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Abstract. We present a multivariate analysis technique called Co-plot that is
especially suitable for samples with many variables and relatively few
observations, as the data about workloads often is. Observations and variables
are analyzed simultaneously. We find three stable clusters of highly correlated
variables, but that the workloads themselves, on the other hand, are rather
different from one another. Synthetic models for workload generation are also
analyzed, and found to be reasonable; however, each model usually covers well
one machine type. This leads us to conclude that a parameterized model of
parallel workloads should be built, and we describe guidelines for such a model.
Another feature that the models lack is self-similarity: We demonstrate that
production logs exhibit this phenomenon in several attributes of the workload,
and in contrast that the none of the synthetic models do.

1. Introduction

A notion of the workload a system will face is necessary in order to evaluate
schedulers, processor allocators, or make most other design decisions. Two kinds of
workloads are typically used: A trace of a real production workload, or the output of a
synthetic statistical model.

Production logs have the advantage of being more realistic, and abstain as much as
possible from making assumptions about the modeled system. At least three
assumptions, however, are always there. First, we believe that we can draw
conclusions from past workloads and learn about future ones. Second, we believe that
we can infer from one installation — one scheduler, users set, and hardware
configuration — about other ones. And third, we believe that the log contains no errors.

In order to use a production log as a model, we must answer yes to all three
questions. In reality, the third issue — correctness of the log — is almost always
questioned by mysterious jobs that exceeded the system's limits, undocumented
downtime, dedication of the system to certain users, and other 'minor' undocumented
administrative changes which distort the users' true wishes [6,15]. The first two
assumptions — similarity between configurations and along time — will be shown in
this paper to be generally unjustifiable as well.



Since using production traces suffers from apparent severe problems, researchers
have turned to the other alternative, and have offered several synthetic models of
parallel workloads [4,5,7,14,20]. The idea of basing models on measurements is not
new [1,11], but practical work in the area was very little [3] until 1996. Models have
advantages over production logs by putting all the assumptions "on the table", and by
allowing their user to easily vary the model's parameters in order, for example, to
generate a workload for a machine with a given number of processors.

The problem with models is, of course, the need to correctly build them. This paper
compares ten production workloads with the generated output of five synthetic
models, and maps each model to the production environment to which it is closest.
But we also go further, and try to identify desired properties of parallel workload
models for the models yet to come: Which variables should be modeled, and which
should not? What can we tell about the distribution of these variables? What can we
tell about the correlation of these variables and the unmodeled ones? Should we create
a single model, or a customizable one? And how should the model be altered to match
a needed number of processors, the load, and so forth?

In order to reach the answers, we use a new statistical method called Co-Plot,
which is tailored for situations in which few observations but many variables about
them are available. Section 2 presents Co-plot, and section 3 presents the data set used
for the analysis. Sections 4, 5 and 6 analyze the production logs from several angles,
which allows for a comparison with synthetic models available today in section 7, and
a discussion about the implications in section 8. Section 9 deals with self-similarity,
which is shown to differentiate between the production logs and the synthetic models.

2. Co-Plot

Classical multivariate analysis methods, such as cluster analysis and principal
component analysis, analyze variables and observations separately. Co-Plot is a new
technique which analyzes them simultaneously. This would mean, for example, that
we'll be able to see, in the same analysis, clusters of observations (workloads in our
case), clusters of variables, the relations between clusters (correlation between
variables, for example) and a characterization of observations (as being above average
in certain variables and below in others). The technique has been used before mostly
in the area of economics [18,23].

Co-plot is especially suitable for tasks in which there are few observations and
relatively many variables — as opposed to regression based techniques, in which the
number of observations must be an order of magnitude larger than the number of
variables. This is crucial in our case, in which there are few workloads (ten
production ones and five synthetic ones), and just as many variables.

Co-plot's output is a visual display of its findings. It is based on two graphs that are
superimposed on each other. The first graph maps the » observations into a
two-dimensional space. This mapping, if it succeeds, conserves distance: observations
that are close to each other in p dimensions are also close in two dimensions, and vice
versa. The seconds graph consists of p arrows, representing the variables, and shows
the direction of the gradient along each one.



Given an input matrix Ynxp of p variable values for each of »n observations (see for
example Table 1), the analysis consists of four stages. The first is to normalize the
variables, which is needed in order to be able to relate them to each other, although
each has different units and scale. This is done in the usual way. If Y; is the j’th
variable’s mean, and D; is its standard deviation, then Y, is normalized into Z; by:

Zi= (Yi—Yj)/ D; )
In the second stage, we choose a measure of dissimilarity S; > 0 between each pair
of observations (rows of Znxp). A symmetric nxn matrix is produced from all the

different pairs of observations. To measure Sy, we use city-block distance — the sum
of absolute deviations — as a measure of dissimilarity:

(€))

Sik = Zp: |Zij — 7
p

In stage three, the matrix Sy is mapped by means of a multidimensional scaling
(MDS) method. Such an algorithm maps the matrix S;, into an Euclidean space, of
two dimensions in our case, such that 'close' observations (with a small dissimilarity
between them) are close to each other in the map, while 'distant' ones are also distant
in the map. Formally the requirement is as follows. Consider two observations, i and
k, that are mapped a distance of dj; from each other. We want this to reflect the
dissimilarity S;.. But this is actually a relative measure, and the important thing is that:

Sik < Spm U dy < dj

The MDS we use is Guttman's Smallest Space Analysis, or SSA [12]. SSA uses the
coefficient of alienation ® as a measure of goodness-of-fit. The smaller it is, the better
the output, and values below 0.15 are considered good. The intuition for ® comes
directly from the above MDS requirement: A success of fulfilling it implies that the
product of the differences between the dissimilarity measures and the map distances
are positive. In a normalized form, we define:

Z (Sik - Slm )(dl-k - dlm )

U= ik,l,m 3)
Z|Sik - Slm ||dik - dlm|

ik,l.m

Thus p can attain the maximal value of 1. This is then used to define ® as follows:

4
N )
The details of the SSA algorithm are beyond the scope of this paper, and presented
in [12]. It is a widely used method in social sciences, and several examples along with
intuitive descriptions can be found in [21].
In the fourth stage of the Co-plot method, p arrows are drawn on the Euclidean
space obtained in the precious stage. Each variable j is represented by an arrow j,



emerging from the center of gravity of the » points. The direction of each arrow is
chosen so that the correlation between the actual values of the variable j and their
projections on the arrow is maximal (the arrows' length is undefined). Therefore,
observations with a high value in this variable should be in the part of the space the
arrow points to, while observations with a low value in this variable will be at the
other side of the map.

Moreover, arrows associated with highly correlated variables will point in about
the same direction, and vice versa. As a result, the cosines of angles between these
arrows are approximately proportional to the correlations between their associated
variables.

The goodness-of-fit of the Co-plot technique is assessed by two types of measures,
one for stage 3 and another for stage 4. In stage 3, a single measure — the coefficient
of alienation in our case — is used to determine the quality of the two-dimensional
map. In stage 4, p separate measures — one for each variable — are given. These are the
magnitudes of the p maximal correlations, that measure the goodness of fit of the p
regressions. These correlations help in deciding whether to eliminate or add variables:
Variables that do not fit into the graphical display, namely, have low correlations,
should in our opinion be removed. Therefore, there is no need to fit all the 27 subsets
of variables as in other methods that use a general coefficient of goodness-of-fit. The
higher the variable's correlation, the better the variable's arrow represents the common
direction and order of the projections of the » points along the axis it is on.

3. The Data Set

Over several years we have obtained both a set of production workloads and the
source codes to generate a number of synthetic workloads. As part of the current
study, all workloads were translated to the standard workload format, and are freely
available to all researchers in the field from the parallel workloads archive at
URL http://www.cs.huji.ac.il/labs/parallel/workload. We would also like to encourage
others to produce logs and source codes whose output is in this format, in order to
create a growing library of quickly accessible and reliable data, that would ease
validating a research on many workloads at once.

Traces of real production workloads were available from six machines: The NASA
Ames iPSC/860 [9,24], the San Diego Supercomputing Center Paragon [24], the
Cornell Theory Center SP2 [13], The Swedish Institute of Technology SP2, the Los
Alamos National Lab CM-5, and the Lawrence Livermore National Lab Cray T3D.
The Los Alamos and San Diego logs are displayed as three observations: The entire
log, the interactive jobs only, and the batch jobs only. This gives a total of ten
observations of production workloads. The characteristics of these workloads are
given in table 1.

As Co-plot encourages it, the logs were tested for as many variables (attributes of
the workloads) as possible. The following variables were measured for each
workload:

1. The number of processors in the system.



2.Scheduler Flexibility. There were essentially three schedulers in this sample: the
NQS batch queuing system, the EASY scheduler which uses backfilling, and gang
schedulers. We ranked them in this ascending order, from 1 to 3.

3.Processor Allocator Flexibity. There were again three ranks, in this order of
increasing flexibility: Allocation of partitions with power-of-2 nodes, limited
allocation (meshes, etc.), and unlimited allocation (where any arbitrary subset of
the nodes can be used).

4. Runtime Load, or the percent of available node seconds that were actually
allocated to jobs. This is calculated as the sum of runtime multiplied by number of
processors over all jobs, divided by the product of the number of processors in the
machine multiplied by the log duration.

5.CPU Load, which is the percent of actual CPU work out of the total available CPU
time during the log’s lifetime. CPU times are the part of runtime in which the job
actually processed; this however was missing from two workloads, and its
definition is vague in some of the others, so focus was given to the runtime load.

6.Normalized number of executables. As some logs are much longer than others, it
is not surprising that more executables are represented in them. We therefore
normalize by dividing the number of observed executables by the total number of
jobs in the log. A lower number indicated more repeated requests to run the same
executable.

7.Normalized number of users. As above.

8. Percent of successfully completed jobs.

9. Median and 90% interval of the distribution of runtimes of jobs.

10.Median and 90% interval of the distribution of degree of parallelism, i.e. the
number of processors used by each job.

11.Median and 90% interval of the distribution of normalized degrees of
parallelism. This gives the number of processors that would be used out of a
128-processor machine. It is calculated as the percent of available processors that
jobs used, multiplied by 128. It enables the decoupling of conclusions about the
effect of machine size and the effect of parallelism.

12.Median and 90% interval of the distribution of total CPU work (over all
processors of the job).

13.Median and 90% interval of the distribution of inter-arrival times.

As shown in [6], the average and standard deviation of these fields are extremely
unstable due to the very long tail of the involved distributions. Removing the 0.1%
'taily’ jobs from a workload, for example, could change the average by 5% and the CV
by 40%. These findings follow similar ones in [16], and mean that the very big jobs
must never be removed from workloads as outliers. On the other hand, most errors in
traces are often in this area of the distribution (what do you do with a job that lasted
more than the system allows?). Therefore, it is preferable to use order moments, such
as the median and intervals. In this case, the 90% interval — difference between the
95% and 5% percentiles — was used; the 50% interval was also tested, and gave
virtually the same results.

Using normalized degree of parallelism is preferable whenever possible, since it
enables the decoupling of conclusions about the effect of machine size and the effect
of parallelism. In our case we treat jobs as if they requested from a 128-node machine.



CTC | KTH | LANL [ LANL | LANL | LLNL [ NASA | SDSC | SDSC | SDSC
Variable inter. [ batch inter. | batch
Machine processors |MP | 512 100 1024 | 1024 | 1024 256 128 416 416 416
Scheduler flexibility |SF 2 2 3 3 3 3 1 1 1 1
Allocation flexibility |AL 3 3 1 1 1 2 1 2 2 2
Runtime load RL | 0.56 0.69 0.66 0.02 0.65 0.62 N/A 07 0.01 0.69
CPU load CL| 047 0.69 0.42 0 042 N/A 047 0.68 0.01 0.67
Norm. Executables |E N/A N/A | 0.0008 | 0.0019 | 0.0012 | 0.0329 | 0.0352 | N/A N/A N/A
Norm. Users U |0.0086 | 0.0075 | 0.0019 | 0.0049 | 0.0032 | 0.0072 | 0.0016 | 0.0012 | 0.0021 | 0.0029
% Completed jobs |C 0.79 0.72 0.91 0.99 0.85 N/A N/A 0.99 1.00 0.97
Runtime median Rm| 960 848 68 57 | 37600 | 36 19 45 12 1812
Runtime interval Ri | 57216 | 47875 | 9064 267 | 11136 | 9143 | 1168 | 28498 | 484 | 39290
Processors median (Pm 2 3 64 32 64.00 8 1 5 4 8
Processors interval |Pi 37 31 224 96 | 480.00 | 62 31 63 31 63
Norm. proc. Median [Nm| 0.76 3.84 8.00 4.00 8.00 4.00 1.00 1.54 1.23 2.46
Norm. proc. Interval [Ni | 1410 | 39.68 | 28.00 | 12.00 | 60.00 | 31.00 | 31.00 | 19.38 | 9.54 | 19.38
CPU work median  |Cm| 2181 | 2880 256 128 2944 384 19 209 86 9472
CPU work interval | Ci | 326057 | 355140 | 559104 | 2560 (1582080455582 | 19774 | 918544 | 3960 (1754212
Inter-arrival median |Im 64 192 162 16 169 119 56 170 68 208
Inter-arrival interval |li 1472 | 3806 | 1968 276 2064 | 1660 443 4265 | 2076 | 5884

Table 1. Data of production workloads

Since not all workload traces had all the required fields, missing values were
approximated. These are all the assumptions that were made:
1. If one of CPU load and runtime load were missing, the other of the two fields was

used. This was done in the NASA and LLNL workloads.
2. If the submit time of jobs was not known but the time the job started running (after

possibly being in a queue) was, the inter-arrival time was based on this start time.

This was necessary in NASA, LLNL, and the interactive workloads.
3. In the NASA log, total CPU work wasn't given and was approximated by the

product of runtime and degree of parallelism. In the LLNL log, the opposite was

done: The runtime was approximated by the total work divided by parallelism.

The synthetic models usually only offer values for the inter-arrival times, runtimes
and degree of parallelism. They were only compared to the production workloads in

these fields, of course, and the remaining variables were discarded.

4. Production Workloads: Variables

Running Co-plot on all variables resulted in some of them having low correlations,
and they were removed. These variables were the number of processors in the
machine, the scheduler flexibility, the normalized number of users, the normalized
number of executables, and the percent of completed jobs. This basically means that




these attributes of a workload neither support nor refute the information derived from
other variables. They are either irrelevant or belong to a different explanation
universe.

Two other variables, the CPU load and the processor allocation flexibility, were
also removed from the final map (Figure 1), but will still be analyzed. The
correlations of these variables was slightly lower than that of the others, therefore
removing them improved the output (in the goodness of fit sense), but we can still
deduce about them from their would-be direction if they weren't removed. To
represent the degree of parallelism, the normalized variant was use, although the
un-normalized one gives almost exactly the same result. As discussed in the previous
section, in such a case the normalized variant is preferable. The map in Figure | has a
coefficient of alienation of 0.07 and an average of variable correlations of 0.88 with a
minimum of 0.83. These are generally considered as excellent goodness of fit values.
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Fig. 1. Co-plot output of all production workloads
See Table 1 for variable signs

First, it is clear that there are four clusters of highly correlated variables.
Clockwise:
1. The median and interval of the normalized degree of parallelism.
2. The median of inter-arrival times, interval of total CPU work, and runtime load.



3. The median of total CPU work and the interval of inter-arrival times. The CPU
load (uncharted here) also belongs to this cluster.
4. The median and interval of job runtimes. The processor allocation flexibility

(uncharted here) also belongs to this cluster.

It should be noted, however, that in some of the other runs (with more variables
included, or some workloads excluded), the third cluster disappears: The CPU work
median (Cm) joins the fourth cluster, and the inter-arrival times interval (Ii) joins the
second.

The map tells a lot about the types of distributions that should be used for
modeling workloads. Both runtimes and the degree of parallelism exhibit a high
positive correlation between the median and interval of the distribution. This means
that systems that allow higher runtimes and parallelism also exhibit a more varied
stream of requests. This probably occurs because common administrative tools, such
as limiting the maximal runtime, affect both the median and interval of the observed
runtime in the same way. We suspect these phenomena to be linked to administrative
constraints in general, but this could not be quantitatively checked.

Inter-arrival times and total CPU work, however, require a different treatment.
Although their median and interval are positively correlated, the correlation is far
from being full. This result repeats for other analyses for these two variables. Since
none of the synthetic models published so far model runtime and actual CPU time
separately, the focus has been put on runtimes.

The fact that the processor allocation flexibility measure and the median and
interval of runtimes fall in the same cluster hints that systems which are more flexible
in their allocation attract, on average, longer jobs. Note that the scheduler, in contrast,
was not found to have a significant effect on the other variables. This is a first move
towards a highly needed research about the changes in users' requests due to their
system's constraints — users learn the system over time, and change their behavior
accordingly. When looking at production workloads, we only see the distorted
picture, not the "true workload" by which we wish to design future systems [15].

Apart from defining variable clusters, we can also infer about the correlation
between clusters. The first cluster, for example, is positively correlated with the
second cluster, has a small negative correlation with the third, and a strong negative
one with the fourth. The second cluster is positively correlated with the third cluster,
but not correlated with the fourth one. The third and fourth clusters are positively
correlated.

One should be careful not to misinterpret these findings — note that they relate to
whole workloads, not jobs. For example, the negative correlation between runtime
(fourth cluster) and degree of parallelism (first cluster) means that systems with high
average parallelism exhibit lower average runtimes, not that jobs that use many
processors are shorter (in fact, the opposite of this was demonstrated in [6,10]). The
reason for this may, for example, be that systems with more processors tend to
enforce tighter runtime limits on jobs. This is merely a hypothesis, triggered by the
observation that systems with fewer processors often try to compensate for this by
offering more flexible policies.

Another significant finding from the correlations between variable clusters is that
the processor allocation flexibility of a system is positively correlated to the median
of the total CPU work done in it, and is uncorrelated to its runtime load. Or, in short,



systems whose allocation schemes are more flexible allow bigger jobs to run without
affecting the average load. In contrast, neither the scheduler nor the number of
processors in the system seems to have such an effect.

There is more data to be studied from the correlations between the second, third
and fourth cluster, but since as mentioned before the third cluster sometimes melts
into the other two, any such conclusions are dangerous. Only stable findings are
reported.

5. Production Workloads: Observations

Two workloads in Figure 1 seem to be outliers, which 'stretch' the map in order to
accommodate them — the batch jobs of LANL and SDSC, marked 'LANLb' and
'SDSCDb' respectively. The LANL batch jobs are way above average in the normalized
number of used processors, and also exhibit high inter-arrival times combined with
low runtimes and runtime intervals. The high degree of parallelism is probably a
result of the fact that the system had static partitions, all powers of two, of which the
smallest one has 32 processors. The SDSC workload has very long runtime and total
CPU work averages, and an extreme interval of inter-arrival times as well. The SDSC
is also relatively inflexible in its processor allocation.

In order to understand the relations between the other workloads, and get another
picture of the variables arena, another analysis is presented here that includes the
same workloads as those used in figure 1, but without the two batch workloads. The
variables are also the same, except the degree of parallelism which is now not
normalized — the normalized variables had too low correlations. The Figure 2 map has
a coefficient of alienation of 0.01 and an average of variable correlations of 0.88.

Comparing the variable clusters here to those of Figure 1 shows that what was
there the third cluster indeed broke; the interval of inter-arrival times variable joined
the second cluster, and the median of CPU work variable joined the fourth. All our
conclusions remain the same.

At the lower left part of the map are the two interactive workloads, again of LANL
and SDSC respectively. Along with the NASA Ames log!, these three workloads
seem to form the only natural observations cluster in this map: All other observations
are evenly spread out across the map. This means that apart from a grouping of the
interactive workloads — based on two observations only — the workloads exhibited by
different systems are very different from one another.

Since Co-plot analyzes observations and variables together, it is not only possible
to see clusters of observations, but also to identify their nature. For example, the
interactive jobs are characterized by being way below average on all variables: They
have a shorter average inter-arrival time, and also shorter runtimes and degrees of
parallelism. Such facts are deduced in Co-plot from the arrows: The projection of a
point (workload, in our case) on a variable's arrow should be proportional to its

T A caveat is that 57% of the jobs in the NASA log were small jobs used to periodically check
the system availability, which obviously causes a strong bias towards low varuable values.



distance from the variable's average, where above average is in the direction of the
arrow and vice versa.
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Fig. 2. Production workloads of all except the batch workloads

In the same manner, the CTC workload (in the lower right side of the map) has
very long runtimes but little parallelism, while the LANL workload (upper left) has a
very high degree of parallelism, but below average runtimes. The LLNL workload
seems to be the average — it is very close to the center of gravity in almost all
variables.

Note that although we can see that the workloads are ‘far’ from each other, this
notion of distance is always relative to the other observations in this analysis. This
happens because all variables must be normalized — otherwise we can’t compare
relations between them — and means that we should beware if attaching ‘real’ distance
to Co-plot’s output.

6. Production Workloads Over Time

Logs of production workloads from previous years are typically used as a model of
the pattern of requests for next year. But since users learn the system as time passes
and adjust their behavior accordingly, administrators fine-tune the system
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continuously, and the dominant projects on machines change every few months, it is
unclear whether this is justified.

Co-plot allows us to test just that, by mapping several consecutive periods of
logged work on the same machine, and mapping them together with the other
workloads. If past workloads were indeed good indications of the near future, we
would expect consecutive workloads on the same machine to be mapped close to each
other. Only two workloads in our sample were long enough to test this — the LANL
and the SDSC logs were each divided to four periods of six months each. The data for
these partial logs is given in Table 2.

LANL SDSC

10/94-3/95 | 4/95-9/95 | 10/95-3/96 | 4/96-9/96 | 1/95-6/95 | 7/95-12/95 | 1/96-6/96 | 7/96-12/96
Runtime Load 0.76 0.83 0.24 0.73 0.66 0.67 0.76 0.65
CPU Load 0.43 0.52 0.16 0.48 0.65 0.66 0.72 0.63
Executables per Job 0.0016 | 0.0014 | 0.0034 | 0.0016 N/A N/A N/A N/A
Users per Job 0.0038 | 0.0038 | 0.0076 | 0.0042 | 0.0021 | 0.0019 | 0.0023 | 0.0023
% of Completed Jobs 0.93 0.93 0.82 0.90 0.99 0.99 0.98 0.97
Runtime Median 62 65 643 79 31 21 73 527
Runtime Interval 7003 7383 11039 | 11085 | 29067 | 20270 | 30955 | 25656
Processors Median 64 32 64 128 4 4 4 8
Processors Interval 224 224 480 480 63 63 63 63
Norm. Procs. Median 8 4 8 16 1.23 1.23 1.23 2.46
Norm. Procs. Interval 28 28 60 60 19.38 19.38 19.38 19.38
CPU Work Median 128 256 7648 384 169 119 295 1645
CPU Work Interval 300320 | 394112 |1976832 (1417216 | 504254 | 612183 (1235174 (1141531
Inter-Arrival Median 159 167 239 89 180 39 92 206
Inter-Arrival Interval 1948 1765 2448 1834 2422 5836 4516 5040

Table 2: Data of production workloads divides to six months

Figure 3 includes the same workloads as Figure 1, except the addition of the eight
new workloads. The four parts of the LANL workload are marked L1 through L4, and
the four parts of the SDSC workload are marked S1 through S4. The full, interactive
and batch workloads of both sites were also kept. Two variables were removed
because of low correlation: The runtime load, and the interval of the inter-arrival
times. This does not mean that they shouldn't be used in general — it may very well be
the case that they do not fit well only with the LANL or SDSC logs, which are
together 14 out of the 18 observations in Figure 3.

It is clear that the SDSC jobs are rather clustered, apart possibly from the last
workload S4, which has slightly higher runtimes, degrees of parallelism, and
inter-arrival times. The original full SDSC workload is some kind of average of its
four parts, as was expected. On the other hand, the LANL workloads have a quiet first
year (workloads L1 and L2, close to the original full LANL workload), but the second
year is wildly different with L3 and L4, which are definite outliers.

11



sDSCh

CTe

O KTH

LAMLE

L4

Fig. 3. Production workloads change over time

A clarification with Curt Canada of LANL indeed revealed that at the end of 1995
there was a significant change of usage of the CM-5. It approached the end of its life
for grand challenge jobs, and only a couple of groups remained on the machine for
special projects that were trying to finish. Fewer jobs of fewer users, mostly very long
ones, were run in 1996.

Co-Plot could be used in this manner to test any new log, by dividing it into several
parts and mapping it with all the other workloads. This should tell whether the log is
homogeneous, and whether it contains time intervals in which work on the logged
machine had unusual patterns.

7.  Synthetic Workloads

Having taken a serious look at the raw data from production logs, we now turn to
inspect what research has done so far, namely the synthetic models that are currently
available. To make a long story short, the models are quite good — none is an
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outrageous outlier — but each one is more representative of one or two production logs
than of the others. Usually every researcher based his or her model on one log, and
the model reflects this.

The five synthetic models available are the following. The first model was
proposed by Feitelson in '96 [7]. This model is based on observations from several
workload logs. Its main features are the hand-tailored distribution of job sizes (i.e. the
number of processors used by each job), which emphasizes small jobs and powers of
two, the correlation between job size and running time, and the repetition of job
executions. In principle such repetitions should reflect feedback from the scheduler,
as jobs are assumed to be re-submitted only after the previous execution terminates.
Here we deal with a pure model, so we assume they run immediately and are
resubmitted after their running time. The second model is a modification from '97 [8].

The model by Downey is based mainly on an analysis of the SDSC log [4,5]. It
uses a novel log-uniform distribution to model service times (that is, the total
computation time across all nodes) and average parallelism. This is supposed to be
used to derive the actual runtime based on the number of processors allocated by the
scheduler. Again, as we are dealing with a pure model here, we instead use the
average parallelism as the number of processors, and divide the service time by this
number to derive the running time.

Jann's model is based on a careful analysis of the CTC workload [14]. Both the
running time and inter-arrival times are modeled using hyper Erlang distributions of
common order, where the parameters for each range of number of processors are
derived by matching the first 3 moments of the distribution.

The last model, by Lublin [20], is based on a statistical analysis of 4 logs. It
includes a model of the number of processors used which emphasizes powers of two,
a model of running times that correlates with the number of processors used by each
job, and a model of inter-arrival times. While superficially similar to the Feitelson
models, Lublin based the choice of distributions and their parameters on better
statistical procedures in order to achieve a better representation of the original data.

Figure 4 is the Co-Plot output of all the production workloads and the five
synthetic models that were tested. Since all models only model the inter-arrival times,
runtimes, and degrees of parallelism, then the median and interval of each of these
along with the implied used CPU times (runtimes multiplied by the degree of
parallelism) were the only eight variables that could be used. All eight showed high
correlations to the map; the average correlation is 0.89 and the coefficient of
alienation is 0.06.

First, Uri Lublin's model places itself as the ultimate average. This result repeated
in analyses under different variables and observations. So this model represents "the
workload on the street", and when used to compare schedulers, for example, we can
be sure that results will not be distorted by one out-of-line feature of the workload (of
the variables analyzed here). However, most of the production workloads do have
such out-of-line features, and are far from the center of gravity. Only the LLNL
workload is close enough as to accept the model as a match.

Downey's model, as well as the two versions of Feitelson's model, match well the
interactive workloads and the NASA one. This is probably due to the fact that the
NASA log was the first to be published and seriously analyzed, and had a major effect
on the creation of the earlier (e.g. 1997) models. In order to try to differentiate the
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three models, the batch workloads, which were the outliers removed in Figure 2 as
well, were removed and the analysis was re-run. The result was essentially the same,
with a "zoom in" on the lower left part of Figure 4. Feitelson's 1997 model remained
the closest to the interactive and NASA workloads, while his 1996 model was closer
to the center of gravity and Downey's model was further out from it.
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Fig. 4. Comparison of production and synthetic workloads

Jann's model was designed specifically to match the CTC workload. It is indeed the
closest to it, but is also close to the KTH workload. The CTC and KTH offer very
similar environments: Both are IBM SP2 machines, with slightly different versions of
the RS/6000 processor, using LoadLeveler with EASY for scheduling, and offering a
totally flexible processor allocation scheme. With a limited warranty — since only two
observations support this — it seems that Jann's model is appropriate for this kind of
environment.

The LANL and SDSC workloads have no model close to them, and the batch
workloads of these two systems are still lonely outliers as well. This means that no
workload model as it stands today models well the heavier batch jobs that these large
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machines see. The focus seems to be the interactive jobs, which, according to Table 1,
provide only a fraction of the total load a parallel system has to handle.

A quick look at the variable arrows of Figure 4 is also worthy. It is almost the same
as that of Figure 1, which is good news: The synthetic workload models do not distort
the 'real world' picture by assuming wildly incorrect distributions or correlations.

8. Implications for Modeling

From what we have seen so far, three major conclusions concerning the correct
modeling of parallel workloads can be stated:
1.Model the runtime and degree of parallelism by a distribution that has an almost

full correlation between the median and interval. A high positive such correlation

also exists for the inter-arrival time.

2.A single model cannot truly represent all systems. It is better to parametrize by
three variables: The medians of total CPU work, degree of parallelism, and
inter-arrival time.

3.In order to alter the average load of a modeled workload, do not use any of the
common techniques of multiplying the inter-arrival time, runtimes, or parallelism
by a factor, or changing the lambda of an exponential distribution.

The first statement is supported by the map of Figure 1, which says much about the
types of distributions that should be used for modeling workloads. Both runtimes and
the degree of parallelism are characterized by the fact that the median and interval of
the distribution are highly correlated. An analogous feature is found in the exponential
distribution, in which the mean and variance are equal. Although the exponential
distribution lacks the very long tail property workload modeling requires, variants
such as two- and three-stage hyper-exponential distributions have been used in several
recent models [7,20], which seems to be rationalized here.

Using an exponential distribution for the inter-arrival time is also popular, but it
seems that although the correlation between the median and interval of it is positive, it
is not full and a more sophisticated model is required.

The second statement is clear from Figure 2. Apart from the NASA workload
being similar to the interactive ones, all the workloads are scattered across the space
that they define. While Lublin’s model represents the average, it does not closely
represent any single model. But there are good news as well: Beyond telling us that a
generic model must be a parameterized one, the Co-plot method also helps us find
upon which variables we should parameterize. We should take one representative
from each variables cluster, such that the representatives conserve the previously
known map, and that their correlation is highest.

In our case, the best results (with a coefficient of alienation of 0.02 and an average
correlation of 0.94) were achieved by using the processor allocation flexibility and the
medians of the (un-normalized) degree of parallelism and the inter-arrival time
(Figure 4). The processor allocation flexibility could be replaced by the median of
total CPU work, to give a slightly lower but still excellent goodness of fit.

So, a general model of parallel workloads will accept these three parameters as
input. It would use the highly positive correlations with other variables to assume
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their distributions. But what should we give it? The processor allocation flexibility is
usually known, since it is one of the published characteristics of the modeled
computer. Therefore it seems like the best estimator for the level of total CPU work in
the modeled system. As for the two other medians, a way is needed to determine
whether it would be above, below or around average. While we can offer little
guidance on how that could be done, apart from using past knowledge as section 6
suggests, we can tell what the averages are — the LLNL log seems to represent it, and
Lublin's model looks like an even more accurate choice (Figure 4).

The third statement we make deals with the preferable way to alter a workload's
load. There are basically three ways to raise the load: Lowering the inter-arrival time,
raising the runtimes, and raising the degree of parallelism. The most common [19, 22]
technique is to expand or condense the distribution of one of these three fields by a
constant factor. Note that by doing so the median and interval (any interval) is also
multiplied by the same factor.

Our choice, of which field to alter, should be derived from the correlations between
the runtime load and the three variables that are candidates to change it. We would
choose lowering inter-arrival times if it were negatively correlated with load, and
raising runtimes or parallelism if they were positively correlated with it. By doing so,
we minimize the side effects of raising the load on other features of the workload.

Using this logical criterion, we have mostly bad news. First, from Figure 1 it is
clear that systems with a higher average load have a higher inter-arrival time median,
not a lower one. Second, the runtimes of job are not correlated to the load. And third —
this is the only optimistic part — the degree of parallelism is indeed positively
correlated with load, but the correlation is far from full.

This means that a correct way to raise a system's load would end up with higher
inter-arrival times, about the same runtimes, and somewhat more parallelism. None of
the three simplistic ways to alter the load satisfy these conditions — they all contradict
it. Correctly varying a given workload model's load is not as simple as it looks; it
seems to require changes to the distributions of the inter-arrivals, runtimes, and
parallelism that the variables we chose for our analysis do not expose.

Such findings, in this case about the right method to change a workload's average
load, call for a generalization to a methodological rule. Since most modeled variables
are correlated to each other, any assumption of the kind "in order to change X I'll
change Y, and everything else will remain the same" is bound to be wrong.

9. Self-Similarity

Recent studies of traces of Ethernet network traffic [17], web server traffic [25],
and file system requests [26] have revealed an unexpected property of these traces,
namely that they are self-similar in nature. Intuitively, self-similar stochastic
processes look similar and bursty across all time scales. Physical limitations, such as
the finite bandwidth and lifetime of any network or server, inhibit true self-similar
behavior, but the presence of self-similarity over considerably long amounts of time
(months, in the case of multi-computers), makes this phenomenon of practical
importance.
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The major consequences of self-similarity are in the area of scheduling: The
common theory of workload modeling usually assumes that while a single resource
may exceed its resource consumption average, its aggregate resource requirements
over time will have a low variance. In a self-similar system, this is not the case.
Therefore, the discovery of self-similarity in parallel workloads should lead to a
reassessment of known schedulers, to determine their compatibility with long-range
dependence and highly variant workloads.

We have tested both the production and synthetic workloads for self-similarity
using three different methods. A description of these methods — R/S analysis,
Variance-time plots and Periodogram analysis — is given in the appendix, together
with a formal definition of self-similarity. For a more thorough theoretical
presentation of the issue, see [27].

The results are summarized in Table 3. The value given for each test and each
variable is the Hurst parameter estimation for that variable by the test. In short, the
Hurst parameter measures the degree of self-similarity in a time series: It is 0.5 if the
series is not self-similar, and is closer to 1.0 the more self-similar it is. Although all
three tests are only approximations and do not give confidence intervals to the value
of the Hurst parameter, it seems certain that most workloads are self-similar in all of
the tested variables. This new result adds to similar findings in networks and file
systems, and hints that most “human generated” workloads, in which tens or more of
people are involved in creating, will exhibit self-similarity to some degree.

Used Processors Run Time Total CPU Time Inter-Arrival Time

RIS | V-T | Per. | RIS | V-T | Per. | RIS | V-T | Per. | RIS | V-T | Per.
Variable n vp pp s vr pr rc Ve pc ri vi pi
CTC 0711071068 [055]0.75 (076|029 | 065 | 0.5 | 042 | 0.63 | 0.68
KTH 0741087 | 067 [ 068 | 0.58 [ 0.79 | 0.61 | 0.67 | 0.56 | 0.48 | 0.69 | 0.71
LANL 060|090 |0.82(074 090|077 | 065|088 |0.76 | 0.67 [ 0.91 | 0.68
LANLi 096 |0.81|091(080|0.80 |084)|071]079|0.70|0.86 [ 0.59 | 0.84
LANLb 052078 | 0.78 | 0.66 | 0.81 [ 0.71 | 0.68 | 0.80 | 0.71 | 0.71 [ 0.79 | 0.66
LLNL 084074084 (088|074 (069|077 |069 072|056 | 043 ]| 0.71
NASA 061068 | 0.84 [ 0.53 | 0.66 | 0.56 | 0.43 | 0.60 | 0.55 | 0.60 | 0.35 | 0.51
SDSC 050 0.77 | 0.68 [ 0.54 | 0.85 | 0.70 | 0.53 | 0.83 | 0.60 | 0.66 | 0.96 | 0.67
SDSCi 061059 |094(083)0.61|0.58|062]|059|0.56|0.80 [0.74]0.64
SDSCb 068 083|072 (084 |0.76 | 0.68 | 0.83 | 0.79 | 0.58 | 0.82 | 0.84 | 0.56
Lublin ~ [ ¢ 0477 0470487055080 | 067055080067 [045] 049|047
Feitelson ‘97 | 0.64 | 0.62 | 0.80 | 0.72 | 0.62 | 0.72 | 0.67 | 0.58 | 0.70 | 0.49 | 0.49 | 0.54
Feitelson ‘96 | 0.72 | 0.57 | 0.65 | 0.26 | 0.61 | 0.69 | 0.26 | 0.60 | 0.68 | 0.55 | 0.48 | 0.50
Downey 046 | 0.49 | 0.50 [ 0.54 | 0.48 [ 0.49 | 0.60 | 0.47 | 0.49 | 0.55 | 0.46 | 0.49
Jann 069|057 | 059 [ 0.49 | 049 [ 049 | 0.64 | 0.51 | 0.51 | 0.61 | 0.50 | 0.54

Table 3: Estimations of Self-Similarity
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As self-similarity was unknown when the synthetic models we use were created, it
is plausible that they will not exhibit the phenomenon. We ran Co-plot on Table 3,
without any of the variables used in the earlier sections. Adding the previous group of
variables resulted in a high degree of alienation and low correlations for many
variables, in both variable groups. This happens because of the two dimensional
nature of Co-plot: When using too many variables that are not well correlated, two
dimensions are just not enough to present a coherent picture. It is then necessary to
use less variables, or split the available variables into groups that belong to different
“explanation universes”.

Figure 5 does not include three estimators out of the twelve given in Table 3: The
R/S analysis estimation of the degree of parallelism and of the total used CPU time,
and the periodogram estimator of the total used CPU time. These variables were
removed because of relatively low correlations; however, they also pointed to the left
direction of the map, as do all the other variables. All estimators of the degree of
parallelism are equal by definition of self-similarity for the absolute and normalized
versions, so there was no need to test both variables separately.
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Fig. 5. Self Similarity Estimations of Logs and Models
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There are two clear results. First, all the production workloads except for NASA
Ames show some degree of self-similarity, while all the synthetic models do not. Uri
Lublin’s model, on the upper right corner, is apart from the other models, but this is
not because of high Hurst parameter estimators but because of very low ones, which
goes against what is seen in the production logs. The Feitelson 97 model has the
highest self-similarity, possibly due to the inclusion of repeated job executions. In
general, it is clear that the models do not capture the self-similar nature of parallel
computer workloads.

Second, the three different estimators for the Hurst parameter have major
differences. We expected the three estimators of each variable to be high correlated,
but this happens only occasionally. For example, while the Variance-Time and
Periodogram estimators for run time self-similarity are highly correlated, the R/S
analysis estimator for the same variable is uncorrelated to them. The two estimators
for inter-arrival time are almost uncorrelated, and the same goes for the degree of
parallelism.

Therefore, it is best to refrain from conclusions in the spirit of “workload X has
high run time self-similarity but low inter-arrival self-similarity”. The only conclusion
that is supported by all estimators is the fact that the production workloads are
self-similar while the synthetic models are not, because all the arrows point leftwards
— where the production workloads are.

Although further checking is required, it seems that computers with similar
attributes produce similar self-similarity levels. For example, the CTC and KTH logs,
which are both SP2 machines scheduled with EASY, are very close to one another,
and the batch jobs of LANL and SDSC are also neighbors. We defer this issue for
now, since finding out the definite causes of self-similarity requires more workloads,
particularly ones coming from similar computers.

10. Conclusions and Future Research

This paper makes two important contributions. First, it presents the Co-plot
technique, a multivariate statistical method tailored to the demands of the workload
modeling field: It works well given few observations and many variables, dependent
or not. Second, it provides new insights about the majority of production workloads
and synthetic models available today, giving a clear view of what needs to be done
next.

One path to continue by is to find more variables that correlate well with the ones
already found, and are known for the modeled system. The major problem with the
parametric model approach suggested in section 8 is the need to estimate the medians
of the degree of parallelism and inter-arrival times. We wish to model a future system,
so these are not known in advance. They should be replaced by known variables — we
have tried the processor allocation scheme, scheduler, number of processors in the
system, and the expected number of users. We intend to look further into robust
estimators of the third moment, user or multi-class modeling attributes [2], and the
self-similarity of the distributions [17].
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A second path to be taken should try to estimate these unknown medians of a
future system based on similar systems from the past. As we have seen, this approach
seems to work in some cases but breaks down in others, and it remains to be
discovered which changes made to a system — adding processors, replacing the
scheduler, changing policies and so forth — cause which changes to the resulting
workload.

A third question raised is the issue of changing the load of a workload. It was
shown that the currently used techniques cause harmful (in the modeling sense) side
effects to the workload, by contradicting the expected correlations between the altered
variables. Finding the right way to control load is of practical concern to many
experiments and statistical tests in this field of research.

Self-similarity is expected to play a significant role in future synthetic models, not
only in the area of parallel computer workloads. The lack of a suitable model that
represents self-similarity is apparent, and a new model is a near future requirement.
However, although it is clear that none of the models exhibit self-similarity, the effect
of this absence has not yet been determined, and this needs to be done as well.

We'd be more than happy to share the data sets and tools we used. The production
workloads in standard workload format and the source codes of synthetic models are
available from the online archive at http://www.cs.huji.ac.il/labs/parallel/workload.
The Co-Plot program and workload analysis program (both under Windows) are
available from the authors.
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Appendix: Theory of Self-Similarity

This section briefly describes the theory behind self-similarity, and three methods
for finding it in a given time series. For a thorough introduction, see [27].

Consider a stochastic process X = (X;, X», ...) with mean p = E[X;], variance ¢ =
E[(X; — n)’], and auto-correlation function:

E[(Xi — 1)(Xi+ 4 —
r(k) = [(Xi = u)( ‘ 12) >0 ®
E[(Xi— 1)°]
The process is said to exhibit long-range dependence if:
rtk) =~ k”L(t)  forsome 0 <f<2 ask—» o (6)
where L(t) is a slowly varying function with the property:
lim L&) _ 1 Vx>0 (7
t —> © L(t)

Self-similar processes possess long-range dependence, but also satisfy stronger
constraints on the form of the auto-regression function, to be defined now. For a time
series {X}, A new aggregated series X™ = (X,\™ : k=1, 2, ...) foreach m =1, 2, 3...
is obtained by averaging non-overlapping blocks of size m from the original series:

Xk(m) =X7(n1—n1+1+...+)(7cm kZl (8)

m

The process X is said to be exactly second-order self-similar if there exists 0 < f§ <
2 such that the following two conditions hold:

Var(X('”)) < mP forallm=1,2,3, ... ©)
™ k) = r(k) forallk=1,2,3, ...

The process is said to be asymptotically second-order self-similar if the following
weaker conditions holds instead (note that only the second condition changes):
Var(X('”)) < mP forallm=1,2,3, ...
™ (k) — r(k) asm —> o

(10)
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For historic reasons, Self-similar processes are characterized by their Hurst
parameter, defined:

H=1-— 11

The rescaled adjusted range (R/S) statistic for a series X having average A(n) and
sample variance S*(n) is given by:
R(n)/S(m)=[1-Sn) ] x [ max(0, Wy, ..., W) —min(0, Wy, ..., W) 1 (12)
Where:
W= X3+ X+ ...+ X)) —kA(n) (k=1) 13)

Short-range dependent observations seem to satisfy E[ R(n) / S(n) ] ~ con®’, while
long-range dependent data, such as self-similar processes, are observed to follow:

E[RM)/Sn)]~con" (0<H<I) (14)

This is known as The Hurst Effect, and can be used to differentiate self-similar
from non-self-similar processes. In general, the Hurst parameter can be in one of three
categories: H < 0.5, H= 0.5 and H > 0.5. When H = 0.5 a random walk is produced,
and no long-range dependence is observed. When H > 0.5, the values produces are
self-similar with positive correlation, or persistent; when H < 0.5 the values are
self-similar with negative correlation, also called anti-persistent. Most observed
self-similar data to date is persistent.

Equation 14 can be used to produce an estimate of the Hurst parameter of a given
trace, observing that the following is derived from it:
log [ R(n) / S(n) ] =¢; + H log(n) as)

Plotting R(n)/S(n) against log(n) for increasing values of » should therefore result
in a roughly linear line, with a slope equal to the estimated Hurst parameter. Such a
graph is called a Pox Plot, and the technique is called R/S analysis.

As you recall from their definition, self-similar processes must satisfy:
Var(X™) oc m™® forallm=1,2,3, ... (16)
Taking the logarithm of both sides of the equation gives:
log [ Var(X™) ] = c, - B log(m) (17)

Again, plotting log(Var(X™)) against log(m) for a self-similar process should
result in a linear series of points with a slope of -f. The Hurst parameter estimate is H
= 1- B/2, therefore a slope between —2 and 0 indicates self-similarity (0.5 < H < 1).
This plot is known as a Variance-Time Plot.
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Finally, the Periodogram is a statistical method to discover cycles in time series.
The periodogram of a time series {X} x for a given frequency -I1 < ®» <II is defined
as:

2

N 2 /N
Per(w) = %x [Z Xi cos(wk)j + [Z Xi sin(wk)J (18)
k=1 k=1

The periodogram graph of a time series is computed by plotting a log-log graph of
Per(w;) against the following frequencies:
211i

i=0.N 19
N (19)

i =

For a self-similar time series, the slope of the periodogram is a straight line with slope
B —1=1-2H close to the origin.
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