
The Legion Resource Management System ?Steve J. Chapin Dimitrios KatramatosJohn Karpovich Andrew S. GrimshawDepartment of Computer ScienceSchool of Engineering & Applied ScienceUniversity of VirginiaCharlottesville, VA 22903{2442fchapin,dk3x,karp,grimshawg@virginia.eduAbstract. Recent technological developments, including gigabit network-ing technology and low-cost, high-performance microprocessors, have givenrise to metacomputing environments. Metacomputing environments com-bine hosts from multiple administrative domains via transnational andworld-wide networks. Managing the resources in such a system is a com-plex task, but is necessary to e�ciently and economically execute userprograms. The Legion resource management system is exible both in itssupport for system-level resource management but also in their adaptabil-ity for user-level scheduling policies.1 IntroductionLegion [6] is an object-oriented metacomputing environment, intended to connectmany thousands, perhaps millions, of hosts ranging from PCs to massively par-allel supercomputers. Such a system will manage millions to billions of objects,Managing these resources is a complex task, but is necessary to e�ciently andeconomically execute user programs. In this paper, we will describe the Legionscheduling model, our implementation of the model, and the use of these mech-anisms to support user-level scheduling. To be successful, Legion will requiremuch more than simply ganging computers together via gigabit channels|asound software infrastructure must allow users to write and run applications inan easy-to-use, transparent fashion. Furthermore, the software must unite ma-chines from thousands of administrative domains into a single coherent system.This requires extensive support for autonomy, so that we can assure administra-tors that they retain control over their local resources.In a sense, then, we have two goals which can often be at odds: users wantto optimize factors such as application throughput, turnaround time, or cost,while administrators want to ensure that their systems are safe and secure,and will grant resource access according to their own policies. Legion provides a? This work was funded in part by NSF grant CDA9724552, ONR grant N00014-98-1-0454, Northrup-Grumman contract 9729373-00, and DOE contracts DEFG02-96ER25290, SANDIA #LD-9391, and D45900016-3C.

methodology allowing each group to express their desires, with the system actingas a mediator to �nd a resource allocation that is acceptable to both parties.Legion achieves this vision through a exible, modular approach to schedul-ing support. This modularity encourages others to write drop-in modules andto customize system behavior. We fully expect others to reimplement or aug-ment portions of the system, reecting their needs for speci�c functionality.For scheduling, as in other cases, we provide reasonable default policies and al-low users and system administrators to customize behavior to meet their needsand desires. Our mechanisms have cost that scales with capability|the e�ortrequired to implement a simple policy is low, and rises slowly, scaling commen-surately with the complexity of the policy being implemented. This continuumis provided through a substrate rich in functionality that simpli�es the imple-mentation of scheduling algorithms.Before we proceed further, it is important to note a crucial property of ourwork: we neither desire nor profess to be in the business of devising schedulingalgorithms. We are providing enabling technology so that researchers focusingon research in distributed scheduling can build better schedulers with less e�ort.To paraphrase a popular television commercial in the USA, \We don't make alot of the schedulers you use. We make a lot of the schedulers you use better."1Section 2 describes the Legion metacomputing system, and Section 3 out-lines the resource management subsystem. We develop a Scheduler using Legionresource management in Section 4, and describe other resource managementsystems for metacomputing in Section 5. Finally, we give concluding remarks inSection 6.2 LegionThe Legion design encompasses ten basic objectives: site autonomy, supportfor heterogeneity, extensibility, ease-of-use, parallel processing to achieve perfor-mance, fault tolerance, scalability, security, multi-language support, and globalnaming. These objectives are described in greater depth in Grimshaw et al. [6].Resource Management is concerned primarily with autonomy, heterogeneity, andperformance, although other issues certainly play a role.The resulting Legion design contains a set of core objects, without which thesystem cannot function, a subset of which are shown in �gure 1. These objectsare critical to resource management in that they provide the basic resourcesto be managed, and the infrastructure to support management. Between coreobjects and user objects lie service objects|objects which improve system per-formance, but are not truly essential to system operation. Examples of serviceobjects include caches for object implementations, �le objects, and the resourcemanagement infrastructure.In the remainder of this section, we will examine the core objects and theirrole in resource management. For a complete discussion of the Legion Core Ob-jects, see [10]. We will defer discussion of the service objects until section 3.1 Apologies to BASF.

2.1 Legion Core ObjectsClass objects (e.g. HostClass, LegionClass) in Legion serve two functions. Asin other object-oriented systems, Classes de�ne the types of their instances. InLegion, Classes are also active entities, and act as managers for their instances.Thus, a Class is the �nal authority in matters pertaining to its instances, includ-ing object placement. The Class exports the create instance() method, which isresponsible for placing an instance on a viable host.2 create instance takes anoptional argument suggesting a placement, which is necessary to implement ex-ternal Schedulers. In the absence of this argument, the Class makes a quick (andalmost certainly non-optimal) placement decision.
LegionClass

MyObjClassHostClass VaultClass

Host1 Host2 Vault1 Vault2

Fig. 1. The Legion Core Object HierarchyThe two remaining core objects represent the basic resource types in Le-gion: Hosts and Vaults. Each has a corresponding guardian object class. HostObjects encapsulate machine capabilities (e.g., a processor and its associatedmemory) and are responsible for instantiating objects on the processor. In thisway, the Host acts as an arbiter for the machine's capabilities. Our currentHost Objects represent single-host systems (both uniprocessor and multiproces-sor shared memory machines), although this is not a requirement of the model.We are currently implementing Host Objects which interact with queue man-agement systems such as LoadLeveler and Condor.To support scheduling, Hosts grant reservations for future service. The ex-act form of the reservation depends upon the Host Object implementation, but2 When we write \host" we refer to a generic machine; when we write \Host" we arereferring to a Host Object.

they must be non-forgeable tokens; the Host Object must recognize these tokenswhen they are passed in with service requests. It is not necessary for any otherobject in the system to be able to decode the reservation token (more detailson reservation types are given in section 3.1). Our current implementation ofreservations encodes both the Host and the Vault which will be used for execu-tion of the object. Vaults are the generic storage abstraction in Legion. To beexecuted, a Legion object must have a Vault to hold its persistent state in anObject Persistent Representation (OPR). The OPR is used for migration andfor shutdown/restart purposes. All Legion objects automatically support shut-down and restart, and therefore any active object can be migrated by shuttingit down, moving the passive state to a new Vault if necessary, and activating theobject on another host.Hosts also contain a mechanism for de�ning event triggers|this allows a Hostto, e.g., initiate object migration if its load rises above a threshold. Conceptually,triggers are guarded statements which raise events if the guard evaluates toa boolean true. These events are handled by the Reective Graph and Event(RGE) mechanisms in all Legion objects. RGE is described in detail in [13,15];for our purposes, it is su�cient to note that this capability exists.3 Resource Management Infrastructure (RMI)Our philosophy of scheduling is that it is a negotiation of service between au-tonomous agents, one acting on the part of the application (consumer) and oneon behalf of the resource or system (provider). This approach has been validatedby both our own past history [4,8] and the more recent work of groups such asthe AppLeS project at UCSD [1]. These negotiating agents can either be theprincipals themselves (objects or programs), or Schedulers and intermediariesacting on their behalfs. Scheduling in Legion is never of a dictatorial nature;requests are made of resource guardians, who have �nal authority over whatrequests are honored.Figure 2 shows several di�erent layering schemes that can naturally arise inmetasystems. In part (a), the application does it all, negotiating directly with re-sources and making placement decisions. In part (b), the application still makesits own placement decision, but uses the provided Resource Management servicesto negotiate with system resources. Part (c) shows an application taking advan-tage of a combined placement and negotiation module, such as was provided inmessiahs [4]. The most exible layering scheme, shown in part (d), performseach of these functions in a separate module. Without loss of generality, we willwrite in terms of the fourth layering scheme, with the understanding that theScheduler may be combined with other layers, thus producing one of the simplerlayering schemes. Any of these layerings is possible in Legion; the choice of whichto use is up to the individual application writer.Legion provides simple, generic default Schedulers that o�er the classic \90%"solution|they do an adequate job, but can easily be outperformed by Schedulerswith specialized algorithms or knowledge of the application. Application writers

Application +

Scheduler

(a) (b) (c)

Application
Application +

RM Services

Scheduler +

Resource Objects Resource Objects

RM Services

Resource Objects Resource Objects

Application

Scheduler

RM Services

Scheduler +

RM Services

(d)Fig. 2. Choices in Resource Management Layeringcan take advantage of the resource management infrastructure, described below,to write per-application or application-type-speci�c user-level Schedulers. We areworking with Weissman's group at UTSA [16] to develop Schedulers for broadclasses of applications with similar structures (e.g. 5-point stencils).Our resource management model, shown in �gure 3, supports our schedulingphilosophy by allowing user-de�ned Schedulers to interact with the infrastruc-ture. The components of the model are the basic resources (Hosts and Vaults),the information database (the Collection), the schedule implementor (the Enac-tor), and an execution Monitor.The Scheduler is responsible for overall application coordination (recall thatwe are using option (d) from the layering scheme in �gure 2). It decides themapping of objects (subtasks) to hosts, based on the current system state. TheScheduler can obtain a snapshot of the system state by querying the Collec-tion, or it may interact directly with resources (Hosts and Vaults) to obtain thefreshest state information available. Once the Scheduler computers the schedule,it passes the schedule to the Enactor, and the Enactor negotiates with the re-sources objects named in the schedule to instantiate the objects. Note that thismay require the Enactor to negotiate with several resources from di�erent ad-ministrative domains to perform co-allocation. After the objects are running, theexecution Monitor may request a recomputation of the schedule, perhaps basedon the progress of the computation and the load on the hosts in the system.Figure 3 and the following discussion describe the logical components andsteps involved in the scheduling process. Again, this description conforms toour implementation of the interfaces; others are free to substitute their ownmodules|for example, several components may be combined (e.g. the Scheduleror Enactor and the Monitor) for e�ciency. The steps in object placement are asfollows:The Collection is populated with information describing the resources (step1). The Scheduler queries the Collection, and based on the result and knowledge

LegionClass

MyObjClassHostClass VaultClass

Host1 Host2 Vault1 Vault2

Collection

EnactorScheduler

Monitor

1

2 3

4,8

5,9 6,10

7,11
12

13

13

Fig. 3. Use of the Resource Management Infrastructureof the application, computes a mapping of objects to resources. This application-speci�c knowledge can either be implicit (in the case of an application-speci�cScheduler), or can be acquired from the application's classes (steps 2 and 3). Thismapping is passed to the Enactor, which invokes methods on Hosts and Vaultsto obtain reservations from the resources named in the mapping (steps 4, 5,and 6). After obtaining reservations, the Enactor consults with the Scheduler tocon�rm the schedule, and after receiving approval from the Scheduler, attemptsto instantiate the objects through member function calls on the appropriateclass objects (steps 7, 8, and 9). The class objects report success/failure codes,and the Enactor returns the result to the Scheduler (steps 10 and 11). If, duringexecution, a resource decides that the object needs to be migrated, it performs anoutcall to a Monitor, Which noti�es the Scheduler and Enactor that reschedulingshould be performed (optional steps 12 and 13).The remainder of this section examines each of the components in greaterdetail.3.1 Host and Vault ObjectsThe resource management interface for the Host object appears in table 1. Thereare three broad groups of functions: reservation management, object manage-ment, and information reporting.The reservation functions are used by the Enactor to obtain a reservationtoken for each subpart of a schedule. When asked for a reservation, the Host isresponsible for ensuring that the vault is reachable, that su�cient resources areavailable, and that its local placement policy permits instantiating the object.

Reservation Management Process Management Information Reportingmake reservation() startObject() get compatible vaults()check reservation() killObject() vault OK()cancel reservation() deactivateObject()Table 1. Host Object Resource Management InterfaceHost Object support for reservations is provided irrespective of underlying sys-tem support for reservations (although the Host is free to take advantage of suchfacilities, if they exist). For example, the standard Unix Host Object maintainsa reservation table in the Host Object, because the Unix OS has no notion ofreservations. Similarly, most batch processing systems do not understand reser-vations, and so our basic Batch Queue Host maintains reservations in a fashionsimilar to the Unix Host Object.3 A Batch Queue Host for a system that doessupport reservations, such as the Maui Scheduler, could take advantage of theunderlying facilities and pass the job of managing reservations through to thequeuing system. Our real ability to coordinate large applications running acrossmultiple queuing systems will be limited by the functionality of the underlyingqueuing system, and there is an unavoidable potential for conict. We acceptthis, knowing that our Legion objects are built to accommodate failure at anystep in the scheduling process.Legion reservations have a start time, a duration, and an optional timeoutperiod. One can thus reserve an hour of CPU time (duration) starting at noontomorrow (start time). The timeout period indicates how long the recipient hasto con�rm the reservation if the start time indicates an instantaneous reserva-tion. Con�rmation is implicit when the reservation token is presented with theStartObject() call. Our reservations have two type bits: reuse and share. Thisallows us to build four types of reservations, as shown in table 2. A reusablereservation token can be passed in to multiple StartObject() calls. An un-shared reservation allocates the entire resource; shared reservations allow theresource to be multiplexed. Thus, the traditional \machine is mine for the timeperiod" reservation has reuse = 1, share = 0, while a typical timesharing systemthat expires a reservation when the job is done would have reuse = 0, share = 1.The object (process) management functions allow the creation, destruction,and deactivation of objects (object reactivation is initiated by an attempt toaccess the object; no explicit Host Object method is necessary). The StartObjectfunction can create one or more objects; this is important to support e�cientobject creation for multiprocessor systems.In addition to the information reporting methods listed above, the Host alsosupports the attribute database included in all Legion objects. In their simplestform, attributes are (name, value) pairs. These information reporting methodsfor Host Objects allow an external agent to retrieve information describing the3 We have Batch Queue Host implementations for Unix machines, LoadLeveler, andCodine.

one-shot space sharing(share = 0, reuse = 0) reusable space sharing(share = 0, reuse = 1)one-shot timesharing(share = 1, reuse = 0) reusable timesharing(share = 1, reuse = 1)Table 2. Legion Reservation TypesHost's state automatically (the host's state is a subset of the state maintainedby the Host). All Legion objects include an extensible attribute database, thecontents of which are determined by the type of the object. Host objects pop-ulate their attributes with information describing their current state, includingarchitecture, operating system, load, available memory, etc.The Host Object reassesses its local state periodically, and repopulates its at-tributes. If a push model4 is being used, it will then deposit information into itsknown Collection(s). The exibility of Legion object attribute databases allowsthe Host Object to export a rich set of information, well beyond the minimal \ar-chitecture, OS, and load average" information used by most current schedulingalgorithms. For example, the Host could export information such as the amountcharged per CPU cycle consumed, domains from which it refuses to accept ob-ject instantiation requests, or a description of its willingness to accept extra jobsbased on the time of day. This kind of information can help Schedulers to makebetter choices at the outset, thus avoiding the computation of subtly nonfeasibleschedules.The current implementation of Vault Objects does not contain dynamic stateto the degree that the Host Object implementation does. Vaults, therefore, onlyparticipate in the scheduling process at the start, when they verify that theyare compatible with a Host. They may, in the future, be di�erentiated by theamount of storage available, cost per byte, security policy, etc.3.2 The CollectionThe Collection acts as a repository for information describing the state of theresources comprising the system. Each record is stored as a set of Legion objectattributes. As seen in �gure 4, Collections provide methods to join (with anoptional installment of initial descriptive information) and update records, thusfacilitating a push model for data. The security facilities of Legion authenticatethe caller to be sure that it is allowed to update the data in the Collection.As noted earlier, Collections may also pull data from resources. Users, or theiragents, obtain information about resources by issuing queries to a Collection.4 We are implementing an intermediate agent, the Data Collection Daemon, whichpulls data from Hosts and pushes it into Collections.

A Collection query is a logical expression conforming to the grammar describedin our earlier work [3]. This grammar allows typical operations (�eld matching,semantic comparisons, and boolean combinations of terms). Identi�ers refer toattribute names within a particular record, and are of the form $AttributeName.int JoinCollection(LOID joiner);int JoinCollection(LOID joiner, LinkedList <Uval ObjAttribute>);int LeaveCollection(LegionLOID leaver);int QueryCollection(String Query, &CollectionData result);int UpdateCollectionEntry(LOID member, LinkedList<Uval ObjAttribute>);Fig. 4. Collection InterfaceFor example, to �nd all Hosts running with the IRIX operating system version5.x, one could use the regular expression matching feature for strings and queryas follows:5match($host os name, \IRIX") andmatch(\5n..*", $host os name)In its current implementation, the Collection is a passive database of staticinformation, queried by Schedulers. We plan to extend Collections to supportfunction injection|the ability for users to install code to dynamically computenew description information and integrate it with the already existing descriptioninformation for a resource. This capability is especially important to users of theNetwork Weather Service [17], which predicts future resource availability basedon statistical analysis of past behavior.3.3 The Scheduler and SchedulesThe Scheduler computes the mapping of objects to resources. At a minimum, theScheduler knows how many instances of each class must be started. Application-speci�c Schedulers may implicitly have more extensive knowledge about the re-source requirements of the individual objects, and any Scheduler may query theobject classes to determine such information (e.g., the available implementations,or memory or communication requirements). The Scheduler obtains resource de-scription information by querying the Collection, and then computes a mappingof object instances to resources. This mapping is passed on to the Enactor for5 The match() function uses the Unix regexp() library, treating the �rst argument asa regular expression. Some earlier descriptions of the match() functions erroneouslyhad the regular expression as the second argument.

implementation. It is not our intent to directly develop more than a few widely-applicable Schedulers; we leave that task to experts in the �eld of designingscheduling algorithms. Our job is to build mechanisms that assist them in theirtask.
M

or
e

M
as

te
r

Sc
he

du
le

s

Master Schedule

...

...

Variant Schedules

List of Master Schedules

Head of Master or Variant Schedule

Object Class to (Host, Vault) mapping

Fig. 5. The Schedule data structureSchedules must be passed between Schedulers and Enactors. A graphicalrepresentation for a Schedule appears in �gure 5. Each Schedule has at least oneMaster Schedule, and each Master Schedule may have a list of Variant Schedulesassociated with it. Both master and variant schedules contain a list of mappings,with each mapping having the type (Class LOID! (Host LOID x vault LOID)).Each mapping indicates that an instance of the class should be started on theindicated (Host, Vault) pair. In the future, this mapping process may also selectfrom among the available implementations of an object as well. We will alsosupport \k out of n" scheduling, where the Scheduler speci�es an equivalenceclass of n resources and asks the Enactor to start k instances of the same objecton them.There are three important data types for interacting with the Enactor: theLegionScheduleFeedback, LegionScheduleList, and LegionScheduleRequestList.A LegionScheduleList is simply a single schedule (e.g. a Master or Variant sched-ule). A LegionScheduleRequestList is the entire data structure shown in �gure5. LegionScheduleFeedback is returned by the Enactor, and contains the origi-

nal LegionScheduleRequestList and feedback information indicating whether thereservations were successfully made, and if so, which schedule succeeded.3.4 The EnactorThe pertinent portion of the Enactor interface appears in �gure 6. A Scheduler�rst passes in the entire set of schedules to the make reservations() call, andwaits for feedback. If all schedules failed, the Enactor may (but is not requiredto) report whether the failure was due to an inability to obtain resources, amalformed schedule, or other failure. If any schedule succeeded, the Schedulercan then use the enact schedule() call to request that the Enactor instantiateobjects on the reserved resources, or the cancel reservations() method to releasethe resources.&LegionScheduleFeedback make reservations(&LegionScheduleList);int cancel reservations(&LegionScheduleRequestList);&LegionScheduleRequestList enact schedule(&LegionScheduleRequestList);Fig. 6. Enactor InterfaceWe have mentioned master and variant schedules, but have not explainedhow they are used by the Enactor. Each entry in the variant schedule is a single-object mapping, and replaces one entry in the master schedule. If all mappingsin the master schedule succeed, then scheduling is complete. If not, then a vari-ant schedule is selected that contains a new entry for the failed mapping. Thisvariant may also have di�erent mappings for other instances, which may havesucceeded in the master schedule. Implementing the variant schedule entailsmaking new reservations for items in the variant schedule and canceling any cor-responding reservations from the master schedule. Our default Schedulers andEnactor work together to structure the variant schedules so as to avoid reserva-tion thrashing (the canceling and subsequent remaking of the same reservation).Our data structure includes a bitmap �eld (one bit per object mapping) for eachvariant schedule which allows the Enactor to e�ciently select the next variantschedule to try. This keeps the \intelligence" where it belongs: under the controlof the Scheduler implementer.As mentioned earlier, Class objects implement a create instance() method.This method has an optional argument containing an LOID and a reservationtoken. Use of the optional argument allows directed placement of objects, whichis necessary to implement externally computed schedules. The Class object isstill responsible for checking the placement for validity and conformance to localpolicy, but the Class does not have to go through the standard placement steps.

3.5 Application MonitoringAs noted earlier, Legion provides an event-based noti�cation mechanism via itsRGE model [13]. Using this mechanism, the Monitor can register an outcallwith the Host Objects; this outcall will be performed when a trigger's guardevaluates to true. There is no explicitly-de�ned interface for this functionality,as it is implicit in the use of RGE facilities. In our actual implementation, we haveno separate monitor objects; the Enactor or Scheduler perform the monitoring,with the outcall registered appropriately.4 Examples of UseWe now give an example of a Scheduler that uses our resource management in-frastructure. While it does not take advantage of any application-speci�c knowl-edge, it does serve to demonstrate some of the exibility of the mechanisms. Westart with a simple random policy, and demonstrate how to build a \smarter"Scheduler based on the simple random policy. This improved Scheduler providesa template for building Schedulers with more complex placement algorithms. Wethen discuss our plans for building more sophisticated Schedulers with applica-tion and domain-speci�c knowledge.The actual source code for the default Legion Scheduler was too voluminousto include here. For the sake of brevity and to keep the focus on the facili-ties provided by Legion rather than the details of a simple random Scheduler,we have presented pseudocode. The source code is contained in release 1.5 ofthe Legion system, released in January 1999. The current release of the Le-gion software is available from [9], or by contacting the authors via e-mail atlegion@cs.virginia.edu.4.1 Random SchedulingThe Random Scheduling Policy, as the name implies, randomly selects fromthe available resources that appear to be able to run the task. There is noconsideration of load, speed, memory contention, communication patterns, orother factors that might a�ect the completion time of the task. The goal here issimplicity, not performance.Pseudocode for our random schedule generator in �gure 7. The Generate Ran-dom Placement() function is called with a list of classes for which instantiation isdesired. The Scheduler iterates over this list, and executes the following steps foreach item. First, the Scheduler extracts the list of available implementations fromthe Class Object it is to instantiate. The Scheduler then queries the Collectionfor matching Hosts, and picks a matching Host at random. After extracting thatHost's list of compatible Vaults from the description returned by the Collection,the Scheduler randomly selects a vault. This (Host, Vault) pair is added to themaster schedule. This pair selection is done once for each instance desired forthis class.

Generate Random Placement(ObjectClass list) ffor each ObjectClass O in the list, do fquery the class for available implementationsquery Collection for Hosts matching available implementationsk = the number of instances of this class desiredfor i := 1 to k, do fpick a Host H at randomextract list of compatible vaults from Hrandomly pick a compatible vault Vappend the target (H, V) to the master scheduleggreturn the master scheduleg Fig. 7. Pseudocode for random placementNote that this algorithm only builds one master schedule, and does not takeadvantage of the variant schedule feature, nor does it calculate multiple sched-ules. The Scheduler could call this function multiple times to generate additionalmaster schedules. This is not e�cient, nor will it necessarily generate a near-optimal schedule, but it is simple and easy. This is, in fact, the equivalent of thedefault schedule generator for Legion Classes in releases prior to 1.5.After generating the mapping, the Scheduler must interact with the Enactorto determine if the placement was successful. Although not shown in �gure 7,the simple implementation passes a single master schedule to the Enactor viathe make reservations() and enact schedule() methods, and reports the success orfailure of that call back to the object that invoked the Scheduler. No attemptis currently made to generate other placements, although a more sophisticatedScheduler would certainly do so.4.2 Improved Random Scheduling (IRS)There are many possible improvements on our random placement algorithm,both for e�ciency of calculation and for e�cacy of the generated schedule. Theimprovement we focus on is not in the basic algorithm; the IRS still selects arandom Host and Vault pair. Rather, we will compute multiple schedules andaccommodate negative feedback from the Enactor. The pseudocode for IRS isin �gures 8 and 9.The improved version generates n randommappings for each object class, andthen constructs n schedules out of them. The Scheduler could just as easily buildn schedules through calls to the original generator function, but IRS does fewer

IRS Gen Placement(ObjectClass list, int n) ffor each ObjectClass O in the list, do fquery the class for available implementationsquery Collection for Hosts matching available implementationsk = the number of instances of this object desiredfor l := 1 to n, do ffor i := 1 to k, do fpick a Host H at randomextract list of compatible vaults from Hrandomly pick a compatible vault Vappend the target (H, V) to the list for this instancegggmaster sched. = first item from each object inst. listfor l := 2 to n, do fselect the lth component of the list for each object instanceconstruct a list of all that do not appear in the master listappend to list of variant schedulesgreturn the master scheduleg Fig. 8. Pseudocode for the IRS Placement GeneratorIRS Wrapper(ObjectClass list) ffor i in 1 to SchedTryLimit, do fsched = IRS Gen Placement(ObjectClass List, NSched);for j in 1 to EnactTryLimit, do fif (make reservations(sched) succeeded) fif (enact placement(sched) succeeded) freturn success;ggggreturn failure;g Fig. 9. Pseudocode for the IRS Wrapper

lookups in the Collection. Note also that, because this is random placement,we do not consider dependencies between objects in the placement. A moresophisticated Scheduler would take this into account either when generatingthe individual instance mappings or when combining instance mappings into aschedule.The Wrapper function has three global variables that limit the number oftimes it will try to generate schedules, the number of times it will attempt toenact each schedule, and the number of variant schedules generated per call tothe generation function.6 Again, this is a simple-minded approach to solving theproblem, but serves to demonstrate how one could construct a richer Scheduler.4.3 Specialized PoliciesWe are in the process of de�ning and implementing specialized placement policiesfor structured multi-object applications. Examples of these applications includeMPI-based or PVM-based simulations, parameter space studies, and other mod-eling applications. Applications in these domains quite often exhibit predictablecommunication patterns, both in terms of the compute/communication cycleand in the source and destination of the communication. For example, we areworking with the DoD MSRC in Stennis, Mississippi to develop a Schedulerfor an MPI-based ocean simulation which uses nearest-neighbor communicationwithin a 2-D grid.5 Related WorkThe Globus project [5] is also building metacomputing infrastructure. At a highlevel, their scheduling model closely resembles that of Legion, as we �rst pre-sented it at the 1997 Legion Winter Workshop [2]. There is a rough correspon-dence between Globus Resource Brokers and Legion Schedulers; Globus Informa-tion Services and Legion Collections; Globus Co-allocators and Legion Enactors;and Globus GRAMs and Legion Host Objects. However, there are substantialdi�erences in realization of the model, due primarily to two features of Legionnot found in Globus: the object-oriented programming model and strong sup-port for local autonomy among member sites. Legion achieves its goals witha \whole-cloth" design, while Globus presents a \sum-of-services" architecturelayered over pre-existing components. Globus has the advantage of a faster pathto maturity, while Legion encompasses functionality not present in Globus. Anexample of this is in the area of reservations and schedules. Globus has no intrin-sic reservation support, nor do they o�er support for schedule variation|eachtask in Globus is mapped to exactly one location.6 We realize that the value returned from the generator and passed to the Enactorshould be a list of master schedules; we take liberty with the types in the pseudocodefor the sake of brevity.

There are many software systems for managing a locally-distributed multi-computer, including Condor [11] and LoadLeveler [14]. These systems are typi-cally Queue Management Systems intended for use with homogeneous resourcepools. While extremely well-suited to what they do, they do not map well ontowide-area environments, where heterogeneity, multiple administrative domains,and communications irregularities dramatically complicate the job of resourcemanagement. Indeed, these types of systems are complementary to a metasys-tem, and we will incorporate them into Legion by developing specialized HostObjects to act as mediators between the queuing systems and Legion at large.SmartNet [7] provides scheduling frameworks for heterogeneous resources.It is intended for use in dedicated environments, such as the suite of resourcesavailable at a supercomputer center. Unlike Legion, SmartNet is not intendedfor large-scale systems spanning administrative domains. Thus, SmartNet couldbe used within a Legion system by developing a specialized Host Object, similarto the Condor and LoadLeveler Host Objects mentioned earlier. IBM's DRMS[12] also provides scheduling frameworks, in this case targeted towards recon-�gurable applications. The DRMS components serve functions similar to thoseof the Legion RMI, but like SmartNet, DRMS is not designed for wide-areametacomputing systems.6 Conclusions and Future WorkThis paper has described the resource management facilities in the Legion meta-computing environment, including reservations and schedule handling mecha-nisms. We have focused on the components of the resource management subsys-tem, presented their functionality, and described the interfaces of each compo-nent. Using these interfaces, we have implemented sample Schedulers, includinga simple random Scheduler and a more sophisticated, but still random, Sched-uler. These sample Schedulers point the way to building more complex andsophisticated Schedulers for real-world applications.We are in the process of benchmarking the current system so that we canmeasure the improvement in performance as we develop more intelligent Sched-ulers. We are developing Network Objects to manage communications resources.The object interfaces will evolve in response to need|as we work with our re-search partners who are developing scheduling algorithms, we will enrich boththe content and capability of the Resource Management Infrastructure and theLegion core objects.References1. F. Berman and R. Wolski. Scheduling from the perspective of the application. InProceedings of the 5th International Symposium on High-Performance DistributedComputing (HPDC-5), pages 100{111. IEEE, August 1996.2. S. Chapin and J. Karpovich. Resource Management in Legion. Le-gion Winter Workshop. http://www.cs.virginia.edu/~legion/WinterWork-shop/slides/Resource Management/, January, 1997.

3. S. Chapin and E. Spa�ord. Support for Implementing Scheduling Algorithms UsingMESSIAHS. Scienti�c Programming, 3:325{340, 1994. special issue on OperatingSystem Support for Massively Parallel Computer Architectures.4. S. J. Chapin. Distributed Scheduling Support in the Presence of Autonomy. InProceedings of the 4th Heterogeneous Computing Workshop, IPPS, pages 22{29,April 1995. Santa Barbara, CA.5. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.International Journal of Supercomputer Applications, 11(2):115-128, 1997.6. A. S. Grimshaw, Wm. A. Wulf, and the Legion Team. The legion vision of aworldwide virtual computer. Communications of the ACM, 40(1), January 1997.7. D. Hensgen, L. Moore, T. Kidd, R. Freund, E. Keith, M. Kussow, J. Lima, andM. Campbell. Adding rescheduling to and integrating condor with smartnet. InProceedings of the 4th Heterogeneous Computing Workshop, pages 4{11. IEEE,1995.8. J. Karpovich. Support for object placement in wide area heterogeneous distributedsystems. Technical Report CS-96-03, Dept. of Computer Science, University ofVirginia, January 1996.9. Legion web page. http://legion.virginia.edu.10. M. J. Lewis and A. S. Grimshaw. The core legion object model. In Proceedingsof the 5th International Symposium on High-Performance Distributed Computing(HPDC-5), pages 551{561. IEEE, August 1996.11. M. Litzkow, M. Livny, and M. W. Mutka. Condor|A Hunter of Idle Workstations.In Proceedings of the International Conference on Distributed Computing Systems,pages 104{111, June 1988.12. J. E. Moreira and V. K. Naik. Dynamic resource management on distributed sys-tems using recon�gurable applications. IBM Journal of Research & Development,41(3), 1997.13. A. Nguyen-Tuong, S. J. Chapin, and A. S. Grimshaw. Designing generic andreusable orb extensions for a wide-area distributed system. In High-PerformanceDistributed Computing, poster session, July 1998.14. A. Prenneis, Jr. Loadleveler: Workload management for parallel and distributedcomputing environments. In Proceedings of Supercomputing Europe (SUPEUR),October 1996.15. C. L. Viles, M. J. Lewis, A. J. Ferrari, A. Nguyen-Tuong, and A. S. Grimshaw.Enabling exiblity in the legion run-time library. In Proceedings of the InternationalConference on Parallel and Distributed Processing Techniques and Applications(PDPTA'97), pages 265{274, June 1997.16. J. Weissman and X. Zhao. Scheduling parallel applications in distributed networks.Journal of Cluster Computing, 1(1), 1998.17. R. Wolski. Dynamically forecasting network performance to support dynamicscheduling using the network weather service. In Proceedings of the 6th Interna-tional Symposium on High-Performance Distributed Computing (HPDC-6), August1997.

