
Benchmarks and Standards for the Evaluation ofParallel Job SchedulersSteve J. Chapin1, Walfredo Cirne2, Dror G. Feitelson3, James Patton Jones4,Scott T. Leutenegger5, Uwe Schwiegelshohn6, Warren Smith7, and DavidTalby31 Department of Electrical Engineering and Computer ScienceSyracuse University, Syracuse, NY 13244-1240chapin@cs.virginia.edu2 Computer Science and Engineering DepartmentUniversity of California San Diego, La Jolla, CA 92093walfredo@cs.ucsd.edu3 Institute of Computer ScienceHebrew University, 91904 Jerusalem, Israelffeit,davidtg@cs.huji.ac.il4 MRJ Technology SolutionsNASA Ames Research Center, Mo�ett Field, CA 94035jjones@nas.nasa.gov5 Mathematics and Computer Science DepartmentUniversity of Denver, Denver, CO 80208leut@cs.du.edu6 Computer Engineering InstituteUniversity Dortmund, 44221 Dortmund, Germanyuwe@ds.e-technik.uni-dortmund.de7 Mathematics and Computer Science DivisionArgonne National Laboratory, Argonne, IL 60439wsmith@mcs.anl.govAbstract. The evaluation of parallel job schedulers hinges on the work-loads used. It is suggested that this be standardized, in terms of bothformat and content, so as to ease the evaluation and comparison of dif-ferent systems. The question remains whether this can encompass bothtraditional parallel systems and metacomputing systems.This paper is based on a panel on this subject that was held at theworkshop, and the ensuing discussion; its authors are both the panelmembers and participants from the audience. Naturally, not all of usagree with all the opinions expressed here...1 Introduction1.1 MotivationThe study and design of computer systems requires good models of the workloadto which these systems are subjected, because the workload has a large e�ect

on the observed performance. This need was recognized long ago [26,1], and inseveral �elds workload data was indeed collected, analyzed, and modeled. Well-known examples are address traces used to analyze processor cache performance[56,59], and records of �le system activity used to motivate the use of �le caching[49]. Recently we are witnessing a large increase in such activity, with data beingcollected relating to LAN tra�c [45], web server loads [3], and video streams [43].This new wave of collecting and analyzing data for use in evaluations isalso present in the �eld of job scheduling on high-performance systems. Twoapproaches can be identi�ed. One is to collect the data, describe it [21,60,37],and use it directly as input for future evaluations. This has the bene�t of be-ing considered completely realistic, but also su�ers from various methodologicalconcerns such as the danger that the data reects local constraints rather thangeneral principles [41,36]. The other approach is to use the data as a referencein designing workload models that are used to drive the evaluation. By select-ing only invariants found in several data sets for inclusion in the model, thecon�dence in the model is improved [18,16].A problem that remains is that too many workloads are now available, be theynaive models based on guesswork, complex models based on measurements, orthe measurements themselves. Faithful comparisons of di�erent schemes requirea representative set of workloads to be canonized as a benchmark, and used by allsubsequent studies. The de�nition of a standard benchmark should include boththe benchmark data (or a program to generate it), and its format, to enablee�cient and easy use. Our goal in this paper is to explore the possibility ofcreating such a standard.1.2 ScopeApplication scheduling versus job scheduling Benchmarks are only use-ful if they su�ciently represent their target community. For instance, SPECbenchmarks have been carefully selected to cover a wide range of di�erent appli-cations. Similarly, benchmarks for the evaluation of parallel job schedulers mustbe based on the applications typically run on those parallel machines. Using aslightly simpli�ed view we can distinguish two classes for these applications:{ Rigid applications1 which are �ne tuned for a speci�c parallel machine andcon�guration. The most common examples are programs written in the mes-sage passing paradigm, where all communication between the processors iscarefully arranged to achieve a large degree of latency hiding. Such programscannot cope with situations where the number of processors is reduced evenby one during the execution, and there is also no bene�t from assigningadditional processors, as they will remain unused.1 This includes moldable applications [25] which are written so that they can run ondi�erent numbers of processors as chosen when the job starts execution; the point isthat the job cannot change during execution, so there is no application scheduler.

{ Flexible applications2 which can be run on a variety of di�erent machinecon�gurations. Typically, a high degree of e�ciency can only be achieved forthese jobs if they are made adaptable to the actual con�guration. Therefore,they frequently consist of a large number of interdependent modules forwhich a suitable schedule must be generated. A simple approach is to use amaster-workers structure.Based on these two applications classes it is also appropriate to distinguishtwo types of schedulers: machine schedulers and application schedulers. Machineschedulers for large parallel machines are, naturally, machine-centric. They typ-ically do not look much inside a job. As input they receive characteristic datafrom a stream of independent jobs. Computing resources, like processors, mem-ory, or I/O facilities, are allocated to these jobs with the goal of optimizing thevalue of the actual scheduling objective function. Therefore, machine schedulerstry to keep the number of unassigned resources at a minimum while load bal-ancing within a job is up to the owner of the job. Machine schedulers must dealwith the on-line character of job submission and with a potential inaccuracy ofjob submission data, like the estimated execution time of a job. On the otherhand they need not consider dependences between the submitted jobs. The per-formance of a machine scheduler may be highly dependent on the workload andpossibly on the given objective function. Having a representative workload maytherefore allow the administrator of a parallel machine to determine the sched-uler best suited for him. Hence, those administrators can be assisted by a set ofbenchmarks that cover most workloads occurring in practice.Application schedulers, on the other hand, arrange the modules of exibleapplications to make best use of the currently available resources. They do notconsider other independent jobs running concurrently on the same machine.Therefore, they are application-centric. Typically, it is their goal to minimizethe overall execution time of their applications. To this end they must considerthe dependences between the various modules of their applications. All modulesare known to the schedulers up front. While quite a few di�erent algorithms forapplication schedulers have been suggested it is not clear whether their perfor-mance varies signi�cantly for di�erent applications. It may therefore be possibleto evaluate application schedulers with the help of a generic application model.In this case benchmarks for application schedulers are not needed.But if application schedulers start to proliferate they may signi�cantly inu-ence the workload characteristics of parallel machines, changing it from beingpredominantly rigid to mostly exible. It is also possible that machine schedulersand application schedulers may cooperate in the future to make best use of theavailable resources. The state of the art in workload benchmarking for rigid jobs,and questions about extending it to exible jobs, are discussed in Section 2.Scheduling for metacomputing and its requirements A recent area ofresearch is how to collect resources from many organizations into entities called2 This is taken to include both malleable and evolving jobs in the terminology of [25].

metasystems or computational grids [28]. A metasystem consists of comput-ers, networks, databases, instruments, visualization devices, and other types ofresources owned by di�erent organizations and located around the world. Inaddition to these resources, a metasystem contains software that people use toaccess it. There are several projects that provide such software [27,33,46,6] and,among many other things, this software supports meta schedulers: schedulersthat help users select what resources to use for an application and help users toexecute their application on those resources.While there are many types of meta schedulers, they often have several com-mon requirements. First, a user or meta scheduler has a larger and more diverseset of resources to pick from than those present in a single supercomputer. Ameta scheduler therefore needs information about resources and applications todetermine which resources to select for an application. A meta scheduler needsto know when resources are available, what they cost, which users have access tothem, how an application performs on them, etc. Information on current avail-ability of resources is easily available and there is ongoing work on predictingthe future availability of network bandwidth [61] and when a scheduler will startapplications [57,14]. Predictions of application performance on various sets of re-sources is also being investigated [6]. Even though this information is becomingavailable, an additional need is a common way to gain access to this informa-tion such as the Metacomputing Directory Service provided by the Globus [27]software.In addition to the new types of information described above, many metaschedulers need resources from more than one source | similar to the idea ofgang scheduling on parallel machines [22]. This requires mechanisms for gainingsimultaneous access to resources. One such mechanism is reserving resourcesat some future time. Mechanisms for network quality of service [29] allow suchreservation of networking resources and reservation mechanisms are currentlybeing added to scheduling systems for parallel computers [54].The issues of benchmarking the application schedulers for metacomputingare discussed in Section 3, and the relationship between scheduling on parallelsystems and metasystems are examined in Section 4.Possible inclusion of the objective function The measured performance ofa system depends not only on the system and workload, but also on the metricsused to gauge performance. It is these metrics that serve as the objective func-tion of the scheduler, whose goal is to optimize their value. For some objectivefunctions, such as utilization and throughput, the goal is to maximize; for others,such as response time or slowdown, the goal is to minimize.The problem is that measurement using di�erent metrics may lead to conict-ing results. For example, one of the papers in the workshop showed contradictingresults for the comparison of two scheduling algorithms if response time or slow-down were used as a metric [31]. Another paper [42] speci�cally addressed theissue of deriving objective functions tailored to a set of owner de�ned policyrules. This paper also showed signi�cant di�erences in the ranking of various

scheduling algorithms if applied to objective functions that only di�er in theselection of a weight. It may therefore be appropriate to standardize the objec-tive functions that are used, in order to enable a truthful comparison betweendi�erent studies. However, this is only appropriate if a large number of di�er-ent objective functions are used in practice and if machine schedulers producesigni�cantly di�erent results for those di�erent objective functions. Currently,only a few standard objective functions | like the average response time or themachine utilization | can be found in almost all installations. However, it isnot clear whether this small number is due to a missing concept for generatingobjective functions that are better tailored to the rules of the owners of parallelmachines.In this paper we do not discuss this issue further. We just note that furtherresearch into the relative merits of di�erent metrics is needed [24].2 Workload Benchmarks for Parallel SystemsA mere �ve years ago practically no real data about production workloads onparallel machines was available, so evaluations had to rely on guesswork. Thissituation has changed dramatically, and now practically all evaluations of paralleljob schedulers rely on real data, at least to some degree. While more details canalways be added, the time seems ripe to start talking about standardization ofworkload benchmark data.2.1 State of the ArtA large amount of data on production parallel supercomputers has been collectedin the Parallel Workloads Archive [19]. This includes both raw logs and derivedmodels.Workload logs Most parallel supercomputers maintain accounting logs foradministrative use. These logs contain valuable information about all the activityon the machine, and in particular, about the attributes of each job that wasexecuted. The format of the logs is typically an ASCII �le with one line per job(although some systems maintain a much more detailed log). Analyzing suchlogs can lead to important insights into the workload. Such work has been donefor some systems, including the NASA Ames iPSC/860 [21], the SDSC Paragon[60], the CTC SP2 [37], and the LANL CM-5 [17].While most logs contain the same core data about each job (such as thesubmittal, start, and end times, the number of processors used, and the userID), there are other less-standard �elds as well. Some systems contain dataabout resource requests made before the job started. Some contain data aboutadditional resources such as memory usage. Some contain internal data aboutthe queue to which the job was submitted, and prioritization parameters used bythe scheduler. Moreover, these �elds appear in di�erent orders and formats. Thestandard format suggested below attempts to accommodate all the importantand useful �elds, even if they do not appear in every log.

Workload models Workload models are based on some statistical analysisof workload logs, with the goal of elucidating their underlying principles. Thisthen enables the creation of new workloads that are statistically similar to theobservations, but can also be changed at will (e.g. to modify the system load)[16].The most salient feature of workload models is that they include exactly whatthe modeler puts into them. This is both an advantage and a disadvantage. Itis an advantage because the modeler knows about all the features of the model,and can control them. It is a disadvantage because real workloads may containadditional features that are unknown, and therefore not included in the models.As the e�ect of various workload features is typically not known in advance, itis prudent to at least include as many known workload features as possible.Current workload models fall into two categories: those of rigid jobs, andthose of exible jobs. Rigid job models create a sequence of jobs with givenarrival time, number of processors, and runtime (e.g. [18,39,47]). The task of thescheduler is then to pack these \rectangular" jobs onto the machine. Given therelative simplicity of rigid jobs, a number of rather advanced models have beendesigned. A statistical analysis [58] shows that the one proposed by Lublin [47]is relatively representative of multiple workloads.Flexible job models attempt to describe how an application would performwith di�erent resource allocations, and maybe even how it would perform if theresources are changed at runtime. One way to do this is to provide data aboutthe total computation and the speedup function [55,13], instead of the requirednumber of processors and runtime. This enables the scheduler to choose thenumber of processors that will be used, according to the current load conditions.Another approach is to provide an explicit model of the internal structure ofthe application [7,24]. This allows for a detailed simulation of the interactionsbetween the scheduling and the application, leading to better evaluations at thecost of more complex simulation.While several models have been proposed, thereis still insu�cient data about the relative distribution of applications with di�er-ent speedup characteristics and internal structures to allow for any statementsregarding which is more representative.2.2 Future WorkWorkload models may be improved in three main ways: by including additionalresources, such as memory and I/O, by including feedback, and by including theinternal structure of parallel programs. In addition, the evaluation of schedulerswill bene�t from data about outages that schedulers have to deal with.Including memory requirements and I/O Current workload models con-centrate on one type of resource: computing power. However, in reality, jobsrequire other resources as well, and the interaction between the demands fordi�erent resources can have a large e�ect on possible schedules.One resource that has received some attention is memory. Several papers ac-knowledge the importance of memory requirements and their e�ect on scheduling

[2,51,50]. However, there is only little data about actual memory usage patterns[17], and this has so far not been incorporated in any workload model. Moreover,it is necessary to model not only the total amount of memory that is used, butalso the degree of locality with which it is accessed, as this has a great impacton the amount of memory that has to be allocated in practice [4].Another important characteristic that has a signi�cant impact on schedul-ing is I/O activity. The Charisma project has collected some data on the I/Obehavior of parallel programs [48]3, but this has only been used for the designof parallel �le system interfaces. We are only beginning to see considerations ofI/O in scheduling work [44,53], but this is so far not based on much real data.As real applications obviously do perform I/O (and sometimes even a lot of it),this is a severe de�ciency in current practice.For both memory and I/O, we do not have enough data yet for contemplatinga standard benchmark, at least not one that is known to be representative andis based on measurements.Including feedback Another problem with current workload models is the lackof feedback. The observed workload on a production machine is not created byrandom sampling from a population of programs. Rather, it is the result of inter-leaving the sequences of activities performed by many human beings. Activitiesin such sequences are often dependent on each other: you �rst edit your pro-gram, then compile it, and then execute it; you change parameters and executeit again after observing the results of the previous execution. Thus the instantat which a job is submitted to the system may depend on the termination of aprevious job. As the time of the previous termination depends on the system'sperformance, so does the next arrival. In a nutshell, there is a feedback e�ectfrom the system's performance to the workload.The realization that such feedback exists is not new. In fact, feedback hasbeen included explicitly in some queueing studies, especially those employingclosed queueing networks with a delay center representing user think time in thefeedback loop (see, e.g., [38]). However, this practice has so far not extended toperformance analysis based on observed workloads, because it does not appearexplicitly in the observations. Accounting logs do not include explicit informa-tion about feedback, so this e�ect is lost when a log is replayed and used in anevaluation. However, it is possible to make educated guesses in order to insertpostulated dependencies into an existing log. The methodology is straight for-ward: we identify sequences of dependent jobs (e.g. all those submitted by thesame user in rapid succession), and replace the absolute arrival times of jobs inthe sequence with interarrival times relative to the previous job in the sequence.Including the internal job structure The feedback noted above is betweenthe system and the user, and may a�ect the arrival process. There is also a3 A historical note | the Charisma data actually triggered the �rst study of a pro-duction parallel workload in [21].

possibility of feedback between the system and the parallel job itself. Speci�cally,the synchronization and communication patterns of the application may havevarious performance implications, that depend on how the application's processesare scheduled to di�erent processors [35,23].For example, earlier work in the sigmetrics community compared space slic-ing with time slicing. Two orthogonal issues were allocation of processing poweramong jobs and support for interprocess synchronization (IPS). The space slicingwork recognized the importance of processing power allocation and developeddynamic and/or adaptive algorithms. Some of the algorithms necessitated fairlycomplicated mechanisms to ensure processor allocations could be changed andnot hurt interprocessor synchronization. If synchronization is frequent, then ei-ther gang scheduling or IPS cognizant space slicing mechanisms are needed, butif common IPS is coarse grained it may be unnecessary. Assuming it is neces-sary, it may still be possible that IPS is coarse grained enough when doing gangscheduling that alternates could be fragments rather than requiring completegangs be coscheduled.In last year's introductory paper we presented a strawman proposal of howthe internal structure of a parallel application can be summarized by a smallnumber of parameters [24]. The main parameters were the number of processors,the number of barriers, the granularity, and the variance of these attributes.While this cannot capture the full spectrum of possible parallel applications, itis expected to provide enough exibility in order to create a varied workload thatwill exercise the interactions between applications and the scheduler in variousways.The problem with including internal structure in the workload benchmarkis the complete lack of knowledge about what parameter values to use. This in-formation could be collected by augmenting a library providing synchronizationfacilities to trace this information (as was done in Charisma for the I/O library).This functionality already exists in PVM and Legion for example. If the libraryis a dynamic library then theoretically it would be easy to take someone's codeand measure it. Such an undertaking has to be done at a large production site,provided it would not slow down users production level codes for measurementpurposes.An obvious alternative to modeling the internal structure is to use real ap-plications [62,12]. However, the question remains of which applications to use,in what mixes, and how to create di�erent sizes. This again boils down to thequestion of how to create a representative workload, and the lack of data aboutthe relative popularity of di�erent application types.Including outage information While simulations and models are useful forcomparing di�erent algorithms, in the real world, there are many more variablesthat come into play than the few that are typically used in scheduling models.If the purpose of running a new scheduling algorithm through a simulator on areal workload is to measure how well that algorithm will work in production on

a similar workload, then it cannot possibly be accurate if it ignores all factorsexternal to a scheduler's trace �le.Parallel systems have matured considerably over the past decade, but stillare not as stable or reliable as traditional vector systems like the Cray C90. Thisinstability should be taken into consideration when creating a scheduler simula-tor. Such factors as node failure, network interruption, disk failure, mean timebetween failure, and length of failures are important variables that a productionscheduler has to cope with. In a distributed memory system like the IBM SP, itis possible for a node to drop o�ine, but the system continues to operate. Anyjob running on that node would have to be restarted, but it has no a�ect onany other running jobs. The system scheduler detects the failed nodes, and takesaction to schedule around the failed hardware. This information however is notrecorded in typical job trace �les, and is therefore not taken into account duringthe analysis of the traces.Another important aspect of system availability is the impact of human-generated outages. All production systems are taken down for scheduled main-tenance and often for dedicated time. This outage information is often availableto the job scheduler so that jobs can be scheduled around the outages, or suchthat the system is drained up to the outage. This information does not appearin the scheduler trace �les, but is needed input for simulators. Most sites col-lect outage data, and many archive it for historical comparisons (like NAS). Astandard format for outage data should be created to compliment the schedulingworkload traces. The two datasets should be keyed to each other, and shouldcontain the necessary information to accurately predict scheduler behavior in areal work environment.As an initial start, we propose the following information should be collectedand reported in a standard format, for every outage that removes any portionof a system from operation:{ Announced time of outage (e.g. when did the outage info become availableto the scheduler | was it known in advance, or did the scheduler suddenlydetect that there were fewer nodes available?){ Start time of outage (when the outage actually occurred){ End time of outage (when the a�ected resources were again schedulable){ Type of outage (CPU failure, network failure, facility){ Number of nodes a�ected (or perhaps percentage of machine a�ected |for example, a failed scratch �le system may prevent only a few users fromrunning, but the others can continue.){ Speci�c a�ected components (which nodes went down, what part of thenetwork failed)2.3 A Standard Workload FormatThe goal of the standard format is to help researchers using workloads, eitherreal or synthetic. Its main advantages over what is currently available are:

{ Ideas and tests regarding workload models could be easily applied to allavailable workloads. This is rarely done because of the need to write scriptsto handle the di�erent formats of workloads today.{ The �le format is easy to parse and use: while it is a text �le (to avoid prob-lems with converting data �les) all data is in integers (no character strings!),so there are no problems with parsing dates or other special entries. Thisprovides simplicity and absolute standardization at the expense of general-ity and extensibility: you are guaranteed to be able to parse and understandevery �le abiding by the standard, because users cannot add their own new�elds.{ Every datummust abide to strict consistency rules, that when checked ensurethat the workload is always \clean".{ Data is in standard units. Moreover, users and executables are given by in-cremental numbers, which makes their parsing easier, makes grouping byusers/executables easier, hides administrative issues, and hides sensitive in-formation.A major design goal was to be able to use the format for both real andsynthetic workloads. This means that only some of the �elds will usually bemeaningful for any given workload | a synthetic workload may only include in-formation about submit times, runtimes, and parallelism, while a real workloadwon't include any information about scheduler feedback. Therefore, unknownvalues are part of the standard. The �elds were chosen so that all informationfrom logs we have will be saved except very rare �elds (that appeared in only onelog, for example). For synthetic workloads, future research directions were alsoconsidered: For example, the format enables expressing the existence of sched-uler feedback, which can be generated using a variety of models. The internalstructure (I/O, barriers, and so forth) of jobs is still not included, since no logsand only one model address this issue and the right way of doing it is still un-clear. Future version of the standard may include additional �elds for this andother purposes.The data �elds Standard workload �les contain one line per job, that containsa list of space separated integers. Missing values are denoted by -1, and allother values are non-negative. Lines beginning with a semicolon are treated ascomments and ignored. The beginning of every �le contains several such linesthat describe the workload in general. The jobs are numbered consecutively inthe �le. Job IDs from workloads that are converted to the standard format arediscarded, since they are not always integers and not always unique (if theycombine data from several years). Each line in the �le has these �elds, in thisorder:1. Job Number | a counter �eld, starting from 1.2. Submit Time | in seconds. The earliest time the log refers to is zero, andis the submittal time the of the �rst job. The lines in the log are sorted byascending submittal times.

3. Wait Time | in seconds. The di�erence between the job's submit time andthe time at which it actually began to run. Naturally, this is only relevantto real logs, not to models.4. Run Time | in seconds. The wall clock time the job was running (end timeminus start time).We decided to use \wait time" and \run time" instead of the equivalent\start time" and \end time" because they are directly attributable to thescheduler and application, and are more suitable for models where only therun time is relevant.5. Number of Allocated Processors | an integer. In most cases this is also thenumber of processors the job uses; if the job does not use all of them, wetypically don't know about it.6. Average CPU Time Used | both user and system, in seconds. This is theaverage over all processors of the CPU time used, and may therefore besmaller than the wall clock runtime. If a log contains the total CPU timeused by all the processors, it is divided by the number of allocated processorsto derive the average.7. Used Memory | in kilobytes. This is again the average per processor.8. Requested Number of Processors.9. Requested Time. This can be either runtime (measured in wallclock seconds),or average CPU time per processor (also in seconds) | the exact meaning isdetermined by a header comment. If a log contains a request for total CPUtime, it is divided by the number of requested processors.10. Requested Memory (again kilobytes per processor).11. Completed? 1 if the job was completed, 0 if it was killed. This is meaninglessfor models, so would be -1.if a log contains information about checkpoints and swapping out of jobs, a jobcan have multiple lines in the log. In fact, we propose that the job informationappear twice. First, there will be one line that summarizes the whole job: itssubmit time is the submit time of the job, its runtime is the sum of all partialruntimes, and its code is 0 or 1 according to the completion status of the wholejob. In addition, there will be separate lines for each instance of partial executionbetween being swapped out. All these lines have the same job ID and appearconsecutively in the log. Only the �rst has a submit time; the rest only have await time since the previous burst. The completed code for all these lines is 2,meaning \to be continued"; the completion code for the last such line is 3 or 4,corresponding to completion or being killed. It should be noted that such detailsare only useful for studying the behavior of the logged system, and are not afeature of the workload. Such studies should ignore lines with completion codesof 0 and 1, and only use lines with 2, 3, and 4. For workload studies, only thesingle-line summary of the job should be used, as identi�ed by a code of 0 or 1.12. User ID | a natural number, between one and the number of di�erent users.13. Group ID | a natural number, between one and the number of di�erentgroups. Some systems control resource usage by groups rather than by indi-vidual users.

14. Executable (Application) Number | a natural number, between one andthe number of di�erent applications appearing in the workload. in some logs,this might represent a script �le used to run jobs rather than the executabledirectly; this should be noted in a header comment.15. Queue Number| a natural number, between one and the number of di�erentqueues in the system. The nature of the system's queues should be explainedin a header comment. This �eld is where batch and interactive jobs shouldbe di�erentiated: we suggest the convention of denoting interactive jobs by0.16. Partition Number | a natural number, between one and the number ofdi�erent partitions in the systems. The nature of the system's partitionsshould be explained in a header comment. For example, it is possible to usepartition numbers to identify which machine in a cluster was used.17. Preceding Job Number | this is the number of a previous job in the work-load, such that the current job can only start after the termination of thispreceding job. Together with the next �eld, this allows the workload to in-clude feedback as described in Section 2.2.18. Think Time from Preceding Job | this is the number of seconds that shouldelapse between the termination of the preceding job and the submittal of thisone.The last two �elds work as follows. Suppose we know that a.out, job number123, should start ten seconds after the termination of gcc x.c, which is jobnumber 120. We could give job number 123 a submittal time that is 10 secondsafter the submittal time plus run time of job 120, but this wouldn't be right| changing the scheduler might change the wait time of job 120 and spoil theconnection. The solution is to use �elds 17 and 18 to save such relationshipsbetween jobs explicitly. In this example, for job number 123 we'll put 120 in itspreceding job number �eld, and 10 in its think time from preceding job �eld.Header Comments The �rst lines of the log may be of the format ;Label:Value1, Value2, These are special header comments with a �xed format,used to de�ne global aspects of the workload. Prede�ned labels are:Computer : Brand and model of computerInstallation : Location of installation and machine nameAcknowledge : Name of person(s) to acknowledge for creating/collecting theworkload.Information : Web site or email that contain more information about the work-load or installation.Conversion : Name and email of whoever converted the log to the standardformat.Version : Version number of the standard format the �le uses. The formatdescribed here is version 2.StartTime : In human readable form, in this standard format: Tuesday, 1 Dec1998, 22:00:00

EndTime : In the same format as StartTime.MaxNodes : Integer, number of nodes in the computer (describe the sizes ofpartitions in parentheses).MaxRuntime : Integer, in seconds. This is the maximum that the system allowed,and may be larger than any speci�c job's runtime in the workload.MaxMemory : Integer, in kilobytes. Again, this is the maximum the system al-lowed.AllowOveruse : Boolean. 'Yes' if a job may use more than it requested for anyresource, 'No' if it can't.Queues : A verbal description of the system's queues. Should explain the queuenumber �eld (if it has known values). As a minimum it should be explainedhow to tell between a batch and interactive job.Partitions : A verbal description of the system's partitions, to explain the par-tition number �eld. For example, partitions can be distinct parallel machinesin a cluster, or sets of nodes with di�erent attributes (memory con�guration,number of CPUs, special attached devices), especially if this is known to thescheduler.Note : There may be several notes, describing special features of the log. Forexample, \The runtime is until the last node was freed; jobs may have freedsome of their nodes earlier".3 Workload Benchmarks for MetacomputingMost of the resources of a conventional parallel computer are used by batchjobs. Therefore, job schedulers are typically not required to provide computeresources at a speci�c time. However, this has changed with the appearance ofmetacomputers. Many metasystems are based on the concept of a single virtualmachine which can also be used to run large parallel jobs. But this requires theavailability of compute resources on di�erent machines at the same time. In ad-dition network resources may be needed as well. This can only be achieved if theschedulers that control the participating parallel machines accept reservations.Unfortunately, it is not clear how to include resource reservation into presentscheduling algorithms. A simple approach may be an extension of back�lling. Inthe workshop some participants reported promising results with this concept.However, this assumes that the best time instant for such a resource reservationis already known. In any case, the widespread use of a parallel computer as partof a metasystem will certainly a�ect the workload and may therefore requirenew benchmarks.3.1 Scheduling in a Metacomputing EnvironmentIn the metacomputing scenario, there are many schedulers simultaneously actingover the system. Some of these schedulers control the resources they schedule overand thus constitute the access point to such resources (i.e., one has to submita request to the scheduler in order to use the resources it controls). On the

other hand, there are schedulers that do not actually control the resources theyuse. Instead they communicate with multiple lower-level schedulers and decidewhich of them should be used, and which part of the parallel computation eachof them should carry out. Requests to the appropriate low-level schedulers arethen created and submitted on behalf of the user.
Node

scheduler
Machine

scheduler
Machine

scheduler
Meta

scheduler
Application

UserUser

UserUser

scheduler
Machine

scheduler scheduler scheduler scheduler
Node Node NodeFig. 1. Entities involved in scheduling in a metacomputing environment.In order to keep the discussion focused, we suggest the following terminol-ogy and de�nitions (which are summarized graphically in Figure 1). We call thescheduler that controls a certain machine a machine scheduler. this is typicallythe OS scheduler on this machine, especially on desktop machines. On a par-allel supercomputer, this may be the parallel operating environment schedulerrunning on the front end, or a batch queueing system such as NQS or PBSused to access the machine. Parallel machines may also have node schedulers,which control individual nodes, usually according to the directions of the ma-chine scheduler (e.g. to implement gang scheduling). These are internal to theparallel machine implementation and therefore not relevant in a discussion ofexternal workloads. Finally, there are meta-schedulers that interact with severalmachine schedulers in order to �nd usable resources and use them to schedulemetacomputing applications. A special case of meta schedulers are applicationschedulers, that are developed in conjunction with a speci�c application, and use

application-speci�c knowledge to optimize its execution.In order to decide which machine schedulers to use (and what each of themshould do), the meta-scheduler needs to know how long a given request will taketo be processed on a given machine scheduler, under the current system load.That is, in order to make reasonable decisions, the meta-scheduler needs informa-tion on how the machines schedulers are going to deal with its requests. Althoughsome have proposed mechanisms to promote e�ective communication among thedi�erent schedulers in the system [11,8], the machine schedulers currently in usehave not been designed with this need in mind. Therefore, researchers in meta-computing have developed tools that monitor and forecast how long a request isgoing to take to run over a particular set of resources (e.g., [61]).Today there is no such tool for space-sliced parallel supercomputers. Sincejobs run on a dedicated set of nodes in these machines, the information meta-schedulers can expect to obtain regards the queue waiting time. In principle,work on supercomputer queue time prediction [15,57,32] could be used to providethis information. However, the results obtained for queue time predictions arestill relatively inaccurate, making them inadequate for many metacomputingapplications, notably those that perform co-allocation (i.e., that spread acrossmultiplemachine schedulers). This has prompted the metacomputing communityto ask for the enhancement of supercomputer schedulers by the introduction ofreservations [29] or guaranteed computing power [30,52].Reservations consist of aguarantee that a certain amount of resources is going to be available continuouslystarting at a pre-determined future time. Computing power guarantees consistof guarantees that a certain amount of computing power will be available overtime, e.g. 25% of the time on 16 processors. However, there is still the questionof how the meta-scheduler decides what is the right reservation to ask for. Thevery �rst e�orts towards answering this question are now under way [10].3.2 Components of a Benchmark SuiteOne of the challenges in building a benchmark suite is determining the appli-cation space to be covered, and assembling a set of applications which coverthe space (the analog of a basis set in linear algebra). The obstacle to doingthis is that we lack two fundamental pieces of information: what a real metasys-tem workload looks like, and what the appropriate axes of the application spaceshould be. While we have experience running one or two applications simultane-ously, we do not have experience running truly large-scale systems (thousandsto millions of nodes with hundreds to thousands of simultaneous users). We aretherefore required to take an evolutionary approach. We will build a benchmarksuite based on the \tools at hand", and will re�ne it over time as we learn moreabout metasystem computation.A good �rst step will be to use accepted practice and generate micro-benchmarks:individual programs which stress one particular aspect of the system. For exam-ple, we can create a compute-intensive meta-application that can use all the cy-cles from all the machines it can get, a communication-intensivemeta applicationthat requires extensive data transfers between its parts, or a meta-application

that requires a speci�c set of devices from di�erent locations. To test meta-computing schedulers, we can generate workloads consisting of large numbersof applications of a single type, and also mixed-mode workloads composed ofdiverse meta-applications.As a second step, we can add real-world applications which we already run onmetasystems. These applications will be components of an overall metasystemworkload, and can help us to understand the interactions of complex applicationsin a metasystem environment. Using this benchmark suite, we can attempt todetermine how well particular schedulers work, both alone and in competition.3.3 Logging Scheduling Events in a MetacomputerThe two traditional methods of analyzing the performance of scheduling algo-rithms are to simulate synthetic workloads or simulate trace data recorded fromparallel computers. Even though synthetic workloads do not explicitly requiretrace data, a synthetic workload that is useful must approximate actual work-loads and therefore the characteristics of actual workloads must be known.It is very di�cult to collect data to form a workload of the events that occurin a metasystem. The problems are the distributed ownership of the constituentsof the metasystem, the many points of access to it, and its sheer size. First, themetasystem consists of a diverse set of resources owned by dozens of organiza-tions. These organizations are fully autonomous and cannot be forced to recordthe events on their local resources and provide them for a metasystem work-load. Also, collecting events in a large distributed system is not a trivial task.Clock synchronization and causal order techniques can help, but the size andgeographic dispersion of the metasystem makes it a hard problem. Second, eachuser may have their own application scheduler and thus there may be a largenumber of di�erent application schedulers. We cannot force these schedulers torecord events or to provide these events for a metasystem workload. Third, evenif we could record all of these events and form them into a workload, the systemwould probably be too large to simulate conveniently.There are some steps we can take toward recording a metasystem workload.First, events can be recorded on a subset of the metasystem. Small sets of sitestend to be closely aligned with each other and willing to share data with eachother. One problem with this technique is that the resources used by users maynot lie entirely within or without the subset we are recording. If programs useresources from across a sub-system boundary, important application informationwill not be recorded. Second, machine scheduling systems typically already haverecording mechanisms to record events. Third, the current metacomputing soft-ware [27,33] each provide a common interface to machine schedulers and eventscan be recorded in this interface. Such trace data may provide enough data toextract information on which requests are co-allocation requests and are part ofthe same application. Note, however, that recording metacomputing applicationsalone would miss applications submitted directly to the local scheduler.

3.4 Evaluating Matacomputing SchedulingAnother problem we have not discussed is how do we evaluate the performanceof schedulers in metacomputing environments? First we need to recognize thatthere will be many meta schedulers with di�erent goals. Some schedulers will tryto run applications on single parallel computers as soon as possible, some willtry to co-allocate resources, others will try to run many serial applications, andothers will try to have their applications complete as soon as possible by adaptingto resource availability. The metrics used will vary for each meta scheduler andwill include metrics such as wait-time, throughput, and turn-around time.Even though we cannot record a complete metasystem workload, we can usesynthetic data to evaluate scheduling algorithms. We have the advantage thatwe may be able to construct a synthetic workload by expanding on trace datafrom part of the metasystem and we can at least use the currently available tracedata from parallel computers to form synthetic trace data for machine schedulingsystems. In essence, this means that sampling is used to solve size problem, ashas also been done with address traces [40]. More research is required to establishthe methodological basis and limitations of this approach.4 Convergence4.1 A ComparisonScheduling for parallel systems has been studied for a long time, and manyschemes have been proposed and evaluated [20]. Scheduling in metasystems isrelatively new, and the evaluation methodology still needs to be developed. Arelevant question is therefore the degree to which ideas and techniques developedfor parallel systems can be carried over to metacomputing systems.The main di�erence that is usually mentioned in comparisons of parallelsystems and metacomputing is that metacomputing deals with heterogeneity,whereas parallel systems are homogeneous [5]. This is in fact not so. Hetero-geneity comes in three avors: architectural heterogeneity, where nodes have adi�erent architecture, con�guration heterogeneity, where nodes are con�guredwith di�erent amounts of resources (e.g. di�erent amounts of memory, or di�er-ent processors from the same family), and load heterogeneity, which means thatthe available resources are di�erent due to current load conditions. While par-allel systems usually do not contain architectural heterogeneity, they certainlydo encounter con�guration and load heterogeneities. Therefore their schedulersneed to deal with nodes that have di�erent amount of resources available, justas in metacomputing. They need to make decisions based on estimates of whenresources will become available, just as in metacomputing. They need to employmodels of application behavior to estimate how sensitive the application is toheterogeneity, just as in metacomputing. They need to deal with requests forspeci�c resources (such as extra memory, a certain device, or use of a speci�clicense), just as in metacomputing.

The di�erence between parallel systems and metacomputing is therefore nota clear cut absence of certain problems, but their degree of severity. Some ofthe above issues could be ignored by parallel schedulers, at the cost of someine�ciency. This has been a common practice, and is one of the reasons for thelimited utilization observed on many parallel systems. At the present time, theseissues are beginning to be addressed. This is happening concurrently with theemergence of metacomputing, where these issues cannot be ignored, and have tobe handled from the outset.4.2 Integration of Parallel Systems and MetacomputingIn a metasystem environment, there is interaction between scheduling at thelocal level and scheduling at the meta level. An obvious example is that metaschedulers send applications to local schedulers. Another example is that thelocal schedulers can dictate what resources are available to meta applicationsby limiting the number of nodes made available to meta applications or by thescheduling policy used when scheduling meta applications versus locally sub-mitted applications. A third example is that meta applications my ask for si-multaneous access to resources from several local schedulers. This requires localmechanisms such as reservation of resources and these reservations a�ect theperformance of local scheduling algorithms.One major question is how much interaction is there and can we evaluatelocal and meta schedulers independently or using a simple model of the othertype of scheduler? For example, mechanisms for combining queuing schedulingwith reservation in a local scheduler can be evaluated using a synthetic workloadof reservation requests or a recording of reservation requests. This requires littleto no knowledge of meta-scheduling algorithms.Another example is that meta schedulers can be evaluated using simple mod-els of local schedulers if we assume that meta schedulers will not interfere witheach other. A simple model of a local scheduler would just model the wait timeof applications submitted to it, the error of wait time predictions, when reserva-tions can be made, etc. We can assume meta schedulers will not interfere witheach other if there are relatively few metasystem users when compared to thenumber of resources available. If meta schedulers can interfere with each other,we will have to simulate other meta schedulers using recorded or synthetic data.We must take care when designing our metrics. In the past, supercomputercenters have focused on low-level, system-centric metrics such as percent uti-lization. Metaschedulers, on the other hand, are more focused on high-level,user-centric metrics such as turnaround time and cost. We believe that these ap-parently contradictory metrics can be uni�ed through a proper economic model.Utilization metrics are frequently used to justify the past or future purchase ofa machine (\Look, the machine is busy, it must've been worth the money wespent!" or \The machine is swamped! We need to buy a new one!"), but in theend, all they really tell us is that the machine is busy, not how much e�ectivework is being done. With an economic model, the suppliers (supercomputer cen-ters, et al.) can control utilization by altering the cost charged per unit time.

Users can employ personal schedulers to optimize their important criteria. Inthe end, this step has to be taken if metasystems are to become a reality, so weshould make it work for us.4.3 An Evaluation EnvironmentAs noted earlier, it will be nearly impossible to run real benchmark suites acrosslarge-scale metasystems. Therefore, we opt for simulation to evaluate schedulers.A proposed evaluation environment for schedulers is the WARMstones project(WARM =Wide-Area Resource Management, and stones is from the traditionalnaming of \stones" for benchmark suites). This is somewhat of a misnomer,as WARMstones will encompass a simulation and evaluation environment inaddition to a benchmark suite, and part of the WARMstones environment willsimulate and evaluate scheduling for local systems.The primary components of WARMstones include a benchmark suite, animplementation toolkit for schedulers, a canonical representation of metasys-tems, and a simulation engine to evaluate execution of a suite of applications ona metasystem using a particular scheduler. As we have already described, thebenchmark suite will initially comprise combinations of micro-benchmarks andexisting applications. Rather than executing these applications directly, we willrepresent them using annotated graphs, and simulate the execution by interpret-ing the graphs. Legion program graphs [34] are well-suited to this purpose. Userswill also be able to produce representations of their own applications.The implementation toolkit will allow users to implement particular schedul-ing algorithms for simulation and evaluation. Again, we draw on earlier expe-rience, and plan to use a system much like that in the MESSIAHS distributedscheduling system [9].To evaluate a scheduler, we will �rst run the scheduler on the benchmarksuite to produce mappings of programs (graphs) to resources, and then run thesimulator using the resultant mapping and a system con�guration (in canonicalform) as input. The representation will encapsulate both the local infrastructure(workstations, clusters, supercomputers) and the overall structure of the meta-system. The system will also employ multiple levels of detail in the simulation.For example, depending on how much precision is required and how much timeand computational resources are available, we could simulate every packet be-ing transmitted across a network, or we can simply assume a simple model andestimate the communication time.This evaluation system will enable evaluations of multiple scenarios and fac-tors, e.g.:{ I have devised a new scheduling algorithm. I want to evaluate it using thebenchmark suite and a range of \standard" machine representations, so thatI can make \apples-to-apples" comparisons to other schedulers.{ I have an application I want to run, and I know the target system envi-ronment. I can use the evaluation system to help me select among severalcandidate scheduling algorithms.

{ I want to enable run-time selection of \good" scheduling algorithms. I canmake o�-line runs iterating across the benchmark suite, the set of availableschedulers, and a number of \standard" system con�gurations. I can storethese results in a table, and at run time I can look up the closest matcheson application structure and system con�guration to �nd a scheduler whichshould work well for me.{ I have the choice of purchasing machine A or machine B for my system. I cangenerate program graphs for my top �ve applications and test them using animplementation of my current scheduler on system con�gurations includingboth machine choices.5 ConclusionsStandardization and benchmarking are important for progress because withoutthem research is harder to perform and results are harder to compare. Whilethere is always place for improvements and additions, it is also necessary todraw the line and decide to standardize now. It seems that we can immediatelydo so for parallel systems, as enough data is available, at the same time leavingthe door open for changes as more data becomes available in the future. Thede�nitive de�nition and updates will be posted as part of the Parallel WorkloadsArchive [19].Benchmarking for meta-scheduling is harder, because even less data is avail-able, and the environment is more complex. It therefore seems that the bestcurrent course of action is to try and reduce the complexity by partitioning theproblem into sub-problems, and trying to deal with each one individually. Thusapplication schedulers will be evaluated using simpli�ed models of resource avail-ability provided by separate machine schedulers, and machine schedulers will beevaluated using rudimentary models of the requests generated by applicationschedulers. As larger implementation materialize and data is accumulated, inte-grated evaluations may become possible.AcknowledgementsCirne is supported in part by CAPES (Grant DBE2428/95-4), NSF NationalChallenge Nile Project (Grant PHY-9318151), DoD Modernization Program(Contract #9720733-00), and NSF (Grant ASC-9701333). Feitelson is supportedby the Ministry of Science, Israel. Leutenegger is supported by the NSF grantACI-9733658.References1. A. K. Agrawala, J. M. Mohr, and R. M. Bryant, \An approach to the workloadcharacterization problem". Computer 9(6), pp. 18{32, Jun 1976.

2. G. Alverson, S. Kahan, R. Korry, C. McCann, and B. Smith, \Scheduling on theTera MTA". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelsonand L. Rudolph (eds.), pp. 19{44, Springer-Verlag, 1995. Lect. Notes Comput. Sci.vol. 949.3. P. Barford and M. Crovella, \Generating representative web workloads for net-work and server performance evaluation". In SIGMETRICS Conf. Measurement& Modeling of Comput. Syst., pp. 151{160, Jun 1998.4. A. Batat. Master's thesis, Hebrew University, 1999. (in preparation).5. F. Berman, \High-performance schedulers". In The Grid: Blueprint for a NewComputing Infrastructure, I. Foster and C. Kesselman (eds.), pp. 279{309, MorganKaufmann, 1999.6. F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, \Application-levelscheduling on distributed heterogeneous networks". In Supercomputing '96, 1996.7. M. Calzarossa, G. Haring, G. Kotsis, A. Merlo, and D. Tessera, \A hierarchicalapproach to workload characterization for parallel systems". In High-PerformanceComputing and Networking, pp. 102{109, Springer-Verlag, May 1995. Lect. NotesComput. Sci. vol. 919.8. S. J. Chapin, \Distributed scheduling support in the presence of autonomy". InProc. 4th Heterogeneous Computing Workshop, pp. 22{29, Apr 1995. Santa Bar-bara, CA.9. S. J. Chapin and E. H. Spa�ord, \Support for implementing scheduling algorithmsusing MESSIAHS". Scienti�c Programming 3(4), pp. 325{340, Winter 1994.10. W. Cirne and F. Berman, \S3: a metacomputing-friendly parallel scheduler".Manuscript, UCSD, In preparation.11. W. Cirne and K. Marzullo, \The computational co-op: gathering clusters into ametacomputer". In Second Merged Symposium IPPS/SPDP 1999, 13th Inter-national Parallel Processing Symposium & 10th Symposium on Parallel and Dis-tributed Processing, pp. 160{166, April 1999.12. D. E. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A Hard-ware/Software Approach. Morgan Kaufmann, 1999.13. A. B. Downey, \A parallel workload model and its implications for processor allo-cation". In 6th Intl. Symp. High Performance Distributed Comput., Aug 1997.14. A. B. Downey, \Predicting queue times on space-sharing parallel computers". In11th Intl. Parallel Processing Symp., pp. 209{218, Apr 1997.15. A. B. Downey, \Using queue time predictions for processor allocation". In JobScheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),pp. 35{57, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.16. A. B. Downey and D. G. Feitelson, \The elusive goal of workload characterization".Perf. Eval. Rev. 26(4), pp. 14{29, Mar 1999.17. D. G. Feitelson, \Memory usage in the LANL CM-5 workload". In Job SchedulingStrategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 78{94,Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.18. D. G. Feitelson, \Packing schemes for gang scheduling". In Job Scheduling Strate-gies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 89{110,Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.19. D. G. Feitelson, \Parallel workloads archive". URLhttp://www.cs.huji.ac.il/labs/parallel/workload/.20. D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems.Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.

21. D. G. Feitelson and B. Nitzberg, \Job characteristics of a production parallel sci-enti�c workload on the NASA Ames iPSC/860". In Job Scheduling Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337{360, Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.22. D. G. Feitelson and L. Rudolph, \Distributed hierarchical control for parallel pro-cessing". Computer 23(5), pp. 65{77, May 1990.23. D. G. Feitelson and L. Rudolph, \Gang scheduling performance bene�ts for �ne-grain synchronization". J. Parallel & Distributed Comput. 16(4), pp. 306{318,Dec 1992.24. D. G. Feitelson and L. Rudolph, \Metrics and benchmarking for parallel jobscheduling". In Job Scheduling Strategies for Parallel Processing, D. G. Feitel-son and L. Rudolph (eds.), pp. 1{24, Springer-Verlag, 1998. Lect. Notes Comput.Sci. vol. 1459.25. D. G. Feitelson and L. Rudolph, \Toward convergence in job schedulers for parallelsupercomputers". In Job Scheduling Strategies for Parallel Processing, D. G. Feit-elson and L. Rudolph (eds.), pp. 1{26, Springer-Verlag, 1996. Lect. Notes Comput.Sci. vol. 1162.26. D. Ferrari, \Workload characterization and selection in computer performancemeasurement". Computer 5(4), pp. 18{24, Jul/Aug 1972.27. I. Foster and C. Kesselman, \Globus: a metacomputing infrastructure toolkit".International Journal of Supercomputing Applications 11(2), pp. 115{128, 1997.28. I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a New ComputingInfrastructure. Morgan Kaufmann, 1999.29. I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, \A dis-tributed resource management architecture that supports advance reservations andco-allocation". In International Workshop on Quality of Service, 1999.30. H. Franke, P. Pattnaik, and L. Rudolph, \Gang scheduling for highly e�cientdistributed multiprocessor systems". In 6th Symp. Frontiers Massively ParallelComput., pp. 1{9, Oct 1996.31. G. Ghare and S. T. Leutenegger, \The e�ect of correlating quantum allocation andjob size for gang scheduling". In Job Scheduling Strategies for Parallel Processing,D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1999. Lect. Notes Comput.Sci. vol. 1659.32. R. Gibbons, \A historical application pro�ler for use by parallel schedulers". InJob Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph(eds.), pp. 58{77, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.33. A. S. Grimshaw, J. B. Weissman, E. A. West, and E. C. Loyot, Jr., \Metasys-tems: an approach combining parallel processing and heterogeneous distributedcomputing systems". J. Parallel & Distributed Comput. 21(3), pp. 257{270, Jun1994.34. A. S. Grimshaw, W. A. Wulf, and the Legion team, \The Legion vision of a world-wide virtual computer". Comm. ACM 40(1), pp. 39{45, Jan 1997.35. A. Gupta, A. Tucker, and S. Urushibara, \The impact of operating system schedul-ing policies and synchronization methods on the performance of parallel appli-cations". In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.,pp. 120{132, May 1991.36. M. A. Holliday and C. S. Ellis, \Accuracy of memory reference traces of parallelcomputations in trace-driven simulation". IEEE Trans. Parallel & DistributedSyst. 3(1), pp. 97{109, Jan 1992.

37. S. Hotovy, \Workload evolution on the Cornell Theory Center IBM SP2". InJob Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph(eds.), pp. 27{40, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.38. R. Jain, The Art of Computer Systems Performance Analysis. John Wiley & Sons,1991.39. J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, \Model-ing of workload in MPPs". In Job Scheduling Strategies for Parallel Processing,D. G. Feitelson and L. Rudolph (eds.), pp. 95{116, Springer Verlag, 1997. Lect.Notes Comput. Sci. vol. 1291.40. R. E. Kessler, M. D. Hill, and D. A. Wood, \A comparison of trace-samplingtechniques for multi-megabyte caches". IEEE Trans. Comput. 43(6), pp. 664{675, Jun 1994.41. E. J. Koldinger, S. J. Eggers, and H. M. Levy, \On the validity of trace-drivensimulation for multiprocessors". In 18th Ann. Intl. Symp. Computer ArchitectureConf. Proc., pp. 244{253, May 1991.42. J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, \On the design and evalu-ation of job scheduling systems". In Job Scheduling Strategies for Parallel Pro-cessing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, 1999. Lect. NotesComput. Sci. vol. 1659.43. M. Krunz and S. K. Tripathi, \On the characterization of VBR MPEG streams".In SIGMETRICS Conf. Measurement & Modeling of Comput. Syst., pp. 192{202,Jun 1997.44. W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph, \Implications of I/O forgang scheduled workloads". In Job Scheduling Strategies for Parallel Processing,D. G. Feitelson and L. Rudolph (eds.), pp. 215{237, Springer Verlag, 1997. Lect.Notes Comput. Sci. vol. 1291.45. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, \On the self-similarnature of Ethernet tra�c". IEEE/ACM Trans. Networking 2(1), pp. 1{15, Feb1994.46. M. J. Litzkow, M. Livny, and M. W. Mutka, \Condor - a hunter of idle worksta-tions". In 8th Intl. Conf. Distributed Comput. Syst., pp. 104{111, Jun 1988.47. U. Lublin, A Workload Model for Parallel Computer Systems. Master's thesis,Hebrew University, 1999. (In Hebrew).48. N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best, \File-accesscharacteristics of parallel scienti�c workloads". IEEE Trans. Parallel & DistributedSyst. 7(10), pp. 1075{1089, Oct 1996.49. J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. Kupfer, andJ. G. Thompson, \A trace-driven analysis of the UNIX 4.2 BSD �le system".In 10th Symp. Operating Systems Principles, pp. 15{24, Dec 1985.50. E. W. Parsons and K. C. Sevcik, \Coordinated allocation of memory and processorsin multiprocessors". In SIGMETRICS Conf. Measurement & Modeling of Comput.Syst., pp. 57{67, May 1996.51. V. G. J. Peris, M. S. Squillante, and V. K. Naik, \Analysis of the impact of memoryin distributed parallel processing systems". In SIGMETRICS Conf. Measurement& Modeling of Comput. Syst., pp. 5{18, May 1994.52. A. Polze, M. Werner, and G. Fohler, \Predictable network computing". In 17thIntl. Conf. Distributed Comput. Syst., pp. 423{431, May 1997.53. E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante, \The impact of I/O onprogram behavior and parallel scheduling". In SIGMETRICS Conf. Measurement& Modeling of Comput. Syst., pp. 56{65, Jun 1998.

54. U. Schwiegelshohn and R. Yahyapour, \Resource allocation and scheduling inmetasystems". In Proc. Distributed Computing & Metacomputing Workshop atHPCN Europe, P. Sloot, M. Bibak, A. Hoekstra, and B. Hertzberger (eds.), pp. 851{860, Springer-Verlag, Apr 1999. Lect. Notes in Comput. Sci. vol. 1593.55. K. C. Sevcik, \Application scheduling and processor allocation in multipro-grammed parallel processing systems". Performance Evaluation 19(2-3), pp. 107{140, Mar 1994.56. R. L. Sites and A. Agarwal, \Multiprocessor cache analysis using ATUM". In 15thAnn. Intl. Symp. Computer Architecture Conf. Proc., pp. 186{195, 1988.57. W. Smith, V. Taylor, and I. Foster, \Using run-time predictions to estimate queuewait times and improve scheduler performance". In Job Scheduling Strategies forParallel Processing, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1999.Lect. Notes Comput. Sci. vol. 1659.58. D. Talby, D. G. Feitelson, and A. Raveh, \Comparing logs and models of parallelworkloads using the co-plot method". In Job Scheduling Strategies for ParallelProcessing, D. G. Feitelson and L. Rudolph (eds.), Springer Verlag, 1999. Lect.Notes Comput. Sci.59. D. Thi�ebaut, J. L. Wolf, and H. S. Stone, \Synthetic traces for trace-driven simu-lation of cache memories". IEEE Trans. Comput. 41(4), pp. 388{410, Apr 1992.(Corrected in IEEE Trans. Comput. 42(5) p. 635, May 1993).60. K. Windisch, V. Lo, R. Moore, D. Feitelson, and B. Nitzberg, \A comparison ofworkload traces from two production parallel machines". In 6th Symp. FrontiersMassively Parallel Comput., pp. 319{326, Oct 1996.61. R. Wolski, N. T. Spring, and J. Hayes, \The network weather service: a distributedresource performance forecasting service for metacomputing". Journal of FutureGeneration Computing Systems, 1999.62. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, \The SPLASH-2 programs: characterization and methodological considerations". In 22nd Ann.Intl. Symp. Computer Architecture Conf. Proc., pp. 24{36, Jun 1995.

