
The E�ect of Correlating Quantum Allocationand Job Size for Gang Scheduling ?Gaurav Ghare Scott T. LeuteneggerMathematics and Computer Science DepartmentUniversity of Denver Denver, CO 80208-0189fgghare,leutg@cs.du.eduAbstract. Gang scheduling is an e�ective scheduling policy for multi-processing workloads with signi�cant interprocess synchronization andis in common use in real installations. In this paper we show that signi�-cant improvement in the job slowdown metric can be achieved simply byallocating a di�erent number of quanta to di�erent rows (control groups)depending on the number of processes belonging to jobs in a given row.Speci�cally, we show that allocating the number of quanta inversely pro-portionally to the number of processes per job in that row results in 20 -50% smaller slowdowns without signi�cantly a�ecting mean job responsetime. Incorporating these suggestions into real schedulers would requirethe addition of only a few lines of simple code, hence this work shouldhave an immediate practical impact.1 IntroductionOusterhout proposed the notion of co-scheduling to e�ciently support interpro-cess synchronization when multiprogramming a set of parallel jobs on a multipro-cessor machine [22]. Coscheduling strives to ensure that all processes belongingto a job are scheduled at the same time. Subsequent work has generalized andre�ned the coscheduling (now often called gang scheduling) concept [5, 6, 8, 9, 11,14, 15, 19, 23{26]. Gang scheduling schemes are a practical result of the multi-processor scheduling community and have been adapted for inclusion in severalproduction systems including the Intel Paragon [4], CM-5 [3], Meiko CS-2, mul-tiprocessor SGI workstations [1] and the IBM SP2 [17, 18].Work has been done to examine the impact of quantum size allocations onmean job response times and slowdowns for di�erent quantum sizes [25, 26]. Littlework has been done on investigating how quantum allocation can be modi�edto improve mean job slowdowns and response times. In this paper we showthat negatively correlating the number of allocated quanta with the number ofprocesses per job can signi�cantly reduce mean job slowdown. Speci�cally, weshow that allocating additional quanta to rows (or control groups) containing? This work is supported by the NSF grant ACI-9733658.

jobs with a small number of processes results in the best overall performanceobserved in our experiments.The past work most similar to our work is that of Squillante et al, and Wanget al. [25{27]. In [25] the modeling methodology allows for gangs of di�erentclasses to be allocated di�erent quantum sizes, but results presented do notinvestigate this issue, instead the the work assumes all classes have the samequantum size.In [27] the authors set quantum sizes per class based on di�erent o�ered workper class. We do not consider this aspect in our studies. Note, the authors statethat it would be interesting to investigate the e�ect of allocating multiple quantato short running jobs. We provide experimental results for such considerationsand generalize them to include simpler gang scheduling algorithms.In [26] the authors consider dividing processing power unequally amongclasses, via di�erent size quantums, stating possible motivations of allocatinglarger quantum to classes with higher context switch costs and classes demand-ing shorter response time. In �gure 8 the authors show how the mean numberof class i jobs in the system decreases as the fraction of processing power (quan-tum length relative to other class quantum lengths) allocated to class i jobs isincreased. The experiment does not show what happens to the overall numberof jobs in the system as quantum lengths are increased for one particular class.Our work di�ers in that we fully explore the e�ect of varying quantum al-location per control group size (for DHC). We consider how favoring one classa�ects all classes by reporting mean slowdowns and response times. We providenumerous simulation results to make a case for proper quantum allocation.In addition to considering the DHC algorithm, we consider the e�ect of dif-ferent quantum allocations with simpler gang scheduling schemes such as Matrix[22] and LRS [5]. These simpler algorithms are especially relevant since manycurrent production level schedulers use variants of these simpler algorithms. Fi-nally, our work also provides a more exhaustive comparison of DHC with Matrixand LRS by considering more workloads than considered in [5] and comparingDHC with optimized versions of LRS and Matrix.Aside from extending the understanding of gang scheduling, this work isdirectly applicable to existing systems. The work involved to modify existingschedulers to incorporate these �ndings should be trivial. Thus, for almost noimplementation work commercial systems with correlated workloads similar toour synthetic workloads can decrease slowdowns by 10 to 50% . Furthermore,for some workloads we show that mean job response time can be decreased by50% relative to equal allocation per row (or control group).2 Scheduling Algorithm DescriptionIn this section we review the three previously proposed policies considered anddetail how we allocate quantum sizes.

2.1 MatrixBasic Algorithm DescriptionThis is the scheduling algorithm as de�ned in the seminal paper by Ouster-hout [22]. A newly arriving job is placed in the �rst row with a su�cient numberof idle processor slots to accommodate the job. Note, the slots need not be con-tiguous within the row. Upon job completion row uni�cation is not performed asit was shown to have little e�ect [22] since alternate selection �lls in holes whenscheduling a row.The policy runs jobs by rotating through the rows of the matrix in a round-robin fashion. If there are idle slots within a row scheduled for execution, otherrows are scanned (in round robin fashion from that row) to see if any other job(s)can be completely co-scheduled in the hole. We do not allow fragments to berun. In most of the algorithm variants below, a row is allocated multiple quanta.Alternate selection is performed as soon as a job completes so that processorsare not left idle during the remaining quanta allocated to the slot. Note howeverthat alternate selection is performed only between quanta.Quantum AllocationWe consider a family of Matrix algorithms which di�er in how many quantaare allocated to each row. Let Ji be the number of jobs in row i. Let Qi bethe number of quanta allocated to row i. Let St be the threshold size, dividingsmall jobs from large jobs. Let P be the number of processors. Note for ourexperiments, St was set to 8, and P was set to 128, but St should be larger if Pwere increased. We de�ne the following policies:Matrix-EQL: Qi = 1 8i.Matrix-S: Qi = Ji.Matrix-Sj (where j is an integer):Qi =8<: j; if all jobs in row have � St processes1; otherwise (1)Matrix-Lj (where j is an integer):Qi =8<:1; if all jobs in row have � St processesj; otherwise (2)Matrix-S and Matrix-Sj favor jobs with a small number of processes. InMatrix-S, the number of quanta allocated equal the number of jobs in the row,hence rows containing many small jobs will receive additional processing power.In Matrix-Sj, rows in which all jobs have 8 or fewer processes are allocated jquanta, a row containing one or more jobs of 9 or more processes is allocated onequantum. The parameter j allows us to vary how much preference is given tojobs with a small number of processes. In our experiments we consider Matrix-S2, Matrix-S8, and Matrix-S16. Note, the value of 8 for di�erentiating betweenlarge and small jobs was arbitrarily chosen based on intuition for the workloaddescriptions.

The Matrix-Lj policies are de�ned in a similar fashion but give preference tojobs with a large number of processes. Rows with at least one large job are givenadditional quanta.2.2 LRSLRS [5] di�ers from Matrix only in how newly arriving jobs are allocated withinthe matrix. Jobs that have more than 8 processes are allocated processors fromleft to right while the rest are allocated processors from right to left.Quantum AllocationThe family of polices, LRS-EQL, LRS-S, LRS-Sj, and LRS-Lj, are de�ned inthe same way as the family of Matrix algorithms above.2.3 DHCThis algorithm is similar to the minimum fragmentation with selective disablingversion of the DHC algorithm proposed by Feitelson and Rudolph [9]. It is basedon a hierarchy of controllers. Each block of 2i PEs is assigned a controller thatcoordinates their activities. Controllers at higher levels of the hierarchy coor-dinate those at the lower levels. In addition, the controllers at each level havelateral connections among them. An arriving job is mapped to a controller thathas just enough processors under it to satisfy the job demand. The job is mappedto the controller that has the least load among the controllers at that level. If thecontroller controls more than one processor, it partitions the threads of the jobas follows: Let 2i�1 < t <= 2i be the total number of threads of the job, l1 theload on the left child and l2 the load on the right child. Assuming w.l.o.g. thatl1 < l2, the �rst 2i�1 threads are mapped to processors controlled by the leftchild and the rest are mapped to processors controlled by the right child. Thescheduling is done in rounds. In each round, jobs mapped to controllers at leveli are scheduled ahead of those mapped to controllers at lower levels. Alternateselection is done as discussed for the previous algorithms.Quantum AllocationWe consider a family of DHC algorithms which di�er in how many quantaare allocated to each control group. Consider control group i, such that 2i isthe largest number of processes a job belonging to control group i may have.Jobs in each control group are allocated Qi quanta. Furthermore, let total equalthe total number of processes in the system and let nim denote the number ofprocesses of job m in the ith control group. We de�ne the following policies:DHC-EQL: Qi = 1 8i.DHC-Sj (for integer j):Qi = 8<: (k � i+ 1)j; 8i; j = 1max(1; (k � i)j); 8i; j > 1 (3)where k such that 2k = the number of processors.

DHC-Lj (for integer j):Qi = 8<: i+ 1; 8i; j = 1max(1; i � j); 8i; j > 1 (4)DHC-original: Qi = �m nimtotal .Note that this is equivalent to the original de�nition: Qi = tmtotal , where tmis the number of processes of job m.Thus, DHC-Sj allocates control groups with small jobs a larger number ofquanta and the magnitude of the di�erence is determined by parameter j. Con-versely, DHC-Lj allocates control groups with large jobs a larger number ofquanta. DHC-original is the original quantum size allocation algorithm speci�ed[9]. Feitelson and Rudolph state that preference should be given to jobs with alarge number of processes. Note, this is contrary to the �ndings of this paper.Regardless, we �nd that the DHC-original policy approximates DHC-EQL athigher loads.3 Simulation Methodology, Workload Models, and MetricWe have simulated a 128 processor machine using the Simpack [12, 13] simulationpackage. Our simulator models job arrivals with an exponential mean inter-arrival time. Upon job arrival the number of processes and total job demand aredetermined as described below. We do not simulate interprocess synchronizationor context switch overheads. All three policies considered have been shown tosupport interprocess synchronization well and hence such details would distractfrom the emphasis of this paper. Tuning gang scheduling algorithms for contextswitch overheads has been considered in [26] and inclusion here would obscurethe main focus of the paper.Con�dence intervals were collected using batch means. We ran 60 batches of500 jobs per batch resulting in at most 10% response time con�dence intervalsat a 95% con�dence level. The �rst 500 jobs simulated were discarded to achievea warm start.3.1 De�nitions and MetricsWe de�ne a job to be composed of one or more processes. We will refer to jobswith a small number of processes as "small" jobs vs "large" jobs, and jobs withshort execution times as "short" jobs vs "long" jobs. Job response time is de�nedas the di�erence between job completion and arrival times. The slowdown of ajob is de�ned as the ratio of the response time of a job over the the executiontime of the job if run in isolation.We collected both mean job response times and mean slowdowns. We focusprimarily on mean slowdowns. The mean job response time metric is dominatedby the long jobs thus obscuring the impact of the scheduling algorithm on shortjobs. Conversely, the slowdown metric emphasizes the penalty paid for slowing

down short jobs. Since users often are actively waiting for short jobs to completeit makes sense to focus on the slowdown metric as the primary comparisonmetric. We note that there is not agreement yet on the most relevant comparisonmetric [7], hence we consider both slowdown and response time.3.2 Workload ModelsWe considered 4 di�erent workloads. The �rst three are minor variants of theworkloads proposed by Leutenegger and Vernon [20] and subsequently used inother works [2, 21]. The workloads di�er in the degree of correlation betweenthe number of processes and total job demand. The fourth workload is that ofFeitelson [5].
PMF 5%

0

0.05

0.1

0.15

0.2

0.25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

Num Processors

f(
x

)

PMF 10%

0

0.05

0.1

0.15

0.2

0.25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

Num. processors

f(
x

)

PMF 25%

0

0.05

0.1

0.15

0.2

0.25

0.3

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

Num. processors

f(
x

)

PMF Workload4

0

0.05

0.1

0.15

0.2

0.25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

Num. Processors

f(
x

)

Fig. 1. PMF Of Workloads: Top Left: X = 0:05, Top Right: X = 0:1, Bottom Left:X = 0:25, Bottom Right: Feitelson Workload

Geometric-Bounded N , N1:5 and N2 WorkloadsIn these workloads we �rst determine the number of processes, n, for a joband then the job demand. As hypothesized in [20], and seen in many measuredworkloads on recent systems [10, 16], a signi�cant portion of jobs have parallelismequal to the number of processors. In addition, a signi�cant portion of jobs haveparallelism equal to half the number of processors (assuming the number ofprocessors is a power of two) Accordingly, we assume the number of processorsis a power of 2 and let X be the percentage of jobs whose parallelism is equalto 2l and 2l�1, where 2l is equal to the number of processors. For example, forX = 10, 10% of the jobs have the number of processes set to 128 and 10% of thejobs have the number of processes set to 64. The remaining 100� (2�X) percentof the jobs have the number of processes drawn from a geometric distributionwith mean n. In all of our studies we set n = 4. If the sample drawn from thedistribution exceeds the number of processors we truncate the sample to equalthe number of processors. We consider values of X = 5%, 10%, and 25%. Note,recent measurement studies have also indicated more probability mass at 16and 32 processes. Rather than try to mimic a speci�c distribution we chooseto capture the spirit of the distribution. To address this concern we also studythe workload of Feitelson, described below, which includes more of these smallerjobs.In Figure 1 we plot the probability mass function of the number of processesper job for each of the workloads considered in this paper. Note that when X isincreased the spikes at 64 and 128 processes per job increase accordingly.Once the number of processes, n, is obtained, the job demand is determined.In all cases we study we assume job demand is positively correlated with the num-ber of processes. The job demand is drawn from a two-stage hyper-exponentialdistribution with mean D, where D is determined as described below. The co-e�cient of variation of the job demand is set equal to 2 in all of our reportedexperiments. The overall coe�cient of variation is much greater than 2, due tothe linear/superlinear dependence of job demand on processors [20]. For exam-ple, the coe�cient of variation of total job demand for the N2 workload is (8.0,5.7, 3.6) for the workloads with X equal to (0.05, 0.1, 0.25).We consider three cases:N D = n � dN1:5 D = n1:5 � dN2 D = n2 � dwhere d is a constant and n is the number of processes. Parameter d is set to 10in all of our experiments.Feitelson WorkloadThis is the workload proposed in [5]. The workload is based on observationsfrom 6 production parallel machines. It contains a signi�cant portion of jobs thathave a parallelism that is a power of two. The correlation between number of pro-cesses and total job demand is betweenN andN2. The workload also includes re-peated executions of certain jobs. Arrivals are distributed according to a Poissonprocess. A more detailed description and the code for generating the workload isobtainable from www.cs.huji.ac.il/labs/parallel/workload/wlmodels.html.

4 ResultsIn this section we present our simulation results. In all experiments presented,bars for speci�c algorithms presented left to right correspond to entries in thelegend from top to bottom.

0

2

4

6

8

10

12

14

16

S
l
o
w
d
o
w
n

90 70
Utilization

LRS n^2 10%

LRSL16
LRSL8
LRSL2
LRSEql
LRSS
LRS2
LRS8
LRS16

0

5

10

15

20

25

30

35

40

S
l
o
w
d
o
w
n

90 70
Utilization

DHC n^2 10%

DHCL8
DHCL4
DHCL2
DHCL1
DHC
DHCEql
DHCS1
DHCS2
DHCS4
DHCS8

0

2

4

6

8

10

12

14

16

18

20

S
l
o
w
d
o
w
n

90 70
Utilization

Matrix n^2 10%

MatL16
MatL8
MatL2
MatEql
MatS
MatS2
MatS8
MatS16

Fig. 2. Slowdowns, N2 X = 10 Workload: Top Left: LRS, Top Right: DHC, BottomLeft: Matrix4.1 Geometric-Bounded N2 WorkloadIn Figure 2 we plot the slowdown of the variants of the LRS, DHC and Matrixalgorithms for the N2 workload with X, the percentage of jobs whose number

of processes is set to 64 and 128, equal to 10. In each �gure the left set of barsis for a utilization of 90% and the right set of bars is for a utilization of 70%.In each case we can observe that the variants that give preference to small jobsperform better than those that give preference to large jobs. But, giving toomany quanta to small jobs is counter productive as exhibited by the alg-S8 andalg-S16 (where alg = LRS, Matrix, or DHC) policies. In general, variations thatgive extreme preference to large/small jobs perform poorly. In addition, equalallocation per row (or control group for DHC) results in larger slowdowns thanalg-S. As shown in Figures 3, 4 and 5 the slowdowns of LRS-EQL, DHC-EQL,and Matrix-EQL are 36%, 14% and 39% higher than the slowdowns of LRS-S,DHC-S1, and Matrix-S at a 90% utilization and 25%, 39% and 25% higher at a70% utilization.

0

0.5

1

1.5

2

2.5

3

3.5

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

DHC n^2 10% 70%

DHCL1

DHC

DHCEql

DHCS1

DHCS2

DHCS4

0

0.5

1

1.5

2

2.5

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

DHC n^2 10% 90%

DHCL1

DHC

DHCEql

DHCS1

DHCS2

DHCS4

Fig. 3. DHC Slowdown Ratios, N2 X = 10 Workload: Left: 70% Utilization, Right:90% UtilizationTo understand why alg-S performs better than alg-EQL, consider the casewhen multiple small jobs are packed per row (or control groups of the same level)whereas only one or two large jobs are packed per row. If each row is given equalallocation of processing power then the jobs with a large number of processesreceive a disproportionately larger share of processing power relative to smalljobs. As shown in [20], this is counter productive for workloads where the jobdemand is correlated with the number of processes. In [20] it was suggested thatallocating equal processing power per job is bene�cial in the absence of moredetailed job knowledge. The LRS-S, Matrix-S, and DHC-S1 algorithms attemptto allocate equal processing power per job but are not able to given the rigidpacking constraints of the algorithms. For example, if in Matrix there are tworows, one with a job of 128 processes and one row with 4 jobs of 32 processes each,then the �rst row is allocated 1 quantum while the second is allocated 4 quanta.

0.8

0.9

1

1.1

1.2

1.3

1.4

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

LRS n^2 10% 70%

LRSL2

LRSEql

LRSS

LRS2

LRS8

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

LRS n^2 10% 90%

LRSL2

LRSEql

LRSS

LRS2

LRS8

Fig. 4. LRS Slowdown Ratios, N2 X = 10 Workload: Left: 70% Utilization, Right:90% Utilization

0.8

0.9

1

1.1

1.2

1.3

1.4

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

Matrix n^2 10% 70%

MatL2

MatEql

MatS

MatS2

MatS8

0.8

1

1.2

1.4

1.6

1.8

2

S
l
o
w
d
o
w
n

R
a
t
i
o
s

5 10 25
X

Matrix n^2 10% 90%

MatL2

MatEql

MatS

MatS2

MatS8

Fig. 5. Matrix Slowdown Ratios, N2 X = 10 Workload: Left: 70% Utilization,Right: 90% Utilization

In this case, each job is allocated equal processing power. On the other hand, ifthe second row has three jobs with 64, 32, and 32 processes each, the second rowis allocated 3 quanta. In this case the job with 64 processes is allocated moreprocessing power than the other jobs. Hence, truly equal allocation per job isnot possible given the packing constraints assumed.Consider the performance of the DHC-original quantum allocation policy inFigure 2. DHC-Original performs worse than DHC-L1, DHC-L2 and DHC-L4 at70% utilization, but better at 90% utilization. This is because DHC-Original hasless disparity in quantum allocations (to jobs with varying degrees of parallelism)at higher utilizations. For example, consider the following two scenarios:{ Assume there are only two jobs in the system, j1 with 128 threads and j2with 1 thread. In this case, j1 gets a quantum size of 128=129 � c while j2gets a quantum size of 1=129 � c.{ Assume the following jobs in the system: j1 with 128 threads, j2 with 64threads, j3 with 32 threads, and j4 and j5 with 16 threads each. In this casej1 gets a quantum size of 128=256 � c and jobs j2 through j5 also get ane�ective quantum size of 128=256 � c due to alternate scheduling.Thus, the original proposed DHC quantum size allocation algorithm approachesDHC-EQL at high loads, but is more similar to DHC-Lx (for some x) at lowerloads.To make the relative slowdowns more clear, we plot the slowdown ratiosfor the DHC algorithm in Figure 3. We plot the slowdown ratio of each DHCvariant relative to DHC-S1. The three groups of bars from left to right are forX = 5, 10 and 25 %. The extreme variants viz. DHC-L8, DHC-L4 and DHC-S8are not shown since they compress the scale of the �gure. DHC-EQL results inslowdown that are (31, 39, 24) % larger than DHC-S1 for X = (5, 10, 25%) ata 70% utilization, and (17, 14, 13) % larger at a 90% utilization. Overall, theperformance of DHC-S1 is comparable or better than all other variants. In somecases DHC-S2 performs slightly better.For the LRS and Matrix algorithms the di�erence between alg-EQL and alg-S is even greater (at a 90% utilization) than for DHC as can be seen in Figures 4and 5. LRS-EQL results in slowdown that are (29, 25, 13) % larger than LRS-Sfor X = (5, 10, 25%) at a 70% utilization, and (67, 36, 28) % larger at a 90%utilization. Matrix-EQL results in slowdown that are (29, 25, 14) % larger thanMatrix-S for X = (5, 10, 25%) at a 70% utilization, and (90, 39, 25) % largerat a 90% utilization. Thus, even bigger improvements can be expected whenmodifying an existing scheduling algorithm based on Matrix or LRS to allocatethe number of quanta proportional to the number of jobs in the row rather thanequally per row.

4.2 Geometric-Bounded N1:5 WorkloadThe qualitative results obtained for this workload were similar (within 10%) tothose obtained for the Geometric-Bounded N2 workload. Experimental resultsare not included for purposes of brevity.

0

5

10

15

20

25

30

35

S
l
o
w
d
o
w
n

70
Utilization

n 10% 70%

LRSL16
LRSL8
LRSL2
LRSEql
LRSS
LRS2
LRS8
LRS16
DHCL8
DHCL4
DHCL2
DHCL1
DHC
DHCEql
DHCS1
DHCS2
DHCS4

Fig. 6. Slowdowns, N X = 10 Workload, Utilization = 70%4.3 Geometric-Bounded N WorkloadIn Figure 6 we plot the slowdowns for the N correlated workload with X = 10at 70% utilization. The left set of bars is for the LRS variants, the middle setfor the DHC variants and the set on the right is for the Matrix variants. Unlikein the previous cases, variants that give equal preference to all jobs have betterperformance compared to variants that give preference to large/small jobs. Thisbehavior occurs for this workload since job execution time (if run alone) is notcorrelated to job parallelism. Thus, giving preference to small jobs is counter-productive.4.4 Feitelson96 workloadIn Figure 7 we plot the slowdowns of variants of the LRS, DHC and Matrixalgorithms respectively for the Feitelson96 workload at 70% and 80% utilization.For this workload too, giving preference to small jobs results in better slowdowns.This is especially true at an 80% utilization where the slowdowns of LRS-EQLand Matrix-EQL are 192% and 188% higher than those of LRS-S and Matrix-S.Note, for this workload there is little di�erence in DHC-EQL and DHC-S1.

0

5

10

15

20

25

30

35

40

S
l
o
w
d
o
w
n

80 70
Utilization

LRS Feitelson96

LRSL8
LRSL2
LRSEql
LRSS
LRS2
LRS8
LRS16

0

2

4

6

8

10

12

14

16

18

S
l
o
w
d
o
w
n

80 70
Utilization

DHC Feitelson96

DHCL8
DHCL4
DHCL2
DHCL1
DHC
DHCEql
DHCS1
DHCS2
DHCS4
DHCS8

0

5

10

15

20

25

30

35

40

S
l
o
w
d
o
w
n

80 70
Utilization

Matrix Feitelson96

MatL8
MatL2
MatEql
MatS
MatS2
MatS8
MatS16

Fig. 7. Slowdowns, Feitelson96 Workload: Top Left: LRS, Top Right: DHC, BottomLeft: Matrix

0

200

400

600

800

1000

1200

M
R
T

70
Utilization

n^2 10% 70%
LRSL8

LRSL2

LRSEql

LRSS

LRS2

LRS8

DHCL8

DHCL2

DHCL1

DHC

DHCEql

DHCS1

DHCS2

DHCS8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
R
T

90
Utilization

n^2 10% 90%
LRSL8

LRSL2

LRSEql

LRSS

LRS2

LRS8

DHCL8

DHCL2

DHCL1

DHC

DHCEql

DHCS1

DHCS2

DHCS8

0

20

40

60

80

100

120

140

160

M
R
T

70
Utilization

n 10% 70%
LRSL8

LRSL2

LRSEql

LRSS

LRS2

LRS8

DHCL8

DHCL2

DHCL1

DHC

DHCEql

DHCS1

DHCS2

Fig. 8. Mean Response Times, Top Left: N2X = 10 Workload at 70% utilization, TopRight: N2X = 10 Workload at 90% utilization, Bottom Left: NX = 10 Workload at70% utilization

4.5 Response TimesIn Figure 8 we plot the mean response times for the N2 and N workloads as-suming X = 10. For the Matrix and LRS policies there is only a minor di�erence(up to about 20%) between the mean response times of the variants that givepreference to large jobs and those that give preference to small jobs. Conversely,DHC exhibits a serious degradation in mean job response time going from DHC-EQL to DHC-S8. We conjecture that this is because giving multiple quanta tothe smallest control groups results in idling of processors since larger alternatescan not �ll the holes left when scheduling the small control groups. The problemis magni�ed at higher utilizations and also for the N workload.In Figure 9 we plot the mean response times of the various algorithms (andvariants) for the Feitelson96 workload at 70% and 80% utilization. For the Feit-elson96 workload, giving preference to small jobs has a signi�cant improvementin the MRT for the LRS and Matrix algorithms at higher utilization. The MRTof Matrix-EQL (LRS-EQL) is 75% (79%) larger than the MRT of Matrix-S(LRS-S). Again, the MRT of DHC is signi�cantly increased by giving additionalquanta to small control groups.Based on the mean response times of DHC shown in Figures 8 and 9, wesuggest that DHC-EQL be used instead of DHC-S1. Another approach would beto detect when the smaller control groups do not �ll the processors and allocatefewer quanta.

0

5000

10000

15000

20000

25000

30000

M
R
T

70
Utilization

Feitelson96 70%
LRSL8

LRSL2

LRSEql

LRSS

LRS2

LRS8

DHCL8

DHCL2

DHCL1

DHC

DHCEql

DHCS1

DHCS2

DHCS8

0

10000

20000

30000

40000

50000

60000

70000

M
R
T

80
Utilization

Feitelson96 80%
LRSL8

LRSL2

LRSEql

LRSS

LRS2

LRS8

DHCL2

DHCL1

DHC

DHCEql

DHCS1

DHCS2

Fig. 9.Mean Response Times, Feitelson96 Workload, Left: 70% utilization, Right: 90%utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
l
o
w
d
o
w
n

70
Utilization

n^2 10% 70%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

0

2

4

6

8

10

12

14

S
l
o
w
d
o
w
n

90
Utilization

n^2 10% 90%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

890

900

910

920

930

940

950

960

970

980

990

M
R
T

70
Utilization

n^2 10% 70%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
R
T

90
Utilization

n^2 10% 90%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

Fig. 10. Policy Comparison, Geometric-Bounded N2 Workload: Top Left: Slowdownsat 70% utilization, Top Right: Slowdowns at 80% utilization, Bottom Left: Mean Re-sponse Times at 70% utilization, Bottom Right: Mean Response Times at 80% utiliza-tion

0

0.5

1

1.5

2

2.5

3

3.5

S
l
o
w
d
o
w
n

70
Utilization

Feitelson96 70%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

0

5

10

15

20

25

30

35

S
l
o
w
d
o
w
n

80
Utilization

Feitelson96 80%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

0

2000

4000

6000

8000

10000

12000

14000

M
R
T

70
Utilization

Feitelson96 70%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

0

10000

20000

30000

40000

50000

60000

70000

M
R
T

80
Utilization

Feitelson96 80%
LRSEql

LRSS

DHCEql

DHCS1

MatEql

MatS

Fig. 11. Feitelson96 Workload: Top Left: Slowdowns at 70% utilization, Top Right:Slowdowns at 80% utilization, Bottom Left: Mean Response Times at 70% utilization,Bottom Right: Mean Response Times at 80% utilization

4.6 Relative performance of algorithmsIn this section we compare the relative performance of the 3 algorithms forthe N2 workload. A comparison of LRS-EQL, Matrix-EQL and DHC-originalfor the Feitelson96 workload can be found in [5], but that comparison did notconsider the LRS-S and Matrix-S variants proposed in this paper. We plot theslowdowns and mean response times of the EQL and S variants (S1 in case ofDHC) for the Geometric-Bounded N2 workload in Figure 10. This workloadwas not considered in previous papers on DHC. We choose only the EQL and Svariants since their performance is comparable or better than the other variantsof each algorithm.DHC-S1 has the best slowdowns among these variants at both 70% and90% utilization, but larger mean response times. LRS performs better than Ma-trix both in terms of slowdowns and mean response times. DHC-EQL performsmarginally better than LRS-S. Thus, for this workload the DHC-EQL and LRS-Spolicies are the best and about equal.In Figure 11 we plot the slowdowns and mean response times of the EQLand S variants (S1 for DHC) for the Feitelson96 workload. Again, for this work-load, the performance of DHC-EQL is comparable to that of LRS-S in terms ofslowdown and mean response times.5 ConclusionsIn this paper we showed via a simulation study that for LRS and Matrix al-locating quanta inversely proportional to mean job parallelism can signi�cantlydecrease mean job slowdowns with little impact on mean job response time. Note,the amount of work to modify existing production gang scheduling policies toincorporate these �ndings would be trivial and should result in a signi�cantperformance gain.We consider three gang scheduling policies: Matrix, LRS, and DHC. We haverun simulations on four di�erent workloads varying numerous job parallelismparameters. Total job demand is super linearly correlated with the number ofprocesses for most of the workloads considered.In general, we show that mean job slowdown can be decreased by 20 to 50%for the Matrix and LRS algorithms simply by letting the number of quantaallocated to a row equal the number of jobs in the row rather than equal al-location per row. Equal allocation per row gives a dis-proportionate share ofprocessing power to jobs with a large number of processes. These large jobs alsohave longer execution times, hence this is poor allocation choice. By allocatingadditional quanta to rows containing jobs with less parallelism we do a betterjob of allocating equal processing power per job, resulting in reduced mean jobslowdowns.For the DHC policy, we have shown that allocation of additional quantato control groups containing jobs with a small number of processes sometimesdecrease mean job slowdown compared to equal allocation per control group, but

at the expense of signi�cantly larger mean job response times. Furthermore, theperformance of the quantum size allocation policy originally proposed performssimilar to equal allocation per quantum.Finally, we compared the performance of LRS-S, Matrix-S, and DHC-EQL.In earlier work LRS-EQL, which is worse than LRS-S, was shown to result inlarger slowdowns than DHC. We show that LRS-S and DHC-EQL have similarperformance across all studies considered. The DHC algorithm has the advantageof being less centralized than LRS, making it more attractive in a distributed ormassively parallel setting, but the LRS-S algorithm is considerably simpler toimplement and achieves comparable performance.References1. J.M. Barton and N. Bitar. A scalable multi-discipline, multiple-processor schedul-ing framework for irix. In Proc. of the IPPS'95 Workshop on Job SchedulingStrategies for Parallel Processing, pages 45{69. Springer LNCS #949, 1995.2. S-H. Chiang and M. Vernon. Dynamic vs. static quantum-based parallel processorallocation. In Proc. of the IPPS'96 Workshop on Job Scheduling Strategies forParallel Processing, pages 200{223. Springer LNCS #1162, 1996.3. Thinking Machines Corporation. Connection machine cm-5 techinical summary.Technical report, nov 1992.4. Intel Supercomputer Systems Divsion. Paragon users guide. Technical ReportOrder number 312489-003, jun 1994.5. D. Feitelson. Packing schemes for gang scheduling. In Proc. of the IPPS'96 Work-shop on Job Scheduling Strategies for Parallel Processing, pages 65{88. SpringerLNCS #1162, 1996.6. D. Feitelson and M.A. Jette. Improved utilization and responsiveness with gangscheduling. In Proc. of the IPPS'97 Workshop on Job Scheduling Strategies forParallel Processing, pages 238{261. Springer LNCS #1291, 1997.7. D. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job schedul-ing. In Proc. of the IPPS'98 Workshop on Job Scheduling Strategies for ParallelProcessing, pages 1{24. Springer LNCS #1459, 1998.8. D. G. Feitelson and L. Rudolph. Gang scheduling performance bene�ts for �ne-grain synchronization. Journal of Parallel and Distributed Computing, 16(4):306{318, December 1992.9. D. G. Feitelson and L. Rudolph. Evaluation of design choices for gang schedulingusing distributed hierarchical control. Journal of Parallel and Distributed Com-puting, 35(1):18{34, May 1996.10. D.G. Feitelson and B. Bitzberg. Job characteristics of a production parallel scientifcworkload on the nasa ames ipsc/860. In Proc. of the IPPS'95 Workshop on JobScheduling Strategies for Parallel Processing, pages 337{360. Springer LNCS #949,apr 1995.11. D.G. Feitelson and L. Rudolph. Distrubuted hierarchical control for parallel pro-cessing. IEEE Computer, 23(5):65{77, 1990.12. P. A. Fishwick. Simulation Model Design and Execution: Building Digital Worlds.Prentice Hall, 1995.13. P.A. Fishwick. Simpack: Getting started with simulation programming in c andc++. In Proc. 1992 Winter Simulation Conference, pages 154{162, 1992.

14. A. Hori, H Tezuka, and Y Ishikawa. Overhead analysis of preemptive gang schedul-ing. In Proc. of the IPPS'98 Workshop on Job Scheduling Strategies for ParallelProcessing, pages 217{230. Springer LNCS #1459, 1998.15. A. Hori, H Tezuka, Y Ishikawa, N. Soda, H Konaka, and M. Maeda. Implementationof gang-scheduling on workstation cluster. In Proc. of the IPPS'96 Workshop onJob Scheduling Strategies for Parallel Processing, pages 126{129. Springer LNCS#1162, 1996.16. S. Hotovy. Workload evolution on the cornell theory center ibm sp2. In Proc. ofthe IPPS'96 Workshop on Job Scheduling Strategies for Parallel Processing, pages27{40. Springer LNCS #1162, 1996.17. N. Islam, A. Prodromidis, M.S. Squillante, , A.S. Gopal, and L.L. Fong. Extensibleresource scheduling for parallel scienti�c applications. In Proc. Eight SIAM Confon Parallel Processing for Scienti�c Computation, mar 1997.18. N. Islam, A. Prodromidis, M.S. Squillante, L.L. Fong, and A.S. Gopal. Exten-sible resource managmeent for cluster computing. In Proc. 1997 Int. Conf. onDistributed Computing Systems (ICDCS-97), 1997.19. M. Jette. Expanding symmetric multiprocessor capability through gang schedul-ing. In Proc. of the IPPS'98 Workshop on Job Scheduling Strategies for ParallelProcessing, pages 199{216. Springer LNCS #1459, 1998.20. S.T. Leutenegger and M.K. Vernon. Performance of multiprogrammed multipro-cessor scheduling policies. In Proc. 1990 ACM SIGMETRICS, May 1990.21. R. K. Mansharamani and M.K. Vernon. Properties of the eqs paralle processor al-location policy. Technical Report 1192, Computer Sciences Department, Universityof Wisconsin-Madision, nov 1993.22. J. Ousterhout. Scheduling techniques for concurrent systems. In Proc. of Dis-tributed Computing Systesms Conference, pages 22{30, 1982.23. P. Sabalvarro, S. Pakin, W. Weihl, and A.A. Chien. Dynamic coscheduling onworkstation clusters. In Proc. of the IPPS'98 Workshop on Job Scheduling Strate-gies for Parallel Processing, pages 231{256. Springer LNCS #1459, 1998.24. U. Schwiegelshohn and R. Yahyopour. Improving �rst-come-frist-serve job schedul-ing by gang scheduling. In Proc. of the IPPS'98 Workshop on Job SchedulingStrategies for Parallel Processing, pages 180{198. Springer LNCS #1459, 1998.25. M.S. Squillante, F. Want, and M. Papaefthymiou. Stochastic analysis of gangscheduling in parallel and distributed systems. Performance Evaluation, 27:273{296.26. F. Wang, H. Franke, M Papaefthymiou, P Pattnaik, L. Rudolph, and M. Squillante.A gang scheduing design for multiprogrammed parallel computing environments.In Proc. of the IPPS'96 Workshop on Job Scheduling Strategies for Parallel Pro-cessing, pages 111{125. Springer LNCS #1162, 1996.27. F. Wang, M Papaefthymiou, and M. Squillante. Performance evaluation of gangscheduling for parallel and distributed multiprogramming. In Proc. of the IPPS'97Workshop on Job Scheduling Strategies for Parallel Processing, pages 277{298.Springer LNCS #1291, 1997.

