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Abstract. In this paper we suggest a strategy to design job schedul-
ing systems. To this end, we first split a scheduling system into three
components: Scheduling policy, objective function and scheduling algo-
rithm. After discussing the relationship between those components we
explain our strategy with the help of a simple example. The main focus
of this example is the selection and the evaluation of several scheduling
algorithms.

1 Introduction

Job scheduling for processors is a complex task. This is especially true for mas-
sively parallel processors (MPPs) where many users with a multitude of different
jobs share a large amount of system resources. While job scheduling does not af-
fect the results of a job, it may have a significant influence on the efficiency of the
system. For instance, a good job scheduling system may reduce the number of
MPP nodes that are required to process a certain amount of jobs within a given
time frame or it may permit more users or jobs to use the resources of a machine.
Therefore, the job scheduling system is an important part in the management
of computer resources which frequently represent a significant investment for a
company or institution in the case of MPPs.

Hence, the availability of a good job scheduling system is in the interest of
the owner or administrator of an MPP. It is therefore not surprising that in the
past new job scheduling methods have been frequently introduced by institutions
which were among the first owners of MPPs like, for instance, ANL [10], CTC [11]
or NASA Ames [12]. On the other hand, some machine manufacturers showed
only limited interest in this issue as they frequently seem to have the opinion
that “machines are not sold because of superior job schedulers”. Moreover, the
design of a job scheduling system must be based on the specific environment of
a parallel system as we will argue in this paper. Consequently, administrators of
MPPs will remain to be involved in the design of job scheduling systems in the
future. Methods or at least guidelines for the selection and evaluation of such a
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system would therefore be beneficial. It is the goal of this paper to make a first
a step into this direction.

We start this paper by taking a close look at job scheduling systems. For us
such is system is divided into 3 components: Scheduling policy, objective function
and scheduling algorithm. We discuss those components and the dependences
between them. In the second part of the paper we use a simple example to
describe the process of scheduling algorithm selection and evaluation. We do
not believe that there is a single scheduling algorithm that suits all systems.
Therefore, it is not the purpose of this example to show the superiority of any
particular algorithm but to illustrate a method for the design of scheduling
systems.

2 Scheduling Systems

The scheduling system of a multiprocessor receives a stream of job submission
data and produces a valid schedule. We use the term ‘stream’ to indicate that
submission data for different jobs need not arrive at the same time. Also the
arrival of any specific data is not necessarily predictable, that is, the scheduling
system may not be aware of any data arriving in the future. Therefore, the
scheduling system must deal with a so called ‘on-line’ behavior.

Further, we do not specify the amount and the type of job submission data.
Different scheduling systems may accept or require different sets of submission
data. For us submission data comprise all data which are used to determine a
schedule. However, a few different categories can be distinguished:

— User Data: These data may be used to determine job priorities. For in-
stance, the jobs of some user may receive faster service at a specific location
while other jobs are only accepted if sufficient resources are available.

— Resource Requests: These data specify the resources which are requested
for a job. Often they include the number and the type of processors, the
amount of memory as well as some specific hardware and software require-
ments. Some of these data may be estimates, like the execution time of a
job, or describe a range of acceptable values, like the number of processors
for a malleable job.

— Scheduling Objectives: These data may help the scheduling system to
generate ‘good’ schedules. For instance, a user may state that she needs the
result by 8am the next morning while an earlier job completion will be of no
benefit to her. Other users may be willing to pay more if they obtain their
results within the next hour.

Of course other submission data are possible as well. Job submission data
are entered by the user and typically provided to the system when a job is
submitted for execution. However, some systems may also allow reservation of
resources before the actual job submission. Such a feature is especially beneficial
for multi-site metacomputing [17]. In addition, technical data are often required
to start a job, like the name and the location of the input data files of the job.



But as these data do not affect the schedule if they are correct, we ignore them
here. Finally note that the submission of erroneous or incorrect data is also
possible. However, in this case a job may be immediately rejected or fail to run.

Now, we take a closer look at the schedule. A schedule is an allocation of
system resources to individual jobs for certain time periods. Therefore, a schedule
can be described by providing all the time instances where a change of resource
allocation occurs as long as either this change is initiated by the scheduling
system or the scheduling system is notified of this change. To illustrate this
restriction assume a job being executed on a processor that is also busy with some
operating system tasks. Here, we do not consider changes of resource allocation
which are due to the context switches between OS tasks and the application.
Those changes are managed by the system software without any involvement of
our scheduling system.

For a schedule to be valid some restrictions of the hardware and the system
software must be observed. For instance, a parallel processor system may not
support gang scheduling or require that at most one application is active on a
specific processor at any time. Therefore, the validity constraints of a schedule
are defined by the target machine. We assume that a scheduling system does
not attempt to produce an invalid schedule. However, note that the validity of a
schedule is not affected by the properties of a submitted job as those properties
are not guaranteed to comply with submission data. For instance, if not enough
memory is requested from and assigned to a job, the job will simply fail to run.
But this does not mean that the resulting schedule is invalid. Also, a schedule
depends upon other influences which cannot be controlled by the scheduling
system, like the sudden failure of a hardware component. Therefore, the final
schedule is only available after the execution of all jobs.

Next, the scheduling system is divided into 3 parts:

1. A scheduling policy,
2. an objective function and
3. a scheduling algorithm.

In the rest of this section we first describe these parts separately. Then the
dependences between them are discussed. Finally, we compare the evaluation of
scheduling systems with the evaluation of computer architectures.

2.1 Scheduling Policy

The scheduling policy forms the top level of a scheduling system. It is defined by
the owner or administrator of a machine. In general, the scheduling strategy is a
collection of rules to determine the resource allocation if not enough resources are
available to satisfy all requests immediately. To better illustrate our approach,
we give an example:

Example 1. The department of chemistry at University A has bought a paral-
lel computer which was financed to a large part by the drug design lab. The
department establishes the following rules for the use of the machine:



1. All jobs from the drug design lab have the highest priority and must be
executed as soon as possible.

2. 100 GB of secondary storage is reserved for data from the drug design lab.

3. Applications from the whole university are accepted but the labs of the
chemistry department have preferred access.

4. Some computation time is sold to cooperation partners from the chemical
industry in order to pay for machine maintenance and software upgrades.

5. Some computation time is also made available to the theoretical chemistry
lab course during their scheduled hours.

Note that these rules are hardly detailed enough to generate a schedule. But
they allow a fuzzy distinction between good and bad schedules. Also, there may be
some additional general rules which are not explicitly mentioned, like ‘Complete
all applications as soon as possible if this does not contradict any other rule’.
Finally, some conflicts between those rules may occur and must be resolved. For
instance in Example 1, some jobs from the drug design lab may compete with
the theoretical chemistry lab course. Hence, in our view a good scheduling policy
has the following two properties:

1. It contains rules to resolve conflicts between other rules if those conflicts
may occur.
2. It can be implemented.

We believe that there is no general method to derive a scheduling policy. Also
there is no need to provide a very detailed policy with clearly defined quotas.
In many cases this will result in a reduction of the number of good schedules.
For instance, it would not be helpful at this point to demand that 5% of the
computation time is sold to the chemical industry in Example 1. If there are only
a few jobs from the drug design lab then the department would be able to earn
more money by defining a higher industry quota. Otherwise, the department
must decide whether to obtain other funding for the machine maintenance or to
reduce the priority of some jobs of the drug design lab. This issue will be further
discussed in Section 2.4.

2.2 Objective Function

As stated in the previous section the owner of a machine will be able to determine
whether any given schedule is good or bad. However, it is the goal of a scheduling
system to consistently produce schedules which are as good as possible. This
leads to two problems:

1. It must be demonstrated that the scheduling system will always produce
good schedules.
2. It is necessary to provide a ranking among good schedules.

Problems of the first kind are addressed in theoretical computer science by
the concept of competitive analysis, see [18]. Unfortunately, this approach is not
applicable for our scheduling systems for the following reasons:



— Often competitive analysis cannot be successfully applied to methods which
are based on very complex algorithms or which use specific input data sets.

— Competitive factors are worst case factors that frequently are not acceptable
in practice. For instance, a competitive factor of 2 for the machine load of a
schedule denotes that in some cases 50% of the resources are not used. On
the other hand, those worst case input data typically do not occur in real
installations. Frequently, this is also true if randomization is used for the
analysis.

Alternatively, a scheduling system can be applied to a multitude of different
streams of submission data and the resulting schedules can be evaluated. This
requires a method to automatically determine the quality of a schedule. There-
fore, an objective function must be defined that assigns a scalar value, the so
called schedule cost, to each schedule. Note that this property is essential for the
mechanical evaluation and ranking of a schedule. In the simplest case all good
schedules are mapped to 0 while all bad schedules obtain the value 1. Most likely
however, this kind of objective function will be of little help. To derive a suitable
objective function an approach based on multi criteria optimization can be used,
see e.g. [20]:

1. For a typical set of jobs determine the Pareto-optimal schedules based on
the scheduling policy.

2. Define a partial order of these schedules.

. Derive an objective function that generates this order.

4. Repeat this process for other sets of jobs and refine the objective function
accordingly.

w

To illustrate Steps 1 and 2 of our approach we consider Rules 1 and 5 of
Example 1. Assume that both rules are conflicting for the chosen set of job
submission data. Therefore, we determine a variety of different schedules, see
Fig. 1. Note that we are not biased toward any specific algorithm in this step.
We are primarily interested in those schedules which are good with respect to at
least one criterion. Therefore, at first all Pareto-optimal schedules are selected.
Those schedules are indicated by bullets in Fig. 1. Next, a partial order of the
Pareto-optimal schedules is obtained by applying additional conflict resolving
rules or by asking the owner. In the example of Fig. 1 numbers 0, 1 and 2 have
been assigned to the Pareto-optimal schedules in order to indicate the desired
partial order. Here any schedule 1 is superior to any schedule 0 and inferior to
any schedule 2 while the order among all schedules 1 does not matter.

The approach is based on the availability of a few typical sets of job data.
Further, it is assumed that each rule of the scheduling policy are associated with
single criterion functions, like Rule 4 of Example 1 with the function ‘amount of
computation time allocated to jobs from the cooperation partners from industry’.
If this is not the case, complex rules must be split.

Now, it is possible to compare different schedules if the same objective func-
tion and the same set of jobs is used. Further, there are a few additional aspects
which are also noteworthy:
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Fig. 1. Pareto Example for 2 Rules

— Schedules can be compared even if they do not have the same target archi-
tecture.

— An up front calculation of the schedule cost may not be possible. Most likely,
it will be necessary to execute all jobs first before the correct schedule cost
can be determined.

— No specification of job input data is given. Therefore, it is possible to compare
two schedules which are based on the same set of jobs but use different job
submission data.

Thus, schedules can even be used as a criterion for system selection if desired.

At many installations of large parallel machines simple objective functions
are used, like the job throughput, the average job response time, the average
slowdown of a job or the machine utilization, see [3]. We believe that it cannot
be decided whether those objective functions are suitable in general. For some
scheduling policy they may be the perfect choice while they should not be used
for another set of rules. Also, it is not clear whether the use of those ‘simple’
objective functions allows an easier design of scheduling systems.

2.3 Scheduling Algorithm

The scheduling algorithm is the last component of a scheduling system. It has
the task to generate a valid schedule for the actual stream of submission data
in an on-line fashion. A good scheduling algorithm is expected to produce very
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Fig. 2. On-line versus Off-line Dependence

good if not optimal schedules with respect to the objective function while not
taking ‘too much’ time and ‘too many’ resources to determine the schedule.

Unfortunately, most scheduling problems are computationally very hard.
This is even true for off-line problems with simple objective functions and few
additional requirements, see for instance [7]. Therefore, it is not reasonable to
hope in general for an algorithm that always guarantees the best possible sched-
ule. In addition, some job data may not be immediately available or may be
incorrect which makes the task for the algorithm even harder, see Section 2.

In order to obtain good schedules the administrator of a parallel machine
is therefore faced with the problem to pick an appropriate algorithm among
a variety of suboptimal ones. She may even decide to design an entirely new
method if the available ones do not yield satisfactory results. The selection of
the algorithm is highly dependent on a variety of constraints:

Schedule restrictions given by the system, like the availability of dynamic

partitioning or gang scheduling.

— System parameters, like I/O ports, node memory and processor types.

— Distribution of job parameters, like the amount of large or small jobs.

— Availability and accuracy of job information for the generation of the sched-
ule. For instance, this may include job execution time as a function of allo-
cated processors.

— Definition of the objective function.

Frequently, the system administrator will simply take scheduling algorithms
from the literature and modify them to her needs. Then, she picks the best of her



algorithm candidates. After making sure that her algorithm of choice actually
generate valid schedules, she also must decide whether it makes sense to look for
a better algorithm. Therefore, it is necessary to evaluate those algorithms. We
distinguish the following methods of evaluation:

1. Evaluation using algorithmic theory
2. Simulation with job data derived from
— an actual workload
— a workload model

In general theoretical evaluation is not well suited for our scheduling algorithms
as already discussed in Section 2.2. Occasionally, this method is used to deter-
mine lower bounds for schedules. These lower bounds can provide an estimate for
a potential improvement of the schedule by switching to a different algorithm.
However, it is very difficult to find suitable lower bounds for complex objective
functions.

Alternatively, an algorithm can be fed with a stream of job submission data.
The actual schedule and its cost are determined by simulation with the help of
the complete set of job data. The procedure is repeated with a large number of
input data sets. The reliability of this method depends on several factors:

— Availability of correct job data
— Compliance of the used job set with the job set on the target machine

Actual workload data can be used if they are recorded on a machine with a
user group such that sufficient similarity exists with the target machine and its
users. This is relatively easy if traces from the target machine and the target user
community are available. Otherwise some traces must be obtained from other
sources, see e.g. [1]. In this case it is necessary to check whether the workload
trace is suitable. This may even require some modifications of the trace.

Also note that the trace only contains job data of a specific schedule. In an-
other schedule these job data may not be valid as is demonstrated in Examples 2
and 3:

Example 2. Assume a parallel processor that uses a single bus for communica-
tion. Here, independent jobs compete for the communication resource. Therefore,
the actual performance of job i depends on the jobs executed concurrently with
job i.

Example 8. Assume a machine and a scheduling system that support adaptive
partitioning. In this case, the number of resources allocated to job i again de-
pends on other jobs executed concurrently with job 4.

Also, a comprehensive evaluation of an algorithm frequently requires a large
amount of input data that available workload traces may not be able to provide.
If accurate workload data are not available then artificial data must be gen-
erated. To this end a workload model is used. Again conformity with future real



job data is essential and must be verified. On the other hand, this approach is
able to overcome some of the problems associated with trace data simulation,
if the workload model is precise enough. For a more detailed discussion of this
subject, see also [3].

Unfortunately, it cannot be expected that a single scheduling algorithm will
produce a better schedule than any other method for all used input data sets. In
addition the resource consumption of the various algorithms may be different.
Therefore, the process of picking the best suited algorithm may again require
some form of multi criteria optimization.

2.4 Dependences

The main dependence stream between the components of a scheduling system
is easy to see: The scheduling policy produces rules which are used to derive
an objective function. The application of this objective function to a schedule
yields the schedule cost which allows performance measurements for the various
algorithms. However, there are also additional dependences. For instance, some
policy rules may not allow efficient scheduling algorithms, see Example 4.

Example 4. Assume a machine that does not support time sharing. The schedul-
ing policy includes the rule:

Every weekday at 10am the entire machine must be available to a theoretical
chemistry class for 1 hour.

The Pareto-optimal schedules used for the determination of the objective
function show an acceptable (by the owner) amount of idle resources before
10am. However, as users are not able to provide accurate execution time esti-
mates for their jobs no scheduling algorithm can generate good schedules.

Such a situation is shown in Fig. 2 for Example 1. There, it is assumed that
on-line algorithms cover a significantly smaller area of schedules than off-line
methods with complete job knowledge. This may require a review of the conflict
resolving strategy and thus affect the schedule cost. Unfortunately, this on-line
area of schedules will typically be the result of a combination of several on-line
algorithms. Therefore, the off-line methods in the approach of Section 2.2 cannot
be simply replaced by a single or a few on-line algorithms. In addition, a suitable
on-line algorithm may not be available at this time.

More of these additional dependences are listed below:

— Too many or too restrictive policy rules may prevent acceptable schedules
at all.

— There may not be sufficient rules to discriminate between good and bad sched-
ules as some implicitly assumed rules are not explicitly stated.

— While there may be a variety of different objective functions which all sup-
port the policy rules, a specific objective function may not be suitable as a
criterion for an on-line scheduling algorithm.

— The workload model may not be correct if users adapt their submission
pattern due to their knowledge of the policy rules.



— The workload model must be modified as the number of users and/or the
types and sizes of submitted jobs change over time.

Due to these dependences a few design iterations may be required to deter-
mine the best suitable scheduling algorithms and/or it may be appropriate to
repeat the design process occasionally.

2.5 Comparison

In this section we briefly compare the evaluation of scheduling systems with
the well known procedure used for computer architectures. Today, computer
architectures are typically evaluated with the help of standard benchmarks, like
SPEC95 or Linpack, see [8]. For instance, the SPEC95 benchmark suite contains
a variety of programs and frequently, no architecture is the best for all those
programs. Depending on his own applications the user must select the machine
best suited for him. This leads to the question whether a similar approach is
also applicable for scheduling systems. With other words, can we provide a few
benchmark workloads which are used to test various scheduling systems?

We claim that this cannot be done in the moment and doubt whether this will
ever become possible. For computer architectures there is a standard objective
function: the execution time of a certain job. As we discussed in the previous
sections each scheduling system has its own objective function. Therefore, we
cannot really compare two different scheduling systems. On the other hand, the
comparison of different scheduling algorithms only makes sense if the same ob-
jective function is used. Hence, the evaluation of scheduling algorithms must be
based on benchmarks consisting of workloads and objective functions. However,
it is not clear to us that there will ever be a small set of objective functions that
will more or less cover all scheduling systems.

3 Evaluation Example

In this section we give an example for the design and evaluation of schedul-
ing algorithms. As the focus is on scheduling algorithms we will assume simple
scheduling policy rules and only briefly cover the determination of the objective
function. Also we use a simple machine model. Although the used constraints
have been taken from real installations it is not the purpose of this paper to
discuss whether they are appropriate for an installation of a parallel machine.

Ezample 5. Assume an Institution B that has just bought a large parallel com-
puter with 288 identical nodes. The institution has established the following
policy rules:

1. The batch partition of the computer must be as large as possible, leaving a
few nodes for interactive jobs and for some services.

2. The user must provide the exact number nodes for each job (rigid job model)
and an upper limit for the execution time. If the execution of a job exceeds
this upper limit, the job may be cancelled.



3. The user is charged for each job. This cost is based on a combination of
projected and actual resource consumption.

4. Every user is allowed at most two batch jobs on the machine at any time.

5. Between 7am and 8pm on weekdays the response time for all jobs should be
as small as possible.

6. Between 8pm and 7am on weekdays and all weekend or on holidays it is the
goal to achieve a high system load.

The machine supports variable partitioning [2] but does not allow time shar-
ing. Further, it is required that all batch jobs have exclusive access to their
partition.

The administrator decides that 256 nodes can be used for the batch parti-
tion. She further believes that the user community at the Cornell Theory Center
(CTC) and at Institution B will be very similar. As the parallel machines at
the CTC and at Institution B are of the same type she decides to use a CTC
workload as a basis for the selection of the objective function and the determi-
nation of a suitable scheduling algorithm. Due to the interdependence between
user community and scheduling policy this decision also requires knowledge of
the scheduling policy used at the CTC, see [9]. Only if there is no major dis-
agreement between the scheduling policies at the CTC and at Institution B the
profiles of both user communities can be assumed to remain similar.

4 Determination of the Objective Function

Next, the administrator must determine an objective function. To this end she
ignores Rules 1 to 4 because they do not affect the schedule for a specific work
load or are only relevant to the on-line situation (Rule 2). As Rules 5 and 6 do
not apply at the same time she decides to consider each rule separately.

Rule 4 indicates that all jobs should be treated equally independent of their
resource consumption. Therefore, the administrator uses the average response
time as objective function for the daytime on weekdays (Rule 5). The average
response time is the sum of the differences between the completion time and
submission time for each job divided by the number of jobs.

For the remaining time (Rule 6) the sum of the idle times for all resources
in a given time frame seems to be the best choice.

The administrator intends to independently determine an appropriate sched-
uling algorithm for each objective function and then to address the combination
of both algorithms. Note that multi criteria optimization is therefore not neces-
sary in our simple example.

When starting to look for scheduling algorithms the administrator realizes
that the sum of idle times is based on a time frame. Therefore, it does not support
on-line scheduling. Using the makespan instead has the advantage that several
theoretical results are available, see e.g. [5], but again the makespan is mainly an
off-line criterion [3]. Hence, she decides to use instead the average weighted
response time where the weight is identical to the resource consumption of a



job, that is, the product of the execution time and the number of required nodes,
see [15]. Tt is calculated in the same fashion as the average response time with
the exception that the difference between the completion and the submission
time for each job is multiplied with the weight of this job. In comparison the
job weight is always 1 for the average response time criterion. Note that for the
average weighted response time the order of jobs does not matter if no resources
are left idle [16].

5 Description of the Algorithms

After the objective function has been determined it is necessary to find a suit-
able scheduling algorithm. Instead of producing an algorithm from scratch it is
often more efficient to use algorithms from the literature and to modify them if
necessary. In this first step it is frequently beneficial to consider a wide range
of algorithms unless previous experiences strongly suggest the use of a specific
type of algorithm. Further, there may be algorithms which have been designed
for another objective function but can be adapted to the target function.

In Example 5 the administrator picks several algorithms from the literature.
These algorithms are discussed in the following subsections.

5.1 FCFS

First-Come-First-Serve (FCFS) is a well known scheduling scheme that is used
in some production environments. All jobs are ordered by their submission time.
Then a greedy list scheduling method is used, that is the next job in the list is
started as soon as the necessary resources are available. This method has several
advantages:

1. It is fair as the completion time of each job is independent of any job sub-
mitted later.

2. No knowledge about the execution time is required.

3. It is easy to implement and requires very little computational effort.

However, FCFS may produce schedules with a relatively large percentage of idle
nodes especially if many highly parallel jobs are submitted. Therefore, FCFS
has been replaced by FCFS with some form of backfilling at many locations
including the CTC. Nevertheless, the administrator does not want to ignore
FCFS at this time as a theoretical study has recently shown that FCFS may
produce acceptable results for certain workloads [16].

5.2 Backfilling

The backfilling algorithm has been introduced by Lifka [10]. It requires knowl-
edge of the job execution times and can be applied to any greedy list schedule.
If the next job in the list cannot be started due to a lack of available resources,



then backfilling tries to find another job in the list which can use the idle re-

sources but will not postpone the execution of the next job in the list. In other

words, backfilling allows some jobs down the list to be started ahead of time.
There are 2 variants of backfilling as described by Feitelson and Weil [4]:

EASY backfillis the original method of Lifka. It has been implemented in several
IBM SP2 installations. While EASY backfill will not postpone the projected
execution of the next job in the list, it may increase the completion time of
jobs further down the list, see [4].

Conservative backfill will not increase the projected completion time of a job
submitted before the job used for backfilling. On the other hand conservative
backfill requires more computational effort than EASY.

However, note that the statements regarding the completion time of skipped jobs
in the list are all based on the provided execution time for each job. Backfilling
may still increase the completion time of some jobs compared to FCFS as in an
on-line scenario another job may release some resources earlier than assumed. In
this case it is possible that a backfilled job may prevent the start of the next job
in the list. For instance, while some active job is expected to run for another 2
hours it may terminated within the next 5 minutes. Therefore, backfilling with
a job having an expected execution time of 2 hours may delay the start of the
next job in the list by up to 1 hour and 55 minutes.

The administrator decides to use both types of backfilling as it is not obvious
that one method is better than the other.

5.3 List Scheduling (Garey and Graham)

The classical list scheduling algorithm by Garey and Graham [6] always starts
the next job for which enough resources are available. Ties can be broken in an
arbitrary fashion. The algorithm guarantees good theoretical bounds in some
on-line scenarios (unknown job execution time) [5], it is easy to implement and
requires little computational effort. As in the case of FCFS no knowledge of the
job execution time is required. Application of backfilling will be of no benefit for
this method.

5.4 SMART

The SMART algorithm has been introduced by Turek et al. [21]. The algorithm
consists of 3 steps:

1. All jobs are assigned to bins based on their execution time. The upper
bounds of those bins form a geometric sequence based on a parameter 7.
In other words, the bins can be described by intervals of the possible ex-
ecution time: ]0,1],]1,v',]9',7?],-... The parameter v can be chosen to
optimize the schedule.

2. All jobs in a bin are assigned to shelves (subschedules) such that all jobs in
a shelf are started concurrently. To this end the jobs in a bin are ordered
and then arranged in a shelf as long as sufficient resources are available.



3. The shelves are ordered using Smith’s rule [19], that is for each shelf the sum
of the weights of all jobs in the shelf is divided by the maximal execution
time of any job in the shelf. Finally, those shelves with the largest ratio are
scheduled first.

Schwiegelshohn et al. [14] have presented two variants of ordering the jobs in a
bin and assigning them to shelves (Step 2):

SMART-FFIA
1. The jobs of a bin are sorted according to the product of execution time
and the number of required nodes, also called area, such that the smallest
area goes first.
2. The next job in this list is assigned to the first shelf with sufficient idle
resources, that is, all shelves of this bin are considered.
3. If there is no such shelf, a new one is created and placed on top of the
other shelves of this bin.
This approach is called the First Fit Increasing Area variant.
SMART-NFIW
1. All jobs of a bin are ordered by an increasing ratio of the number of
required nodes to the weight of the job.
2. The next job in this list is added to the current shelf if sufficient resources
are available on this shelf.
3. Otherwise a new shelf is created, placed on top of the current shelf and
then becomes the current shelf itself.
This is the Next Fit Increasing Width to Weight variant.

The SMART algorithm has a constant worst case factor for weighted and un-
weighted response time scheduling. However, it is an off-line algorithm and can-
not be directly applied to the scheduling problem of Example 5. It requires a
priori knowledge of the execution time for all jobs and assumes that all jobs
are available for scheduling at time 0. Therefore, the administrator modifies the
SMART algorithm as follows:

1. She does not use the SMART algorithm to determine an actual schedule but
to provide a job order for all jobs already submitted but not yet started.
Whenever new jobs are submitted the SMART algorithm is started again.
Based on this order a greedy list schedule is generated, see FCFS.

2. Instead of the actual execution time of a job the value provided by the user
at job submission is used.

In order to reduce the number of recomputations for the SMART algorithm the
schedule is recalculated when the ratio between the already scheduled jobs in the
wait queue to all the jobs in this queue exceeds a certain value. In the example
a ratio of % is used. The parameter 7y is chosen to be 2.

As the final schedule is a list schedule the administrator decides to apply
backfilling here as well.



5.5 PSRS

The PSRS algorithm [13] generates preemptive schedules. It is based on the
modified Smith ratio of a parallel job, that is the ratio of job weight to the
product of required resources and the execution time of the job. The basic steps
of PSRS are described subsequently:

1. All jobs are ordered by their modified Smith ratio (largest ratio goes first).

2. A greedy list schedule is applied for all jobs requiring at most 50% of the
machine nodes. If a job needs more than half of all nodes and has been
waiting for some time, then all running jobs are preempted and the parallel
job is executed. After the completion of the parallel job, the execution of the
preempted jobs is resumed.

Similar to SMART, PSRS is also an off-line algorithm and requires knowledge
of the execution time of the jobs. In addition it needs support for time sharing.
Therefore, it cannot be applied to our target machine without modification.
The off-line problems can be addressed in the same fashion as for the SMART
algorithm. Further, it is necessary to transfer the preemptive schedule into a
non-preemptive one. To this end, it is beneficial that a job is not executed con-
currently with any other job if it causes the preemption of other jobs.

1. First, 2 geometric sequences of time instances in the preemptive schedule
are defined, one for those jobs causing preemption (wide jobs) and one for
all other jobs (small jobs). In both cases the factor 2 is used with different
offsets. These sequences define bins.

2. All jobs are assigned to those bins according to their completion time in the
preemptive schedule. Within a bin the original Smith ratio order is main-
tained.

3. A complete order of jobs is generated by alternatively picking bins from each
sequence and starting with the small job sequence.

As with SMART the modified PSRS algorithm guarantees a constant approxi-
mation factor for the off-line case (with and without preemption).
The administrator decides to apply backfilling to PSRS schedules as well.

6 Workload

As already mentioned in Section 3 the administrator wants to base her algorith-
mic evaluation on workload data from the CTC. In addition she decides to use
two artificial workloads:

1. Artificial workload based on probability distributions
2. Artificial workload based on randomization

The number of jobs in each workload is given in Table 1. The reasons for this
selection are discussed in the following subsections.



6.1 Workload Trace

In Section 3 the administrator has already verified that a CTC workload trace
would be suitable in general. She obtains a workload trace from the CTC batch
partition for the months July 1996 to May 1997. The trace contains the following
data for each job:

— Number of nodes allocated to the job

— Upper limit for the execution time

— Time of job submission

— Time of job start

— Time of job completion

— Additional hardware requests of the job: amount of memory, type of node,
access to mass storage, type of adapter.

— Additional job data like job name, LoadLeveler class, job type, and comple-
tion status.

Those additional job data are ignored as they are of no relevance to the
simulation at this point. But the administrator must address two differences
between the CTC machine and the parallel computer at her institution:

1. The CTC computer has a batch partition of 430 nodes while the batch
partition at Institution B contains only 256 nodes.

2. The nodes of the CTC computer are not all identical. They differ in type
and memory. This is not true for the machine at Institution B.

A closer look at the CTC workload trace reveals that less than 0.2% of all
jobs require more than 256 nodes. Therefore, the administrator modifies the
trace by simply deleting all those highly parallel jobs. Further, she determines
that most nodes of the CTC batch partition are identical (382). Therefore, she
decides to ignore all additional hardware requests.

Unfortunately, these modifications will affect the accuracy of the simulation.
For instance, the simulation time frame of the whole modified CTC workload
will most likely exceed the time span of the original trace as less resources are
available. This will result in a larger job backlog during the simulation. There-
fore, it is not possible to compare the original CTC schedule with the schedules
generated by simulation. On the other hand, the administrator wants to sepa-
rately test for two different objective functions, each of which will typically be
valid for half a day. Hence, the present approach is only suited for a first eval-
uation of different algorithms. Any parametric fine tuning must be done with a
better workload.

Besides using the CTC workload with the job submission data described
above the administrator also wants to test her algorithms under the assumption
that precise job execution times are available at job submission. This simulation
allows her to determine the dependence of the various algorithms on the accuracy
of the provided job execution times and the potential for improvement of the
schedule. For this study the estimated execution times of the trace were simply
replaced by the actual execution times.



6.2 Workload with Probability Distribution

In order to overcome some of the difficulties mentioned in Section 6.1 the admin-
istrator decides to extract statistical data from the CTC workload trace. These
data are then used to generate an artificial workload with the same distribution
as the workload trace.

An analysis of the CTC workload trace yields that a Weibull distribution
matches best the submission times of the jobs in the trace. It is difficult to find
a suitable distribution for the other parameters. Therefore, bins are created for
every possible requested resource number (between 1 and 256), various ranges
of requested time and of actual execution length. Then probability values are
calculated for each bin from the CTC trace. Randomized values are used and as-
sociated to the bins according to their probability. This generates a workload that
is very similar to the CTC data set. In the first simulation mainly consistence
between the results for the CTC and the artificial workload is checked. Once
this consistence has been demonstrated the artificial workload can be adapted
to consider the various differences between the CTC and Institution B.

6.3 Randomized Workload

Finally, totally randomized data are used as a third input data set. The adminis-
trator is aware of the fact that this workload will not represent any real workload
on her machine. But she wants to determine the performance of scheduling al-
gorithms even in case of unusual job combinations. For the workload, jobs are
generated with the parameters in Table 2 being equally distributed.

Workload Number of jobs

CTC 79,164
Probability distribution 50,000
Randomized 50,000

Table 1. Number of jobs in various workloads

Submission of jobs > 1 job per hour
Requested number of nodes 1 - 256

Upper limit for the execution time|5 min — 24 h
Actual execution time 1 s — upper limit

Table 2. Parameters for randomized job generation
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Fig. 3. Average Response Time for the Unweighted CTC-Workload

7 Evaluation Results

The administrator selects the simulation of FCFS with EASY backfilling to be
a reference value as this algorithm is used by the CTC. First she compares the
results for the CTC workload trace, see Fig. 3 and Table 3. For the unweighted
case she comes to the following conclusions:

— All algorithms are clearly better than FCFS even if some form of backfilling
is used together with FCFS.

— PSRS and SMART can be improved significantly with backfilling.

— The classical list scheduling produces good results but is inferior to the PSRS
and SMART with backfilling.

— Conservative backfilling outperforms EASY backfilling when applied to PSRS
and SMART schedules.

— There are little differences between PSRS and SMART schedules when back-
filling is used.

The administrator does not give much weight to the absolute numbers as the
workload trace has been recorded on a machine with 430 nodes while the sim-
ulations are done for a machine with 256 nodes. Although some highly parallel
jobs have been removed from the trace a machine with 256 nodes will experience
a larger backlog which results in a longer average response time.

In the weighted case as shown in Fig. 4, the results are different:
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— The classical list scheduling algorithms clearly outperforms all other algo-
rithms.

PSRS and SMART can be improved with either form of backfilling but are
never better than FCFS with EASY.

— EASY is superior to conservative backfilling.

— PSRS is slightly better than either form of SMART.

The artificial workload based on probability distributions basically supports
the results derived with the CTC workload, see Fig. 5 and Table 4. This seems
to indicate that the larger backlog in the CTC workload does not significantly
affect the simulation results. However, it is strange that the absolute values
for the average response time are even larger than in the CTC workload case
although the number of jobs in the same time frame is significantly less. The only
difference to the CTC workload is the fact that EASY is better than conservative
backfilling if combined with PSRS or SMART in the unweighted case.

The derived qualitative relationship between the various algorithms is also
supported by the randomized workload, see Table 5. Therefore, the administrator
need not worry if a workload will occasionally deviate from her model.

Next the administrator addresses the simulation using the CTC workload
with exact job execution times, see Fig. 6 and Table 6. By comparing those
results with the CTC workload simulations (Table 3) she wants to determine how
much the accuracy of the job execution time estimation affects the schedules.
This comparisons yields the following results:

— In the unweighted case the average response time of PSRS and SMART
schedules can be improved by almost a factor of 2.
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— In the weighted case both forms of backfilling achieve better results than the
classical list scheduling if applied to FCFS or PSRS schedules.

— Surprisingly, SMART schedules with backfilling give worse results in the
weighted case for the CTC workload using the estimated job execution time
than for the original submission data.

Finally, the administrator considers the computation time to execute the
various algorithms for the CTC workload (Table 7) and the artificial workload
based on probability distributions (Table 8). In both cases similar results are
obtained with a few observations being noteworthy:

— It is surprising that the classical list scheduling algorithm requires a similar
computation time for both workloads while the larger number of jobs in the
CTC workload results in more computational effort in almost all other cases.

— In the unweighted case SMART and PSRS together with EASY require
approximately the same computation time which is significantly less than
needed by FCFS and EASY.

— In the weighted case PSRS and SMART need a significant amount of com-
putation time.

Concluding the administrator decides to use the classical list scheduling al-
gorithm for the weighted case. In the unweighted case the results are not that
clear. She intends to use either SMART or PSRS together with some form of
backfilling. However, she wants to execute more simulations to fine tune the pa-
rameters of those algorithms before making the final decision. In addition she
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must evaluate the effect of combining the selected algorithms. This concludes
the evaluation example.

Note that there may be plenty of reasons to consider other algorithms or to
modify the simulation model. It is only the purpose of this paper to describe a
method for the systematic design and evaluation of scheduling systems.

8 Conclusions

In this paper we have presented a strategy to design scheduling systems for
parallel processors. This strategy was illustrated in part with the help of an
example that addressed the following items in particular:

1. Determination of an objective function from a given simple set of policy rules
2. Selection of a several scheduling algorithms from the literature

3. Modification of the selected algorithms where necessary

4. Evaluation of the algorithms with the help of real and artificial workloads

We want to point out that it is not the goal of this paper to show the superiority
of any single scheduling algorithm. On the contrary, we believe that there is no
algorithm that is suited for all scheduling systems. In our view the design of a
good scheduling system will remain an important task for the administrators or
owners of large parallel systems. This paper only tries to provide some guidelines.

References

1. D.G. Feitelson.  Online Parallel Workloads Archive. = Web-Archive, 1998.
http://www.cs.huji.ac.il/labs/parallel/workload/.



10.

11.

12.

13.

14.

15.

16.

D.G. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approaches.
In D.G. Feitelson and L. Rudolph, editors, IPPS’95 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 1-18. Springer—Verlag, Lecture Notes in
Computer Science LNCS 949, 1995.

D.G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job schedul-
ing. In D.G. Feitelson and L. Rudolph, editors, IPPS’98 Workshop: Job Scheduling
Strategies for Parallel Processing, pages 1-24. Springer—Verlag, Lecture Notes in
Computer Science LNCS 1459, 1998.

D.G. Feitelson and A.M. Weil. Utilization and Predictability in Scheduling the
IBM SP2 with Backfilling. In Procedings of IPPS/SPDP 1998, pages 542-546.
IEEE Computer Society, 1998.

A. Feldmann, J. Sgall, and S.-H. Teng. Dynamic scheduling on parallel machines.
Theoretical Computer Science, 130:49-72, 1994.

M. Garey and R.L. Graham. Bounds for multiprocessor scheduling with resource
constraints. STAM Journal on Computing, 4(2):187-200, June 1975.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

J.L. Hennessy and D.A. Patterson. Computer Architecture A Quantitative Ap-
proach. Morgan Kaufmann, San Francisco, second edition, 1996.

S. Hotovy. Workload Evolution on the Cornell Theory Center IBM SP2. In D.G.
Feitelson and L. Rudolph, editors, IPPS’96 Workshop: Job Scheduling Strategies
for Parallel Processing, pages 27-40. Springer—Verlag, Lecture Notes in Computer
Science LNCS 1162, 1996.

D.A. Lifka. The ANL/IBM SP Scheduling System. In D.G. Feitelson and L.
Rudolph, editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Pro-
cessing, pages 295-303. Springer—Verlag, Lecture Notes in Computer Science LNCS
949, 1995.

M.E. Rosenkrantz, D.J. Schneider, R. Leibensperger, M. Shore, and J. Zollweg.
Requirements of the Cornell Theory Center for Resource Management and Pro-
cess Scheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS’95 Workshop:
Job Scheduling Strategies for Parallel Processing, pages 304-318. Springer—Verlag,
Lecture Notes in Computer Science LNCS 949, 1995.

W. Saphir, L.A. Tanner, and B. Traversat. Job Management Requirements for
NAS Parallel Systems and Clusters. In D.G. Feitelson and L. Rudolph, editors,
IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing, pages 319—
337. Springer—Verlag, Lecture Notes in Computer Science LNCS 949, 1995.

U. Schwiegelshohn. Preemptive weighted completion time scheduling of paral-
lel jobs. In Proceedings of the 4** Annual European Symposium on Algorithms
(ESA96), pages 39-51. Springer—Verlag Lecture Notes in Computer Science LNCS
1136, September 1996.

U. Schwiegelshohn, W. Ludwig, J.L. Wolf, J.J. Turek, and P. Yu. Smart SMART
bounds for weighted response time scheduling. STAM Journal on Computing,
28(1):237-253, January 1999.

U. Schwiegelshohn and R. Yahyapour. Improving first-come-first-serve job schedul-
ing by gang scheduling. In D.G. Feitelson and L. Rudolph, editors, IPPS’98 Work-
shop: Job Scheduling Strategies for Parallel Processing, pages 180-198. Springer—
Verlag, Lecture Notes in Computer Science LNCS 1459, 1998.

Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of First-Come-First-Serve
Parallel Job Scheduling. In Proceedings of the 9" SIAM Symposium on Discrete
Algorithms, pages 629-638, January 1998.



17.

18.

19.

20.

21.

Uwe Schwiegelshohn and Ramin Yahyapour. Resource Allocation and Scheduling
in Metasystems. In Proceedings of the Distributed Computing and Metacomputing
Workshop at HPCN Europe, April 1999. To appear in Springer—Verlag Lecture
Notes in Computer Science.

D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202-208, March 1985.

W. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59-66, 1956.

R.E. Steuer. Multiple Criteria Optimization, Theory, Computation and Applica-
tion. Wiley, New York, 1986.

J.J. Turek, U. Schwiegelshohn, J.L. Wolf, and P. Yu. Scheduling parallel tasks to
minimize average response time. In Proceedings of the 5™ SIAM Symposium on
Discrete Algorithms, pages 112-121, January 1994.



Listscheduler Backfilling EASY-Backfilling
sec | pct sec | pct sec | pct
FCFS|4.91E+06 +1143.0%]6.70E+05 -69.6%|3.95E+05 0%
Unweighted PSRS|1.59E+05 -59.7%|1.02E+05 -74.2%|1.06E+405 -73.2%
Case SMART-FFIA|1.57TE+05 -60.2%|1.00E+05 -74.7%|1.17TE405 -70.4%
SMART-NFIW|1.82E+05 -53.9%(1.02E4+05 -74.2%|1.11E+05 -71.9%
Garey&Graham|1.46E+05  -63.0%
FCFS|4.99E+11 +249.0%|1.83E+11 +28.0%|1.43E+11 0%
Weighted PSRS|3.82E+11 +167.1%|1.70E+11 +18.9%|1.43E+11 0%
Case SMART-FFIA|3.5TE+11 +149.6%|2.00E+11 +39.9%|1.51E4+11 +5.6%
SMART-NFIW|3.91E4+11 +173.4%|2.03E+11 +42.0%|1.49E+11 +4.2%
Garey&Graham|1.20E+11  -16.1%
Table 3. Average Response Time for the CTC-Workload
Listscheduler Backfilling EASY-Backfilling
sec | pct sec | pct sec | pct
FCFS|6.17E+06 +499.0%(1.06E4+06  +2.9%|1.08E+06 0%
Unweighted PSRS|2.86E+05 -72.2%|1.71E405 -83.4%|1.55E+05 -85.0%
Case SMART-FFIA|2.6TE4+05 -74.1%|1.74E+05 -83.1%|1.57TE+05 -84.8%
SMART-NFIW |2.85E+05 -72.3%|1.65E+05 -84.0%|1.64E+05 -84.1%
Garey&Graham|2.78E+05 -73.0%
FCFS|6.17E+11 +108.4%(3.03E+11  +2.4%|2.96E+11 0%
Weighted PSRS|5.10E+11 +72.3%(3.06E+11  +3.0%|2.91E+11 -1.7%
Case SMART-FFIA [4.84E4+11 +63.5%|3.33E+11 +12.5%|2.97TE+11 4+0.3%
SMART-NFIW|4.86E+11 +64.2%|3.31E4+11 +11.8%|3.03E+11 +2.4%
Garey&Graham|2.72E+11  -8.1%

Table 4. Average Response Time for the Probability Distributed Workload

Listscheduler Backfilling EASY-Backfilling
sec | pct sec | pct sec | pct
FCFS|3.40E4+08 +96.5%|1.72E+408 -0.6%|1.73E+08 0%
Unweighted PSRS|1.66E+08 -4.0%|1.44E408 -16.8%|1.32E+08 -23.7%
Case SMART-FFIA|1.57E+08 -9.2%|1.41E4+08 -18.5%|1.37TE+08 -20.8%
SMART-NFIW|1.61E408 -6.9%|1.42E4+08 -17.9%|1.39E+08 -19.7%
Garey& Graham|1.73E+08 0%
FCFS|9.40E+14 +41.6%|6.66E+14 +0.3%|6.6/E+14 0%
Weighted PSRS|8.66E+14 +30.4%(6.61E+14 -0.5%|6.60E+14 -0.6%
Case SMART-FFIA|8.15E+14 +22.7%|7.54E+14 +13.6%|6.96E+14 +4.8%
SMART-NFIW|9.056E+14 +36.3%|7.96E+14 +19.9%|7.09E+14 +6.8%
Garey&Graham|6.68E+14  +0.6%

Table 5. Average Response Time for the Randomized Workload




Listscheduler Backfilling EASY-Backfilling
sec | pct sec pct sec | pct

FCFS|4.91E+06 0%|4.05E+05 -39.6%|3.93E+05 -0.5%

Unweighted PSRS|1.05E4+05 -34.0%|6.35E+04 -37.7%|5.48E+04 -48.3%

Case SMART-FFIA|9.0TE4+04 -42.2%|5.60E+04 -45.1%|5.33E4+04 -49.7%

SMART-NFIW|9.39E4+04 -48.4%|5.66E+04 -44.5%|5.34E4+04 -51.9%
Garey&Graham|1.46E+05 0.0%

FCFS|4.99E+11 0%|1.14E+11  -37.7%|9.82E+10 -31.3%

Weighted PSRS(3.91E+11  +2.4%|1.15E+11 -32.4%|9.91E4+10 -30.7%

Case SMART-FFIA|3.03E+11 -15.1%|2.73E+11 +36.5%|2.58E+11 +70.9%

SMART-NFIW|3.33E+11 -14.8%|2.92E+11 +43.8%|2.68E+11 +79.9%
Garey&Graham|1.20E+11 0.0%

Table 6. Average Response Time for the CTC-Workload with Knowledge of the Exact
Job Execution Time

Listscheduler| EASY-Backfilling
pct pct

FCFS -81.6% 0%

Unweighted PSRS -76.7% -33.7%

Case SMART -75.6% -32.7%
Garey&Graham -58.4%

FCFS -80.6% 0%

Weighted PSRS +30.6% -39.4%

Case SMART -13.7% -34.3%
Garey&Graham -57.2%

Table 7. Computation Time for the CTC Workload

Listscheduler| EASY-Backfilling
pct pct

FCFS -92.1% 0%

Unweighted PSRS -88.5% -79.6%

Case SMART -87.1% -80.1%
Garey& Graham -72.3%

FCFS -91.6% 0%

Weighted PSRS -27.2% -57.4%

Case SMART -50.5% -72.7%
Garey&Graham -69.2%

Table 8. Computation Time for the Probability Distributed Workload



