

The Unified Process

Dror Feitelson

Basic Seminar on Software Engineering
Hebrew University

2009

Process
● Not really a process

– Does not specify precisely what to do at each step
● More of a framework
● Needs to be adjusted to each project according

to need
● Many refinements and extensions

– Agile unified process
– Enterprise unified process

History
● 1990: James Rumbaugh's OOAD
● 1992: Ivar Jacobson's Objectory
● 1993: Grady Booch's OOAD and diagrams
● 1995: Rational Software unites all three

➔ Definition of UML
➔ Definition of unified process
➔ Rational Rose toolset

● 2003: IBM buys Rational

Rambaugh et al.
Prentice-Hall
1990

Use multiple views
of the system

Class
diagram

Statechart

Principles
● Iterative and incremental

– Four phases divided into multiple iterations
● Use-case driven

– Development is based on usage scenarios
● Architecture centric

– Defining and refining the architecture is a major
activity, and the baseline architecture a major
milestone

● Risk focused
– Activities in iterations prioritized to reduce risk

Phases and Workflows

Phase Milestones
● Inception: figure out what this is all about, and

that it is feasible
outcome: contract for the project

● Elaboration: figure out how to actually do it
outcome: project architecture

● Construction: now do it
outcome: initial running system installed

● Similar to Boehm's 3 anchor points

Continuous Workflows
● Exist in all iterations
● e.g. testing is done from the beginning

– Even when there is no code to test
– So test validity, completeness, and consistency of

whatever artifact was produced
– And plan relevant future code tests

● Relative weight may differ in different phases

UML
● Lots and lots of charts and repetitions

➔ Use cases with detailed descriptions
➔ Class diagrams with inheritance, attributes, and

methods
➔ Statecharts with system decomposition and state

transitions
➔ Sequence diagrams with interactions among

components
➔ Collaboration diagram with interactions

superimposed on class diagram
● Serve as documentation
● But why do we need so many?

UML
● Lots and lots of charts and repetitions

➔ Use cases with detailed descriptions
➔ Class diagrams with inheritance, attributes, and

methods
➔ Statecharts with system decomposition and state

transitions
➔ Sequence diagrams with interactions among

components
➔ Collaboration diagram with interactions

superimposed on class diagram
● Serve as documentation
● But why do we need so many?

Constructing the diagrams
forces the developers to really

learn about the domain and
the system requirements

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

