
What Is What Is

Software Testing?Software Testing?

And Why Is It So Hard?And Why Is It So Hard?
James A. Whittaker, James A. Whittaker, Florida Institute of TechnologyFlorida Institute of Technology

IEEE Software 17(1), pp. 70IEEE Software 17(1), pp. 70--79, Jan79, Jan--Feb 2000Feb 2000

AvitalAvital BranerBraner
Basic Seminar of Software EngineeringBasic Seminar of Software Engineering

Hebrew University 2009Hebrew University 2009

Software testingSoftware testing

�� The process of executing a software system to The process of executing a software system to
determine whether it matches its specification determine whether it matches its specification
and executes in its intended environment.and executes in its intended environment.

�� When the user reports a bug:When the user reports a bug:
�� The user executed untested codeThe user executed untested code

�� The order in which statements were executed in The order in which statements were executed in
actual use differed from that during testingactual use differed from that during testing

�� The user applied a combination of The user applied a combination of
untested input valuesuntested input values

�� The userThe user’’s operating environment was never testeds operating environment was never tested

The Testing ProcessThe Testing ProcessThe Testing ProcessThe Testing ProcessThe Testing ProcessThe Testing ProcessThe Testing ProcessThe Testing Process

�� To get a clearer view of some of software To get a clearer view of some of software
testingtesting’’s inherent difficulties, we can s inherent difficulties, we can
approach testing in four phases:approach testing in four phases:

Modeling the Software’s EnvironmentModeling the Software’s Environment

Selecting Test ScenariosSelecting Test Scenarios

Running and Evaluating Test ScenariosRunning and Evaluating Test Scenarios

Measuring testing progressMeasuring testing progress

Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the

SoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftware’’s Environments Environments Environments Environments Environments Environments Environments Environment

�� Testers must identify and simulate the Testers must identify and simulate the
interfaces that a software system uses and interfaces that a software system uses and
enumerate the inputs that can cross each enumerate the inputs that can cross each
interface.interface.

�� Four common interfaces are as follows:Four common interfaces are as follows:
1.1. Human interfacesHuman interfaces

2.2. Software interfacesSoftware interfaces

3.3. File system interfacesFile system interfaces

4.4. Communication interfacesCommunication interfaces

Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the

SoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftware’’s Environments Environments Environments Environments Environments Environments Environments Environment

�� Testers must understand the user interaction Testers must understand the user interaction
that falls outside the control of the software that falls outside the control of the software
under test:under test:

�� Deletes a file that another user has openDeletes a file that another user has open

�� A device gets rebooted in the middle of a A device gets rebooted in the middle of a
stream of communicationstream of communication

�� Two software systems compete for duplicate Two software systems compete for duplicate
services from an APIservices from an API

Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the

SoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftware’’s Environments Environments Environments Environments Environments Environments Environments Environment

�� Testers face two difficulties:Testers face two difficulties:
1.1. select values for any variable inputselect values for any variable input

2.2. decide how to sequence inputsdecide how to sequence inputs

�� The boundary value partitioning The boundary value partitioning
techniquetechnique -- selecting single values for selecting single values for
variables at or around boundariesvariables at or around boundaries

Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the

SoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftware’’s Environments Environments Environments Environments Environments Environments Environments Environment

�� In deciding how to sequence inputs, testers In deciding how to sequence inputs, testers
define a model.define a model.

�� The most common modelThe most common model: :
a graph or state diagram.a graph or state diagram.

�� Other popular modelsOther popular models: :
regular expressions and grammars,regular expressions and grammars,
tools from language theory.tools from language theory.

�� LessLess--used modelsused models::
stochastic processes and genetic algorithms. stochastic processes and genetic algorithms.

Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the Phase 1: Modeling the

SoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftwareSoftware’’s Environments Environments Environments Environments Environments Environments Environments Environment

�� In deciding how to sequence inputs, testers In deciding how to sequence inputs, testers
define a model.define a model.

�� The most common modelThe most common model: :
a graph or state diagram.a graph or state diagram.

�� Other popular modelsOther popular models: :
regular expressions and grammars, tools from regular expressions and grammars, tools from
language theory.language theory.

�� LessLess--used modelsused models::
stochastic processes and genetic algorithms. stochastic processes and genetic algorithms.

Text Editor Example:Text Editor Example:

Filemenu.Open filename* (ClickOpen | ClickCancel)

Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2:

Selecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test Scenarios

�� There are infinite number of test scenarios, but There are infinite number of test scenarios, but
only a subset can be applied.only a subset can be applied.

�� Testers strive for coverage :Testers strive for coverage :
�� covering code statementscovering code statements

�� covering inputscovering inputs

�� But if code and input coverage were sufficient, But if code and input coverage were sufficient,
released products would have very few bugsreleased products would have very few bugs
�� execution pathsexecution paths

�� inputinput sequencessequences

Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2:

Selecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test Scenarios

�� the the bestbest possiblepossible
test datatest data adequacy adequacy criteriacriteria
� the set that will find the most bugs

� typical use scenarios

Text Editor Example:Text Editor Example:
Typical use: editing and formatting.

However, to find bugs, a more likely place to look is in the
harder-to-code features, like figure drawing and table editing.

Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2:

Selecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test Scenarios

�� Execution path test criteria:Execution path test criteria:
�� Control FlowControl Flow

�� Set of tests that cause each source statement to Set of tests that cause each source statement to
be executed at least once.be executed at least once.

�� Set of tests that cause each branching structure Set of tests that cause each branching structure
to be evaluated with each of its possible values.to be evaluated with each of its possible values.

�� DataflowDataflow
�� Set of tests that cause each data structure to be Set of tests that cause each data structure to be

initialized and then subsequently used.initialized and then subsequently used.

�� Fault SeedingFault Seeding
�� Set of tests that expose each of the seeded Set of tests that expose each of the seeded

faults.faults.

Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2:

Selecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test Scenarios

�� Input domain test criteriaInput domain test criteria
�� Simple coverageSimple coverage

�� Select a set of tests thatSelect a set of tests that
contain each physical input.contain each physical input.

�� Select a set of tests that cause each interface Select a set of tests that cause each interface
control to be stimulated.control to be stimulated.

�� The discriminationThe discrimination criterioncriterion
�� Select a set of tests that have the same statistical Select a set of tests that have the same statistical

properties as the entire input domain.properties as the entire input domain.

�� Select a set of paths that are likely to be Select a set of paths that are likely to be
executed by a typical user.executed by a typical user.

Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2: Phase 2:

Selecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test ScenariosSelecting Test Scenarios

�� Most researchers would agree that it is prudent Most researchers would agree that it is prudent
to use multiple criteria when making important to use multiple criteria when making important
release decisions.release decisions.

�� Testers should be aware which criteria are built Testers should be aware which criteria are built
into their methodology and understand the into their methodology and understand the
inherent limitations.inherent limitations.

Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and

Evaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test Scenarios

�� Running:Running:

�� Testers try to automate the test scenarios as Testers try to automate the test scenarios as
much as possible.much as possible.

�� Testers often include dataTesters often include data--gathering code in gathering code in
the simulated environment as test hooks or the simulated environment as test hooks or
asserts. asserts.

Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and

Evaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test Scenarios

�� Scenario Evaluation:Scenario Evaluation:

�� The comparison of the softwareThe comparison of the software’’s actual s actual
output, resulting from test scenario execution, output, resulting from test scenario execution,
to its expected output as documented by a to its expected output as documented by a
specificationspecification.

�� Easily stated but difficult to do.Easily stated but difficult to do.
Usually performed by a human Usually performed by a human oracle.oracle.

Text Editor Example:Text Editor Example:
If the output is supposed to be If the output is supposed to be ““highlight a misspelled word,highlight a misspelled word,””

how can we determine that each instance of misspelling has how can we determine that each instance of misspelling has
been detected?been detected?

Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and Phase 3: Running and

Evaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test ScenariosEvaluating Test Scenarios

�� Two approaches to evaluatingTwo approaches to evaluating
your test:your test:

1.1. FormalismFormalism

2.2. Embedded test code. Embedded test code.

�� test code that exposestest code that exposes
certain internal data objects or statescertain internal data objects or states

�� selfself--testing programstesting programs

Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring

Testing ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting Progress

�� Counting measures yield very little insight Counting measures yield very little insight
about the progress of testing.about the progress of testing.

�� Therefore, many testers answering questions Therefore, many testers answering questions
designed to ascertain structural and functional designed to ascertain structural and functional
testing completeness.testing completeness.

Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring

Testing ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting Progress

� Have I tested for common programming errors?
� Have I exercised all of the source code?
� Have I forced all the internal data to be initialized

and used?
� Have I found all seeded errors?
� Have I thought through the ways in which the

software can fail and selected tests that show it
doesn’t?

� Have I applied all the inputs?
� Have I run all the scenarios that I expect a user

to execute?

Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring

Testing ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting Progress

�� Determining when to stop testingDetermining when to stop testing
is more complex.is more complex.

�� If testers can achieve a measure of the number If testers can achieve a measure of the number
of bugs left in the software and of the of bugs left in the software and of the
probability that any of these bugs will be probability that any of these bugs will be
discovered, they know to stop testing. discovered, they know to stop testing.

Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring

Testing ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting Progress

�� From a structural standpointFrom a structural standpoint: : TestabilityTestability
�� Jeffrey Jeffrey VoasVoas has proposed testabilityhas proposed testability..

�� Testability is a compelling concept but in its Testability is a compelling concept but in its
infancy. No data on its predictive ability has infancy. No data on its predictive ability has
yet been published. yet been published.

Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring Phase 4: Measuring

Testing ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting ProgressTesting Progress

�� From a functional standpoint:From a functional standpoint: Reliability modelsReliability models
�� Mathematical modelsMathematical models

�� Most of them require a description of how users are Most of them require a description of how users are
expected to apply inputs.expected to apply inputs.

�� To compute the probability of failure,To compute the probability of failure, These models These models
make some assumptions about the underlying make some assumptions about the underlying
probability distribution that governs failure probability distribution that governs failure
occurrences.occurrences.

�� Researchers and practitioners alike have expressed Researchers and practitioners alike have expressed
skepticism, but successful case studies have shown skepticism, but successful case studies have shown
these models to be credible.these models to be credible.

SummarySummarySummarySummarySummarySummarySummarySummary

�� The first and most important thing to be done is The first and most important thing to be done is
to recognize the complex nature of testing and to recognize the complex nature of testing and
take it seriously.take it seriously.

�� The author advice: Hire the smartest people The author advice: Hire the smartest people
you can find, help them get the tools and you can find, help them get the tools and
training they need to learn their craft, and listen training they need to learn their craft, and listen
to them when they tell you about the quality of to them when they tell you about the quality of
your software. Ignoring them might be the most your software. Ignoring them might be the most
expensive mistake you ever make.expensive mistake you ever make.

A SampleA SampleA SampleA Sample

Software Testing ProblemSoftware Testing ProblemSoftware Testing ProblemSoftware Testing Problem

� Two input sources:
� the human user who supplies inputs from

the set
� the operating system “user” that supplies

memory, the current system time, and date
as an application service.

A SampleA SampleA SampleA Sample

Software Testing ProblemSoftware Testing ProblemSoftware Testing ProblemSoftware Testing Problem

� Consider the valid and invalid inputs from each
of these sources:
� other Altsequences or keystrokes
� available memory is insufficient
� the system clock is malfunctions

� How users interact in ways that might cause
the software to fail?
� some other program changes the time and date

A SampleA SampleA SampleA Sample

Software Testing ProblemSoftware Testing ProblemSoftware Testing ProblemSoftware Testing Problem

� How many different times are there in a day?
12 hours X 60 minutes X 60 seconds
X 2 am/pm = 86,400 different input values

� Invalid values like 29 o’clock must also be
tested

� Which inputs will be applied consecutively?
� several consecutive Tab keys
� a change to the Time field only
� a change to the Date field only
� changes to both

A SampleA SampleA SampleA Sample

Software Testing ProblemSoftware Testing ProblemSoftware Testing ProblemSoftware Testing Problem

28 test cases

