The Effect of Correlating Quantum Allocation
and Job Size for Gang Scheduling *

Gaurav Ghare Scott T. Leutenegger

Mathematics and Computer Science Department
University of Denver Denver, CO 80208-0189
{gghare,leut }@cs.du.edu

Abstract. Gang scheduling is an effective scheduling policy for multi-
processing workloads with significant interprocess synchronization and
is in common use in real installations. In this paper we show that signifi-
cant improvement in the job slowdown metric can be achieved simply by
allocating a different number of quanta to different rows (control groups)
depending on the number of processes belonging to jobs in a given row.
Specifically, we show that allocating the number of quanta inversely pro-
portionally to the number of processes per job in that row results in 20 -
50% smaller slowdowns without significantly affecting mean job response
time. Incorporating these suggestions into real schedulers would require
the addition of only a few lines of simple code, hence this work should
have an immediate practical impact.

1 Introduction

Ousterhout proposed the notion of co-scheduling to efficiently support interpro-
cess synchronization when multiprogramming a set of parallel jobs on a multipro-
cessor machine [22]. Coscheduling strives to ensure that all processes belonging
to a job are scheduled at the same time. Subsequent work has generalized and
refined the coscheduling (now often called gang scheduling) concept [5,6,8,9,11,
14,15,19,23-26]. Gang scheduling schemes are a practical result of the multi-
processor scheduling community and have been adapted for inclusion in several
production systems including the Intel Paragon [4], CM-5 [3], Meiko CS-2, mul-
tiprocessor SGI workstations [1] and the IBM SP2 [17,18].

Work has been done to examine the impact of quantum size allocations on
mean job response times and slowdowns for different quantum sizes [25, 26]. Little
work has been done on investigating how quantum allocation can be modified
to improve mean job slowdowns and response times. In this paper we show
that negatively correlating the number of allocated quanta with the number of
processes per job can significantly reduce mean job slowdown. Specifically, we
show that allocating additional quanta to rows (or control groups) containing

* This work is supported by the NSF grant ACI-9733658.

jobs with a small number of processes results in the best overall performance
observed in our experiments.

The past work most similar to our work is that of Squillante et al, and Wang
et al. [25-27]. In [25] the modeling methodology allows for gangs of different
classes to be allocated different quantum sizes, but results presented do not
investigate this issue, instead the the work assumes all classes have the same
quantum size.

In [27] the authors set quantum sizes per class based on different offered work
per class. We do not consider this aspect in our studies. Note, the authors state
that it would be interesting to investigate the effect of allocating multiple quanta
to short running jobs. We provide experimental results for such considerations
and generalize them to include simpler gang scheduling algorithms.

In [26] the authors consider dividing processing power unequally among
classes, via different size quantums, stating possible motivations of allocating
larger quantum to classes with higher context switch costs and classes demand-
ing shorter response time. In figure 8 the authors show how the mean number
of class i jobs in the system decreases as the fraction of processing power (quan-
tum length relative to other class quantum lengths) allocated to class i jobs is
increased. The experiment does not show what happens to the overall number
of jobs in the system as quantum lengths are increased for one particular class.

Our work differs in that we fully explore the effect of varying quantum al-
location per control group size (for DHC). We consider how favoring one class
affects all classes by reporting mean slowdowns and response times. We provide
numerous simulation results to make a case for proper quantum allocation.

In addition to considering the DHC algorithm, we consider the effect of dif-
ferent quantum allocations with simpler gang scheduling schemes such as Matrix
[22] and LRS [5]. These simpler algorithms are especially relevant since many
current production level schedulers use variants of these simpler algorithms. Fi-
nally, our work also provides a more exhaustive comparison of DHC with Matrix
and LRS by considering more workloads than considered in [5] and comparing
DHC with optimized versions of LRS and Matrix.

Aside from extending the understanding of gang scheduling, this work is
directly applicable to existing systems. The work involved to modify existing
schedulers to incorporate these findings should be trivial. Thus, for almost no
implementation work commercial systems with correlated workloads similar to
our synthetic workloads can decrease slowdowns by 10 to 50% . Furthermore,
for some workloads we show that mean job response time can be decreased by
50% relative to equal allocation per row (or control group).

2 Scheduling Algorithm Description

In this section we review the three previously proposed policies considered and
detail how we allocate quantum sizes.

2.1 Matrix

Basic Algorithm Description

This is the scheduling algorithm as defined in the seminal paper by Ouster-
hout [22]. A newly arriving job is placed in the first row with a sufficient number
of idle processor slots to accommodate the job. Note, the slots need not be con-
tiguous within the row. Upon job completion row unification is not performed as
it was shown to have little effect [22] since alternate selection fills in holes when
scheduling a row.

The policy runs jobs by rotating through the rows of the matrix in a round-
robin fashion. If there are idle slots within a row scheduled for execution, other
rows are scanned (in round robin fashion from that row) to see if any other job(s)
can be completely co-scheduled in the hole. We do not allow fragments to be
run. In most of the algorithm variants below, a row is allocated multiple quanta.
Alternate selection is performed as soon as a job completes so that processors
are not left idle during the remaining quanta allocated to the slot. Note however
that alternate selection is performed only between quanta.

Quantum Allocation

We consider a family of Matrix algorithms which differ in how many quanta
are allocated to each row. Let J; be the number of jobs in row i. Let Q; be
the number of quanta allocated to row i. Let S; be the threshold size, dividing
small jobs from large jobs. Let P be the number of processors. Note for our
experiments, S; was set to 8, and P was set to 128, but S; should be larger if P
were increased. We define the following policies:

Matrix-EQL: @Q; = 1 Vi.

Matrix-S: Q; = J;.

Matrix-Sj (where j is an integer):

J, if all jobs in row have < S; processes

Qi = (1)

1, otherwise

Matrix-Lj (where j is an integer):

1,4f all jobs in row have < S; processes

Qi = (2)

J, otherwise

Matrix-S and Matrix-Sj favor jobs with a small number of processes. In
Matrix-S, the number of quanta allocated equal the number of jobs in the row,
hence rows containing many small jobs will receive additional processing power.
In Matrix-Sj, rows in which all jobs have 8 or fewer processes are allocated j
quanta, a row containing one or more jobs of 9 or more processes is allocated one
quantum. The parameter j allows us to vary how much preference is given to
jobs with a small number of processes. In our experiments we consider Matrix-
S2, Matrix-S8, and Matrix-S16. Note, the value of 8 for differentiating between
large and small jobs was arbitrarily chosen based on intuition for the workload
descriptions.

The Matrix-Lj policies are defined in a similar fashion but give preference to
jobs with a large number of processes. Rows with at least one large job are given
additional quanta.

2.2 LRS

LRS [5] differs from Matrix only in how newly arriving jobs are allocated within
the matrix. Jobs that have more than 8 processes are allocated processors from
left to right while the rest are allocated processors from right to left.
Quantum Allocation

The family of polices, LRS-EQL, LRS-S, LRS-Sj, and LRS-Lj, are defined in
the same way as the family of Matrix algorithms above.

2.3 DHC

This algorithm is similar to the minimum fragmentation with selective disabling
version of the DHC algorithm proposed by Feitelson and Rudolph [9]. It is based
on a hierarchy of controllers. Each block of 2! PEs is assigned a controller that
coordinates their activities. Controllers at higher levels of the hierarchy coor-
dinate those at the lower levels. In addition, the controllers at each level have
lateral connections among them. An arriving job is mapped to a controller that
has just enough processors under it to satisfy the job demand. The job is mapped
to the controller that has the least load among the controllers at that level. If the
controller controls more than one processor, it partitions the threads of the job
as follows: Let 2/~ < ¢ <= 27 be the total number of threads of the job, I, the
load on the left child and I» the load on the right child. Assuming w.l.0.g. that
I < Iy, the first 2¢~! threads are mapped to processors controlled by the left
child and the rest are mapped to processors controlled by the right child. The
scheduling is done in rounds. In each round, jobs mapped to controllers at level
i are scheduled ahead of those mapped to controllers at lower levels. Alternate
selection is done as discussed for the previous algorithms.
Quantum Allocation

We consider a family of DHC algorithms which differ in how many quanta
are allocated to each control group. Consider control group i, such that 27 is
the largest number of processes a job belonging to control group ¢ may have.
Jobs in each control group are allocated @; quanta. Furthermore, let total equal
the total number of processes in the system and let n;, denote the number of
processes of job m in the i** control group. We define the following policies:

DHC-EQL: Q; = 1 Vi.

DHC-Sj (for integer j):

(k—i+1)j, Vi,j=1
Qi = (3)
maz(l, (k —1i)j), Vi, j > 1

where k such that 2 = the number of processors.

DHC-L;j (for integer j):

v+ 1, Vi,j=1
Qi = (4)
maz(l, i-j),Vi,j > 1

DHC-original: Q; = X, 722

Note that this is equivalent to the original definition: Q; =
is the number of processes of job m.

Thus, DHC-Sj allocates control groups with small jobs a larger number of
quanta and the magnitude of the difference is determined by parameter j. Con-
versely, DHC-Lj allocates control groups with large jobs a larger number of
quanta. DHC-original is the original quantum size allocation algorithm specified
[9]. Feitelson and Rudolph state that preference should be given to jobs with a
large number of processes. Note, this is contrary to the findings of this paper.
Regardless, we find that the DHC-original policy approximates DHC-EQL at
higher loads.

tm

total® where tm

3 Simulation Methodology, Workload Models, and Metric

We have simulated a 128 processor machine using the Simpack [12, 13] simulation
package. Our simulator models job arrivals with an exponential mean inter-
arrival time. Upon job arrival the number of processes and total job demand are
determined as described below. We do not simulate interprocess synchronization
or context switch overheads. All three policies considered have been shown to
support interprocess synchronization well and hence such details would distract
from the emphasis of this paper. Tuning gang scheduling algorithms for context
switch overheads has been considered in [26] and inclusion here would obscure
the main focus of the paper.

Confidence intervals were collected using batch means. We ran 60 batches of
500 jobs per batch resulting in at most 10% response time confidence intervals
at a 95% confidence level. The first 500 jobs simulated were discarded to achieve
a warm start.

3.1 Definitions and Metrics

We define a job to be composed of one or more processes. We will refer to jobs
with a small number of processes as ”small” jobs vs ”large” jobs, and jobs with
short execution times as ”short” jobs vs ”long” jobs. Job response time is defined
as the difference between job completion and arrival times. The slowdown of a
job is defined as the ratio of the response time of a job over the the execution
time of the job if run in isolation.

We collected both mean job response times and mean slowdowns. We focus
primarily on mean slowdowns. The mean job response time metric is dominated
by the long jobs thus obscuring the impact of the scheduling algorithm on short
jobs. Conversely, the slowdown metric emphasizes the penalty paid for slowing

down short jobs. Since users often are actively waiting for short jobs to complete
it makes sense to focus on the slowdown metric as the primary comparison
metric. We note that there is not agreement yet on the most relevant comparison
metric [7], hence we consider both slowdown and response time.

3.2 Workload Models

We considered 4 different workloads. The first three are minor variants of the
workloads proposed by Leutenegger and Vernon [20] and subsequently used in
other works [2,21]. The workloads differ in the degree of correlation between
the number of processes and total job demand. The fourth workload is that of
Feitelson [5].

PMF 5% PMF 10%

PMF 25% PMF Workload4

Fig. 1. PMF Of Workloads: Top Left: X = 0.05, Top Right: X = 0.1, Bottom Left:
X = 0.25, Bottom Right: Feitelson Workload

Geometric-Bounded N, N!'5 and N? Workloads

In these workloads we first determine the number of processes, n, for a job
and then the job demand. As hypothesized in [20], and seen in many measured
workloads on recent systems [10, 16], a significant portion of jobs have parallelism
equal to the number of processors. In addition, a significant portion of jobs have
parallelism equal to half the number of processors (assuming the number of
processors is a power of two) Accordingly, we assume the number of processors
is a power of 2 and let X be the percentage of jobs whose parallelism is equal
to 2! and 2!71, where 2 is equal to the number of processors. For example, for
X =10, 10% of the jobs have the number of processes set to 128 and 10% of the
jobs have the number of processes set to 64. The remaining 100 — (2 X') percent
of the jobs have the number of processes drawn from a geometric distribution
with mean 7. In all of our studies we set m = 4. If the sample drawn from the
distribution exceeds the number of processors we truncate the sample to equal
the number of processors. We consider values of X = 5%, 10%, and 25%. Note,
recent measurement studies have also indicated more probability mass at 16
and 32 processes. Rather than try to mimic a specific distribution we choose
to capture the spirit of the distribution. To address this concern we also study
the workload of Feitelson, described below, which includes more of these smaller
jobs.

In Figure 1 we plot the probability mass function of the number of processes
per job for each of the workloads considered in this paper. Note that when X is
increased the spikes at 64 and 128 processes per job increase accordingly.

Once the number of processes, n, is obtained, the job demand is determined.
In all cases we study we assume job demand is positively correlated with the num-
ber of processes. The job demand is drawn from a two-stage hyper-exponential
distribution with mean D, where D is determined as described below. The co-
efficient of variation of the job demand is set equal to 2 in all of our reported
experiments. The overall coefficient of variation is much greater than 2, due to
the linear/superlinear dependence of job demand on processors [20]. For exam-
ple, the coefficient of variation of total job demand for the N2 workload is (8.0,
5.7, 3.6) for the workloads with X equal to (0.05, 0.1, 0.25).

We consider three cases:

N D=nxd
NS D =n'5xd
N? D =n?xd

where d is a constant and n is the number of processes. Parameter d is set to 10
in all of our experiments.
Feitelson Workload

This is the workload proposed in [5]. The workload is based on observations
from 6 production parallel machines. It contains a significant portion of jobs that
have a parallelism that is a power of two. The correlation between number of pro-
cesses and total job demand is between N and N2. The workload also includes re-
peated executions of certain jobs. Arrivals are distributed according to a Poisson
process. A more detailed description and the code for generating the workload is
obtainable from www.cs.huji.ac.il/labs/parallel/workload/wlmodels.html.

4 Results

In this section we present our simulation results. In all experiments presented,
bars for specific algorithms presented left to right correspond to entries in the
legend from top to bottom.

LRS n"2 10% DHC n”™2 10%
40 - ®DHCL8
CIDHCL4
BDHCL2
35 EDHCL1
& DHC
B DHCEQq!
30 S DHCS1
% DHCS2
S S @DHCS4
! I 25
o o
w w
d d
o o
w w
n n

Utilization Utilization

Matrix n~2 10%

®|MatL16
HMatL8
=\ Matl 2
E MatEql
@ Mats
EMatsS2
S MatS8g
MatS16

520050 -0

90 70
Utilization

Fig. 2. Slowdowns, N> X = 10 Workload: Top Left: LRS, Top Right: DHC, Bottom
Left: Matrix

4.1 Geometric-Bounded N2 Workload

In Figure 2 we plot the slowdown of the variants of the LRS, DHC and Matrix
algorithms for the N2 workload with X, the percentage of jobs whose number

of processes is set to 64 and 128, equal to 10. In each figure the left set of bars
is for a utilization of 90% and the right set of bars is for a utilization of 70%.
In each case we can observe that the variants that give preference to small jobs
perform better than those that give preference to large jobs. But, giving too
many quanta to small jobs is counter productive as exhibited by the alg-S8 and
alg-S16 (where alg = LRS, Matrix, or DHC) policies. In general, variations that
give extreme preference to large/small jobs perform poorly. In addition, equal
allocation per row (or control group for DHC) results in larger slowdowns than
alg-S. As shown in Figures 3, 4 and 5 the slowdowns of LRS-EQL, DHC-EQL,
and Matrix-EQL are 36%, 14% and 39% higher than the slowdowns of LRS-S,
DHC-S1, and Matrix-S at a 90% utilization and 25%, 39% and 25% higher at a
70% utilization.

DHC n”2 10% 70% DHC n”2 10% 90%

3.5 25

©DHCL1 CDHCL1
& DHC #DHC

S 34 ©EDHCEq! S FIDHCEq!

(') B DHCS1 ") 2 BDHCS1

w25 & DHCS2 w EmDHCS2

d =DHCS4 d NDHCS4

o 0 1.5+

w2 w

n n

r 157 R 1A

a a

t 14 t

i i

o o 057

s 0.5 s

0+ 0 -
5 10 25 5 10 25

Fig. 3. DHC Slowdown Ratios, N? X = 10 Workload: Left: 70% Utilization, Right:
90% Utilization

To understand why alg-S performs better than alg-EQL, consider the case
when multiple small jobs are packed per row (or control groups of the same level)
whereas only one or two large jobs are packed per row. If each row is given equal
allocation of processing power then the jobs with a large number of processes
receive a disproportionately larger share of processing power relative to small
jobs. As shown in [20], this is counter productive for workloads where the job
demand is correlated with the number of processes. In [20] it was suggested that
allocating equal processing power per job is beneficial in the absence of more
detailed job knowledge. The LRS-S, Matrix-S, and DHC-S1 algorithms attempt
to allocate equal processing power per job but are not able to given the rigid
packing constraints of the algorithms. For example, if in Matrix there are two
rows, one with a job of 128 processes and one row with 4 jobs of 32 processes each,
then the first row is allocated 1 quantum while the second is allocated 4 quanta.

LRS n"2 10% 70% LRS n"2 10% 90%

1.4 1.8
®|LRSL2 WLRSL2
s CILRSEq! s 1.7 4 CILRSEq!
1 137 B LRSS I 164 B LRSS
o FLRS2 o ELRS2
w w 154
d 1.2+ d
o o 1.4+
w w
n 1.1+ n 1.3+
R R 1.2+
a — a
t . t 1.1+
i i 1
° 094 o
s s
0.9 1
0.8 + 0.8 +
5 10 25 5 10 25
X X

Fig. 4. LRS Slowdown Ratios, N? X = 10 Workload: Left: 70% Utilization, Right:
90% Utilization

Matrix n*2 10% 70% Matrix n~2 10% 90%
1.4 2
W MatL2 o MatL2

s O MatEql s £ MatEql
| 1.3+ BMats | 1.8+ & MatS
o EMatS2 o EMatS2
w w
4 1.2+ @ Mats8 a4 1.6 &8 MatS8
o o
w w
n 1.1+ n 1.4+
R R
a 1+ a 1.2+
t t
1 1
© 0.9 ° 14
s s

0.8 4 - = 0.8

5 10 25 5 10 25
X X

Fig. 5. Matrix Slowdown Ratios, NZ X = 10 Workload: Left: 70% Utilization,
Right: 90% Utilization

In this case, each job is allocated equal processing power. On the other hand, if
the second row has three jobs with 64, 32, and 32 processes each, the second row
is allocated 3 quanta. In this case the job with 64 processes is allocated more
processing power than the other jobs. Hence, truly equal allocation per job is
not possible given the packing constraints assumed.

Consider the performance of the DHC-original quantum allocation policy in
Figure 2. DHC-Original performs worse than DHC-L1, DHC-L2 and DHC-L4 at
70% utilization, but better at 90% utilization. This is because DHC-Original has
less disparity in quantum allocations (to jobs with varying degrees of parallelism)
at higher utilizations. For example, consider the following two scenarios:

— Assume there are only two jobs in the system, j; with 128 threads and j»
with 1 thread. In this case, j; gets a quantum size of 128/129 x ¢ while j,
gets a quantum size of 1/129 % c.

— Assume the following jobs in the system: j; with 128 threads, j» with 64
threads, j3 with 32 threads, and j4 and j; with 16 threads each. In this case
J1 gets a quantum size of 128/256 x ¢ and jobs j» through j5 also get an
effective quantum size of 128/256 x ¢ due to alternate scheduling.

Thus, the original proposed DHC quantum size allocation algorithm approaches
DHC-EQL at high loads, but is more similar to DHC-Lx (for some x) at lower
loads.

To make the relative slowdowns more clear, we plot the slowdown ratios
for the DHC algorithm in Figure 3. We plot the slowdown ratio of each DHC
variant relative to DHC-S1. The three groups of bars from left to right are for
X =5, 10 and 25 %. The extreme variants viz. DHC-L8, DHC-L4 and DHC-S8
are not shown since they compress the scale of the figure. DHC-EQL results in
slowdown that are (31, 39, 24) % larger than DHC-S1 for X = (5, 10, 25%) at
a 70% utilization, and (17, 14, 13) % larger at a 90% utilization. Overall, the
performance of DHC-S1 is comparable or better than all other variants. In some
cases DHC-S2 performs slightly better.

For the LRS and Matrix algorithms the difference between alg-EQL and alg-
S is even greater (at a 90% utilization) than for DHC as can be seen in Figures 4
and 5. LRS-EQL results in slowdown that are (29, 25, 13) % larger than LRS-S
for X = (5, 10, 25%) at a 70% utilization, and (67, 36, 28) % larger at a 90%
utilization. Matrix-EQL results in slowdown that are (29, 25, 14) % larger than
Matrix-S for X = (5, 10, 25%) at a 70% utilization, and (90, 39, 25) % larger
at a 90% utilization. Thus, even bigger improvements can be expected when
modifying an existing scheduling algorithm based on Matrix or LRS to allocate
the number of quanta proportional to the number of jobs in the row rather than
equally per row.

4.2 Geometric-Bounded N1-5 Workload

The qualitative results obtained for this workload were similar (within 10%) to
those obtained for the Geometric-Bounded N? workload. Experimental results
are not included for purposes of brevity.

n 10% 70%

WLRSL16
CILRSL8
BLRSL2

w
a
\

w
o
L

N
o
L

N
o
|

R
[
L

3soaso-0

[
(=]
L

70
Utilization

Fig. 6. Slowdowns, N X = 10 Workload, Utilization = 70%

4.3 Geometric-Bounded N Workload

In Figure 6 we plot the slowdowns for the IV correlated workload with X = 10
at 70% utilization. The left set of bars is for the LRS variants, the middle set
for the DHC variants and the set on the right is for the Matrix variants. Unlike
in the previous cases, variants that give equal preference to all jobs have better
performance compared to variants that give preference to large/small jobs. This
behavior occurs for this workload since job execution time (if run alone) is not
correlated to job parallelism. Thus, giving preference to small jobs is counter-
productive.

4.4 Feitelson96 workload

In Figure 7 we plot the slowdowns of variants of the LRS, DHC and Matrix
algorithms respectively for the Feitelson96 workload at 70% and 80% utilization.
For this workload too, giving preference to small jobs results in better slowdowns.
This is especially true at an 80% utilization where the slowdowns of LRS-EQL
and Matrix-EQL are 192% and 188% higher than those of LRS-S and Matrix-S.
Note, for this workload there is little difference in DHC-EQL and DHC-S1.

LRS Feitelson96 DHC Feitelson96

mDHCL8

40 O LRSL8
B LRSL2

5500250-0
3200520 -0

N\

Utilization

Utilization

Matrix Feitelson96

40 CIMatL8
B MatL2
i = MatEql
35 @ Mats
B Mats2
30 1 S MatSg
S MatS16
1 254
o
w
d 20
o
w 15 +
n
10 +
5
0 4+
80 70
Utilization

Fig. 7. Slowdowns, Feitelson96 Workload: Top Left: LRS, Top Right: DHC, Bottom
Left: Matrix

CILRSL8 CILRSL8

n~"2 10% 70% n~"2 10% 90%
®LRSL2 ®LRSL2
@LRSEq ELRSEq
1200 7 BLRSS LRSS
@ LRS2 ®LRS2
1000 1 LRSS SLRS8
DHCL8 DHCL8
800
SDHCL2 S DHCL2
M S DHCL1 M EDHCL1
R 600 + R
T @ DHC T DHC
200 mDHCEq! M DHCEq|
DHCS1 SDHCS1
200 4 =DHCS2 SDHCS2
mDHCS8 mDHCS8
04

Utilization

Utilization

n 10% 70% DLRSLS
®LRSL2
160 - EILRSEG
®LRSS
140 ¢ mLRS2
120 4 SLRS8
DHCL8
™ 1001 SDHCL2
R 80 =DHCLL
T wmDHC
601 mDHCEq!
40 ~ DHCS1
201 =DHCS2

Utilization

Fig. 8. Mean Response Times, Top Left: N2X = 10 Workload at 70% utilization, Top
Right: N>X = 10 Workload at 90% utilization, Bottom Left: NX = 10 Workload at
70% utilization

4.5 Response Times

In Figure 8 we plot the mean response times for the N2 and N workloads as-
suming X = 10. For the Matrix and LRS policies there is only a minor difference
(up to about 20%) between the mean response times of the variants that give
preference to large jobs and those that give preference to small jobs. Conversely,
DHC exhibits a serious degradation in mean job response time going from DHC-
EQL to DHC-S8. We conjecture that this is because giving multiple quanta to
the smallest control groups results in idling of processors since larger alternates
can not fill the holes left when scheduling the small control groups. The problem
is magnified at higher utilizations and also for the N workload.

In Figure 9 we plot the mean response times of the various algorithms (and
variants) for the Feitelson96 workload at 70% and 80% utilization. For the Feit-
elson96 workload, giving preference to small jobs has a significant improvement
in the MRT for the LRS and Matrix algorithms at higher utilization. The MRT
of Matrix-EQL (LRS-EQL) is 75% (79%) larger than the MRT of Matrix-S
(LRS-S). Again, the MRT of DHC is significantly increased by giving additional
quanta to small control groups.

Based on the mean response times of DHC shown in Figures 8 and 9, we
suggest that DHC-EQL be used instead of DHC-S1. Another approach would be
to detect when the smaller control groups do not fill the processors and allocate
fewer quanta.

Feitelson96 70% :tzitg Feitelson96 80% HLRsSL8
ELRSEq!
B LRSS
BELRS2
ELRS8
DHCLS8

BLRSL2

ELRSEq!

30000 ¢ 70000 1

LRSS

25000 60000 1 BLRs2

NLRS8

EDHCL2 50000 -+
20000 DHOLL mDHCL2
M DHC M 40000 - SDHCL1
R 15000 - mDHCEG! R
T T 30000 sonc

DHCSs1
B DHCS2
mDHCS8

10000 -+ = DHCEq!l
20000 1 M DHCS1

5000 10000 4 SDHCS2

o +

Utilization Utilization

Fig. 9. Mean Response Times, Feitelson96 Workload, Left: 70% utilization, Right: 90%
utilization

A o o | LRSEq! A o o B LRSEq!
n~2 10% 70% CILRSS n”~2 10% 90% CLRSS
£ DHCEq! E DHCEQqI
4.5 - B DHCS1 14 - B DHCS1
. N MatEql MatEq|
4 = Mats -
- E— 121 .
N N
3.5 7 N \
NN N
s N s 101 N\
4 N N\
[. i .
w . w .
N N
d N d R
2 A | N
N 6 N
o N o N
A N
W 1.5+ N w X
14 A N
A N
n N
A 2 N
0.5 + AL \
n N
R N
o o]
70 90
Utilization Utilization
A o o | LRSEq! A o o | LRSEq!
n~2 10% 70% CLRSS n”~2 10% 90% CLRSS
£ DHCEq! £ DHCEq!
B DHCS1 B DHCS1
H MatEql

43 =L

Utilization Utilization

Fig. 10. Policy Comparison, Geometric-Bounded N? Workload: Top Left: Slowdowns
at 70% utilization, Top Right: Slowdowns at 80% utilization, Bottom Left: Mean Re-
sponse Times at 70% utilization, Bottom Right: Mean Response Times at 80% utiliza-
tion

=|LRSEq! =|LRSEq!

Feitelson96 70% CLRSS Feitelson96 80% CLRSS
EDHCEq! EDHCEq!
@|DHCS1 @|DHCS1
S MatEql S MatEql
Mats @z MatS
S
I
o
a -
N
N
o Ny
w E\E\S
\Z
" .
N
N
N
N
-
"
Utilization Utilization
. o mLRSEq| . o mLRSEq|
Feitelson96 70% CLRSS Feitelson96 80% CLRSS
EIDHCEQ! EIDHCEQ!
B DHCS1 B DHCS1
14000 - MatEql 70000 - MatEql
Mats Mats

—472=L

Utilization Utilization

Fig. 11. Feitelson96 Workload: Top Left: Slowdowns at 70% utilization, Top Right:
Slowdowns at 80% utilization, Bottom Left: Mean Response Times at 70% utilization,
Bottom Right: Mean Response Times at 80% utilization

4.6 Relative performance of algorithms

In this section we compare the relative performance of the 3 algorithms for
the N? workload. A comparison of LRS-EQL, Matrix-EQL and DHC-original
for the Feitelson96 workload can be found in [5], but that comparison did not
consider the LRS-S and Matrix-S variants proposed in this paper. We plot the
slowdowns and mean response times of the EQL and S variants (S1 in case of
DHC) for the Geometric-Bounded N? workload in Figure 10. This workload
was not considered in previous papers on DHC. We choose only the EQL and S
variants since their performance is comparable or better than the other variants
of each algorithm.

DHC-S1 has the best slowdowns among these variants at both 70% and
90% utilization, but larger mean response times. LRS performs better than Ma-
trix both in terms of slowdowns and mean response times. DHC-EQL performs
marginally better than LRS-S. Thus, for this workload the DHC-EQL and LRS-S
policies are the best and about equal.

In Figure 11 we plot the slowdowns and mean response times of the EQL
and S variants (S1 for DHC) for the Feitelson96 workload. Again, for this work-
load, the performance of DHC-EQL is comparable to that of LRS-S in terms of
slowdown and mean response times.

5 Conclusions

In this paper we showed via a simulation study that for LRS and Matrix al-
locating quanta inversely proportional to mean job parallelism can significantly
decrease mean job slowdowns with little impact on mean job response time. Note,
the amount of work to modify existing production gang scheduling policies to
incorporate these findings would be trivial and should result in a significant
performance gain.

We consider three gang scheduling policies: Matrix, LRS, and DHC. We have
run simulations on four different workloads varying numerous job parallelism
parameters. Total job demand is super linearly correlated with the number of
processes for most of the workloads considered.

In general, we show that mean job slowdown can be decreased by 20 to 50%
for the Matrix and LRS algorithms simply by letting the number of quanta
allocated to a row equal the number of jobs in the row rather than equal al-
location per row. Equal allocation per row gives a dis-proportionate share of
processing power to jobs with a large number of processes. These large jobs also
have longer execution times, hence this is poor allocation choice. By allocating
additional quanta to rows containing jobs with less parallelism we do a better
job of allocating equal processing power per job, resulting in reduced mean job
slowdowns.

For the DHC policy, we have shown that allocation of additional quanta
to control groups containing jobs with a small number of processes sometimes
decrease mean job slowdown compared to equal allocation per control group, but

at the expense of significantly larger mean job response times. Furthermore, the
performance of the quantum size allocation policy originally proposed performs
similar to equal allocation per quantum.

Finally, we compared the performance of LRS-S, Matrix-S, and DHC-EQL.
In earlier work LRS-EQL, which is worse than LRS-S, was shown to result in
larger slowdowns than DHC. We show that LRS-S and DHC-EQL have similar
performance across all studies considered. The DHC algorithm has the advantage
of being less centralized than LRS, making it more attractive in a distributed or
massively parallel setting, but the LRS-S algorithm is considerably simpler to
implement and achieves comparable performance.

References

1. J.M. Barton and N. Bitar. A scalable multi-discipline, multiple-processor schedul-
ing framework for irix. In Proc. of the IPPS’95 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 45-69. Springer LNCS #949, 1995.

2. S-H. Chiang and M. Vernon. Dynamic vs. static quantum-based parallel processor
allocation. In Proc. of the IPPS’96 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 200-223. Springer LNCS #1162, 1996.

3. Thinking Machines Corporation. Connection machine cm-5 techinical summary.
Technical report, nov 1992.

4. Intel Supercomputer Systems Divsion. Paragon users guide. Technical Report
Order number 312489-003, jun 1994.

5. D. Feitelson. Packing schemes for gang scheduling. In Proc. of the IPPS’96 Work-
shop on Job Scheduling Strategies for Parallel Processing, pages 65—88. Springer
LNCS #1162, 1996.

6. D. Feitelson and M.A. Jette. Improved utilization and responsiveness with gang
scheduling. In Proc. of the IPPS’97 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 238-261. Springer LNCS #1291, 1997.

7. D. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job schedul-
ing. In Proc. of the IPPS’98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 1-24. Springer LNCS #1459, 1998.

8. D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits for fine-
grain synchronization. Journal of Parallel and Distributed Computing, 16(4):306—
318, December 1992.

9. D. G. Feitelson and L. Rudolph. Evaluation of design choices for gang scheduling
using distributed hierarchical control. Journal of Parallel and Distributed Com-
puting, 35(1):18-34, May 1996.

10. D.G. Feitelson and B. Bitzberg. Job characteristics of a production parallel scientifc
workload on the nasa ames ipsc/860. In Proc. of the IPPS’95 Workshop on Job
Scheduling Strategies for Parallel Processing, pages 337-360. Springer LNCS #949,
apr 1995.

11. D.G. Feitelson and L. Rudolph. Distrubuted hierarchical control for parallel pro-
cessing. IEEE Computer, 23(5):65-77, 1990.

12. P. A. Fishwick. Simulation Model Design and Ezecution: Building Digital Worlds.
Prentice Hall, 1995.

13. P.A. Fishwick. Simpack: Getting started with simulation programming in ¢ and
c++. In Proc. 1992 Winter Simulation Conference, pages 154-162, 1992.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. Hori, H Tezuka, and Y Ishikawa. Overhead analysis of preemptive gang schedul-
ing. In Proc. of the IPPS’98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 217-230. Springer LNCS #1459, 1998.

A. Hori, H Tezuka, Y Ishikawa, N. Soda, H Konaka, and M. Maeda. Implementation
of gang-scheduling on workstation cluster. In Proc. of the IPPS’96 Workshop on
Job Scheduling Strategies for Parallel Processing, pages 126-129. Springer LNCS
#1162, 1996.

S. Hotovy. Workload evolution on the cornell theory center ibm sp2. In Proc. of
the IPPS’96 Workshop on Job Scheduling Strategies for Parallel Processing, pages
27-40. Springer LNCS #1162, 1996.

N. Islam, A. Prodromidis, M.S. Squillante, , A.S. Gopal, and L.L. Fong. Extensible
resource scheduling for parallel scientific applications. In Proc. Eight SIAM Conf
on Parallel Processing for Scientific Computation, mar 1997.

N. Islam, A. Prodromidis, M.S. Squillante, L.L. Fong, and A.S. Gopal. Exten-
sible resource managmeent for cluster computing. In Proc. 1997 Int. Conf. on
Distributed Computing Systems (ICDCS-97), 1997.

M. Jette. Expanding symmetric multiprocessor capability through gang schedul-
ing. In Proc. of the IPPS’98 Workshop on Job Scheduling Strategies for Parallel
Processing, pages 199-216. Springer LNCS #1459, 1998.

S.T. Leutenegger and M.K. Vernon. Performance of multiprogrammed multipro-
cessor scheduling policies. In Proc. 1990 ACM SIGMETRICS, May 1990.

R. K. Mansharamani and M.K. Vernon. Properties of the eqs paralle processor al-
location policy. Technical Report 1192, Computer Sciences Department, University
of Wisconsin-Madision, nov 1993.

J. Ousterhout. Scheduling techniques for concurrent systems. In Proc. of Dis-
tributed Computing Systesms Conference, pages 22-30, 1982.

P. Sabalvarro, S. Pakin, W. Weihl, and A.A. Chien. Dynamic coscheduling on
workstation clusters. In Proc. of the IPPS’98 Workshop on Job Scheduling Strate-
gies for Parallel Processing, pages 231-256. Springer LNCS #1459, 1998.

U. Schwiegelshohn and R. Yahyopour. Improving first-come-frist-serve job schedul-
ing by gang scheduling. In Proc. of the IPPS’98 Workshop on Job Scheduling
Strategies for Parallel Processing, pages 180-198. Springer LNCS #1459, 1998.
M.S. Squillante, F. Want, and M. Papaefthymiou. Stochastic analysis of gang
scheduling in parallel and distributed systems. Performance Evaluation, 27:273—
296.

F. Wang, H. Franke, M Papaefthymiou, P Pattnaik, L. Rudolph, and M. Squillante.
A gang scheduing design for multiprogrammed parallel computing environments.
In Proc. of the IPPS’96 Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, pages 111-125. Springer LNCS #1162, 1996.

F. Wang, M Papaefthymiou, and M. Squillante. Performance evaluation of gang
scheduling for parallel and distributed multiprogramming. In Proc. of the IPPS’97
Workshop on Job Scheduling Strategies for Parallel Processing, pages 277-298.
Springer LNCS #1291, 1997.

