the series
are undefined (and by implication zero). However, the property that the autocorrelation
decays polynomially over the range where it is defined is still applicable.

Details Box: Slowly Varying Functions

All the definitions just presented are simple versions that can be generalized. The general-
izations allow multiplication by a “slowly varying function” L(k). Thus the expression for
a polynomially decaying autocorrelation function is actually r(k) ≈ L(k) k−β , and so on.
Including this function makes the expressions more cluttered, but does not seem to have
any practical significance. We therefore ignore these mathematical subtleties.
However, in case you are interested, slowly varying functions are functions that are asymp-
totically constant as their argument grows. The definition is

lim
k→∞

L(a k)

L(k)
= 1 ∀a > 0

Examples include the logarithmic function L(k) = log k, the ratio of two polynomials
with the same degree, and, of course, the constant function L(k) = C.
A discussion of this topic is given by Feller [254, chap. XVII, sect. 5].

End Box

What is the relation between long-range dependence and self-similarity? Long-range
dependence is defined in terms of the autocorrelation, which is the autocovariance nor-
malized by the variance. We therefore need to look into the structure of the autocovari-
ance function of the increments of a self-similar process. To do so, we start with the
covariance of the accumulations.

Assume that Y (t) is an exactly self-similar process as defined earlier, and that it has
stationary increments. Further assume that the data is centered, so its expected value is
0. Its covariance at times t1 and t2, where t1 > t2, is therefore

γ(t1, t2) = E[Y (t1)Y (t2)]

To handle such expressions consider the expression (Y (t1)− Y (t2))
2. Opening the

parentheses gives
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(Y (t1)− Y (t2))
2 = Y (t1)

2 − 2Y (t1)Y (t2) + Y (t2)
2

which, by changing sides, yields

Y (t1)Y (t2) =
1
2

(
Y (t1)

2 + Y (t2)
2 − (Y (t1)− Y (t2))

2
)

(7.7)

According to our assumption, Y has stationary increments. Therefore the distri-
bution of Y (t1) − Y (t2) (the increment from time t2 to time t1) is the same as the
distribution of Y (t1 − t2) − Y (0) (the increment from time 0 to time t1 − t2, which
covers the same duration). But Y is a cumulative process, so Y (0) = 0. Therefore
Y (t1)− Y (t2)

d∼ Y (t1 − t2).
Returning to the covariance, we find the expectation of both sides of Equation (7.7).

As expectation is a linear operator, it can be applied to each term of the right-hand side.
Moreover, because the expectation depends only on the distributions, we can substitute
Y (t1 − t2) for Y (t1)− Y (t2). Therefore

E[Y (t1)Y (t2)] =
1
2

(
E[Y (t1)

2] + E[Y (t2)
2]− E[Y (t1 − t2)2]

)
(7.8)

Before we continue, let us derive one useful expression. Using Equation (7.3) to see
what happens at time t = 1, we get aHY (1) d∼ Y (a). Note that we use d∼ rather than

d≈ ; the reason is that here we are not looking at the entire process, but rather at the
random variable Y (t) for a specific value t. By renaming a to t, this expression turns
into

Y (t) d∼ tHY (1) (7.9)

By considering integral values of t we can discretize time, and we now know how the
distribution of Y (t) evolves from one time-step to the next.

Applying this to the three terms in expression (7.8) then yields

E[Y (t1)Y (t2)] =
1
2

(
|t1|2H + |t2|2H − |t1 − t2|2H

)
E[Y (1)2] (7.10)

(where we use absolute values because the squares in Equation (7.8) are, of course,
necessarily positive). Moreover, E[Y (1)2] is simply the variance of Y (1), because Y (1)
is equal to X1, and X is centered.

Now let us revert to the increments, which are defined as Xj = Y (j + 1) − Y (j).
Because they are stationary, their autocovariance depends only on the lag and may be
defined as

γ(k) = E[XkX0]

Plugging the definition into this expression, we get

γ(k) = E[(Y (k + 1)− Y (k))(Y (1)− Y (0))]

But Y (0) = 0 as shown earlier, so the second factor is just Y (1). Opening the parenthe-
ses and applying the expectation to each term individually, we get

γ(k) = E[Y (k + 1)Y (1)]− E[Y (k)Y (1)] (7.11)
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We can now apply the equation for the covariance of the cumulative process given in
Equation (7.10) to each term. The result is

γ(k) =
σ2

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
(7.12)

where σ2 = Var(X) = Var(Y (1)) = E[Y (1)2].
Finally, we can take a factor k2H out of the parentheses and express this as

γ(k) =
σ2

2
k2H−2k2

((
1 +

1

k

)2H

− 2 +

(
1− 1

k

)2H
)

To gain some understanding of how this expression behaves, let us consider the Taylor
expansion of f(x) = (1 + x)2H about 0. The first three terms in the Taylor expansion
about a are (1+ a)2H +2H(1+ a)2H−1(x− a) + 1

22H(2H − 1)(1+ a)2H−2(x− a)2.
At a = 0, and setting x = 1

k , this becomes 1+2H 1
k +H(2H−1) 1

k2
. Repeating this for

x = − 1
k , and plugging into the above expression for γ(k), shows that the parentheses

with the factor k2 tend to 2H(2H − 1) as k → ∞. Dividing by σ2 we obtain the end
result that

r(k) −→ H(2H − 1)k2H−2 k →∞

Defining β = 2(1−H), we find that for 1
2 < H < 1 the exponent β satisfies 0 < β < 1,

and therefore we have an autocorrelation function that satisfies the definition of long-
range dependence.

Thus we have shown that the increments of a self-similar process exhibit long-range
dependence. The converse is not, in general, true. There are many different processes
that may have such long-range dependence, and not all of them are self-similar. How-
ever, processes with long-range dependence are in fact asymptotically second-order self-
similar. (And in the special case of Gaussian distributions, they are actually asymptoti-
cally self-similar, and not only second-order).

7.3.5 Asymptotic Second-Order Self-Similarity

Exact self-similarity is not very useful in practice because the requirement of identical
finite dimensional distributions is too strong. In the context of modeling workloads
we are therefore more interested in phenomena that are second-order self-similar: after
scaling, only the second order distributions are required to remain the same. In particular,
we define second-order self-similarity in terms of the autocovariance function, which is
a second-order measure. Second-order self-similarity is defined as retaining the same
autocovariance function after aggregation and rescaling. This definition is especially
important, because it turns out that it results from long-range dependence.

Recall that the autocovariance at a lag k of a time series X1, X2, X3, . . . is defined
to be

γ(k) = E[ (Xt+k − E[X]) (Xt − E[X]) ]

(for an explanation see the box on page 292). To be meaningful, we require that this
be stationary, and, specifically, second-order stationary. This means that it depends only
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on the lag k, and not on the particular indices t and t + k. In other words, E[(Xi+k −
E[X])(Xi − E[X])] = E[(Xj+k − E[X])(Xj − E[X])] for all i, j, and k.

Similarly, for each level of aggregationm, we can define the autocovariance γ(m)(k)

of the aggregated process X(m)
i . Using the aggregated process as defined in Equation

(7.1) is problematic because the autocovariance will naturally grow as a function of
aggregation, and therefore will not be equal to the autocovariance of the original process.
We therefore define a rescaled version of the aggregated process in which each element
is divided by the standard deviation of the aggregated process. Given that the original
process is stationary, this is the same as dividing by the standard deviation of the first
element, so the definition is

X (m)
i =

X
(m)
i√

Var(X(m)
1 )

(7.13)

(where Equation (7.1) defined X(m)
i =

∑im
j=(i−1)m+1Xj .)

With this version of aggregation, γ(m)(k) is simply the autocovariance of the rescaled
aggregated process:

γ(m)(k) = E[X (m)
t+k X

(m)
t ]

where we do not need to subtract the mean because the process is centered, and it does
not depend on t due to stationarity. Then Xi is exactly second-order self-similar if, for
every m and k

γ(m)(k) = γ(k)

and it is asymptotically second-order self-similar if, for every k,

γ(m)(k)→ γ(k) m→∞

Note that γ(k) itself is as in Equation (7.12), with the special case of σ = 1 due to the
construction of the normalized aggregated process. This is not the covariance of the orig-
inal process in this case, because this process is not self-similar — only asymptotically
so.

We want to show that long-range dependent processes are asymptotically second-
order self-similar. The statement that a process is long-range dependent simply means
that its autocovariance function (or, equivalently, its autocorrelation) decays like a power
law:

γ(k) = E[Xk+1X1] ∝ k−β

for large values of k. Now consider the cumulative process Yn =
∑n

i=1Xi. Because it
is based on a centered process, its mean is 0. Its variance is therefore

Var(Yn) = E
[
Y 2
n

]
= E

[(∑n

i=1
Xi

)2]
By opening the parentheses we find that this is the expectation of the sum of terms of the
form XiXj . By changing the expectation of the sum into a sum of expectations, we find
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that this is actually the sum of the covariances. But X is stationary, so the covariance
depends only on the differences in indices, not on the indices themselves. Therefore the
elements on each diagonal of the covariance matrix are equal to each other, and the sum
of the whole matrix becomes

Var(Yn) = nγ(0) + 2

n−1∑
k=1

(n− k)γ(k)

(the first term is the main diagonal, and the sum is on the other diagonals, where diagonal
k has n−k elements that are all γ(k), and there are actually two such diagonals — above
and below the main diagonal).

By multiplying and dividing each term by n2+β the sum can be expressed as follows:

n−1∑
k=1

(n− k)γ(k) = n2−β 1

n

n−1∑
k=1

(
1− k

n

)
nβγ(k)

Recall that γ(k) ∝ k−β . Hence nβγ(k) ∝ (nk )
β . For large n the sum multiplied by 1

n

then approximates the integral
∫ 1
0 (1 − x)x

−βdx, which is finite when β < 1. We are
therefore left with the relationship

Var(Yn) = E[Y 2
n ] ∝ n2−β = n2H

for H = 1− β
2 .

Now let us look at the accumulations of the aggregated process. Note that the first
element in the aggregated process is the sum of the first m elements in the original
process. So is the mth element of the original cumulative process. Therefore X(m)

1 =
Ym. Using this in the definition of the cumulation of the rescaled process from Equation
(7.13) we get

Y (m)
n =

n∑
i=1

X (m)
i =

n∑
i=1

∑im
j=(i−1)m+1 Xj√

Var(Ym)

But in the rightmost sum we actually have a sum over all elements of X from the first
element up to the nmth element. Therefore the expression can be simplified to

Y (m)
n =

Ynm√
Var(Ym)

Using this we now characterize the variance of the cumulative aggregated process:

Var(Y (m)
n ) =

Var(Ynm)

Var(Ym)
≈ (nm)2−β

m2−β
= n2−β = n2H

As before, this applies for every n, as m → ∞. We used the fact that the denominator√
Var(Ym) is deterministic, so it can be taken out of the expression for the variance and

squared.
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Now we are finally ready to calculate the autocovariance of the rescaled aggregated
process. According to Equation (7.11) this may be expressed as

γ(m)(k) = E[Y (m)
k+1 Y

(m)
1 ]− E[Y (m)

k Y
(m)
1 ]

Using Equation (7.8) and relying on the stationarity, we get

γ(m)(k) = 1
2 [Var(Y

(m)
k+1 ) + Var(Y (m)

1 )− Var(Y (m)
k )]−

1
2 [Var(Y

(m)
k ) + Var(Y (m)

1 )− Var(Y (m)
k−1 )]

= 1
2 [Var(Y

(m)
k+1 )− 2Var(Y (m)

k ) + Var(Y (m)
k−1 )]

And, using the above derivation for Var(Y (m)
n ), we arrive at the conclusion that

γ(m)(k)→ 1
2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
m→∞ (7.14)

which is what we want based on the expression for γ(k) given in Equation (7.12).

7.3.6 The Hurst Parameter and Random Walks

All the definitions in the preceding sections use the same parameter H , called the Hurst
parameter, to express the degree of self-similarity (equivalently, β = 2(1 − H) can be
used). But what does it mean?

A useful model for understanding the correlations leading to self similarity, and the
meaning of H , is provided by random walks. A one-dimensional random walk is ex-
emplified by a drunk on a sidewalk. Starting from a certain lamppost, the drunk takes
successive steps either to the left or to the right with equal probabilities. Where is he
after n steps? Note that this is just a picturesque version of the processes studied earlier,
with the individual steps representing the increment process, and the location after n
steps as the cumulative process.

Let us assume the steps are of unit size and independent of each other, and denote
the drunk’s location after i steps by Yi. The relationship between Yi and Yi+1 is

Yi+1 = Yi +Xi+1 =

{
Yi + 1 with probability 0.5
Yi − 1 with probability 0.5

where Xi+1 = ±1 is the i+ 1st step. The expected location after this step is

E[Yi+1] = E[Yi +Xi+1] = E[Yi] + E[Xi+1]

But E[Xi+1] = 0 because the two options (a step to the left or a step to the right) cancel
out. Using induction we then find that in general E[Yi] = 0.

But the chance that the drunk will return exactly to the origin is actually quite low.
What really happens is that his location is binomially distributed around the origin, with
equal probabilities of being a certain distance to the left or to the right. To find how
far from the lamppost he will get, we therefore need to prevent such symmetries from
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canceling out. A simple option is to look at Y 2
i instead of at Yi. For this, the expectation

is
E[Y 2

i+1] = E[(Yi +Xi+1)
2]

= E[Y 2
i + 2YiXi+1 +X2

i+1]

= E[Y 2
i ] + E[2YiXi+1] + E[X2

i+1]

Given that steps are independent, the middle term is 0 (because E[Xi+1] = 0). The last
term is simply 1. This then leads to the relation E[Y 2

i+1] = E[Y 2
i ]+1, and, by induction,

to E[Y 2
i+1] = i + 1. But we are interested in the average distance from the lamppost,

not in its square. We cannot derive E[ |Yn| ] directly from these results, because the
relationship of |Yn| and Y 2

n is nonlinear. But we can say that the root-mean-square of
the distance is

√
n, that is √

E[Y 2
n ] = n0.5

The real average distance turns out to be slightly smaller: it is E[ |Yn| ]→ ( 2π n)
0.5. Such

random walks are shown in the top-left graph of Figure 7.6.
Now consider a drunk with inertia. Such a drunk tends to lurch several steps in the

same direction before switching to the other direction. The steps are no longer indepen-
dent — rather, each step is typically correlated with the following steps, which tend to
be in the same direction. Overall, the probabilities of taking steps in the two directions
are still the same, but these steps come in longer sequences.

To make this more precise, we can try to characterize the lengths of sequences of
steps in the same direction. If the steps are independent, these sequences are geometri-
cally distributed, because the probability of taking k steps in the same direction is (12)

k.
Hence the probability of seeing long sequences decays exponentially.

But if the steps are correlated, long sequences of steps in the same direction will
be more common. Let us take the simplest possible model of such correlations. In this
model the drunk makes sequences of steps in the same direction, where the lengths of
the sequences are Pareto distributed. As the Pareto distribution has a heavy tail, he will
occasionally take very many steps in the same direction. Thus the drunk makes much
more progress in either direction, and gets farther away from the lamppost. This is
enough to change the exponent in the expected distance from the origin, which is found
to behave like nH , with 0.5 < H < 1. Specifically, we get H = 1

2(3 − a), where a is
the tail index of the Pareto distribution used to generate the sequences of steps. This is
illustrated in Figure 7.6.

This, then, is the meaning of the Hurst parameterH . It is the exponent that describes
the cumulative expected deviation from the mean after n steps. Higher values of H are
the result of stronger long-range dependence of the process. And this observation —
that long-range dependence is reflected in the range covered after n steps — is the basis
of the rescaled range method developed by Hurst to measure long-range dependence (as
described below in Section 7.4.2).

In common usage, the parameter H is also said to quantify the self-similarity of the
process. But H can in principle have any value from 0 to 1. The interpretations of the
different values are as follows.
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Figure 7.6: A random walk with independent steps and a walk where steps are correlated
because they come in sequences whose lengths are sampled from a Pareto distribution.
In each case three example walks are shown, together with the distance from the origin
averaged over 100 such walks. The bottom graphs show the averages for the Poisson
walk and correlated walks where a = 2, a = 1.6, and a = 1.2 (and H = 0.5, H = 0.7,
H = 0.9) from bottom to top.

H = 1: In this case the process has a consistent trend and does not fluctuate around
the origin at all. The expected distance covered is linearly related to the number
of steps.

1
2
< H < 1: This is a process in which consecutive steps are positively correlated. It

is this type of process that is usually meant when someone uses the terms “self-
similar” or “long-range dependent”. The occurrence of longer sequences of simi-
lar deviations than would be expected had the steps been independent is called the
Joseph effect (after the story of the seven good years and seven bad years from the
book of Genesis) [466, p. 248]. It is also called a persistent process.

H = 1
2

: This is a boundary condition in which steps are uncorrelated, or at most have
short-range correlation. An example is the Poisson process.

0 < H < 1
2

: This is a process in which consecutive steps tend to be inversely corre-
lated, leading to its being called an anti-persistent process. The effect is that the
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process covers less distance than would be expected if the steps were independent.
The smaller H is, the more it tends to remain close to the origin. However, this
situation seems to be much less common in practice.

H = 0: In this case each step deterministically cancels the previous one. The process
stays exactly at the origin.

Of course, the transition from one range to the next is not sharp. When H = 1
2 , the

distribution of sequence lengths is exponential (where we refer to sequences of steps in
the same direction). As H goes down from 1

2 to 0, they become successively shorter.
Conversely, as H goes up from 1

2 to 1, they become successively longer, and it takes
more and more time for the process to return to the origin. At the limit of H = 1 it does
not return any more.

7.4 Measuring Self-Similarity

Self-similar models are an alternative to random Poisson processes. This section there-
fore start with testing whether an arrival process is a Poisson process. It then discusses
tests that directly test for self-similarity. These tests typically work by trying to estimate
the Hurst parameter: if it is in the range 0.5 < H < 1, the process is self-similar.

The tests operate in either of two ways. Some, such as the rescaled range method and
the variance-time method, are time-based. These methods consider the data as a time
series, and analyze its fluctuations. Others are frequency-based, and relate to spectral
methods of analyzing time series, in which the data is first transformed to the frequency
domain using a Fourier transform.

7.4.1 Testing for a Poisson Process

The Poisson process is actually self-similar with a Hurst parameter of H = 1
2 . However,

according to common usage if a process is Poisson, it is not called self-similar.
The recognition that a process is Poisson can be based on any of its known charac-

teristics. For example, the following tests have been proposed: [427, 540, 369].

• In a Poisson process the interarrival times are exponentially distributed. Con-
versely, if the interarrival times are exponential and independent, it is a Poisson
process.

A simple test is that the coefficient of variation of interarrival times is 1 (or close
to 1), as it should be for an exponential (memoryless) distribution. If it is much
larger, this indicates that arrivals are bursty and not exponentially distributed. As
a simpler visual check, the log histogram of the interarrival times should be linear:
if f(t) = 1

θe
−t/θ, then log f(t) = − log θ − 1

θ t.

The exponential distribution that provides a maximum likelihood fit to given in-
terarrivals data is an exponential with a parameter θ that corresponds to the mean
interarrival time. It can be compared with the empirical distribution using the
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Figure 7.7: Top: plotting arrivals from the SDSC Paragon log and a Poisson process with
the same average arrival rate. Bottom: texture plots for the same two arrival processes.

goodness-of-fit techniques described in Section 4.5 (e.g., the Kolmogorov-Smirnov
test).

A potential problem with these estimates occurs in networking. In this context
packets are sometimes transmitted back to back. In particular, the more congested
the link, the less idle time there is between packets. When many packets are
transmitted back to back, the interarrival times are determined by the packet sizes
[395].

• Alternatively, arrivals of a Poisson process are distributed uniformly over the du-
ration of the process. This is tested by verifying that the arrival times conform to
a uniform distribution.

A graphical method to test this is to simply plot them. The simplest approach
is to plot arrivals as dots along a timeline [540]. An example is shown in the top
graph in Figure 7.7, which shows that arrivals from a Poisson process have smaller
gaps than real arrivals from a self-similar process. However, gaps do in fact occur,
because the exponential distribution also has a tail. The way they look may just
result from the scale.

A better approach is therefore to create a texture plot. Partition the timeline
into segments of equal lengths; this length is the time unit used. Then plot these
segments vertically next to each other (bottom of Figure 7.7). In other words, if
we have an arrival at time t and the time unit is u, the arrival would be plotted at
coordinates (⌊t/u⌋, t mod u). It is important to select a suitable time unit, one that
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Figure 7.8: A scatterplot showing each interarrival as a function of the previous one can
be used to find correlations. A linear trend such as that in the SDSC Paragon data with
log scaling may be a result of the daily cycle (in which case the interarrivals are indeed
not independent).

is not too small nor too big. For example, a time unit that is several times larger
than the average interarrival time may be good. The result for uniform arrivals
will then be a strip with constant shading. But if the arrivals are correlated with
large gaps we will see a varying texture.

• Apart from the distribution, the interarrivals must also be independent. This can
be tested by using the autocorrelation function. One simple test is to verify that
the autocorrelation is low; in particular, the serial correlation (autocorrelation at
lag 1) should already be close to zero [320]. Another test is to verify that the auto-
correlation is positive approximately the same number of times that it is negative.

A graphical method to test independence is to plot each interarrival time as a
function of the previous one (Figure 7.8). If a pattern emerges, they are not inde-
pendent.
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To test for a nonhomogeneous Poisson process, it is possible to divide the arrivals
into non-overlapping intervals that are thought to be homogeneous, and test each one
separately.

7.4.2 The Rescaled Range Method

The following tests can be used to assess whether a process is self-similar, and at the
same time to measure the Hurst parameter H . A value of H = 1

2 indicates that the
process is not self-similar, but conforms with a Poisson process. A value of H in the
range 1

2 < H < 1 is taken to mean that the process is indeed self-similar.
One way of checking whether a process is self-similar is directly based on the def-

inition of the Hurst parameter and its relation to random walks as described in Section
7.3.6: measure the range covered after n steps, and check the exponent that relates it to
n. In fact, this is the method originally used by Hurst [354].

Assume you are given a time series X1, X2, . . . Xn. The procedure is as follows
[467, 545]:

1. Center it by subtracting the mean X̄ from each sample, giving Zi = Xi− X̄ . The
mean of the new series is obviously 0.

2. Calculate the distance covered after j steps for all j:

Yj =

j∑
i=1

Zi

3. The range covered after n steps is the difference between the maximum distance
that has occurred in the positive direction and the maximum distance that has
occurred in the negative direction:

Rn = max
j=1...n

Yj − min
j=1...n

Yj (7.15)

Note that by the definitions ofZi and Yj , we get that Yn = 0. Therefore maxj Yj ≥
0 and minj Yj ≤ 0.

4. The magnitude of Rn is related to two factors: how many consecutive steps are
typically taken in the same direction, and the size of each such step. The sizes of
the steps are related to the variability of the original time series. This variability
can be canceled out by measuringRn in units of the standard deviation. Therefore
rescale it by dividing by S, the standard deviation of the original n data points
X1 . . . Xn. The result then characterizes the correlation in the time series.

5. The model is that the rescaled range, (R/S)n, should grow like cnH (recall the
random walks of Section 7.3.6). To check this take the log, leading to

log

(
R

S

)
n

= log c+H log n (7.16)

If the process is indeed self-similar, plotting this for multiple values of n will lead
to a straight line, and the slope of the line gives H .
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Figure 7.9: Finding H using a pox plot of (R/S)n values calculated for multiple (pos-
sibly overlapping) subsets of the data. The data is the same as that used in Figure 7.3,
at 1-minute resolution. Dashed lines showing the slopes corresponding to H = 1

2 and
H = 1 are given for reference.

To apply this procedure, we need to generate data for different values of n. Assume
that our original dataset has N elements (e.g., the number of packets that arrived during
N consecutive milliseconds). We then need to answer two questions:

1. Which values of n should we use?

2. Which data elements should we use for each value of n?

Given that the analysis is done in a logarithmic scale, the answer to the first question
is to use logarithmically spaced values. Obviously, it is possible to use powers of two.
But these are rather distant from each other, leading to situations where the largest pos-
sible spans are not represented if N is not a power of two. It is therefore common
to use powers of a smaller number, such as 1.2. The number of distinct sizes is then
m = ⌊log1.2N⌋. For each i ≤ m the size of each subset is ni = [1.2i]. Note that, for
small values of ni, we may see many subsequences that are all zero, and therefore un-
interesting. It is thus common to skip the smallest values, and to start with the minimal
number of samples needed to “see some action”.

As for which data elements to use, it is better to use multiple subsets of size n, rather
than using only the first n elements. This ensures that all the available data is used for
each size, and not only a subset of the data that may not be representative of the whole.
Furthermore, for large n it is common to use multiple overlapping subsets.

Given a large number of subsets of different sizes, we calculate the (R/S)n metric
for each one. We then draw a scatterplot of all these data points (i.e., (R/S)n vs. n) on
log-log axes. The result is called a pox plot, and looks like the plots shown in Figure 7.9
(which include up to 20 subsets of each size). This plot is used for two purposes. First, it
enables a qualitative assessment of whether the points fit a straight line. If they do, then
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the model stating that the rescaled range grows as a power of n is satisfied. Second, we
then use linear regression to fit a line through all the data points. The slope of this line
is our estimate of the Hurst parameter H .

Practice Box: Considerations for Pox Plots

There are several ways to decide exactly which values of n and which subsets of each size
to use.

Davies and Harte suggest using non-overlapping subsets, and averaging the subsets of each
size before performing the linear regression [165]. Starting from the top, they find sizes
that divide N : n1 = N , n2 = ⌊N/2⌋, n3 = ⌊N/3⌋, n4 = ⌊N/4⌋, n5 = ⌊N/5⌋, and
n6 = ⌊N/6⌋. Thereafter they use logarithmically spaced sizes, with ni = ni−1/1.15.
For each size ni they then partition the data into ki = ⌊N/ni⌋ non-overlapping subsets (if
niki < N , an equal number of extra elements is left at each end). These subsets are used
to calculate ki values of (R/S)ni , and these values are averaged:

R̄ni
=

1

ki

ki∑
j=1

(
R

S

)
ni,j

These can be plotted on log-log axes (that is, plot log R̄ni
as a function of log n). If they

seem to conform to a straight line, a linear regression is performed to find the slope, which
is an estimate of H .

A more extreme version of this approach is to use only powers of two. Assume that N is a
power of two, that is N = 2m for some m. We will use subsets that are smaller powers of
two. For any given i ≤ m, the size of each subset is ni = 2i, and we have enough data for
ki = 2m−i such subsets. We therefore partition the data into k non-overlapping parts, and
continue as above. Although in practice N is not always a power of two, we may be able
to make it close by judicious selection of the basic time unit. The example shown below is
based on the SDSC Paragon log, which is 63,370,152 seconds long. The values of i used
range from 12 to 20, corresponding to n values from 4096 to 1,048,576. By choosing the
basic time unit to be 60 seconds, the highest value covers 62,914,560 seconds and nearly
subsumes the entire log.

Because we calculate the average for each size before performing the linear regression,
the result is not a scatterplot but rather a line plot. The following examples uses the same
data as in Figures 7.3 and 7.9. A Poisson process with no self-similarity is included as
reference. The Davies and Harte scheme includes many more points and seems to be more
accurate; at least, it conforms with the results of the pox plots in Figure 7.9.
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The alternative approach is to use overlapping subsets — as was done in Hurst’s original
work [354]. This method makes more efficient use of the available data if the total size is
not a power of two and is also not so big. The idea is to use many more subsets for each
value of n, especially for the large ones, where by definition we do not have enough data
for multiple non-overlapping subsets.

The values of n are typically logarithmically spaced; there is no need for special treatment
of the larger values, because we don’t insist on partitioning the data into non-overlapping
subsets. Therefore we can simply use powers of a number slightly larger than 1, say 1.2.
The number of distinct sizes is m = ⌊log1.2N⌋, and the sizes themselves are ni = [1.2i]
for i ≤ m. But instead of using only ⌊N/ni⌋ non-overlapping subsets, we use many
more overlapping ones. The extreme case is to use all subsets of size ni that start from
the first data element through the (N − ni)th data element. This leads to a very dense
scatterplot. But a worse consequence is that it places significant weight on small values of
ni, which are represented by multiple points, at the expense of large values of ni, which
are represented by fewer points. As we are actually interested in the asymptotic behavior
as n grows, this seems ill-advised.

An alternative is to use a constant number k of representatives for each size ni. For large
ni, each representative is a subsequence, and they overlap each other. Specifically, if k >
N/ni, we cannot partition the dataset into k non-overlapping parts, so we use overlapping
ones; subset number j will then start with element number (j−1)N−ni

k +1. If k < N/ni,
in contrast, we have the opposite problem: using only k subsets of size ni leaves many
data elements unused. To use all the data we therefore calculate the R/S metric for all
non-overlapping subsets of size ni. We then group these results into k groups and find the
average of each group. This limits us to the desired k data points, but at the same time uses
all the original data. In the following figure (using the SDSC Paragon jobs data), k = 20
is used.
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Finally, an important question is how to handle situations in which short subsequences
(small n) are identically zero. This happens, for example, in the parallel supercomputer
arrival data. There are periods of more than an hour in which no new work had arrived,
leading to several thousand zero entries in a time series recorded with 60-second resolution.
One option is to only include those subserieses in which some activity had occurred, and
to disregard the rest. A better alternative is to only use sizes for which all subserieses are
nonzero. This is possible if the total dataset size N is large enough relative to the longest
quiet period.

End Box

Note that the regression line calculated from the pox plot provides not only a slope,
but also an intercept. This gives some indication of the short-range dependence among
the samples. If a strong short-range dependence is present, the deviation from the mean
will be somewhat greater, but will not continue to grow with n.

Indeed, a major drawback of R/S analysis is its susceptibility to short-range depen-
dence. In fact, short-range dependence alone can also lead to high (R/S)n values. To
counter such effects, it has been suggested to normalize the range differently, using [447]√√√√S2 +

2

n

q∑
k=1

(
1− k

q + 1

)(n−k∑
i=1

(Xi − X̄)(Xi+k − X̄)

)

rather than S in the denominator. The added term is a weighted sum of the autocovari-
ance up to a lag of q, where the weight drops linearly with the lag. Thus an increased
range that is a result of correlation up to this lag will cancel out, and only truly long-range
dependence will lead to high (R/S)n values. However, the bound q should not be too
high, so as to avoid false negatives where true self-similarity is mistaken for short-range
dependence and therefore not identified [682].
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Alternatively, one can try to assess the effect of short-range dependence by chopping
up the data into short sequences, reshuffling them, and applying the test again. This is
described in Section 7.4.8.

To read more: The R/S method has been the focus of much study, which showed it to be
robust for processes originating from many different underlying distributions. A detailed review
is provided by Mandelbrot and Taqqu [467]. The paper by Lo provides a good review of its
statistics and shortcomings [447].

7.4.3 The Variance Time Method

Another way of checking for self-similarity is based on the rate in which the variance
decays as observations are aggregated [754].

Let us start with a self-similar cumulative process, which has stationary increments.
We are interested in the variance of these increments, and even more so, in the vari-
ance of the aggregated increment process. Since the Xis’ distribution is stationary, we
can represent their distribution by the distribution of the first random variable X1, and
likewise for their aggregations.

Aggregation as defined in Equation (7.1) is closely related to computing a sample
average: we sum m samples and divide by m. But this can be expressed in terms of the
cumulative process:

X̄
(m)
1 =

1

m

m∑
j=1

Xj =
1

m
Y (m)

So using an earlier derivation, we can now say something about the distribution of the
aggregated (or rather, averaged) increment process:

X̄
(m)
1

d∼ 1

m
mHY (1)

Using the fact that by definition Y (1) = X1, we then get

X̄
(m)
1

d∼ mH−1X1

Recall that this is not equality of expressions, but rather equality of distributions. As
a result, we can use the known equality Var(aX) = a2Var(X) to derive a relation-
ship between the variance of the increment process and the variance of its aggregation.
Substituting the factor mH−1 for a, the result is

Var(X̄(m)
1 ) = m2(H−1)Var(X1)

In effect, the variance is reduced as the level of aggregation grows. It is therefore more
common to rewrite the last equation as

Var(X̄(m)
1 ) =

1

mβ
Var(X1) X1, X2, . . . long-range dependent (7.17)

where β = 2(1−H).
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Figure 7.10: The variance-time method for measuring self-similarity, applied to the data
in Figure 7.3. A Poisson process with no self-similarity is included as a reference, as
well as linear regression lines.

Just for comparison, let’s consider what we would expect to see if the Xis are inde-
pendent of each other (but still all come from the same distribution). In that case, the
variance of the sum is the same as the sum of the variances: Var(

∑mXi) = mVar(X).
Because averaging includes an additional factor of 1

m , that is X̄(m)
1 = 1

m

∑
Xi, the end

result is
Var(X̄(m)

1 ) =
1

m
Var(X1) X1, X2, . . . independent

In other words, the self-similarity affects the rate at which the variance is reduced with
aggregation. If H = 1

2 (and β = 1) the behavior is the same. But in the range 1
2 < H <

1 we have 0 < β < 1, and then the variance is reduced more slowly than for a non-
self-similar process. This is what we will use as a test for self-similarity. In addition,
estimating β immediately translates into an estimate of H .

According to Equation (7.17), the variance decays polynomially with aggregation.
By taking the log from both sides we get

log(Var(X̄(m)
1 )) = −β logm+ log(Var(X1))

or alternatively

log

(
Var(X̄(m)

1 )

Var(X1)

)
= −β logm (7.18)

This second form may be slightly more convenient because the variance is normalized
and always starts from 1. In either case, plotting the logarithm of the variance of the
aggregated data as a function of the logarithm of the degree of aggregation should lead
to a straight line, with a slope of −β. The Hurst parameter is then given by
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Figure 7.11: Measuring the long-range dependence of the SDSC Paragon data from
Figure 7.3.

H = 1− (β/2) (7.19)

The resulting plot is called a variance-time plot. An example, using the same datasets
used previously, is shown in Figure 7.10. It starts with an aggregation of 1 (that is,
no aggregation) and continues up to an aggregation level of 32,768. This figure was
chosen as the upper limit because the full dataset contains only a few more than a million
samples (at 1-minute resolution). After aggregating, we are then left with 32 aggregated
samples, and can calculate their variance. Further aggregation will leave us with too few
samples.

7.4.4 Measuring Long-Range Dependence Directly

As noted earlier, self-similarity goes hand in hand with long-range dependence. This
means that the autocorrelation function of the series of samples decays polynomially
[69]:

r(k) ≈ k−β 0 < β < 1

Thus if we calculate the autocorrelation function, and display it as a function of the lag
k in log-log axes, we will get a straight line with slope −β:

log r(k) ∝ −β log k

This simple procedure is illustrated in Figure 7.11 The original data is at a 10-minute
resolution. Consider first the jobs data. The autocorrelation functions becomes noisy at
lags above one day. In addition, one can observe a dip in the autocorrelation corre-
sponding to a lag of 12 hours, and a peak corresponding to 24 hours. Nevertheless, the
linear relationship is clear. The slope of the line indicates that β = −0.54, leading to
H = 1− β/2 = 0.73 — which is in pretty good agreement with the previous results.
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However, this procedure does not always work so well, as illustrated by the processes
data. The data is much noisier, and even becomes negative at certain lags (notably 12
hours), which cannot be accommodated by a logarithmic plot. Thus it is hard to argue
that this represents a linear relationship.

An additional problem with a direct characterization of the autocorrelation function
is that it is susceptible to error caused by nonstationarity. Consider a process that is ac-
tually piecewise stationary, meaning that it is composed of several intervals that are each
stationary but different from the others. Furthermore, assume that each such stationary
process is not long-range dependent. Calculating the autocorrelation function of each in-
dividual process will therefore show that the autocorrelation decays quickly to zero. But
computing the autocorrelation function of the complete composite process will show a
much slower decay. This slower decay reflects the fact that the samples in each individ-
ual constituent process are indeed more correlated to each other than to samples coming
from the other processes. Thus there exists a relatively high correlation up to lags that
reflect the lengths of the constituent processes.

Finally, empirical estimation of the autocorrelation function is always limited to lags
that are much smaller than the full length of the series, because sufficient data for longer
lags is not available.

Because of these considerations, direct measurement of long-range dependence is
not commonly used.

7.4.5 Using Wavelets and Logscale Diagrams

A completely different approach to analyzing and measuring scaling effects is to use
multiresolution analysis with wavelets [6, 3, 5]. The idea is to start with a basic oscil-
lating pattern of limited duration — the wavelet — and check its correlation to the data
at different scales and shifts. Thus the structure of the analysis corresponds directly to
the scale-invariant self-similar structure we are looking for. The result of the analysis is
a space-time decomposition of the data, that is, a set of coefficients characterizing the
relative importance of wavelets at different scales and shifts. The statistical properties
of these coefficients, notably how they decay with scale, are then used to identify and
quantify self similarity and long-range dependence.

Discrete Wavelet Transform with Haar Wavelets

More formally, wavelets are functions ψ(t) with the following properties:

• They have a zero integral, i.e., ∫ ∞

−∞
ψ(t)dt = 0

This implies that they must oscillate between negative and positive values; hence
the wave metaphor.
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• They are localized in time, meaning that in effect they have a limited support.
Beyond this range they either decline very rapidly or are identically zero; hence
the diminutive form, “wavelet”.

• They also have a limited bandwidth around some basic frequency. The amplitude
of other frequencies, if they exist, declines rapidly the farther they are from the
basic frequency.

When using wavelets to analyze a signal (in our case a time series representing some
workload feature, such as the number of arrivals in successive units of time), one uses
not one but an entire family of wavelets. The basic one is called the mother wavelet. The
others are translations and dilations of the mother wavelet. A translated wavelet is shifted
in time, and hence matched with different parts of the signal. (This is meaningful because
the wavelet has a bounded support, as noted above; conventional spectral analysis cannot
provide this information, because its basis functions, which are sine waves of different
frequencies and phases, extend to infinity.) A dilated wavelet is scaled to a different size.
Both translations and dilations are typically done using powers of two. Thus the wavelet
at scale j and shift k will be1

ψj,k(t) =
1√
2j
ψ

(
1

2j
(t− 2jk)

)
(7.20)

In the argument of ψ, the term −2jk shifts the center of attention from 0 to 2jk. Multi-
plying by the factor 1

2j
increases the time unit (for positive j), so that the shift of −2jk

is a shift of k such time units. For example, if j = 3 and k = 6, a wavelet focused on
the interval (0, 1) is stretched and shifted to focus on the interval (48, 56): the time unit
becomes 23 = 8 times larger, and we shift by six such time units. The normalization fac-
tor 1√

2j
ensures that the integral of the squared function remains the same, so it has the

same energy (in signal-processing applications). This is important so that the transform
is invertible.

There are many different functions that may serve as the mother wavelet, each with
its desirable properties. For our exposition we use the simplest and most intuitive one,
which is the Haar wavelet. This is one cycle of a square wave, defined as

ψ(t) =


1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1
0 otherwise

It is shown for scales j = 0 to j = 2 in Figure 7.12. Note, however, that the Haar wavelet
is rarely used in practice, because other wavelets have better properties for most appli-
cations. In particular, the Haar wavelet is discontinuous and therefore has a relatively
large bandwidth, meaning that it is not well localized in the frequency domain.

Multiresolution analysis as done by wavelets is a recursive process. Assume we
start with N samples (e.g., the number of arrivals in N consecutive time units), where
N = 2n. The simple case of the Haar wavelet proceeds as follows (Figure 7.13).

1More precise terminology is to call 2j the scale, and to call j itself the octave.
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Figure 7.12: The Haar wavelet for scales j = 0 (the mother wavelet), j = 1, and j = 2
and some shifts (k = 0 to 2).

1. Start with the original samples as X1, X2, . . . , XN .

2. Create an approximation of the input. This is a smoothed version with less details.
It is obtained by summing consecutive pairs of inputs and normalizing: a1,k =
1√
2
(X2k−1 +X2k).

3. Find the details that separate the original input from the approximation. These are
the normalized differences between consecutive pairs of inputs: d1,k = 1√

2
(X2k−1−

X2k).

4. Separate the details from the approximation. Each of these has half the previous
number of elements. This step is called decimation, because it is implemented by
removing the even or odd elements. In Figure 7.13, the details are moved to the
left and the approximations to the right.

5. Return recursively to step 2 using the approximation results as the input to the next
iteration. In each iteration, the first index of the new approximations and details
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Figure 7.13: The Haar wavelet transform.

will denote the iteration number (a2,k and d2,k in the second iteration, a3,k and
d3,k in the third, etc.).

6. At the end we are left with a single approximation that represents the normalized
sum of the whole original input. The output is the set of all details from all the
stages and this global approximation.

Note that, because we halve the data we are working with at each stage, and there are
a logarithmic number of stages, the complexity of the entire procedure is linear in the
input size.

The relationship between this description of the Haar transform and the previously
described Haar wavelet may not be immediately apparent. The difficulty stems from
the fact that the wavelet was introduced as a continuous function, but the transform
operates on samples. These samples are obviously discrete, and are assumed to come
at fixed intervals of time. The solution is to use a discretized version of the wavelet.
For the Haar wavelet, two samples with values of 1 and −1 are natural. Each of the
differences in step 3 above can be viewed as a convolution of the wavelet vector (1,−1)
with a pair of input samples (X2i−1, X2i), and normalization by a factor of 1√

2
. The

convolution with the pair (X1, X2) represents the mother wavelet. The convolution with
pair i, namely (X2i−1, X2i), represents a translation of i− 1 units. In the second stage,
when we use the approximations

(
1√
2
(X2i−1 +X2i),

1√
2
(X2i+1 +X2i+2)

)
as input

pairs, this represents wavelets with dilation by a factor of 2. In subsequent stages, where
approximations are sums of more inputs, this represents dilation to ever larger scales.
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Details Box: The Discrete Wavelet Transform

To perform the multiresolution analysis in the general case, two functions are actually
needed: the wavelet function and a scaling function. Denote the wavelet by ψ(t), and
the scaling by ϕ(t). In the discrete wavelet transform (DWT) both these functions are
represented by a certain number of samples. In the Haar transform this was two samples,
but in other cases it is usually four or more.
The scaling function is a low-pass filter, and the approximations are obtained by convolv-
ing the scaling function with the input. In the case of the Haar transform, the vector used
is ( 1√

2
, 1√

2
), which is like the average (it would be the average if not for the normalization

by a factor of
√
2).

The wavelet function is a high-pass filter, and the details are obtained by convolving the
wavelet with the input. In the case of the Haar transform, the vector used is ( 1√

2
,− 1√

2
),

which is like the distance from the average (again with the normalization factor).
More formally, denote the inputs at stage i by Xi,1, . . . , Xi,Ni . The samples of the filter
are denoted ψ1, . . . , ψℓ (or ϕ1, . . . , ϕℓ). Note that Ni, the length of the data, is typically
much longer than ℓ, the length of the filter, except in the last iterations.
Filtering is performed by convolving the data with the filter. Convolution consists of
matching elements of the two vectors with each other at different offsets k. For each
offset, the paired elements are multiplied with each other, and then the sum of all these
products is computed. This is actually similar to the correlation operation, except that in
convolution one of the vectors is reversed first.
In our case the convolution of vector X of length Ni with vector ψ of length ℓ is a vector
C of length Ni + ℓ− 1, whose elements are

Ck =

ℓ∑
j=1

Xk−j+1ψj 1 ≤ k < Ni + ℓ− 1

Elements of X beyond the original inputs (including negative indices) are taken as 0. The
expression for ϕ is analogous.
Given these definitions, we can now describe the discrete wavelet transform as a general-
ization of the Haar transform described above. The procedure is as follows.

1. Denote the input at stage i by Xi,1, . . . , Xi,Ni
.

2. Create an approximation of the input by convolving the input with the low-pass filter
based on the scaling function. Denoting convolution by ∗, this is

Appfulli = Xi ∗ ϕ

The specification full indicates that this is the full result of the convolution.
3. Find the details left out by the approximation by convolving the input with the high-

pass filter based on the wavelet function. This is

Detfulli = Xi ∗ ψ

4. Decimate the full details, keeping one sample of two. This is typically denoted by
↓2. Thus the details at this stage will be

Deti = Detfulli ↓2

This is appended to the output of the transform.
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5. Decimate the full approximation, again keeping one sample of two. Thus the ap-
proximation at this stage will be

Appi = Appfulli ↓2
This is the input to the next stage, namely

Xi+1 = Appi

6. Return recursively to step 2 to continue at the next coarser scale. This can be done
for a predefined number of times, or until the approximation is reduced to a single
value.

7. Append the last approximation(s) to the output, thus completing the transform.

Note that at each iteration we apply the high-pass filter of the wavelet to the results of the
low-pass filters applied previously. The net effect is a band-pass filter. In other words, each
iteration focuses on a different range of frequencies, corresponding to a different level of
dilation.

End Box

An important property of the wavelet transform is that it is invertible: given the
details and approximation of the transform, you can reconstruct the original input. This
testifies to the fact that no information is lost. An example of the inverse transform for
the Haar wavelet is shown in Figure 7.14. In essence, we start from the very coarse
global approximation, and re-create finer approximations by adding in the details —
eventually reaching the full input. As we’ll see below in Section 7.5.2, this procedure
can also be used to generate synthetic self-similar data based on details that are sampled
from appropriate distributions.

Logscale Diagrams and Self-Similarity

The discrete wavelet transform is based on computing approximations, which are es-
sentially aggregations of the input at different levels, and details, which are related to
increments. The output of such a transform is a sequence of coefficients representing
different translations and dilations. In particular, the first half represents details of trans-
lations of the highest resolution wavelet. The next quarter are translations of a slightly
lower resolution, the next eighth translations of a yet lower resolution, and so on. The
magnitudes of the different coefficients reflect the variability in the input. Thus, by mea-
suring how the magnitude of the coefficients changes with the scale they represent, we
can learn about the scaling of the variability — and hence about long-range dependence
and self-similarity.

The procedure is simple [6, 7, 5]. For each scale j, we compute the average of
the squares of the details at that scale dj,k. The model is that this should be linear (in
logscale) with j, and the slope should reflect the Hurst parameter H:

log

(
1

Nj

∑
k

d2j,k

)
= (2H − 1)j (7.21)

where Nj is the number of details at scale j, which is N/2j . A diagram showing this
average as a function of j using a logarithmic Y axis is called a logscale diagram.
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Figure 7.14: The inverse Haar wavelet transform. Compare with Figure 7.13.
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Figure 7.15: A logscale diagram based on using the Haar wavelet transform to measure
the self-similarity of the data in Figure 7.3. The details were normalized before the
analysis to enable them to be shown on the same scale.

An example, again using the same data as in the previous figures, is shown in Figure
7.15. Although the graphs appear a bit noisy, the results nevertheless correspond to
those obtained by the other methods. The slope α is converted to an estimate of the
Hurst parameter using the formula H = 1

2(α+ 1).

7.4.6 Spectral Methods: The Periodogram and Whittle Estimator

Previously we have examined our data in the time domain. This is natural because the
data is typically a series of values for successive time instants: the number of packets in
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the first time unit, the number in the second time unit, and so on. But it is also possible
to perform the analysis in the frequency domain.

The material in this section is more mathematically advanced than in any other part
of this book. In addition, it suffers from different conventions, normalizations, and no-
tations being used by different authors. To facilitate an intuitive understanding of the
underlying meaning we sometimes gloss over some details, especially in the translations
from continuous or infinite-sequence definitions to estimations for finite sequences.

Long-Range Dependence in the Frequency Domain

In a nutshell, the characterization of long-range dependence is that the autocorrelation
function decays according to a power law. This means that it decays slowly, or in other
words, it retains its value for ever increasing lags. In the frequency domain such consis-
tency implies a dominance of low frequencies. (The alternative, of rapid changes up and
down, would imply a dominance of high frequencies.) In particular, an autocorrelation
function that decays according to a power law has a spectrum that tends to infinity as the
frequency tends to zero.

In mathematical notation, denote the autocovariance function by γ(k); it has only
one index due to the stationarity assumption. Given a data series of N elements with
mean 0, the autocovariance function is estimated by

γ(k) =
1

N

N−k∑
i=1

XiXi+k (7.22)

where we use the normalization 1
N rather than 1

N−k because we need to use all N el-
ements of the autocovariance. If we use 1

N−k , the last elements (where k is close to
N ) may be large and erratic because they depend on very few samples, contradicting
the common expectation that γ(k) is small for large ks. We could also normalize the
autocovariance function by the variance to obtain the autocorrelation function, but the
spectrum would be the same so that step is not needed.

The spectral density is obtained by a discrete Fourier transform of the autocovariance
function,

S(f) =
N−1∑

k=−(N−1)

γ(k) e−i2πfk (7.23)

where f is a frequency, γ(−k) = γ(k) because the correlation of element j with ele-
ment j+ k is the same as the correlation of element j+ k with element j, and i =

√
−1

(note that i is not an index but an “imaginary” number; see the box below for an expla-
nation of this expression). The essence of this transformation is finding how similar the
autocovariance function γ(k) is to a sine wave of frequency f , for all relevant fs. The
spectrum is a function of the frequency: for every frequency, it specifies the amplitude,
or “strength”, of this frequency in γ(k). The important point is that γ(k) can actually
be decomposed into these frequencies; in other words, if we sum up waves with these
frequencies and amplitudes, we will get the function γ(k).

Version 1.0.4, typeset on June 10, 2023



7.4. MEASURING SELF-SIMILARITY 347

Given that the spectrum is just another representation of the same data, it is not
surprising that long-range dependence may be defined based on either of these two rep-
resentations. Using the autocovariance, we have seen that the definition is based on the
autocovariance decaying with k according to a power law: γ(k) ≈ k−β as k → ∞,
with 0 < β < 1. The equivalent definition using the spectral density is that it grows
asymptotically to infinity as the frequency goes down to zero [67, 538, 308]:

S(f) ≈ C 1

fα
f → 0, 0 < α < 1 (7.24)

where C is a constant. This makes sense, because the essence of long-range dependence
is that things change slowly, namely with a very low frequency.

Note that the growth of the spectral density near 0 is shaped like a hyperbola (i.e.,
also follows a power law). This shape of the spectrum has earned such functions the
name “1/f noise”. Importantly, the exponents in the two power laws are both related to
the Hurst parameterH: for the autocovariance we have β = 2−2H , and for the spectral
density we have α = 2H−1. Consequently, α = 1−β, and both exponents are between
0 and 1.

The periodogram method for estimating H is based directly on Equation (7.24).
The periodogram is an estimator for the spectral density, and has the same behavior at
low frequencies. By calculating it and plotting it on log-log axes, one can use linear
regression to estimate the slope α, and, from it, H .

Background Box: The Discrete Fourier Transform

Before delving into spectral analysis, let us first understand what a spectral decomposition
is all about. The following illustration depicts three sine waves in the time domain. The
biggest sine wave has a frequency of 1

5 — it completes one cycle in 5 time units. The
others have frequencies that are three and five times higher. When we add them together
we get the squarish wave pattern shown below them. So we can now describe this squarish
wave in two ways: we can either show its graph, or we can say it is the sum of these three
sine waves. The first one is a description in the time domain, whereas the second is a
description in the frequency domain — in fact, its spectrum.

-1

-0.5

 0

 0.5

 1

 0  5  10  15  20

Importantly, the transformation from the time domain to the frequency domain is a trans-
formation from one dimension to two dimensions. In the time domain, for each instant of
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time we have only the height of the waveform at that instant. But in the frequency domain,
we need two numbers to describe each frequency: its amplitude and its phase. The ampli-
tude specifies the height of the sine wave with this frequency. The phase specifies how its
starts at time 0: is it going up, or down, or maybe it is near the top? To show how impor-
tant the phase is, the following illustration depicts another waveform that is composed of
exactly the same three sine waves as the previous one. The only difference is in the phase
of the middle sine wave: at time 0, it goes down instead of up.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  5  10  15  20

The Fourier transform, which is how we compute the spectrum, works by correlating the
input function with the sine waves that may be used to create it. The previous examples
show continuous functions that in principle extend from−∞ to∞. But in time series anal-
ysis (and in digital signal processing) we are interested in discrete finite sequences, which
we denote by Xk for k = 0 . . . N − 1. Therefore we need the discrete Fourier transform.
The correlation is then computed by summing the products of the series elements and a
sine at discrete points. If the series and the sine both go up together and go down together,
the sum will be large, and this sine will be recognized as a major component of the series
— and will have a high amplitude in the spectrum. If they do not, the sum will be small
and this sine will have only a low amplitude in the spectrum. In mathematical notation,
the sum is

Fi(f) =

N−1∑
k=0

Xk sin(2πfk)

where f is the frequency, and we do this calculation for many different frequencies (to be
defined later). The factor of 2π is needed because we define our frequencies relative to the
data points, for example saying that the lowest frequency completes a single cycle across
all N points, so it completes 1

N of the cycle per point. But the period of a sine is defined
to be 2π when measured in radians, so we need to add 2π

N to the argument of the sine per
point.

The preceding equation cannot be the whole story because it accounts only for the basic
sine, which goes up at 0, and not for the phase. To capture the phase, we must also find
the correlation with a cosine, because the sum of appropriately weighted sine and cosine
is equivalent to a sine with a different phase (as you may remember from trigonometry
class, α sin(ωt) + β cos(ωt) = r sin(ωt+ φ) where r =

√
α2 + β2 is the amplitude and

φ = tan−1(−β/α) is the phase). We therefore also compute
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Fr(f) =

N−1∑
k=0

Xk cos(2πfk)

The last issue to settle is the set of frequencies for which we compute this. Given that the
input is discrete, there is an upper bound on the relevant frequencies: any frequency that
completes more than a full cycle over two points of the input is indistinguishable from a
lower frequency that reaches the same height at those points. (This is called aliasing.) Us-
ing the interval between adjacent points as our unit, this means that the highest frequency
of interest is 1

2 .

But note too that we start with only N data points. Therefore we don’t need the infinite
different frequencies that are smaller than 1

2 . Instead, we can make do with N/2 frequen-
cies of the form fj = j/N for j = 1 . . . N2 , called the Fourier frequencies. The lowest
frequency, f1 = 1/N , completes a single cycle across all theN data points. The others are
multiples of this frequency, called harmonics. For example, in the figures shown above,
the biggest sine wave is the basic frequency (assuming our unit is 5) and the other two are
harmonics: they have frequencies that are three and five times higher.

We can now put all of this together and understand the meaning of the amplitudes we cal-
culated. As noted earlier, the core idea is that the series we started with may be expressed
as a sum of sine waves with appropriate frequencies, amplitudes, and phases. And this is
equivalent to a sum of sines and cosines with appropriate frequencies and amplitudes. The
frequencies are fj = j/N for j = 1 . . . N2 . The required amplitudes are the Fi(fj) and
Fr(fj) we computed. So we can write

Xk =
1

N

N/2∑
j=1

[Fi(fj) sin(2πfjk) + Fr(fj) cos(2πfjk)] (7.25)

(the normalization factor 1
N is explained later). The amplitudes are the unique part that

embodies the information about a specific input series. Hence we started out with N data
points in the time series, and transformed them into N

2 pairs (Fi(fj), Fr(fj)). Equiva-
lently, we could transform them into N

2 pairs of amplitude and phase.

The common expression of the discrete Fourier transform calculates both elements of each
pair at once by using complex numbers. Complex numbers have two parts: a real one and
an imaginary one. The imaginary part is denoted as a multiple of i =

√
−1 (−1 does not

have a square root, which justifies calling i imaginary). Moreover, the exponential function
with an imaginary exponent is equivalent to the sum of the cosine and an imaginary sine:

eix = cos(x) + i sin(x)

(this is Euler’s formula). The two preceding equations for Fi and Fr can therefore be
written in shorthand as

F (fj) =

N−1∑
k=0

Xk e
−i2πfjk (7.26)

where the two dimensions of the result are represented as a complex number: Fr(fj) is
the real part, and Fi(fj) is the imaginary part.

As shown in Equation (7.25), the coefficients calculated by the Fourier transform can be
multiplied by their respective sines and cosines to regain the original input series. Thus the
inverse Fourier transform is, in shorthand,

Version 1.0.4, typeset on June 10, 2023



350 CHAPTER 7. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

Xk =
1

N

N/2∑
j=1

F (fj) e
i2πfjk (7.27)

This expression also shows that the set of sines with the given frequencies and phases are
a basis, and can therefore be used to represent any function. The normalization factor 1

N
is needed because when we substitute the spectral components of Equation (7.26) into the
sum of Equation (7.27) — which is how we prove that this is indeed the inverse transform
— we get NXk.
The way to actually calculate the discrete Fourier transform is by using the fast Fourier
transform algorithm. Using a naive calculation based on the above formulas requires
O(N2) operations to transformN points. With the fast Fourier transform, onlyO(N logN)
operations are required [70, 150, chap. 30]. When N is large, this makes a significant dif-
ference.
An often confusing aspect of the Fourier transform is the use of k that range from −N to
N . This is not really a problem provided the function being transformed is even, meaning
that Xk = X−k, which is the case for the autocovariance function [308, 121]. The sym-
metric sum is then related to the above definition (Equation (7.26)) by a multiplication by
2 and adding the variance.

To read more: The Fourier transform is a huge subject. This box provided merely a brief
exposition of one variant; the more commonly studied variant is the continuous transform.
There are many books about Fourier analysis in general and spectral methods for time se-
ries analysis in particular. The classic basis for many of them is the two-volume set by
Zygmund [767]. A good book devoted to spectral analysis is Stoica and Moses [664].
More general texts on time series (including chapters on spectral analysis) have been writ-
ten by Chatfield [121] and by Shumway and Stoffer [619].

End Box

The Periodogram

Spectral methods to estimate the Hurst parameter H are naturally based on the spectral
representation. Specifically, the periodogram is defined to be the square of the Fourier
transform of the original time series:

I(fn) =
1

N

∣∣∣∣∣
N∑
k=1

Xk e
−i2πfnk

∣∣∣∣∣
2

At the Fourier frequencies, fn = n/N , this is in fact equivalent to the spectral density of
Equation (7.23) (as explained and justified below). Therefore the behavior has the same
relationship to the Hurst parameter when the frequency tends to 0:

I(f) ≈ S(f) ≈ C

f2H−1
f → 0

Taking the log, we find that

log I(f) ≈ (1− 2H) log f + C ′
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at least for the lowest frequencies. So if we calculate the periodogram and graph it as a
function of frequency on log-log axes, fitting a straight line to the low frequencies will
enable us to estimate H: if the slope of the line is α, then H = 1−α

2 [283].

And now for the details. The periodogram is another representation of the spectrum,
or rather the power spectrum. We start out with the discrete Fourier transform of the
original time series (not its autocovariance). For each frequency fn = n/N , this is

F (fn) =
N∑
k=1

Xk e
−i2πfnk

As explained earlier, this expression identifies the contribution of each frequency to the
time series, and is typically used to identify periodic behavior. But here we use it to
characterize the asymptotic behavior at low frequencies near 0.

The periodogram is the square of the Fourier transform normalized by 1
N :

I(fn) =
1

N

∣∣∣F (fn)∣∣∣2 = 1

N

∣∣∣∣∣
N∑
k=1

Xk e
−i2πfnk

∣∣∣∣∣
2

(7.28)

The reason for specifying that the absolute value is being squared is that we are dealing
with complex numbers. The square of the absolute value is then the sum of the squares
of the real and imaginary parts.

The connection with the spectral density defined earlier is that the periodogram turns
out to behave like the spectral density, that is, the Fourier transform of the autocovariance
function:

I(fn) ≈ S(fn) =
N−1∑

k=−(N−1)

γ(k) e−i2πfnk (7.29)

To see this, let’s start from the original definition. Algebraically, to find the squared
absolute value of a complex number, you don’t multiply it by itself; instead, you multiply
it by its complex conjugate, in which the imaginary part has the opposite sign. To see
this, consider a complex number c = a+ ib and its conjugate c∗ = a− ib. Their product
is cc∗ = (a + ib)(a − ib) = a2 − (ib)2 = a2 + b2, because i2 = −1. Applying this to
Equation (7.28), we get

I(fn) =
1

N

(
N∑
k=1

Xk e
−i2πfnk

)(
N∑
ℓ=1

Xℓ e
i2πfnℓ

)
(the second set of parentheses is the complex conjugate of the first, because the sign of
the exponent is +). Opening the parentheses leads to

I(fn) =
1

N

N∑
k=1

N∑
ℓ=1

XkXℓ e
−i2πfn(k−ℓ)

What we have here is a sum with N2 terms, arranged in a square: first we sum on k
(call this the rows), and for each k we sum on ℓ (call this the columns). But we can
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Figure 7.16: A periodogram used to measure the self-similarity of the data in Figure 7.3.

also rearrange the order of summation, and sum along diagonals where h = k − ℓ is a
constant. The expression then turns into

I(fn) =
N−1∑

h=−(N−1)

 1

N

N−|h|∑
k=1

XkXk+|h|

 e−i2πfnh

The factor in parentheses in the middle is the autocovariance γ(h) of Equation (7.22).
Note that this is indeed defined for negative lags, and in fact γ(h) = γ(−h): for a
stationary series, looking at the correlation of each element with the one that comes h
places before it is the same as looking at the correlation with the one that comes h places
after it. The entire expression is therefore essentially Equation (7.29).

An example of the results of performing such calculations is shown in Figure 7.16.
Note that most of the data is not used, because the estimate is based on only the lowest
frequencies. Figure we uses frequencies smaller than 0.01, which is only 1% of the
data. This is less than the 10% that is sometimes mentioned in the literature, because our
dataset is much longer. Even when using only such low frequencies the spread is rather
large, and the correlation between the frequencies and the periodogram values is weak.
Nevertheless, using a linear regression produces a line with a slope that corresponds to
the results of other techniques.

An estimation of the Hurst parameter H based on the periodogram uses only the
lowest frequencies, because it is based on the shape of the periodogram as the frequency
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Figure 7.17: Dependence of the estimate of the Hurst parameter H on the number of
frequencies in the periodogram used in the regression.

tends to 0. But the question of exactly how many frequencies to use has no good answer.
An often cited rule of thumb is to use

√
N frequencies for series with N points. In

Figure 7.16, which has a bit more than a million points, that would imply using the 1000
lowest frequencies. An alternative approach is to do the analysis with several different
cutoffs, and then eyeball the results to see which looks the most convincing. An example
is shown in Figure 7.17. The graph shows that for very few frequencies, e.g. less than
a hundred, the resulting estimate is unreliable: it comes out larger than 1. Using 1000
frequencies or more leads to more stable results, but still there are fluctuations of some
10%. The results quoted in Figure 7.16, using frequencies up to 0.01, actually used 5281
frequencies.

To read more: For a discussion of several methods to estimate the periodogram, including
various smoothing techniques that are designed to reduce variance, see Stoica and Moses [664,
chap. 2].

The Whittle Estimator

The Whittle estimator takes a somewhat roundabout route to estimating the Hurst param-
eter H , although the final procedure is reasonably simple [268, 67]. Initially one must
specify a mathematical model of a time series that exhibits long-range dependence. The
models that are typically used are fractional Gaussian noise or fractional ARIMA, which
are outlined later in Section 7.5.1. Then an iterative procedure is used to find the param-
eter H that leads to a maximum likelihood fit of this model to the data. The maximum
likelihood is obtained by minimizing the sum given in Equation (7.35) below. Assuming
that the model indeed represents the data faithfully, this is expected to be a good esti-
mate of the Hurst parameter of the data. However, if the original model was wrong, the
estimate might be badly biased.

The technicalities of how the expression in Equation (7.35) is derived are rather in-
volved, so we only give a superficial sketch here. We start with a series of observations
x1, x2, . . . xN . The underlying conceptual model is to fit them to a multinormal distri-
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bution with a certain correlation structure. The multinormal distribution (or multivariate
normal distribution) is the joint distribution of multiple normal random variables. Let µ⃗
denote the vector of their expectations — that is, µ1 = E[X1], µ2 = E[X2], and so on
up to µN = E[XN ]. Let Σ denote the covariance matrix, i.e.,

Σ =
{
γ(Xi, Xj)

}
1≤i,j≤N

=


γ(X1, X1) γ(X1, X2) . . . γ(X1, XN )
γ(X2, X1) γ(X2, X2) . . . γ(X2, XN )

...
. . .

...
γ(XN , X1) γ(XN , X2) . . . γ(XN , XN )


where

γ(Xi, Xj) = E[(Xi − µi)(Xj − µj)]

Thus Σ embodies the correlation structure, which is what interests us. µ⃗ and Σ are
the parameters of the distribution. Once they are given, the probability density function
f(x⃗) is defined as

f(x⃗) =

(
1

2π

)N
2 ∣∣Σ∣∣− 1

2 e− 1
2
(x⃗−µ⃗)TΣ

−1
(x⃗−µ⃗)

where
∣∣Σ∣∣ is the determinant of Σ, and Σ−1

is its inverse. Note that when N = 1 the
covariance matrix Σ becomes just the variance, and the entire expression becomes the
well-known pdf of the normal distribution.

Given a set of observations x⃗, the likelihood of making these specific observations
is given by the probability density function at x⃗. Assuming that x⃗ comes from a multi-
normal distribution, and taking the log of the likelihood to simplify the expression, leads
to

logL(µ⃗,Σ | x⃗) = log f(x⃗ | µ⃗,Σ)

= −N
2 log(2π)− 1

2 log
∣∣Σ∣∣− 1

2(x⃗− µ⃗)
TΣ−1

(x⃗− µ⃗)

In our case the process is assumed to be stationary, so the elements of µ⃗ are all the same.
Moreover, the mean µ can be estimated efficiently as µ̂ = X̄ , that is, the average of the
observations. The process can therefore be centered by subtracting the average X̄ from
all elements. The resulting centered process has 0 mean. To simplify the notation, we
will assume x⃗ denotes this centered process rather than the original data. This leaves us
with

logL(µ,Σ | x⃗) = −N
2
log(2π)− 1

2
log
∣∣Σ∣∣− 1

2
x⃗T Σ−1

x⃗ (7.30)

where Σ, which expresses the correlation structure, is the unknown that we still need to
estimate. To do so we want to find the Σ that maximizes this expression, and therefore
is the most likely to have given rise to the observations. Σ in turn depends on the Hurst
parameter H , so by estimating Σ we will be able to derive an estimate for H .

Note that the first term in the expression is constant, and does not involve Σ. There-
fore it can be dropped from consideration. Our problem is that Σ itself is an N × N
matrix, and N can be very large. Moreover, for values of H near 1, there are numerical

Version 1.0.4, typeset on June 10, 2023



7.4. MEASURING SELF-SIMILARITY 355

problems: Σ’s determinant may be vanishingly small, and the ratio between its maximal
and minimal eigenvalues may be very large. We therefore cannot handle this expression
explicitly.

The approach we will use is to transform the representation of Σ from the time
domain to the frequency domain. Assuming that long-range dependence is present, the
dominant elements of the spectrum are those at low frequencies. We can therefore use
approximate expressions for

∣∣Σ∣∣ and Σ−1
that are more accurate for low frequencies.

This essentially means that the approximations become better for large N .
By expressing the autocovariance function using the spectral density (i.e., inverting

Equation (7.23) using Equation (7.27)), the covariance matrix may be written as

Σ ≈

 1

N

N/2∑
j=1

S(fj) e
i2π(r−s)fj


1≤r,s≤N

where fj = j/N are the Fourier frequencies. Its inverse can then be approximated as

Σ−1 ≈

 1

N

N/2∑
j=1

1

S(fj)
ei2π(r−s)fj


1≤r,s≤N

(7.31)

where the quality of the approximation improves asN tends to∞. To get a notion of why
such an approximation may be reasonable, note that any symmetric matrix with unique
eigenvectorsA can be written asA = UΛUT , whereU is a matrix of its eigenvectors and
Λ has its eigenvalues along the main diagonal and zeros elsewhere. This simply shows
that the effect of A is equivalent to a transformation to the basis of its eigenvectors, a
scaling according to its eigenvalues, and a transformation back to the original basis. Its
inverse is then A−1 = UΛ−1UT . This follows because the product UΛUTUΛ−1UT is
easily seen to be the identity matrix I . Starting from the middle, UTU = I because the
eigenvectors are orthonormal, ΛΛ−1 = I by definition, and UUT = I because again the
eigenvectors are orthonormal. But given that Λ is a diagonal matrix, its inverse is simply
a diagonal matrix whose elements are the reciprocals of the elements of the original
matrix. In other words,

Λ =

 λ1 0
. . .

0 λN

 implies Λ−1 =


1
λ1

0
. . .

0 1
λN


This even makes sense: it simply says that the scaling is reversed by using the reciprocals
of the scaling factors.

Let us now return to Equation (7.30). We need to approximate the two terms log
∣∣Σ∣∣

and x⃗T Σ−1
x⃗. The first is easy. The determinant of a matrix A is the product of its

eigenvalues:

|A| =
N∏
i=1

λi
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This implies that its log will be

log |A| =
N∑
i=1

log λi

But the spectral components of γ(k) approximate the eigenvalues ofΣ [300]. Therefore
we have

log
∣∣Σ∣∣ ≈ N/2∑

j=1

logS(fj) (7.32)

Next, we approximate x⃗T Σ−1
x⃗. The meaning of this expression is simply

x⃗T Σ−1
x⃗ =

N∑
r=1

N∑
s=1

xrΣ
−1
r,s xs

which, based on Equation (7.31), is

≈
N∑
r=1

N∑
s=1

1

N

N/2∑
j=1

1

S(fj)
ei2π(r−s)fj xr xs

By changing the order of summation we derive

≈

N/2∑
j=1

1

N

N∑
r=1

N∑
s=1

xr xs e
i2π(r−s)fj

S(fj)

But we can exploit the fact that the covariance is the same along the diagonals of Σ, just
as we did with the periodogram, by rearranging the sum: instead of summing row after
row, we sum diagonal after diagonal. The index used for diagonals will be k. All this
leads to

≈

N/2∑
j=1

N−1∑
k=−(N−1)

 1

N

N−|k|∑
t=1

xt xt+k

 e−i2πkfj

S(fj)

The parentheses are again just the empirical estimate of the autocovariance at a lag of k
(Equation (7.22)). Therefore we get

≈

N/2∑
j=1

N−1∑
k=−(N−1)

γ(k) e−i2πkfj

S(fj)
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The numerator is now seen to be the approximate periodogram of Equation (7.29), lead-
ing to the final expression

x⃗T Σ−1
x⃗ ≈

N/2∑
j=1

I(fj)

S(fj)
(7.33)

Given the results of Equation (7.32) and Equation (7.33) we can now combine them
to obtain an approximation of the desired log-likelihood function of Equation (7.30).
This gives

logL(µ,Σ | x⃗) ≈ −
N/2∑
j=1

[
logS(fj) +

I(fj)

S(fj)

]
(7.34)

Recall that all this is an approximation of the log-likelihood of the multinormal
model. We need to find the Σ that maximizes this expression. To further simplify
the expression, it turns out that the first term can be made equal to 0 by an appropriate
normalization [67, p. 111]. We are then left with the second term only. Because of the
minus sign, maximizing this is equivalent to minimizing its complement. The maximum
likelihood is therefore obtained by minimizing

N/2∑
j=1

I(fj)

S(fj)
(7.35)

This can also be understood as simply comparing the empirical periodogram I(fj) esti-
mated from the data with the theoretical spectrum S(fj) computed from the model.

To summarize, this entire discussion boils down to a rather simple procedure:

1. Select a long-range dependent model, such as fractional Gaussian noise.

2. Use an iterative procedure to minimize Equation (7.35) as a function of the Hurst
parameter H . To do so,

(a) Calculate the periodogram I(fj) from the data using the fast Fourier trans-
form.

(b) Derive the autocovariance function for the selected model with the current
value of H , and use this to calculate the spectral density S(fj) using the fast
Fourier transform.

(c) Calculate the sum of Equation (7.35) for this value of H , and continue with
the iterations to find the value that minimizes the sum.

3. The value of H that leads to the minimal value (highest likelihood) is the estimate
of the Hurst parameter of the data.

Importantly, given the theoretical background for this estimator, it is possible to show
that the distribution of the estimate Ĥ is asymptotically normal, and that its variance is
reduced with

√
N . As a result it is also possible to calculate confidence intervals for Ĥ .

As noted, the Whittle estimator is based on the assumption that we have a good
model of the underlying process. In particular, it is assumed that the samples come from
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Method jobs processes
(R/S)n 0.79 0.68
variance-time 0.76 0.66
autocorrelation 0.73 –
wavelets 0.76 0.62
periodogram 0.76 0.62
Whittle 0.72 0.61

Table 7.1: Results of different methods to estimate the Hurst parameter H of job and
process arrivals at the SDSC Paragon parallel supercomputer.

a multinormal distribution. If this is not the case, the method may generate misleading
results. A possible improvement, applicable if enough data is at hand, is to use the
aggregated Whittle estimator [676]. The idea is to divide the data series into segments
and aggregate them. Assuming finite variance, the distribution of such aggregates will
be closer to a normal distribution.

Another variant is the local Whittle estimator [676]. The difference is that instead
of specifying a complete model (e.g., fractional Gaussian noise), one specifies only the
behavior of the spectral density near 0. After all, this is all we really need for Equation
(7.35). Given that we are looking for long-range dependence, this is

S(f) ∼ Gf1−2H

where G is a constant that also depends on H . To improve accuracy, Equation (7.34) is
used with this specification, leading to the minimization of

m∑
j=1

[
logGf1−2H

j +
I(fj)

Gf1−2H
j

]

where m < N
2 is a parameter that limits the sum to using only the lower frequencies.

7.4.7 Comparison of Results

Table 7.1 summarizes the results of estimating the Hurst parameter H by the different
methods surveyed in the preceding sections. These results are remarkably consistent.
This lends them credence, but still we don’t really know whether they are correct.

A detailed study comparing the performance of several estimation methods (includ-
ing most of those described above, as well as a host of others) was conducted by Taqqu
and Teverovsky [677]. They performed the tests using synthetic data for which the cor-
rect answer is actually known in advance. The winner was the Whittle estimator, but
only when the parametric form of the time series used was known. If this was not the
case, and the local Whittle estimator was used, the results were not as good.

Another comparison, using a similar methodology, was performed by Karagiannis
et al. [395]. They found that the periodogram method produced the best results, with the
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Whittle estimator and R/S analysis being relatively close. In general, results tended to
underestimate the Hurst parameter, and the difference grew as H tended to 1.

A third study of this type was conducted by Clegg [143]. It found that the R/S
method has a slight tendency to underestimate results, and that a wavelet-based estimator
tended to provide the best results. All the methods checked were susceptible to strong
short range correlations (introduced by adding an AR(1) noise term created with Xt =
0.9Xt−1 + εt; see page 361), and overestimated H considerably when such correlations
were present. But spectral methods such as the local Whittle estimator and wavelets
were able to cope with a superimposed periodic sine wave and a linear trend.

A number of additional studies have also compared wavelet-based approaches to
Whittle and other approaches [6, 340, 379]. These generally show the wavelet approach
to be better, in terms of both reduced bias and variability (and hence, tighter confidence
intervals). Moreover, the wavelet approach has lower computational complexity. How-
ever, the Whittle estimator converges faster, and about 1000 samples are enough to get a
good estimate. In contrast, wavelets require about 10,000 samples.

Finally, a survey of the complexity and theoretical statistical properties of the differ-
ent algorithms has been written by Bardet et al. [56].

7.4.8 Validation

It should be noted that self-similarity is defined for infinite time series. Real data is
always finite. And we do not know how the data would behave if we had more of it.
Thus it is never possible to demonstrate conclusively that data is indeed self-similar.
The best we can do is claim that it is consistent with self-similarity.

A practical way that may be useful to characterize the long-term behavior of the data
is to use a “dynamic” approach, and emulate how the analysis would unfold if more
and more data became available [260]. To do so, start with only a small initial fraction
of the data, and use it to estimate the Hurst parameter. Now extend the data in several
steps, until you finally use all of it, each step considering an order of magnitude more
data than the previous one. In each step, repeat the estimation of the Hurst parameter
using the data available in that step. If the estimates for H converge, and, moreover,
the confidence intervals become more focused, this is a good indication that the data is
consistent with self-similarity.

An important feature of this methodology is its emphasis on using all the available
data. However, in some cases the analysis may show that the data is consistent with
self-similarity only for some limited range of scales, and in particular, does not seem to
be consistent with self-similarity on the longest time scales observed. While such self-
similarity on a finite scale is a mathematical oxymoron, it can nevertheless be used to
characterize the data behavior.

The problem with applying different procedures for measuring self similarity or
long-range dependence is that any procedure will always produce a result, but still this
result may be an artifact. For example, it has been demonstrated that short-range depen-
dencies may also lead to estimates of the Hurst parameter that differ significantly from
0.5 [143].
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To ensure that the results are indeed reliable, it has been suggested to chop the data
into relatively short intervals, and then reorder them randomly [214]. Specifically, the
length of intervals to use should correspond to the threshold above which any correlation
will be considered to be “long-range”. The random reordering then destroys any long-
range dependencies that may have been present. Now apply your favorite estimation
procedure to this reordered data. If it still produces a high value for the Hurst parameter,
you know that this is due to an artifact. If the estimated Hurst parameter drops to 0.5,
the original estimate is indeed reliable.

Other manipulations of the data can be used to assess the origin of the observed self-
similarity or long-range dependence. The idea it to replace some specific candidate data
field with randomized or homogenized values, and then repeat the analysis [338]. For
example, if heavy-tailed flow sizes are suspected as the cause of self-similarity, replace
all the flow sizes by their average, leaving all other attributes of the workload intact (for
example, flow arrival times). If this manipulation causes the apparent self-similarity to
disappear, this is evidence that the self-similarity indeed emerged as a result of heavy-
tailed flow sizes.

The interaction and relative effect of short-range dependence and long-range depen-
dence can be investigated by different manipulations of data that had been chopped up
into intervals as described above. By mixing the intervals we break up the long-range
dependence, but retain the short-range dependence. By leaving the intervals in the same
order, and only mixing the jobs within each interval, we retain the long-range depen-
dence but destroy any short-range dependence [214]. Thus we can create workload
variants with any desired combination of long-range and short-range dependence, and
check their effect on performance evaluations.

Mixing up the workload can also be done in other ways. For example, user re-
sampling is a methodology to create multiple versions of the same basic workload by
partitioning it into the subtraces representing different users, and then recombining them
randomly to create new workloads. Interestingly, in the context of parallel job work-
loads at least, it has been shown that such manipulations do not affect the self-similarity
of the workload [751]. This lends support to models such as the merged on-off processes
described later.

7.4.9 Software for Analyzing Self-Similarity

Several software packages have been created to aid with the analysis of self-similar data,
and in particular, with estimating the Hurst parameter.

Murad Taqqu, one of the preeminent researchers in the field, has a set of scripts and
examples available on his website. The URL is http://math.bu.edu/people/murad/methods/.

The R statistics project has a package for evaluating and modeling long-range de-
pendence time series. It includes Taqqu’s software, as well as the programs that appear
in Beran’s book [67, chap. 12]. This package was used to create the periodogram of
Figure 7.16 and calculate the Whittle estimator for Table 7.1; it is available at URL
http://cran.r-project.org/src/contrib/Archive/fSeries/fSeries 240.10067.tar.gz.

Thomas Karagiannis implemented a tool called SELFIS [394], which is available
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at URL http://www.cs.ucr.edu/%7Etkarag/Selfis/Selfis.html. It provides not only all the
main methods to estimate the Hurst parameter, but also validation by shuffling segments
of the data.

7.5 Modeling Self-Similarity

To model self-similarity we need to create an arrival process with long-range depen-
dence, which is bursty at many different time scales. One approach to do so is to find
the simplest and most elegant mathematical construction with these properties (an exam-
ple of abstract descriptive modeling). Two candidates are fractional Gaussian noise and
fractional ARIMA (autoregressive integrated moving average). An alternative is to find
a mechanistic technique that gives the desired results. Two candidates for this second ap-
proach are using the inverse wavelet transform and bias models. Both these models use
a hierarchical multiscale construction to build up a workload with features that persist
across multiple scales.

A third approach is to construct a generative model that is based on how activity is
really created in computer systems (sometimes called “modeling at the source” in this
context) [731]. One such model is based on the M/G/∞ queue. In essence, the idea is
that load (e.g. communication traffic) is generated by multiple sources, each of which
is active for a time period that comes from a heavy-tailed distribution. Another related
model is based on merged on-off processes, in which each on-off process represents the
activity pattern of a single user or application, and their cumulative effect is the complete
workload. It turns out that if the active and inactive periods (the on and off periods)
are heavy-tailed, the resulting workload will be self-similar. Thus in both models the
use of heavy-tailed distributions leads to a workload model with the desired long-range
correlation.

We now survey these models in turn.

7.5.1 Classical Long-Range Dependent Models

Time series analysis is based on the need to understand — and even better, predict — the
development of different processes, and has a long history. In particular, the modeling
of dependent processes is based on the notions of autoregression and moving averages.
Variants of these can also be used to model long-range dependent data, as shown later.

Background Box: From AR to ARIMA

An autoregressive process (abbreviated AR) is one in which each sample can be expressed
as a function of previous samples. The simplest case is an AR(1) process, in which only
one previous sample is used. The model is then

Xi = ϕXi−1 + εi

where ϕ is a constant and εi is an added noise term. Note that if ϕ is negative the process
will tend to oscillate, but if it is positive it will tend to be more persistent. The most
commonly used noise is Gaussian noise, in which εi is a normally distributed random
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variable with mean 0 and variance σ2. The more general case, denoted AR(p), allows
dependence on p previous samples. The expression is then

Xi =

p∑
j=1

ϕjXi−j + εi (7.36)

A moving average process (abbreviated MA) is defined in terms of another process, which
is random. Assume that {Zi} are independent random variables, say from a normal distri-
bution. We can then define an MA(q) process as

Xi =

q∑
j=0

θjZi−j (7.37)

that is, the weighted average of the q+1 elements leading to position i. Because successive
averages have q elements in common, the resulting Xs will be dependent. Usually θ0 = 1.
Putting the two together, we get an autoregressive moving average process (naturally called
ARMA(p, q)). This is an autoregressive process in which the noise is a moving average.
The definition is

Xi =

p∑
j=1

ϕjXi−j +

q∑
j=0

θjZi−j (7.38)

Note that the structure of the process is defined by two parameters: p is the depth of the
autoregression, and q + 1 is the window size of the moving average.
Finally, we can consider these processes as an increment process, and turn to the cumula-
tive process. Doing so allows for modeling correlations in nonstationary processes, specifi-
cally processes with a polynomial (including linear) trend. Because the cumulative process
is an integration of the increment process, it is called an autoregressive integrated moving
average process (ARIMA(p, d, q)). It has three parameters. The p and q serve the same
purpose as in ARMA processes. The d specifies how many times we need to difference in
order to arrive at an ARMA process. If first differences are used, d = 1, it means that our
process is the cumulant of an ARMA process, and will exhibit a linear trend. For higher
d, it is the cumulant of the cumulant (repeated d times) of an ARMA process. Obviously,
this is the most general process, and subsumes the previous ones as special cases.
Returning to the basic definitions of AR and MA, we may observe that a moving average
process is actually just a linear combination of (Gaussian) white noise. Thus this type of
process is also called a linear process. In MA processes the linear combinations used are
finite, and involve q + 1 noise terms.
An autoregressive process, in contrast, can be viewed as one in which a linear combina-
tion of the observations gives noise. But this expression can be inverted, leading again to
an expression of the observations as a linear combination of the noise, and hence a linear
process. The difference from a moving average is that here the sum is infinite. Each obser-
vation is a linear combination of all previous noise samples, with exponentially decaying
weights.
To derive this result, we start by defining B to be the “backward” operator. This means
that B(Xi) = Xi−1. Next, define the “difference” operator as 1 − B. This makes sense
because

(1−B)Xi = Xi −B(Xi) = Xi −Xi−1

In the simplest possible autoregressive process, p = 1. We then have Xi = ϕXi−1 + εi.
By rearranging terms this is
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Xi − ϕXi−1 = (1− ϕB)Xi = εi

To express the observations Xi as a function of the noise εi, we need to apply an operator
that is the inverse of 1− ϕB. Algebraically this is achieved by dividing by 1− ϕB:

Xi =
1

1− ϕB
εi

Assuming |ϕ| < 1, which is necessary for stationarity, we can consider this as the sum
of an infinite geometrical series (

∑
i q

i = 1/(1 − q)). This leads to a sum of multiple
applications of the backward operator:

Xi =

∞∑
j=0

ϕjBj εi

=

∞∑
j=0

ϕj εi−j

For a general AR(p) process this can be done for each of the p terms and summed, leading
to the same type of expression.

To read more: This box provides an extremely abbreviated description of a subject that
justifies book-length treatment, and indeed has received many such treatments. For a rela-
tively concise and readable introduction see Chatfield [121]. Another good one is the book
by Box et al. [83].

End Box

Fractional Gaussian Noise

Fractional Gaussian noise (fGN) is a construction that leads to exact second-order self-
similarity. It is based on the framework of autoregressive processes and random walks.

The definition of fractional Gaussian noise involves a number of steps. We start
with Brownian motion. This is simply a random walk in which the individual steps are
independent and Gaussian, that is, they come from a normal distribution. We typically
assume a normal distribution with zero mean (so there is equal probability of moving to
the left or to the right) and unit variance. We denote the location at time t by B(t).

Note that B(t) is a cumulative process: the location at time t is the sum of all the
steps taken up to this time. The associated increment process is the steps themselves,
which are Gaussian.

Now consider a slightly different type of process. Instead of summing all the steps,
take the weighted average of all the steps, with weights that decline according to a power
law. Specifically, the step at a lag of k in the past will receive the weight kH−1/2. The
range of H is 0 < H < 1, and one can guess that it will turn out to be the Hurst
parameter. This new process, which is actually a moving average of Gaussian noise,
is called fractional Brownian motion with parameter H . Note that we could define it
directly as an infinite moving average of independent Gaussian variables; the only reason
to start with the Brownian motion is to justify the name.

Version 1.0.4, typeset on June 10, 2023



364 CHAPTER 7. SELF-SIMILARITY AND LONG-RANGE DEPENDENCE

Recall that the increment process of the original Brownian motion is Gaussian. Us-
ing this analogy, we will call the increment process of fractional Brownian motion by
the name “fractional Gaussian noise”. Importantly, these increments are correlated with
each other, and, specifically, exhibit long-range dependence. A special case occurs when
their autocovariance decays exactly as described by Equation (7.12). In this case the re-
sulting process is exactly self-similar.

Fractional Brownian motion and fractional Gaussian noise are the simplest models
for self-similarity and long-range dependence that allow for analytical treatment [378].
They have therefore been widely employed for various signal-processing applications.
However, they have several drawbacks [567]. A major one is the symmetry of the un-
derlying Gaussian increments, which may lead to negative values when the standard
deviation is large relative to the mean. This is indeed a real problem as witnessed by the
data in Figure 7.5, which is obviously asymmetrical. In addition, these models neither
support large bursts nor short-range dependence. Therefore practitioners often prefer
more mechanistic or constructive models, such as those described in the following sec-
tions.

To read more: The preceding description is an extreme simplification that ignores all the math-
ematical problems of this model. For a rigorous definition see Mandelbrot and van Ness [468] or
Granger and Joyeux [299].

Fractional ARIMA

The desire to model short-range dependence has led to the definition of various autore-
gressive and moving average models as listed in the box on page 361. It turns out that a
simple generalization, allowing one of the parameters to assume fractional values rather
than being an integer, leads to models with long-range dependence. Specifically, frac-
tional ARIMA processes (denoted fARIMA) are a generalization of ARIMA processes
in which d is allowed to be fractional, and specifically d < 1

2 [343, 344]. This leads to an
expression where observations are again a linear combination of the noise, except that
the weights decay according to a power law rather than exponentially. As a result there
is a stronger correlation between distant observations, hence long-range dependence.

Let us now derive this more formally. First, we show that in an fARIMA process the
coefficients of the linear combination decay polynomially. Second, we show that this
leads to an autocovariance that also decays polynomially. This is the definition of long-
range dependence (Section 7.3.4), which leads to asymptotic second-order self-similarity
(Section 7.3.5).

Recall that d originally denotes the number of times the series is differenced. The
first difference is obtained by subtracting the previous element. Identifying the previous
element using the backward operator B, we can express differencing as 1 − B (see
discussion on page 362). High-order differences are then obtained by applying this
operator again and again, which algebraically means raising it to a power. For example,
the second difference is (1−B)2, and means that we apply the difference operator twice:
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(1−B)2Xi = (1−B)[(1−B)Xi]

= (1−B)[Xi −Xi−1]

= (Xi −Xi−1)− (Xi−1 −Xi−2)

= Xi − 2Xi−1 +Xi−2

The square brackets in the first two lines denote the first difference. Applying the differ-
ence operator again to the series of first differences produces the third line, and collecting
terms produces the fourth. Higher orders can be found in a similar manner; they turn out
to be based on binomial expressions.

In an ARIMA(0, d, 0) process, this is applied to a series X , and the result is the
random noise ε:

(1−B)dXi = εi

But it can also be inverted, giving

Xi = (1−B)−dεi

In other words, given a series of random noise samples εi we can apply the inverted
operator and obtain a series of dependent Xis.

To understand this inverted operator, we use the Taylor expansion of the function
f(z) = (1 − z)−d. The first derivative of this function is f ′(z) = d(1 − z)−(d+1). The
second derivative is f ′′(z) = d(d + 1)(1 − z)−(d+2). In general, the nth derivative is
f (n)(z) = d(d+1) · · · (d+n−1)(1−z)−(d+n). Evaluating this at z = 0 leaves only the
initial factors, because the last one is found to equal 1. The Taylor expansion is therefore
(1− z)−d = 1+

∑∞
j=1

1
j!d(d+1) · · · (d+ j−1)zj . Using this, we find that the desired

inverted operator can be expressed as

(1−B)−d = 1 +
∞∑
j=1

d(d+ 1) · · · (d+ j − 1)

j!
Bj

This is in effect an infinite sum in which more distant terms (those that correspond to
more applications of the backwards operator) have weights cj that drop off according to
a power law. To see this, note that

cj = 1
j!

∏j
k=1(d+ k − 1)

=
∏j

k=1

(
1− 1−d

k

)
= exp

(∑j
k=1 log

(
1− 1−d

k

))
≈ exp

(
−(1− d)

∑j
k=1

1
k

)
≈ exp(−(1− d) log j)

=
1

j1−d

where the first approximation is based on log(1 − x) ≈ −x for small x, which is the
case for large k.
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Note that if d is an integer, as in a normal ARIMA process, this implies that the
weights in the sum grow polynomially (or are all unity if d = 1). As a result the sum is
unbounded, and the process is ill defined. Therefore the expression makes sense only if
d < 1. In other words, d is fractional. In fact, we need finite variance for the definition
of self-similarity, implying the requirement

∑∞
j=0 c

2
j < ∞. This leads to the constraint

that 2(1 − d) > 1, or d < 1
2 . And we can use the gamma function to interpolate the

factorial for non-integer values (see page 126):

(1−B)−d =

∞∑
j=0

Γ(d+ j)

Γ(d)Γ(j + 1)
Bj

Given that the coefficients of the linear combination of white noise samples decay
polynomially, what does this say about the autocovariance of the resulting process? As
we now show, it also decays polynomially, implying that this process exhibits long-range
dependence.

Denote the elements of the fARIMA process by Xt =
∑∞

j=0 cj εt−j , that is, each
is a linear combination of all preceding white noise terms with coefficients cj (note that
the index of X may in principle be negative, and that the indices of ε go back to −∞).
Its autocovariance is then

γ(t) = Cov(Xt, X0) = Cov

 ∞∑
j=0

cj εt−j ,
∞∑
j=0

cj ε−j

 = σ2
∞∑
j=0

cj+t cj

The last equality stems from the fact that when we multiply factors of the form cjεt−j ·
cℓ ε−ℓ, the symmetric and random nature of the εs implies that they cancel out unless
t − j = ℓ. In that case the expected value of εt−jε−ℓ is the variance of the noise term,
hence the factor σ2.

We have shown that cj ≈ 1
j1−d . Therefore the expression for the autocovariance may

be approximated by the integral

γ(t) ≈ σ2
∫ ∞

0

1

(x+ t)1−dx1−d
dx −→ 1

t1−2d

When 0 ≤ d < 0.5 we have 1−2d ≤ 1, so the sum of autocovariances is indeed infinite,
implying long-range dependence.

The simplest type of fARIMA process is naturally fARIMA(0, d, 0). It has long-
range dependence due to the fractional differencing, but no autoregressive and moving
average components. The more general fARIMA(p, d, q) models allow for modeling of
both long-range and short-range dependence.

Implementing these models is conceptually straightforward. First, generate an infi-
nite series of noise terms, with expectation 0. Then use them to generate the long-range
dependent series by creating successive sums shifted by one with weights cj . In practice
this is not so simple. First, we need to decide on some threshold because, of course,
we cannot create an infinite series. Regrettably, the threshold limits the range of the
dependence, so it should not be too small a fraction of the number of samples required.
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Second, the procedure as described earlier is very inefficient, as the sum has to be cal-
culated anew for each shift. This implies quadratic time, meaning that the time needed
to generate n samples will be proportional to n2. But note that actually what we are
doing is to convolve the series εi with the series cj . This can be done in time n log n by
performing Fourier transforms and multiplying in the frequency domain.

7.5.2 Multiscale Wavelet-Based Construction

As shown in Section 7.4.5, the discrete wavelet transform can be used to transform a
time series (which, in the context of workload modeling, typically represents an arrival
process) into a sequence of wavelet coefficients. This transformation does not result in
the loss of any information. Consequently, the inverse transform can be used to turn the
wavelet coefficients back into the original time series. But this procedure can also be
used to generate synthetic arrival data. To do so, we simply generate suitable synthetic
wavelet coefficients, and feed them into the inverse wavelet transform. The result will
be a synthetic arrival process.

A specific construction based on this principle is the multifractal wavelet model of
Riedi et al. [567]. This model is based on a pair of observations. First, we want to ensure
that the resulting data is all positive. This is a requirement for workload models, where
the data typically reflects the volume of arrival (such as the number of packets that arrive
in a unit of time). Obviously, this cannot be a negative number. Second, when using
the inverse Haar transform, at each step we generate a new (finer) approximation by
adding and subtracting a detail dj,k from an approximation aj,k. Therefore, to guarantee
that everything remains positive, all we need to do is to ensure that 0 < dj,k < aj,k
for all scales j and translations k. This is achieved by creating the details based on the
approximations — specifically, multiplying the relevant approximation by a factor that
is smaller than 1:

dj,k = fj,k · aj,k |fj,k| ≤ 1

Note that the factor fj,k may be negative, as long as its absolute value is not larger than
1. Having a negative factor just means that we first subtract and then add, rather than
first adding and then subtracting. The distribution of fj,k should be symmetric around 0.

In addition, recall from Section 7.4.5 that when we perform a wavelet transform of
self-similar data, the average squared details grow exponentially with the scale j. This
is the basis for estimating the Hurst parameter H from the logscale diagram. Therefore
the factors at each stage must come from an appropriate distribution. More specifically,
the variance must change by a factor of 2(2H−1) at each scale, because this was the slope
of the line in the logscale diagram.

In summary, the procedure to generate a sequence of N = 2n positive values with
an average of v is as follows. Note that it is more convenient to number the scales j in
the opposite order than in Section 7.4.5; thus j = 0 here represents the coarsest scale,
and j = n represents the fine scale of the full generated dataset.

1. Set the global approximation a0,0 =
√
2n v.
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2. Set the initial variance to some number much smaller than 1. If the model is based
on some data that was analyzed using a wavelet transform, use Var0 = d20,0/a

2
0,0.

3. Perform n stages of doubling the length of the sequence, indexed from j = 0 to
j = n− 1. Each stage consists of the following steps.

(a) At each stage (except the first) increase the variance relative to the previous
stage:

Varj = 2(2H−1)Varj−1

(b) Select a distribution with this variance. For example, one can use the point
distribution

f =


c with probability r
0 with probability 1− 2r
−c with probability r

which has variance Var(f) = 2rc2. Setting r = 1
3 , for example, then leads

to c =
√

3
2Varj . Note that this should satisfy c ≤ 1.

(c) Then, at stage j, use the 2j values that were produced in the previous stage
(here indexed by k = 0 to 2j − 1), and for each one do the following.

i. Select a factor fj,k at random from the above distribution to guarantee
the correct variance for this stage.

ii. Model the respective detail as dj,k = fj,k · aj,k.
iii. Compute the two new approximations

aj+1,2k = 1√
2
(aj,k + dj,k)

aj+1,2k+1 =
1√
2
(aj,k − dj,k)

4. The final approximations an,0 to an,2n−1 are the output sequence.

Note that in effect what this procedure does is to select 2n factors fj,k, and produce
the outputs by multiplying the original value v by specific subsets of n factors with
appropriate signs.

An example of the output of such a process is given in Figure 7.18. It starts with
an average value of v = 3. The details are created based on factors taken from a point
distribution with r = 0.4 and an initial variance of 0.0005. Such a low variance at the
top level is required to allow for growth at finer levels without creating factors that are
larger than 1. The variance grows by a factor of

√
2 at each stage, which corresponds to

a Hurst parameter of H = 0.75.

7.5.3 Bias Models

The b-model can be viewed as a special case of the multifractal wavelet model, in which
all the factors at all the levels are equal. The idea is to start with a certain amount of
work, and then divide it recursively according to fixed proportions [720]. Thus, starting
from the top level, we divide the total workW into two: bW and (1−b)W , where b < 1
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Figure 7.18: Synthetic workloads generated by a multifractal wavelet model (left) and
a b-model (right) shown at five different scales. In both cases the average workload is
three jobs per time unit.
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is the bias. This continues for as many levels as we wish: given the 2n points produced
after n levels, we can partition each of them with a ratio of b to 1−b to produce the 2n+1

points of level n+1. Such recursive divisions inherently lead to a self-similar structure.
However, at each division which part comes first can be decided randomly.

From this description we see an obvious relationship to a tree structure, in which
each node splits the work among its two children with a bias of b. But maintaining such
a tree is memory intensive and unnecessary. Instead we can use a stack that enables us
to simulate a depth-first traversal of the tree, generating part of the output whenever we
reach a leaf. The procedure is as follows.

1. Decide on the total volume of work W and the length of the workload 2n.

2. Decide on the bias b or estimate it based on existing data that is being modeled (as
explained below).

3. Place the pair ⟨W, 0⟩ on the stack.

4. As long as the stack is not empty, do the following.

(a) Pop a pair ⟨work, level⟩ from the stack.
(b) If level = n, print work as the next output and return to step 4.
(c) Otherwise, create two new pairs:

⟨b · work, level + 1⟩ and ⟨(1− b) · work, level + 1⟩

Flip a coin to decide in which order to put them on the stack, and return to
step 4.

An important question is how to set the parameter b. To do this we use entropy plots
[720]. Assume that W = 1 and denote the ith value at the nth level by Y (n)

i . By con-
struction, the sum of all the values in the same level is W , namely 1. Therefore we may
regard them as a probability distribution and calculate the entropy of this distribution.

In information theory, entropy measures the degree to which a distribution is uni-
form. The entropy of a distribution over N points ranges from 0 when the distribution
is completely skewed (all the mass is concentrated on one point) to logN when it is
uniform. The formula is

E = −
N∑
i=1

pi log pi

where pi is the probability of point i.
At the first level of the b-model construction there are only two points, with values

of b and 1− b, which we regard as the two probabilities. The entropy is therefore

Eb = −b log b− (1− b)log(1− b)

We will show by induction that at level n the entropy is nEb. The induction step is then
simply that each level adds Eb to the entropy. The entropy at level n+ 1 is
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E(n+1) = −
2n+1−1∑
i=0

Y
(n+1)
i log Y

(n+1)
i

According to the construction, we can perform the summing in pairs:

E(n+1) = −
2n−1∑
i=0

(
Y

(n+1)
2i log Y

(n+1)
2i + Y

(n+1)
2i+1 log Y

(n+1)
2i+1

)
But the elements in each pair are related, being derived from the same element in the
previous level, so

E(n+1) = −
2n−1∑
i=0

(
bY

(n)
i log[bY

(n)
i ] + (1− b)Y (n)

i log[(1− b)Y (n)
i ]

)
By turning the log of a product into a sum and rearranging the terms we then get

E(n+1) = −
2n−1∑
i=0

Y
(n)
i [b log b+ (1− b) log(1− b)]

−
2n−1∑
i=0

[bY
(n)
i log Y

(n)
i + (1− b)Y (n)

i log Y
(n)
i ]

Now in the first sum the Y (n)
i sum to 1, leavingEb, and in the second sum b+(1−b) = 1

leaving E(n). This leads to the conclusion that E(n+1) = Eb + E(n), and given that
E(1) = Eb we find that indeed E(n) = nEb.

The importance of this derivation is the following. In the model, we present the tree
in a top-down manner: we start with all the work at the root, and partition it at each level
until we reach the leaves. But it is also possible to look at this in the other direction,
namely bottom up. In this case we start with a workload sequence, and aggregate it until
we reach the top. Given real data we can actually do this, and compute the entropy at
each level of aggregation. Plotting the entropy as a function of the level should lead to a
straight line, with a slope ofEb. From this we can extract the bias b to use as a parameter
of the model.

An example of the output of using the b-model is given in the right-hand graph of
Figure 7.18. The parameter used in this example is b = 0.65. Two observations stand
out. First, even a relatively moderate parameter of 0.65 implies that half of the gener-
ated workload contains nearly double the work in the other half (a 65% to 35% split).
Therefore the data seems to contain a growing trend and looks nonstationary. Second,
because the same factor b is used at all levels, the variance is not reduced with aggre-
gation. In particular, since the graph uses data from a predefined part of the generated
trace for the visualization, at fine resolutions it appears to contain much less work than
the average. This occurs when there happen to be many multiplications by 1− b leading
to this part. It could also have much more work than the average, if there happen to be
many multiplications by b.
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An extension of the b-model is the PQRS model [720]. The goal of this model is
to capture not only the burstiness and self-similarity that characterize the volume of the
work, but also the locality properties that characterize the relationship between succes-
sive work items. In fact, the model is based on the observation that these two aspects
of workload modeling are actually similar: just as burstiness implies that there are some
times with a heavy load and others with a light load, locality implies that there are some
attribute values that are very popular and others that seldom occur.

Moreover, the patterns of burstiness and locality may be correlated in various ways.
This can be visualized by heat maps similar to those we used to motivate locality of sam-
pling, where one axis represents time and the other represents some workload attribute
(Figure 6.11). The PQRS model generates synthetic heat maps of this kind in a manner
that is similar to the way the b-model generates a time series. The difference is that here
a 2D structure is needed, so instead of using one parameter and dividing into two at each
step, we need three parameters and divide into four.

In more detail, the model is based on the parameters P , Q, R, and S, such that
P + Q + R + S = 1. A square heat map of size 2n × 2n is created, meaning that
the generated workload will span 2n time units and the modeled workload attribute will
have 2n possible values (or bins). The construction is recursive. In the first step, the
total work volume W is divided into four parts, and each is assigned to one quarter of
the heat map. For example, P ·W may be assigned to the top-left quadrant, Q ·W to
the top-right quadrant, R ·W to the bottom left one, and the final S ·W to bottom right.
The volume in each quadrant is then partitioned among its subquadrants according to the
same proportions, going on until the bottom-most 2× 2 cells are reached. The ordering
of the quadrants can (and probably should) be randomized at each partition.

7.5.4 The M/G/∞ Queueing Model

One generative model of load that leads to self-similarity is based on the M/G/∞ queue.
In this queueing model arrivals are Poisson, that is, interarrival times are exponentially
distributed (the “M” stands for Markovian). The service times, in contrast, have a general
distribution (the “G”); in particular, we are interested in service times that have a heavy-
tailed distribution. The number of servers is infinite, so clients do not have to wait, but
rather receive service immediately upon arrival.

The connection to self-similarity is made by defining the time series X(t) to be
the number of active clients at time t. These are the clients that have arrived prior to
t and are still active; in other words, the interval since their arrival is shorter than their
service time. If service times are heavy-tailed, the active clients will include many clients
that have arrived very recently, and a few that have arrived a long time ago. It can be
visualized as shown in Figure 7.19. In this figure, each arrival is represented by a dot.
The dot’s horizontal location is the arrival time, and values along this dimension are
uniformly distributed. The vertical location is the service time, and values concentrate
at low values. X(t) is the number of points in the shaded region.

The connection to workload modeling is done as follows. Consider each client as a
generator of work. For example, each client can represent a TCP connection, in which
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Figure 7.19: Visualization of how an M/G/∞ queueing system is used to construct a
self-similar time series.

packets are transmitted continuously for the duration of the connection (which is the
service time in the M/G/∞ model). Thus the total number of packets sent at time t is
equal to the number of active clients at time t, that is, to X(t).

The correlation between successive values of X(t) is the result of clients that are
shared between them. Significantly, the heavy-tailed distribution of service times means
that some clients have very long service times. These then contribute to long-range
dependence in X(t). The power-law tail of the service times translates into a power-law
decay of the autocorrelation of X(t).

Implementing this model to generate the time series X(t) is very easy. Based on the
preceding description, it can be done as follows:

1. Start at t = 0 as the arrival time of the first client.

2. Select the client’s service time d from a Pareto distribution.

3. Add 1 to all output values from X(t) to X(t + d). This represents the activity of
this client.

4. Select an interarrival i from an exponential distribution.

5. Set t = t+ i as the arrival time of the next client, and return to step 2.

An example of the output produced by this method is given in Figure 7.20. The Poisson
arrivals used λ = 0.5, that is, one arrival on average every two time units. The Pareto
distribution had a minimal value k = 1, and a shape parameter a = 1.2. In the figure,
we skip the first 10,000 time units to avoid the buildup period that starts from an empty
system.

While the original model as described above is very synthetic, more realistic versions
exhibit the same behavior. In particular, the Poisson arrivals can be replaced by another
arrival process, in which interarrival times are independent but come from another dis-
tribution (that is, not the exponential distribution). In addition, the generation of work
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Arrivals from M/G/∞ queue
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Figure 7.20: Synthetic workload generated by an M/G/∞ model, shown at five different
scales.
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during the session need not be uniform, but can be more general. The only essential
element is the heavy-tailed distribution of session durations [731].

7.5.5 Merged On-Off Processes

The model of merged on-off processes is a generalization of the M/G/∞ model. That
model can be interpreted as the merging of multiple processes, each of which produces
a single connection with a heaty-tailed duration. The idea behind the merged on-off pro-
cesses is very similar. Again the workload is generated by merging multiple processes.
Again, each process has periods of activity that come from a heavy-tailed distribution.
The difference is that each process alternates between on and off periods, rather than
contributing a single on period [732, 155, 679, 304].

The crux of the model concerns the distributions governing the lengths of the on
and off periods. If these distributions are heavy-tailed, we get long-range dependence:
if a unit of work arrives at time t, similar units of work will continue to arrive for the
duration d of the on period to which it belongs, leading to a correlation with subsequent
times up to t + d. Because this duration is heavy-tailed, the correlation created by this
burst will typically be for a short d, but occasionally a long on period will lead to a
correlation over a long span of time. As many different bursts may be active at time t,
what we actually get is a combination of such correlations for durations that correspond
to the distribution of the on periods. But this is heavy-tailed, so we get a correlation that
decays polynomially — a long-range dependence.

In some cases this type of behavior is built in, and is a direct result of the heavy-
tailed nature of certain workload parameters. For example, given that web server file
sizes are heavy-tailed, the distribution of service times will also be heavy-tailed (because
the time to serve a file is proportional to its size). During the time a file is served, data is
transmitted at a more or less constant rate. This rate is correlated with later transmittals
according to the heavy-tailed distribution of sizes and transmission times, leading to
long-range correlation and self-similarity [155].

This model is nice for several reasons. First, it has very few parameters. In fact,
the self-similarity depends on a single parameter, α: the tail index of the distribution
of on (or off ) times. This should be chosen from the range 1 < α < 2, and leads
to self-similarity with H = 3−α

2 [732, 679]. Moreover, the minimal α dominates the
process, so different sources may actually have different values of α, and some may
even have finite variance (that is, their on and off times are not heavy-tailed). Additional
parameters of the model also have an intuitive physical meaning. For example, the
number of merged on-off processes should correspond to the expected number of active
users in the modeled system.

Like the previous model, implementing this one to generate a time series X(t) is
easy [679]. It can be done as follows.

1. Start at t = 0 as the beginning of the first on period.

2. Select the duration of the on period d from a Pareto distribution.
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Figure 7.21: Synthetic workload generated by merged on-off processes, shown at five
different scales.

3. Add 1 to all output values from X(t) to X(t + d). This represents the work
generated during this on period.

4. Select the duration of the off period g from a Pareto distribution.

5. Set t = t + d + g as the beginning of the next on period for this on-off process,
and return to step 2. Continue to do so until the desired total length is obtained.

Version 1.0.4, typeset on June 10, 2023



7.5. MODELING SELF-SIMILARITY 377

6. Return to step 1, and repeat the whole sequence of steps for another on-off process.
Continue to do so until the desired number of processes have been modeled.

An example of the output produced by this method is given in Figure 7.21 (left), which
used Pareto distributions with a shape parameter a = 1.2 for both the on and off periods.
The number of processes being merged was 50. Again, the first 10,000 time units were
discarded in the displayed figure.

When compared with Figure 7.20, the results of using merged on-off processes are
less bursty. Indeed, using this procedure often leads to H that is smaller than expected
according to the tail index α of the distributions being used [4]. The reason is that in an
on-off process with heavy-tailed on and off times, the vast majority of on and off times
are short. Therefore the average number of active users seen in any time unit is close to
half of them — in our case, 25 of 50. This number is too low, because the theorem stating
that heavy-tailed on and off periods lead to long-range dependence actually holds only
asymptotically, when both the number of processes and the total duration observed tend
to infinity [679]. Observing this directly may require periods of many hours, more than
is realistic for network traffic which can be assumed to be stationary for only a couple of
hours, and exhibits daily effects on longer scales [4].

However, there are several more practical ways to increase the variability relative to
the mean, and thereby create more burstiness. One is to use longer off periods. This is
shown on the right of Figure 7.21, inwhich 250 on-off processes were multiplexed, but
the off periods from the Pareto distribution were multiplied by a factor of 50. A similar
effect is obtained if only very few processes are used (e.g. five). Another option is to use
a more diverse model in which different processes produce work at different rates during
their on periods (that is, their behavior in step 3 is different). In fact, variable rates of
activity in different on periods are also required to better model the realities of IP flows
[753].

The most important parameter of an on-off processes model is the number of individ-
ual processes being multiplexed. According to Horn et al., at least 100 processes should
be used to obtain a good approximation of the desired values of H [340]. However, this
conflicts with data showing that bursts of activity do not result from the confluence of
many small flows, but rather from the arrival of a few high-rate flows [592].

A variant of on-off models is to use a hierarchical model (more on such models in
Chapter 8). For example, the LiTGen traffic generator models traffic in a hierarchical
generative manner, by modeling user sessions, the web pages downloaded in each ses-
sion, the objects that compose each web page, and the packets needed to retrieve each
object [576, 575]. The distributions for the submodels are empirical distributions ex-
tracted from a trace, which typically have long tails, but the only ones that are really
important to model correctly are the number of objects in a page and the packet interar-
rival times. At the bottom level, the packet arrival rate is made proportional to the object
size: for large objects, the packet interarrival times are shorter. This feature is found to
be crucial in reproducing long-range dependence similar to that observed in the original
trace.
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7.6 More Complex Scaling Behavior

Self-similarity is described by a single parameter: the Hurst parameter H . This param-
eter governs many different characteristics of the self-similar process. All finite dimen-
sional distributions of the process scale according to H . As a result, all moments scale
according to H . The autocorrelation also decays according to H . And all this is true
at all times t. Both the measurement of self-similarity and its modeling depend on this
fact.

But real processes may be more complex, and as a result may need more than a
single parameter [567, 3]. One particular type of complexity that has been identified
in the context of computer networking on WANs is that the scaling phenomena may be
different at different scales. Thus the traffic is indeed self-similar at long time scales (in
this context, long is more than a second), but not at short time scales (of no more than
hundreds of milliseconds) [252, 251].

The identification and analysis of such effects are done using wavelets [6, 567, 663].
Wavelet analysis (as described in Section 7.4.5) is reminiscent of spectral analysis in the
sense that the signal being studied is expressed in terms of a set of basis functions, or,
rather, in terms of the coefficients of the different basis functions. In spectral analysis
these basis functions are the sine and cosine, and the coefficients therefore identify the
frequencies that make up the signal. Wavelets are also basis functions that have a limited
band of frequencies, but in addition, they have a defined duration. Thus it is possible to
express the fact that different frequencies apply at different times.

The resulting models are called multifractals. The essence of multifractals is that
they have different scaling exponents at different times, as opposed to self-similar (also
called monofractal) processes that have a constant scaling exponent H . The scaling
exponent describes the derivative of the process at a given time, and hence its burstiness.
The model is that

lim
δt→0

X(t+ δt)−X(t) = δtH(t)

where H(t) is the local scaling exponent at time t. As δt→ 0, H(t) > 1 corresponds to
low variability, whereas H(t) < 1 corresponds to high burstiness.

Although such models may provide a better fit to some data, the question of whether
they are indeed justified and useful is still open [678, 6, 707].
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Hierarchical Generative Models

The discovery of self-similarity, and the quest to model it, required a radical depar-
ture from previous practices. Before this discovery, workload items were considered
to be independent of each other. Modeling could then be done by sampling workload
items from the relevant distributions, subject to desired correlations between workload
attributes. But self-similar workloads have an internal structure. Workload items are no
longer distributed uniformly along time — they come in bursts, in many different time
scales.

The next step is to consider whether it is only the arrivals that are bursty. Self-
similarity says that workload items come in bursts, but says nothing about the nature of
the items in a burst. Do the attributes of the burst items have any special characteristics?
For example, do job sizes also come in “bursts”, or are they just randomly selected from
a distribution? And what about runtimes, memory usage, and so on?

The answer to these questions is that all workload attributes tend to come in bursts.
It is common to see a burst of jobs with similar attributes, and then a burst of jobs with
other attributes, and so on [239, 109]. Each burst is characterized by rather modal dis-
tributions, often concentrated around a single value. The wider distributions describing
the entire workload are actually a combination of the modal distributions of the differ-
ent bursts of activity. Thus the collective distribution does not capture the workload
dynamics unless we postulate locality of sampling: instead of sampling from the whole
distribution, sample first from one part, then from another, and so on.

A good way to produce locality of sampling is by using a hierarchical model: first
select the part of the distribution on which to focus, and then sample from this selected
region. This chapter suggests that such a model can and should be generative. This
means that it should mimic and model the processes that create the real workload. Such
models are therefore called hierarchical generative models (HGM).

The main example we focus on throughout this chapter is user-based modeling. This
is based on the observation that each user tends to repeat the same type of work over
and over again. When one user is very active, the workload therefore assumes the char-
acteristics of that user’s jobs. When another user becomes active, the characteristics of
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the workload change. Thus by modeling the activity patterns of users we can create
workloads with the desired locality of sampling.

Note that the same idea may apply to various other levels and types of workloads,
even if human users are irrelevant. For example, packets may come from flows that
are part of a connection, all of which occur at much finer time scales than explicit user
activity. The important unifying theme is that the model not only imparts structure on
the arrival process, but also leads to locality of sampling in all workload features.

8.1 Locality of Sampling and Users

Locality of sampling refers to the fact that workloads often display an internal structure:
successive samples are not independent of each other, but rather tend to be similar to
each other. This was demonstrated and quantified in Section 6.3. Here we show that this
effect is associated with user activity.

The most extreme type of user activity that leads to locality of sampling is a workload
flurry. The essence of this phenomenon is a surge of activity, typically by a single user,
that completely dominates the workload for a relatively short period of time [249].

Figure 8.1 shows examples of large-scale flurries, in which the level of activity is
up to 10 times the average. It also shows that the characteristics of such flurries are
typically quite different from those of the workload as a whole. Specifically, flurries are
usually composed of numerous repetitions of the same job, or of very similar jobs. Thus
they do not span the space of attribute combinations of the entire workload, but rather
concentrate at a certain point or at a small number of points.

Figure 8.2 shows that this sort of behavior is not unique to such large-scale flurries.
Actually, many users tend to repeat the same type of jobs over and over again, and they
do so over limited periods of time. The overall workload distributions are a result of
combining the activities of many different users, each of which has a different charac-
teristic behavior.

Additional support comes from the data displayed in Figure 8.3. This shows that
the diversity in the workload grows with the duration of the observation window. More
importantly, the number of different values observed in the logs is lower than would be
observed if jobs were ordered randomly. This implies that there is a strong locality, and
that only a small subset of the possible values are observed during short time windows.

Note that the number of active users also grows with the observation window. This
can be interpreted as a causal relationship: longer windows provide an opportunity for
more users to be active, and this in turn leads to more diverse workloads. However, this
is merely circumstantial evidence. More direct evidence may be provided by creating a
scatterplot showing the actual number of users in each week and the actual corresponding
workload diversity (represented by the number of different job sizes). The results of
doing so are somewhat mixed (Figure 8.4). On four of the checked systems, there indeed
seems to be a positive correlation between users and workload diversity. On the other
two this is not the case.

The thesis of this chapter is that the basic idea of locality of sampling as a result of
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Figure 8.1: The flurries of activity caused by single users are typically not distributed in
the same way as the entire workload in terms of resource usage.
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the overall distribution, both in the values sampled and in the distribution over time. In
each log, six active non-flurry users are color-coded.
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Figure 8.4: Correlation (or lack thereof) between the number of active users and the
workload diversity. Each data point corresponds to a single week from the log. The line
segments are the result of applying linear regression.
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Figure 8.5: Simple statistical workload modeling.

localized user activity can be used in modeling. If we combine a model of the intermit-
tent activity patterns displayed by users with models of the repetitive nature of the work
they perform, we will get a workload that has locality of sampling. To accomplish this,
we need a hierarchical workload model.

8.2 Hierarchical Workload Models

Straightforward statistical modeling of workloads involves sampling from selected dis-
tributions (Figure 8.5), which leads to the generation of a sequence of jobs that are
independent of each other. These jobs are then fed to a system simulation, enabling the
measurement of performance metrics. Alternatively, the distributions themselves may
be used as input to mathematical analysis.

The problem with this approach is that the generated jobs are indeed independent
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Figure 8.6: Workload modeling based on a hidden Markov model.

of each other. The generated workload therefore does not have any temporal structure,
and, in particular, cannot display locality of sampling. To create an internal structure, we
need a hierarchical model with at least two levels. The top level models the movement
between different parts of the distribution, whereas the bottom level does the actual
sampling. This leads to sequences of similar samples. The lengths of the sequences
result from the details of the top-level model.

As in other cases, there are two ways to go about creating a hierarchical model.
One is phenomenological: find the simplest abstract model that produces the desired
behavior. The other is generative: try to model the process that actually creates the
observed behavior in reality [369].

8.2.1 Hidden Markov Models

A specific type of hierarchical (or, rather, two-level) model that is often used is the
hidden Markov model (HMM) [557]. This includes two parts. The first is a Markov
chain, which provides the dynamics (i.e., how things change with time; for background
on Markov chains, see the box on page 242). The other part is a set of distributions for
each state in the Markov chain, that generate the outputs (in our case, the jobs or other
workload items). This structure is depicted in Figure 8.6.

To generate a synthetic workload with such a model we do the following. The basis
is a Markov process that visits the states of the hidden Markov chain. When a specific
state is visited, a certain number of workload items are generated. The number of items
and their characteristics (i.e., the distributions from which their attributes are selected)
are specific to this state. After generating these workload items, we move to another
state according to the transition probabilities of the Markov process.

The locality of sampling arises due to the fact that each state has different distri-
butions of workload attribute values. Thus workload items generated when visiting one
state will tend to be different from workload items generated when visiting another state.
The overall distribution of workload attribute values is the product of the limit probabil-
ity of being in each state and the output from that state.

A potential deficiency of an HMM-based model is that it may be too pure: at any
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given time, only one state is active. This is similar to assuming that at any given time only
one user is active. In reality, there is a set of active users, and the generated workload
is an interleaving of their individual workloads. This interleaving does not lend itself to
easy modeling with an HMM.

Note that HMMs are not only useful for capturing locality of sampling. They may
also be used to model workloads that have an inherent structure [559]. For example,
consider file system activity. Using files typically involves a mixture of open, close,
read, write, and seek operations. But for any given file, these operations are typically
ordered according to the following rules:

• The first operation is an open.

• The last operation is a close.

• Read and write operations are seldom mixed.

• Seek operations may come between other operations, but typically do not follow
each other.

Selecting operations at random, even with the right probabilities, will lead to a nonsense
workload that violates many of these rules. But with an HMM we can easily generate a
stream of requests that satisfies them.

8.2.2 Motivation for User-Based Models

Real-world workloads incorporate myriad characteristics that may all have an effect on
evaluation results. Modeling each of these characteristics individually is an arduous task.
Using a generative model based on user activity is a natural approach that helps solve
this problem.

The following subsections illustrate some of these characteristics, and how they are
naturally modeled in a user-based model.

Locality of Sampling

Locality of sampling served as the motivating example leading to the use of HGMs
(and user-based models in particular) in Section 8.1. Locality of sampling is built right
into these models, because the workload is constructed by interleaving the activities of
several simulated users, each of which displays low diversity.

Load Manipulation

It is often desirable to evaluate the performance of a system under different load con-
ditions, e.g., to check its stability or the maximal load it can handle before saturating.
Thus the workload model should not only model a single load condition, but should also
contain a tunable parameter that allows for the generation of different load conditions.

(Note that we are talking about the average load, not the instantaneous load. Systems
may always become overloaded for certain periods due to fluctuations in the load [600,
250].)
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The most common approach to changing the load is to systematically modify the
interarrival times or the runtimes. This is based on queueing theory, where the load
(or utilization) is found to be the ratio λ/µ (i.e., the arrival rate divided by the service
rate). For example, if a model generates a load of 70% of system capacity by default,
multiplying all arrival times by a factor of 7/8 = 0.875 will increase the load to 80%,
while retaining all other features of the workload model. This is a workable solution
for a stationary workload. However, if daily cycles are included in the model, such
modifications influence the relative lengths of the jobs and the daily cycle, which is
obviously undesirable (as discussed in Section 9.6.5).

In user-based modeling it is possible to achieve a modification of the load without
changing any of the basic workload features. Instead, the load is manipulated by a high-
level modification of the user population: adding more users increases the load, and
removing users reduces the load [57, 108, 751]. Alternatively, load can be modified by
changing the characteristics of the active users. For example, we may replace light users
with heavier users.

Feedback and Throttling

Even when we do not manipulate the load explicitly, different load conditions may occur.
In fact, fluctuations even occur within the same simulation. In real life, such fluctuations
affect user behavior: when the system becomes overloaded, users tend to reduce their
activity and back off.

Such effects are very important for reliable performance evaluations. To model them
one needs a closed system model, where system performance feeds back into the arrival
process. It is especially natural to do this in the context of user-based models, based
on an explicit model of how users react to poor system performance. Such a model can
include behaviors such as canceling jobs and aborting entire sessions.

Self-Similarity

Self-similarity has been found in many different workload types, most notably in Internet
and LAN traffic [436, 540]. Similar results have been obtained for the workloads on
file systems [304], parallel machines [670, 751], and more. Although self-similarity
is basically a statistical property, it is hard to reproduce by a simple sampling from a
distribution. Alternative models therefore construct the workload based on an on-off
process: on and off periods are sampled from a heavy-tailed distribution, and then the
on periods are filled with activity (Sections 7.5.4 and 7.5.5) [732]. In a sense, user-based
modeling is an extension of this practice, which makes it more explicit. Importantly, at
least in parallel job workloads it has been shown that self-similarity is indeed captured
by the combined activity of multiple users, even if they are mixed [751].

Daily Cycles

Real workloads are obviously nonstationary: they have daily, weekly, and even yearly
cycles [321]. In many cases this attribute is ignored in the modeling process, with the
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justification that only the high load at prime time is of interest. This is reasonable in the
context of network communication, in which the individual workload items (packets)
are very small, but it is very dubious in the context of parallel jobs, which may run for
many hours. Such long jobs are of the same order of magnitude as the daily cycle, and
therefore necessarily interact with it. For example, it is possible to envision schedulers
that delay long jobs to the less loaded night hours, while using the prime time resources
for shorter interactive jobs [449, 248]. Such behavior cannot be evaluated if the workload
does not include a faithful modeling of the daily cycle.

In a user-based generative model, the daily and weekly cycles are created by user
sessions that are synchronized with these cycles. For example, Shmueli and Feitelson
propose a model in which users have a propensity to leave the system around 6 PM and
return around 8 AM the next day [616, 248]. Zilber et al. propose a model with four user
classes, corresponding to combinations of users who are active at day or at night, and on
weekdays or on weekends [763]. These and other approaches for modeling daily cycles
were reviewed in Section 6.5.1.

Extrapolation

A recurring question about workloads is how to handle situations for which we do not
have data. Using extrapolation with descriptive statistical models is dangerous, because
we do not really know whether the workload will continue to act in a consistent manner
beyond the range we have observed. But if we understand the mechanisms underlying
the process that creates the workload, we can apply the same mechanisms in the new
setting, and see what workload is produced. In this way the workload will naturally
adapt to the new situation. Importantly, this can include a measure of self-regulation as
is the case when feedback is included.

Generative models are especially useful if several changes are made at the same time.
Consider an example where the scale of the system under study is larger than the systems
from which we have data, and we also want to analyze the behavior of this system under
an increased load. A parameterized generative model in which user behavior can be
adjusted to reflect the system’s scale can cope with such a scenario. But it would be hard
to come up with appropriate modifications to a descriptive model.

Abnormal Activity

Finally, the workload on many types of systems sometimes displays abnormal activity.
For example, in telephone systems Mother’s Day is notorious for causing overload and
congestion. On the web, events ranging from Live-Aid rock concerts to Victoria’s Secret
fashion shows have been known to bring servers and routers down. A targeted attack is
also a unique form of activity that is typically orders of magnitude more intensive than
normal usage. All of these are similar to workload flurries — large outbreaks of activity
that can each be attributed to the activity of a single user (Sections 2.3.3 and 2.3.4).

by mixing normal and abnormal users, user-based modeling enables such singular
behavior to be modeled separately from the modeling of normal activity [751]. This
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leads to more representative models of normal behavior, as well as the option to control
the characteristics of abnormal behavior that are desired for an evaluation.

Another special type of user is a robot — a software agent that creates workload
automatically. Examples include the following:

• Scripts that are activated every day at the same time in order to perform cleanup
operations (an example was shown in Figure 2.24).

• Programs that are activated at regular intervals to perform some monitoring task.

• Web agents that search for information or perform indexing operations.

With a user-based model, mixing in a controlled amount of robot activity is quite straight-
forward. All it requires is the definition of users that behave like robots.

Of course, this discussion above is not limited to long-range workloads based on
human users. It is easily generalized to other situations as well. The only requirement
is that the overall workload be viewed as the interleaving of multiple independent work-
load streams. This is a natural situation for environments such as networks and servers.
Interestingly, it may also be relevant for other cases, that initially seem ill suited for this
approach. For example, memory accesses are typically thought of in terms of a single
continuous stream of requests. But in reality, they are an interleaving of processes at
three levels. At the microarchitecture level, memory accesses are generated by multi-
ple concurrent instructions that are executed out of order. At the application level there
may be multiple threads that all generate independent streams of instruction accesses
and data accesses. At the system level we have an interleaving between multiple appli-
cations and the operating system. And with multiprocessor and multicore machines, the
various application and system threads really operate in parallel.

8.2.3 The Three-Level User-Based Model

The premise behind the three-level user-based model is that the best way to capture the
internal structure of a workload is to model the process that creates the workload. If
the workload is created by human users, we should create a model of the dynamics of
users using the system. The workload is then generated by running this model, in effect
simulating the process that generates the workload.

The basic building block of the model is the user. The idea of using “user equiva-
lents” as the basic unit of load generation has appeared in the literature (e.g. in [57]) and
is even at the basis of the TPC-C benchmark. It is used here to encapsulate a sequence
of similar workload items that are then interleaved with those generated by other users.

The model of how user interaction with the system is generated divides this process
into three levels:

1. The user population. The workload is not generated by a single user, but by an
entire population of different users who are active at the same time. Moreover,
the population changes with time, as some users stop using the system and others
come in their place; this shift in the user population causes the workload to change
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Figure 8.7: User-based workload modeling.

and leads to locality of sampling. The generated workload is the interleaving of
the activity of all these users.

2. User sessions. Each user has a certain residence time in the system. During this
residence time he or she engages in one or more sessions. The residence time
of the user creates a long-range correlation in the produced workload, leading to
self-similarity. Synchronization among the sessions of different users leads to the
daily cycle.

3. Activity within sessions. During each session, a user generates a sequence of jobs.
These jobs are typically similar to each other, leading to locality of sampling.
And when the interaction between the user and the system is tight, a feedback
loop may be formed whereby system performance affects the timing of subsequent
submittals.

It is also possible to continue the modeling with additional, lower levels [336]. For
example, an application may generate a sequence of requests from different servers, and
each such request may be transmitted as a sequence of packets. But these lower levels
are only relevant at a more detailed level of modeling.

This model is hierarchical because each level branches out to multiple instances
of the next lower level. Moreover, these instances need not all be clones of the same
model. This inclusion relationship is shown in Figure 8.7. At the top level there is only
one population model. At the next level there are multiple user session models, one for
each user; these may be different from each other, reflecting different user classes. At
the bottom level are the session activity models, one for each session of each user. They
can be the same for all the sessions of a given user, but still they may be parameterized
because the activity within a session may depend on the day and time, for example.

An intriguing possibility made available by user-based modeling is to incorporate
feedback: we can create a “smart” model in which users are not oblivious, but rather
create additional work in a way that reflects satisfaction with previous results (assuming
we can get a handle on the factors leading to satisfaction [181]). In fact, feedback can
affect all three models: at the population level, dissatisfied users may elect to leave and
cease using the system; at the session level, a session may be truncated short when the
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system is not responsive, or else it may be extended if the work flows well; and at the
activity level, jobs may be delayed until previous ones terminate and their results are
examined. The notion of feedback and how it affects workload generation is discussed
at length in Section 8.4.

8.2.4 Other Hierarchical Models

The three-level user-based model of interactive work by multiple users on the same com-
puter system (e.g., a server or supercomputer) is but one of many hierarchical generative
models. Many other such models have been proposed and used.

User Typing

An early example of a hierarchical model involved modeling the activity of a user seated
at a terminal and working with a shared computer system [272]. The user would type at
the terminal and the computer would respond. This was called “computer communica-
tion”, referring to the communication between the user and the computer, rather than the
communication among computers as we use the term today.

The bottom level of this model consisted of typing or displaying a single letter.
Above it were bursts of letters that were typed or displayed in sequence. At the top
level was a session composed of alternating bursts of characters by the user and the
computer. The time from the end of a computer burst to the beginning of the following
user burst is the think time.

Note that modeling user typing is not obsolete. Each key typed generates an interrupt
on a desktop machine, and the sending of a packet in a networked interactive session.
Indeed, the model used by Danzig et al. for telnet is very similar to the model outlined
above [164].

World Wide Web Activity

World wide web access was the dominant form of Internet traffic from about 1995 to
2005. This load is generated by humans sitting in front of computers and clicking on
links (today, a growing part of this load is generated by computer programs, which we
ignore). Web activity may be analyzed in terms of a three-layer model similar to the one
proposed earlier: the aggregate traffic, the sequences of sessions from individual clients,
and the requests within each session [525]. But it is also possible to dissect the data in
more detail, leading to some variant of the following multilevel model [36, 336, 446,
536, 576]:

1. The top level is the user session, starting when a user sits down and ending when
he or she leaves.

2. Each session is composed of conversations with different Internet hosts, and re-
flects browsing patterns in which users first retrieve web pages from one server and
then surf on to another server. To model this, one needs to model the number of
conversations per session, their arrivals, and the distribution of their destinations.
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3. Each conversation may involve multiple navigation bursts with the same host. The
motivation for this level is that people usually retrieve several pages in rapid suc-
cession until they find the one with the information they really want to read. One
then needs to model the size of the burst and the intervals between the downloaded
documents.

4. Each downloaded document may have embedded graphics in it that have to be
retrieved separately. This is modeled by the number of embedded objects and
their sizes in transferred bytes.

5. At the lowest level, the retrieval of each object may require multiple packets to be
sent. The arrival pattern of these packets is derived from the higher levels of the
model, as is their number.

This description of web activity was suitable in the 1990s, but is less suitable now, be-
cause many web pages contain embedded objects that come from a variety of different
servers (such as content distribution networks and ad servers), rather than all coming
from the same server. This undermines the notion of a conversation in which multiple
objects are retrieved from the same server.

Similar models may be used for other types of interactive Internet traffic (e.g., email
access, P2P file sharing, or media streaming). The differences among these types are due
to the absence of specific levels, such as the level specifying the structure of web pages
[575, 151].

Another level that may be relevant is the TCP connection. With the original HTTP
1.0 protocol in the early to mid-1990s, each object was retrieved using a distinct con-
nection: the connection was set up, a request was sent, a response received, and the
connection was closed. This was obviously inefficient, so the HTTP 1.1 protocol allows
multiple objects to be retrieved using a single TCP connection, rather than opening a
separate connection for each one.

Web Search and E-Commerce

The previous subsection considered the mechanics of web usage. It is also possible to
create hierarchical models based on the semantics of web activity. One special case of
web activity is web search. It has been suggested that user search activity is actually
hierarchically structured, with the following levels [385, 185]:

1. The user has a research mission he or she wants to accomplish. To achieve this
aim, the user needs to collect various pieces of information.

2. Getting each piece of information is a goal in itself. To accomplish a goal, queries
are submitted to a search engine and the results are examined.

3. At the bottom are the individual queries. In many cases a single query does not
produce the desired information needed to accomplish a goal, so additional queries
are needed.

Similarly, a three-level model has also been suggested for e-commerce [487]:
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1. User sessions represent visits of users to the online commercial site.

2. Each session is composed of a sequence of business functions. These are requests
to browse, search, and view items, as well as the commercial functions of adding
an item to the shopping cart and actually buying it.

3. At the bottom are the HTTP requests between the user’s browser and the site. The
difference between these requests and the business functions is that each function
is typically implemented by a multitude of requests (e.g., for graphical elements
that are displayed as part of the web page).

Computer Communications

The web access models just discussed are oriented towards user browsing activity on the
web. A related model may be applied to the data traffic as it is observed on the network.
A simple model of this type is the packet train model [369]. This model postulates that
packets are not independent, and do not arrive individually. Instead, they come in trains
— sequences of packets in rapid succession one after the other, followed by an idle time
until the next train. Although this is a phenomenological model, it is based on the fact
that sending large datasets is done by partitioning them into multiple fixed-size packets.

Newer models may have more levels that are related to the mechanics of the com-
munication protocols. For example, the levels may be related to connections, flows, and
packets [252, 251], and can include detailed characteristics of the communication pro-
tocols (e.g., the flow control window size that determines how many packets are sent
before waiting for an ack). In addition, the model can extend upward to include user be-
havior. For example, the top level may be user sessions, each of which contains multiple
connections [522, 484, 710].

Hierarchical models such as these have become especially popular due to their pos-
sible use in modeling self-similarity. For this use, one postulates that the observed traffic
is actually the aggregation of multiple on-off processes, with on and off times that come
from a heavy-tailed distribution (see Section 7.5.5) [732]. Each of these processes there-
fore has two levels: one that creates the envelope of on and off periods, and another that
populates the on periods with activity.

Database Systems

Database systems can be characterized as being composed of three quite different levels
[11]:

1. At the top is the enterprise level, which includes the set of applications that em-
body the business logic of the enterprise. The workload at this level is concerned
with information needs at the business level.

2. The second level represents the database management system, including the data-
base schema with its tables and indices. The workload at this level may be repre-
sented as SQL queries.
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3. The third level is the physical storage system disks. The workload here is the basic
I/O operations.

File System Activity

The I/O operations on a file have also been shown to be bursty, and are well modeled by
a two-level process [722]. The top level defines the arrivals of bursts and their durations.
The bottom level models the arrival of I/O operations within a burst.

A hierarchical model can also be justified based on the observation that user sessions
lead to the execution of applications, and applications perform I/O operations on files,
with each application invocation only accessing a small part of the file system.

Execution of Parallel Applications

The performance of parallel computations may depend in critical ways on the details of
what the application does, as this may interact in subtle ways with the architecture. It
has therefore been proposed to model the internal structure of parallel workloads using
a three-level hierarchical model [100]:

1. The applications that make up the workload.

2. The algorithms embodied in the applications.

3. The routines used to implement these algorithms.

8.3 User-Based Modeling

User-based modeling attempts to achieve all the benefits listed in Section 8.2.2 by using a
three-level model of how users generate workload. In this section we describe these three
levels, providing a detailed example for the construction of a hierarchical generative
model.

8.3.1 Modeling the User Population

The top level of the workload generation model is the user population model. As its
name suggests, it is involved with the modeling of the user population. The idea is that
at a sufficiently long time scale the user population may be expected to change. The
user population model mimics this change by modeling the arrivals of new users and the
duration during which they use the system. Modeling durations induces a model of user
departures, so that the population size will fluctuate around a certain value and will not
just grow with time.

The user population model has three main objectives. One is to set and control the
average population size. This is important because the population size dictates the level
of load that is produced. Another is to facilitate a turnover of users. The changing
population of users is one of the vehicles by which locality of sampling is produced, due
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Figure 8.8: Activity of users in logs showing new arrivals.

to the different types of jobs that are created by each user’s session model. The third
objective is to generate self-similarity by allowing certain users to remain in the system
long enough to induce long-range dependence.

User Arrivals

Locality of sampling is achieved by a changing user population. We therefore need to
model the way in which new users arrive and residing users leave.

Figure 8.8 shows data regarding the arrival of new users. Actually this is a scatterplot
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Figure 8.9: Distributions of user residence times on different parallel machines.

in which the X axis is time and the Y axis is user IDs; a point represents activity by that
user at that time. The twist is to assign user IDs in the order of first activity. This leads
to the growth profile seen at the left of each plot.

Initially, population growth seems to be very rapid. This growth reflects the first
occurrences of users who were active when data collection commenced. Then comes a
region of slower growth, which actually reflects the addition of new users. This growth
has a more or less constant slope, so a model where user arrivals are uniformly dis-
tributed across time seems appropriate. In other words, user arrivals may be modeled
as a Poisson process. While there are fluctuations that may indicate that a bursty or
self-similar model would be more appropriate, there is not enough data to verify this.

Residence Time

The goal of the user population model is to create a fluctuating user population, with
different users being active at different times. In addition, it creates a long-range corre-
lation in the workload due to the activity of users who remain in the system for a long
time. Heavy-tailed residence times lead to self-similarity [732].

The model should fit three characteristics of the original workload logs: the distri-
bution of new user arrivals, the distribution of user departures, and the distribution of
user residence times. We suggest modeling arrivals and durations, and checking that
the induced distribution of departures also provides an adequate match. This approach
is better than modeling user arrivals and departures, which would face the difficulty of
deciding which user should leave each time — a decision that would affect the important
residence time distribution.

The distribution of residence times is easy to extract from a log using the first and
last appearance of each user. Naturally, care should be taken regarding users who seem
active from the beginning of the log, or who remain active toward its end. To avoid such
problems, we only use logs that are at least two years long, and delete from consideration
all users who were active mainly during the first and/or last months.

Data for the distribution of residence times is shown in Figure 8.9. Two observations
are clear. First, the distribution does not have a heavy tail; it may be better modeled as
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Figure 8.10: scatterplots showing the number of active users and resulting load, using a
resolution of one week.

being roughly uniform, with added emphasis on short residencies. Second, the distribu-
tions seen in different logs are strongly affected by the lengths of the logs. This means
that users with very long residence times are present. However, note that they may be
dormant for extended periods in the middle. It may therefore be better to consider spurts
of activity that come at large intervals as representing distinct users, even if in reality
they are recurrences of the same user.

Population Size and Load

The main parameter of the user population model is the desired average population size.
In principle, this can be used to regulate the level of load [57, 108, 751]. The problem
is that different (simulated) users display very different levels of activity, so the effect
of population size on load can only be expected to be reasonably accurate for long runs.
On short time scales, big fluctuations may occur. Another problem is that, in reality,
users may exercise self-regulation, and reduce their job submittal rate when the system
becomes overloaded (such feedback-based behavior is discussed in Section 8.4).

Figure 8.10 investigates the correlation between the number of users and the gener-
ated load by showing scatterplots that compare these two variables for successive weeks.
Of the six systems checked, four have some positive correlation between the number of
active users in a given week and the load in that week, but the correlation is low. In
the other two systems, there seems to be no appreciable correlation. In all systems, the
clouds of points are rather diffuse, indicating the wide dispersal of values. The conclu-
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sion is that it is not clear that in real workloads higher loads are a result of more users
being active. Thus an alternative user-based mechanism for modifying system load is to
change the characteristics of the users themselves (the options for load manipulation are
discussed in Section 9.6.5).

8.3.2 Modeling User Sessions

The user sessions model is concerned with the pattern of activity displayed by a user
during the period that he or she uses the system. It partitions the total duration of res-
idence into sessions of intensive use, separated by times of idleness. The regularity of
the pattern of sessions depends on the user’s personality: some have very regular activity
patterns, whereas others do not. In most cases, the majority of users work regular hours,
and their sessions are correlated to the time of day. As a result they are also correlated to
each other, and create a daily cycle of activity. Session times that are heavy-tailed also
contribute to the generation of self-similarity.

User Personalities

The pattern of activity exhibited by a user has two main dimensions: the timing and
extent of sessions, and the level of activity. In many cases, there is a limited number of
user classes, such that all the users in the class display similar behavior. These classes
can be found by clustering analysis, in which each user is represented as a point in
a multidimensional space [108]. The coordinates of a user’s point correspond to that
user’s workload attribute values (e.g., the average rate of submitting jobs, which is the
reciprocal of the average interarrival time). The clustering then reveals different user
types, with different patterns of activity.

For example, Haugerud and Straumsnes suggest the following types of users for a
typical office or academic environment [321]:

• Standard users working 9 to 5 (i.e., working continuously during normal hours).

• Users starting earlier than usual, but then working normally.

• Users working normally, but staying later than usual.

• Users who only check their email from time to time.

• Users who work mostly at night.

• Users who are logged on all the time, including system processes.

These different user types are not deterministic — standard users do not all arrive exactly
at 9:00 AM every day and leave promptly at 5:00 PM. Rather, they can be described by
appropriate probability distributions. Thus standard users have a high probability of
arriving at around 9–10 AM and a high probability of of leaving at 5–6 PM. For other
user types, the distributions are adjusted according to their class of behavior. Workload
patterns seen at different times can then be explained by different proportions of these
user types.
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A more complicated model was suggested by Zilber et al., based on an analysis of
several parallel supercomputer workloads [763]. Noting that users sometimes modify
their behavior, they start by identifying five types of sessions, rather than users:

• Normal daytime interactive work between about 9 AM to about 5 PM each day,
representing normal working habits. In the study, 43% of all sessions were of this
type. They are typically short sessions of just a few short jobs.

• Interactive sessions during night hours. In the study, 29% of user sessions were of
this type. They may represent “night owls” who work on a shifted schedule. The
jobs in these sessions tend to be longer than those during the day.

• Interactive sessions on the weekend. 21% of user sessions were of this type.

• Highly parallel batch sessions. Although only 4% of the sessions were of this
type, they accounted for the majority of large jobs utilizing half the machine or
more. These jobs typically ran for several hours, much longer than the jobs of the
interactive sessions. Most of these sessions consisted of only a single job.

• Batch sessions dominated by very long jobs. Only about 3% of the sessions were
of this type, but again, they accounted for a much larger fraction of the utilized
resources. This was the result of having multiple jobs that were much longer than
the jobs in any of the other session types — with half of the jobs running for more
than two days.

Zilber et al. then went on to identify four different user types, each characterized by a
different mix of session types.

Both these studies focused on the variability among human users under normal con-
ditions. In addition, it is possible to envision other special types of user behaviors, such
as

• A worker facing a deadline, resulting in a hysterical sequence of random and in-
tense sessions.

• A robot (i.e., a software agent or periodically activated script) performing regular
bursts of completely deterministic activity.

As the above examples show, the user personality dictates the distribution of ses-
sions: when they start each day, how many there are (e.g., does the user break for
lunch?), and how long they are. These characteristics should persist throughout the resi-
dence time of the user, or at least across several sessions, to enhance locality of sampling.
Combining the sessions of all the active users should lead to the desirable overall activity
pattern. For example, assuming that most users work normal hours, such a model will
lead to more active users during work hours and less at night and on weekends.

In addition to having different personalities, users also have different levels of overall
activity, possibly based on a Zipf-like distribution [764]. Thus two users of the same
type need not have an identical activity profile — only the “envelope” of their activity is
similar, but the contents may be quite different. Such variability is discussed in Section
8.3.3.
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Realistic models that embody these ideas need to be based on data regarding user
sessions, data that is often not explicitly available in logs. It is therefore necessary to
develop methods to extract user sessions from the logged activity data.

Recovering Session Data

In many cases workload data includes a record of individual user actions, but not of user
sessions. It is therefore necessary to recover data about sessions in order to be able to
model them.

As a concrete example, we will consider a system in which a user submits jobs for
processing. A session is then a sequence of job submittals, and a break in the sequence is
interpreted as a break between sessions [34, 618, 74, 614, 601, 385]. However, jobs al-
ways have some gaps between them, even if they are part of the same session. Therefore
the question is one of defining a threshold: short gaps, below the threshold, are assumed
to be gaps within the same session, whereas longer gaps are taken to represent a gap be-
tween sessions. Note that, although our discussion is couched in user-based models, the
same ideas apply to practically all hierarchical models. For example, the threshold used
to define a session is analogous to the maximum allowable inter-car gap of the packet
train model of communication [369].

Practice Box: Interarrival Times and Think Times

When extracting session data, an important consideration is whether to look at interarrival
times or at think times. The difference between the two is the actual duration of the work
being done by the system. The interarrival time is the interval from the arrival of one job
to the arrival of the next, whereas the think time is the interval from the termination of the
first job to the arrival of the next; it derives its name from the notion that this is the time in
which the user thinks about what to do next:

job 1

interarrival time

job 2

time

think time

Looking at interarrivals is justified by claiming that they represent the intervals between
successive actions taken by the user [749]. Looking at think times is justified by the fact
that they represent the user’s part in the interaction with the system; a long interarrival may
still be part of the same session if the user was waiting all this time and reacted quickly
once the system responded.

In interactive settings the distinction may not be so important. For example, in web brows-
ing the actual retrieval of web pages typically takes no more than a second or two, but
once the page is displayed the user may take some time reading it and deciding what link
to click next. Thus the difference between the interarrival time and the think time is small.
(Recall that we are defining these quantities from the system’s point of view. In this case
the system is the web server, so arrivals are requests to retrieve web pages and terminations
are completions of serving such requests.)
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time
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A slight complication may arise in batch systems, or, in general, when work can be done
asynchronously in the background. In such a scenario the user may submit several jobs
concurrently. One possible interpretation in this case is to consider interarrival times be-
tween the jobs that make up a single batch, and think times between the batches [614, 749]:

think time

interarrival times

job 1

job 6job 3

job 2

within batch

time

job 4

job 5

However, the main problem is handling long jobs. Consider a case where a user’s activity
includes a very long job, say one that runs overnight. It would be wrong to assign jobs
that were submitted alongside it and jobs that were submitted the next day soon after it
terminated to the same session. The bottom line is therefore that using interarrival times is
preferred [749].

End Box

To investigate possible relationships between gaps and sessions, we plot a histogram
of interarrival times for the sequences of jobs submitted by each user. In other words,
given a log of activity by multiple users, first partition this log into subsequences be-
longing to different users. Then find the distribution of interarrival times for each such
subsequence. The sum of all these distributions, for the specific case of interarrivals
between parallel jobs, is shown in Figures 8.11 and 8.12. It seems that the body of the
distribution is limited to something between 10 and 20 minutes, although it has a sig-
nificant tail, possibly with some spikes. Using similar data from parallel supercomputer
logs, Zilber et al. have suggested using a threshold of 20 minutes on think times [763].
Nearby values, such as 15 minutes or 30 minutes, could be used as well. Zakay has
suggested a threshold of one hour on interarrival times [749].

The problem with selecting a threshold value is that the distribution appears mono-
tonic. Conceptually, we may imagine it to be composed of short intervals between jobs
in the same session, and long intervals between sessions, but we do not see such a bi-
modal structure [385]. However, an underlying bimodal structure may still exist, and
may be uncovered by using the EM algorithm to fit the data to a mixture of two lognor-
mal distributions [282]. A good fit may be obtained even if there is substantial overlap
between the two distributions, and the point of equal probabilities of being in either can
then be used as the threshold.
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Figure 8.11: Histogram of interarrival times between job submittals by the same user,
for all users in each log of parallel jobs.
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Figure 8.12: LLCD graphs of interarrival times on parallel machines indicate that, al-
though very long interarrivals may occur, the distribution does not have a heavy tail.

An alternative for setting the threshold is to decide arbitrarily on a certain percentile.
For example, we could decide that the longest 10% of the values represent session
breaks. However, this is ill advised because it may lead to unreasonable results. Looking
more closely at the data as in Figure 8.13, we find that for the CTC data, the 20-minute
threshold comes at 59.0% of the tabulated interarrivals, and for the SDSC Paragon data
at 74.6%. Setting the threshold according to a probability (e.g., defining the tail to be
the top 10% of the samples) leads to a threshold of about one day for CTC (that is, every
interarrival shorter than a day is still considered part of the same session), and just over
five hours for the SDSC Paragon — values that seem quite high for the notion of a con-
tinuous session. The reason for these high values is that the distribution of interarrivals
is actually log-uniform, at least for the CTC log. In any case, blindly using a percentile
without checking the consequences is unjustifiable.

A completely different approach is to use clustering, in which jobs that are adjacent
to each other form clusters that represent sessions [722, 74, 509]. This technique also
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Figure 8.13: The distribution of interarrival times between job submittals by the same
user is (approximately) log-uniform.
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Figure 8.14: Depiction of arrivals by active users (same ones as in Figure 8.2).

has the advantage of tailoring the threshold for each user separately, rather than assuming
that a single threshold is suitable for all users [483].

For intuition, consider a graph of jobs as a function of time. An example is shown
in Figure 8.14: the X axis represents time, and the Y axis is serial numbers, so jobs
are represented by dots snaking from the bottom left to top right. But this is not a
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uniform, continuous sequence; rather, it is made up of small steps, in which a sequence
of consecutive jobs come in rapid succession. These are the sessions we are looking for.

The clustering used to identify the sessions is a one-dimensional, agglomerative,
single-link approach. Initially all the jobs are independent clusters, and the distances
between them are their interarrival times. We then repeatedly unite the two clusters with
the shortest remaining interarrival. This will obviously create clusters that are composed
of subsequences of jobs, which is what we want.

The problem, of course, is to know when to stop. If we look at the distribution of
interarrival times, interarrivals within a session are expected to be smaller than those
between sessions. To find the threshold automatically, it has been suggested to sort the
interarrivals and look for the point where they suddenly become bigger. This can be
achieved in either of two ways.

The first is finding when the second difference becomes significantly different from
0 (e.g. larger than 2) [722]. More formally, denote the arrival times by t1, t2, . . .. The
interarrival times are then hi = ti+1 − ti. Denote the sorted interarrivals by h(i). The
first difference of this sequence is d1i = h(i+1) − h(i), and the second difference is

d2i = d1i+1 − d1i
= h(i+2) − 2h(i+1) + h(i)

A high second difference implies that the first difference grew significantly relative to
previous first differences. This in turn implies that the interarrival time grew dramatically
more than its normal growth.

The second approach is based on computing the standard deviation of the interar-
rival times. Again, sort the interarrivals from the short ones to the long ones. For each
one, calculate the quotient of the interarrival divided by the standard deviation of all the
shorter interarrivals [509]. Assuming the distribution of interarrivals is bimodal, the first
long interarrival can be easily identified by its leading to a relatively large quotient.

Another procedure that can be used is to consider the effect of the threshold on the
sessions that are found. Specifically, count the number of single-job sessions, two-job
sessions, three-job sessions, and so forth, as a function of the threshold value [324,
487, 356]. As the threshold is increased, longer intervals are considered as part of the
same session rather than a break between sessions. As a result the number of individual
jobs will decrease, because they will be grouped into longer sessions. As this grouping
happens, the number of two-job, three-job, and longer sessions will grow. But at some
point the results will stabilize, and the numbers of sessions of different lengths will not
change as much as before. This point can be used as the threshold. Arlitt and Menascé
independently show that for web and e-commerce sessions this point happens at less
than 20 minutes [34, 487].

These and other ideas have been applied in various contexts, such as web browsing
and web search. Examples of threshold values that have been put forth are given in Table
8.1.
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Context Threshold Reference
general web surfing 10–15 min [324, 552]

25–30 min [113, 601, 298]
2 hr [500]

web search 5 min [623]
30 min [191, 374]
1 hr [618]

mobile web access 5 min [576]
e-commerce 30 min [487]
Wikipedia edits 1 hr [282]
blog access 30 min [192]
telnet activity 20 min [164]
whiteboard activity 30 min [183]
parallel supercomputers 20 min [763, 615]

1 hr [749]

Table 8.1: Examples of using a global threshold to define sessions.
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Figure 8.15: Distribution of the durations of sessions recovered from parallel logs.

Session Durations and Inter-Session Gaps

Once we decide how to break the sequence of jobs submitted by a user into sessions, we
can tabulate the durations of these sessions. Figure 8.15 shows the resulting histograms.
The good news is that the recovery of sessions seems to be reasonable, as the bulk of
the distribution ends at between 10 and 20 hours. (A possible record holder is a 21-hour
session reported from a Wikipedia editing marathon [282].) The bad news is that the
distribution is hard to characterize. Notably these distributions do not seem to have a
significant tail, let alone be heavy-tailed.

Similar data is obtained from a Unix server, in which login sessions are tracked
explicitly by the system (Figure 8.16). The high number of 0-length modem sessions is
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Figure 8.16: Distribution of the durations of login sessions on a Unix server (excluding
staff).

Figure 8.17: Sessions tend to overlap according to the daily cycle (individual sessions
are represented by line segments, drawn at different heights only for visibility, with the
longer ones on the bottom). Data for about 3 weeks from the CTC SP2.

probably the result of sessions that suffered from connection problems. The high number
of 1-hour sessions could be the result of automatically closing connections that had not
been active.

In other domains, however, the distribution may be different. For example, data from
DSL lines (which provide home Internet access) shows that sessions are typically short,
in the range of up to 30 minutes [458]. However, there are also many 24-hour sessions,
which probably correspond to machines that are connected continuously, but need to
reconnect once a day.

The inter-session gaps are simply the tail of the distribution of interarrival times,
as shown in Figure 8.12 and 8.13. Although the tail extends to more than a month, it
does not seem to be well modeled by a power law; a better model is the log-uniform
distribution.
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Figure 8.18: The same data as in Figure 8.17, except that the vertical dimension is used
to distinguish among users. Users are numbered by first appearance in this dataset.

Correlation among Users

The goal of the user activity model is to divide the residence time of users into sessions.
The correlation of sessions with time of day leads to the daily activity cycle. Indeed, we
find that sessions tend to overlap each other, creating a daily cycle (Figure 8.17).

However, when we look at the activity of individual users (Figure 8.18), we see
a mixed picture. Although some users exhibit regularity in their sessions, none do so
across the whole span of time plotted here (only about three weeks). Moreover, many
do not display any regularity. However, it must be remembered that we are dealing with
the execution of jobs on a supercomputer. It is possible that the same users exhibit much
more regular activity on their personal workstations.

User Freshness

A special effect that is sometimes observed is a change in behavior that is induced by
how long the user has been using the system. It appears that new users tend to use the
system more heavily than seasoned users [309]. However, the effect wears out rather
quickly. It has therefore been suggested that a user’s first week of activity be modeled
separately, but subsequent weeks may share the same model.
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Figure 8.19: The distributions representing specific highly active users are different from
the overall distribution; in many cases, the jobs of a specific user cluster together. In each
log, the six most active users are color-coded.

8.3.3 Modeling User Activity within Sessions

The population and session models are responsible for characterizing the structure of the
workload. The actual sequence of jobs is produced by the activity model. Jobs run by
the same user in the same session are often repetitions of one another. This directly leads
to locality of sampling. By explicitly creating dependencies among jobs (e.g., a simple
chain in which the submittal of each job depends on the termination of the previous one
[230]) a level of feedback is obtained. This can be combined with think times between
jobs to prevent excessive regularity.

Anatomy of a Session

The activity model is somewhat similar to models commonly used today — it generates
a sequence of jobs by sampling distributions. The difference is that the distributions
are expected to be more modal, and can be different for each simulated user [258], thus
creating an effect of locality of sampling when the user is active, but the correct overall
distribution when all users are considered over a long simulated period.

The distinction between the distributions describing the activity of different users is
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Figure 8.20: The distribution of per-processor memory usage on the LANL CM-5, using
a linear scale and buckets of 10 KB. Jobs are weighted by runtime and degree of par-
allelism to produce the distribution that would be observed by random sampling. The
emphasized discrete components of the distribution are attributed to specific users in Ta-
ble 8.2.

illustrated in Figure 8.19. This shows scatterplots of parallel jobs on the well-known
coordinates of job size and runtime. The jobs generated by different active users tend to
cluster together at different locations, indicating that they are different from each other
and from the overall distributions observed in the full log.

The modal nature of workload distributions and its user-based origin are demon-
strated in Figure 8.20. This shows the distribution of memory requirements (measured
on a per-processor basis) of jobs running on the LANL CM-5 in 1996 [231]. Using a fine
granularity of 10 KB, it is obvious that the distribution is highly modal: it is composed
of a number of very high discrete components, and very low “background noise”.

Table 8.2 contains information about all the discrete components that represent more
than 1% of the total node-seconds. For each one, users who individually contributed
more than 1% are identified. In all but one case, individual users contribute the lion’s
share of these discrete components of the distribution.

The data in Figures 8.19 and 8.20 indicates that the distributions of workload at-
tributes, when confined to a single user session, tend to be modal. But this data does not
say anything about the temporal structure of sessions. For this we need to look at the
distribution of think times, defined to be the interval from the termination of one job to
the submittal of the next job in the session.

Tabulating think-time data from parallel supercomputers leads to a surprising result
(Figure 8.21): many think times are negative! This simply means that the next job
is submitted before the previous one terminated, so the term “think time” is actually
inappropriate (Figure 8.22). Thus sessions for this type of workload should include
the concurrent submittal of multiple jobs by the same users. In other workloads such
behavior is rare and sessions only include a linear sequence of jobs.
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KB per Node sec
proc User of % of
1640 usr1 6 1.18 1.19
2650 usr3 10 1.96 2.71
2660 usr4 13 1.41 2.81

usr3 0.88
2900 usr5 7 1.37 1.93
3880 usr6 12 1.37 1.93
4180 usr7 8 0.42 1.51

usr3 0.46
4340 7 1.01
5950 usr5 4 1.55 1.94
7010 usr3 2 4.02 4.02

10120 usr9 4 0.70 1.77
usr5 1.07

11150 usr9 4 1.08 2.68
usr5 1.60

11600 usr10 2 1.73 1.73
12950 usr2 2 1.11 1.12
13380 usr3 2 1.44 1.44
13530 usr11 2 1.43 1.44
17180 usr12 2 3.69 3.71
19330 usr5 3 2.81 3.81

usr9 0.94
19810 usr12 1 1.09 1.09
21120 usr5 3 2.85 3.70
21890 usr9 4 2.04 6.21

usr5 4.08
22550 usr10 2 1.02 1.02
25630 usr10 2 1.14 1.15
27220 usr13 2 1.76 2.28
28700 usr10 2 2.21 3.94

usr1 1.73

Table 8.2: Single-user contributions to discrete components of the distribution shown in
Figure 8.20 that are above 1% of the total (adapted from [231]). Column 3 gives the
total number of users contributing to this component. Column 5 gives the total fraction
of node-seconds in this component, and column 4 gives the fraction contributed by the
user specified in column 2.
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Figure 8.21: Distribution of think times on parallel machines.
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Figure 8.22: Negative think times occur if a new job is submitted before the previous
one terminated.

Parameterized Users

In our models we want users who are repetitive, but different from each other. A simple
way to achieve this is to create a parameterized user model, which generates a sequence
of repetitive jobs. Then we can create multiple users, but give each one different param-
eters. To do so, we need to define the distribution of parameter values.

The simplest approach is to create users who only run a single job over and over
again, at least within the same session. This is essentially the same as the model for
creating locality of sampling described in Section 6.3.5 [239]. It is simple because we
can use the global distribution directly, and do not need to compute another distribution
for parameter values.

As a concrete example, consider a user model that is to generate jobs with a modal
distribution such as the one shown in Figure 8.20. Each user session has a single pa-
rameter: the amount of memory-per-processor that its jobs should use. This is selected
randomly from the global distribution. The effect is to generate sequences of jobs that
have the same memory requirement, leading to the desired modal distribution and to
locality of sampling.

An obvious problem with this approach is that it is extremely simplistic, and tends
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Figure 8.23: Attributes of the jobs submitted by active users of the SDSC SP2 (the same
as those depicted in Figure 8.19). Some, but not all, exhibit sequences of very similar
jobs.
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Figure 8.24: The jobs submitted by user 8 in the SDSC Paragon log, clustered into four
clusters. Cluster centroids are indicated by ×s.

to reduce the variability present in each user’s behavior way beyond what is observed in
practice — in fact, it is reduced to a single set of values. This problem is illustrated in
Figure 8.23. While some users, e.g. user 24, submit extremely long sequences of jobs
that are indeed all very similar to each other, others, such as user 3, submit jobs with
very diverse characteristics.

It is therefore appropriate to consider a more general approach, in which each user
(or session) generates jobs from a distinct distribution. In this case, the distribution
parameters have to be set so that the combined effect of all the users will lead to the
desired global distribution.

User Behavior Graphs

There are actually two problems with the parameterized model just suggested. One is
that it assumes that all jobs are the same, overly reducing the variability in the workload,
even for a single user (as noted above). The other is that because all jobs generated by
the user are the same, there is no temporal structure. User behavior graphs are designed
to solve the second of these problems, but also help with the first.

The idea of modeling users to capture the structure in the workload, and specifically
of using a Markovian user behavior graph, is in fact quite old [258, 104]. The basis of
this technique is to cluster the workload generated by a single user and then find a small
number of representative jobs. These are then used to create a Markovian model. The
states of this model are the representative jobs. The transitions are the probabilities that
one job type appear after another. (For background on Markov chains, see the box on
page 242.)

User behavior graphs are especially suitable when users display some repetitive ac-
tivity, as in an edit-compile-test cycle. As an example, consider the activity of user 8 in
the 1995 portion of the SDSC Paragon log. As shown in Figure 8.24, these jobs can be
clustered into four clusters in runtime×job-size coordinates. The clusters are character-
ized by their centroids, which are given in the accompanying table.

The resulting user behavior graph is shown in Figure 8.25. The line thickness reflects
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0 0.55 0.27 0.14 0.04
1 0.20 0.71 0.05 0.04
2 0.12 0.06 0.75 0.07
3 0.05 0.05 0.08 0.81

Figure 8.25: User behavior graph for user 8 from the SDSC Paragon log, based on the
clusters of Figure 8.24.

the probabilities associated with the different arcs. The strong self-loops on all four states
indicate that there is a high probability that a job from a certain cluster will be followed
by another job from the same cluster, indicative of locality of sampling; the lowest such
probability is 0.554 for cluster 0, and the highest is 0.814 for cluster 3. Note that the arcs
between pairs of states are not completely symmetric. For example, a job from cluster 3
has a probability of 0.051 of being followed by a job from cluster 1, but the probability
of the other direction is only 0.037.

Although user behavior graphs provide more variability than the single-job models
of the previous subsection, they nevertheless still tend to reduce the variability present
in each user’s behavior way beyond what is observed in practice. As seen in Figure
8.2, the work of individual users cannot always be represented by discrete clusters. This
can be solved by using an HMM-style model, in which each state generates jobs from a
distribution, rather than only repetitions of the centroid of the cluster (or even samples
from the cluster [440]).

In addition, using a single user behavior graph does not facilitate the differentiation
between users who behave in distinct ways (e.g. one who consistently prefers brows-
ing through an e-commerce site versus another who prefers searching using keywords).
Therefore multiple different user behavior graphs are needed, effectively leading to a
multiclass workload model. This complicates the modeling considerably, because each
user (or class) needs a separate model with multiple parameters describing the different
states and the transitions among them.

Special Users

User-based modeling provides the option to add special users to model special conditions
that are known to occur in practice. One example is workload flurries. Another is robots,
that is, software agents.

Let us focus on workload flurries for the sake of concreteness. Workload flurries
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are surges of activity, typically with well-defined characteristics and by a single user
(see Section 2.3.4). They are similar to flash crowds in that they embody a workload
that is significantly different and more intense than normal for a limited time span. The
existence of such flurries may affect the performance of the system, either just because
of the increased load, or due to some specific interaction between the flurry jobs and
other jobs or the system behavior [696].

Once the possible existence and effect of flurries are acknowledged, an analyst may
want to study their specific effects on a particular system design. A basic requirement
for such an experimental evaluation is to have two types of workloads: a base workload
without any flurries, and alternative workloads with different numbers of flurries. A
simple way to achieve this is to define the set of jobs in each flurry to be a “user”. Then
the base case is obtained by considering the workload with these special users removed.
The effect of flurries can be studied by not only including them but by also injecting
repeated instances of these users to increase the prevalence of flurries [751]. This is an
instance of user resampling.

8.3.4 User Resampling

A major issue with workload modeling in general is the question of representativeness:
does the model indeed represent reality? Using the right distributions (including heavy-
tailed distributions) and including correlations (with locality and self-similarity as spe-
cial cases) are meant to make models “better” in the sense that they will be more repre-
sentative. Alternatively, using log data directly or using benchmarks strive for represen-
tativeness by avoiding modeling altogether.

User resampling is a technique that attempts to combine the best of both worlds [750,
751]. The idea is to partition a workload log into sub-logs representing the activities of
individual users, and then to recombine these sub-logs in different ways to create new
workloads. Thus all the characteristic behaviors of users are retained even if the analyst
using this workload is not aware of them. This includes both the internal correlations
and structure exhibited by users, and the diversity between users.

At the same time, resampling provides the following important benefits over using
the log as is:

• The option to create multiple statistically similar workloads. Assuming that the
resampling of users is done randomly, doing the resampling again will lead to a
different workload (that is, the same basic blocks will appear in a different order
and possibly also a different number of times). This can be useful when calculating
confidence intervals for performance metrics. Essentially, it is like bootstrapping
at the user level.

• The option to create longer workloads than the original log. By continuing to
resample (with replacement) from the pool of users, the generated workload can
be as long as desired. This can be important in enabling simulation results to
converge.
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Figure 8.26: How user resampling generates new workloads based on data from an
existing log. Each rectangle represents the complete tenure of some user.

• The ability to manipulate the workload, and, in particular, to change the load.
Performance evaluations often seek to characterize the performance as a function
of system load. But with a single workload log, we only have data for a single level
of load. Resampling solves this problem by allowing us to change the average
number of active users in the system, thus creating loads that are either lower or
higher than the original load. At the same time, it also tends to produce a more
consistent workload with reduced fluctuations in the load, thereby reducing the
confounding effect of such fluctuations on evaluation results.

• The ability to give special treatment to select users. For example, certain users
suspected as being robots can be eliminated from the resampling process. Con-
versely, users with special rare activity (such as those generating flurries) can be
oversampled, in order to investigate the effect of these rare behaviors.

The idea of resampling has a long history in statistics, where it is used, for example,
in bootstrapping to estimate the accuracy of sample statistics [205, 206]. But it has been
used only in a very limited manner in connection to workloads. One example is the Tmix
tool for generating network workloads [725, 331]. This tool does resampling not of the
complete activity of each user, but of individual exchanges over the network.

User-based resampling has been suggested for parallel system workloads [750, 751].
A given log of system activity is partitioned into sub-logs containing the jobs of different
users (Figure 8.26). These users are then classified into two classes: the long-term users
who are active for a large fraction of the trace, and temporary users who are only active
for a relatively short period. Users who appear only close to the beginning or the end of
the traced period are discarded.

Given the pool of long-term users and the pool of temporary users, generating a new
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workload proceeds as follows. To initialize, select at random a representative number
of users of each type. Create the initial workload by combining the activity of all these
users, where each user starts from a random week during his or her logged activity.
Everything is done at the resolution of weeks, so jobs always start on the same day of
the week and the same time of day as in the original log. This ensures that the daily
and weekly cycles of activity are similar to those of the original workload, and that the
different users remain synchronized with each other.

After initialization, select at random a certain number of new temporary users to add
in each week of the generated workload. Randomize the actual number of new users,
with the average being the number of new users per week in the original workload log.
As for long-term users, when such a user ends it is regenerated after a certain interval.
Thus the number of long-term users is essentially constant in the generated workload, as
it should be if that number indeed reflects those users who are active all the time.

In this description of resampling, the activity of each user is reproduced exactly as
in the original log: exactly the same jobs are submitted, at exactly the same times. An
alternative is to do a second level of resampling within each user. Thus the user’s activity
can be partitioned into individual sessions, and resampling these sessions will produce
a new sequence each time the user is used in the generated workload. It is also possible
to add a feedback effect, such that the timing of successive job submissions depends on
system performance.

8.4 Performance Feedback

A user, and especially an interactive user, cannot be expected to be oblivious to the
behavior of the system. At the most basic level, successive jobs often depend on each
other and constitute a well-defined workflow. Thus the next job will not be submitted
until some time after the previous one had terminated. Because of such dependencies,
system performance has an immediate effect on precisely when users submit new jobs.

Moreover, it is reasonable to assume that the user’s future behavior will also be
linked to the system’s performance. If the system is responsive, the user will continue to
use it and will generate more work. But if it is sluggish, the user will reduce the amount
of submitted work and may even give up completely. Thus the workload generation
model cannot be oblivious, but rather should be coupled to the system performance with
a feedback loop. Importantly, this is generally a stabilizing negative feedback effect.

This notion of feedback may also be described in terms similar to the supply-and-
demand curves commonly used in economics (Figure 8.27). One curve shows the re-
sponse time as a function of the system load: this is the supply curve, and indicates what
the system can provide. For low loads, the response time (cost) is low, because abundant
resources are available; at high loads there is much contention for resources, and cost
is high. The other curve shows the load that would be generated by users (the demand)
under different performance conditions. If the system is responsive, users will be encour-
aged to submit more jobs and increase the load. But if the system is already overloaded,
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Figure 8.27: Supply-and-demand curves for computational resources.

and the response time is very high, users will tend to submit less additional jobs. The
intersection of the two curves identifies the expected steady state of the system.

Figure 8.27 can also serve to point out gaps in our knowledge. The system perfor-
mance curve is approximately that of any open queueing system, and similar curves are
also common in simulation results. But the correct shape of the user behavior line, drawn
here as a straight line, is actually a mystery.

The applicability of feedback is very broad. It is an obvious component of the activ-
ity model, in which it affects the timing of activities within the session. This is true both
for fine-grained interactive work (including word processing, programming, or online
gaming [81, 116]) and for more coarse-grained work such as the submittal of a set of
jobs that depend on each other. But feedback may also have an effect at higher levels. It
may have an effect on the user sessions model, for example when bad performance may
cause a user to abort the session. Conversely, if a user has a certain amount of work that
just has to be done, bad performance may cause sessions to be extended to make up for
the delays. In the extreme case feedback may also influence the population model, as
when bad performance causes users to give up on the system.

It is important to note that the inclusion of feedback in a workload model is not
merely an academic curiosity. Feedback is, in fact, very important. Its importance stems
from the fact that it may lead to a throttling of the load, as when a high load leads to
bad performance and hence to reduced generation of new load. This is a self-regulating
effect that reduces the risk of system saturation, and may be regarded as part of online
behavior [241]. Thus models with feedback may lead to dramatically different results re-
garding system behavior under load; specifically, oblivious models will tend to generate
pessimistic predictions, whereas models with feedback will be more optimistic regarding
system robustness [614, 601, 688, 552, 752].

Evidence that such feedback effects indeed occur in practice is shown in Figure 8.28,
which displays workload data from several parallel supercomputers. Each workload
log is divided into week-long segments. For each such segment, the number of jobs is
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Figure 8.28: The inverse relationship between the average parallel job resource usage,
measured in node-seconds, and the number of jobs submitted per week. The fit lines are
based on a linear regression of Y with 1/X . The shading shows the forbidden area, i.e.,
combinations that represent more than the available resources on the machine.

plotted against the average job resource usage, expressed in node-seconds. In all cases
a negative correlation is observed, and more specifically, the data seem to fit an inverse
relationship. This is conjectured to be the result of self-regulation by the users: either
many lightweight jobs or fewer heavy jobs are submitted, but never many heavy jobs.
Note that in some cases, notably the SDSC Paragon and the HPC2N cluster, this is
closely related to the limit of available resources. But in others, notably CTC SP2, KTH
SP2, and SDSC Blue, it is not.

Background Box: Feedback in Internet Traffic

Feedback effects are not unique to human users who have opinions regarding the quality of
service they receive from the system. It is also used to regulate system load automatically.

The most prominent use of feedback to regulate load is the congestion control mechanism
used by implementations of the TCP protocol [364, 531]. Congestion control was added to
TCP in 1986, after several episodes in which bandwidth dropped by three orders of mag-
nitude and all traffic essentially came to a stop. These episodes were traced to overloaded
conditions that led to packets being dropped. As TCP provides a reliable connection, it
uses a timeout to identify packets that have not been acknowledged, and then retransmits
these packets. However, when the network is overloaded, such retransmissions have the
undesirable effect of increasing the load even more and making the situation worse. The
innovation of congestion control was to take the opposite approach: when packets are
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dropped, the window of allowed unacknowledged packets is reduced, so as to reduce the
load on the network.

As a result of congestion control, the timing of packet arrivals in a trace of Internet traffic
contains a signature of the load conditions that existed on the network when the trace was
recorded [265]. It is therefore not a good idea to use such traces directly to evaluate new
designs. Instead, it is necessary to model the source of the communications (e.g., the
application that is sending and receiving data). Furthermore, it is typically not necessary
to model the feedback effects. Instead, one should use an implementation of TCP as part
of the evaluation, and let it generate the feedback as needed for the specific conditions that
exist in this evaluation.

End Box

Incorporating feedback into system simulations has profound implications. One ma-
jor complication is that doing so undermines the basic notions of “load” and “equivalent
conditions”. With feedback, the load on the system is no longer an input parameter of
the evaluation — instead, it becomes a metric of the performance. Thus identical loads
cannot be used any more to claim that different simulations (e.g. with different system
configurations) are being executed under the same conditions, as is needed in scientifi-
cally valid experimentation. Instead, being executed under the same conditions must be
interpreted as serving the same workload-generation process.

The role of system load is not the only thing that changes. Other performance metrics
and their interpretations change as well, as summarized in Table 8.3. Simply put, this is a
result of modifying the underlying character of the system. With an oblivious workload,
the system is open, as if the workload comes from an infinite population that is not
affected by the system itself. But with feedback, we shift toward a closed system model,
in which new jobs only replace terminated ones. As a result the response time metric
should be replaced by the throughput metric, which further explains why “equivalent
conditions” can no longer be interpreted as running exactly the same jobs, but rather as
facing the same workload-generation process. We also obtain a more direct (albeit still
debatable [181]) assessment of user satisfaction.

Dependencies and Think Times

The simplest way to incorporate feedback into a workload model is to postulate depen-
dencies between jobs. Instead of assigning jobs arrival times in an absolute time scale
(this job arrives at 5:37 PM), assign them arrivals relative to previous jobs (this job ar-
rives 43 seconds after the previous one terminated). The relative delay is the think time,
and can be modeled using the distributions shown in Figure 8.21.

It is important to note that the assignment of the new arrival is done relative to the
previous job’s termination, not relative to its arrival. This is the difference between think
times and interarrival times, and is what allows feedback to have an effect. Modeling
interarrivals is just a different way to model the arrivals themselves, and does not include
any feedback from the system. Modeling think times, in contradistinction, implicitly
takes the feedback from the system into account, because the think time is only applied
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Metric Oblivious With feedback
load compared with offered load to find

the threshold beyond which the
system saturates

measured to find the maximum
utilization achievable — a perfor-
mance metric

throughput if not saturated, throughput is com-
pletely determined by the workload

achieved throughput is the main
metric of system performance

response
time

response time is the main metric of
system performance

quoting response time is mislead-
ing without taking into account the
throughput and user frustration

user
satisfaction

assumed to be measured by the re-
sponse time or slowdown

measured directly by the feedback
model, e.g., in the form of frus-
trated user departures

Table 8.3: Performance metrics under oblivious workloads and workloads with feed-
back.

original model

effect of waiting when modeling interarrivals

effect of waiting when modeling think times

wait wait

interarrival time

job 1 job 2 job 3

job 2 job 3job 1

time

time

interarrival time

think time

think time

job 1

job 3

job 2

time

wait

wait

wait
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Figure 8.29: Modeling think times instead of interarrival times implicitly includes feed-
back from system-induced wait times into the workload, and shifts the job arrival times.
Modeling interarrivals may cause a job to be submitted before a previous job terminated,
because the previous job was delayed for a long time.

after the job terminates, which includes not only the runtime but also all waiting times
imposed by the system (Figure 8.29).

(The above notwithstanding, if several jobs depend on a single previous job, and do
not depend on each other, it may be advisable to also retain their interarrival times [752].
This avoids situations where in a simulation jobs that were originally separated become
concurrent.)

Version 1.0.4, typeset on June 10, 2023



8.4. PERFORMANCE FEEDBACK 421

The problem with modeling the effect of feedback using think times is that account-
ing logs used as data sources do not include direct data regarding the dependencies
among jobs. Specifically, the problem occurs when some jobs overlap each other, mean-
ing that job B was submitted before job A had terminated. Job B then obviously does
not depend on A, but what previous job does it depend on?

One way to recover such dependencies is to match each job with the last job (by
the same user) that had terminated before this job arrived [350]. This is similar to the
approach used in the session-identification model described earlier, with one important
difference: it avoids negative think times such as those found in Figure 8.21. This proce-
dure may be applicable in storage systems, but it may be questionable in batch systems
where jobs can be excessively long.

An alternative is to postulate that overlapping jobs actually represent batches of in-
dependent jobs, and that feedback only affects the intervals between such batches [614].
This still can be interpreted in two ways, depending on when we consider a batch to have
ended: is it the termination time of the job that was submitted last, or the time at which
all jobs in the batch have terminated? Zakay attempts to resolve this issue by comparing
the distributions of think times produced by the two approaches, concluding that using
the termination of the last submitted job is preferable [749].

In any case, a drawback of limiting feedback to the intervals between successive jobs
is that it only affects the submittal rate; the general structure remains unchanged. Thus
if the workload model includes a long sequence of jobs submitted by the user one after
the other, and in a particular simulation these jobs take a long time to run, the entire
sequence may be extended to unreasonably long periods. To avoid such scenarios, we
need to model user behavior explicitly.

Effect on User Behavior

A more general model allows feedback to affect user behavior in more complicated ways
[752].

One example is a user behavior model in which multiple inputs are used by the user.
Thus additional submittals may depend not only on the performance experienced by
recent jobs but also on various system parameters. For example, the user may consider
the current queue length as a relevant factor, because a long queue indicates that future
jobs are likely to suffer higher delays.

Another example includes tolerance in the user behavior model. With such a model,
if the system performance deteriorates too much, the user ceases to submit new jobs and
gives up. This can be temporary, as in the early termination of a session, or permanent,
as when a user completely ceases to use a system.

The question, of course, is what model to use. Satyanarayanan and co-workers have
suggested (but not verified) that user tolerance to delays be modeled using an exponen-
tial scale [593]. The context was the Coda distributed file system. This system tolerates
disconnected operation by hoarding files on the mobile client at those times when it is
connected to the main server. The issue was to balance user input about such caching
with transparent operation. The suggested model was that if the expected time to down-
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Figure 8.30: Relationship between a job’s performance, as measured by the response
time or the slowdown, and the subsequent think time.

load a file was less than a certain threshold — given that file’s predefined priority, its
size, and the current bandwidth availability — the file would be cached without asking
the user. The specific equation for the threshold was τ = 6 + epri seconds.

Another model, for web download time tolerance, was proposed by Cremonesi and
Serazzi [153]. They recommend that two thresholds be used, and suggested that users
will be satisfied with downloads of up to 10 seconds but will not tolerate downloads that
take more than 30 seconds. Moreover, these thresholds also depend on the stage of the
interaction: the values quoted above are valid for the first three interactions with a site,
then fall sharply by half by the fifth interaction, and continue to drop more slowly with
additional interactions.

The problem with such models is that they are not based on real data, but on assump-
tions. At the same time, they are better than oblivious models in which the decision to
abort is random and unrelated to performance, as in the model proposed by Tay and
others [504, 688]. Still, experimentation with actual human users is sorely needed to
faithfully characterize user behaviors and perceptions.

An alternative that is based directly on readily available log data is to look at the
relationship between performance and think times [615]. The idea, due to Shmueli, is
to analyze the data at the job level for each user. Thus we first partition the log into
independent sequences of jobs by the different users. Then, for each user, we consider
the activity pattern at the job level. In particular, we check the effect of each job’s
performance on the ensuing think time, that is, on the interval of time until the same user
submits another job. Results of doing this are shown in Figure 8.30. The performance
metrics, response time and slowdown, are binned in a logarithmic scale, and the average
subsequent think time is computed for each bin, but excluding think times longer than 8
hours.

As the graphs show, when considering the response time metric, the average follow-
ing think times grow in a consistent manner. The shift in behavior is quite pronounced,
with short think times following short response times, and much longer think times fol-
lowing long response times. This implies that the think time distribution is not fixed —
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rather, different distributions should be used based on the preceding response time, or
at least the distribution should be parameterized based on the response time. In addi-
tion, long response times increase the likelihood of very long think times that indicate a
session break.

Interestingly, the effect of slowdown on subsequent user behavior is much less pro-
nounced. Slowdown is response time normalized by runtime: if we denote the time that
a job waits in the queue by tw, and the time it actually runs by tr, then the response time
is r = tw + tr, and the slowdown is

sld =
tw + tr
tr

This is expected to quantify how much slower the system appears to be, relative to a
dedicated system; if the job does not wait at all, the slowdown is 1, and the more it
waits, the higher the slowdown. It may therefore be expected that users will be more
sensitive to slowdown than to response time. For example, if a 10-minute job waits for
5 minutes before running, its response time is 15 minutes and its slowdown is 1.5. But
if a 1-minute job waits for 14 minutes, for the same total 15-minute response time, we
expect this to be much more annoying to the user, and this is reflected in the slowdown
which is 15. However, the data in Figure 8.30 indicates that slowdown is a much worse
predictor of subsequent user behavior than response time [615].

Using the above, Shmueli also proposed a model for the effect of feedback on ses-
sions. Setting the threshold representing session breaks at 20 minutes, the probability
of not breaking the session (that is, the probability that the ensuing think time is shorter
than 20 minutes) was found to depend on the response time according to

Pr(continue) =
0.8

0.05 r + 1

where r is the response time in minutes [616]. But this needs to be combined with data
about session starts and other aspects of user behavior in order to create a realistic model
[752].

Another especially interesting option is to include learning in the model. Evidence
from production systems indicates that the workload evolves with time, as users learn to
use the system [346, 240]. This idea can also be applied to new users who start using an
existing system. However, doing so requires a more careful analysis of the distributions
of jobs submitted by individual users.
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Case Studies

This chapter presents an assortment of published results pertaining to computer work-
loads. They range from a specific measurement or observation to a complete workload
model for a particular domain. Regrettably, in many cases the available data is sketchy,
and based on a single study from a specific system, rather than being based on a meta-
study that summarized many original studies conducted under diverse conditions.

Likewise, many of these studies are not the final word in the sense that they focus
on a single element of the workload, and not on the complete picture. A comprehensive
model would require the identification of the most important parameters, their charac-
terization, and a characterization of the interactions between them (e.g. [763, 671]).

Thus there are many opportunities for additional studies on workload characteriza-
tion and modeling.

9.1 Human User Behavior

A chief concern regarding computer workloads is their dependence on changing tech-
nologies. Will measurements performed today still be relevant next year? One area that
is excused from such considerations is that of workloads that reflect basic human behav-
iors. The issue here is the patterns of how users generate new work when they interact
with a computer system. At a very basic level such patterns reflect human behavior
regardless of the system and are therefore largely invariant.

This does not imply, however, that all human users are the same. On the contrary,
human users are very variable in terms of temperament and abilities, which is reflected
in their computer-related behavior [727, 181]. Moreover, they may sometimes behave in
unpredictable ways [211]. This just adds to the natural variability of the workload.

9.1.1 Sessions and Job Arrivals

The patterns of user sessions and the resulting job arrivals form the basis of user-based
workload modeling, which was discussed at length in Section 8.3. To recap, its main
attributes are as follows:
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• Different users create sessions with different characteristics, but the largest group
is made up of “normal” users working normal hours.

• Session lengths are typically limited, and the distribution ends abruptly at around
12–15 hours.

• Intersession gaps can be long, and their distribution has a long tail (but not a heavy
tail).

• Sessions by different users tend to be synchronized to some extent, because most
users observe a daily cycle of activity.

The question is how to model all these attributes together. For example, given session
starts, one can model either session ends (thereby inducing a distribution of lengths) or
lengths (thereby inducing ends). So which should it be?

The answer seems to be that all three — session starts, session ends, and session
lengths — should be combined, reflecting a model of user behavior rather than a model
of the statistics of session attributes. It is indeed necessary to model session starts, but
they also depend on previous ends. And ends depend, among other things, on lengths.
Putting this in the perspective of user behavior, we can suggest that session starts depend
on the following:

• The day of the week (more on weekdays, except for gaming where there is more
activity on weekends [327]).

• The time of day (mainly at the beginning of the workday, maybe again after lunch).

• The user’s profile (some come early, some late, some work nights).

• When the user ended the previous session (did he or she go to sleep late?).

And session ends depend on these factors:

• How long the session has been going on (users get tired).

• The time of day (users tend to leave in the evening).

• The service provided by the system (bad service leads to user abandonment).

It would be hard to create a statistical model that handles all these issues correctly. Yet,
when using a generative user-based model one should verify that the induced distribu-
tions of session attributes match the empirical data.

Little if any work has actually been done so far on modeling all these aspects of
user behavior. One issue that has been modeled, however, is user reaction to system
performance [615, 616]. One question asks exactly what metric of performance really
affects user behavior — for example, does response time capture performance as it is
perceived by human users, or should we use slowdown instead? As shown toward the
end of Section 8.4, response time is a much better predictor of subsequent user behavior
than slowdown.

The next question asks how exactly does the response time of submitted jobs affect
the user’s decision to terminate a session. To answer this, define session breaks as in-
tervals of more than 20 minutes between the end of one job and the submittal of the
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next job. Then calculate the probability of a session break as a function of the last job’s
response time. The result is that the probability of continuing the session drops quickly
as the response time grows longer and can be modeled as

Pr(continue) =
0.8

0.05 r + 1

where r is the response time in minutes [616]. Thus the probability of continuing to
submit jobs in the same session is 0.8 when response is instantaneous, and it drops to 0.2
if the response time is one hour.

This discussion considers only the activity envelope — when people start to work
and when they stop. In many contexts another important issue is the sequence of activi-
ties that are performed. In some cases the most important characteristics in determining
the sequence are locality and the repetition of previous activities. In others, such as e-
commerce systems, it is the actual sequence of actions (e.g., “buy” comes only after “put
in cart”). These issues are discussed later in the relevant contexts.

9.1.2 Interactivity and Think Times

When modeling user behavior, interactivity implies a closed system model. But in the
complete model we typically have three levels of arrivals, as described in Chapter 8:

1. New user arrivals. This is part of the user population model.

2. Session starts. This is part of the individual user model and may depend on the
user type (e.g., normal daytime worker or some other type).

3. Job arrivals within a session.

Importantly, the first two levels are typically modeled using open system models, whereas
the third implies a closed system model [614, 601, 552]. The closed model admits two
possible behaviors. If all is well, the user continues to work with the system. In this case
one needs to model think times as described next. But if the system is congested, the
user may abort individual jobs and even the whole session. This was discussed at length
in Section 8.4, and appears again in Section 9.1.4.

Interactive user behavior was one of the first phenomena to be studied empirically.
Think times of users during interactive sessions were found to be independent but not
exponential, and, in particular, to have a longer tail than an exponential distribution.
Coffman and Wood, in 1966, suggested a two stage hyper-exponential model [146]:

f(x) = 0.615 · 0.030e−0.030x + (1− 0.615) · 0.148e−0.148x

The mean of this distribution is 23.1 seconds. Fuchs and Jackson reported a lower value
of 5.0±3.1 seconds [272].

Data from IBM mainframe systems indicated that user think time was correlated
with system response time [184, 425]. Thus if the system response time was reduced
from, say, 3 seconds to subsecond values, so was the user think time. This is part of the
reason why reduced response times improve user productivity.
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Figure 9.1: Distribution of think times on parallel supercomputers.

More recent data from windowing systems, tabulating the number of events gener-
ated per second, found an upper limit of about 20–30 events per second (events are either
keystrokes or mouse clicks) [594]. This corresponds to a minimal time between events
of about 33–50 ms. But this time probably reflects a user’s maximal typing speed —
which is done more or less automatically — or a system’s sampling rate of the mouse,
more than it reflects thinking before submitting the next job. Indeed, it is reasonable to
place a boundary of about one or two seconds between such automatically spaced events
and events that require cognitive action.

In terms of modeling interactive user activity, this distinction means that actually two
distributions are needed [272]. One is the distribution of short gaps within sequences of
events, such as typing a line of text or performing a sequence of operations with the
mouse. Of course, different input devices might actually require different distributions,
and HCI researchers have devised precise models of how much time various actions will
take [617]. These times can be very short from a human perspective, but still very long
for a 2–3 GHz computer. The other is the distribution of actual think times, when the
user is contemplating what to do next.

Think times in interactive sessions are by definition positive, because a user cannot
start a new task before receiving a response from the previous one. But in batch environ-
ments, the interval from the end of one job to the beginning of the next can be negative
(that is, the second job is submitted before the first one terminates). The distribution of
such think times as observed in parallel supercomputers is shown in Figure 9.1. Between
10% and 60% of the jobs have negative think times — meaning that they were submitted
without waiting for the previous job to terminate — with values around 30–40% being
typical. This result may be interpreted as showing that jobs are submitted in batches:
within each batch the jobs are submitted asynchronously, without waiting for previous
jobs to complete, but such synchronous waiting does occur from one batch to the next
[614]. Modeling such an activity pattern therefore also requires two distributions: the
distribution of intersubmittal gaps within a batch, in which the user does not wait for
a previous termination, and the distribution of think times that occur between batches,
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Figure 9.2: Daily arrival patterns at parallel supercomputers.

when the user waited for a termination and looked at the results before submitting more
jobs (see box on page 399).

Another aspect of interactivity is the typing itself. Fuchs and Jackson provided data
from early timesharing systems, indicating that when users send data to the computer the
characters are typically sent individually, with intervals of 1.5±0.83 seconds between
them (the line speed was such that each character took 0.092 seconds to transmit) [272].
Later data from telnet sessions analyzed by Danzig et al. again showed that characters
tend to be transmitted individually — two thirds of all packets contained only one byte
of user data [164]. The intervals between such packets were distributed largely in the
range of 0.1–1 seconds. These results were corroborated by Paxson and Floyd, who
further showed that the distribution of interpacket times (and hence, the distribution of
intervals between typing successive characters) is Pareto [540].

9.1.3 Daily Activity Cycle

Another salient characteristic of user behavior is the daily activity cycle (e.g. [327, 321,
525, 63, 763, 747, 758, 382, 192]). Activity patterns typically peak during the day in
the morning and afternoon and are low at night. Several examples of data from parallel
supercomputers are shown in Figure 9.2. Although the details vary, they all exhibit
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Figure 9.3: Daily arrival patterns at large websites.

high levels of activity during normal working hours, possibly with a small dip for lunch.
Activity in the evening is much lower, and it reaches a minimum in the pre-morning
hours, around 4 or 5 AM. In fact, this is so consistent that it can be used to sort out
problems with recording the correct time zone for each log.

Daily cycle patterns at large-scale websites are shown in Figure 9.3. The data from
the AOL search log includes 28.7 million queries (including requests for additional pages
of results) submitted over a three-month period in 2006 by more than 650,000 users. This
shows a different pattern from the parallel supercomputers considered in Figure 9.2: the
highest activity occurs in the evening hours, between 7 and 10 PM, when people are free
at home. On weekends this difference is much less pronounced, because people are free
to search the web also during normal working hours.

The data shown from the World Cup site of 1998 includes nearly 143 million hits
during a one-month period before the tournament actually began, in order to avoid flash
crowds that occur during games. Although it also displays a daily cycle, it is much
less pronounced. The reason is most probably that the daily cycle depends on location.
Thus if a website has an international user base, as the World Cup site certainly has, the
resulting traffic will be the superposition of several daily cycles with different phases
[116]. A similarly weak pattern occurs for the English Wikipedia; the data shown is for
the year 2012, probably using Greenwich time. But the Hebrew Wikipedia has a much
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more pronounced daily cycle, probably because the vast majority of Hebrew speakers
are concentrated within a single time zone.

Calzarossa and Serazzi have proposed a model for the arrival rate of jobs at a work-
station [102]. This is a polynomial of degree 8, so as to allow for several peaks and
dips in the level of activity. Simpler models have also been proposed (e.g., dividing the
day into three periods with low, high, and medium loads [131]). These are reviewed in
Section 6.5.1.

9.1.4 Patience

An important aspect of user behavior in interactive systems is patience: how long is the
user willing to wait? Traditionally, it has been common to quote about 2 seconds as the
limit beyond which users get annoyed with the system (e.g., when waiting for a dial tone
on the phone). But, of course, this is not a sharp bound, but a distribution. And it also
depends on the system type.

Direct data about patience is scarce. Data from call centers indicates that the time
callers are willing to wait for an answer has a hyper-exponential distribution [584].
Shneiderman, in writing about the desired response times of interactive systems, notes
that the expected response time varies with the task [617, chap. 10]. Thus when typing or
moving the cursor the response must be immediate, around 50–150 ms. Simple frequent
tasks should elicit a response within a second, common tasks can take 2–4 seconds, and
complex ones 8–12 seconds. Delays above 15 seconds are considered disruptive. Em-
bley and Nagy make similar observations [211], with typical times ranging from less
than 100 ms to echo a character, through 2 seconds for an editing task, 4 seconds for a
(complex) search, and up to 15 seconds for login or logout. Extending this, a study of
peer-to-peer file sharing found that users are willing to wait hours or even days for large
media files that are downloaded in the background [309]. At the other extreme, in online
gaming users are sensitive to delays as short as 150 ms [81]. Likewise, Quake play-
ers (a first-person shooter game) were much more sensitive to interference than users
performing word processing or Internet search tasks [313].

Indirect sources of information about user patience include data regarding aborted
downloads, and specifically, the distribution of time until the download is aborted. Such
data, collected for multimedia downloads [310], indicates a log-uniform distribution
starting with 60–70% abortions after a mere second and going up (more or less lin-
early in log scale) to 95–100% at 100 seconds. Somewhat similar data is provided by a
study of live streaming using a P2P system [438]. When the streaming event (a baseball
game) began, many users could not immediately obtain sufficient data to play the video
and aborted their sessions. Thus the distribution of short session durations, specifically
for those sessions that did not have sufficient data, can be used as a proxy for the user
patience distribution. This distribution grew rapidly between 10–20 seconds, had a wide
mode at about 50–100 seconds, and then a tail that continued beyond 3 minutes.

At a lower level in the protocol stack, one can also identify and study aborted TCP
connections [582]. Assuming communications between a web browser and a web server,
connections that are aborted by the client (that is, the browser, representing the user) can
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be identified by a combination of two criteria: first, that the FIN or RST packet signifying
the end of the connection is first sent by the client, and second, that this is done within
about one round-trip time from the last data sent by the server. The second criterion
is needed to weed out cases where the connection is persistent, and the client closes it
after a certain timeout, which does not reflect any impatience by the user. Data collected
in this way indicates that most aborts occur within the first 15–20 seconds, and that
aborts are much more likely for slow servers (meaning servers that provide only a low
bandwidth).

An interesting question is what actually causes users to abort. In the context of net-
working, it has been suggested that users may be sensitive to two types of performance
problems [744]: either the cumulative service rate is too slow, or the instantaneous rate
of progress is too slow. These models assume the user is cognizant of the transfer’s
progress, and not only of the elapsed time. For example, a bar that increases in length
showing what fraction of the transfer has been completed may cause users to abort if
they become impatient and see that only a small fraction has completed. An indica-
tion of download rate may cause users to abort if they see that the rate is low and is
insufficient for the data being transferred.

Data from parallel supercomputer workloads in the interactive studies cited earlier
also indicates that users are willing to wait more than a few seconds. This analysis
looked at the think times (intervals until the user submitted another job) as a function
of the previous job’s response time [615]. Response times of a few minutes led to think
times that were also only a few minutes long, indicating the user was still waiting for the
result. With much longer response times, the probability of a short think time dropped,
but not to zero.

A completely different type of data is provided by web search logs. An analysis of
the number of results viewed shows that most users only skim the first page of results,
but the distribution is heavy-tailed with some (very few) users looking at hundreds or
even thousands of results (see Section 9.4.6 and Figure 9.29). However, this finding may
be due to robot activity.

In a related vein, Chambers et al. look at gaming servers and define patience by the
number of times a user is willing to try to connect to a busy server [116]. They find that
three out of four users are unwilling to try again (but this may be tainted by software that
automatically tries a different server each time). Of those who do try again and again,
the number of attempts is geometrically distributed.

9.1.5 Mobility

With the advent of Wi-Fi technology it has become possible to connect to the Internet in
a wireless ad-hoc manner. The movement of human users then affects the characteristics
of the workloads they generate, because they may roam from one system to another
during an ongoing activity.

The degree of user roaming between access points may depend on user context. For
example, Kotz and co-workers analyzed the wireless network installed at Dartmouth
College in its early days; they found that most students did not roam much and that most
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of their connections were made in residences [414, 328]. Physical infrastructure also has
an effect: if there are many overlapping access points, network cards may reassociate
more often while trying to maintain a connection to the strongest signal available. This
creates many artificially short sessions in place of a single long one that more faithfully
represents the user’s actual behavior.

The patterns of movement on a campus are as may be expected: they correspond to
students’ daily schedules and follow the directions of roads and walkways [328, 402].
The speed of movement and pause times follow a lognormal distribution. At the same
time, most users actually stay put most of the time, spending most of their time at well-
defined hotspots. Typical hotspots for voice over IP users were a hotel restaurant, library,
and the school of engineering; for laptops, the most typical location was residential
buildings.

Based on these findings, Kim et al. suggest a user mobility model that can generate
synthetic tracks that mimic the real ones [402]. This model has the following three
components:

1. Users are assigned either a “stationary” or “mobile” character. In the dataset ana-
lyzed, 46% were mobile.

2. Stationary users are assigned a stationary hotspot location, a connection start time,
and a duration, based on distributions extracted from the data.

3. Mobile users are assigned an initial mobile location and a start time. They then
move among mobile hotspots according to the following procedure.

(a) The next destination is selected based on probabilities from a location tran-
sition matrix.

(b) The number of waypoints to pass on the way is selected from a distribution.
(c) The waypoints are selected from the rectangle defined by the current location

and the destination, and sorted by distance from the current location.
(d) The speed of movement is chosen from the speed distribution.
(e) Upon arrival, the user pauses for a duration chosen from the pause time dis-

tribution, and then repeats these five steps.

Karamshuk et al. describe human mobility models for opportunistic networks [396].
The idea is to model the spatial, temporal, and social patterns of human activity, based
on the realization that human relations are the motivation for individual movements. By
predicting movements one can use them to forward messages over disconnected net-
works. Likewise, Gluhak at al. realize the need for including human behavior in the loop
of experimentation on the Internet of things, because the location, mobility, and activity
of the “things” are related to humans [288].

9.1.6 Runtime Estimates

A rather particular form of human user behavior occurs when using large-scale super-
computers. Such systems often require their users to provide estimates of job runtimes.
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Figure 9.4: Histograms of how much of the estimated runtime was actually used.

These estimates are used by the system scheduler to plan ahead and to decide when to
run each job [443, 507]. The naive expectation is that users would be motivated to pro-
vide accurate estimates in order to facilitate better system performance. The availability
of accounting logs allows us to compare the estimates to the actual runtimes. The results
show that they are typically far from accurate. But it is especially interesting to consider
how they differ.

Figure 9.4 shows histograms of what percentage of the estimated time was actually
used. Perfect estimates should lead to a strong peak at 100%, and nothing else. The
data shows that a peak at 100% indeed exists, but unfortunately it is composed almost
exclusively of jobs that overran their allocation (which was based on the estimate) and
were therefore killed by the system. An additional peak occurs at very low percentages;
a large fraction of this is either jobs that were also killed for some reason, or very short
jobs (here defined to be less than 90 seconds long), which are probably jobs that failed
in some way upon startup. The remaining jobs exhibit a rather flat histogram, implying
that user runtime estimates do not provide much information about how long jobs will
actually run. However, they do provide a usable upper bound: in all the logs, only a
small fraction of the jobs were killed because they exceeded their estimates.

To study the effect of the accuracy of user runtime estimates on performance, esti-
mates with varying levels of accuracy are needed. One way to obtain them is to start out
with the real job runtimes ti, and apply some function that creates estimates ei with the
desired accuracy. Given the above observations about the histograms of Figure 9.4, the
following four-step model has been suggested [507]:

1. With probability of 10% return ei = 0.99 × ti. This represents the jobs whose
estimates were too low and were therefore killed by the system.

2. Otherwise create an estimate of ei = ti/u, where u is uniform in the range (0, 1].
This leads to the flat histogram where the ratio ti/ei is uniformly distributed.

3. If ti < 90, multiply the estimate by 10. This makes short jobs use only a small
part of their estimate.
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4. If the estimate is outrageous, truncate it to some upper bound (e.g. 24 hours).

The problem with this model is that it actually provides rather good estimates that
do not reflect reality: a quarter of them are off by only 33% or less, and another quarter
by less than a factor of 2. Thus short jobs of a few minutes can typically be easily
distinguished from long jobs of several hours. Another problem is its randomization,
and in particular, the fact that there is no correlation between runtime and accuracy.
Such a correlation actually does exist, for two reasons [694]. First, long jobs generally
enjoy much more accurate estimates. The reason is that all large-scale systems impose
limits on job length. Naturally, these limits also apply to the estimates. Thus the closer
the runtime is to the limit, the smaller the range that the estimate can come from. For
jobs that are practically at the limit, the estimate must also be at the limit, and hence be
very accurate.

The second reason is that user estimates are inherently modal. Users are human, and
humans simply tend to use round numbers. It is very rare to see estimates such as 37:21
minutes — normal users will tend to round up this time. Thus it was found that only 15
discrete values account for around 80% of the estimates in all the logs. These values are
5, 10, 15, 20, and 30 minutes, and then 1, 2, 3, 4, 5, 6, 8, 10, 12, and 18 hours. Because
these estimate values are so popular, jobs whose real runtimes are near one of them tend
to have more accurate estimates, whereas jobs whose runtime is in between them will
have inaccurate estimates.

Based on these observations, a better model has been proposed to generate synthetic
runtime estimates that mimic those chosen by real users [694]. This is somewhat in-
volved, but the five main components are as follows:

1. Start with the 20 most popular estimate values. These include the maximum al-
lowed runtime and other “round” values as listed above.

2. The number of additional estimate values to use is based on the number of jobs for
which we need estimates: the more jobs, the larger the number of different values
that will eventually be used. The values themselves are calculated from a formula.

3. Next, define the sizes of the different modes (i.e., how many jobs will use the most
popular estimate, how many the second most popular estimate, and so on). The
model is to use an exponential distribution for the first 20 and a power law for the
rest.

4. Then we need to decide the mapping: which estimate value (from steps 1 and 2) is
used by how many jobs (from step 3). The maximal allowed estimate is made the
most popular. The remaining 19 popular values are mapped to large modes in an
order that resembles the data from logs. The other values are mapped randomly.

5. Finally, we need to assign a specific estimate to each job such that the correct
number of jobs will end up with each estimate value. To achieve this we create a
sorted vector of all the required estimates. Thus if an estimate of, say, one hour
has a popularity of 3%, and we intend to create a workload with 100,000 jobs, then
we will have 3,000 instances of one hour in the vector of estimates. In parallel,
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we create a sorted vector of the actual (modeled) runtimes of all the jobs. Now
iterate over the runtimes from the highest to the lowest, and for each one select an
estimate that is larger or equal to it.

A deficiency of this model is that it does not include locality. In real workloads
successive jobs tend to be similar to each other. In the current context, this means
that they will typically have the same runtime estimate, rather than having random
estimates (albeit from a modal distribution).

Although the particular issue of user runtime estimates is perhaps of limited interest,
its analysis does identify human behaviors such as the tendency to use rounded values.
These behaviors may be expected to occur in other cases where user input is sought.

To read more: In parallel job scheduling, the discovery that user runtime estimates are inac-
curate led to another unexpected discovery: it seemed that inaccurate estimates actually lead to
better performance! This led to a line of interesting experimental work that eventually showed
that inaccurate estimates cause holes to be left in the schedule, and these can then be filled with
short jobs, effectively leading to an implicit shortest-job-first effect that improves the average
response time. Thus the truth of the matter is that accurate estimates are actually better, because
they facilitate using shortest-job-first explicitly [242, 507, 765, 697, 695]. The original study was
also tainted by using “statistically bad” estimates that, as noted earlier, still contain significant
information. A better model for bad estimates is that more of them use popular modal values and
thus lose information [694].

9.2 Desktop and Workstation Workloads

Desktop systems and workstations were among the most commonly used computing
platforms for many years, only recently being replaced by mobile devices such as tablets.
The arrival of jobs in such systems is governed by user behavior, which was covered in
the previous section. Here we focus on the characteristics of the jobs themselves, which
are plausibly the same or similar also on mobile devices.

An important aspect of desktop workloads is the total load they place on the sys-
tem. In fact, many studies show that typical desktop workloads leave the vast majority
of the resources idle most of the time. For example, reports regarding average system
idle time range from 75% [510] to 91% [418]. On desktop machines, which are of-
ten networked together, the spare cycles on one machine may be used by applications
initiated on another. load balancingSuch behavior lies at the base of load-balancing
schemes [51, 320], grid systems [30], and large-scale volunteer computing efforts such
as SETI@home [26]. Alternatively, the findings regarding idle time provide strong mo-
tivation for power-saving schemes, both on desktops and even more so on mobiles. A
particular challenge is to achieve such savings without affecting interactive performance.
At the same time, evolving modern workloads are using more and more resources, in-
cluding auxiliary processing power such as the GPU and memory space in multilevel
caches.
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Figure 9.5: LLCD plots showing heavy-tailed process runtimes.

9.2.1 Process Runtimes

Maybe the most basic characteristic of a process is how long it runs. Early measure-
ments in the 1960s quickly revealed that the distribution of runtimes is skewed and has
a coefficient of variation greater than 1. This led to the proposal that hyper-exponential
models be used [580, 146, 717].

More recent work on the tail of the distribution has identified it as being heavy, and
providing a good fit to a Pareto distribution [435, 320], As illustrated in Figure 9.5.
These graphs show that the probability that a process run for more than τ time decays
according to a power law:

Pr(T > τ) ∝ τ−α α ≈ 1

This means that most processes are short, but a small number are very long.
The finding that process runtimes are Pareto distributed (or at least, their tail is) has

important implications for load balancing (when computations can be performed on any
of a set of machines). Load balancing has to contend with three main questions:

1. The first question is whether there is enough of a load imbalance to justify active
migration of processes to improve the balance. In particular, an underloaded ma-
chine and an overloaded machine need to be paired up, which requires machines
to know about each other [52, 496].

2. Migrating a process from one machine to another costs considerable overhead to
transfer the process state (typically its address space and possibly some system
state as well). The question is whether the expected performance gain justifies
this expense.

3. Migrating a process that terminates soon after is especially wasteful. This raises
the question of selecting the best process to migrate.
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Figure 9.6: Distributions of the effective quanta of different applications, when run on a
Linux system with a quantum time of 100 ms (from [219]).

The distribution of runtimes enables us to answer the latter two questions. Specifically,
if we condition the probability that a process will run for more than τ time on how
much it has already run, we find that a process that has already run for t time may be
expected to run for an additional t time: the expectation actually grows with how long
the process has already run! (The derivation is given in Section 5.2.1.) This makes the
long-running processes easy to identify: they are the ones that have run the longest so
far. And by knowing their expected remaining runtime and the load on the two machines,
we can also calculate whether the migration will lead to improved performance or not
[320, 435].

Studies such as the above require data about process runtimes. On Unix systems this
information is typically obtained using the lastcomm command. The lastcomm com-
mand reads its data from system log files, and prints it out in a format that is more
convenient for humans to read. Regrettably, in the process it reduces the second resolu-
tion of job termination times to a resolution of minutes. To retain the original resolution,
one needs to write a program that will parse the log file directly.

Note that the process runtime refers to the total time required by a process (indeed,
this is sometimes referred to as the process lifetime for added emphasis). This total time
is accumulated in numerous short bursts of CPU activity, interspersed by system activ-
ity (handling interrupts or system calls) and possibly the execution of other processes.
Obtaining data about the length of CPU bursts requires precise instrumentation, using
tools such as KLogger [219]. Using such tools, it is found that typical bursts are very
short, and in particular they are much shorter than the operating system’s time quantum
(Figure 9.6) — so much so as to make the operating system quantum irrelevant. This is
so because desktop programs are typically interactive and perform many I/O operations,
with only a fraction of a second of computation between successive I/O operations.

The only case where the operating system quantum limits the time that a process will
run is if the process performs pure CPU work, and even then about half of the quanta are
cut short by interrupts or system daemons activity. (Daemons are system processes that
are activated periodically to handle various administrative tasks.) However, when a pure
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CPU process (CPU stresser in Figure 9.6) runs concurrently with other applications, its
effective quanta will often be reduced to the range of those of the other applications.
For example, when running concurrently with a movie viewer such as MPlayer or Xine,
the movie viewer will require the CPU for a short time whenever a new frame is to be
shown. If the frame rate is 25 fps, this means that it will run every 40 ms (assuming the
system supports alarms at such a resolution). As a result all other applications (such as
the CPU stresser) will never run more than 40 ms before being interrupted.

9.2.2 Application Behavior

Application behavior may be characterized in several different dimensions. This section
focuses on those that are the most relevant for the study of a machine’s microarchitec-
ture and memory hierarchy, namely the instruction mix, branching behavior, memory
behavior, and the division into phases of computation.

Instruction Mix

All modern microprocessors have multiple execution units of different functional types.
To achieve good utilization, the mix of execution units should match the mix of instruc-
tions in applications. Thus a very basic workload attribute for architecture studies is the
instruction mix.

As a simple example, consider processors that support the FMA instruction with
a specialized functional unit. This instruction performs a floating-point multiply-add,
which is a basic component in many linear algebra computations. It contributes signif-
icantly to the processor’s peak rating, because each completed instruction is counted as
two floating-point operations. However, if an application does not contain multiplies and
adds with a suitable relationship between them, this functional unit cannot be used and
the achievable computation rate is reduced. Similar problems may occur with SIMD-like
instructions for multimedia processing [673].

The FMA is a unique instruction that does not exist on every processor. In gen-
eral, one of the key differences between computer architectures is the instructions they
provide. Thus the instruction mix exhibited by a program actually depends on the archi-
tecture for which it was compiled. To avoid this issue it is common to consider classes
of architecture-independent generic instruction types rather than specific instructions
[345, 387]. These may include the following:

• Integer arithmetic (addition, subtraction, and logic operations).

• Integer multiply.

• Integer division.

• Floating-point arithmetic (addition and subtraction).

• Floating-point multiply.

• Floating-point division.

• Load (from memory to a register).
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Figure 9.7: Distribution of basic block sizes in two benchmark suites (data from [387]).

• Store (from a register to memory).

• Branch instructions.

Sometimes fewer classes are used, because some of these classes can be grouped to-
gether.

The most popular way to obtain a representative instruction mix is by using a bench-
mark suite, that is, a set of real applications that are considered representative of applica-
tions in a certain domain. The most popular benchmark suite for general-purpose com-
puting is SPEC CPU from the Systems Performance Evaluation Consortium [655]. Note
that program behavior also depends on input, so representative inputs are also needed
[202, 204], and indeed, benchmarks specify not only the applications to run but also the
reference inputs to use. Benchmarks are discussed further in Section 9.2.4.

An alternative is to create a model of program behavior suitable for architecture
studies, including the instruction mix, number of operands, and register aging [200].
A related approach is to synthesize test cases that approximate the behavior of the full
benchmarks, and thereby also their performance characteristics [64, 387]. In either case,
it is important to note that we are interested in modeling the correct dynamic instruc-
tion counts, not the static ones. Static instruction counts are the number of times each
instruction appears in the compiled code. Dynamic counts are the number of times each
instruction is executed when the program runs and may depend on the piece of code that
is considered. Joshi et al. suggest maintaining separate instruction counts for each basic
block of the code, and moreover, to maintain separate counts depending on the identity
of the previous basic block to run [387].

Branching Behavior

The branching behavior of applications includes information about several program at-
tributes: the sizes of basic blocks between branch points, the graph of the flow from one
basic block to the next, and the probabilities of taking the different branches.

The distributions of basic block sizes in two benchmark suites are shown in Figure
9.7. The distributions show the average sizes for the different benchmarks in each suite.

Version 1.0.4, typeset on June 10, 2023



440 CHAPTER 9. CASE STUDIES

SPEC 2000 gzip log

page number (thousands)

0 50 100 150

a
c
c
e

s
s
e

s
 t

o
 p

a
g

e

1

10

100

10     3

10     4

10     5

10     6
data

code

zoom in

page number (thousands)

95 97 99 101 103 105

1

10

100

10     3

10     4

10     5

Figure 9.8: Distribution of accesses across the address space.

This shows that typical average basic block sizes are small, ranging from 4 to 11 instruc-
tions. However, some basic blocks may be much bigger, and in some benchmarks even
the average is much bigger — as high as 112 in the applu benchmark and 109 in the
mgrid benchmark from the SPEC CPU 2000 suite [387].

The connectivity of basic blocks shows less variability (at least for these two bench-
mark suites). Specifically, the average number of successor basic blocks ranges from 2
to 11 in all the benchmarks studied [387].

The probability of taking a branch is typically far from 1
2 , which lies at the basis of all

branch prediction schemes [637]. In some cases, prediction can be done statically. For
example, the branch that controls a loop is typically taken, because loops are typically
executed more than once. Thus branch instructions can be modeled by their taken rate,
and either high or low rates lead to good predictability.

However, in some cases the taken rate does not provide the full picture. For example,
a branch that is alternately taken and not taken is completely predictable, whereas one
that is randomly taken with the same probability of 50% is not. Therefore the taken rate
should be complemented by the transition rate, which quantifies the probability that the
branch transitions from being taken to not being taken [322]. Branches with either very
low or very high transition rates are highly predictable, regardless of their taken rate.
Branches with high or low taken rates are just a special case, because an extreme taken
rate necessarily implies a low transition rate.

In addition, dynamic information may also add to predictability. An interesting ob-
servation is that branches may be correlated with each other [223] (e.g., if different
branches actually include the same predicates). Such cross-branch correlation should
also be included in models to enable branch prediction schemes to be evaluated.

Memory Behavior

Computer programs do not typically use their whole address space. Rather, only distinct
regions or segments are used, and different regions are used different numbers of times.
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This is illustrated in Figure 9.8 for the gzip benchmark from the SPEC 2000 suite, using
4 KB pages as the basic unit of memory1.

The main attribute of memory references is their locality. This has central impor-
tance in the context of paging schemes [171, 174, 648] and caching [306, 476, 743],
because locality enables the high cost of fetching a memory page or line to be amortized
across many references.

Locality is the result of two phenomena that may occur in a reference stream. The
first is that references to a given set of locations tend to be grouped together, rather
than being spread uniformly across the whole execution of the application. This is re-
lated to the issue of program phases discussed later. The other is skewed popularity, in
which some memory locations are much more popular than others, implying that they
are reused much more often [381, 217, 411] (recall Figure 9.8).

The degree of locality observed in a reference stream depends on the locus of ob-
servation (Figure 9.9): the reference stream emitted from the CPU may have significant
locality, but after it is filtered by successive levels of caches the degree of locality may
be reduced. This affects the use of traces to study memory behavior. The problem is
that traffic between the processor and the L1 cache cannot be observed. Therefore, to
trace the true memory behavior of an application, caches should be disabled. When this
is done the external memory traffic exhibits the full locality of the application. But such
data is actually only useful for caching studies. If one is studying bus and memory per-
formance, one should use a reference stream that has indeed been filtered by the caches
[730]. However, this choice is somewhat ill defined, because the degree and character of
the filtering depend on the cache configuration.

One of the simplest and most common ways to characterize locality is using the
LRU stack distance [649, 648]. Examples of the stack distance distributions of several
SPEC 2000 benchmarks are shown in Figure 9.10. Stack distance distributions can also
be used to create a generative model of memory references. The idea is to prime the
stack with all the memory addresses, and then generate successive references by simply

1This data is from the Brigham-Young trace repository. Surprisingly, it indicates that instruction fetches
and memory reads and writes may be targeted at the same page. This may be an error because instructions
are usually placed in a separate memory segment.
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Figure 9.10: Examples of stack distance distributions from SPEC 2000 benchmarks,
using 4 KB pages.

selecting them from the stack according to the distribution. Of course, when an address
is thus selected, it is also moved to the top of the stack to maintain the stack semantics.
This and other metrics and models were discussed at length in Section 6.2. For example,
the fractal model by Thiébaut et al. [683, 684] tends to produce better locality, because
it models the jumps between successive addresses using a heavy-tailed distribution, so
most of them are very small. In addition, Phalke and Gopinath suggest a model based
on inter-reference gaps for temporal locality [548].

Another way to characterize locality is by using the working set — the set of all
unique memory locations that were referenced within a certain window of time (or rather,
within a certain number of instructions) [171, 174, 172]. The smaller the working set, the
stronger the locality of the reference stream. Although the notion of a set does not imply
any order or structure on the memory locations, Ferrari has proposed a generative model
that is designed to emulate working sets [257]. There has also been work on combining
working sets with skewed popularity, leading to the identification of a core subset of the
working set that attracts the majority of references [217, 216, 218].

For example, consider a program fragment that includes two loops traversing two
large arrays, as follows:

for (i=0; i<lenA; i++) {
A[i] = 13;

}
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for (i=0; i<lenB; i++) {
B[i] = 0;

}

In the first loop, i and lenA are reused repeatedly, and the elements of A are accessed
once each in sequence. In the second, i and lenB are reused, but this time the elements
of B are accessed once each. Now consider the size of the working set that would be
found. Obviously, since the vast majority of the unique memory locations referenced are
the elements of A and B, the size of the working set will be directly proportional to the
window size! This will only change if the window includes much more than these two
loops, and then it would depend on the additional code too.

The working set model envisions a slow shift of locality. But real data tends to be
more structured than random sampling from such a set (Figure 9.11). A comprehensive
model should therefore include phenomena such as the following:

• Distinct phase transitions where the access pattern changes abruptly [152, 172,
543].

• Sequential access to successive addresses, as would be generated when traversing
large data structures [152, 287].

• Strided access with various stride sizes, as would be generated when traversing
multidimensional arrays [387].

In particular, to get a better handle on locality properties, it is best to first partition the
execution into distinct phases, and to consider each phase independently [61, 456]. This
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leads to a model based on a combination of macro models and micro-models [152, 172,
543]. The macro model describes how the program moves from one locality to another,
typically using a Markov chain formalism. The micro-models describe the references
performed within each locality. Courtois and Vantilborgh explain how the characteristic
working set sizes of an application result from the working set sizes in the different
phases, weighted by the limiting probabilities of being in the different phases [152].
Peris et al. extend this by considering overlaps between localities, and also show how to
factor in the state that remains in the cache when a phase is repeated [543].

The main implication of recognizing program phases is the realization that most
page faults (and cache misses) happen during phase transitions [172]. For example,
one study showed that phases occupy 98% of a program’s runtime and transitions only
2%, but the transitions account for some 50% of the page faults. As a result modeling
multiple contending applications can make do with only two classes: jobs that are in a
phase and jobs that are in transition between phases. Such a model indicates that a good
multiprogramming level is such that two or more jobs are rarely in transition at the same
time.

Nevertheless, it is also important to consider the internal structure of individual
phases. Phases may actually be nested, with a major phase of the computation including
several subphases, which may also be repeated [456, 411]. In addition, one must distin-
guish between the reuse set, which is those elements that are indeed reused extensively
(i, lenA, and lenB in the earlier example), and the other elements, which are transient in
nature [216, 411]. The reuse set provides a better approximation of the actual memory
capacity needed by the application, because the memory used to store transient elements
can be reused.

The working set and reuse set only capture the volume of data that is used by an
application. Another important characteristic is the rate at which data is accessed. For
example, consider two applications running on two cores and sharing a cache. If one
of the applications accesses its data at a higher rate, it will tend to appropriate much
of the cache space, because the slower application’s data will typically be selected for
eviction. Thus, to enable modeling of the contention between applications that share
memory resources, Koller at al. suggest the following three additional model parameters
[411]:

1. The flood rate: the rate at which an application floods the cache with memory
lines that are not part of its reuse set. This reflects the application’s compulsory
miss rate, and the pressure it applies on cache space allocated to competing appli-
cations.

2. The reuse rate: the rate at which an application accesses data in its reuse set. If
the reuse rate of one application is lower than the flood rate of another, its core
data will tend to be evicted from the cache, leading to poor performance for this
application.

3. The wastage: the space required to store nonreusable data and prevent the eviction
of reused data.
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An often overlooked aspect of memory behavior is that part of the data is not stored
in memory at all, but in registers (Figure 9.9). The problem is that the usage of registers
is governed by the compiler, so the workload may be affected not only by the application
being run but also by the compiler that was used and the level of optimization. Register
workloads are important for architecture studies, especially for issues such as register re-
naming and instruction dependencies. For example, one property uncovered by studying
register workloads is that register instance lifetimes are heavy-tailed [198].

Program Phases

Many applications are composed of multiple phases, such that the application behaves
consistently within each phase, but the behavior in one phase is quite different from the
behavior in other phases. Another common structure is one of repetitive phases, in which
a certain activity pattern is repeated multiple times.

The importance of phases stems from the fact that, if we identify them, we can
evaluate a representative part of each phase, rather than evaluating the entire program
[422, 613]. This can save considerable effort. Another reason to be interested in phases
is that the phase transitions themselves may affect the workload. For example, a phase
transition may lead to increased paging activity as a new working set of pages is loaded
into memory as described earlier [172, 543].

Identification of program phases based on memory referencing behavior was dis-
cussed by Batson and Madison [61, 456]. In a nutshell, their procedure was based on
identifying periods with consistent memory referencing, meaning that the same locality
was referenced repeatedly. In addition, they required that such periods be long enough,
to prevent the identification of short transient periods as phases. An alternative is to iden-
tify phases, or rather shifts in program behavior that indicate a phase transition, based on
reuse distances. The reuse distance is the number of different references made between
two successive references to the same address. Short reuse distances are used to char-
acterize locality. But large reuse distances can be used to identify a return to an activity
pattern that occurred a long time in the past (e.g., in a previous phase) [182].

These procedures detect phase transitions in a trace that records program execution.
Another method to detect phase transition points in the application itself is to “feed”
the application synthetic data that is very regular. If the input contains many identical
repetitions, the program’s behavior will likewise contain many identical repetitions. This
enables the instructions that mark phase transitions to be identified automatically even
in the binary executable, without access to the source code [611]. They can then be used
to delineate phase transitions when the program is applied to real inputs.

Parallelism

An important aspect of modern applications is parallelism. Parallelism allows applica-
tions to accelerate their computation by using multiple processors, cores, or hardware
contexts provided by the platform. However, this comes at the price of contention for
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shared resources such as L2 or L3 caches. Parallelism therefore rarely provides linear
speedup with the number of cores being used.

For many years desktop applications provided little if any parallelism [43]. But when
parallelism is in fact used, it is important for applications to complement each other’s
resource requirements. Thus the system scheduler is required to foster an appropriate
job mix [228, 762, 224]. This mix is based on assessing the intensity with which each
application uses the different resources, coupled with its sensitivity to competition from
the other applications.

Because there are tremendous numbers of desktop applications, evaluations typically
depend on representative benchmarks. One such benchmark is the PARSEC suite (stand-
ing for Princeton application repository for shared-memory computers, but actually rep-
resenting a collaboration with Intel) [75]. This suite is a set of 12 applications, ranging
from image processing, animation, and video decoding through data mining to portfo-
lio analysis. Importantly, these applications use advanced algorithms and techniques
that represent emerging workloads and challenge contemporary architectures. Each of
the benchmark programs comes with six input sets, including small inputs for use in
development and testing, and larger inputs with different sizes for actual evaluations.
Together, the suite attempts to cover diverse conditions, including the following:

• Different levels of using parallel programming primitives such as locks, barriers,
and condition variables.

• Different levels of inherently sequential work that limits the achievable speedup.

• Different sizes of data working sets and different degrees of locality in accessing
the working sets.

• Different levels of sharing cache lines by threads running on different cores.

• Different amounts of off-chip traffic to memory.

9.2.3 Multimedia Applications and Games

Multimedia applications are an important type of applications that are common in both
mobile and desktop settings. Their prevalence and unique requirements even affect pro-
cessor design [179], e.g., the addition of SIMD extensions to the instruction set by Intel
and other manufacturers [541, 542]; other architectural enhancements have also been
proposed [673].

Indeed, when comparing multimedia workloads with general-purpose workloads
several differences become apparent [199]:

• Multimedia programs are more computationally intensive. This means that the
ratio of computation to memory operations is higher.

• Multimedia programs have a higher degree of locality. In particular, the data ex-
hibits higher spatial locality due to streaming, which leads to high predictability.
It may also exhibit higher temporal locality caused by working on small parts of
the input. Likewise, the instructions also exhibit both higher spatial locality and
higher temporal locality.
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• Multimedia applications tend to suffer from hard-to-predict branches.

Because of their unique characteristics, special benchmarks have been devised for
multimedia workloads. Two such benchmarks are the Berkeley multimedia workload
[633] and MediaBench [430].

Games are a special case of multimedia applications in which graphical output is
combined with interactive user input. This input is typically quite intensive and contin-
uous, so issues such as think time and patience discussed earlier become irrelevant. The
workload imposed on the system can be studied at three levels:

1. Player behavior: the dynamics and characteristics of using the mouse, keyboard,
joystick, etc.

2. Programming API: the sequence of graphic requests issued by the application.
The number of requests per frame gives an indication of the scene complexity.

3. Hardware: the instructions, branching, and data used by the CPU and GPU to
perform the actual computations, as well as bus usage and I/O activity.

The latter two are specific to graphics rendering and the specialized hardware that has
been developed to support this activity [493, 574]. As a result, specialized benchmarks
have been developed for this application area. One of the most commonly used is
3DMark05 [620].

9.2.4 Benchmark Suites vs. Workload Models

The evaluation of desktop systems, workstations, and servers is dominated by bench-
mark suites. The best-known benchmarks for computer systems are those defined by the
Standard Performance Evaluation Corporation (SPEC) [655, 329]. In the context of mi-
croarchitectural studies, the relevant benchmark is SPEC CPU. This is actually a suite of
complete applications, each with one or more representative inputs. There are also other
benchmark suites, such as the MiBench suite, which is targeted for embedded systems
[316], and MediaBench, which is targeted for multimedia systems [430].

The reason for using a whole suite of benchmarks is that microarchitectural work-
loads are very complex and hard to characterize. Achieving a representative instruction
mix is not enough — we also want representative branching to enable an evaluation
of the branch prediction unit, representative memory behavior for the analysis of data
and instruction cache miss rates, and correct dependencies so as to be able to asses the
achievable instruction-level parallelism. Moreover, all of these issues interact with each
other. For example, the behavior of the branch prediction unit may affect the reference
stream as seen by the memory unit. Instead of trying to model all this, researchers tend
to simply use real applications — and because applications are actually different from
each other, they use many of them. The hope is that by using enough long-running ap-
plications all the important workload attributes will be captured with sufficient fidelity.

The fact that it is hard to achieve representative microarchitectural behavior leads to
a real tension [745]. On one hand, confidence in the evaluation depends on running many
long applications. But when simulating a new architecture this process can take weeks
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or even months for a single configuration, because cycle-accurate simulations are orders
of magnitude slower than direct execution. Trying to compare several configurations
then becomes practically impossible. This has led to devising different ways to reduce
the amount of simulations needed, hopefully without undue impact on the accuracy of
the results.

It might be useful to consider the details of such arguments. The SPEC CPU 2006
benchmark suite consists of 30 benchmark programs: 12 integer benchmarks and 18
floating-point benchmarks. Together, these programs encompass 3.3 million lines of
code. Each has at least one, and often several, reference inputs used for actual evalua-
tions. In addition there are smaller test inputs to verify functionality, as well as train in-
puts for use in feedback-directed optimization. When executed, the dynamic instruction
counts are in the billions, with tens of billions being typical. Running all the benchmarks
on all their inputs involves the execution of a trillion instructions, give or take an order
of magnitude. When all this is simulated rather than being run on actual hardware, the
cost grows considerably. However, the end result of all this work is often condensed
into a single number, say the achieved instructions per cycle (IPC) averaged over all the
benchmarks. Couldn’t this result be obtained with considerably less effort? And to what
degree is it meaningful at all?

The simplest way to reduce the effort is to run just part of each benchmark [745].
Typically, researchers fast-forward, say, 15 billion instructions (to skip any non-representative
initialization phase), then run another billion or two as a warmup phase (to get the con-
tents of the memory hierarchy into a representative state), and then collect statistics over
the next billion or two.

However, using such arbitrary numbers risks having unknown interactions with the
structures of individual benchmarks. A better alternative is to judiciously select which
parts of each benchmark to run. The common terminology in this context is to use
“representative slices”. One approach to do this is to identify program phases explicitly,
and to select a representative slice from each phase [422, 613]. Another is to use fractal
sampling in order to cover the whole program [380]. Naturally such selections must be
done with an eye for their effect on evaluations.

A more systematic way to reduce the work is not to run all the benchmarks with
their full reference inputs for each possible configuration. Instead, one can use reduced
inputs to quickly find the sweet spots in the design space, and then use the full inputs to
evaluate only these select configurations. For example, a specific subsetting for SPEC
2000, called MinneSPEC, achieves this by a combination of using the SPEC test or train
input in some cases, and a truncated version of the reference input in others, e.g., for the
compression benchmarks [406, 203].

Another interesting study used the MiBench benchmark suite, which has 1000 pos-
sible inputs for each benchmark program [316, 126]. Here the problem is not just the
size of the inputs, but their number. The study showed that using three inputs at random
could bias evaluation results and lead to selecting a substantially suboptimal design point
[86]. But by judiciously choosing three representative inputs, one can achieve essentially
optimal results. A good way to make this choice is to perform a one-time evaluation of
an arbitrary design point with all 1000 inputs, and then select the inputs that gave the
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minimal, median, and maximal results. As these three inputs exhibit widely different
behaviors they provide good coverage and can then be used to evaluate all other design
points effectively.

Yet another approach is to use a subset of the benchmarks, rather than a subset of
the inputs. The full set of benchmarks may actually include redundancy that just wastes
evaluation time [284, 388]. However, just using an arbitrary subset of the benchmarks
is again not a justifiable approach, because we might accidentally select redundant ones
and miss important ones [138]. Instead, one can characterize the different benchmarks
based on inherent characteristics such as their instruction mix, branching behavior, and
working set sizes, cluster them, and use a single representative of each cluster [388].
This may be further improved by using principal component analysis and representing
the different benchmarks based on these principal components prior to the clustering
[746].

At the same time, there are also claims that benchmarks should actually be extended.
Even a large benchmark suite simply cannot cover all the types of applications that exist
and are in everyday use. The diversity is simply too great [203]. For example, it has
been shown that DOE applications require more memory bandwidth and many more
integer operations per FLOP than what is common in the SPEC FP benchmarks [508].
Thus it seems that these benchmarks are not correctly balanced for a large class of HPC
applications. Likewise, desktop applications may not be as well represented by SPEC
int as we would like [432]. A third example comes from the MiBench benchmark for
embedded systems. It has been shown that programs in this benchmark are different
from SPEC programs, and moreover, categories within MiBench (automotive, consumer
devices, security, networking and telecom, and office automation) are also different from
each other [316].

An alternative to benchmarks is to use statistical modeling [201, 197, 64]. This
approach is based on creating a statistical model of a benchmark or application, and then
using this model to create synthetic workloads that are much shorter than the original.
Moreover, the model also includes the effect of the input. If the model is indeed valid,
simulating the execution of the short synthetic workload will lead to performance metrics
that are close to those that would be achieved by simulating the full benchmark. But the
dynamic instruction count, and thereby the simulation time, are reduced by up to five
orders of magnitude [387]. In addition, this allows for evaluations based on proprietary
applications, without disclosing the actual code of these applications.

To obtain a valid model one needs to profile the benchmark or application. A com-
mon starting point is to create a Markov chain model of control flow, where the states
are basic clocks and transition probabilities reflect branching behavior. Given that this
is a Markov chain, it is easy to calculate the limiting probabilities of the different states,
namely what fraction of the time the model will spend in each basic block. The joint
ratio of this distribution of probabilities gives an indication of the locality of the code,
essentially relating it to the adage that programs spend 90% of their time in 10% of their
code.

Each basic block is profiled in terms of instruction mix. For each instruction, the
distribution of dependency distances of its operands is recorded. This distribution re-
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flects the number of cycles since the input values of this instruction were generated, and
is important for modeling dependencies in out-of-order processors. In addition, load in-
struction addresses are generated based on the desired probability for cache misses, at all
cache levels. Common access patterns such as strided access are also taken into account.

9.2.5 Predictability

All the previous program attributes — runtime, branching behavior, memory behavior,
and phases — may be predicted to some degree [175]. The same goes for other types
of program behavior considered later, such as I/O behavior [289]. This is extremely
important for the evaluation of adaptive systems, which attempt to learn about their
workload and adjust their behavior accordingly [239].

Predictability comes at several levels. At the more global level is the predictability
of the complete application behavior. This stems from repeated execution of the same
program on the same or similar input, which is a common type of user behavior. For
example, as I worked on this book I repeatedly executed the LaTeX and BibTeX com-
mands, with very small incremental changes to the input files between successive execu-
tions. The successive execution profiles in terms of runtime, I/O operations, and memory
usage were therefore very similar. Moreover, there was significant regularity in the se-
quences of distinct applications that were used (e.g. LaTeX, BibTeX, LaTeX, LaTeX).
Such sequences can be modeled using Markov chains in which the different states rep-
resent different applications — in effect creating a user behavior graph [258, 175, 104].

Considerable predictability also exists within the execution of a single application.
The predictability of program behavior results from the simple fact that some code frag-
ments are executed repeatedly. For example, this may be the case with functions that
are called many times and with loop bodies that are executed in multiple iterations. Of-
ten, these repetitions are very similar to each other in terms of their requirements of the
system.

Importantly, the often repeated code may be a relatively small fraction of the total
code in the application. Initialization code is only executed at the beginning. Cleanup
code is only executed at the end. One may hope that error handling code is not executed
at all. Thus the dynamic instruction counts are typically very skewed, and only a rela-
tively small fraction of the instructions need to be monitored in order to identify program
phases and make predictions. Thus it is possible to make branch predictions based on
the PC (program counter) address of the branch instruction [637]. I/O operations have
also been classified based on the PC of the I/O instruction [289].

9.2.6 Operating Systems

So far we have only considered user application behavior in desktop systems. How-
ever, the workload in desktop systems also includes significant activity by the operating
system, and ignoring this component may considerably skew performance evaluation re-
sults. This is the motivation for monitoring the full system, as done in PatchWrx [112],
and for full system simulation (or emulation), as done in SimOS [577].
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Operating systems have two types of effects on the workload observed in desktop
systems. First is the behavior (instruction mix, memory accesses) of the operating sys-
tem itself. In addition, applications may behave differently when running under different
operating systems.

For example, Casmira et al. show that, in a desktop setting (running Windows NT)
the work of running the operating system dominates the work of the actual applica-
tions being used, and that this differs considerably from the workload as represented by
benchmarks such as SPEC CPU [112].

More specifically, studies of memory reference behavior have shown that the cache
performance of systems running user applications alone is significantly different from
systems running the user applications with interruptions from the operating system [286].
The suggested solution was to use a dual model: an address trace for the user applica-
tions and a synthetic model for the operating system. This synthetic model, in turn, has
two main components. The first component models the patterns in which the operating
system interferes with the user applications. This has two parameters:

• The length of each burst.

• The interval between the beginnings of successive bursts.

The second component generates the references themselves to populate each burst of op-
erating system activity. This is a more complex model that uses the following parameters
[553]:

• The probability of accessing the code or the data.

• The probability for a read or a write (for data accesses).

• Parameters for an empirical distribution of distances between successive accesses
to the same memory area (i.e., data or code of the application or the operating
system).

• The probability of a backward jump (used to invert the sign of the calculated
distance).

The equation used to generate the distance between the previously accessed address and
the next one is

y =

⌊
S(1−Ax)

5Ax − 6

⌋
where x is a uniform random variable in the range (0, 1). This leads to jumps similar
to those of the fractal model of Thiébaut described in Section 6.2.6. If the memory area
contains code, 1 is added to avoid zero jumps (that is, successive accesses to the same
address).

To generate realistic memory behavior, the model also incorporates a simple sched-
uler that selects which user application to run (meaning, which application’s trace will
be used) after each burst of operating system activity.
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9.2.7 Virtualization Workloads

Virtualization allows multiple virtual machines to share a single physical host and is es-
pecially prevalent in server consolidation scenarios. Thus the workload involved may be
a combination of all those described earlier, and also quite a few of those to be described
later.

Benchmarks for virtualization environments need to take this diversity into account,
but at the same time limit the complexity of the evaluation. A promising approach seems
to be to define a set of servers that represent several generic classes. For example, it has
been suggested that a combination of a web server, an email server, and a database
application can be used [111, 32].

9.3 File System and Storage Workloads

The workload on file systems has two components. One is the state of the system,
embodied by the set of files that it stores. The other is the sequence of requests that
applications make to access these files and possibly to modify them. At a lower level,
file system operations translate into storage system operations.

To read more: An extensive survey of file system and storage benchmarks, the considerations
that shaped them, and their shortcomings has been written by Traeger et al. [687].

9.3.1 The Distribution of File Sizes

The main characteristic of the state of a file system is the distribution of file sizes that
it stores. This distribution has three main characteristics. First, it is comb-shaped, with
many modes at powers of two, multiples of 8 KB, and (to a lesser degree) multiples
of 4 KB (Figure 9.12). Second, there are many very small files of only a few bytes
and also many empty files. These are files that don’t really store data — they are used
to flag some condition (e.g., that a certain server is running) possibly including some
minimal data (such as the server’s process ID). Third, it is highly skewed, with many
small files and few huge files. As a result file sizes exhibit strong mass-count disparity
(Figure 9.13). The preponderance of small files may be important for file system design,
because it implies that small files may cause significant internal fragmentation, the more
so as block sizes increase.

It has been expected that the distribution of file sizes would change over time to re-
flect the increasing use of large multimedia files. Current evidence does not support this
expectation. The distributions from 1993 and 2005 shown in Figure 9.13 are remarkably
similar, with just a slight shift to higher values. Other comparisons of the file-size dis-
tributions at the same location over a 20-year span (1984 and 2005) and a 4-year span
(2000–2004) reached essentially the same conclusion [674, 18].

Of special interest is the tail of the file-size distributions, because the large files from
the tail account for the vast majority of disk space needed. In fact, the distribution of file
sizes is at the center of the heavy-tails controversy: is it better modeled as being heavy-
tailed (that is, with a power-law tail like the Pareto distribution) or as being lognormal
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Figure 9.12: The file-size distribution has a comb structure combined with a strong
emphasis on small sizes. Data from the Unix 1993 survey.
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Figure 9.13: The distribution of file sizes exhibits mass-count disparity.

[188, 498]? Support for the claim that file sizes are heavy-tailed is provided by graphs
such as those shown in Figure 9.14, which demonstrate that the distribution has a power-
law tail. However, in some cases the graphs curve downwards slightly, as in the right-
hand graph, and may be better modeled by a lognormal distribution. The lognormal also
has several additional benefits, including the following [188]:

• It enables one to model the entire distribution, and not only its tail. However, the
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Figure 9.14: LLCD plots for file-size data provide mixed support for the heavy-tailed
model.
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Figure 9.15: The empirical pdf of file sizes exhibits a rough central mode and many
empty files.

shape of the distribution (in log-space) is typically not a smooth bell shape as it
should be for a lognormal distribution (Figure 9.15).

• It follows from a generative model of file creation and modification.

To fit data with a heavier tail, it is possible to use a mixture of two lognormals with
different means.

To read more: Using a multiplicative process as a generative model for file sizes was first
suggested by Downey [188]. Mitzenmacher provides an illuminating discussion of this model,
extending it to include both new file creations (independent of the multiplicative process) and file
deletions [498]. Also, it should be noted that the Pareto and lognormal distributions are actually
closely related [497].

Another issue that is of importance when modeling file sizes is the question of diver-
sity: is the distribution of file sizes indeed the same in different systems? Some insight
may be gained from the 1993 Unix file sizes survey, which included data from more than
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Figure 9.16: Median deviation of the distributions of file sizes at different locations
from the global distribution including all the locations. The deviations are measured in
24 ranges that are equiprobable according to the global distribution.

one thousand different file systems located at 135 different locations. To compare the
distributions, we use the same methodology as when quantifying locality of sampling,
but apply them across locations [239].

Using the metrics devised in Section 6.3 to measure “spatial” rather than “temporal”
locality means that the slices are not data from the same site at different times, but
rather data from different sites (possibly but not necessarily at the same time). We can
define a global distribution that includes the file sizes from all the locations, and then
check the deviation between each location’s distribution and this global average. The
results of doing so are shown in Figure 9.16. Each location is taken as a single slice,
so there are just 135 slices. The deviations between the distributions are measured by
dividing the global distribution into 24 equiprobable ranges and comparing with the
local distributions. For each local distribution, the median deviation of the 24 ranges is
shown. To assess the significance of these results, the median and maximum deviations
obtained for 100 repetitions of sampling from the global distribution are also shown.
This indicates that the deviation is always significant, meaning that the distributions are
different from each other. The sampling results are generally decreasing because they
depend on the number of files found at each location, and locations are sorted according
to an increasing number of files.

Note that this discussion relates to the distribution of file sizes in a static snapshot of
a file system. This distribution can be quite different from that seen in accesses to files.
In particular, temporary files that only exist for a short time will be under-represented in
such a snapshot. Thus if there exists a correlation between file size and file lifetime, the
distribution will be different.

9.3.2 File System Access Patterns

File system access patterns include a rich set of characteristics, such as the following:
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• The relative popularity of different files.

• The existence of sets of files that tend to be referenced together or in sequence.

• Access patterns within files (e.g., sequential access vs. random access).

• The distribution of access sizes.

• The temporal pattern in which requests arrive — are they distributed uniformly in
time or do they arrive in batches?

• The prevalence of reads (access to existing data) vs. writes (modifying existing
data or creating new data).

• Locality in the sense of reaccessing the same data repeatedly or overwriting re-
cently written data.

• Correlations among the above factors (e.g., are typical access sizes for sequential
access different from those used for random access? Is the distribution of sizes of
reads the same as for writes?)

• The lifetime of data until it is overwritten or deleted.

An early study of file system dynamics was conducted by Ousterhout et al. [530].
They found that a suitably sized buffer cache can eliminate 65–90% of the disk accesses.
This result is based on the finding that 20–30% of newly written information is deleted
or overwritten within 30 seconds, and 50% is deleted or overwritten within 5 minutes. In
addition, about two thirds of all the data transferred was in sequential accesses of files.
In files that were opened for reading or writing, but not both, 91–98% of the accesses
were sequential. In files that were opened for both reading and writing, this dropped to
19–35%.

When looking at access patterns, it was found that file access size distributions tend
to be modal, because they are generated by applications that access the same type of data
structure over and over again in a loop [634].

An important variant is that of distributed file systems. The dynamics of file access in
distributed systems are interesting because caching may cause the characteristics of the
workload to look different at the client and at the server. For example, locality is reduced
near the servers because repetitions are filtered out by caches, whereas the merging of
different request streams causes interference [271].

Additional data about file system access patterns in different contexts is available
from the following references:

• A Unix BSD 4.2 system cited above [530].

• The Sprite distributed system and NFS [46, 27].

• Personal Windows systems [711, 761].

• Multiple Windows servers operated by Microsoft [397].

• Self-similarity in access patterns [304, 293, 294, 397].
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Figure 9.17: Markovian model for sequences of file operations (following [559]).

A possible model for file access patterns is based on a hidden Markov model (HMM)
[557]. The reason is that file operations do not come in a random order, but tend to be
related [559]: reads and writes tend to come in sequences rather than being mixed, seeks
tend to appear alone, and open and close appear only at the beginning and the end,
respectively.

An example of such a model is shown in Figure 9.17. The first state is the “open”
operation, and the last one is the “close” operation. In between come several options of
subchains modeling the actual operations on the file. The “read” and “write” operations
have self-loops, because these operations tend to come in long sequences. The “seek”
and “getattr” operations, in contrast, typically only occur as isolated instances. The
reason that several such models are needed is that the probabilities on the arcs of a
Markov chain dictate the probabilities of visiting the different states (see the box on
page 242). Thus if we want some files to be read a lot, and others to be written a lot, we
need separate submodels for these distinct patterns.

At a slightly higher granularity, I/O activity can be expressed by micro-models which
encapsulate the behavior of different applications. For example a C compiler may first
open and start reading a .c file, then open and read a bunch of .h files, and finally open and
write a .o file. Combining such recurring micro-models is at the basis of the SynRGen
workload generator [195].

9.3.3 Feedback

Performing I/O is typically not a one-time occurrence. I/O operations typically come in
sequences of bursts, interleaved with other activity. From a modeling point of view, an
important issue is the dependencies between the I/O operations and the other activity.
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Figure 9.18: Generic models of I/O activity.

One obvious type of dependency is that the I/O is initiated by some computation.
Therefore an I/O request cannot happen before the computation that initiates it. If the
computation initiates I/O activities in a loop, it may be that the computation needed
to issue each additional request is relatively unimportant; in this case we can consider a
sequence of I/O requests that are dependent on each other. Alternatively, the computation
may actually depend on the I/O, as when reading data from a file: if the computation
needs to process the read data, it cannot proceed until the read operation is complete.
But it is also possible to post an asynchronous request, which is done in parallel to
the computation. In this case, the computation can later poll the I/O operation to check
whether it has completed, and can wait for it if it has not. Of course, all these patterns can
be combined in various ways (e.g., in a sequence of bursts, each of which is composed
of several asynchronous requests). These behaviors are illustrated in Figure 9.18.

The importance of dependencies is that they induce feedback. If issuing one I/O
operation depends on the completion of another, it also depends on the performance of
the system: in a fast system the first I/O will complete sooner, and the second will be
issued at an earlier time, whereas in a slow system the first I/O will take more time, and
thus delay the issuing of the second one.

An important consequence of feedback is its effect on how to use workload traces
correctly. In trace-driven simulation, a trace of activity recorded in a real system is
replayed, and the performance of a simulated system on such a workload is measured.
But if the trace is simply replayed using the original timestamps, all feedback effects
are lost [350]. If the simulated system is slower than the original system in which the
trace was collected, requests will arrive “before their time” — that is, before previous
requests on which they depend have completed. Conversely, if the simulated system is
faster, requests will appear to be artificially delayed. In either case, the results of the
simulation will not be reliable.

The feedback among I/O requests may also lead to important feedback effects at the
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system level. To reduce complexity it is common to model storage subsystems indepen-
dently from the full systems in which they are embedded. This is based on the implicit
assumption that whatever is good for the storage subsystem is also good in general.
However, such an approach misses the effect of feedback between the storage subsys-
tem and the process that generates the storage requests, as demonstrated by Ganger and
Patt [277].

The demonstration of the importance of feedback effects hinges on the distinction
between critical requests and non-critical requests. Critical requests are those that may
cause a process to block and the CPU to idle, such as synchronous writes. These are the
requests that lead to the feedback effect: if they are delayed, the whole computation is
delayed, including the issuing of subsequent I/O requests. Non-critical requests are those
that do not cause an immediate block, such as background writes. From a full-system
point of view, it is therefore clear that critical requests should be prioritized. However,
from a storage subsystem point of view, it is better to prioritize requests according to how
long it takes to position the disk arm in order to serve them, irrespective of whether they
are critical or not. But this is a short-sighted approach that only makes sense if we ignore
the feedback caused by the critical requests. It may lead to situations where a non-critical
requests is served before a critical request, thereby degrading overall performance.

9.3.4 I/O Operations and Disk Layout

The discussion so far has focused on file system operations, and indeed this is the level
at which the users operate. But there are lower levels too (Figure 9.19). The file system
translates the user operations on files and directories into read and write operations to the
disk (after filtering out those that are served by the file system’s buffer cache) [347]. This
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is done at the logical block level, as modern disks use an interface in which all blocks
are presented as a single linear sequence. Internally, the disk controller then maps these
logical blocks to physical sectors that reside in different tracks on different platters.

Although there is little data about disk-level workloads, some patterns do emerge
[570]. One is that in many systems the disks are idle the vast majority of the time —
often more than 90%. Related to this is the observation that disk activity tends to be
bursty. Request sizes tend to be very modal, with the most prominent mode — often at
4 KB — accounting for up to 60% of the requests. There are, however, differences in
different environments. For example, in enterprise systems it is typical to have several
requests queued for disk service, whereas on desktop machines requests typically arrive
one at a time.

The mapping of file system structures to disk sectors is important because it might
interact with the access patterns. For example, in Unix systems the parsing of a file’s
path requires the system to alternately read each directory’s inode and data. If, say, all
the inodes are stored together at one edge of the disk, this may lead to excessive seeking.
Such considerations led to the design of the so-called fast file system, which distributed
inodes across the disk, and attempted to co-locate each file’s (or directory’s) inode and
data [477]. However, today intelligent disk controllers mask the actual layout, and it is
becoming increasingly harder to model the latencies of different disk operations [25].

Understanding and being able to model the timing of disk operations is important
not only for the study of disk systems, but also for file system workloads [586]. The
reason is that the dynamics of file system operations include an element of feedback, as
explained earlier. To be able to model this feedback, one has to know how long each
operation will take. In principle, this requires a detailed model of the disk, including its
topology in terms of tracks and sectors, and its internal features such as whether or not
it caches read data [587]. But such a model cannot be applied if we don’t know how the
file data is mapped to the disk topology in the first place. Luckily there is evidence that
disk service times are relatively consistent, averaging several milliseconds [570]. Thus,
unless especially high accuracy is required, one can get away with using a simplistic
model.

In addition to the hidden mapping to physical sectors, there is a problem of frag-
mentation at the logical level. If a file system is populated by a set of files one after the
other, with no modifications or deletions, the files will probably be stored sequentially
on the disk with minimal if any fragmentation. But real file system dynamics are differ-
ent: files may grow incrementally with data being added at different times, and files may
be removed, leaving free disk space that is subsequently used to store blocks from other
files. Thus the layout of data on disk becomes less orderly with time. When simulating
the use of a file system, it is therefore important to “age” it artificially [639].

9.3.5 Parallel File Systems

The workload on parallel file systems is unique in that it is common for multiple pro-
cesses (that are part of the same parallel job) to share access to the same file. There-
fore different accesses interleave with each other; in many cases, this is an interleav-
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ing of streams of strided access used to read or write multidimensional data structures
[149, 516, 416, 517, 555]. This interleaving leads to a phenomenon known as inter-
process locality, because accesses by one process allow the system to predict accesses
by other processes [413].

Parallel I/O is further discussed in Section 9.6.4.

9.4 Network Traffic and the Web

Networking in general and the Internet in particular have been the subject of intensive
measurements and data collection for many years. Thus there exists a relative abundance
of data about networking workloads. Unfortunately, this data indicates that networking
workloads are very heterogeneous, and, moreover, that they change dramatically over
relatively short time frames [265]. Thus there is no such thing as a “typical” Internet
workload. Furthermore, dramatic changes have been occurring in network usage in re-
cent years. Traffic used to be dominated by email, but then this changed to web traffic,
and later to file sharing and video streaming. The original static web was largely re-
placed by dynamically generated web pages. And the desktop browsers of yesteryear
are being replaced by smartphones and other mobile devices, with different capabilities
and usage patterns.

In this section, we focus on some of the unique aspects of networking. However,
it should be remembered that networking workloads also have general traits that are
common to all workloads, such as the daily cycle of activity.

9.4.1 Internet Traffic

Internet traffic is perhaps the best studied of all computer workloads. This can be broken
down along three dimensions.

The first and most commonly cited dimension is the scale of observation. The bottom
level looks at individual packets and characterizes the traffic at the packet level. A higher
level analyzes flows of related packets that together compose a logical connection (e.g.,
for transferring a file). A still higher level looks at sessions using a certain application
(web browsing, email, telnet) that encompass many flows and even more packets. In
this subsection, we focus on packets and flows. Subsequent subsections deal with the
characteristics of different applications, most notably the world wide web. Of course, all
the levels may be studied together, leading to a hierarchical generative model.

The second dimension is the attribute of the workload that is being studied. Much
of the work on Internet traffic at the packet level concerns the arrival process, and, more
specifically, its scaling properties. Other attributes of interest include size distributions,
locality of addressing, and functionality as expressed by the use of different protocols.

The third dimension is the class of traffic. Most studies focus exclusively on regular
traffic, which is the traffic that the Internet is intended to carry, including web access,
email, and so on. But the Internet also has malicious traffic (scanning for vulnerabilities
and targeted attacks on computer systems) and unproductive traffic (e.g., that due to
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misconfigurations) [58, 459]. These are of interest when studying intrusion detection,
for example.

A major problem with characterizing and modeling Internet traffic is its heterogene-
ity, both in terms of infrastructure and of usage [265]. An interesting question is there-
fore whether the traffic patterns seen on wide-area links (WANs) are the same or dif-
ferent from those that are seen within enterprises or on wireless networks. To answer
this, repositories such as the LBNL/ICSI Enterprise Tracing Project and the CRAW-
DAD Repository of Wireless Data have been set up. Using these repositories Kotz and
co-workers have conducted a preliminary analysis of wireless traffic on an academic
campus [328] and Pang et al. have studied an enterprise network [532]. They show that
traffic patterns within an enterprise or university can be quite different from those across
a WAN, because the dominant applications are different. Within an enterprise, a large
fraction of the bytes transferred tend to belong to network file systems and backups,
possibly more than to web activity and email. Moreover, some of what looks like web
activity is actually internal enterprise applications that use the HTTP protocol but do not
really reflect web browsing. Connections are dominated by name service activity.

Packet Traffic

Internet traffic — when considered at the single-packet level — is characterized by three
main attributes:

• The arrival process. In early analyses it was assumed that packet arrivals con-
stitute a Poisson process (i.e., that these arrivals are independent and uniformly
distributed). However, it is now known that packet arrivals are self-similar. This
has been demonstrated at both the LAN and WAN levels [436, 540, 732]. In fact,
this was the first major demonstration of self-similarity in the context of com-
puter workloads (Figure 9.20). Self-similarity is important because it may affect
the buffer sizes in switches and the probability of collisions on Ethernet networks
[355] — both of which affect the ability to achieve a given quality of service and
satisfy service-level agreements. More recent data shows that self-similarity is re-
tained when the traffic scales up in gigabit networks, and even under congestion
[82].

Another important effect in the packet arrival process is feedback. This is mainly
the result of congestion control in TCP [364, 84], which backs off when congestion
is suspected. Importantly, this is an end-to-end effect, so traffic may flow through
a link at well below this link’s capacity due to congestion in some other part of
the path [265]. This underscores the importance of using generative models, in
which traffic is generated as part of the evaluation procedure in a way that reflects
network conditions. Such models are described later.

• The distribution of packet sizes. This distribution tends to be highly modal. The
commonly observed sizes correspond to the maximum transmission units of dif-
ferent networking technologies. The most dominant is Ethernet, with a size of
only 1514 bytes (including headers).
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Figure 9.20: Self-similarity in Ethernet packet arrivals, using the original dataset from
Bellcore from 1989.

• The function of the different packets, and in particular to which protocol they
belong. As Internet technology evolves, the dominant protocols observed in the
traffic change [252, 330]. This also affects the statistical properties of the work-
load [535]. Note that this effect is not limited to well-known protocols such as TCP
and UDP that constitute the Internet’s infrastructure, but also includes application-
specific proprietary protocols layered above them.

Note that these three attributes are not necessarily independent, and therefore they cannot
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Figure 9.21: Usage of different protocols on the Internet, in terms of packets and bytes.

be modeled separately. In particular, certain applications and protocols may use packets
of certain specific sizes. Thus if those protocols dominate the workload, they will have a
strong effect on the distribution of packet sizes too. Moreover, the distribution of packets
using different protocols may be quite different from the distribution of bytes delivered
by the different protocols.

A relatively long-range tabulation of Internet traffic is shown in Figure 9.21. It shows
monthly averages of the packets and bytes that can be attributed to different protocols,
as observed on access point B of the WIDE backbone (which is a transpacific link). The
top graphs show the relative fraction of packets and bytes attributed to each protocol,
whereas the bottom ones show absolute counts. These graphs show weak trends of
reduced FTP traffic and increased UDP traffic, but both of these are small relative to
seemingly normal fluctuations in HTTP traffic. However, at least some of the relative
fluctuations of HTTP are actually due to big changes in the absolute traffic using other
protocols. One can also observe workload changes that only occur for a given duration,
such as the massive usage of the Napster file-sharing service in 2001–2002, and the surge
in ICMP traffic in late 2003 due to the spread of the Welchia worm.

The general protocol mix shown in Figure 9.21 comes from a transpacific link that
carries traffic from many different sources. But networks deployed at specific locations
may experience significantly different mixes depending on context. For example, in
universities or large companies certain networks may be dominated by special types of
activity, such as backups that use their own specialized protocols [414, 532].
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An interesting observation regarding packet traffic is its symmetry, or lack thereof.
Much of the traffic on the Internet is generated by client-server type applications, where
the server sends much more data than the client. The assumption that this is the case
is even embedded in the infrastructure of ADSL lines, which provide higher download
bandwidth and lower upload bandwidth. But if one looks at packet counts, and ignores
packet sizes, the communication looks much more symmetrical [484]. This is because
much of the communication is based on TCP, and each packet has to be acknowledged.

Connections and Flows

An alternative to modeling individual packets is to model connections or flows. Con-
nections are persistent virtual channels set up by protocols such as TCP (as opposed to
UDP, which is connectionless). Flows are sequences of packets between the same end-
points that form one logical communication. In most cases connections correspond to
flows, and the distinction is mainly one of the level being studied: connections are a
feature of the underlying protocol, and flows are part of the structure of the application.
In any case, both flows and connections provide a higher level of abstraction than indi-
vidual packets, and correspond to application-level activities such as the transfer of a file
or servicing of a request. Sequences of successive or parallel connections form a user
session.

Identifying connections in a packet trace is done based on the five-tuple of fields from
the packet header, consisting of the IP address and port of the sender, the address and
port of the receiver, and the protocol used. For TCP connections this can be augmented
using specific flags in the TCP packet headers: SYN and SYN/ACK are used to set
up a connection, and FIN or RST to terminate it. The sequence of intervening packets
can be identified using the size, sequence number, and acknowledgment fields, which
specify how many bytes have been transmitted so far in each direction. Of course, packet
reordering and retransmissions need to be handled correctly. Thus an alternative is to just
consider all packets between the same endpoints with short intervals between them (e.g.,
less than one minute) [338]. This has the advantage of also handling lagging packets and
connections that are not terminated properly.

A tool that models Internet flows in an application-neutral manner is Harpoon [641].
The model is based on four distributions:

• The distribution of flow sizes.

• The distribution of intervals between successive flows between the same end-
points.

• The distribution of the number of active sessions at any point in time.

• The distribution of source and destination IP addresses. (Interestingly, despite
constant warnings that IPv4 addresses are about to run out, it appears that a large
fraction of them are actually not used [107].)

The implementation of the model (i.e., the generation of synthetic network traffic) is
based on running processes on the different hosts of the testbed, and having them send
files to each other according to these four distributions.
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Time frame Dominant effect
milliseconds shaping due to congestion control
subsecond to minutes self-similarity due to multiplexing of on-off processes
hours nonstationarity due to daily work cycle

Table 9.1: Different effects dominate Internet traffic when observed at different time
frames.

The distribution of flows or connections has generally received more attention than
that of other elements. Several papers have reported on the fact that it has a heavy tail
(which is sometimes linked with the heavy tail of the distribution of file sizes, because
large connections are typically used to transfer large files). However, the distribution as a
whole is not well modeled by a Pareto distribution. It has therefore been suggested to use
a mixture, in which the body of the distribution (about 99% of the mass) is lognormal
and only the upper tail is Pareto [265]. Flows also figure in the on-off model of self-
similarity [732]. However, their role has been debated based on the finding that bursts of
activity do not result from the confluence of multiple flows, but rather from the arrival
of a few high-rate flows [592].

Wireless Traffic

Most studies of Internet traffic focus on the links between backbone servers. Others look
at local-area networks (LANs). A special kind of LAN that has become prevalent at the
beginning of the 21st century is the wireless network, in which mobile devices connect
to access points in an ad-hoc manner. Although much of its traffic characteristics are
similar to conventional wired networks and depend on the context (e.g., a university
campus vs. a company’s enterprise network), user mobility is creating new phenomena
to study.

The mobility of users was discussed earlier in Section 9.1.5. But note that a com-
plete user mobility model may depend not only on user behavior, but also on physical
characteristics of the system. Specifically, Kotz et al. [415] show how the movement
among different access points may depend on radio propagation characteristics, because
the nearest access point may not always provide the strongest signal due to blocking or
fading effects. In particular, they point out that common assumptions used in models
and simulations, such as that all access points provide full coverage in perfectly circular
areas with the same radius, are way too simplistic.

Wireless devices also have special characteristics in terms of session lengths. This
pertains mainly to voice over IP devices which are always on in order to be able to accept
calls. They therefore have very long sessions [328]. Other mobile devices that connect
to a network only when they are opened for use, such as laptops, have shorter sessions.
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Generative Models

The properties of a generative model for Internet traffic depend on the time frame that
is of interest. At different time frames, different effects dominate, and these have to be
incorporated into the model. The main ones are listed in Table 9.1.

For networking research, the time frame of interest is often seconds to minutes.
The main reason is that this time frame covers the typical round-trip time of sending
a message and receiving a reply or acknowledgment. It is also of interest because of
the rates involved: just a few minutes of activity can translate to millions of packets.
The reason for not modeling short-term effects related to congestion control is that they
are not part of input traffic but rather an outcome of network conditions. Thus such
effects should be introduced as part of the evaluation procedure, and not imposed on
the evaluation from the outset. As a result of these considerations, generative models of
Internet traffic focus on source-level modeling of how the traffic was generated [265].

Internet traffic at the packet level is obviously the result of some higher-level activity
at the application level, or, rather, the interleaving of transmissions generated by many
users using diverse applications. A useful generative model can be constructed based on
common activity patterns when using different applications. For example, web browsing
can be characterized at the following five levels [36, 336, 446, 536, 576]:

1. The client session: all the documents downloaded by a single user.

2. The “navigation burst”: the set of documents downloaded in rapid succession as
the user homes in on the desired information.

3. The document, with its embedded objects.

4. The request-response HTTP protocol used to download each object.

5. The packets used to transmit a single object (requests are typically small and fit in
a single packet, but responses can be large files requiring multiple packets).

Interestingly, the temporal structure of the different levels is quite distinct. The top
level, that of user sessions, may be characterized as a Poisson process, in which new ses-
sions start uniformly and at random and are independent of each other (but actually this
is a nonhomogeneous Poisson process, accounting for different arrival rates at different
times of the day [540]). This structure may also extend to navigational bursts [536].
The bottom level, that of individual packets, is characterized by self-similarity, which is
a result of the structure of superimposed on-off processes. Intermediate levels may be
harder to characterize [265].

An interesting tool to generate Internet traffic that matches real observations is Tmix
[725]. This reads a traffic trace and extracts communication vectors that represent the
activity of TCP-based applications. Each communication vector is a sequence of tu-
ples ⟨request bytes, response bytes, think time⟩ representing successive back-and-forth
communications by the application; fields may be given a 0 value if not used in a specific
communication. During an evaluation, corresponding messages are sent at times that re-
flect the interaction between the system dynamics and the user think times. Importantly,
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this allows all the observed TCP-based activity to be included in the evaluation, even if
we do not know what the applications were or what they actually did.

A more sophisticated traffic generator is Swing [710]. It uses a given trace to extract
data about users, applications, and network conditions. Then it uses a full network emu-
lation to generate a trace of the packets that flow on a single designated target link. The
full emulation is used to create realistic round-trip times for request-response communi-
cation patterns. The generation of traffic at the endpoints uses think times to incorporate
feedback into the generation process, so such timing details are important.

9.4.2 Email

Internet traffic is generated by computer applications. To understand and evaluate these
applications, one needs to consider application-level workloads. One of the oldest appli-
cations on the Internet is email.

Like many other applications, email workloads have changed with time. In the 1980s
users worked on terminals connected to multi-user systems, and email was transmitted
from one host to another using the SMTP protocol. Today most email access is done
via the web. This means that the email-induced workload has another component: the
connection from the user’s desktop or mobile system to the mail server.

Access to a mail server using PoP (Post Office Protocol) shows that there are three
main classes of users [72]: those who typically do not get mail, those who typically
download everything but also leave it in the mailbox, and those who typically download
and delete from the mailbox. The relative proportions of these three user populations
obviously affect the load on the mail server (e.g., in terms of required disk space).

A unique aspect of email is that in addition to being interested in how it is transmitted
(which induces work on servers and networks) we may also be interested in classifying it
(which induces a different type of work on mailer applications). The problem with doing
research on email classification is one of privacy. Probably the only publicly available
dataset to use is the Enron email archive, which was published as part of the litigation
following the company’s collapse, and has been used to train and evaluate machine-
learning classifiers [407].

Of course, any characterization of email will not be complete without a characteriza-
tion of spam and other malware propagation. In fact, spam accounts for more than 90%
of all email sent [666]. However, there is little data about its composition, except the
obvious characteristics of bulk email: huge numbers of copies of the same messages. As
for viruses that spread by email, analysis of user behavioral patterns (and especially devi-
ations from them) has been suggested as an effective identification method, independent
of the actual mail contents [665].

9.4.3 Web Server Load

The dominant Internet workload in the period 1995–2005 was world wide web (WWW)
traffic. There has therefore been much effort devoted to analyzing the resulting traf-
fic patterns and how they interact with proxy caches and web servers. Since 2005 the

Version 1.0.4, typeset on June 10, 2023



9.4. NETWORK TRAFFIC AND THE WEB 469

Attribute Details
success rate nearly 90% successful in original study, down to 65–70% ten

years later, with the difference largely made up by “not modi-
fied” indication for cached data

file types 90–100% were HTML and images in original study, down
to 70–86% ten years later, but difference largely made up by
CSS and directory access∗; note that there was wide variabil-
ity in fraction of HTML or images when considered sepa-
rately; video and postscript/pdf files may be responsible for
large fraction of volume transferred

typical transfer size the median is small, around a few kilobytes; but the mean grew
from the original study to the follow-up, because the maximal
size of transfers grew

size distribution both distinct files and transfers are heavy-tailed
popularity file popularity is Zipf distributed with parameter near 1
distinct requests well over 90% of requests and data are repetitions (in logs of

several months)
one-time referencing about a third of documents and bytes are requested only once
inter-reference times times between repeated requests to the same file are exponen-

tial and independent
remote requests around 70–80% of requests are from remote sites
request sources a small number of sources generate most remote requests
∗ Directory access is used as shorthand to access a default file, usually index.html. CSS files specify
formatting style.

Table 9.2: Web server workload invariants according to Arlitt and Williamson [37, 38,
729], based on data from 1995 and 2004, mainly from three universities.

dominant type of traffic has probably been peer-to-peer file sharing and streaming, but
positively identifying applications is becoming more difficult.

As with file systems, characterizing the workload on the world wide web has two
components: the data available on servers and how that data is accessed by clients. One
of the main characteristics of web workloads is the prevalence of power laws [9]. Exam-
ples include the distribution of file sizes on web servers and the distribution of popularity
of the different files [155, 57, 85, 572, 525]. Moreover, the distribution of transfer sizes
(which is the product of the interaction between file sizes and their popularities) is also
heavy-tailed. Such power laws figure prominently in an early study of web workloads
by Arlitt and Williamson, which identified 10 workload invariants (Table 9.2) [37, 38].
Most of these indeed seem to be persistent attributes of web workloads, as demonstrated
by a follow-up study 10 years later — they stayed the same despite a marked increase in
the overall load [729]. It should be noted that the study focused on academic sites, hence
the relatively low fraction of file types such as video. Overall similar results were also
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found in a follow-up study focusing on scientific websites [225]. Other types of sites,
such as e-businesses and search engines, are considered later. File sharing typically uses
a distinct protocol to transfer files, so the bulk of the traffic there is not considered web
traffic.

As an example of the importance and impact of such workload characteristics, the
heavy-tailed request sizes (known for static pages) suggest the use of SRPT scheduling
when serving them (at least if we assume that service time is strongly correlated to file
size, which has been contested [453]). This leads to optimal response times, but with
a danger of starving the largest requests, which are deferred in favor of smaller ones.
However, studies show that this does not, in fact, happen to any large extent [318, 47].

In addition to individual servers, it is important to study the workload on server
farms that host a multitude of individual websites [65]. For example, this level of aggre-
gation may have an impact on caching. However, at present little if any data is publicly
available.

URLs and Pages

The study of web server loads is based on server logs that record all the requests fielded
by a given server (the format of such logs was described on page 29). These server logs
include a specification of the requested page in the form of a URL (Uniform Resource
Locator). Whetehr a URL is identified with a page depends on the type of request being
made.

The first and simplest type involves static web pages. In this case the URL indeed
identifies a specific file stored on the web server, and this file is returned to the client.

A more complicated case occurs when dynamic content is involved. In this case
the request is actually a query composed of two parts: a path identifying the script that
should be used to generate the content, and a sequence of one or more parameters to that
script. For example, the request for

http://search.aol.com/aol/search?q=workload+modeling

specifies search.aol.com as the server, /aol/search as the path, and workload+modeling
as the value of the parameter q, namely the query itself.

At first glance it may seem that requests for dynamic content do not identify the re-
turned page of results, because this is created dynamically upon request and may change
each time. This is true but irrelevant: in web servers that generate content dynamically,
it is the query and not the delivered page that identifies the interaction. Therefore the
full request can in fact serve as a unique identifier. For example, if the same query is
made repeatedly by multiple users, it may be worthwhile to cache the results instead of
regenerating them, at least for some limited time. The only qualification is that in some
cases the results are personalized per user, and therefore the query does not reflect all the
considerations regarding the page that will be generated. Also, it should be remembered
that static web pages also change with time.

A bigger problem of identifying requests occurs when a clickmap is used. A clickmap
is a large graphical image that invites users to click on various locations. These clicks
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Figure 9.22: Locations of clicks on the clickmap /cgi-bin/imagemap/countdown from the
NASA web server log.
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Figure 9.23: The popularity of documents on a web server approximately follows the
Zipf distribution.

are then sent for interpretation by a script, giving the X and Y coordinates of the click
location as parameters. In reality, the clickmap is divided into rectangles, and all the
clicks that fall within the same rectangle lead to the same result. But the requests may
be different, because they reflect different coordinates within the rectangle.

An example is given in Figure 9.22. The concentrations of click locations indicate
that the clickmap most probably included a vertical row of button on the left and a hori-
zontal row across the top — enabling the reconstruction of the rectangles that represent
individual targets. Clicks around the center may or may not be meaningful, and the
scattered clicks throughout the image area most probably are not.

Page Popularity

Examples of page popularity are shown in Figure 9.23. They resemble a Zipf distri-
bution, as indicated by the arguably straight line of the count-rank graph [37]. There
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are several reasons for this skewed distribution and the very high number of requests to
the top-ranked pages. One is the hierarchical nature of browsing: visitors typically start
from the home page, so the home page (and graphical elements embedded in it) enjoys
the most requests, followed by other high-level pages. Another is that web pages are
often updated or even generated dynamically, so requesting them many times actually
leads to different information being obtained [309].

A third reason for increased skew is that the client may be browsing a site using
the “back” button. It is pretty common for users to click on successive links in a page,
each time returning to the original page using the “back” button and then continuing
with the next link. Data from 1995 indicated that there were three “back” operations for
every four forward link traversals on average [113]. This was attributed to the need to
search a site to find the desired information. However, newer data from 2008 showed
considerable reduction in the use of “back”, probably due to the more interactive nature
of web work and the availability of multiple tabs and windows [727].

Finally, popularity is also affected by search engines. An increasing fraction of traffic
enters a website by a redirection from a search engine, rather than by browsing through
the site’s home page (data for blogs indicates that search engines lead to a third of all
read requests, higher than any other individual source [192]). Thus pages that rank high
on search engines tend to become ever more popular, whereas new pages that are not
indexed have a much harder time [132].

It should be noted that the popularity distribution is affected by proxies, and the
distribution of requests sent by a client may be quite different from the distribution as
seen by a server. This is the result of an interplay of caching and merging [267, 266].
When a request stream passes through a cache, it becomes less skewed, because many
of the requests for the popular items are served by the cache and are not propagated
to the server [309]. But when streams are merged they become more skewed, because
the popular items typically appear in all of them while the less popular do not. The
end result is that the distribution of requests is more skewed at the server than near the
clients [572, 266]. Knowing the characteristics of the skewed popularity is important for
designing cache policies [657].

Locality

The skewed distribution of popularity naturally leads to locality, as the most popular
pages are requested again and again. This leads to a stack-depth distribution with a very
high propensity for small stack depths (Figure 9.24). In particular, the median stack
distance in the relatively short SDSC trace is 40, and in the much longer NASA trace it
is only 52.

However, individual users may exhibit different browsing patterns with different de-
grees of locality. One suggested classification differentiates between a “mostly working”
reference pattern, in which the same documents are accessed repeatedly, and a “mostly
surfing” pattern, in which users rarely return to previously accessed documents [525].

Although popularity and locality have an obvious importance for caching, one should
nevertheless remember that other factors also have an effect. In the context of web
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Figure 9.24: The stack distance distribution from a stream of requests to an HTTP server.

servers, an important factor is the use of cookies. Cookies are typically used for person-
alization of web pages, so requests that include cookies are typically not served from a
cache [65], which may increase the load on the web server more than is strictly neces-
sary.

Generating Representative Web Server Loads

Various tools have been created to generate representative web server loads in order to
test (and stress test) web servers. One of the early models is SURGE (Scalable URL Ref-
erence Generator) [57], which implements a generative model based on user equivalents.
Each user equivalent is a thread that sends requests to the server, and the number of such
user equivalents defines the load. To provide self-similarity, user equivalents operate in
an on-off manner, with heavy-tailed off times. Request sizes, object popularity, and the
number of embedded objects in a web page are also Pareto distributed.

Another well-known workload generator is SPECweb2005 (as with other SPEC
benchmarks, it is updated at irregular intervals of several years; the previous version
was SPECweb99) [656]. It is a combination of three workloads, representing a banking
application, an e-commerce application, and a support application. The requests sent to
the server are generated by multiple simulated user sessions. Exponentially distributed
think times are inserted between successive requests from the same session. The ap-
plications include dynamic content creation, and the requests include the simulation of
caching effects by sending requests for images with an “if-modified-since” flag. The
number of sessions, how many run each application, and so on are configurable work-
load parameters.

Flash Crowds

One of the remarkable phenomena of web workloads is the flash crowd, also known as a
traffic spike, which is a huge surge of activity directed at a specific website. These flash
crowds have been observed relating to diverse events, including Live-Aid rock concerts,
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Figure 9.26: Mass-count disparity plots of web activity before and during a flash crowd.

Victoria’s Secret fashion shows, Microsoft software releases, and singular news events
such as 9/11 [434, 438]. Although each is a unique and singular event, and hence an
anomaly that does not reflect normal usage, such flash crowds have similar dynamics
and are of prime interest due to their effect on the stability of web servers and Internet
routers.

An example of a workload trace that includes several such events is the HTTP trace
from the 1998 World Cup website, collected by Arlitt [35]. The full dataset contains
more than 1.3 billion requests spanning three months. But the activity was far from
being uniform. The first half recorded activity from before the tournament started and
displayed relatively moderate load. During the tournament itself, there were huge surges
of activity relating to each game that was played. Data from the end of the tournament
is shown in Figure 9.25. On June 29 and 30 two games were played. On July 3 and 4
the quarter-finals were played, again with two games on each day. The semi-finals were
played on July 7 and 8, one game on each day. Most of these games caused activity
levels about an order of magnitude higher than normal.

Figure 9.26 shows mass-count disparity plots for the activity on June 30, before and
during the flash crowd. Although the joint ratio grows a bit, the main difference is seen
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in the median-median distance metric, which grows from about 1,800 to about 17,000.
This indicates that the vast majority of the additional activity is concentrated on a small
subset of the pages (a “hotspot”). Similar observations have been made for other traffic
spikes as well [76].

Many flash crowds may be anticipated because they relate to prescheduled events,
such as sporting events [35, 438]. In such cases the infrastructure can be prepared in
advance, but still the magnitude of the flash crowd may be surprising. In other cases the
flash crowd is a surprise, as may happen with relation to news events, when a popular
site publishes a link to another smaller site (the “slashdot effect”), or when there is an
epidemic in the blogosphere [13]. An interesting question is then whether such flash
crowds can be identified automatically in real time, thus enabling the server to take re-
medial action. Data from a news-on-demand server suggests that little time is available,
because such spikes of activity form within a few minutes [382]. In other cases too it
was found that spikes resulting from surprising events build up more quickly than the
spikes related to anticipated events [76]. A possible approach is to measure performance
indicators online, to identify the deterioration that occurs as a result of overload in real
time [123].

From a workload modeling perspective, adding flash crowds to a workload is impor-
tant as a means to investigate a system’s resiliency to such events. Two main attributes
should be modeled: the manner in which the load grows, and the concentration of the
additional requests on a limited number of web pages. These attributes can be combined
by selecting a set of pages that will become the hotspot, and creating successively more
requests for these pages for the duration of the desired traffic spike. The number of flash
crowd events is usually not modeled, because the goal is not to mimic reality but rather
to stress test the system. Thus either a single event is used to study the system’s behavior
in detail, or many are used to derive a statistical characterization.

Currently, the main way to cope with a flash crowd is to use a hosting service that
adapts to the load level, or to use tools to balance the load among multiple servers [210].
An alternative approach is to reduce the amount of content being delivered, so as to
enable a higher throughput under the given bandwidth constraint [2, 88, 296, 297]. Using
an admission control mechanism to prevent additional overload has also been suggested
[123]. On a more global scale, adequate caching mechanisms can alleviate the problem
[33].

Robots

Part of the load on a web server is typically denerated by robots, such as those used to
crawl the web and collect data for search engines [180]. Interestingly, search engines
themselves are also not spared such visits, and search engine logs contain unmistakable
fingerprints of robots too [372].

In general, robot behavior is quite distinct from human behavior [525]. For example,
a robot may repeatedly crawl a website at certain intervals. This leads to a unique ref-
erence pattern, in which all available documents are visited the same number of times,
as opposed to the highly skewed distribution of popularity that characterizes human ac-
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cesses. As a result robot activity may distort the results of workload studies that are
aimed at characterizing human behavior [298].

In addition, robots may control and modify their behavior. For example, the robot
exclusion protocol allows website owners to create a robots.txt file that contains instruc-
tions that robots are requested to honor. The basic protocol just lists areas in the site
that robots are supposed not to visit. Nonstandard extensions also allow site owners to
specify when robots may visit the site (e.g. only at night) and at what rate.

Characteristics of robot behavior include the following, which may be used to iden-
tify them [180, 281].

• Web robots, especially those that crawl the web in the service of search engines,
are typically interested mainly in text. Thus they tend to avoid downloading em-
bedded images, because such images consume significant bandwidth and are hard
to classify.

• Robots are capable of accessing distinct pages in a website at a rate that is much
faster than what humans can achieve.

• In contrast, robots may spread out their activity and access the site at, say, precise
intervals of five minutes in order to reduce their impact.

• Robots tend to spread their attention more evenly, retrieving more pages from the
site, and not repeatedly retrieving the most popular pages.

9.4.4 User Sessions

The flip side of web server load is the user sessions. The definition of “session” in this
context is typically the sequence of requests made by a single user to a single website.
Thus it is not necessarily equivalent to all the requests a user issued in one sitting. In
some contexts (e.g. e-commerce) the difference may not be so important. In others,
such as web search, activity spanning multiple sites (the search engine and the sites it
recommends) may reflect a single continuous endeavor from the user’s perspective. Thus
the client-side interpretation of a session may be quite different from that of the server
side [727].

Data about user sessions is typically not available. Therefore data about sessions is
extracted from web server logs, usually based on defining a threshold on the intervals
between successive requests, and assuming that longer intervals reflect session breaks.
Obtaining session data in this way was discussed on page 399.

Few analyses of web sessions have been conducted [34, 298]. Results indicate that
sessions tend to be very short (few minutes and few requests), with a significant fraction
containing only a single request. However, some are much longer, and the distribution
of session lengths (or number of requests) has a heavy tail.

An especially important aspect of sessions is their failure characteristics [298]. It is
common to study failures at the level of individual requests. But in web contexts, e.g.
with regard to e-commerce, it may be claimed that the entire session (and especially the
“buy” action) is what counts. This motivates an identification of sessions and a deeper
analysis of the workload structure.
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9.4.5 E-Commerce

Although modeling general web server loads may be useful, in some cases the specific
characteristics of the web server application have to be taken into account. For example,
websites dedicated to e-commerce are a special case of websites. So although many of
the findings outlined earlier regarding web server loads and flash crowds apply to them,
modeling their loads does have its unique requirements.

A hierarchical model of e-commerce activity has been proposed by Menascé et al.
[487]. As in many other human-centered workloads, the data exhibits strong daily and
weekly cycles. The top level is user sessions. When measuring session length in requests
for e-commerce business functions, the distribution is heavy-tailed: most sessions are
short (up to 10 requests), but some are very long. However, the long sessions were
probably the effect of robot activity. The second level is the sequence of requests fielded
by the business application. The most common requests were to the home page and
to browse, search, and view items on the site. Requests that reflect actual commercial
activity (adding to the shopping cart, login to account, and paying) were much rarer.
The popularity of search terms followed the Zipf distribution. The third level is the
underlying communication infrastructure with its Internet protocols (but the model does
not descend below the HTTP level). This shows that arrivals are correlated and not
independent.

Another workload model for e-commerce is implied by the TPC-W benchmark
[278]. This has a client-server structure, with clients being browser emulators that create
the workload on the server, which is the system being evaluated. Each browser emulator
mimics the behavior of a user, using a sequence of web interactions separated by expo-
nentially distributed think times. The interactions are selected at random based on a user
profile (emphasis on browsing or on buying) and a graph that indicates what interactions
may follow each other, based on a typical structure of the web pages in e-commerce
sites.

An important characteristic of e-commerce systems is that they are typically dy-
namic, meaning that much of the content delivered to clients is generated on the spot
based on individual client-specific data. This process is typically based on the LAMP
architecture, which consists of four layers: the Linux operating system, the Apache web
server, the MySQL database, and the PHP scripting language (or commercial equiva-
lents of these open-source products). The workload must exercise each of these layers in
a representative manner. In addition, the workload must also conform with the business
logic of the site.

Sequences of Operations

One important aspect of the business logic is the order of operations. For example, in
a real system one cannot place an order before adding some item to the shopping cart.
It is therefore natural to use Markovian models, in which the different operations are
the states of a Markov chain, and the transition probabilities represent the probability
that one operation follows another [486]. Conveniently, these probabilities are easy to
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estimate from data by simply counting how many times each operation occurred after
each other operation. (For background on Markov chains, see the box on page 242).

However, creating and using a simple Markov chain may lead to sequences that are
actually illegal. For example, in a real system we may see a transition from the “delete
item” state to the “purchase” state, based on the relatively common scenario in which
a customer places several potential buys in the cart while browsing, and then makes
the final selection among them when checking out. But a simple Markov chain cannot
capture such dependencies, and might erroneously create a sequence where a single item
is placed in the cart and deleted, but the client nevertheless proceeds to the checkout
[417]. An alternative that does not fall into this trap is to base the model on “sessionlets”
— excerpts of real sessions that contain legitimate sequences that can then be stringed
together.

Another problem with using a Markov chain model is that such a model necessarily
leads to a fixed limiting distribution of the different states, and thus a fixed limiting
distribution of the different transactions in the workload. Real e-commerce workloads,
however, do not exhibit such a fixed distribution. Rather, they are nonstationary with a
different mix of transaction types at different times of the day [662]. Also, clients may
have different profiles, which require representation by different transition probabilities
[486].

User Community Modeling

A workload modeling approach geared to handle these issues, which has been used by
performance analysts in the field, is called the user community modeling language [54].
This is a graphical language that depicts usage scenarios in a website. By defining the
scenarios, illegal sequences of actions are avoided. In addition, the language allows for
different user types and the specification of which actions are more common then others.

An example is shown in Figure 9.27. This is similar to but not quite the same as
a user behavior graph. Sequences of actions flow from left to right. As indicated on
the left, three classes of users are identified. Some of the scenarios are unique to a
certain class, but others are shared. Horizontal solid lines denote actions, with a possible
indication of the fraction or number of users who are expected to perform them. The
dashed tabs below certain actions identify details that should be provided as part of
the model. A vertical dashed line denotes a synchronization or convergence point. The
sequences of actions may include divergence points, merge points, conditions, and loops.
An important feature is the distinction between orderly logout when finished and a plain
exit where a user just quits the system, possibly due to frustration with the results so far.

The graphical representation just depicts the possible sequences of actions. Addi-
tional data is needed to fill in the timing details. This is provided in the form of dis-
tributions that specify the time needed to perform different actions and the think times
between them.

Version 1.0.4, typeset on June 10, 2023



9.4. NETWORK TRAFFIC AND THE WEB 479

member (m)

search (80%)

60%

query

check order (12%)

update account (3%)

order number

acct details logout exit

10% 5%

(nu)

instock?

n

25%

exit

y add to cart (55%)

7%

(nu) id,passwd

(m) login (36%)

id,passwd

exit

create account (12%)

save cart (20%)

order (28%)

logout exit

35% 13%

page
home

30% new user (nu)

administrator (a)

(a)

id,passwd

add book (3%)

details

cancel order (1%)

order number

check status (1%)

order number

logout

5%

65%

login (15%)

id,passwd

(m)

(m)

admin login (5%)

Figure 9.27: Simplified user community model of an online bookstore (based on [54]).

9.4.6 Search Engines

The workload on a search engine is a sequence of the queries with which it is presented.
These queries may come from at least three different types of sources:

• Individual users who type in their queries using a web-based interface.

• Meta engines that accept user queries and then forward them to multiple search
engines in an effort to obtain better coverage and find better results [606, 220].

• Software agents (robots) that submit multiple repeated requests to scan the search
engine’s contents or in an effort to manipulate its behavior.

The first two sources are genuine, but should still be distinguished from each other if one
is interested in modeling the behavior of individual users. The third source is actually
unrepresentative of real user behavior and should be filtered out in most cases. This
filtering may be done based on the number of queries being submitted [372], their rate
[194], or the fact that no results are clicked on [758].

User activity with regard to search queries has two main dimensions: how many
queries are submitted and how many results are followed for each one. These are com-
bined into a so-called clickstream, that is, the stream of clicks leading to visits to different
web pages. Some clicks represent the submittal of a new query, some a request for an
additional page of results, and some a drill down into one of the results to verify that it
indeed satisfies the information need [390].

Data regarding the number of queries is shown in Figure 9.28, using the AOL U500k
dataset (comprising a total of 20,792,287 queries from 657,425 users). This indicates
a moderate mass-count disparity — 24% of the users are responsible for 76% of the
queries, and vice versa; the bottom half of the users together generate only 7% of the
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Figure 9.28: Distribution of search engine query generation by users exhibits moderate
mass-count disparity.
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Figure 9.29: Distributions of number of events per query. Insets show LLCDs of the
tails.

queries, while half of the queries are generated by less than 9% of the users. The distri-
bution may have a power-law tail, but if so the tail index is around 3, as indicated by the
LLCD plot on the right.

Data regarding the use of search results is shown in Figure 9.29, using the same AOL
data. For each query, the sequence of consecutive events recorded was counted. There
are two types of events: requests for the next page of results or a click on a link in the
current page. The leftmost graph shows that in 82.3% of the queries only a single page
of results is examined, and in another 10.9% two pages are viewed. However, there are
rare cases when many pages are requested, with the maximum being 2775 (but note that
users who request very many pages may actually be robots). Moreover, the distribution
seems to have a heavy tail, albeit with a tail index around 2.

The other two graphs show clicks. The middle one shows the total clicks for a query,
summing over all the pages of results: 51.2% of the queries do not lead to any clicks,
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30.7% lead to a single click, and 9.1% to two. The maximal number observed in the log
was 314, and indeed the tail of the distribution is seen to drop rapidly. The rightmost
graph shows the distribution of clicks per page. Given that for most queries only one
page is retrieved, it is not surprising that this distribution is similar to the previous one.
In 58.1% of the result pages no results are clicked on. In 28.7% there is a single click,
and in an additional 7.4% there are two. The maximal number of clicks is 303 — much
more than the number of results in a page. This indicates that there are cases where the
same result is clicked more than once. Indeed, this happens also for low numbers of
clicks: it is not uncommon for a user to click on a result, back up and click on another
result, and then back up again and return to the first result.

Regarding the design of search engines, it is also interesting to characterize queries
in terms of what users are searching for and how they express it. One aspect of searching
is the reformulation of queries to improve the quality of results. This is an interactive
process in which users repeatedly modify their queries and resubmit them. Related to
this are repeated searches for the same information [681]. Another aspect is the use of
search terms — how popular each term is and which terms tend to come together.

At a high level of abstraction, queries may be classified into three types based on the
needs of the user [91]:

Informational queries: These are queries that simply look for information regarding
a certain topic. For example, the query may be “workload modeling” or “web
search taxonomy”.

Navigational queries: These are queries where the user is trying to reach a specific
website, typically the home page of some company or organization. For example,
the query “IBM” most probably indicates a search for www.ibm.com.

Transactional queries: Here the user is trying to perform some action, but probably
does not care which website will be used to do it. For example, a search for “Sinai
tours” can be used to organize a trip using any of several websites suggested by
the search engine.

This classification is important for user modeling of web search and also for the evalua-
tion of search engines. Broder estimates that approximately 50% of queries are informa-
tional, 30% transactional, and 20% navigational [91], but others have claimed that there
are much fewer transactional and navigational queries [371].

Delving into the details, data regarding search term popularity is shown in Figure
9.30. For these graphs, repeated executions of the same query (e.g., to obtain additional
pages of results) are only counted once. However, if the query was modified it was
counted again, and this may of course inflate the counts for query words that remain.
The distribution of search terms is pretty close to the Zipf distribution. More than 70%
of the search terms only appear once in the log. The joint ratio is 9/91: the most popular
9% of the search terms account for 91% of the instances of a term in a query, whereas
the less popular 91% of the terms account for only 9% of the instances. A full half of
the search term instances in the data are repetitions of the top 0.05% of the search terms.
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Figure 9.30: Distribution of search terms approximates a Zipf distribution with a heavy
tail.
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Figure 9.31: Distribution of queries follows a Zipf distribution with a heavy tail, albeit
most queries only appear once.

The most popular terms are simply the most popular words in English, with “of”,
“in”, “the”, “and”, and “for” occupying the top slots. High ranks are also achieved
by some popular navigational queries: “google”, “yahoo”, and “ebay” occupy ranks 8,
15, and 20, respectively. Other high-ranking terms are “free” (rank 9), “lyrics” (13),
“school” (16), “florida” (22), “home” (26), “pictures” (29), and “bank” (30). The noto-
rious “sex” is only rank 44. Thus, not surprisingly, the search vocabulary is distributed
differently from normal English usage. Co-occurrence is largely limited to phrases, such
as “real estate”, “red hat”, “clip art”, and “puerto rico”. However, some words, mainly
adjectives like “free”, tend to co-occur with several other terms [623, 375, 373].

A somewhat different picture is seen if one considers complete queries rather than
individual terms. Complete queries appear to follow the Zipf distribution much more
closely, as shown in Figure 9.31. However, although the distribution has a heavy tail,
the tail elements do not dominate the mass. On the contrary, nearly 84% of the unique
queries appear only once, and together they account for more than 40% of all queries.
Thus there is not much mass-count disparity, and the joint-ratio is not even defined.
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Another difference is that simple English words tend not to appear in very popular
queries, which typically have only one search term (exception: “bank of america” at rank
18). The most popular queries are predominantly navigational, with searches for Google
being by far the most common. However, these searches may be done using different
query strings that reflect the Internet naming system, including “google” (top rank),
“google.com” (rank 6), “www.google.com” (10), and also the misspelled “goggle” (52).

Other top navigational queries are also Internet companies and also have several
variants, including “ebay” and “ebay.com” (ranks 2 and 15); “yahoo”, “yahoo.com”,
and “www.yahoo.com” (3, 5, and 11); “mapquest” (4); and “myspace.com” and “mys-
pace” (7 and 8). Slightly lower down we start seeing navigational queries targeting more
traditional companies and institutions, such as “walmart” (22), “southwest airlines” (31),
and “target” (33). These typically have only one main variant, without Internet address
trimmings.

Other popular queries are a combination between being informational and transac-
tional: they seek a website that can provide the desired information, rather than seeking
the information directly. Examples include “weather” (14), “dictionary” (21), “lyrics”
(64), and “horoscope” (86). Then there are quite a few nonsense queries, many of which
are just parts of Internet addresses, such as “http” (13), “.com” (20), “www.” (49), but
also “m” (37) and “my” (53). The usual suspects are ranked lower: “porn” is 68, “sex”
is 76, and the first celebrity is “whitney houston” at 225 (but “american idol” is 17).

All these queries are omnipresent, and in the three-month AOL log they are popular
in each and every week. Other queries are popular only in a certain week, typically due
to a specific news story involving some celebrity or sports event. Examples include “nfl
draft” (which occurred on 29–30 April 2006) and “kentuky derby” (6 May 2006).

The misspelling of Google mentioned earlier is by no means an isolated incident.
Google have published a list of 593 variations on the name “Britney Spears” that were
used at least twice (by two different users) within a three-month period — with all of the
variants in the first name (AskJeeves had a list of 1126 variations in both names, but did
not include data about how many times each one appeared). The correct spelling was
the most popular, accounting for 77% of the cases. But misspellings accounted for no
less than 23% of all instances. And as may be expected, the popularity distribution of
the different misspellings is heavy-tailed, with a nearly straight LLCD.

Quite a few papers analyzing web search workloads have been published in recent
years. They typically provide data such as that discussed earlier, from a variety of search
engines, often using proprietary data. Interesting observations include the following:

• Queries are typically short, with an average of two to three terms (2.21 for Excite
in 1997 [376]; 2.35 and 2.92 for AltaVista in 1998 and 2002, respectively [623,
375]; 2.4 for AlltheWeb in 2001 [373]; 2.34 for both the 2006 MSN data [758]
and the 2006 AOL data; and only 1.67 for Google searches at a German university
in 2006 [390]).

• The length depends on the type of the query. While 42% of regular AOL queries
have only a single word and the average is 2.29, the 1% of queries that are posed
as questions (“is 42 old” and others starting with why, what, where, when, who,

Version 1.0.4, typeset on June 10, 2023



484 CHAPTER 9. CASE STUDIES

AOL U500k queries

query length [words]

0 5 10 15 20 25 30

p
e

rc
e

n
t

0

10

20

30

40

50

regular
queries

questions

Figure 9.32: Distribution of query lengths. Note that questions form only 1% of all
queries.

whom, whose, how, which, do, did, does, is, or are) are, on average, 6.65 words
long (Figure 9.32).

• There has been a continuing decrease in search for sexual content and an increase
in search for general information [646, 375, 647].

• Different topics are popular at different times of the day: music peaks at 3–4 AM,
porn at 5–6 AM, and personal finance at 8–10 AM [63].

• Some queries may exhibit large fluctuations in popularity from one hour to the
next. For example, this happens when a certain news story breaks and many people
search for related information at the same time [63].

• There is an increasing use of search engines as a navigational tool, as was indeed
reflected in the results we shown earlier [375, 758].

• Users occasionally search for the same thing again and again over extended peri-
ods of time [681, 704], possibly using search as an alternative to keeping a book-
mark.

• Advanced search features such as Boolean operators are not used much, and users
often make mistakes in using them [376].

• Search sessions are typically short, containing only one or a small number of
queries, with few modifications. And in most cases the user does not look beyond
the first page of results [623, 758].

Despite the last item, an important observation is that queries sometimes do not
come alone, and a sequence of queries is performed to accomplish some search goal
[385, 185]. This may be needed because the first query did not uncover the desired
information, in which case it is reformulated and submitted again. Search goals, in turn,
are typically elements of a larger search mission, leading to a hierarchical structure. In
addition, queries belonging to different missions may be interleaved as the user shifts
from one topic to another and back again.
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Practice Box: Stream Algorithms

Results such as those presented in this section are based on offline analysis of a sample of
the queries received by a search engine over a period of between one day and three months.
But it is also desirable to be able to collect such statistics online, as things happen, and
based on all the queries that arrive; for example, this is important in identifying new trends
and the emergence of hot new topics (e.g. [550]). Algorithms that perform such analysis
are called stream algorithms, because they operate on a continuous input stream.
The chief requirement for stream algorithms is that they operate in constant time and space,
so as to be able to handle each stream element (in our case, each query) before the next
one arrives. For example, the following algorithm identifies the k distinct elements that
each appear in the stream more than 1

k+1 of the time, if such elements exist:

1. Start with k counters initialized to zero.
2. Associate the counters with distinct stream elements, and use them to count the

number of appearances of the first k unique elements in the stream.
3. Subsequently, for each arriving element of the stream, compare it with the k stored

elements and do the following:
(a) If the newly arrived item has been seen before, simply increment its associated

counter.
(b) If it is not identical to any of the k stored items, decrement all their counters.
(c) If any counter reaches zero, replace its associated element with the newly ar-

rived element.

Note, however, that if there are less than k items (or even none) that meet the threshold
of appearing 1

k+1 of the time, the items that will be stored at any given instant are not
necessarily the most popular ones.
A nice survey of stream algorithms and their capabilities and limitations is provided by
Hayes [323].

End Box

Evaluating the performance of search engines is a special case of evaluating infor-
mation retrieval systems. To evaluate such systems test collections are needed, and these
should rightly be considered part of the system’s workload. Such collections are consid-
ered in Section 9.5.2.

9.4.7 Media and Streaming

Some web servers are dedicated to streaming data to their clients. Examples include
media servers and news servers. Again, they have special workload characteristics.

Yu at al. present an analysis of a video-on-demand media server from China [747],
and Tang et al. present a similar analysis of two media servers belonging to HP [675].
Among their findings are the following:

• The workload exhibits a daily cycle, as expected. The peak activity is in the
evening hours, after work. In the Yu study this cycle was a very strong effect,
whereas in the Tang study it was relatively minor. This difference may be a result
of using data from a server belonging to a multinational corporation, rather than
from a server with a more localized user base.
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• The vast majority of sessions are aborted before the movie being watched ends.
Yu also found a small fraction of sessions that were longer than the movie, due
to using features such as pause and rewind. Tang et al. found that the probability
of watching the movie to its end strongly depends on the movie length, with the
fraction of full views declining as a power law of the total length.

As for the aborted sessions, most of them are very short, lasting just a few minutes;
specifically, the data indicates that more than 50% of the sessions aborted within
10 minutes (Yu) or 2 minutes (Tang). These results may be related to the fact
that the analyzed services were free (in Yu’s case, free to subscribers), and paying
customers may have a lower tendency to abort. Nevertheless, the results have
important consequences. First, they indicate that users frequently sample a movie
before deciding whether or not to watch it. And second, caching the first few
minutes of all movies in easily accessible storage can serve a large fraction of the
requests.

• Yu found that popular movies tended to be aborted more often and earlier than less
popular movies. Possibly their popularity caused many users to check them out,
but most then decided not to watch them.

• In the Yu study, the popularity of different files was well described by a Zipf-
like distribution, except for the least popular ones, which are accessed less than
expected. This implies that only the tail of the distribution obeys a power law
[690]. In the Tang study, a good fit to a Zipf-like distribution was obtained after
applying a k-transform, which scales the axes so as to treat files in groups rather
than individually.

• On different days the skewness of the popularity distribution was different, with a
normally distributed parameter.

• The churn for the most popular videos is significant, with 2–3 of the top 10 re-
placed each day and 5–8 replaced each week. This churn is at least partly due
to the introduction of new content. When looking at a larger set things are more
stable: only about 15 of the top 100 are changed each day, and between 25–30
each week. A byproduct of this behavior is the generation of temporal locality.
Different files are popular on different days, and the accesses to each file are con-
centrated in the period when it is popular, and not spread out evenly across time.

• Popularity is strongly affected by a movie’s appearance in the site’s top 15 list or
the list of (typically new) movies recommended by the system.

Based on the collected data, Tang et al. devised the MediSyn workload generator for
streaming media servers [675]. It operates in two steps. First, it generates the population
of files on the server, and assigns each file its attributes according to the model distri-
butions. Then, in the second step, it generates a sequence of accesses to the generated
files.

Another workload generator is Genius by Costa et al. [151]. The emphasis here is
on interactive user behavior. Media objects are classified into several classes that are
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typically used in different ways. Each class then has a characteristic pattern of user
sessions, and the sessions in turn are composed of sequences of interactive requests
(such as pause, fast forward, etc.).

Two interesting complementary studies concern the YouTube service, in which users
can upload and view short videos. Cha et al. studied YouTube’s workload by crawling
the site’s indexes several times and collecting data about the popularity and rating of
different videos [114]. Gill et al. collected data about all the YouTube traffic from one
specific location, namely the University of Calgary [285]. These studies show that the
popularity distribution of different videos corresponds to the Zipf distribution. This is
explained by the generative model of preferential attachment — videos that are highly
popular are prominently displayed by the site, leading additional users to check them out.
However, when a global view is taken, the number of requests for the topmost videos
seems to be truncated rather than growing according to Zipf’s law. This is explained by
the finite size of the user population.

Other analyses of similar workloads include that by Johnsen et al. of a news-on-
demand service [382].

A special type of streaming data comes from voice over IP services such as Skype.
The problem is that Skype uses proprietary protocols, encryption, and obfuscation to
prevent being identified and blocked. This naturally makes it difficult to analyze its gen-
erated traffic. However, it is possible to observe and characterize the traffic generated
under laboratory conditions. Bonfiglio et al. do so and find dynamically varying behav-
ior: Skype may use different codecs and adjust to changing network conditions [79].
When analyzing Skype user behavior on a campus network, the expected characteristics
are found: a daily cycle of activity, and paid calls (to regular phone numbers) tend to be
much shorter than free calls between two Skype clients.

Interestingly, media-based workloads may also characterize certain client devices,
and not only servers. For example, a study of hand-held devices found that their Internet
activity was dominated by playing multimedia files and application downloads [460].

9.4.8 Peer-to-Peer File Sharing

Web workloads operate in a client-server setting: users use browsers to make requests
for web pages, and these requests are served by the web servers. An alternative model
is the peer-to-peer approach, which is completely symmetric, with every node operating
as both a client and a server [437]. This approach has gained widespread popularity
in the form of file sharing services, which allow users to share files with each other.
These services have come to dominate Internet traffic, due to the combination of large-
scale data transfers (large media files) and voluminous control activity (pinging peers
in the network and using flooding to perform searches). As a result, changes in such
applications may cause changes in the overall observed traffic [535, 279].

A special characteristic of peer-to-peer traffic is its daily cycle. For most applica-
tions, the peak usage (and load) occurs during the day or perhaps during the evening
hours (after work). But for peer-to-peer applications the peak occurs during the small
hours of the night, from 3 AM to 8 AM [279]. The reason is that these applications

Version 1.0.4, typeset on June 10, 2023



488 CHAPTER 9. CASE STUDIES

often operate in the background to download large media files. In doing so they exploit
available bandwidth during the night.

As mentioned earlier, the files typically shared are multimedia files, in particular
music, video clips, and movies. Such files have the following important attributes [309]:

• They are immutable: once a file appears in the system, it never changes.

• There are relatively few distinct files. For example, the Internet Movie Database
(http://www.imdb.com/stats) listed roughly 2.8 million titles as of February 2014,
of which 1.7 million are TV series episodes and 304,000 are feature films. Al-
though these are large numbers, they are small relative to the number of users who
download such files.

In addition, the file sizes are generally very large and display significant mass-count
disparity.

The fact that files are immutable has a strong effect on the popularity distribution
as seen on the system. Assume the real popularity is according to the Zipf distribution.
However, once users download a file, they will never download it again even if they use
it many times. Therefore the number of downloads of the most popular files will be
much lower than the number of times they are used, i.e., much lower than predicted by
the Zipf distribution. (Note that this assumes downloaded files can be stored; thus this
argument does not apply to video-on-demand systems [747]).

The fact that the number of distinct files is limited implies that users may run out
of new files they want to download. This helps explain the dynamics of downloading
patterns. Such patterns exhibit a strong locality of sampling: at any given time a few
files are the most popular, but this group changes with time [309]. Essentially, the most
popular files for download are always recent releases. When they are new they are
widely downloaded, but once they have been downloaded by a significant fraction of the
interested user base, the number of downloads decreases. This can be viewed as each
new release leading to its own flash crowd effect.

Another type of locality characterizing peer-to-peer systems is the skewed level of
service provided by different peers: a small number of peers respond to most queries,
while a third to two thirds are “free riders” that do not contribute any service [14, 312].
In particular, one study showed that the top responding peer could respond to nearly half
of all queries. However, the global set of all results was spread out over many more
peers. The top source could only provide about 3% of all possible results to a query, and
even querying 20% of all peers generated only about 60% of the results [312].

A problem with the study of P2P file sharing is that current services attempt to dis-
guise themselves [392]. The original file sharing service, Napster, used a specific port
and was thus easy to identify (see Figure 9.21). Services such as Gnutella and KaZaA
may use different ports and even masquerade as using an HTTP protocol. Although
these services are still reasonably easy to detect, they could be missed if the data col-
lector is not aware of the need for special handling [455]. For example, a large part of
the “other TCP” and “HTTP” traffic shown in Figure 9.21 is probably file-sharing traf-
fic. Approaches to detecting P2P traffic include looking for specific strings in the packet
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payload (which, however, faces severe legal/privacy/technical problems), or looking for
tell-tale usage patterns such as using both TCP and UDP with the same IP address and
port [393]. Interestingly, different file-sharing applications seem to be popular in differ-
ent locations. For example, eMule is heavily used in Italy, whereas BitTorrent is much
more popular in Hungary and Poland [279].

9.4.9 Online Gaming

Online gaming is a booming industry, with game servers supporting thousands of inter-
active users simultaneously. The interactive real-time nature of the play places stringent
requirements on the infrastructure. Conversely, to evaluate the suitability of the infras-
tructure one needs to know about the characteristics of the gaming workload — which
is subject to the high volatility of the field.

A set of observations regarding gaming workloads include the following:

• The relative popularity of different games exhibits a Zipf distribution [116].

• The distribution of player session lengths is exponential or Weibull, with many
short sessions [327, 116]. It does not have a heavy tail. When looking at the
player population, player interarrivals are found to be heavy-tailed.

• Client packet interarrival times are proportional to the machine’s CPU speed:
faster machines reduce the rendering delay associated with data received from
the server, and then respond with their own data more quickly [81]. Thus different
clients will have different communication rates.

• First-person shooter games exhibit faster movement of avatars relative to other
virtual environments [503].

• The network bandwidth requirements of online games are quite modest at around
50–200 Kb/s per client [39].

• Game players are human (OK, not all of them... [421]). Thus gaming workloads
exhibit a strong daily cycle [327, 116]. They also exhibit a weekly cycle, which is
different from other workloads: there is more activity on the weekend instead of
less [327].

• Those players that are not human may sometimes be identified by identical repe-
titions of activity patterns (e.g., repeated traversal of exactly the same path) [494].

9.4.10 Web Applications and Web 2.0

Modern web applications often exhibit behaviors that differ significantly from the tradi-
tional client-server model of the original static web, in which relatively small requests
were sent from clients to servers, and most of the traffic was composed of files sent from
the servers back to the clients. For example, in many web services the content is pro-
vided by users rather than by the service. Examples include blogs, services for sharing
pictures and videos, and sites such as Wikipedia. Thus there is a noticeable component
of uploading content, which is largely absent from conventional web servers. Another

Version 1.0.4, typeset on June 10, 2023



490 CHAPTER 9. CASE STUDIES

example is the extensive use of AJAX technology, which allows for asynchronous down-
loads that do not subscribe to the request-response pattern. For example, in Google maps
nearby tiles of the map are downloaded in the background and cached in case they will
be needed, thus ensuring faster response when the user pans the map. This leads to
heavier and more bursty traffic [595].

Wikipedia is perhaps the poster child of user-generated content, representing an es-
timated 41 million hours on work on the English version and 102 million hours on all
versions combined as of 2012 [282]. An analysis of edit sessions reveals that they last on
average for around 33 minutes, but the median is only 10 minutes, testifying to a highly
skewed distribution. Interestingly, the distinction between short and long sessions ex-
tends to users: there is only partial overlap between the group of users who contribute
the largest number of edits and the group that contribute the most editing time.

In addition to having user-generated content, blogs are also characterized by a many-
to-many access pattern: bloggers’ posts are read by many readers, and readers comment
on many posts [192]. This is different from conventional web access patterns. Moreover,
because blogs refer to each other, they may cause “epidemics” in which certain posts
receive disproportionate popularity [13]. This even affects the daily cycle of activity:
the peaks of daily activity become more varied than normal, because they depend on
the specific popularity of items at different times [192]. Thus the peak in each day can
be considered to be a combination of base activity and some number of unique flash
crowds.

Other characteristics are more in line with conventional web workloads, including
the heavy-tailed distribution of transfer sizes and the diurnal cycle of activity [192, 377].
User activity is heavy-tailed, but popularity is not quite a Zipf distribution. Rather, it
tapers off (like the distribution of instances of words in this book), possibly indicating
that the number of blog postings is the limiting factor. Distributions of session lengths,
inter-post times, and inter-comment times are skewed, but not heavy-tailed.

Another type of Internet-based infrastructure for user interactions is social networks
such as Facebook. As may be expected, interactions on Facebook are often well de-
scribed by power laws. For example, The in-degree and out-degree distributions of
connections are heavy-tailed, and a small number of core “power users” dominate inter-
actions [492]. These core users also generate most of the traffic [511]. But interestingly,
the precise patterns depend on the type of application that is being used. Social applica-
tions (such as sending virtual hugs) correspond to the underlying friendship connections
on Facebook. But gaming applications transcend existing friendships and create new
ad-hoc connections. Another interesting finding is that Facebook usage is often not in-
teractive — it seems that many users are actually not connected all of the time. Thus the
average response time in three Facebook applications was no less than 16.5 hours.

The recent growth in cloud computing and online web applications promises new
types of workloads with new characteristics and requirements — a combination of desk-
top computing and Internet communications. Initial analyses of cloud workloads have
been published by Mishra et al. [491], Reiss et al. [563], and Di et al. [177]. Di et al.
characterized the workload on a Google data center [177], and compared it with the
workload on computational grids. This analysis showed that the jobs on Google’s cloud
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infrastructure were quite different from those on grid systems. Specifically, their runtime
distribution is much more skewed, with the vast majority of jobs being very short (80%
less than 1000 seconds), while the longest jobs are several weeks long. As a result job
runtimes have a joint ratio of 6/94, and the median-median distance is 23 days. Typical
job interarrival times on Google are also substantially shorter than on grids. Both of
these characteristics bear witness to the largely interactive nature of cloud workloads, as
opposed to the computational nature of grid workloads.

Another interesting development that is related to the move of interactive user activ-
ity to the web is the correlation between different modalities. For example, one can find
correlations between blogging activity and search activity on the same topic [15]. This
has implications for predicting user behavior.

9.4.11 User Types

The Internet is perhaps the locus of the widest differences between different demo-
graphic groups of users. For example, in practically all families, children and even more
so teenagers engage in much more Internet activity than their parents and grandparents.
Thus detailed generative models may need to take different user types into account.

A characterization of user types has been performed by Garcı́a-Dorado et al., as part
of a study of ISP traffic patterns [279]. Based on the volume of traffic and the diversity
of applications used, they partition users into three classes:

• Old-fashioned users use the Internet only for email and simple web browsing. Up
to about a third of users exhibit such behavior, generating few megabits of traffic
per day.

• The biggest group of users are the normal users. These users mainly use social
networks (like Facebook) and streaming services (like YouTube), generating tens
to hundreds of megabits of traffic per day.

• A relatively small fraction of the users are advanced users. These are the users
who use many different types of applications (social networks, file sharing, file
hosting, etc.) and generate large volumes of traffic, typically measured in gigabits
per day.

9.4.12 Feedback

As in other types of workloads, feedback effects also exist in network traffic. But here
they exist at different levels at the same time: the underlying TCP protocol used to move
data, the request-response style of many Internet applications, and the think and take
action cycle of human users [426]. These feedback effects are extremely important in
shaping the traffic, and ignoring them may lead to erroneous evaluation results [731,
265].

At the lowest level of packet transmission, an important source of feedback is the
TCP congestion control algorithm. Congestion control was introduced into TCP to pre-
vent traffic buildup as a result of positive feedback under loaded conditions [364, 84].
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The problem is that when the load is high, queues at the routers may overflow. When this
happens the routers are unable to store the packets and forward them on the next lag of
their path. Therefore they simply drop such packets. If the packet is part of a TCP flow,
the dropped packet will naturally not be acknowledged by the receiver. The sender will
then time out and retransmit the packet. Thus packet loss as a result of load will cause
the load to grow even more, leading to even more packet loss and a dramatic reduction
in the effective achieved bandwidth.

TCP battles this problem by introducing a stabilizing negative feedback effect, whereby
congestion leads to reduced load. This is done by reducing the size of the transmission
window when too many packets are lost. The transmission window is the set of pack-
ets that have been transmitted but not yet acknowledged by an “ack” from the receiver.
To achieve the maximal bandwidth possible, the transmission window should include
enough packets to account for the round-trip time until the acks are received. But when
the links are congested and packets are lost, it is impossible to achieve the maximal
bandwidth, and it is better to throttle the transmission of additional packets.

The implication of TCP congestion control on workload modeling and use is that it
is dangerous to use packet traces to drive network simulations, because such traces are
“shaped” by the conditions that existed when they were recorded [265]. Insted, traffic
should be modeled at the source, that is, using a generative model. The feedback will
then be realized by including an implementation of the TCP congestion control behavior
in the simulation.

Interestingly, it has been argued that this behavior of TCP may also be responsible
for the self-similarity observed in network traffic [622, 736]. However, this claim is in
dispute, based on the observation that the indicators of self-similarity seen in a single
TCP flow only apply for relatively short time spans [311, 260].

Additional forms of feedback occur at the application layer. In many cases the com-
munication follows a client-server pattern, in which the client makes a request, the server
responds, and this is repeated many times. For example, a browser may request a web
page, and the server returns it. But the requested page may include embedded graphic
objects, thus triggering additional requests for these objects. Naturally these additional
requests are contingent on receiving and parsing the page that was requested before,
leading to a feedback effect: when these requests are sent depends on network condi-
tions.

Above all this is the feedback associated with user actions. Networking that is in-
teractive in nature, such as browsing on the web, is typically done one page at a time.
Users scan the retrieved page before clicking on a link to go to the next page. Thus
the generation of additional requests is again conditioned on the completion of previous
ones, leading to a feedback effect. Importantly, this feedback effect may also reduce
congestion when users abort their downloads or even their sessions when performance
deteriorates beyond what they are willing to tolerate [504, 688, 552, 744].
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9.4.13 Malicious Traffic

In addition to legitimate traffic, the Internet also transmits malicious traffic such as
worms and denial-of-service attacks. Modeling such malicious traffic is needed in order
to evaluate systems that are supposed to protect against it, such as firewalls and network
intrusion detection systems (NIDS).

An example of a system that generates malicious traffic is MACE (Malicious Traffic
Composition Environment) [642]. It takes a modular approach, in which each attack
vector is constructed by composing three elements:

1. An exploit model, which specifies the characteristics of the packets that administer
the attack; for example, a SYN flood specifies that packets be sent with the SYN
flag set.

2. An obfuscation model, which specifies small variations (e.g. in IP fragmentation)
that are often used in an attempt to fool NIDS.

3. A propagation model, which specifies how targets are selected; for example, this
can be a serial scan of IP addresses and a random selection of ports.

The generated traffic is composed of one or more such vectors, in combination with
legitimate background traffic generated by some other source.

An additional parameter that may be important is the source address. Distributed
denial-of-service (DDoS) attacks are typically propagated by botnets comprising thou-
sands of computers around the world. As a result the distribution of source addresses in
such attacks has two distinguishing properties, that are markedly different from what is
observed in normal legitimate traffic [389]:

• The distribution of sources is very uniform. In normal traffic the addresses from
which requests come can be clustered by address prefixes. This represents some
locality in the distribution of sources. Botnets lack such locality.

• The distribution of sources is novel. Under normal workloads, the request sources
also display temporal locality. In other words, the requests seen today tend to come
from the same places (and specifically, the same address clusters) as requests seen
yesterday or last week. Again, botnets employ computers from around the world,
and therefore most of them will be from addresses never seen before.

Importantly, these two characteristics allow DDoS attacks to be distinguished from flash
crowd events.

Botnets are used not only for attacks, but also to propagate spam. Such traffic also
has its unique characteristics. To investigate that traffic, one study actually purchased
bogus advertisement impressions from several botnet operators [650]. These turned out
to be quite different from each other, especially in the pattern in which the generated
load was distributed over the day.
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9.5 Data-Centric Workloads

The data being processed by computer systems is no less important than the operations
being performed on this data. This is especially true in database systems, information
retrieval systems, and, more recently, systems involved with “big data”. In all these cases
the data is a basic component of the workload, and should be included in the workload
model.

9.5.1 Database Systems

Databases can be viewed at several levels: the enterprise level with its business logic, the
level of the database management system and its tables and SQL queries, and the level
of the basic I/O operations [11]. Here we focus on the database level.

As in other domains, queueing models of database systems are often based on un-
realistic workloads that are chosen for mathematical convenience. Thus arrivals are as-
sumed to follow a Poisson process, or else a closed model is used, and objects within the
database are often assumed to be uniformly accessed [526]. However, real workloads
are more complex.

A detailed analysis of traces from 10 large-scale production systems running IBM’s
DB2 in the early 1990s was conducted by Hsu et al. [348]. One of their interesting
results is that significant inter-transaction locality exists, indicating that in real workloads
transactions are not independent of each other. Another finding is that there is significant
use of sequential accesses, which allows prefetching to be employed. Sequentiality is
a consequence of long-running queries that examine a large number of records, e.g. in
order to perform a join operation.

Other studies of database workloads indicate that OLTP (online transaction process-
ing) workloads are characterized by a large memory footprint, combined with a small
critical working set [448], and by the reduced benefit from microarchitectural optimiza-
tions [398]. In addition, index searching in OLTP workloads requires a different cache
design [60].

The evaluation of database systems is dominated by the use of TPC (Transaction
Processing Performance Council) benchmarks. Although these are benchmarks in the
sense that they are well defined and include a builtin metric for evaluating systems, they
can also be interpreted as generative workload models, which can be scaled to enable
the evaluation of databases of different scales. The benchmarks defined by TPC are
the following. The changes over the years also show the progress that was made in
characterizing the workloads and the interaction between them and the system.

TPC-A: a microbenchmark using a single update-intensive transaction to load the sys-
tem. This benchmark was defined in 1989 and deemed obsolete in 1995.

TPC-B: a microbenchmark designed to stress test the core of a database management
system, with significant disk I/O activity, to see how many transactions per second
it can handle. This was defined in 1990 and is obsolete since 1995.
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TPC-C: the most enduring TPC benchmark, defined in 1992 and updated several times
since then. This benchmark simulates a complete OLTP environment characteris-
tic of a wholesale supplier. The model is a set of operators who execute transac-
tions such as order entry and monitoring, updating and checking stock levels, and
recording payments. The relative frequency of the different transactions and their
sizes (e.g., how many items are ordered) are modeled based on realistic scenarios.
The metric for performance is the number of order-entry transactions per minute.
The entire benchmark is structured around a number of warehouses, with each
warehouse serving 10 sales districts (terminals) and each sales district serving
3000 customers. The scale of the benchmark is changed by adding warehouses.

TPC-D: a decision-support benchmark composed of 17 complex and long-running queries,
defined in 1995. The definition proved problematic as vendors added automatic
summary tables to their databases, leading to much faster processing of the queries
themselves. This benchmark was therefore replaced in 1999 by TPC-H and TPC-
R.

TPC-H: a derivative of the decision-support TPC-D benchmark, with complex queries,
but explicitly disallowing precomputed optimizations. Defined in 1999.

TPC-R: also a derivative of the decision-support TPC-D benchmark, in which it is as-
sumed that the domain is well known and therefore extensive precomputed opti-
mizations are assumed to be realistically possible. Defined in 1999 and obsolete
as of 2005.

TPC-W: a web e-commerce benchmark, which measures performance by completed
web interactions per second, subject to a response time requirement for each in-
teraction [278]. The scenario is an online book store, with the system compris-
ing web servers connected to a back-end database, as well as image servers and
caches. Defined in 1999 and obsolete as of 2005.

TPC-App: a benchmark for web applications, including an application server supported
by a web services framework. The workload simulates business-to-business trans-
actions using XML documents and SOAP for data exchange. Defined in 2004 and
now obsolete.

TPC-E: a new OLTP workload defined in 2006. This benchmark is based on a broker-
age firm model and can be scaled by changing the number of customers.

TPC-DS: a new decision-support benchmark defined in 2012. It is based on a retail
scenario with sales in stores, from a catalog, and on the web. It combines both
queries and data maintenance activities.

TPC-VMS: the newest benchmark, designed to test the effect of running multiple database
applications in virtual machines on the same physical platform. The benchmark
requires three copies of one of the other benchmarks (TPC-C, TPC-E, TPC-H, or
TPC-DS) to be used, and the result is the slowest one.

To enable measurements of database performance, these benchmarks need to specify the
structure and contents of the database. The TPC-DS benchmark, for example, defines a
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database schema with 24 tables [689]. These tables can be populated at seven different
scaling levels, leading to database sizes that range from 100 GB to 100 TB. The bulk
of the data is contained in the tables that describe the sales through the different sales
channels: the web sales table grows from 72 million lines at the smallest scale to 72
billion lines at the largest scale, the catalog sales table grows from 144 million to 144
billion lines, and the store sales table grows from 288 million to 288 billion lines. Each
of these tables has a corresponding table of returns that is one tenth as large. Other tables
are smaller and also grow at a sublinear rate. For example, the table of catalog pages
grows from 20,400 lines to 50,000 lines, the table of stores grows from 402 to 1902, and
the table of call centers grows from 30 to 60. A few tables (e.g., the table of shipping
modes) do not change with scale. Tools are provided to generate the actual data and the
queries that are needed to run the benchmark.

Given that real database traces are hard to come by, some studies use the workloads
produced by the TPC benchmarks as a proxy. For example, TPC-C and TPC-B have been
used to characterize OLTP workloads [661, 760, 755], and TPC-D and TPC-H have been
used to characterize decision support [760, 755]. TPC-C and TPC-H have been used to
provide training data for a classifier that can be used as the basis for adaptive systems
that tune themselves to different workload types [209].

However, using TPC in this way should be avoided if possible. Hsu et al. performed
a direct comparison between production database traces and traces obtained by running
the TPC-C and TPC-D benchmarks [349, 348]. It indicated that real production data
is more diverse, being a mixture of many types of both small and large queries. The
benchmarks, in contradistinction, tend to be more uniform. TPC-C, in particular, is
based on small transactions that access random data, leading to access patterns that are
markedly different from those typically observed in production systems. There are also
differences in the distributions of object sizes referenced and the degree of concurrency
exhibited by the workloads and benchmarks.

This study focused on the patterns of queries. It is also important to examine the
data stored in the database. How many tables are there? How many fields do they have?
And what is the distribution of values in the different fields? As noted earlier, the TPC
benchmarks provide detailed specifications, but they are by definition synthetic general
scenarios and cannot be counted on to reflect the diversity found in real production sys-
tems.

An example where studying the data is important is given by Wolf et al. [737]. They
studied the parallel implementation of join operations, in which the rows of two tables
are unified based on a shared field value. The implementation is based on hashing the
shared field values and distributing tuples among the available processors based on these
hash values. Thus each processor receives matching tuples from the two tables and can
perform part of the join independently from the others. This works well if the values
are uniformly distributed. However, real data tends to have skewed distributions, which
causes load imbalance between the processors.

Another example is given by Zuck et al. [766]. The context is a study of how com-
pressing the data to save space affects the performance of OLTP workloads. Random
data as generated by the TPC-C benchmark compresses badly, and its volume is reduced
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Figure 9.33: The TREC experimental procedure (based on [714]).

by only 13%. This does not reflect the relatively high compressibility of real databases,
where compression may reduce the data volume by 76%. As a result, the TPC-C data is
misleading and not usable for such a study.

9.5.2 Information Retrieval

As mentioned earlier, search engines are a special case of information retrieval systems.
To evaluate such systems, test collections are needed. Such collections contain a corpus
of documents (e.g., the results of a web crawl), and a list of topics that form an ab-
straction of user queries. Search mechanisms are then evaluated by what fraction of the
relevant documents they retrieve for each topic (recall), and what fraction of what they
retrieve is indeed relevant (precision) [713].

To provide a realistic and challenging setup for such evaluations, the corpus on which
the search takes place must be huge. The problem is that it is then hard to know in
advance what the correct results are, and therefore it is impossible to evaluate the recall.

To solve this problem TREC (Text REtrieval Conference) competitions have been
set up [716, 714]. In these competitions, the organizers create a large sample of web
documents and define a set of topics that reflect the desired information (Figure 9.33).
Participants then apply their information retrieval algorithms and produce ranked sets
of results. The organizers then take the top 100 results from each participant for each
topic, and create a unified pool that is assumed to contain all the relevant documents for
that topic. These documents are then evaluated for relevance by human experts, and the
resulting scores are used to evaluate and rank the retrieval algorithms. Thus part of the
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workload definition (the identity of the desired documents) is only known retroactively,
after the experiment takes place.

Although this approach has been effective in evaluating information retrieval systems
[714], it is limited to static situations in which the “correct” set of retrieved documents
is well defined in advance. A more complicated situation is when the system is adaptive,
and thus user behavior and expectations cannot be abstracted by static topics and their
related sets of documents [715].

9.5.3 Big Data

“Big data” is a catch-all phrase for emergent systems that are characterized by the need
to handle vast amounts of data at very high rates, way beyond the capabilities of conven-
tional databases and mainframes. Thus using a distributed infrastructure is necessary.
Such data storage and processing needs are becoming ubiquitous, with examples includ-
ing the following:

• Using data about personal buying patterns in retail and commercial settings, often
based on credit card transactions, to optimize advertising and sales.

• Using data relating to logistics and utilities, e.g. based on distributed sensing, to
optimize operations.

• Making health care records and medical imaging data available to doctors where
and when they need it, regardless of where and when they were collected.

• Storing and analyzing scientific data, such as data from life science genome projects,
astrophysics observatory imaging, or data from the sensors of particle physics ex-
periments.

• Storing and analyzing data from surveillance and security cameras.

• Storing, classifying, prioritizing, and serving data from social media and commu-
nications services such as Facebook, Twitter, and YouTube.

While some of the data involved is well structured as in conventional databases, other
data may be semi-structured (such as HTML web pages with various tags) or even un-
structured text.

Importantly, several data types and data manipulation patterns are common to a num-
ber of these domains. These include the following:

• Analyzing large image collections.

• Indexing large text collections.

• Traversing large graph structures.

• Filtering a high-rate incoming data stream.

• Maintaining large key-value stores.

• Performing MapReduce computations.

Version 1.0.4, typeset on June 10, 2023



9.5. DATA-CENTRIC WORKLOADS 499

These patterns combine with four main features of the data, and together show why
conventional databases cannot be used effectively [280]:

• The data has a vast volume, often on the order of petabytes. Thus, big data systems
require more I/O resources than other system types to be balanced [337].

• Data is unstructured and comes from a variety of sources that use different data
formats.

• Often the data has real-time characteristics, meaning that the data loses value if it
is not processed rapidly.

• The data may have correctness and validity problems.

Data about actual workload characteristics in big data systems is sparse, and more-
over the entire field is in constant flux. But some datasets have been analyzed, and
insights have been shared. For example, it has been noted that data querying in very
large datasets tends to be simpler than the queries that may be used in databases. SQL is
not used, and in particular, joins are avoided. Instead, querying is based on simple word
searches [159]. In fact, much of the processing is done using the MapReduce paradigm.
To ease this, SQL-like interfaces to MapReduce have been designed, such as Hive [685].

Background Box: MapReduce

MapReduce is a parallel programming paradigm developed by Google [167, 168]. It is
aimed at applications that need to scan vast amounts of data and extract the important and
meaningful information from them. The idea is to partition the work into mapper tasks
and reduce tasks. The mapper tasks are independent of each other and do the heavy lifting
of going over all the data. To do so the data is partitioned into blocks, and each mapper
works on one block. Importantly, this allows the mappers to run where the data is stored,
thus reducing communication overhead. The output of the mappers is expressed as a set
of key-value pairs that represent the information that was extracted.

The reduce tasks then combine the key-value pairs from the mappers to create the final
output. In essence, this amounts to performing some merging operation on all the different
values that correspond to each key. To do this efficiently, all the pairs with the same key
from all the mappers are collected at the same location. This rearrangement of the data is
called the shuffle stage. The reduce tasks are then again independent local operations, just
as the mappers are.
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The importance of MapReduce is that many real data-processing needs are expressible in
this framework by using appropriate mappers and reducers. Thus by writing just a mapper
(which operates locally on some data, independent of other mappers) and a reducer (which
combines given data inputs) one can implement a parallel application that processes vast
amounts of data — and a large number of applications can indeed be formulated in this
way [168]. All the issues related to distributing the data and scheduling the computations
are handled by the underlying system.

Perhaps the most widely used MapReduce platform today is Hadoop. This is an open
source project run by the Apache Software Foundation, which can be downloaded from
http://hadoop.apache.org/. In addition to the MapReduce platform, it includes a dis-
tributed file system that stores the data being processed.

End Box

The way that MapReduce was originally described and named implies that its pur-
pose is to map vast amounts of data to extract the useful parts, and then to reduce them
into pure distilled information. But experience shows that the actual usage of MapRe-
duce is more varied, and in some cases the volume of the information produced increases
instead of being reduced.

Chen et al. describe MapReduce workloads from 6 months on a 600-machine cluster
and 1.5 months on a 3000-machine cluster at Facebook, from 3 weeks on a cluster at
Yahoo!, and from several other installations [125, 124]. Some of their data is shown in
Figures 9.34 and 9.35. Figure 9.34 shows the distributions of the map size, the shuffle
size, and the reduce size based on 24 random 1-hour samples from two clusters in two
years. It apparently shows that in 2009 the reduce sizes tended to be larger than the map
sizes, so the data grew as a result of the processing. Even more surprisingly, for 75% of
the jobs the shuffle size was 0, implying that no data was passed from the map stage to
the reduce stage. To better understand these results, Figure 9.35 shows the relationship
between the map and reduce sizes of each job. The concentration of values along the
diagonal indicates that for many jobs the input and output data sizes are similar. Looking
at the data indicates that the jobs with zero shuffle size are mainly those that are above
the diagonal. A possible interpretation is then that these are reduce-only jobs that do not
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the Facebook clusters data.

really have a map stage, and that the input is actually a specification of what the reduce
should do. Likewise, the zero-reduce jobs in 2010 could be map-only jobs.

Regardless of the data interpretation problems, these graphs show that MapReduce
workloads are varied. They may have different relationships between the map and the
reduce. The datasets are not all big data — rather, some of them are as small as kilobytes.
Some are also interactive [124]. In addition, the data exhibits the expected characteristics
that are common to many workloads [124]:

• A daily cycle of submitting work.

• A high degree of burstiness, with peak-to-median ratios of one order of magnitude
and even higher.

• Skewed distributions of data sizes.

• A Zipf-like distribution of input file popularity.
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Given the growing use of MapReduce as the de facto standard for big data program-
ming, the HiBench benchmark was developed to evaluate the performance of Hadoop
[351]. It includes both microbenchmarks and full MapReduce applications. The mi-
crobenchmarks are programs that do sorting or word counting on the input. For sorting,
both the map and the reduce are identity functions, and the sorting is actually done by
the shuffle stage. For word counting, the mappers emit pairs where the key is a word and
the value is 1, and the reducers simply sum these values. The applications are related
to web search (indexing and page rank) and machine learning (Bayesian classification
and k-means clustering). Inputs are based on a dump of Wikipedia with 2.4 million web
pages. Finally, a benchmark of the Hadoop file system is also included.

Other benchmarks emphasize the volume and variability aspects of the data [280],
thus enabling a system-level evaluation of performance that focuses on text processing
workflows. The workflows used are the classification of documents into given categories,
the identification of key documents within each category, and the identification of sub-
topics in categories. These workflows share the common task of retroactively having
to find new structure in existing data, which is typical of big data applications. They
are applied to a corpus of nearly 400 million web pages, totaling more than 10 TB
uncompressed.

An alternative to using benchmarks is to create a statistical model. Such a model
was suggested by Ganapathi et al. and includes the following components [275]:

• Successive job arrivals are modeled based on empirical interarrival time data.

• Jobs are assigned to a class based on the popularity of different job names.

• The input size is selected from a job-class–specific distribution and scaled for the
desired installation size.

• The shuffle size is created based on sampling from the shuffle/input ratio distri-
bution, and the output size based on an output/shuffle ratio distribution, both of
which are specific per job class.

Distributions are modeled by five data points from the empirical workload data: the 1st,
25th, 50th, 75th, and 99th percentiles. Linear interpolation is used between them. The
problem with this model is that the sampling is done randomly and independently from
the different distributions, so all correlations and locality are lost. However, note that the
input/shuffle/output data sizes are not modeled independently, but rather by their ratios.
This retains a measure of correlation between them.

Another alternative is to use samples from real data. Chen at al. have claimed that
due to the complex nature of the MapReduce workloads and their many attributes, which
typically do not conform to well-known distributions, using randomly mixed samples of
traced data is better than using benchmarks or models [125].

In addition to the full MapReduce applications discussed so far, it is also interest-
ing to consider the more intricate interaction between components of the MapReduce
workflow and the underlying system. This interaction has considerable impact on se-
lecting configuration parameters for optimal performance [719, 333]. In addition, note
that MapReduce is defined in terms of key-value pairs, and therefore the handling and
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caching of such data is of great importance. Atikoglu et al. report on the workload han-
dled by five large key-value stores at Facebook [42]. Their main findings are as follows.

• In four of the five cases the workload is dominated by get requests, as befits a
distributed cache. In the largest and most general purpose of these four cases,
there is also a relatively large (30%) component of delete requests. The fifth one,
which is used to store transient data such as client window sizes, is dominated by
update requests.

• Both key size and value size distributions are modal, with up to 90% of the in-
stances being the same size. The value-size distribution is dominated by small
sizes, and the number of large values is small enough that the mass-count dispar-
ity is typically low.

• Key popularity exhibits very high mass-count disparity, with most keys requested
very few times, but some keys accessed again and again millions of times.

• Key requests also exhibit strong temporal locality, with most reuse occurring
within an hour.

• Most stores show daily and weekly cycles of activity.

9.6 Parallel Jobs

Parallel jobs, which are composed of multiple threads (up to many thousands) that co-
operate to solve a computational problem, are the mainstay of high-performance com-
puting. So models of parallel job workloads are needed for the evaluation of parallel
job schedulers, which are used to allocate the resources of large-scale parallel platforms
such as supercomputers and clusters. Such models are nontrivial because parallel jobs
have several distinct attributes, most notably their parallelism and runtime, which have
to be modeled. Several models and benchmarks for this domain have been devised
[741, 230, 370, 187, 137, 454]. They complement the benchmarks of multithreaded
applications on modern multicore systems that were discussed in Section 9.2.2.

9.6.1 Arrivals

The arrival process of parallel jobs shares all of the main features of other arrival pro-
cesses.

In most parallel job models arrivals are assumed to be Poisson. However, real ar-
rivals are actually self-similar [653, 670, 234], as demonstrated in Figure 9.36. In fact,
this dataset was the main example used to demonstrate various ways to quantify self-
similarity and long-range dependence in Section 7.4. In particular, interarrival times are
not exponentially distributed, but rather tend to have a longer tail, fitting a lognormal or
Weibull distribution [405]. The arrival of individual jobs is also affected by feedback
from the system’s performance and the session dynamics, as discussed in Section 8.4.

In addition, arrivals display the obvious daily and weekly cycles (Figure 9.2). Such
cycles are especially important in this domain because parallel jobs can be several hours
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Figure 9.36: Job and process arrivals at the SDSC Paragon parallel supercomputer shown
at different levels of aggregation, showing self-similarity.

long, so their duration can interact with the daily cycle [616, 248]. Moreover, the work-
load on parallel supercomputers typically includes a significant non-interactive compo-
nent, which can be postponed and executed at night. Doing so increases the effective
capacity of the system. But the fact that there is extra capacity at night that can be used
for the postponed jobs depends on the daily cycle [248].

Another phenomenon that appears to be relatively common in large-scale parallel
systems is workload flurries (Figure 9.37). These are large surges of activity, in which
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Figure 9.37: Flurries of activity by hyper-active users on large-scale parallel systems.

a single user creates a volume of jobs or processes that is many times larger than the
normal workload, but only for a limited amount of time. These large flurries are easy
to recognize, and given that they are anomalous and distort the workload characteristics,
it is recommended that they be removed before using the workload for performance
evaluations or modeling. The only reason to leave them in is when studying the effect of
the flurries themselves on the system or on the performance experienced by other jobs.

9.6.2 Rigid Jobs

A common approach to modeling parallel workloads is to consider rigid jobs — jobs that
use a fixed number of processors. Each job is then a rectangle in processors×time space:
it uses a certain number of processors for a certain time. This enables the use of logs that
contain just this data and the creation of models based on them [230, 370, 187, 137, 454].
Many of the examples in this book come from this domain.

Job Sizes

The distribution of job sizes is approximately log-uniform, as observed by Downey [187]
(Figure 9.38). Lublin suggests that a two-stage log uniform model is better, and also
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Figure 9.39: The fraction of serial and power-of-two jobs in different systems. Data
showing all jobs in each log, without cleaning.

relates the two segments to the machine size, so as to create a parametric model that can
be adjusted to different machine sizes [454].

In addition to the general trend, the distribution of job sizes also has two special
characteristics (Figure 9.39). The first is that a relatively large fraction of the jobs are
serial (or at least use a single node, on machines such as the SDSC Blue Horizon in which
the minimal allocation is an SMP node with 8 processors). The other is that very many
jobs use power-of-two nodes [735]. Lublin therefore suggests the following algorithm
for selecting a job size [454] (Figure 9.40). First, decide whether a job is parallel or
serial. If parallel, select the log of its size from the model distribution (log-uniform or
two-stage log-uniform). Then determine whether it should be a power of two, and if so
round the log size. Finally raise 2 to the selected power, and round to obtain an integral
size. Note that this model does not represent all workloads very well. In particular,
workloads dominated by “bag-of-tasks” jobs composed of multiple individual processes

Version 1.0.4, typeset on June 10, 2023



9.6. PARALLEL JOBS 507

with probability

with probability

p1

from distribution

choose logsize

Parallel job

size = 1

Serial job

Start

round logsize

Power of two

logsizesize = 2

round size

p2

Parameter Value
p1 0.24
p2 0.75

Figure 9.40: Algorithm to select a parallel job size, from Lublin [454].

appear to have many more serial jobs. This seems to be the case for recent clusters and
grids.

The emphasis on powers of two has been questioned by Downey and by Jann et al.
[187, 370]. They claim that this is not a real feature of the workload, but rather an effect
of queue size limits in legacy systems. Such systems usually define a large set of queues
and associate each with different resource limits. In particular, the limits on the degree
of parallelism are typically set to be powers of two (see, e.g., [244, 718]). This claim
is supported by a user survey conducted by Cirne, which found that users do not in fact
favor powers of two [136]. However, power-of-two jobs continue to be prevalent in all
observed workloads.

Job Runtimes

Somewhat surprisingly, parallel job runtimes are not heavy-tailed, in contrast to process
runtimes on Unix machines, which are. This may be attributed to two factors. First, the
use of large-scale parallel supercomputers is tightly controlled by system administrators,
who impose limits on the maximum job length. Second, parallel jobs are typically much
longer than Unix processes, so the entire distribution is shifted. Thus the distribution
may not be heavy-tailed, but all the values are actually rather high.

Various models have been suggested for modeling parallel job runtimes. Feitelson
uses a hyper-exponential distribution with two or three stages [230]. Downey suggests
the use of a log-uniform distribution [187]. Jann et al. prefer the more general hyper-
Erlang distribution [370]. Lublin in turn suggests the use of a hyper-gamma distribution
(i.e., a mixture of two gamma distributions) [454]. The choice is related to how one
wants to handle the correlation of runtime and size, as described later.

The runtime distributions of parallel machines also provide an opportunity to con-
sider workload diversity [239]. Figure 9.41 shows the distributions of runtimes from
several logs. It indicates that they are typically indeed similar to each other. The most
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Figure 9.41: Runtime distributions on different parallel machines.

prominent deviations are found in the SDSC Paragon log, whose two years exhibit dif-
ferent behaviors.

A related issue is the question of user runtime estimates. Many parallel job sched-
ulers require users to provide an estimate of how long each job will run, in order to
plan ahead. The problem is that real user estimates are notoriously inaccurate [242], and
it seems that users are generally incapable of providing more accurate estimates [431].
The effect of such inaccurate estimates was investigated using a model where the real
time is multiplied by a random factor from a limited range; the larger the range, the less
accurate the resulting estimates. However, this model still retained information regard-
ing the relative length of each job, and therefore enabled schedulers to achieve better
results than they would in reality [697]. Thus, Tsafrir et al. developed an intricate model
to mimic the real relationship between job runtimes and user estimates [694]. A central
feature of this model is the discreteness of estimates: users tend to use round values in
their estimates, such as 10 minutes or 1 hour, and doing so causes a loss of information.
All this is described at some length in Section 9.1.6.

Correlation of Runtime and Size

Parallel job sizes and runtimes generally have a weak correlation coefficient, but a strong
distributional correlation, meaning that the distribution of runtimes for small jobs em-
phasizes shorter runtimes than does the distribution of runtimes for large jobs. This is
used as a running example in Section 6.4. But in fact there are some exceptions.

The data from 12 systems is shown in Figure 9.42. In the first eight there is a positive
distributional correlation, meaning that big jobs tend to run longer. In four systems this
is not the case. Specifically, data from the SDSC DataStar is unique in showing that the
distributions of runtimes for small and large jobs are essentially identical. Data from the
LANL Origin 2000, the HPC2N cluster, and the PIK IPLEX system indicate that there
is an inverse correlation, with small jobs generally running longer. However, in the first
two cases, this is a result of unusual modal distributions.

Focusing on the consistent results from the first eight systems, this type of data moti-
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Figure 9.42: Data from multiple systems mostly shows a positive distributional correla-
tion of runtime and size in parallel jobs.
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vates the modeling of this correlation by distributions of runtimes that are conditioned on
job size. Jann et al. partition jobs into bands of sizes based on powers of two or multiples
of 5 and 10. They then create a separate model of the runtimes for each band, using a
hyper-Erlang distribution [370]. Feitelson and Lublin prefer to use parameterized hyper-
exponential and hyper-gamma distributions, respectively [230, 454]. This approach uses
the same distributions for all job sizes. However, the probability of using one branch
or the other depends on the job size. For example, Feitelson uses a simple two-stage
hyper-exponential distribution, in which the probability for using the exponential with
the higher mean is linearly dependent on the size:

p(n) = 0.95− 0.2(n/N)

Thus, for small jobs (the job size n is small relative to the machine sizeN ) the probability
of using the exponential with the smaller mean is 0.95, and for large jobs this drops to
0.75.

9.6.3 Speedup

Some system evaluations cannot be done with rigid jobs, because part of the system’s
function is to decide on the number of processors to use. This is the case for moldable
or malleable jobs. (As defined in [246], moldable jobs allow the system to dictate the
number of processors to use when they start up; malleable jobs also allow the number to
change at runtime.) This requires a model of the job’s speedup — how long it will run
on different numbers of processors.

One such model was proposed by Sevcik [608], based on an assumed structure of
parallel applications. The speedup function is modeled using two inputs and three pa-
rameters. The inputs are
W = the total work done by the job
n = the number of processors allocated

The parameters are
ϕ = inflation in the runtime due to load imbalance among threads
α = the amount of sequential and per-processor work
β = communication and congestion delays that increase with n

The formula for the runtime of the job is then

T (n) = ϕ
W

n
+ α+ β n

Chiang and Vernon have noted that, as written, load imbalance and communication over-
heads occur even when n = 1. They therefore suggest that the formula be changed by
writing n− 1 in place of n [130]. Measurements by Nguyen et al. on a KSR-2 machine
indicate that load imbalance and communication overhead are indeed the two dominant
sources of runtime inefficiency and reduced speedup [515].

Suggested values for the parameters are given in Table 9.3, where the values for W
are mean values, and the distribution is selected so as to achieve the desired variance. In
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W ϕ α β

workload1 1000 1.02 0.05 0
workload2 1000 1.3 25 25

Table 9.3: Suggested parameter values for Sevcik’s speedup model.
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Figure 9.43: Parallelism profiles assumed in the Downey speedup model.

the first workload, all jobs have nearly ideal speedup. In the second, small jobs experi-
ence poor speedup whereas large jobs experience reasonable speedup.

Another model was proposed by Downey [187] as part of a comprehensive model
based on observations of the CTC SP2 and SDSC Paragon workloads. This model ex-
plicitly disregards the dominance of power-of-two sizes in the logs, under the assumption
that it is a result of the interface to commonly used queueing systems such as NQS. It
therefore proposes to “smooth” the distribution. The suggested model is log-uniform:
the probability that a job uses less than n processors is proportional to log n. This is in-
terpreted as the average parallelism in the job and is used in the definition of the speedup
function.

Rather than model runtime independently from the degree of parallelism, the cumu-
lative runtime (that is the sum over all processors) is modeled. This is taken to represent
the total work done by the job, independent of how many processors are used. The actual
runtime is then obtained by applying the speedup function, given the number of proces-
sors chosen by the scheduler. The proposed model is again log-uniform: the probability
that a job uses less than t node-seconds is proportional to log t.

The speedup function is modeled using three parameters: the average parallelism of
the job A, the variance in parallelism V , and the number of processors n. Given these
parameters, a hypothetical parallelism profile is constructed and the speedup calculated.
The parallelism profile (or “shape”) indicates the distribution of degrees of parallelism
that are exhibited throughout the execution [607].

Two types of profiles are suggested, as illustrated in Figure 9.43. They are charac-
terized by a parameter σ. In both profiles the average parallelism is A, and the variance
is V = σ(A− 1)2. In the low-variance profile, the degree of parallelism is A for all but
a fraction σ of the time (naturally σ ≤ 1 in this case). The rest of the time is divided
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equally between being serial and highly parallel. The speedup of programs with this
profile, as a function of the number of allocated processors n, is then given by

S(n) =



An

A+ σ
2 (n− 1)

1 ≤ n ≤ A

An

σ(A− 1
2) + n(1− σ

2 )
A ≤ n ≤ 2A− 1

A n ≥ 2A− 1

In the high-variance profile σ ≥ 1. The program is either serial or highly parallel. The
speedup of programs with this profile is

S(n) =


An(σ + 1)

σ(n+A− 1) +A
1 ≤ n ≤ A+Aσ − σ

A n ≥ A+Aσ − σ

9.6.4 Parallel Program Behavior

Computer jobs are often classified as being compute-bound or I/O-bound, depending
on whether they spend most of their time computing or waiting for I/O operations. In
parallel jobs there is a third class of communication-bound jobs, in which a large frac-
tion of the time is spent communicating partial results among the different processes. A
classification of jobs into these three classes can be done by noting the number of com-
munication operations executed in a time slice and whether the job was blocked on I/O
[161].

Communication and Synchronization

As noted earlier, the unique characteristic of parallel jobs is that they are composed
of multiple communicating processes. Such communication serves two functions: to
move data, and to delay processes that are too far ahead so that others can catch up. In
message-passing systems these two functions are performed simultaneously when one
process waits for a message from another. In shared memory systems they are separated:
a synchronization mechanism is used to delay the receiving process until the data is ready
in the shared memory.

The standard for communication (at least on distributed memory machines) is the
Message Passing Interface (MPI) [505, 506, 640]. This extensive standard defines mul-
tiple types of point-to-point and collective communication primitives, thus enabling the
characterization of communication patterns at a relatively high level of abstraction. Re-
sults of studies of MPI activity reveal a wide distribution of message sizes, rates, and
blocks of computation between messages [708], as do studies based on earlier propri-
etary interfaces [160]. However, each individual application typically has a rather modal
distribution of sizes (Figure 9.44). In addition, collective communications typically have
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Figure 9.44: Distributions of message sizes and rates for several parallel applications.
Note the logarithmic Y scale of rates, which are normalized per gflop of computation on
the entire machine. Data from [160].

small payloads, indicating that they are used more for synchronization than to move
data. The different granularities of computation between communications imply that
they have different synchronization requirements: rapid communications require pro-
cesses that really run in parallel and respond promptly, whereas communications that
are separated by large blocks of computation are more tolerant to delays and allow more
flexibility in scheduling [269].

An especially important characteristic of message passing is the traffic pattern and
how it maps onto the communication network, because different patterns may lead to
rather different performance results [546]. In particular, different routing algorithms
may interact with the traffic pattern in either good or bad ways [17]. Another issue is
network hotspots, in which a large fraction of the traffic is directed at the same des-
tination, thereby causing congestion. Congestion is especially problematic in shared
memory architectures, in which shared variables that are used for synchronization or co-
ordination may become hotspots [547, 433, 80, 163]. An interesting effect in this respect
is that synchronous communications (that is, a protocol where a processor must wait for
communications to complete before going on) lead to feedback from the network, which,
in the case of congestion, throttles additional load [605, 17].

Despite the obvious importance of communication patterns to the understanding of
parallel applications, there has been little work on modeling them. Instead, the tendency
is to use various applications as benchmarks and resort to actual measurements. This
reflects the complexity of the problem and the difficulty of devising models that will be
good enough for reliable performance predictions. The only model that has seen some
use is the simple distinction between computation phases and communication phases, as
in the BSP model [706].

Parallel I/O

Parallel I/O is in effect a combination of message passing and regular I/O: one can view it
as a set of parallel processes exchanging messages with I/O nodes and through them with
disks. It has been modeled in a sense by support for special I/O modes in early parallel
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Mode Description
broadcast/reduce all processes collectively access the same data
scatter/gather all processes collectively access a sequence of data

blocks, in rank order
shared offset processes operate independently but share a common

file pointer
independent allows programmer complete freedom

Table 9.4: File modes used in various parallel I/O systems (see Figure 9.45).
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Figure 9.45: Illustration of the parallel broadcast/reduce, scatter/gather, and shared
pointer I/O modes from Table 9.4.

file systems, as described in Table 9.4 and Figure 9.45 [549, 73]. Many of these modes
reflect collective operations, in which I/O from all the nodes is combined in some way.
For example, in the broadcast/reduce mode, a read operation broadcasts the same data
to all the participating processes, whereas a write operation performs some reduction
on the data provided by the processes and writes the result (e.g., the maximal value).
As in message passing, I/O operations tend to come in distinct phases, interspersed by
computing [583].

The distribution of I/O operations is similar to the distribution of message sizes. In
a study from the mid-1990s, most I/O operations were in the range of tens to hundreds
of bytes long, but most of the data being read or written were part of the few very large
operations typically involving (many) megabytes [517]. This pattern leads to significant
mass-count disparity. The distribution of access sizes is very modal [634]. In files that
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were opened for only reading or only writing, most accesses were sequential. However,
some of these sequential accesses were not consecutive: they started at a higher file offset
than where the previous request ended, but not immediately after it. In files opened for
both reading and writing, most accesses were not sequential.

Perhaps the most important characteristic of parallel I/O is that accesses from differ-
ent processes can be finely interleaved in the file [416, 517]. This is reflected in the file
access modes of Table 9.4 and Figure 9.45, which typically reflect a partitioning of some
data among the processors. For example, the scatter/gather mode allows the processes
to access a matrix together in one collective operation such that each one of them gets
a distinct set of rows. This leads to significant differences between the logical access
pattern as seen by individual processes and the physical access patterns at the disks. In
addition, there may be metadata accesses by the file system [624].

Benchmark Suites

A major problem with modeling the internals of parallel jobs is that there are so many
parameters and options: the number of threads, the granularity of the interactions be-
tween them, the communication patterns, the amount of data that is transferred, and so
on. An alternative is therefore to use benchmarks, namely representative sets of real
applications.

One benchmark suite for parallel computing is SPLASH (Stanford parallel applica-
tions for shared memory). As the name implies the applications are designed for shared
memory, rather than message passing. In fact two versions were defined [632, 741]. The
first contained six applications, mostly scientific simulations written in C. The second
contains eight applications and four kernels, with better algorithms and implementations
that also took better advantage of available hardware facilities.

Another widely used benchmark suite was the NAS parallel benchmark [44], which
included five kernels and three applications in computational fluid dynamics from the
NASA aerodynamics simulation program. Several problem sizes were defined to enable
scaling to larger installations. Later versions of these benchmarks used MPI (message-
passing interface) for communication.

Benchmark suites such as SPLASH and NAS were useful for evaluating parallel
architectures, in terms of how well they support the different applications. But they
were not useful for evaluating parallel job schedulers, where a sequence of jobs that
arrive and need to be handled is needed. Such a scenario is provided in the ESP (effective
system performance) benchmark defined at Lawrence Berkeley National Lab [740, 232].
This benchmark is composed of 82 jobs that together run for several hours. These jobs
are instances of nine applications, where the number of instances of each application is
between 1 and 22. In some cases, different instances of the same application use different
numbers of processors. Two of the jobs are supposed to use the full machine; this checks
how well the system manages to collect nodes without causing undue idleness. Using
real applications led to an interesting result when the benchmark was run on two different
machines: due to architectural differences, job runtimes were quite diverse and did not
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scale in the same way [740]. This implies that workloads assuming rigid jobs may need
to use different runtime distributions for different architectures.

9.6.5 Load Manipulation and System Size

It is often desirable to evaluate the performance of a system under different load condi-
tions, e.g. to check its stability or the maximal load it can handle before saturating. Thus
the workload model should not model only a single load condition, but should contain a
tunable parameter that allows for the generation of different load conditions.

In the context of parallel workloads, the most common approach to changing the
load is to systematically modify the interarrival times (it is also possible to change the
runtime, but this has the drawback of creating a builtin correlation between response
time and load). For example, if a model generates a load of 70% of system capacity
by default, multiplying all interarrival times by a factor of 7/8 = 0.875 will increase
the load to 80%, while retaining all other features of the workload model. This is a
workable solution for a stationary workload. However, if daily cycles are included in the
model, such modifications influence the relative lengths of the jobs and the daily cycle,
which is obviously undesirable; for example, it reduces the extra capacity available for
scheduling delayed batch jobs at night [248]. Moreover, reducing interarrival times may
violate dependencies between jobs and any feedback from system performance to job
submittal [614].

Parallel jobs are characterized by two dimensions: their runtime and the number of
processors they use. Thus another alternative to modifying the load is by changing the
relative size of the jobs and the full machine. For example, if the model generates a load
of 70% on a 100-node system, we can reduce the system size to 7/8 · 100 ≈ 88 to create
a load of 80% (naturally this has to be rounded to an integer value, so the actual load
produced may deviate a bit from the target value). The problem with this approach is
that it may change the workload packing characteristics and fragmentation, especially in
the common case where both the system size and common job sizes are powers of two,
and these changes may have a significant effect on performance [450].

The alternative suggested in Chapter 8 is to use a user-based model. This can be
done in either of two ways. The first is to modify the load by changing the size of the
user population. As shown in Figure 9.46, the justification for this approach is dubious.
The other is to change the characteristics of the users. Thus to increase the load we
may cause the users to have longer sessions in which they submit more jobs. Both these
approaches have the advantage that they do not create other problems, except possibly
some modification of the degree of locality of sampling.

An underlying consideration in all the previous load manipulation schemes is the
desire that — except for changing the load — all other aspects of the workload “remain
the same”. This is required in order to perform the system evaluations under equivalent
conditions. However, it is not necessarily the right thing to do. In principle, it may be
that the characteristics of the workload on lightly loaded systems are actually different
from those on highly loaded systems. If this is the case, we may well want to employ
distinct system designs that take the differences in the workloads into account.
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Figure 9.46: Scatterplots showing number of active users and resulting load, using a
resolution of one week.

Some evidence in this direction is provided by the workload analysis of Talby et
al. [671]. Using the co-plot method to compare several parallel system workloads, they
show that systems with higher loads tend to have a lower job arrival rate. At the same
time, the distribution of job runtimes seems to be uncorrelated with the system load,
although there is some weak correlation between job sizes (that is, degree of parallelism)
and system load. Thus a model in which increased load is induced by fewer larger
jobs may be worth checking. To avoid a strong impact on fragmentation, shifting the
distribution of job sizes upward should be done by increasing the probability for larger
powers of two, rather than by multiplying job sizes by a constant factor. In effect, this
moves the CDF of the job sizes downward rather than to the right (Figure 9.47).

A special case of load manipulation involves adjusting a workload to a different ma-
chine size than the original one. For example, we may have a workload log that was
captured on a machine with 1024 nodes, but we need to simulate scheduling on a ma-
chine with 2048 nodes. Using the given workload as is would lead to low load, and
moreover, none of the jobs would be larger than half the machine, which makes pack-
ing them together much easier [144, 145, 703]. Some adjustment is therefore required,
taking into account the target machine size.

The parallel workload model by Lublin accepts the machine size as a parameter
and creates job sizes according to the process described in Figure 9.40 [454]. This is
based on a two-phase log-uniform distribution. Assuming we want job sizes in the range
from P⊥ (typically 2, because serial jobs are handled separately, but could be larger to
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Figure 9.47: Emphasizing larger jobs by multiplying their sizes by a constant (effec-
tively shifting the CDF to the right, as shown at left) destroys the structure of powers of
two; increasing their probabilities (i.e., shifting the CDF downward, right) maintains the
structure. Data from SDSC Paragon.

reflect a minimal allocation) to P⊤ (typically the target machine size), we select the
jobs size as follows. With probability p = 0.86, use the first phase of the distribution,
and otherwise the second phase. For the first phase, select a number e uniformly from
the range logP⊥− 0.2 to logP⊤− 2.5. For the second phase, select e from the range
logP⊤− 2.5 to logP⊤. The job size will then be 2e, rounded to the nearest integer or
power of two. The parameters in this procedure were set based on typical machine sizes
in the hundreds; as sizes have grown considerably since then, the parameters may have
to be revised if this algorithm is to be used today.

Ernemann et al. have devised an alternative approach based on manipulating an ex-
isting log [213]. They start with a scaling factor f that reflects the required increase in
size. Thus if the logged machine had only 300 nodes and the simulation target is 1000,
the factor is f = 31

3 (however, in their experimental results they found that it is bene-
ficial to use a slightly higher factor than the precise increase in scale). For each job in
the log a random decision is made between two courses of action: either increase the job
size by f , or create f copies of the job. Naturally, fractional values need to be handled:
if the size is increased the resulting size is rounded to the nearest integer, and if we need
f = x.y copies then we create x copies for sure, and an additional one with probability
y. The fraction of jobs that are enlarged or replicated can be chosen at will, based on
preference for having larger jobs or more small jobs. A possible default is to apply each
approach to half of the jobs.

9.6.6 Grid Workloads

The previous sections are largely based on workloads from large-scale parallel super-
computers and clusters. Another platform for parallel computation is grids — loosely
federated collections of clusters belonging to different organizations, that are shared
to enable better use of resources and the solution of larger problems than possible on
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any single cluster. This type of platform may require specialized workload models
[358, 357].

One early finding regarding grid workloads concerns the typical degrees of paral-
lelism. It turns out that the vast majority of grid jobs appear to be serial [440, 360, 357]
(see Figure 9.39). One reason for this is that grids tend to be used for “bag-of-tasks” type
jobs, in which numerous instances of the same application are executed with different
parameter values [359, 490]. This usage pattern is even supported by special facilities
that ease the submittal of such bags of similar tasks. As a result more than 90% of the
jobs may belong to these bags. At the same time, most grids still lack the facilities
needed to run truly parallel applications, such as the ability to co-allocate resources at
different locations at the same time.

Another interesting deviation of grid systems concerns the arrival process. Specifi-
cally, at least in one case it has been observed that arrivals do not exhibit marked daily
or weekly cycles, in contrast with practically all other types of workloads [524]. This
was attributed to the fact that users come from multiple time zones and may schedule
jobs for later execution. However, many other grids do in fact exhibit strong daily and
weekly cycles of activity.
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10
Summary and Outlook

Developing a model of a nontrivial system is itself nontrivial. There is no simple recipe
that can be applied that promises good results. Instead, model building is usually an
iterative and interactive process, involving three recurring steps: model formulation,
model estimation, and model validation [121, sect. 4.8]. Most books, including this one,
devote most of their attention to model estimation. This is the activity of matching a
specific piece of a model to a given feature of the data. But one must not forget the big
picture.

From Workload Data to Workload Model

In previous chapters we have described and compared many workload models in various
domains. Here we want to summarize recurring principles and draw them together.

To recap, there are three main approaches to using workload data:

1. Find the simplest abstract mathematical model that captures a desired feature.

2. Use raw data as when driving simulations directly from traces, or using empirical
distributions.

3. Create a generative model that could plausibly give rise to the observed data.

Perhaps the most entrenched and commonly used approach in workload modeling is
to use a mathematical abstraction in the form of a statistical model. For example, the
method of moments can be used to fit a marginal distribution, and an autocorrelation
function is used to characterize the dependence structure and fit a long-range dependent
fARIMA model. When a new workload feature is recognized as being important, math-
ematical modeling is often the first approach used to evaluate its effect. And doing so
often leads to great advances in understanding the effect of the new feature.

But such abstractions can also miss out on important issues. Distributions with the
correct moments can still have the wrong shape and taint detailed analysis. Moreover,
descriptive mathematical models may actually lead to conclusions that do not really
reflect the workload. For example, consider a study of a communication network that
finds a negative correlation between packet sizes and the subsequent interval to the next
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packet. Such a phenomenon may be due to the fact that full packets are usually part of a
long flow, so the intervals between them are minimal, whereas smaller packets tend to be
singletons (e.g., used for acknowledgments). Thus a negative correlation indeed exists,
but it would be wrong to model it as a general feature applicable to all packet sizes.

Naturally, the other approaches to using workload data are also not without prob-
lems. Using raw data, for example, may avoid the mistakes that could be made in mod-
eling, but it usually does not lead to as much understanding of the structure of the work-
load. In particular, raw data by itself provides no means for extrapolation or adjustment
to different conditions.

Approaches to Modeling

Focusing on workload modeling, and leaving the option of using raw data to the side,
three recurring themes are of importance.

Descriptive vs. generative models. The first and most basic distinction is between de-
scriptive and generative models. Descriptive models are superficial and try to
mimic an observed phenomenon, often using a mathematical abstraction. Gener-
ative models, in contradistinction, attempt to understand the mechanism that led
to the creation of the observed workload. The idea is that by understanding and
emulating the mechanism we can better adapt the workload to different conditions.

Parsimonious vs. conservative modeling. Paraphrasing a well-known quote attributed
to Einstein, models should be made as simple as possible but not simpler. But
how do we know when we cross the line? Emphasizing the quest for simplicity,
a parsimonious model includes only what is positively known to be important
and nothing else. The opposite approach, taken by conservative models, excludes
only what is positively known to be unimportant. As model building is often
done in a state of uncertainty, the choice is largely up to the disposition of the
analyst. The tradeoff is clear: a conservative model is safer because it will have a
higher probability of leading to a correct result, even if you do not fully understand
how and why. But this comes at the cost of more work and possibly reduced
explanation power.

Open vs. closed models and feedback. A common assumption in many performance
evaluations is that the workload is external to and independent of the system. This
essentially means we use an open system model. But in many situations it is more
reasonable to assume that some feedback occurs and that system performance has
some effect on the generation of additional work. A rather extreme model that
can then be used is a closed system model, where the user population is assumed
to be fixed and every finished job immediately (or after a certain “think time”)
leads to the submittal of a new job. But mixed models with both open and closed
characteristics are probably more realistic.

Realistic modeling of feedback may incur considerable difficulties, because it may
involve the modeling of user behavior, and direct data about user behavior is sel-
dom if ever available. However, ignoring the stabilizing effect of feedback might
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lead to completely different system dynamics. This leads to the risk of a model
that does not reflect reality and consequently to results that cannot be relied on.

The connection between these three themes is the following. Generative models do
not settle for a superficial description of the salient features of the workload. Instead,
they attempt to model the workload in the context of the system’s entire environment.
This leads to conservative modeling, which includes more features than the minimum
that is necessary to reproduce known phenomena. And a prominent feature that is pos-
sible to model in a generative conservative framework, but is typically missing in more
conventional and parsimonious settings, is feedback and its effect on stability.

Model Validation

Modeling is always subject to the questions of validation and verification. Validation
asserts that the model reflects reality. Verification asserts that the implementation of
the model indeed does what it is supposed to. Therefore validation is part of the actual
modeling, whereas verification is part of using the model in an evaluation. In this book
we are subsequently interested only in validation.

Model validation can be done at three levels.

Statistical validation. Statisticians have developed various techniques to verify that
models are valid. A basic approach is to use cross-validation. To do so parti-
tion the available data into several subsets, and create a separate model for each
part. Then compare the models. If they are dissimilar, they cannot be trusted,
because the model obviously depends on an arbitrary decision of what data to use.

When using cross-validation it is important to partition the data in a way that
does not disrupt the modeling procedure. For example, given a workload log
representing the activity of many users, it may be better to partition at the user
level rather than at the job level. Thus all the jobs of certain users will either
be included or excluded. In some cases simple deterministic options (such as
partitioning into odd and even records) may also be OK.

If sufficient data is not available, bootstrapping can be used. This creates multiple
datasets via resampling, which can be used again to create multiple models.

Bootstrapping can also be used to assert that workload features are present in the
first place, and deserve to be considered in a model. The idea is to resample the
workload data many times subject to some specific modification. For example,
the modification can be a random reordering of items in order to test for the im-
portance of dependencies. Then the resampled workloads are compared with the
original workload to see whether the original one stands out.

Phenomenological validation The fact that a model is consistent as verified by statis-
tical validation does not necessarily mean that it captures all important workload
features. Thus one needs to validate the model relative to the data. The simplest
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way to do this is to use goodness-of-fit tests to verify that model distributions in-
deed match the data. Similarly one needs to verify that the correlation structure
(including long-range dependence) is modeled correctly.

A common problem for phenomenological validation is one of workload diver-
sity. We can match a given sample of the workload, but this is but one sample, and
other samples may differ. Thus it may be useful to first compare several indepen-
dent samples from different sources, and to characterize their diversity (e.g., by
using the spatial locality of sampling measure). The goal of a good model is then
to be able to create different workloads with such diversity. In particular, a worthy
objective is to create a parameterized workload model, such that different parame-
ter values lead to the creation of workloads at different locations in the workloads
space.

Functional validation The highest level of validation is functional validation, in which
we verify that the model workload affects the system under study in the same
way as the real workload: it places the same load on servers, causes the same
CPU utilization, the same queue lengths, the same packet arrival process, and so
on. This should at least hold when the model is parameterized to behave like the
original data. However, even if the model behaves correctly at the origin, there
is still no way to know that it correctly performs adjustments to other conditions.
A good example is adjusting the load, and specifically driving the system toward
saturation. How should the workload change under such conditions?

Indeed, a central problem is workload modeling is extrapolating beyond the given
data. By definition such extrapolations cannot be verified to be correct. In such cases
guidance can be obtained from experience with other workload types. But evaluations
that use such extended models should be done subject to an acknowledgment that the
model may be suspect.

Finally, one should always remember that a model is only an approximation of the
truth. Moreover, except under fortuitous circumstances, it is true for the time of its
creation and not necessarily later. Therefore models may need to be revised when new
data becomes available.

Data-Driven Generative Models

Significant work has been done on computer systems’ workload characterization and
modeling over the years, but still the field is in its infancy. A lot is not known, and things
change all the time. There is a need to balance theory and assumptions with real data, as
well as a need to understand the mechanisms that drive system usage.

Workload modeling necessarily starts with workload data. It is imperative to collect
and share workload data. Data is needed not only for individual performance evaluations,
but also for meta-studies based on accumulated knowledge. We need to be able to see
trends over long periods of time to be able to predict how things may change in the
future.
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Once you have workload data in hand, the first thing to do is to look at it. Identify
outliers and special circumstances that might require handling, and clean the data as
appropriate. Then look at marginal distributions, using CDFs and LLCDs to characterize
the tails. Check whether mass-count disparity effects are evident. Check for correlations
and self-similarity.

Then build your model based on what you have learned from the data. As noted
earlier, there are various options for how to go about this: you can opt for a descriptive
model or a generative one, a parsimonious model or a conservative one, and an open
system or a closed system with feedback. My opinion is that a conservative generative
model with feedback should be the goal in most cases, especially if you are in the dark
regarding what is really important and how the workload interacts with the system de-
sign. But this suggestion reflects more than just my opinion. Generative models with
feedback have been proposed and used in many domains, sometimes under different
names. For example, in networking, essentially the same idea is called “modeling at the
source”.

With a workload model in hand you can now evaluate the performance of the system.
But at the same time, the evaluations can also be used to learn more about the workload.
And new ideas for workload modeling are sure to come up.
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Data Sources

The data used in this book comes from the following sources.

NASA Ames iPSC/860

Data about 42,264 jobs submitted in the fourth quarter of 1993, collected by Bill Nitzberg.
More than half were invocations of pwd by system personnel to verify that the system
was responsive. The system is a 128-node hypercube manufactured by Intel.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l nasa ipsc/.

LANL CM-5

Data about 201,387 jobs submitted from October 1994 to September 1996, collected by
Curt Canada, and including three large flurries. The system is a 1024-node Connection
Machine 5 from Thinking Machines Corp., the biggest of its kind at the time, which
reached second rank in the Top500 list of 1993.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l lanl cm5/.

SDSC Paragon

Data about 115,591 jobs submitted from January 1995 to December 1996, collected by
Reagan Moore and Allen Downey, and including several flurries. The system is a 416-
node Intel Paragon machine. Originally this data was provided as two logs for separate
years. Due to anonymization, user IDs may be inconsistent in the two years. Therefore
we only use the 1995 data when user data is important.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc par/.
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CTC SP2

Data about 79,302 jobs submitted from June 1996 to May 1997, collected by Dan Dwyer
and Steve Hotovy, with one small flurry. The system is a 512-node IBM SP2 machine,
the biggest of its kind at the time, and ranked 6 in the 1995 Top500 list.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l ctc sp2/.

KTH SP2

Data about 28,490 jobs submitted from September 1996 to August 1997, collected by
Lars Malinowsky. The system is a 100-node IBM SP2.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l kth sp2/.

SDSC SP2

Data about 73,496 jobs submitted from April 1998 to April 2000, collected by Victor
Hazlewood, and including one large job flurry and one large process flurry. The system
is a 128-node IBM SP2.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc sp2/.

LANL Origin 2000 Cluster

Data about 122,233 jobs submitted to a cluster of 16 Origin 2000 machines with 128
processors each (the open partition of the ASCI Blue Mountain system), from December
1999 to April 2000, collected by Fabrizio Petrini.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l lanl o2k/.

SDSC Blue Horizon

Data about 250,440 jobs submitted from April 2000 to January 2003, collected by Travis
Earheart and Nancy Wilkins-Diehr, and including several flurries. The system is an 144-
node IBM SP, with eight processors per node, which achieved rank 8 in the Top500 list
in 2000.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc blue/.

HPC2N Cluster

Data about 527,371 jobs submitted from July 2002 to January 2006, collected by Ake
Sandgren and Michael Jack. About 57% of the data comes from a single user, in the
shape of multiple flurries throughout the log. In addition there are a couple of smaller
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flurries. The machine is a 120-node Linux cluster with two processors per node.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l hpc2n/.

SDSC DataStar

Data about 96,089 jobs submitted from March 2004 to March 2005, collected by Victor
Hazlewood. The system is an 184-node IBM eServer pSeries, with two types of nodes:
176 p655 nodes which are 8-way SMPs, and 8 p690 nodes which are 32-way SMPs.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l sdsc ds/.

PIK IPLEX

Data about 742,964 jobs submitted over more than three years, from April 2009 to July
2012, to a 320-node IBM iDataPlex Cluster, and collected by Ciaron Linstead. Each
node has two processors with 4 cores each, for a total of 2560 cores in the whole system.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l pik iplex/.

CEA Curie

Data about 773,138 jobs submitted from February 2011 to October 2012, collected by
Joseph Emeras, and containing four large flurries. The system is a combination of three
partitions with different properties, designed by Bull: a partition with 360 fat nodes with
four 8-core processors, another partition with 144 nodes, each with two Intel processors
and two Nvidia GPUs, and a third with 5040 nodes that each have two 8-core processors.
The latter two partitions were added after the beginning of the logging period, so the full
configuration was in effect only during the last 11 months.
Available from the Parallel Workloads Archive:
URL http://www.cs.huji.ac.il/labs/parallel/workload/l cea curie/.

Unix File Sizes Survey

A Usenet survey by Gordon Irlam in October 1993, with data about 12,128,881 files
from 1050 file systems [361].
Available from Gordon Irlam’s website:
URL http://www.gordoni.com/ufs93.html. Also cached at this book’s website.

HU-CS File Sizes

Sizes of user files (including both staff and students) at the School of Computer Science
and Engineering at Hebrew University. This was scanned in June 2005 and contains data
about 2,860,921 files.
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Available from this book’s website.

/cs/par File Sizes

File sizes from the file system of the Parallel Systems Laboratory at the School of Com-
puter Science and Engineering at Hebrew University. This was scanned in 2003 and was
found to include 1,025,039 files.
Available from this book’s website.

Unix Process Runtimes

Dataset used by Mor Harchol-Balter and Allen Downey in simulations [320], that in-
cludes data about 184,612 processes that were submitted to a server at CMU over an
8-hour period, from 9AM to 5 PM, in November 1994.
Available from Allen Downey’s website:
URL http://www.allendowney.com/research/sigmetrics96/traces.tar.gz.

HU-CS Process Runtimes

Data on 448,597 Unix processes submitted to a departmental server at the School of
Computer Science and Engineering at Hebrew University, from 20 October to 24 Novem-
ber 2005.
Available from this book’s website.

Pita Process Runtimes

Data on 816,689 Unix processes submitted to a departmental server, from a two-week
period in December 1998, that includes robot activity by root and user 13 (user IDs were
sanitized).
Available from this book’s website.

Inferno Process Runtimes

Data on 661,452 Unix processes submitted to a departmental server, from a 30-hour
period in March 2003. Of these, 539,253 were invocations of the Unix ps command by
a single user, the result of a bug in implementing an operating systems course exercise.
Available from this book’s website.

Inferno Session Lengths

Data about Unix login sessions to a departmental server from several multiday periods
in 2004.
Available from this book’s website.
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BYU Memory Access Traces

Traces of memory accesses of SPEC 2000 benchmarks as executed on a Pentium III
system.
Available from the Brigham Young University Trace Distribution Center:
URL http://tds.cs.byu.edu/tds/.

SDSC HTTP

Log from a web server at SDSC, including 28,338 requests made on 22 August 1995,
collected by Joshua Polterock, Hans-Werner Braun, and K Claffy.
Available from the Internet Traffic Archive:
URL http://ita.ee.lbl.gov/html/contrib/SDSC-HTTP.html.

NASA HTTP

Log from a web server at NASA Kennedy Space Center, including 1,891,714 requests
made during July 1995, and used by Martin Arlitt and Catey Williamson [37, 38]. Of
these, we typically use the 1,887,646 GET requests.
Available from the Internet Traffic Archive:
URL http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html.

Saskatchewan HTTP

Log from a web server at the University of Saskatchewan, including 2,408,625 requests
made from June through December 1995, also used by Arlitt and Williamson [37, 38].
Of these, we typically use the 2,398,080 GET requests.
Available from the Internet Traffic Archive:
URL http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html.

WC’98 HTTP

Complete activity log of the 1998 Soccer World Cup website collected and analyzed by
Martin Arlitt [35], which includes 1,352,804,108 requests made from May to July.
Available from the Internet Traffic Archive:
URL http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

AOL search

10 logs containing data about 20,792,287 queries submitted by 657,425 users over three
months (March through May 2006). When using this data, we remove user 71845, who
is responsible for 267,933 queries performed round the clock during five days in early
April; this seems to be the combined stream of many different users coming from some
other search engine, and would therefore distort any study of individual user search
behavior. For statistics regarding queries we also remove the query “-”, which is the
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most popular at 464,724 appearances. It is assumed this actually means “no data”.
This dataset was available for a short time from AOL Research at http://research.aol.com
[539], but the uproar regarding privacy compromization caused the data to be withdrawn.
However, copies may still be available on the Internet. Note that due to the lack of a
strong effort to prevent privacy leaks, this dataset is more reliable then others in terms of
reflecting real user activity.

Wikipedia page views

Extensive data at hourly resolution regarding page views of all Wikipedia-related projects
since December 2007.
Available from Wikimedia:
URL http://dumps.wikimedia.org/other/pagecounts-raw/.

Facebook MapReduce

The SWIM project (Statistical Workload Injector for MapReduce) released several sam-
ples of MapReduce workload data from clusters at Facebook. Each file is the concate-
nation of 24 random one-hour samples from the original log file [125, 124].
Available from GitHub:
URL https://github.com/SWIMProjectUCB/SWIM/wiki.

BC packets

Several traces of Bellcore Ethernet traffic from 1989, used by Wilson et al. in the first
characterizations of self-similarity in LAN traffic [436, 732].
Available from the Internet Traffic Archive:
URL ftp://ita.ee.lbl.gov/html/contrib/BC.html.

LBL packets

Several traces of Lawrence Berkeley Lab Internet traffic from 1994, used by Vern Paxson
and Sally Floyd to show self-similarity in WAN traffic [540].
Available from the Internet Traffic Archive:
URL http://ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html.

WIDE B

Daily sample of Internet packet data from 2001 to 2006, from access point B of the
WIDE backbone. This is a transpacific link between Japan and the United States. Data
from other access points is also available, including point F, which replaced point B in
July 2006.
Available from the MAWI working group:
URL http://mawi.wide.ad.jp/mawi/.
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[574] J. Roca, V. Moya, C. Gonzáles, C. Solı́s, A. Fernández, and R. Espasa, “Workload
characterization of 3D games”. In IEEE Intl. Symp. Workload Characterization,
pp. 17–26, Oct 2006, DOI: 10.1109/IISWC.2006.302726.

[575] C. Rolland, J. Ridoux, and B. Baynat, “LiTGen, a lightweight traffic generator:
Applications to P2P and mail wireless traffic”. In 8th Passive & Active Mea-
surement Conf., pp. 52–62, Springer-Verlag, Apr 2007, DOI: 10.1007/978-3-540-
71617-4 6. Lect. Notes Comput. Sci. vol. 4427.

[576] C. Rolland, J. Ridoux, and B. Baynat, “Catching IP traffic burstiness with a
lightweight generator”. In 6th IFIP Networking 2007, pp. 924–934, Springer-
Verlag, May 2007, DOI: 10.1007/978-3-540-72606-7 79. Lect. Notes Comput.
Sci. vol. 4479.

[577] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, “Complete computer sys-
tem simulation: The SimOS approach”. IEEE Parallel & Distributed Technology
3(4), pp. 34–43, Winter 1995, DOI: 10.1109/88.473612.

Version 1.0.4, typeset on June 10, 2023



572 BIBLIOGRAPHY

[578] M. Rosenblum and J. K. Ousterhout, “The design and implementation of a log-
structured file system”. ACM Trans. Comput. Syst. 10(1), pp. 26–52, Feb 1992,
DOI: 10.1145/146941.146943.

[579] M. Rosenstein, “What is actually taking place on web sites: E-commerce lessons
from web server logs”. In ACM Conf. Electronic Commerce, pp. 38–43, Oct 2000,
DOI: 10.1145/352871.352876.

[580] R. F. Rosin, “Determining a computing center environment”. Comm. ACM 8(7),
pp. 465–468, Jul 1965, DOI: 10.1145/364995.365690.

[581] S. M. Ross, Introduction to Probability Models. Academic Press, 5th ed., 1993.
[582] D. Rossi, M. Mellia, and C. Casetti, “User patience and the web: A hands-

on investigation”. In IEEE Globecom, vol. 7, pp. 4163–4168, Dec 2003, DOI:
10.1109/GLOCOM.2003.1259011.

[583] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante, “Models of parallel appli-
cations with large computation and I/O requirements”. IEEE Trans. Softw. Eng.
28(3), pp. 286–307, Mar 2002, DOI: 10.1109/32.991321.

[584] A. Roubos and O. Jouini, “Call centers with hyperexponential patience mod-
eling”. Intl. J. Production Economics 141(1), pp. 307–315, Jan 2013, DOI:
10.1016/j.ijpe.2012.08.011.

[585] R. V. Rubin, L. Rudolph, and D. Zernik, “Debugging parallel programs in par-
allel”. In Workshop on Parallel and Distributed Debugging, pp. 216–225, SIG-
PLAN/SIGOPS, May 1988, DOI: 10.1145/68210.69236.

[586] C. Ruemmler and J. Wilkes, “UNIX disk access patterns”. In USENIX Winter
Conf. Proc., pp. 405–420, Jan 1993.

[587] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling”. Computer
27(3), pp. 17–28, Mar 1994, DOI: 10.1109/2.268881.

[588] R. J. Rummel, “Understanding correlation”. URL
http://www.mega.nu:8080/ampp/rummel/uc.htm, 1976.

[589] G. Samorodnitsky, “Long range dependence”. Foundations & Trends in Stochas-
tic Systems 1(3), pp. 163–257, 2007, DOI: 10.1561/0900000004.

[590] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes:
Stochastic Models with Infinite Variance. Chapman & Hall, 1994.

[591] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Leveraging Zipf’s
law for traffic offloading”. Comput. Commun. Rev. 42(1), pp. 17–22, Jan 2012,
DOI: 10.1145/2096149.2096152.

[592] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis and model-
ing of network traffic”. In 1st Internet Measurement Workshop, pp. 99–103, Nov
2001, DOI: 10.1145/505202.505215.

[593] M. Satyanarayanan, “The evolution of Coda”. ACM Trans. Comput. Syst. 20(2),
pp. 85–124, May 2002, DOI: 10.1145/507052.507053.

[594] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The interactive performance
of SLIM: A stateless thin-client architecture”. In 17th Symp. Operating Systems
Principles, pp. 32–47, Dec 1999, DOI: 10.1145/319344.319154.

Version 1.0.4, typeset on June 10, 2023



BIBLIOGRAPHY 573

[595] F. Schneider, S. Agarwal, T. Alpcan, and A. Feldmann, “The new web: Character-
izing AJAX traffic”. In 9th Passive & Active Measurement Conf., pp. 31–40, Apr
2008, DOI: 10.1007/978-3-540-79232-1 4. Lect. Notes Comput. Sci. vol. 4979.

[596] F. Schneider, B. Ager, G. Maier, A. Feldmann, and S. Uhlig, “Pitfalls in HTTP
traffic measurements and analysis”. In 13th Passive & Active Measurement Conf.,
pp. 242–251, Springer-Verlag, Mar 2012, DOI: 10.1007/978-3-642-28537-0 24.
Lect. Notes Comput. Sci. vol. 7192.

[597] F. Schneider, J. Wallerich, and A. Feldmann, “Packet capture in 10-Gigabit Eth-
ernet environments using contemporary commodity hardware”. In 8th Passive
& Active Measurement Conf., pp. 207–217, Springer-Verlag, Apr 2007, DOI:
10.1007/978-3-540-71617-4 21. Lect. Notes Comput. Sci. vol. 4427.

[598] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you?” In 5th USENIX Conf. File & Storage
Technologies, pp. 1–16, Feb 2007.

[599] B. Schroeder and M. Harchol-Balter, “Evaluation of task assignment
policies for supercomputing servers: The case for load unbalancing
and fairness”. Cluster Comput. 7(2), pp. 151–161, Apr 2004, DOI:
10.1023/B:CLUS.0000018564.05723.a2.

[600] B. Schroeder and M. Harchol-Balter, “Web servers under overload: How schedul-
ing can help”. ACM Trans. Internet Technology 6(1), pp. 20–52, Feb 2006.

[601] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed: A cau-
tionary tale”. In 3rd Networked Systems Design & Implementation, pp. 239–252,
May 2006.

[602] M. Schroeder, Fractals, Chaos, Power Laws. W. H. Freeman and Co., 1991.

[603] G. Schwarz, “Estimating the dimension of a model”. Ann. Statist. 6(2), pp. 461–
464, Mar 1978.

[604] D. W. Scott, “On optimal and data-based histograms”. Biometrika 66(3), pp. 605–
610, 1979, DOI: 10.1093/biomet/66.3.605.

[605] S. L. Scott and G. S. Sohi, “The use of feedback in multiprocessors and its appli-
cation to tree saturation control”. IEEE Trans. Parallel & Distributed Syst. 1(4),
pp. 385–398, Oct 1990, DOI: 10.1109/71.80178.

[606] E. Selberg and O. Etzioni, “The MetaCrawler architecture for resource ag-
gregation on the web”. IEEE Expert 12(1), pp. 11–14, Jan-Feb 1997, DOI:
10.1109/64.577468.

[607] K. C. Sevcik, “Characterization of parallelism in applications and their use in
scheduling”. In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,
pp. 171–180, May 1989, DOI: 10.1145/75108.75391.

[608] K. C. Sevcik, “Application scheduling and processor allocation in multipro-
grammed parallel processing systems”. Performance Evaluation 19(2-3), pp.
107–140, Mar 1994, DOI: 10.1016/0166-5316(94)90036-1.

Version 1.0.4, typeset on June 10, 2023



574 BIBLIOGRAPHY

[609] K. C. Sevcik and X.-N. Tan, “An interconnection network that exploits locality
of communication”. In 8th Intl. Conf. Distributed Comput. Syst., pp. 74–85, Jun
1988, DOI: 10.1109/DCS.1988.12502.

[610] A. Shaikh, J. Rexford, and K. G. Shin, “Load-sensitive routing of long-
lived IP flows”. In ACM SIGCOMM Conf., pp. 215–226, Aug 1999, DOI:
10.1145/316194.316225.

[611] X. Shen, C. Zhang, C. Ding, M. L. Scott, S. Dwarkadas, and M. Ogi-
hara, “Analysis of input-dependent program behavior using active profiling”.
In Workshop on Experimental Computer Science, art. 5, Jun 2007, DOI:
10.1145/1281700.1281705.

[612] S. Sherman, F. Baskett III, and J. C. Browne, “Trace-driven modeling and analysis
of CPU scheduling in a multiprogramming system”. Comm. ACM 15(12), pp.
1063–1069, Dec 1972, DOI: 10.1145/361598.361626.

[613] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior”. In 10th Intl. Conf. Architect.
Support for Prog. Lang. & Operating Syst., pp. 45–57, Oct 2002, DOI:
10.1145/605397.605403.

[614] E. Shmueli and D. G. Feitelson, “Using site-level modeling to evaluate the per-
formance of parallel system schedulers”. In 14th Modeling, Anal. & Simulation
of Comput. & Telecomm. Syst., pp. 167–176, Sep 2006, DOI: 10.1109/MAS-
COTS.2006.50.

[615] E. Shmueli and D. G. Feitelson, “Uncovering the effect of system performance on
user behavior from traces of parallel systems”. In 15th Modeling, Anal. & Simula-
tion of Comput. & Telecomm. Syst., pp. 274–280, Oct 2007, DOI: 10.1109/MAS-
COTS.2007.67.

[616] E. Shmueli and D. G. Feitelson, “On simulation and design of parallel-systems
schedulers: Are we doing the right thing?” IEEE Trans. Parallel & Distributed
Syst. 20(7), pp. 983–996, Jul 2009, DOI: 10.1109/TPDS.2008.152.

[617] B. Shneiderman, Designing the User Interface. Addison Wesley, 3rd ed., 1998.
[618] E. Shriver and M. Hansen, Search Session Extraction: A User Model of Searching.

Tech. rep., Bell Labs, Jan 2002.
[619] R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications.

Springer, 3rd ed., 2011.
[620] F. N. Sibai, “Performance analysis and workload characterization of the

3DMark05 benchmark on modern parallel computer platforms”. Comput. Arch.
News 35(3), pp. 44–52, Jun 2007, DOI: 10.1145/1294313.1294315.

[621] H. S. Sichel, “On a distribution law for word frequencies”. J. Am. Stat. Assoc.
70(351), pp. 542–547, Sep 1975, DOI: 10.1080/01621459.1975.10482469.

[622] B. Sikdar and K. S. Vastola, “On the contribution of TCP to the self-similarity of
network traffic”. In Intl. Workshop Digital Commun., S. Palazzo (ed.), pp. 596–
613, Springer-Verlag, Sep 2001, DOI: 10.1007/3-540-45400-4 38. Lect. Notes
Comput. Sci. vol. 2170.

Version 1.0.4, typeset on June 10, 2023



BIBLIOGRAPHY 575

[623] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz, “Analysis of a very
large web search engine query log”. SIGIR Forum 33(1), pp. 6–12, Fall 1999,
DOI: 10.1145/331403.331405.

[624] H. Simitci and D. A. Reed, “A comparison of logical and physical parallel I/O
patterns”. Intl. J. High Performance Comput. Appl. 12(3), pp. 364–380, Sep 1998,
DOI: 10.1177/109434209801200305.

[625] M. V. Simkin and V. P. Roychowdhury, “A mathematical theory of citing”. J. Am.
Soc. Inf. Sci. & Tech. 58(11), pp. 1661–1673, Sep 2007, DOI: 10.1002/asi.20653.

[626] M. V. Simkin and V. P. Roychowdhury, “Re-inventing Willis”. Phys. Rep. 502(1),
pp. 1–35, May 2011, DOI: 10.1016/j.physrep.2010.12.004.

[627] H. A. Simon, “On a class of skew distribution functions”. Biometrika 42(3/4), pp.
425–440, Dec 1955, DOI: 10.1093/biomet/42.3-4.425.

[628] H. A. Simon, “Some further notes on a class of skew distribution functions”. Info.
& Control 3(1), pp. 80–88, Mar 1960, DOI: 10.1016/S0019-9958(60)90302-8.

[629] A. Singh and Z. Segall, “Synthetic workload generation for experimentation with
multiprocessors”. In 3rd Intl. Conf. Distributed Comput. Syst., pp. 778–785, Oct
1982.

[630] J. P. Singh, J. L. Hennessy, and A. Gupta, “Scaling parallel programs for multi-
processors: Methodology and examples”. Computer 26(7), pp. 42–50, Jul 1993,
DOI: 10.1109/MC.1993.274941.

[631] J. P. Singh, H. S. Stone, and D. F. Thiebaut, “A model of workloads and its use
in miss-rate prediction for fully associative caches”. IEEE Trans. Comput. 41(7),
pp. 811–825, Jul 1992, DOI: 10.1109/12.256450.

[632] J. P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford parallel applica-
tions for shared-memory”. Comput. Arch. News 20(1), pp. 5–44, Mar 1992, DOI:
10.1145/130823.130824.

[633] N. T. Slingerland and A. J. Smith, “Design and characterization of the Berkeley
multimedia workload”. Multimedia Systems 8(4), pp. 315–327, Jul 2002, DOI:
10.1007/s005300200052.

[634] E. Smirni and D. A. Reed, “Workload characterization of input/output inten-
sive parallel applications”. In 9th Intl. Conf. Comput. Performance Evaluation,
pp. 169–180, Springer-Verlag, Jun 1997, DOI: 10.1007/BFb0022205. Lect. Notes
Comput. Sci. vol. 1245.

[635] A. J. Smith, “Cache memories”. ACM Comput. Surv. 14(3), pp. 473–530, Sep
1982, DOI: 10.1145/356887.356892.

[636] A. J. Smith, “Workloads (creation and use)”. Comm. ACM 50(11), pp. 45–50,
Nov 2007, DOI: 10.1145/1297797.1297821.

[637] J. E. Smith, “A study of branch prediction strategies”. In 8th Ann. Intl. Symp.
Computer Architecture Conf. Proc., pp. 135–148, May 1981.

[638] J. E. Smith, “Characterizing computer performance with a single number”.
Comm. ACM 31(10), pp. 1202–1206, Oct 1988, DOI: 10.1145/63039.63043.

Version 1.0.4, typeset on June 10, 2023



576 BIBLIOGRAPHY

[639] K. A. Smith and M. I. Seltzer, “File system aging—increasing the relevance of
file system benchmarks”. In SIGMETRICS Conf. Measurement & Modeling of
Comput. Syst., pp. 203–213, Jun 1997, DOI: 10.1145/258612.258689.

[640] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The
Complete Reference. MIT Press, 1996.

[641] J. Sommers and P. Barford, “Self-configuring network traffic genera-
tion”. In 4th Internet Measurement Conf., pp. 68–81, Oct 2004, DOI:
10.1145/1028788.1028798.

[642] J. Sommers, V. Yegneswaran, and P. Barford, “A framework for malicious work-
load generation”. In 4th Internet Measurement Conf., pp. 82–87, Oct 2004, DOI:
10.1145/1028788.1028799.

[643] B. Song, C. Ernemann, and R. Yahyapour, “Parallel computer workload modeling
with Markov chains”. In Job Scheduling Strategies for Parallel Processing, pp.
47–62, Springer-Verlag, 2004, DOI: 10.1007/11407522 3. Lect. Notes Comput.
Sci. vol. 3277.

[644] C. Spearman, “The proof and measurement of association between two things”.
Am. J. Psychology 15(1), pp. 72–101, Jan 1904.

[645] I. Spence, N. Kutlesa, and D. L. Rose, “Using color to code quantity in spatial
displays”. J. Experimental Psychology: Applied 5(4), pp. 393–412, 1999.

[646] A. Spink, B. J. Jansen, D. Wolfram, and T. Saracevic, “From e-sex to e-
commerce: Web search changes”. Computer 35(3), pp. 107–109, Mar 2002, DOI:
10.1109/2.989940.

[647] A. Spink, H. Partridge, and B. J. Jansen, “Sexual and pornographic
web searching: Trends analysis”. First Monday 11(9), Sep 2006. URL
http://www.firstmonday.org/issues/issue11 9/spink/.

[648] J. R. Spirn, Program Behavior: Models and Measurements. Elsevier North Hol-
land Inc., 1977.

[649] J. R. Spirn and P. J. Denning, “Experiments with program locality”. In
AFIPS Fall Joint Comput. Conf., vol. I, pp. 611–621, Dec 1972, DOI:
10.1145/1479992.1480078.

[650] K. Springborn and P. Barford, “Impression fraud in online advertising via pay-
per-view networks”. In 22nd USENIX Security Symp., pp. 211–226, Aug 2013.

[651] B. Sprunt, “The basics of performance-monitoring hardware”. IEEE Micro 22(4),
pp. 64–71, Jul-Aug 2002, DOI: 10.1109/MM.2002.1028477.

[652] B. Sprunt, “Pentium 4 performance-monitoring features”. IEEE Micro 22(4), pp.
72–82, Jul-Aug 2002, DOI: 10.1109/MM.2002.1028478.

[653] M. S. Squillante, D. D. Yao, and L. Zhang, “Analysis of job arrival patterns and
parallel scheduling performance”. Performance Evaluation 36–37, pp. 137–163,
Aug 1999, DOI: 10.1016/S0166-5316(99)00035-8.

[654] K. Sreenivasan and A. J. Kleinman, “On the construction of a representa-
tive synthetic workload”. Comm. ACM 17(3), pp. 127–133, Mar 1974, DOI:
10.1145/360860.360863.

Version 1.0.4, typeset on June 10, 2023



BIBLIOGRAPHY 577

[655] “Standard performance evaluation corporation”. URL http://www.spec.org.

[656] Standard Performance Evaluation Corp., “SPECweb2005”. URL
http://www.spec.org/web2005/, 2005.

[657] D. Starobinski and D. Tse, “Probabilistic methods in web caching”. Per-
formance Evaluation 46(2-3), pp. 125–137, Oct 2001, DOI: 10.1016/S0166-
5316(01)00045-1.

[658] A. Stassopoulou and M. D. Dikaiakos, “Web robot detection: A probabilistic
reasoning approach”. Computer Networks 53(3), pp. 265–278, Feb 2009, DOI:
10.1016/j.comnet.2008.09.021.

[659] M. A. Stephens, “EDF statistics for goodness of fit and some com-
parisons”. J. Am. Stat. Assoc. 69(347), pp. 730–737, Sep 1974, DOI:
10.1080/01621459.1974.10480196.

[660] M. A. Stephens, “Tests based on EDF statistics”. In Goodness-of-Fit Techniques,
R. B. D’Agostino and M. A. Stephens (eds.), pp. 97–193, Marcel Dekker, Inc.,
1986.

[661] R. Stets, K. Gharachorloo, and L. A. Barroso, “A detailed comparison of two
transaction processing workloads”. In 5th Workshop on Workload Characteriza-
tion, pp. 37–48, Nov 2002, DOI: 10.1109/WWC.2002.1226492.

[662] C. Stewart, T. Kelly, and A. Zhang, “Exploiting nonstationarity for per-
formance prediction”. In 2nd EuroSys, pp. 31–44, Mar 2007, DOI:
10.1145/1272996.1273002.

[663] S. Stoev, M. S. Taqqu, C. Park, and J. S. Marron, “On the wavelet spectrum diag-
nostic for Hurst parameter estimation in the analysis of Internet traffic”. Comput.
Networks 48(3), pp. 423–445, Jun 2005, DOI: 10.1016/j.comnet.2004.11.017.

[664] P. Stoica and R. Moses, Spectral Analysis of Signals. Prentice-Hall, 2005.

[665] S. J. Stolfo, S. Hershkop, C.-W. Hu, W.-J. Li, O. Nimeskern, and
K. Wang, “Behavior-based modeling and its application to email analy-
sis”. ACM Trans. Internet Technology 6(2), pp. 187–221, May 2006, DOI:
10.1145/1149121.1149125.

[666] B. Stone, “Spam back to 94% of all e-mail”. New York Times (Technology Sec-
tion), 31 Mar 2009.

[667] R. A. Sugumar and S. G. Abraham, “Set-associative cache simulation using gen-
eralized binomial trees”. ACM Trans. Comput. Syst. 13(1), pp. 32–56, Feb 1995,
DOI: 10.1145/200912.200918.

[668] M. Sutter and M. G. Kocher, “Power laws of research output: Evidence for
journals of economics”. Scientometrics 51(2), pp. 405–414, Jun 2001, DOI:
10.1023/A:1012757802706.

[669] D. Talby and D. G. Feitelson, “Improving and stabilizing parallel computer per-
formance using adaptive backfilling”. In 19th Intl. Parallel & Distributed Pro-
cessing Symp., Apr 2005, DOI: 10.1109/IPDPS.2005.252.

Version 1.0.4, typeset on June 10, 2023



578 BIBLIOGRAPHY

[670] D. Talby, D. G. Feitelson, and A. Raveh, “Comparing logs and models of parallel
workloads using the Co-plot method”. In Job Scheduling Strategies for Parallel
Processing, pp. 43–66, Springer-Verlag, 1999, DOI: 10.1007/3-540-47954-6 3.
Lect. Notes Comput. Sci. vol. 1659.

[671] D. Talby, D. G. Feitelson, and A. Raveh, “A co-plot analysis of logs and models of
parallel workloads”. ACM Trans. Modeling & Comput. Simulation 12(3), art. 12,
Jul 2007, DOI: 10.1145/1243991.1243993.

[672] N. N. Taleb, Fooled by Randomness. Texere, 2004.

[673] D. Talla, L. K. John, and D. Berger, “Bottlenecks in multimedia processing with
SIMD style extensions and architectural enhancements”. IEEE Trans. Comput.
52(8), pp. 1015–1031, Aug 2003, DOI: 10.1109/TC.2003.1223637.

[674] A. S. Tanenbaum, J. N. Herder, and H. Bos, “File size distribution on UNIX
systems—then and now”. Operating Syst. Rev. 40(1), pp. 100–104, Jan 2006,
DOI: 10.1145/1113361.1113364.

[675] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat, “Modeling and generating realistic
streaming media server workloads”. Comput. Networks 51(1), pp. 336–356, Jan
2007, DOI: 10.1016/j.comnet.2006.05.003.

[676] M. S. Taqqu and V. Teverovsky, “Robustness of Whittle-type estimators for time
series with long-range dependence”. Stochastic Models 13(4), pp. 723–757, 1997,
DOI: 10.1080/15326349708807449.

[677] M. S. Taqqu and V. Teverovsky, “On estimating the intensity of long-range de-
pendence in finite and infinite variance time series”. In A Practical Guide to
Heavy Tails, R. J. Adler, R. E. Feldman, and M. S. Taqqu (eds.), pp. 177–217,
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abnormal activity, see anomalies
abort, 51, 417, 430, 486
absolute deviation, 96, 99
absolute value, see square vs. absolute

value
abstract descriptive model, 17, 143, 361
abstraction, 11, 17
acceptance testing, 49
accounting, 23, 192
acf (autocorrelation function), see auto-

correlation
ack, 392, 465, 492
active instrumentation, 31
adaptivity, 39, 257, 423, 450
address space, 245, 440
ADSL, 465
aest, 209
agglomerative clustering, 282, 403
aggregated Whittle estimator, 358
aggregation, 203, 209, 314, 336
aging, 8, 460
AIC, see Akaike’s information criterion
AJAX, 490
Akaike’s information criterion, 20
aliasing, 34, 349
α-stable distribution, 182
amplitude, 348
analysis of variation, 269
Anderson-Darling test, 172
anomalies, 16, 55–66, 387, 413, 474
anonymization, 75–77
anti-persistent process, 327
AOL search log, 72, 76, 479–484
application scaling, 3, 510

AR, see autoregressive process
ARIMA, see autoregressive intergrated

moving average process
arithmetic mean, 92
ARMA, see autoregressive moving av-

erage process
arrival process, 8, 67, 296, 302–305, 307,

372–375, 419, 424, 462, 467,
503, 519, see daily cycle, in-
terarrival time

arrivals of new users, 394
ASCII file, 29, 70, 75
aspect ratio, 199
asymmetrical distribution, see skewed dis-

tribution
asynchronous request, 400, 458, 490
attack, 16, 64, 493
autocorrelation, 47, 255, 293, 303, 319,

338
autocovariance, 293, 319, 322, 346

and spectral density, 346, 352
automatically generated workload, see

robot
autoregressive integrated moving aver-

age process, 362
autoregressive moving average process,

362
autoregressive process, 361
average, 92–94, 96

trimmed, 94
average absolute deviation, 99

b-model, 368
back button, 472
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backup, 462, 464
backward operator, 362
bad data, 36, 49, 175
bag-of-tasks, 42, 506, 519
balls and urns, 222
basic block, 439, 449
basin of attraction, 183
batch arrivals, 305
Bayes information criterion, 20
bell curve, 121
bell shape, 91, 121, 454

in log scale, 123
Bellcore Ethernet workload, 463
benchmark, 9–10, 439, 447–450, 513

ESP, 515
HiBench, 502
MediaBench, 447
MiBench, 447
NAS, 515
PARSEC, 446
SPEC, see SPEC
SPLASH, 515
TPC, see TPC

bias model, 368
BIC, see Bayes information criterion
big data, 498–502
bimodal distribution, 138, 149, 190, 400,

403
binary format, 70, 75
binning, 83, 199

logarithmic, 84, 207
BitTorrent, 489
blogs, 475, 489
BM, see Brownian motion
book sales, 186
bootstrap, 171, 172, 202, 254
bot, see robot
botnet, 493
bounded Pareto distribution, see truncated

Pareto distribution
box plot, 103, 178
branch prediction, 440, 447
branching, 33, 439
Britney Spears, 59, 483

Brownian bridge, 171
Brownian motion, 363
browsing the web, 390, 403, 467, 472
BSP model, 513
buddy system, 3
buffer cache, 456
buffering, 33, 95, 310
burstiness, 15, 305, 309, 379

caching, 35, 36, 192, 441, 456, 472, 486,
503

disabling the cache, 441
web pages, 469

call center, 430
Cantor set, 306
capacity planning, 15
CCDF, see survival function
CDF, see cumulative distribution func-

tion
censored data, 51, 157
centered data, 102, 292, 314, 318
central limit theorem, 121, 124, 181, 203,

224
central moment, 102
central tendency, 92–96, 105
centroid, 280, 281
characteristic scale, 184, 306
Chauvenet’s criterion, 65, 216
χ2 test, 172, 253
citations, 136, 223
city sizes, 223
cleaning of data, 49–66
clickmap, 470
clickstream, 479
client-server, 431, 465, 477, 489, 492
closed system, 20, 419, 426
cloud, 15, 490
clustering, 65, 260, 278–285, 397
coast of Britain, 307
Coda, 421
coefficient of determination, 269
coefficient of variation, 97, 115, 117, 328,

436
coin toss, 80
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color coding, 265
comb, 160, 452
comma-separated values, 71
comparing distributions, 89, 104, 166–

172
complementary cumulative distribution

function, see survival function
complex number, 349
compression, 230, 496
conditional distribution, 275, 277, 287,

422
conditional expectation, 5, 187, 191, 437
conditional probability, 110, 242
confidence intervals, 12, 414
configuration change, 15, 40, 50
congestion control, 38, 418, 462, 491
connection, 465
conservative workload modeling, 6, 18,

521
contention, 416, 444, 445
continuous distribution, 81, 83, 170
convergence, 92, 176, 179, 217, 243

in distribution, 180
in probability, 180

convolution, 343
cookies, 473
correlation, 235, see locality, long-range

dependence, short-range corre-
lation

correlation coefficient, 267, 266–278, 293,
see rank correlation coefficient,
distributional correlation

correlogram, 293
covariance, 45, 266, 293, 317, 320
covariance matrix, 318, 324, 354
Coxian distribution, 119, 143
CPU workload, 9, 43, 249, 439, 447
crawling the web, 58, 64, 475
critical request, 459
cross-correlation, 228, see correlation co-

efficient
cross-validation, 158, 522
CSV, see comma-separated values

cumulative distribution function, 86, 95,
170

multidimensional, 262
cumulative histogram, 90
cumulative process, 314, 317, 325
curvature, 202
CV, see coefficient of variation
cycles, 47, see daily cycle, periodicity

daily cycle, 13, 47, 53, 291–298, 303,
386, 406, 416, 424, 467, 485,
487, 489, 490, 519

modeling, 296, 397, 428
data center, 490
data cleaning, 49–66
data errors, 37, 49
data filtering, 53
data portability, 68
data quality, 36–39, 49–53, 55–66
data sanitization, 75
data volume, 14, 34, 75, 80, 230
database, 7, 392, 494
DDoS, see denial-of-service
dendogram, 283
denial-of-service, 16, 493
density, 83, 87, 123
dependence, 45, 227, 275, 319, see long-

range dependence
dependency, see feedback, think time
descriptive model, 17, 261, 521
DFT, see discrete Fourier transform
DHCP, 54
difference operator, 362, 364
differences, 47, 298, 314
dilation, 340
dimension, 306
directory, 221
disabled cache, 441
discrete distribution, 81, 83, see modal

distribution
discrete Fourier transform, 348
discrete wavelet transform, 343, 367
dispersion, 96–102, 105
distance, 280

Version 1.0.4, typeset on June 10, 2023



INDEX 589

distributed file system, 456
distribution

α-stable, 182
bimodal, 149, 400
comb, 160, 452
comparing, 89, 104, 166–172
continuous, 83
description, 80–107
discrete, 83
empirical, 139, 155–158, 170, 199
Erlang, 116–117, 146, 165
exponential, 108–113, 144, 183, 328
exponential family, 144
extreme value, 182
gamma, 125–127, 142, 146
generative model, 111, 124, 130, 220–

226
geometric, 111, 326
heavy tail, 175

instances, 130, 436, 453, 466, 469
hyper-Erlang, 118–119, 146
hyper-exponential, 114–116, 145, 161–

165, 287
hypo-exponential, 116
log-uniform, 137, 401, 505
lognormal, 122–125, 147, 182, 185,

219, 224
instances, 123, 219, 453

Lomax, 129, 190
long tail, 184
mixture, 114, 118, 137, 150, 285
modal, 91, 140, 158–161, 250, 283,

379, 408
mode, 60, 165
multinormal, 285, 319, 354
normal, 91, 121, 181, 361
Pareto, 128–131, 147, 176, 177, 179,

181, 185, 188, 196, 207, 245
instances, 130, 428, 436, 453

phase-type, 113–114, 143, 161
Poisson, 109
shifted, 107
skewed, 89, 91, 94, 98, 100, 104,

123, 126, 238

subexponential, 184
tail, 89, 91, 148, 169, 171, 172
Weibull, 127–128, 147, 185
Zipf, 131–137, 205, 238, 488

instances, 239, 471, 481, 487
Zipf-like, 132, 258, 260, 486

distribution function, see cumulative dis-
tribution function

distribution of wealth, 130, 197, 223
distributional correlation, 276, 287, 508
distributional correlation coefficient, 276
diurnal cycle, see daily cycle
diversity, 250, 380, 454, 507, 523
divisive clustering, 282
dominance, 177, 186, 215
double counting, 51
downtime, 24, 49
drift, 298
drunk, 325
DSL line, 405
DWT, see discrete wavelet transform
dynamic content, 470, 472, 477
dynamic linking, 31
dynamic workload, 8, 288, 455
Dyninst, 32

e-commerce, 391, 477
economic model, 416
80/20 rule, 130, 191, see joint ratio
EM algorithm, 152–154, 165, 400
email, 17, 51, 58, 491
empirical CDF, see empirical distribu-

tion
empirical distribution, 81, 86, 139, 155–

158, 170, 199
multidimensional, 265

eMule, 489
Enron email archive, 51, 468
enterprise network traffic, 462
entropy, 238, 370
epidemic, 475, 490
equivalent conditions, 9, 419, 516
ergodicity, 243
Erlang distribution, 116–117, 165
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parameter estimation, 146
erroneous data, 37, 49
ESP benchmark, 515
Ethernet, 159, 462
Euclidean distance, 280
Euler’s formula, 349
evolution (in biology), 222
evolution (of workload), 39, 158, 298,

305, 423, 463
exact self-similarity, 306, 316–318
expectation, 92
expectation paradox, 188
expectation-maximization, see EM algo-

rithm
explained variance, 284
exploratory data analysis, 18
exponential cutoff, 219
exponential distribution, 108–113, 183,

200
generative model, 111
maximum likelihood parameter, 144
memoryless, 110, 189
test, 328

exponential family, 144, 185
extrapolation, 156, 215, 387
extreme value distribution, 182
eyeball method, 64, 284

Facebook, 33, 490, 491, 500
factorial, 126, 366
failed statistical test, 171
failure, 8, 51, 112, 189, 433, 476
fARIMA, see fractional ARIMA process
fast Fourier transform, 350
fBM, see fractional Brownian motion
feedback, 14, 20, 407, 416–423, 458,

462, 491, 513
fGN, see fractional Gaussian noise
Fibonacci numbers, 85
50/0 rule, 191
file access patterns, 455
file layout, 460
file sharing, 40, 460, 487

file sizes, 124, 191, 194, 219, 224, 452–
455

filtering (data), 53
filtering (signal), 343
finite dimensional distributions, 316
finite support, 187
firewall, 493
first differences, 47, 299, 314, 362
first-order distribution, 317
flash crowd, 61, 414, 473, 488, 490, 493
flow, 31, 465
fluctuations, 12, 47, 257, 299, 309, 311,

328, 385, 386, 396, 415
flurries, 59–64, 380, 387, 413, 415
FMA instruction, 438
format of log, 24, 29, 70
Fourier frequencies, 349
Fourier transform, 346, 348
fractal, 245, 306–307
fractal model, 244
fractional ARIMA process, 364–367
fractional Brownian motion, 363
fractional Gaussian noise, 364
fragmentation, 4, 38, 160, 452, 460, 516
France’98 website workload, 37, 196,

298, 474
frequency, 81, 347

gaming, 417, 430, 489
gamma distribution, 125–127

parameter estimation, 142, 146
gamma function, 125, 366
gang scheduling, 3
gap in data, 37, 49
garbage collection, 111
Gaussian noise, 361
generalization, 11, 12, 75, 214
generalized Zipf distribution, 132
generative model, 19, 261, 361, 385, 492,

521, see user-based modeling
exponential, 111
heavy tail, 220–226
hierarchical, 379
lognormal, 124, 224
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Pareto, 130, 223
self-similar, 372–377

geometric distribution, 111, 326
geometric mean, 92, 100, 123
geometric standard deviation, 100
Gini coefficient, 197
global distribution, 252
Gnutella, 488
goodness of fit

Anderson-Darling test, 172
χ2 test, 172
Kolmogorov-Smirnov test, 170–171

Google, 33, 490
Google maps, 490
GPU workload, 447
graphics, 447
graphs

aspect ratio, 199
box plot, 103
CDF, 88
correlogram, 293
heatmap, 265
histogram, 81, 83, 84, 207
LLCD, 199
logarithmic scale, 81, 90, 106
logscale diagram, 344
P-P plot, 169
pdf, 84
periodogram, 352
pox plot, 332
Q-Q plot, 166
scatterplot, 263
split scale, 83
texture plot, 329
variance-time plot, 338

grid, 435, 490, 518
guessing, 66–68

Haar transform, 340, 367
Haar wavelet, 340
Hadoop, 500
harmonic mean, 93
harmonics, 349
Harry Potter, 186

hazard, 157, 187, 189
header, 29, see packet header
heat map, 265, 372
heavy tail, 67, 130, 175, see mass-count

disparity
alternatives, 184, 200, 218, 225, 453
conditional expectation, 5, 188, 437
instances, 130, 436, 453, 466, 469
tail index metric, 175, 200

HGM, see hierarchical generative model
HiBench benchmark, 502
hidden Markov model, 244, 261, 384,

413, 457
hierarchical clustering, 282, 403
hierarchical generative model, 379
hierarchical modeling, 383–393
high-pass filter, 343
high-performance computing, 503
Hill estimator, 211
histogram, 81, 83

binning, 83
logarithmic bins, 84, 207
vs. pdf, 85, 123
weighted, 288

HMM, see hidden Markov model
horizon, 216
hotspot, 239, 475, 513
H-ss, 317
H-sssi, 318
HTTP, 29, 37, 46, 196, 234, 305, 391,

462
HTTP status codes, 30, 51, 469
Hurst parameter, 313, 317, 325–328, 378

estimation, 331–361
Hurst, Harold Edwin, 310
hydrology, 310
hyper-Erlang distribution, 118–119

parameter estimation, 146
hyper-exponential distribution, 114–116,

219, 287, 426, 436
approximation of heavy tail, 161–

164
parameter estimation, 145, 165

hypo-exponential distribution, 116
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I/O modes, 513
idle time, 435
iid, see independent identically distributed
immutable file, 488
increment process, 314, 318, 325
independent identically distributed, 45
independent reference model, 239
infinite moments, 177
information retrieval, 497
informational query, 481
innovations, 314
input, 6, 439, 446, 448
instruction count, 439, 448
instruction mix, 43, 249, 438
instruction-level parallelism, 249, 447
instrumentation, 30–34
insurance, 193
inter-process locality, 461
inter-reference gap, 244
interactive behavior, 416, 426, 447, 491
interarrival time, 110, 328, 386, 399, 403,

419, 516
interference, 33
Internet protocols, 61, 464
Internet service provider, 29, 54, 491
Internet traffic, 461–466

sanitization, 75
interpolation, 156
interquartile range, 101
interrupt, 390
intrusion detection, 16
invariants, 40, 67, 424
inverse distribution function, 112
inverse wavelet transform, 344, 367
I/O behavior, 457
IP address, 29, 54, 75, 465, 493
IQR, see interquartile range
IRM, see independent reference model
ISP, see Internet service provider

job mix, 446
joint distribution, 45, 261, 317, 318
joint ratio, 105, 193, 238, 449
Joseph effect, 309, 311, 327

Kaplan-Meier formula, 158
KaZaA, 488
Kendall’s τ , 273
Kendall’s concordance, 273
key-value store, 503
keystroke, 390, 427, 428
k-means clustering algorithm, 279
Kolmogorov-Smirnov test, 170–171, 253
K-S, see Kolmogorov-Smirnov test
k-transform, 206

ℓ2 distance, 280
lack of convergence, 176, 179
lag, 255, 293, 303
LAMP architecture, 477
LAN traffic, 307, 310, 462
LANL CM-5 workload, 59–60, 91, 247,

408
last, 51, 53
lastcomm, 39, 437
law of large numbers, 92, 179
learning, 39, 423
least squares, 268
lifetime, 437
likelihood, 20, 143, 211, 354
limiting distribution of Markov chain, 243
linear process, 362
linear regression, 200, 268–270
LLCD, see log-log complementary dis-

tribution
load, 271, 296, 303, 386, 416, 417, 419,

517
load balancing, 5, 191, 435, 436
load manipulation, 385, 396, 415, 516–

517
local Whittle estimator, 358
locality, 35, 67, 229–261, 441, 472, 493

Denning’s definition, 229
locality of sampling, 247–261, 372, 379–

383, 407
spatial, 455

location parameter, 107, 129
log, 10, 288, 414

format, 24, 29, 70
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log histogram, 328
log-likelihood, 143, 211, 354
log-log complementary distribution plot,

106, 129, 135, 181, 199–202
log-uniform distribution, 137, 401, 505
logarithmic scale, 81, 84, 90, 106, 123,

134, 169
logarithmic transformation, 90, 123, 137,

279, 300
lognormal distribution, 122–125, 182, 201

as alternative to heavy tail, 185, 219,
224, 453

generative model, 124
instances, 123, 219, 453
parameter estimation, 147

logscale diagram, 344
Lomax distribution, 129, 190, see shifted

Pareto distribution
long tail, 184, 186, 201

in Internet economics, 186
long-range dependence, 309, 319, 338
Lorenz curve, 197
low-pass filter, 343
LRD, see long-range dependence
LRU stack, 233
lunch, 291, 398, 429

MA, see moving average process
MAIG, see maximum allowable inter-

car gap
malicious traffic, 468, 493
Mandelbrot, Benoit, 307, 310
Manhattan distance, 281
manipulating the workload, 12, 19, 385,

415, 516
MAP, see Markovian arrival process
MapReduce, 37, 499
marginal distribution, 262
Markov chain, 111, 113, 242–243, 302,

449
Markov reference model, 244
Markov-modulated Poisson process, 303
Markovian arrival process, 302

Markovian model, 161, 242–244, 384,
412, 457, 477

mass distribution, 190
mass-count disparity, 105, 190–198, 238,

239, 452, 514
N1/2 metric, 194
W1/2 metric, 194
joint ratio metric, 193
median-median distance metric, 194

mass-count disparity plot, 191
matching moments, see method of mo-

ments
maximum allowable inter-car gap, 399
maximum likelihood, 143–145, 354

exponential, 144, 147
Pareto, 211

maximum transmission unit, 38, 159, 462
mean, 92, see average
MediaBench benchmark, 447
median, 94–96, 149
median-median distance, 105, 194, 475
memory access, 229, 244, 388, 441
memory allocation, 249
memoryless, 68, 110, 189, 288
message-passing interface, 512, 515
metadata, 68
Metcalfe’s law, 136
method of moments, 142–143, 147–150

Erlang, 146
gamma, 142
hyper-exponential, 145
lognormal, 147

M/G/∞ queue, 372
MiBench benchmark, 447
mice and elephants, 190
micro-model, 444, 457
microbenchmark, 9
migration, see process migration
MinneSPEC, 448
misconfiguration, 16, 55
mixed data, see scrambled data
mixture of distributions, 114, 118, 137,

150, 285, 287, 454
mixture of Gaussians, 161, 285
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MLE, see maximum likelihood
MMPP, see Markov-modulated Poisson

process
mobile device, 431
modal distribution, 88, 91, 140, 158–

161, 250, 283, 285, 379, 408,
434, 452, 508

mode, 60, 94, 165, 379
modeling, 11, 414

abstract, 17, 143, 361
conservative, 6, 18, 521
descriptive, 17, 139, 155
generative, 19, 124, 220–226, see

generative model
parsimonious, 20, 521
what to model, 48

modeling abnormal situations, 61
modeling at the source, 361, 419, 492
moldable parallel job, 510
moment, 102, 142, 147–149, 177, see

method of moments
monitoring, 31
monkey typing, 133
monofractal, 378
monotonicity, 87, 165, 272
mother wavelet, 340
mouse click, 427
move-to-front, 233
moving average, 290, 362, 363
moving average process, 362
MPI, see message-passing interface
MTU, see maximum transmission unit
multiclass workload, 53, 158, 279, 287,

413
multidimensional empirical distribution,

265
multifractal, 378
multifractal wavelet model, 367
multimedia, 446, 488
multinormal distribution, 285, 319, 354
multiplicative process, 224
multiplicative standard deviation, 100,

123
multiply-add, 438

×/, 100
multiprogramming, 27, 444
multiresolution analysis, 339
multivariate normal distribution, see multi-

normal distribution

N1/2 metric, 194, 238
Napster, 61, 464, 488
NAS parallel benchmark, 515
NASA Ames iPSC/860 workload, 24–

29, 55
NAT, see network address translation
navigation burst, 391, 467
navigational query, 481
nearly completely decomposable, 244
negative exponential distribution, 108
negative feedback, 416, 492
network address translation, 54
network file system, 462
network intrusion detection system, 493
network weather service, 15
NIDS, see network intrusion detection

system
nighttime, 27, 296, 504
Nile River, 310
90/10 rule, 191, see joint ratio
Noah effect, 176, 309
noise (in data), 49
noise (in stochastic model), 184, 361
nonhomogeneous Poisson process, 303,

467
nonstationarity, 12, 288, 296, 303, 317,

339, 362, 478
norm, 280
normal distribution, 91, 98, 121, 181,

276, 354, 361
normalization, 90, 97, 129, 132, 183,

238, 254, 267, 335
number of samples, 80
numerical derivative, 202

octave, 340
OLTP, 494
on-off process, 375, 473
1/f noise, 184, 347
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online, 257, 417, 485
online control, 15
open system, 20, 419, 426
order of operations, 385, 457, 477–478
order statistics, 103, 149, 212
ordered set, 230
outliers, 37, 50, 55, 65–66, 94, 98, 148,

158, 216, 271
overfitting, 12, 20, 75, 158
overhead, 5

packet header, 31, 159, 465
packet sizes, 66, 159, 287, 462
packet train, 392, 399
paging, 441
PAPI, 33
paradox, 188, 288
parallel file system, 460, 514
parallel I/O, 513
parallel jobs, 2, 3, 503–512, 517
Parallel Workloads Archive, 73
parallelism profile, 511
parameter estimation, 140–150

Erlang, 146
exponential, 144, 145
gamma, 146
hyper-Erlang, 146
hyper-exponential, 145, 165
lognormal, 147
Pareto, 147, 207–213
Weibull, 147

Pareto distribution, 128–131, 176, 177,
179, 181, 185, 188, 196, 202,
245

generative model, 130
instances, 130, 428, 436, 453
parameter estimation, 147, 207–213
shifted, 129, 190
truncated, 129, 213, 215

Pareto principle, 130, 191, see joint ra-
tio

Pareto, Vilfredo, 130
PARSEC benchmark, 446
parsimony, 11, 20, 261, 521

partitional clustering, 282
passive instrumentation, 31
PatchWrx, 32
patience, 430
pdf, see probability density function
Pearson’s correlation coefficient, 267
peer-to-peer, 487
Pentium, 32
percent point function, see inverse dis-

tribution function
percentile, 95, 101, 103, 166
performance counters, 32
performance metric, 419, 422
periodicity, 47, 292–298, see daily cycle

detection, 292, 351
permutation, 232, 233, 248
persistent process, 327
personality, 397
PH, see phase-type distribution
phase, 348
phase transition, 242, 244, 443, 445
phase-type distribution, 113–114, 143,

161
physical model, see generative model
pink noise, 184
Poisson process, 68, 109, 110, 224, 302,

310, 311, 395, 467
test, 328

polling asynchronous operation, 458
popularity, 68, 133, 136, 186, 205, 231,

234, 238, 239, 372, 471, 485–
489

port, 465
positive feedback, 222, 491
power law, 175–184, 200, 207, 319, 347
power spectrum, 351
powers of two, 4, 41, 158, 248, 452,

506, 511, 516
pox plot, 332
P-P plot, 169, 197
PQRS model, 372
predictability, 15, 36, 231, 256, 257, 269,

440, 450
preferential attachment, 220–223
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prime time, 27, 53, 296, 387
privacy, 14, 29, 75–77, 468, 489
probability density function, 83, 87, 150

multidimensional, 262
probability mass function, 83
process lifetime, 437
process migration, 5, 111, 191, 436
process runtime, 5, 191, 194, 436
processor allocation, 4
product moment correlation coefficient,

267
protocol, 465, see TCP

usage, 61, 464, 488
proxy, 29, 36, 472
P2P, see peer-to-peer
pwd, 24, 55

QoS, see quality of service
Q-Q plot, 166–169, 197, 209
quality of service, 15, 462
quantization error, 39, 72, 83
quartile, 101
queries (database), 494
queries (search engine), 391, 479–484

random graph, 222
random mixing, 232, 233, 248
random number generator, 12, 113, 179,

180, 217
random text, 133
random variable, 79
random variate, 79
random variate generation, 112

empirical, 155
exponential, 112
gamma, 127
lognormal, 125
normal, 122
Pareto, 131, 217
phase-type, 114
Weibull, 128
Zipf, 137

random walk, 245, 278, 325, 363
rank correlation coefficient, 272
rank-size plot, 132, 134, 205, 207

ranking, 133, 186
rare event, 175, 179, 193
redirection, 51
reference stream, 230, 441
regression, 268–270
regularity, 42, 231, 257, 380, 406, 450
relevance, 36, 424
repetition, 255, 258–261, 380, 407, 469
representative input, 6, 439, 447
representative slice, 42, 445
representativeness, 9, 20, 36–44, 60, 81,

94, 148, 149, 414
request-response, see client-server
resampling, 414, see bootstrap, user re-

sampling
rescaled range, 331–336
residence time, 395
resolution, 39, 70, 72, 83, 84, 90, 253,

265, 296, 314
response time, 2, 3, 416, 419, 422
reuse distance, 233, 445
reuse set, 444
rich get richer, 130, 221
right tail, 91, 104, 186, see tail
rigid parallel job, 505, 516
RMS, see root mean square
roaming, 431
robot, 30, 55–59, 64, 388, 398, 413, 415,

475, 477, 479
root mean square, 326
round-trip time, 431, 467, 492
R/S, see rescaled range
running average, 178, 181
runtime, 5, 191, 194, 386, 436
runtime estimates, 22, 432–435, 508

sample moments, 102
sampling, 8, 34–36, 75, 171, 190, 264,

288
sanitizing data, 75
satisfaction, 389, 419
saturation, 4, 385, 417
scale free, see scale invariance
scale invariance, 183, 220, 245

Version 1.0.4, typeset on June 10, 2023



INDEX 597

scale parameter, 107, 108, 126, 129, 162
scaling, 126, 183, 279, 316, 378, 496
scatterplot, 247, 263
scheduling, 2, 6, 227, 470
scientific citations, 136, 223
scrambled data, 232, 248
SDSC Paragon workload, 55, 251, 252,

308, 504
search behavior, see web search
search engine, 472, 479
seasonal cycle, 291
second moment, 102, 149
second-order distribution, 317
second-order self-similarity, 322–325, 363
second-order stationarity, 45, 322
seed, 12, 179, 245
self-regulation, 417
self-similarity, 68, 305–310, 386, see long-

range dependence
due to heavy-tailed data, 309
exact, 306, 316–318
Hurst parameter, 317, 325, 331
modeling, 363–377
nomenclature, 313, 327
second order, 322–325, 363

semi interquartile range, 101
sensitivity, 68

to outliers, 148
to tail, 148, 169, 171

sequential access, 443, 515
serial correlation, 303, 330
server farm, 470
service-level agreement, 15, 462
session, 51, 53, 397–408, 416, 424, 466
sessionlet, 478
set-associative cache, 35
SETI@home, 435
shape of distribution, 104, 119, 149, see

tail
shape parameter, 108, 126, 129, 132
shaped traffic, 492
shared memory, 515
shift (in time), 45, 293

shifted distribution, see location param-
eter

shifted Pareto distribution, 129, 190
short tail, 187
short-range correlation, 253, 257
short-range dependence, 228, 320, 335,

359, 364
shortest job first, 2, 435
shortest remaining processing time, 470
Sierpinski triangle, 307
sigmoid, 121
sign function, 96, 277
SIMD extensions, 438, 446
Simon, Herbert Alexander, 222
simple LRU stack model, 240
simulation, 11, 12, 42, 113, 114, 180,

233, 237, 388
single link clustering algorithm, 282, 403
SIQR, see semi interquartile range
SJF, see shortest job first
skewed distribution, 67, 89, 91, 94, 98,

100, 104, 123, 126, 174, 238,
279, 496

skewness, 104
Skype, 487
SLA, see service-level agreement
slashdot effect, 475
slice distribution, 252
slowdown, 423
slowly varying function, 320
SLRUM, see simple LRU stack model
snapshot, 8, 288, 455
social network, 490, 491
software agent, see robot
source model, 361, 419, 492, see gener-

ative model
spam, 468, 493
spatial locality, 231, 232, 236
spatial locality of sampling, 455
spatial regularity, 231
Spearman’s rank correlation coefficient,

272
SPEC, 9

SPEC CPU, 9, 235, 439, 447, 451
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SPECweb, 473
spectral analysis, 378
spectral density, 346, 347, 351
speedup, 510
spike, 473
SPLASH benchmark, 515
split scale, 83, 402
SQL queries, 392, 494
square vs. absolute value, 96, 98, 254,

271, 326
SRPT, see shortest remaining process-

ing time
stable distribution, 121, 181, 203
stack distance, 233
stack model, 233, 240, 261
standard deviation, 97
standard workload format, 73
static web pages, 470
static workload, 7
stationarity, 12, 44–46, 288, 317, 318,

322
statistical graphics, see graphs
statistics, 80, 171
steady state, 44, 180, 192, 311, see sta-

tionarity
stochastic dominance, 276
stochastic process, 79, 242

dependence, 363–366
self-similar, 316
stationary, 45

stock market, 193
stream algorithms, 485
stretched exponential distribution, see Weibull

distribution
strided access, 231, 443, 515
subexponential distribution, 184
sufficient statistics, 145
sum squares, 269
supply and demand, 416
support, 66, 135, 187
surfing, see browsing the web
SURGE, 214, 473
survival function, 87, 135, 157, 162, 175,

184, 199

Swing, 468
symmetrical distribution, 91
SYN flood, 493
synchronization, 512
synthetic application, 9

tail, 89, 91, 104, 148, 169, 171, 172,
209, see heavy tail, long tail

tail index, 105, 129, 175, 181, 200
estimation, 207–213

taken rate, 440
TCP congestion control, 38, 418, 462,

491
TCP connection, 391, 430, 465
telnet, 390
temporal locality, 230, 232–236, 486
texture plot, 329
think time, 390, 399, 408, 419–423, 426
throttling, 417, 492, 513
throughput, 419
time series, 292, 303
time to failure, 112
time window, 236, 442
time zone, 72, 429
time-zone offset, 29, 72
timestamp, 29, 72
tolerance, 421
TPC, 9, 494

TPC-C, 9, 388, 495
TPC-DS, 495
TPC-E, 495
TPC-H, 495
TPC-VMS, 495
TPC-W, 477, 495

trace, 10, 441
trace-driven simulation, 11, 458
trading, 193
traffic in network, 461–466
traffic spike, 473
transactional query, 481
transformation

logarithmic, 123, 137, 279
transient, 46, 180, 192, 444
transition matrix, 242, 244
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transition rate, 440
translation, 340
transmission window, 492
TREC, 497
trend, 47, 298–299, 305
trimmed mean, 94
truncated Pareto distribution, 129, 180,

213, 215, 217
Tstat, 31
2-norm, 280
typing, 133, 390, 428

UCML, see user community modeling
language

unbalanced loading, 192
Unix file sizes, 191, 194, 219, 224
Unix process runtime, 5, 191, 194, 436
Unix time, 72
upload, 465, 489
URL, 470
urns and balls, 222
use scenario, see order of operations
user adaptation, 39, 423
user at terminal, 390, 427, 428
user behavior graph, 261, 412
user community modeling language, 478
user equivalent, 388, 473
user mobility, 431
user personality, 397
user population, 393–397, 489
user resampling, 360, 414
user satisfaction, 389, 419
user sessions, 51, 53, 397–408, 424, 476
user-based modeling, 393–431

motivation, 385–388
user-generated content, 489
utilization, 4, 27, 386, 435, see load

validation, 202, 254, 285, 359, 522, see
cross-validation, visual valida-
tion

value of network, 136
variability, 12, 16, 21, 35, 61, 165, 217,

247, 310, 311, 331, 344, 398,
413

variance, 96, 250, 318, 337
Winsorized, 98

variance-time plot, 338
verification, 522
video-on-demand, 485
virus, 16, 468
visual validation, 164, 198, 284
voice over IP, 466, 487
VoIP, see voice over IP
volume of data, 14, 34, 75, 80, 230

W1/2 metric, 194, 238
waiting for asynchronous operation, 458
waiting time paradoxes, 288
WAN traffic, 462
wavelets, 339, 339–345, 378
weak stationarity, 45
wealth, 130, 197, 223
web archive, 68
web browsing, 390, 403, 467, 472
web crawl, 58, 64, 475
web search, 76, 391, 403, 479–485
web server, 29, 36, 51, 469

log format, 29
weekend, 27, 296, 416, 429, 489
Weibull distribution, 127–128, 201
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