
7. J. Ding and L. N. Bhuyan. An adaptive submesh allocation strategy for two-

dimensional mesh connected systems. Proceedings of International Conference on

Parallel Processing, pages (II)193{200, 1993.

8. A. Hori, H. Tezuka, and Y. Ishikawa. Overhead analysis of preemptive gang

scheduling. IPPS'98 Workshop on Jpb Scheduling Strategies for Parallel Processing

(Lecture Notes in Computer Science 1125), pages 217{230, 1998.

9. P.G. Sobalvarro and W.E. Weihl. Demand-based coscheduling of parallel jobs on

multiprogrammed multiprocessors. IPPS'95 Workshop on Jpb Scheduling Strate-

gies for Parallel Processing (Lecture Notes in Computer Science 949), pages 106{

126, 1995.

10. P.G. Sobalvarro, S. Pakin, W.E. Weihl, and A.A. Chien. Dynamic coscheduling on

workstation clusters. IPPS'98 Workshop on Jpb Scheduling Strategies for Parallel

Processing (Lecture Notes in Computer Science 1125), pages 231{256, 1998.

computers. Scheduling here is in principle moderate co-scheduling, with which

the order of priority of the speci�c parallel processes is controlled per �xed time.

In addition, as a method to change the order of priority of parallel processes

simultaneously for conducting co-scheduling, the authors proposed and installed

internal synchronization which takes advantage of the synchronous clock that is

a hardware property of AP1000+.

Together with the communication library for polling/signal switching, this

method allowed e�cient execution of both �ne grain parallel processes and coarse

grain parallel processes. It was con�rmed that co-scheduling allows e�cient op-

eration of busy wait communications of �ne grain parallel processes, which wait

for communication by busy wait, even when several of those are input. In ad-

dition, it was con�rmed that the overall processing e�ciency of coarse grain

parallel processes, which wait for communication by signal, could be improved

by issuing context switching to execute another parallel process.

Although the problem with internal synchronization is the co-scheduling skew

caused by the failure of synchronization in the respective processors when con-

ducting re-scheduling, it was concluded that the time lag was negligible since it

accounted for around 2.5% of 200 ms where priority switching takes place.

The important issue of a parallel OS is to establish both a communication

library and a scheduler in consideration of the properties of applications and the

structures of the hardware available. A parallel OS designer must decide whether

to use waiting by busy wait or context switching based on the communication

patterns of the applications. If co-scheduling can e�ciently be installed on us-

able hardware, it is su�cient to consider its introduction for �ne grain parallel

processes. At present, AP/Linux is compatible with both �ne grain and coarse

grain parallel processes, thus allowing e�cient processing of a wide variety of

application programs.

References

1. A. Tridgell, P. Mackerras, D. Sitsky, and D. Walsh. Ap/linux a modern os for the

ap1000+. The 6th Parallel Computing Workshop, pages P2C1{P2C9, 1996.

2. J.K. Ousterout. Scheduling techniques for concurrent Systems. Proceedings of

the 3rd International Conference on Distributed Computing Systems, pages 22{30,

1982.

3. A.C. Dusseau, R.H. Arpaci, and D.E. Culler. E�ective Distributed Scheduling of

Parallel Workloads. SIGMETRICS'96, 1996.

4. D. Sitsky, P. Mackerras, A. Tridgell, and D. Walsh. Implementing MPI under

AP/Linux. Second MPI Developers Conference, pages 32{39, 1996.

5. D.G. Feitelson. Job Scheduling in Multiprogrammed Parallel Systems. IBM re-

search Report RC 19790(87657), 1997.

6. K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, and M. Tukamoto. Time sharing

systems that use a partitioning algorithm on mesh-connected parallel computers.

The Ninth International Conference on Parallel and Distributed Computing Sys-

tems, pages 268{275, 1996.

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7

T
im

e
(s

)

processes

AP/linux

Fig. 9. Speed of parallel process creation.

On the other hand, the time required for processing by interruption in the

respective kernels was about 0.3 ms for 2 processes and about 0.4 ms for 8

processes. Although they are added to parallel processing as overhead every time,

they are considered negligible because they account for 0.4% of 200 ms. This is

also considered negligible when compared with the time lag of synchronization.

5 Related Research

Implicit co-scheduling[3] and dynamic co-scheduling[9, 10] are resemble to our

moderate co-scheduling. Implicit co-scheduling and dynamic co-scheduling are

demand-based co-scheduling, that is, they relay on a local scheduler to run the

parallel process when it receive a message. They suppose that the scheduler

quickly dispatches parallel processes after receiving a message. We believes our

local scheduler cannot dispatch so quickly. Therefore we o�ered multi-processor-

wide scheduling. The multi-processor-wide co-scheduling is used to synchronize

the scheduling of parallel processes on all processors. It is bene�cial for �ne grain

parallel processes, because it raises the probability of running suitable parallel

processes on the allocated processors at the same time. It causes small loss time

of message receive for frequent messages. Furthermore moderate co-scheduling,

unlike gang scheduling, allows to yield process time when a parallel process must

wait long time. It caused high through-put of parallel processes.

6 Conclusions

In this paper, the authors proposed a method of scheduling, with which space

sharing and time sharing are combined, for AP/Linux which is an OS for parallel

0

2

4

6

8

10

1 2 3 4 5 6 7

T
im

e
(s

)

processes

"CellOS"
AP/Linux

Fig. 8. Elapse time of round robin which transfer 2000 byte.

because other processes cannot be processed during the time allocated to one

parallel process.

Figure 9 shows the speed of creating several parallel processes. This �gure

shows the di�erence between the time when the �rst parallel process is started

and the time when the last parallel process is started, when several parallel

processes are input. The di�erence in the starting time increased almost linearly

as the number of input processes increased. Process creation is subject to the

inuence of local scheduling because it is dependent upon the scheduling of

paralleld. If the timing of scheduling a parallel process is delayed, another parallel

process is executed. Since the parallel process that missed the chance must wait

until its paralleld becomes the next target of scheduling, the di�erence in the

starting time is great in some cases. There are cases where the time for creating

two or three processes is almost equivalent, which is because paralleld received

the demand of parallel process creation consecutively during execution. Figure

9 shows that the speed of parallel process creation is not severely a�ected, thus

proving that the time is appropriate for a scheduling method in conformity to

the style of UNIX.

4.3 Performance of Synchronization

The co-scheduling skew by internal synchronization averaged about 10 ms with

the standard deviation of around 5 ms. Although this average of co-scheduling

skew appears to be great for the switching of 200 ms, it does not a�ect the

scheduling itself greatly because it is more similar to a time shift rather than

skew. Although the problem with the skew is rather the standard deviation, it

is considered allowable as a co-scheduling skew, since 5 ms accounts for 2.5% of

200 ms where switching of priority takes place.

cesses on the host computer can be overlapped with the execution of parallel pro-

cesses. This shows that the parallel processes on other slices are not obstructed

even when there are several slices. This result also shows that the inuence of

co-scheduling is small. The performance of co-scheduling will be described in

Section 4.3.

Table 3. Result of one to all.

(2�2) (4�2)

slice process sec times

1 1 2.78 1.00

2 2.95 1.06

3 3.13 1.13

4 3.38 1.22

2 5 5.49 1.97

6 5.63 2.03

7 5.86 2.11

slice process sec times

1 1 5.05 1.00

2 5.28 1.05

2 3 9.73 1.93

4 9.85 1.95

3 5 14.34 2.84

6 14.47 2.87

4 7 19.11 3.78

E�ect of Moderate Co-Scheduling With AP/Linux, the time allocated to

parallel processes is not strictly secured, unlike the case with gang scheduling.

Accordingly, when the parallel process being executed becomes I/O waiting, it

is possible to move to another process by context switching. To con�rm this, the

execution of a coarse grain parallel process, with which the state is switched to

signal waiting without waiting by busy wait, was studied. In the environment

where several parallel processes are running, processing of one parallel process

is likely to be overlapped with that of other parallel processes.

As an example of coarse grain, a parallel process that makes a message of

2,000 bytes travel 1,000 times around all cells (8�2) by round robin was used.

Figure 8 shows the results of the total processing time. For reference, the results

of execution using CellOS are also shown in the �gure. Here, the overhead re-

quired for starting CellOS is excluded. With CellOS, communication is waited

by busy wait. When the round robin of 2,000 bytes is one process, the process-

ing time of waiting by busy wait was almost equivalent to that of waiting by

switching over to signal.

Although the e�ect of moderate co-scheduling is not apparent when only a

single parallel process is executed, the e�ect is evident when several parallel pro-

cesses are executed. Despite the overhead of context switching to signal waiting,

the entire processing time is not greatly increased since other processes can be

executed meanwhile. Figure 8 shows that the total processing time does not in-

crease greatly because of the overlapped execution of several parallel processes.

With strict gang scheduling, the e�ect of such overlapping cannot be gained

0

5

10

15

20

1 2 3 4 5 6 7

T
im

e
(s

)

Processes

AP/Linux

Fig. 7. E�ect of space sharing and time sharing for one to all (4�2).

E�ect of Space Sharing/Time Sharing Several �ne grain parallel processes

as described before were input by giving variations to their cell realms. Only the

case with \one to all" is discussed here, since all the parallel processes executed

by \pipelined round robin" and \one to all" presented the same trend. Figure

6 and Figure 7 shows the results of execution in two graphs of demanded cell

realms, one for 2�2 and the other for 4�2. In Figure 6 and Figure 7 , the X axis

represents the number of processes, while the Y axis shows the total processing

time. Parallel processes were executed 5 times for each to con�rm the operation

to be stable. Both of these graphs prove that the space sharing and time sharing

are e�ective. Parallel processes that demand the cell realm of 2�2 can be laid out

spatially by 4 parallel processes per slice, thus increasing the total processing

time in units of 4. In the same manner, the total processing time of parallel

processes that demand the cell realm of 4�2 increases in units of 2.

Table 3 tabulates the values of Figure 6 and Figure 7. These tables show the

state of slice allocation per number of process, the mean average of the total

processing time required, and the relative elongation based on total processing

time per process. It is known from these tables that the total processing time

increases only slightly when the number of parallel processes that can be exe-

cuted concurrently is increased by space sharing without changing the number

of slices. The increase in the total processing time is attributable to the delay in

creating processes and the slight elongation of the time required for processing

the respective parallel processes. However, since this increase in time is slight in

comparison with the time required for processing parallel processes, it is negli-

gible and can be o�set by the e�ect of space sharing.

The relative elongation of the total processing time is shown to be propor-

tional to the increase of slices. This is super linear in the results of 4�2 (Table 3),

which is due to the fact that the processing of the management of parallel pro-

preprocessing for starting the parallel process and post processing. The values

of the total processing time are almost the same regardless of the frequency of

the iteration of data transmission, although this may not be clear in the �gure

because the values are shown using the log scale. Table 2 summarizes the time

required for the overhead, which was about 5.4 seconds with CellOS and about

0.8 seconds with AP/Linux. The di�erence is attributable to the di�erence in the

method of running parallel processes. With CellOS, both the execution format

code of the parallel process and CellOS itself are transmitted to the respective

cells, when starting parallel processing, and the respective states need to be

initialized for executing a parallel process. With AP/Linux, since the execution

format code of the parallel process is managed by demand paging, it is not

loaded from the disk if already loaded on the memory. Since the processing

was conducted several times in the measurement, the time required for loading

the code from the disk was eliminated. In addition, since the parallel process

of AP/Linux can use the dynamic library, there is no need to load the code

itself although there is overhead of dynamic link. AP/Linux, which is equipped

with these functions of UNIX, is advantageous when executing several parallel

processes.

4.2 Processing of Several Parallel Processes

The e�ects of space sharing/time sharing when executing several �ne grain par-

allel processes and the e�ect of moderate co-scheduling when executing coarse

grain parallel processes are shown below.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

T
im

e
(s

)

Processes

AP/Linux

Fig. 6. E�ect of space sharing and time sharing for one to all (2�2) .

CellOS overhead

AP/Linux overhead

pipelined round robin

AP/Linux overhead

Cell OS overhead

one to all

Fig. 5. Comparison CellOS and AP/Linux.

A program with message patterns of \pipelined round robin" and \one to

all" was adopted for processing �ne grain parallel processes for performance

evaluation. \Pipelined round robin" transmits data one after the other just like

a pipeline to travel around all cells (8�2). \One to all" sends a message from one

cell to all other cells (8�2)-1, and the receivers of the message return answerbacks

without any particular processing. Both of them conduct data transmission of

10 bytes.

Figure 5 shows the results of executing a parallel process by both \pipelined

round robin" and \one to all" using CellOS and AP/Linux, respectively. The

parallel process was executed �ve times for each to con�rm the operation to be

stable. In Figure 5, the X axis represents the frequency of the iteration of data

transmission, while the Y axis is the time. Since the frequency of the iteration of

data transmission was checked at every power of 4, both the X axis and Y axis

are represented using the log scale. Figure 5 also shows the time required from

the commencement of input of the process from the host computer until the

termination of processing (total processing time, which is indicated as \total" in

the �gure) and the time required from the commencement of actual processing

on AP1000+ until termination (process processing time, which is indicated as

\process" in the �gure). The di�erence between the total processing time and

the process processing time is the overhead between preprocessing and post

processing by OS. The overhead of co-scheduling by AP/Linux is included in

the process time.

Figure 5 shows that there is no major di�erence between CellOS and AP/Linux

in regard to the process processing time required by the parallel process itself.

The same applies to \pipelined round robin" and \one to all"; there was no di�er-

ence in the performance due to communication patterns. Although the overhead

of co-scheduling is included in the process processing time of AP/Linux, it is

within the negligible range in comparison with the execution by CellOS. Thus,

these results show that the execution performance does not change greatly even

if AP/Linux is used instead of CellOS. AP/Linux is even superior to CellOS

in terms of usability, considering the overhead that arises when starting CellOS

and the capability of AP/Linux to execute several processes concurrently.

Table 2. Overhead to run a parallel process.

pipelined round robin one to all

Average (sec)

CellOS 5.38

AP/Linux 0.83

Average (sec)

CellOS 5.39

AP/Linux 0.77

The total processing time from the input of the parallel process from the

host computer until the termination of processing di�ers greatly between CellOS

and AP/Linux. This is attributable to the di�erence in the overhead between

Every time re-scheduling is conducted, the system checks whether or not the

time for changing the priority of parallel processes has elapsed in the respective

cells. If the time is already over, the priority of the parallel process that has been

executed is lowered, and the priority of the next parallel process to be executed

will be returned to normal.

When the processing of a parallel process is terminated, the process sends a

message of termination to paralleld. Upon receipt of this message, paralleld dis-

connects the standard input/output session between prun and the parallel pro-

cess, then sends a message of parallel process termination to pds. Upon receipt

of this message of termination, pds noti�es it to bootap+. Bootap+ releases the

realm of the parallel process, and noti�es the slice information, that has been

renewed by interruption, to the kernels of the respective cells. Based on this

information, the kernels renew the slice queue information.

The time intervals for switching the priority are set to be su�ciently longer

than the time required for re-scheduling. If re-scheduling fails to operate for some

reason, a parallel process that should be executed at this point will be calculated

from the slice queue to switch over to the processing of the appropriate parallel

process.

Problems There is a problem with internal synchronization, i.e., co-scheduling

skew may occur because re-scheduling does not occur simultaneously in the

respective processors. Nevertheless, the inuence of the co-scheduling skew is

considered to be small because the only processes that require processing are

parallel processes except for daemon and because parallel processes are controlled

by priority switching. The extent of the co-scheduling skew will be identi�ed

through actual installation.

4 Performance Evaluation

To evaluate the installed scheduling, parallel processes were input for measuring

the performance of execution. AP/1000+ of 16 cells (8�2) was used for the per-

formance evaluation, and the priority of parallel processes was set to be switched

over at every 200 ms. The period of co-scheduling was reasonable to compare

to Score-D[8] (the period was 50ms-200ms, CPU was 200Mhz PentiumPro) and

the period was enough to hide the overhead as mentioned in section 4.3.

The focus of the measurements was to compare AP/Linux with CellOS, and

to identify the e�ciency when executing several �ne grain parallel processes

that wait for communication in the busy wait mode, and coarse grain parallel

processes that wait for communication in the signal mode.

Unfortunately we did not have suitable benchmark programs to compare �ne

and coarse grain parallel process. So we o�ered original program to check the

performance.

4.1 Comparison with CellOS

First of all, one parallel process was executed to compare AP/Linux with CellOS.

single tasks, while rectangles colored in thick gray represent multiple tasks. To

improve response, slices without single task were eliminated.

Bootap+ is equipped with the function of parallel process layout. Since

bootap+ occupies BIF when AP/Linux is in operation, bootap+ needs to be

equipped with a function of processing by interruption.

AP1000+ is a two-dimensional torus link. With AP/Linux, however, it is

supposed to be a mesh link, for whichmany partitioning algorithms are proposed.

For the partitioning algorithms, Adaptive Scan[7] was adopted because of its high

e�ciency.

3.3 Synchronization

1

2

3

2

3

2

3

2

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

t2

t1

t1t1 t2

t2

t2t2t2

t2

t3 t3 t3

3 4 5

0 1 2

6 7 8

1

2

1

2 2

2

t2
1

2
t2

t1

slice queue

Fig. 4. Internal synchronization.

For simultaneously controlling the priority of parallel processes on slices, the

authors propose a method of internal synchronization that takes advantage of

the hardware properties of AP1000+. With internal synchronization, a clock,

with which time synchronization is physically guaranteed, is used. Since the

clock ticks inside the respective cells are operated at 80 ns, synchronization can

be conducted without relying upon the host computer.

Figure 4 shows the schematic diagram of internal synchronization. With in-

ternal synchronization, slice queues with slice information are inside kernels

in addition to ordinary process queues. With internal synchronization, paral-

lel processes are laid out by bootap+ of the host computer. Every time layout

is conducted, bootap+ interrupts the respective cells to renew the slice queue

information.

Regarding time adjustment of co-scheduling, Cell0 becomes the representa-

tive and noti�es the present time to all cells by interruption when slices are

created. This time is the standard time, and the priority of parallel processes is

switched over every time the time allocated to each parallel process has elapsed.

through paralleld.

When a parallel process is terminated, the process transmits a message of

termination to paralleld. Upon receipt of this, paralleld disconnects the standard

input/output session between prun and the parallel process, then sends a mes-

sage of parallel process termination to pds. Upon receipt of this message, pds

noti�es the termination to bootap+, and releases the realm to which the parallel

process was allocated.

3.2 Layout of Parallel Processes

Slice 1

Slice 2

Slice 3

Round
Robin

Single Task

Multiple Task

Real Parallel Computer

Fig. 3. Combination of time sharing and space sharing.

The layout of parallel processes is managed by a method proposed by the

authors[6], which is a combination of partitioning and virtual parallel computers.

Virtual parallel computers with a linkage system identical to an actual parallel

computer are prepared for time sharing, while space sharing is conducted on

the respective virtual parallel computers using partitioning algorithms. Such a

virtual parallel computer is called a slice. Extra slices are prepared for allocating

the excessive parallel processes that cannot be allocated to existing slices. When

conducting time sharing, actual parallel computers are allocated to these slices

per certain time by round robin. The e�ciency in using the processor space was

improved by such time sharing, with which one slice was prepared for a parallel

process that uses the entire group of processors, and other slices were allocated

to other parallel processes that do not require processors much.

Figure 3 shows the state of slices in time sharing. Rectangles on the respec-

tive slices represent the allocation of parallel processes. The rate of processor

utilization in one slice can be raised by partitioning algorithms. Parallel pro-

cesses that can be allocated to several slices exist in the slices, and can increase

the rate of processor utilization. A parallel process that exists in only one slice

is called a single task. A parallel process that can exist in more than one slice is

called a multiple task. In Figure 3, the rectangles colored in thin gray represent

Table 1. Command and servers for parallel process creation and management.

name type function machine

prun command parallel process request any machine

pds server prun & paralleld management host

bootap+ server allocation management host

paralleld server create parallel process each cell

kernel interrupt priority control each cell

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

t2

t1 t1

t1t1

t2

t2

t2

t2t2t2

t2

t2

t3 t3 t3

3 4 5

0 1 2

6 7 8

 pdsprocess

allocation

process

creation

prun -n 3*3 task2

prun -n 2*2 task1

prun -n 1*3 task3

slice1: t1,t3

slice2: t2

bootap+

Fig. 2. Parallel process creation.

The prun command requests pds (parallel daemon server) on the host com-

puter to secure and create cells. Pds checks the appropriateness of both the

requested cell size and the parallel processes. If they are judged appropriate, pds

requests cell layout to bootap+. Upon determination of the locations of layout

by bootap+, pds requests paralleld on the cells, where the parallel processes are

scheduled to be laid out, to create parallel processes. To create parallel processes,

paralleld uses the revised version of the clone function that is in the standard

package of Linux. With this clone function, the same process ID (PID) can be

designated on the respective cells from outside of kernels, and parallel processes

can be discriminated among cells. The PID of the parallel process utilizes the

upper half of the entire PID, while that of the sequential processes utilizes the

lower half. Pds manages the PID of parallel processes. Parallel processes with

designated PID are created on the respective cells, and are put into the respective

local process queues.

Paralleld relays the standard input and output between prun and parallel pro-

cesses. Input from the terminal which is executing prun is transmitted through

paralleld, and output from parallel processes is also transmitted to the terminal

processors. When conducting co-scheduling, the order of priority is controlled

by giving an ordinary order of priority only to the parallel process that is the

target of execution, while lowering the priority of other parallel processes which

are not the targets of execution. At present, the values of the order of priority

of the parallel processes that are not the targets of execution are determined

by deducting 15 from their respective values of priority. The priority of paral-

lel processes is not raised to avoid impeding the processing of daemon that is

indispensable for UNIX processing and daemon (paralleld) that creates paral-

lel processes. When the target parallel process does not become executable by

the local scheduler, another parallel process becomes executable instead. This

method is exclusively for managing the priority, and does not guarantee that a

parallel process is executed infallibly immediately after co-scheduling. If there is

some other process with priority higher than that of parallel processes, the local

scheduler will give priority to the former.

Although process thrashing may occur, this can be avoided because parallel

processes are the only processes that require a long CPU time, and they are

under priority control. Although daemon processing of sequential processes is

required in case of emergency, it scarcely a�ects the parallel processes because

the time required for the daemon processing is short. In addition, the throughput

can be improved by giving priority to daemon processing. In other words, since

the processing of \paralleld," which creates parallel processes and exists in each

processor as daemon, is not hindered by a running parallel process, parallel pro-

cesses can be created promptly. If the processing is hindered by a parallel process,

the throughput cannot be improved because it takes time to create new parallel

processes. Furthermore, when processing several coarse grain parallel processes

at the same time, which are large-scale but have low communication frequency,

other parallel processes can be made executable by switching over to the signal

waiting mode and activating context switching, by which the throughput can

also be improved.

The method of simultaneously changing the order of priority for co-scheduling

is described in detail in Section 3.3.

3.1 Creation of Parallel Processes

Parallel processes are created and managed by the command and servers as

shown in Table 1.

Figure 2 shows an example of executing a parallel program that is made by

using the AP library and the MPI library by issuing the prun command. The

circles in the �gure represent cells, and both kernel and paralleld exist in the

respective cells. By the -n option, the prun command designates the required cell

size and the target parallel process to be executed. The prun command can be

issued from both the host computer and other computers that are communicable

by socket. This �gure shows a case example of a demand of creating three parallel

processes. Task1 demands the execution of creation in the cell group of 2�2,

while task2 and task3 demand it in the cell groups of 3�3 and 1�3, respectively.

By the bootap+ program, AP/Linux loads the kernel onto each cell from the

host computer through BIF that is connected to B-net, and mounts disks in each

cell or the disk on the host computer onto the �le system. When inetd daemon is

activated on each cell, logging-in from external computers becomes feasible. The

ordinary Linux environment is provided when logged into cells. Since bootap+

provides a virtual console session to each kernel, it cannot terminate a process

while AP/Linux is active. Meanwhile, the environment can also be used as an

ordinary decentralized environment, since TCP/IP can be used on B-net.

As environments for parallel programming, both the MPI library[4] and the

AP library, the latter of which is compatible with a library exclusively provided

by AP1000+, can be used. They are communication libraries, with which T-net

can be used on the user level. Transmission mistakes of messages sent by such

communication libraries are unlikely, since messages are tagged, and destination

processes can be judged after they are stored in the ring bu�er in the cells of

the receivers. Thus, context switching of parallel processes will not a�ect such

messages on the network.

A polling/signal system is installed on these libraries for detecting messages,

with which the throughput is improved by issuing context switching in the signal

waiting mode, after waiting for a certain period of time by polling (busy wait).

When the waiting time is short, however, it is better to wait by polling with-

out issuing context switching, because it will expedite communications and help

avoid frequent context switching (processor thrashing). To conduct polling e�-

ciently, all parallel processes need to be activated simultaneously. To meet this

condition, it is required to issue context switching by co-scheduling the parallel

processes that are dispersed in the respective cells.

The original AP/Linux has a simple parallel process scheduler. Since this

scheduler does not provide space sharing, parallel processes are laid out from

Cell0 without variation, which causes load concentration. In addition, co-scheduling

of parallel processes is dependent upon the local scheduler of Cell0 that has the

process IDs of all parallel processes. Speci�cally, with this scheduler, Cell0 is

subject to a huge load, and space sharing is infeasible.

3 Parallel Process Scheduling of AP/Linux

In this paper, the authors propose a scheduling method to be installed on

AP/Linux, which provides scheduling by combining space sharing and time shar-

ing.

Time sharing is entrusted to the server of the host computer. To run parallel

processes, a message is sent to the server of the host computer, and the server

determines the cell realm where parallel processes are executed. The creation

and layout management of parallel processes are described in detail in Sections

3.1 and 3.2.

Preempting for time sharing is conducted by using the Linux kernel function

on the respective cells. Parallel processes can be co-scheduled by controlling the

order of priority of the parallel processes in the local scheduler in the respective

and problems of this method in installation will be identi�ed later.

Hereafter, the outline of AP/Linux will be explained in Section 2; the sched-

uler to be installed on AP/Linux and its method will be described in Section 3;

the results of performance evaluation conducted by running actual parallel pro-

cesses will be presented in Section 4; a comparison of these results with other

relevant research will be shown in Section 5; and conclusions will be discussed

in Section 6.

2 Outline of AP/Linux

AP/Linux[1] is a parallel operating system for AP1000+ parallel computers.

AP1000+ provides an original operating system called CellOS. When execut-

ing parallel processes, CellOS is loaded along with execution format codes and

provides only the single user single process environment which does not reside

permanently on the processor of AP1000+. AP/Linux is a parallel operating

system developed by the CAP group of the Australian National University to

overcome this fault.

Fig. 1. Overview of AP1000+.

Figure 1 shows the overview of AP1000+. With this computer, the unit of

processing elements is called the cell, and each cell has a SuperSparc which

runs at 50 MHz. As the interface with the outside, BIF (Broadcast InterFace)

is connected to SBUS of the host computer (Sparc Station). Between cells and

on the network connected to the host computer are T-net, B-net, and S-net.

T-net, which is a two-dimensional torus network, connects adjacent cells with

an inter-cell linkage bandwidth of 25 MB/s, and provides worm hole routing. For

inter-cell communications, T-net provides message transmission (send, receive)

and remote memory access (put, get). B-net, which is a broadcast network with

a band of 50 MB/s, connects all cells to the host computer. S-net, which is a

synchronous network, connects all cells to the host computer.

proposed is combined scheduling, with which space sharing and time sharing are

combined to make the most of their respective advantages. AP/Linux adopts the

combined scheduling because of its high e�ciency.

When preempting a parallel process by time sharing scheduling, the commu-

nication properties of the parallel program to be executed must be taken into ac-

count. In the case of �ne grain parallel processes that conduct small-scale commu-

nications frequently, it is considered more e�cient to schedule parallel processes

of the respective processors to be scheduled simultaneously (co-scheduling[2])

and wait for messages by \busy wait." On the other hand, in the case of coarse

grain parallel processes that conduct large-scale communications less frequently,

it is considered better to improve the throughput by context switching, since it

takes a long time to wait for messages by \busy wait." There is a communica-

tion method that deals with both �ne grain and coarse grain parallel processes

appropriately, with which context switching is conducted after waiting for mes-

sages several times by \busy wait"[3]. The communication library of AP/Linux

is equipped with this method, and its e�ect has already been con�rmed [4]. Even

if this method is adopted, however, it is still important in the case of �ne grain

parallel processes to conduct co-scheduling for using the \busy wait" e�ectively.

A method for co-scheduling all parallel processes simultaneously is gang

scheduling[5], with which a certain CPU time is allocated to parallel processes

by starting them simultaneously, and execution of other processes is prohibited

to guarantee busy wait communications. However, since strict gang scheduling

blocks other processes, it is not possible to switch over to another process even

when daemon processing is urgently required or when blocking occurs during I/O

processing on one of the processors. In addition, when issuing context switching

of parallel processes, gang scheduling may require an save/restore mechanism to

avoid crashes and delivery mistakes of communication messages on the network.

In this paper, the authors propose a method for conducting co-scheduling

while relaxing the strict conditions of gang scheduling and controlling the order

of priority of parallel processes managed by the local scheduler in the respective

processors. Although this method gives priority of processing to one selected

parallel process, it does not impede the processing of other processes that need

to be processed urgently due to daemon or other reasons. In addition, when the

target parallel process is not executable due to I/O waiting or other reasons,

another parallel process can be processed. By actually installing this scheduling

method, the authors will show its superiority in terms of overall e�ciency, despite

a slight sacri�ce of communication queuing. In contrast to strict gang scheduling,

this method is called moderate co-scheduling.

The mechanism to change the priority of parallel processes simultaneously is

the central issue in installation. AP/Linux is equipped with internal synchroniza-

tion that uses a synchronized clock of the respective processing elements, taking

advantage of the hardware properties of AP1000+. With internal synchroniza-

tion, the accountable time of the priority of parallel processes is investigated

every time the local scheduler conducts re-scheduling, and the priority is given

to another parallel process when the accountable time is over. The performance

Scheduling on AP/Linux

for Fine and Coarse Grain Parallel Processes

Kuniyasu Suzaki

1

, David Walsh

2

1

Electrotechnical Laboratory

1-1-4 Umezono, Tsukuba, 305 Japan

suzaki@etl.go.jp

2

Australian National University

Canberra, ACT 0200 Australia

dwalsh@anu.edu.au

Abstract. This paper presents a parallel process scheduling method for

the AP/Linux parallel operating system. This method relies on 2 schedul-

ings; local scheduling on each processor and global scheduling which is

called moderate co-scheduling. Moderate co-scheduling schedules simul-

taneously parallel processes on each processor by controlling priorities of

parallel processes. This method di�ers from gang scheduling in that it

does not promise the running of a parallel process on all processors at

the same time. Moderate co-scheduling only suggests a suitable current

process to the local scheduling. However, this is good solution for �ne

and coarse grain parallel processes, because Moderate co-scheduling tells

the timing to schedule simultaneously for �ne grain parallel processes

(tightly-coupled processes on each processor, which requires quick and

frequent communication), and local scheduling can yield CPU time when

coarse grain parallel processes (loosely-coupled processes on each proces-

sor, which cause long wait and less frequent communication) must wait

for long time. The method is implemented using AP1000+ special hard-

ware. We call the implementation \Internal synchronization" which uses

the synchronized clock. The co-scheduling skew of the implementation

was about 2% in the period of moderate co-scheduling was 200ms.

1 Introduction

This paper describes the installation and performance of scheduling for e�cient

execution of parallel processes on a parallel OS called AP/Linux[1] that is de-

signed for AP1000+ parallel computers. Research on parallel process scheduling

has widely been conducted for e�ciently operating parallel computers and pro-

viding responsive service to individual users. One approach to achieve these is

\space sharing" scheduling, with which several parallel processes are laid out

e�ciently in the space of processors. Space sharing scheduling has been con-

ducted actively since the beginning of the 1990's in line with research on regional

management (partitioning algorithms) that �ts the respective network topolo-

gies. Another approach is \time sharing" scheduling, with which responsivity is

improved by preempting parallel processes. One more approach that has been

