Deterministic Batch Scheduling Without Static
Partitioning

Kostadis Roussos!, Nawaf Bitar? and Robert English?

! kostadis@sgi.com

SGI, 2011 N. Shoreline Blvd, USA
2 nawaf@netapp.com
7 renglish@netapp.com

Network Appliance, Santa Clara CA, USA

Abstract. The Irix 6.5 scheduling system provides intrinsic support for
batch processing, including support for guaranteed access to resources
and policy-based static scheduling. Long range scheduling decisions are
made by Miser, a user level daemon, which reserves the resources needed
by a batch job to complete its tasks. Short-term decisions are made by the
kernel in accordance with the reservations established by Miser. Unlike
many batch systems, the processes in a batch job remain in the system
from the time originally scheduled until the job completes. This gives
the system considerable flexibility in choosing jobs to use idle resources.
Unreserved or reserved but unused resources are available to either in-
teractive jobs or batch jobs that haven’t yet been scheduled. The system
thus gains the advantages of static partitioning and static scheduling,
without their inherent costs.

1 Introduction

Supercomputers have two distinct resource management problems. The first is
the allocation of resources between batch and interactive applications while guar-
anteeing deterministic deadlines. In order to ensure deterministic run times,
batch applications require that resources become available according to some
fixed schedule and not be reclaimed until the application terminates. Interac-
tive users expect that resources become available immediately, but can tolerate
time-sharing of those resources. When both classes of users share a machine, the
batch users experience poor performance since resources are being time-shared
with interactive applications. To remedy this problem, supercomputer resources
are typically partitioned statically between interactive and batch resource pools
that cannot be shared, resulting in wasted idle resources.

The second resource management problem is how to improve throughput
of systems that only run batch applications while still guaranteeing resource
availability and thus deterministic run times. Batch systems that guarantee re-
source availability require that applications specify the resources they require,
and will only schedule an application on a supercomputer if there are sufficient
free resources. This approach results in idle resources, either because the users

overestimate the resources they require, or because there is no batch application
that is small enough to run on the subset of resources available on the computer.

We present in this a paper a new approach, consisting of a user level resource
manager, Miser, and kernel level support code that address both resource man-
agement problems; thus improving throughput and overall system performance.
Miser is responsible for generating a schedule of start and end times for batch
applications such that the resources are never over-committed. The kernel, on
the other hand, is responsible for ensuring that resources guaranteed by Miser
are made available according to the schedule specified by Miser, while simultane-
ously making idle resources available to applications that are not yet scheduled
to run.

To support the CPU scheduling requirements of the Miser resource manager,
namely good interactive behavior, non-interruptible CPU time to particular ap-
plications, and dynamic partitioning of CPUs between batch and interactive
applications, we implemented a new scheduler. To support the physical memory
requirements, namely guaranteed physical memory for particular classes of ap-
plications while simultaneously not wasting physical memory, we added a new
accounting data structure to the virtual memory subsystem. The new account-
ing data structure allows us to reserve memory for applications without actually
allocating the memory. As a result, memory is guaranteed to be available, but
remains unused until the application actually requires it, and therefore, available
to other applications.

It is the combination of scheduler and VM kernel level support that en-
ables our system to deliver better throughput. Our approach enables system
administrators to have deterministic run times for batch applications without
the inherent waste in static partitioning, as well as improving throughput on
dedicated batch systems.

Our paper is divided into five sections. The first section will compare Miser
with existing batch systems and describe some theoretical work. The second
section will then describe Miser, showing how Miser manages supercomputer
resources so as to generate a schedule of applications that does not over-commit
the system. The second section will also describe the interaction between Miser
and the kernel. The third section will describe the kernel modifications to the
scheduler and VM required to support resource reservation and resource sharing.
The fourth section will present some empirical evidence that Miser does indeed
work. The paper will conclude with remarks on future directions for Miser and
remarks on the work as a whole.

2 Related Work

Current commercial batch schedulers only provide static mechanisms for man-
aging the workload between batch and interactive jobs on systems using tools
such as PSET [PSET], cpusets [CPUSET], and the HP sub-complex manager
[SCM].

Ashok and Zahorjan [AsZa92] considered a more dynamic mechanism of al-
locating resources between batch and interactive users. They proposed the par-
titioning of memory between interactive and batch applications and proposed
that CPUs be available on demand to interactive applications. Their approach
results in wasted memory when there is insufficient interactive or batch load to
utilize the reserved memory and, by allowing arbitrary preemption of CPUs to
favor interactive users, they cannot guarantee deterministic run times.

Other commercial batch schedulers [LSF][LL] are able to manage resource
utilization between batch jobs so as to prevent over-subscription. However, they
do not manage resource utilization of applications that are scheduled outside of
the batch system. Consequently, on a machine that is shared by interactive and
batch users, a batch system can not guarantee resource availability to batch jobs
and thus deterministic run times, because it can not control resource usage of
the interactive jobs.

Commercial batch schedulers allow resources to go idle even if there is work
on the system either because of holes in the schedule or because jobs are not
using all the resources they requested. A hole is a point in a schedule of batch
jobs where there are still free resources available, but no job sufficiently small
enough to use them. A conventional batch system can not start a job that is
too big to fit in the hole, because it can not restrict a job to a subset of its
resources. Commercial batch schedulers can not exploit resources that are com-
mitted but unused, because it has no mechanism for reclaiming them later on if
the application should require them.

3 Miser

Miser is a resource manager that runs as a user-level daemon to support batch
scheduling. Miser, given a set of resources to manage, a policy to manage the
resources, and a job with specified space and time requirements will generate a
start and end time for that job. Given a set of these jobs, Miser will generate a
schedule such that the resources are never oversubscribed. Miser will then pass
the start and end times to the kernel, which will manage the actual allocation
of physical resources to the applications according to the schedule defined by
Miser.

3.1 Resource Accounting

Miser’s resource management was designed both to guarantee that resources al-
located to Miser are never oversubscribed, and to give system administrators fine
grain control over those resources. The basic abstraction for resource accounting
1s the resource pool. The resource pool keeps track of the availability of resources
over time. To guarantee that resources are never oversubscribed, Miser deducts
resources from the resource pool as it schedules applications; if an application
requests more resources than are available, it is rejected. To enable fine grain
control over the resource pools, Miser uses a two-tiered hierarchy of pools. At

the top level is a single resource pool, the system pool, that represents the total
resources available to the system. Below the system pool are one or more user
pools whose aggregate resources are equal to or less than the resources available
to the system pool. A two-tiered hierarchy of pools, whose size can vary over
time, allows administrators to control access to resources either by restricting
access to user pools, or by controlling how many resources each particular user
pools has. For example, a 32 CPU system that needs to be shared equally be-
tween three departments for batch use and the university for interactive use,
would have Miser configured to manage 24 CPUs leaving 8 CPUs for general
purpose use. The Miser resources would then in turn be divided into three user
pools of 8 CPUs each that would have their access restricted to users from their
respective departments (see figure 1).

3.2 Job Scheduling

Job scheduling by Miser is similar to job scheduling by other batch schedulers;
applications are submitted to Miser and Miser determines when they can run.
Unlike conventional batch schedulers, applications that are scheduled to run are
not waiting to be started on the host system, but are in a suspended state inside
of TRIX waiting for the kernel to actually allocate them real physical resources
so that they can run. As a result, the kernel can start the application before
its scheduled start time by giving it any currently idle resources. Furthermore,
because 1t is the kernel that is allocating actual physical resources, and not a
user level process, the kernel is also able to reclaim any idle resources if it needs
them to run another batch process or interactive workload.

To schedule a job, users submit jobs to Miser using the miser_submit com-
mand. Miser uses a user-defined policy that has an associated user resource pool
to schedule jobs. The policy and the resource pool are collectively referred to as
a queue (see figure 1). The miser_submit command requires the user to specify
the queue to which the job will be submitted, a resource request, and the job in-
vocation. The resource request is a tuple of time and space: the time is the total
CPU wall-clock time and the space is the logical number of CPUs and physical
memory required. Upon submission, Miser schedules the job using the queue’s
associated scheduling policy and resources and returns a guaranteed start and
completion time for the job, if there are sufficient resources, otherwise the job is
rejected.

Once Miser successfully schedules a job, and miser_submit starts it, the job
waits in the kernel for resources to be made available so it can run. Prior to the
job’s start time, 1t is in batch state. A job in batch state may run opportunistically.
That 1s, it may run on the otherwise idle resources of other pools. Idle batch
queue resources are first made available to interactive users and then to batch
queues; idle interactive resources are made available to the batch queues. When
a job’s start time arrives, the kernel transitions the job to the batch-critical state
and provides it with the resources it requested from Miser allowing it to run.

Figure 2 shows an example of how Miser schedules a job. The user, in this
example, is submitting to the math queue from figure 1 a program called Tuple-

Physics Queue D¢ Policy
Resource Pool - 8 CPU, 120 MB
Chemistry QueueO
System — P < 12 CPU, 120 MB
Resources
Math Queue O
< 4 CPU, 272 MB
|

. P 24 CPU, 512MB
Miser Resources

e
=
e "

Interactive Resources

Fig. 1. An example Miser conifguration on a 32 CPU system. Miser is configured with
24 CPUs in its system pool and there are three queues with user pools of eight CPUs
each. The reamining eight CPUs are being used by the general system.

Count that requires 4 CPUs, 10 hours of wall clock time and 100 MB of memory.
The user specifies the resource requirements, and the program to be scheduled
by Miser using miser_submit. Miser upon receipt of the job scheduling request,
first tries to find the math queue, verifies that the user has sufficient privileges
to schedule the job, and then asks the associated policy of the queue to schedule
the request. The policy uses the resource pool associated with the queue to find a
hole large enough to fit the job. Once the policy has found the hole, the resources
are committed and the start and end times of the job are passed both to the
kernel and the miser_submit command that then starts TupleCount. TupleCount

after being successfully scheduled by Miser now waits in the kernel for resources
to be made available to

User Miser
Miser receives the resource
The user submits the program request and passes it onto the
“TupleCount” with a resource request off /V policy.
4 CPUs 10 hours, and 100MB of memory \

\4

I

Once miser_submit is notified tha

the request has been scheduled, v
program is started. After the policy has scheduled the job in hole,

the start and end times of the job request are
passed both to the kernel and to miser_submi

Hole v~ -
Polic:

Math queue

Fig. 2. Scheduling of a job by Miser

While TupleCount is waiting in the kernel for its start time to arrive, the
kernel may let it run oppurtunistically on idle resources. These idle resources
can either be part of the system resources that are unused by the interactive
portion of the machine, or batch resources that are unused by other queues.
So for example, if the physics queue 1s idle and there is no other interactive
load while TupleCount is waiting in the kernel, the kernel will let it allocate
sufficient resources to begin running. If TupleCount, however, tries to use more
resources than are idle, then the kernel will suspend it. Similarly, any resources
that TupleCount uses can be reclaimed, while the job is in the batch state to
allow a physics or interactive job to run. When TupleCount’s start time does
arrive, however, the kernel transitions the job to the batch-critical state, wakes
it up if necessary and allows it to allocate resources up to the total requested.

3.3 Kernel - Miser Interaction

The Miser-kernel interaction is limited to Miser providing sufficient information
to the kernel such that applications are started and terminated by the kernel
according to the schedule determined by Miser with the resources reserved by
Miser. As each job is submitted to Miser, its parameters are passed to the kernel.
After the job parameters have been passed to the kernel, the daemon does not
intervene until the job has terminated. The parameters passed to the kernel do
not include the queue information since the queue is a user-level abstraction. If
the job terminates early, the kernel notifies Miser, so it can take any action it
wants at that time.

4 Kernel Support

While it is the responsibility of the Miser daemon to generate a schedule of jobs
that does not over-commit the resources of the machine, it is the responsibility
of the kernel to manage system resources such that applications receive the
resources requested and thus meet deadlines. Miser currently manages CPU and
memory resources. The kernel support consists of a new batch scheduling policy
for the TRIX scheduler and modifications to the virtual memory system. The
kernel scheduler and batch scheduling policy are responsible for ensuring that
jobs transition from batch to batch-critical state according to the user-supplied
schedule, that batch-critical applications get the CPUs they requested, and that
idle CPUs are made available to either batch or interactive applications. The
virtual memory subsystem is responsible for providing physical memory to batch-
critical applications and for ensuring that idle physical memory is available to
jobs in the batch state and also to nteractive applications.

4.1 The Scheduler

To support the CPU scheduling requirements of the Miser resource manager,
namely good interactive behavior, non-interruptible CPU time to particular ap-
plications, and dynamic partitioning of CPUs between batch and interactive
applications, we implemented a new scheduler. It consists of a fully preemp-
tive, priority based scheduler that has a number of simple abstractions: kernel
threads, CPU run queues, a unified priority range and a batch and interactive
scheduling policy. The operation of the scheduler i1s conceptually simple: when-
ever a CPU needs to make a scheduling decision it looks for work on its local
run queue, the run queues of other CPUs, and any queues maintained by the
scheduling policies. A scheduling decision is required whenever a higher priority
thread becomes runnable, the current thread ran to the end of its time slice,
or yielded the CPU. At a scheduling decision the processor examines; the local
run queue for any work, and for purposes of load balancing, the local queue of
another randomly selected CPU for a thread with a higher priority that can be
stolen from the remote local run queue. If there is no work on the either the
processors local run queue or on any other local run queue, then the processor,
will look at the run queues maintained by the various scheduling policies. The
interactive and batch scheduling policies can affect the scheduling decisions of
the scheduler by modifying the placement on run queues and the priority of
threads. The scheduler architecture enables both guaranteed CPU time and dy-
namic partitioning of CPU resources. CPU time is guaranteed by boosting the
priority of any thread of a process so that it cannot be preempted during its
execution. Dynamic partitioning is possible because the scheduler is fully pre-
emptive. A CPU can run any thread when it is idle, because if a higher priority
thread suddenly becomes runnable it will immediately preempt a lower priority
thread.

The batch scheduling policy has two goals. The first is to ensure that Miser
jobs receive the requested CPU time. The second goal is to start jobs early on

idle CPUs. To ensure that an application receives its requested CPU time, the
scheduler must accomplish two tasks. The first is guarantee that an application
runs for the total requested time without interruption. This is accomplished by
raising the priority of the Miser job when it becomes batch-critical to a value
higher than that of any interactive job. To guarantee that no two jobs in the
batch-critical state time-slice with one another, the CPUs are partitioned be-
tween distinct jobs, and the threads of a particular job only run on the job’s
partition. The second task is to ensure that an application does not use any
more CPU resources than requested, either by running on more CPUs than re-
quested, or by over-running its time because that will prevent other applications
from receiving their allotted time. This is accomplished by restricting the set
of CPUs that an application can run on while 1t 1s batch-critical and by termi-
nating the application should it over-run its time. The second goal of the batch
scheduler is accomplished by maintaining a private queue of jobs in the batch
state and using it to generate work for idle CPUs. These threads run on CPUs
until they are pre-empted by time-share threads or batch-critical threads.

Figure 3 illustrates how dynamic partitioning takes place between batch and
interactive threads. Initially, all the threads of the batch job are suspended and
the only active threads are interactive threads (figure 3.a). When the first batch
thread becomes active because the job has become batch-critical, it is placed on
the run queue of CPU 4 (figure 3.b). At the next scheduling decision, the CPU
selects the batch thread to run since 1t has a higher priority and the interactive
thread ends up on another run queue as a result of load balancing (figure 3.c).
Later, the second batch thread becomes active, and the interactive thread on
CPU 1 is pre-empted so that the batch thread can run (figure 3.d). As a result
of these preemption the CPUs are now partitioned evenly between batch and
interactive jobs (figure 3.¢). At some point in the future, the batch job exits,
and CPUs 1 and 4 go idle (figure 3.f). At that point the CPUs go looking for
work, and begin to run the interactive threads that are queued on CPU 2 and 3
(figure 3.g).

4.2 Virtual Memory Subsystem

To support the notion of guaranteed physical memory to a particular class of
applications related by scheduling discipline without wasting unused physical
memory, a new accounting mechanism was added to the virtual memory subsys-
tem. The VM did not require major changes because it was already capable of
guaranteeing physical memory to particular applications. What it was not capa-
ble of doing is account for memory across a set of applications related only by
scheduling discipline. The new accounting data structure used is called a mem-
ory pool. There are currently only two pools, a Miser pool and a general pool.
The Miser pool is used to keep track of the total amount of memory available
for use by applications in the batch-critical state. The general pool is used to
keep track of the total amount of physical memory and swap, also called logical
swap, available to the rest of the system. By modifying the size of the general
pool it is possible to reserve enough memory for the Miser pool. Since no actual

Suspended
Fig. 3(a) batch thread
Active batch
- thread.

CPU in batch
partition.

@ ¢ Batch job

Run queue

Fig. 3(b)

Fig. 3(c)

Fig. 3(d) Scheduling

decision.

CPU in
interactive
partition.

Fig. 3(e)

Interactive

Fig. 3(f) <~ Thread

Fig. 3(9)

Fig.3. Fzample of Dynamic Partitioning of CPUs. As the number of batch threads
changes so does the number of the CPUs in the batch partition. The changes take effect
after every scheduling decision

physical memory is reserved, any job using the general pool can use physical
memory equal in size to the logical swap.

Batch applications when running opportunistically use the global pool and
then transition to the Miser pool. To prevent batch jobs from failing a system
call or memory allocation because of insufficient memory in the global pool, the
job is suspended until it becomes batch-critical and the operation is restarted.

In figure 4 we show an example of how both the memory accounting and
memory usage varies on a batch system where there is a batch and interactive
job running. The boxes represent each of the resources, the Miser and global
memory pools as well as the physical and swap memory. The shaded regions of

the boxes represent how much of a particular resource a particular job has at

any point in time. The shading color indicates the job type.

Fig. 4(a) Fig. 4(b)
Miser pool Global Pool Miser pool Global Pool
Size 100MB Size 100MB Size 100MB Size 1pOMB
Free 100MB Free 100MB Free 100MB Free 50MB
Physical Swap Physiqgal Swap
Memory Size 100MB > Memofy Size 100MB
Size 100MB Free 100MB Size 1p0OMB Free 100MB
Free 100MB Free 50MB

Fig. 4(c) Fig. 4(d)
Miser pool Global Pool Miser pool Global Pool
Size 100MB Size 1pOMB Size 100MB Size 1pOMB
Free 100MB Free gMB Free OMB Free 50MB
Physiqal Swap — Physical Swap
Memoyry Size 100MB Memory Size 1pOMB
Size 1pOMB Free 100MB Size 100MB Free JO0MB
Free QMB Free OMB

Fig. 4(e)
Miser pool Global Pool
Size 100MB Size 1pOMB L egend
Free 100MB Free JO0MB

Batch Job I:l
Physiqal Swap .
Memoty Size 100MB Arrow of Time —p-
Size 1pOMB F 100MB .
Fll’zee HoMB ree 100 Interactive Job |:|
Fig. 4.

The machine in figure 4 is initially configured with 100MB of memory in the
global pool, and 100 MB in the Miser pool. The system also has 100 MB of swap
space and 100MB of physical memory (figure 4.a). The interactive job is the first
job to start and requires 50MB of memory, so it is allocated 50MB from the global
pool (figure 4.b). Since there is no other workload on the system, the interactive
program is able to acquire 50MB physical memory. Later a batch job is started
that has requested 100MB of memory (figure 4.c). There are idle resources on
the system, so the batch application begins to run opportunistically, using up the

remaining 50 MB of the global pool. Since there is no other work on the system,
the batch job is also able to use the remaining 50MB of physical memory, and
now all physical memory 1s being used by applications. The batch application
had requested 100MB, but there is no more memory in the global pool, so it is
suspended. At its start time, the batch job is transitioned to the batch-critical
state, and the job now claims 100MB from the Miser pool, and releases the
50MB from the global pool (figure 4.d). Now the global pool has 50MB free, and
the Miser pool 0. The batch application, since it has preference over physical
memory, forces the interactive application to be swapped out because there is
no other free physical memory. The usage of the physical and swap memory now
becomes 100MB for the batch job and 50MB for the interactive job respectively.
When the batch job finally terminates, the Miser pool grows to 100MB, and the
free physical memory is used once again by interactive program (figure 4.e). At
this point there is 50MB of physical memory free and 50MB free in the global
pool.

5 Empirical Evidence

The goals of these experiments are to demonstrate that there is no performance
cost and that the overall throughput of the system improves as a result of using
Miser. The scheduling policy used by the Miser queue was first fit, the default

Our experiments were conducted on a 16 processor Origin 2000 using cg,
bt, and ep from the NAS benchmarks'. We ran the benchmarks repeatedly
and reported either individual performance numbers or the number of times a
benchmark was able to complete over a period of time. The load was generated
using a CPU cycle burner and the load number represents the number of cycle
burners used.

5.1 Experiments

The first experiment shows the performance of cg, bt, and ep with different
amounts of load (figure 5). For each benchmark, we ran the benchmark with
varying degrees of load both using and not using Miser. When the load was 0,
the performance of the application under Miser and not under Miser was identi-
cal, indicating that there is no performance penalty for using Miser. As the load
increases, however, the applications not scheduled by Miser see degradation in
performance. Applications scheduled by Miser, however, do not. This demon-
strates that Miser is able to guarantee deterministic run times for applications
even with large interactive load.

The next two experiments show that Miser can share idle resources between
the batch and interactive portions of the machine. To measure this, we mea-
sured the throughput of the machine by simultaneously starting 5 copies of each

! The performance of the benchmarks cannot be considered official SGI benchmark
values.

Performance vs Load

uuuuu

ooooo

Time (log (sec))
"
Q
]

10 4

Fig. 5.

benchmark and recording both the total wall clock times for all five benchmarks
to run, and the average latency. The benchmarks in all cases were run using eight
threads. Miser was configured to manage half of the total system resources.

The second experiment (see figure 6) measured the latency of applications on
a 16 CPU machine with Miser configured, but not using it and compares it to the
performance of the benchmarks on an 8 CPU machine. For each benchmark, note
that the latency improved dramatically, when compared to the performance of
the benchmark on the smaller machine. The results show that resources reserved
by Miser can be used by interactive applications. A 16 CPU machine configured
to use Miser will result in better average latencies for interactive applications
than two single 8 CPU machines reserved for batch and interactive users if the
batch portions of the machine are idle.

The third experiment (see figure 7) examines the difference in overall through-
put in a batch-scheduling environment. The total time taken for the jobs to
complete their runs was measured when scheduled by a simulated batch sched-
uler, by Miser but with the jobs not taking advantage of the idle resources, and
finally with Miser and with jobs taking advantage of the idle resources. To sim-
ulate a batch environment, applications were started sequentially until the total
resources of the machine were consumed. On the 16 CPU system two 8-way
threaded copies of each application ran at the same time. First note that the
performance of batch applications using Miser when using idle resources is better
than the performance of the applications when Miser does not take advantage of

Interactive Run Times

1400

1200

1000

Total Run Time (sec)

Fig. 6.

idle resources. This shows that Miser can indeed take advantage of idle resources
to improve total throughput. The second thing to observe is that performance
of applications using Miser is better than that of the simulated batch scheduler
when the applications scheduled by Miser can use the idle resources.

Jobs scheduled by Miser perform better than the simulated batch scheduler
because of the way Miser schedules applications. The individual threads are
always run together, the threads are never preempted, and the threads of distinct
applications do not interfere with each other. This results in two benefits. The
first is that applications make better use of the memory system. The second is
that application threads are more efficiently co-scheduled. Note, however, that
the improvement depends on how sensitive the applications are to co-scheduling.
The amount of sensitivity depends on how frequently the application performs
busy-wait synchronization. Ep that does no busy wait synchronization showed
no improvement and cg that does the most showed the most with bt being in

the middle

6 Future Work

Miser does not fully exploit the NUMA properties of the underlying architecture
very well. Although Miser is able to reserve total memory well, in order to achieve
optimal performance on NUMA systems, Miser will need to reserve memory on
specific nodes, and also reserve particular topologies. In this case Miser would

Batch Scheduling Environment

Time (sec)

100

Benchmarks

Fig. 7.

have a fundamental advantage over normal kernel mechanisms because Miser
jobs have known run times.

Miser currently requires that applications not use more than the available
physical memory. If the application requires more, Miser can not schedule the
application. A better solution would be to allow batch jobs to self-page. In this
model, the batch application still has a reservation of memory, but it also has a
reservation of swap. It can thus swap out portions of its physical memory to disk,
so as to have a working size that is potentially much larger than the physical
memory size.

Miser was originally envisioned as a general-purpose resource management
facility for scheduling applications that required particular physical resources
to run. We hope to extend Miser to other classes of applications such as real-
time, and to manage more resources such as disk. The problem with real-time
on IRIX, is that the configuration of a real-time application requires a multi-
step process that is error prone. Using Miser, it would be possible to configure
a particular queue that had the desired real-time attributes, and to start a real-
time application by simply submitting the application to Miser. Miser would
then take the necessary kernel level actions to guarantee the requirements of
the real-time application rather than leave it to the application writer. This
approach not only is less error prone, it allows a real-time system to be shared
by different users, in a way that prevents them from interfering with each other.

Finally, although there is support for user-defined policies, the mechanisms
have not yet been fully defined. We hope to define and export interfaces that
would allow users to provide scheduling policies.

6.1 Conclusions

Theoretical results have shown that dynamic partitioning of CPUs and the static
partitioning of memory provide the best batch throughput and interactive re-
sponse time. These theoretical results must be balanced against the real require-
ment for deterministic batch scheduling that has forced system administrators to
statically partition memory and CPU time. Our system departs from the norm
of user-level schedulers by providing kernel support. Using the underlying kernel
scheduler we are able to guarantee CPU time and memory to batch jobs and
are thus able to guarantee deadlines for particular applications. Furthermore,
because we have no static scheduling, we are able to schedule jobs on CPUs that
other batch schedulers must leave idle in order to achieve guaranteed perfor-
mance, and thus achieve better throughput as we have demonstrated. Miser 1s a
new mechanism for scheduling batch jobs with deterministic deadlines without
the inherent waste of resources that result from static partitioning.

References

[AsZa92] 1. Ashok, J. Zahorjan, ”Scheduling a Mixed Interactive and Batch Workload
on a Parallel, Shared Memory Supercomputer”, Supercomputing 92.

[PSET] man Pages (1M): User Commands, IRIX 6.2, Silicon Graphics 1995

[CPUSET] man Pages (1M): User Commands, IRIX 6.5, Silicon Graphics 1998

[SCM] SubComplex Manager, static partitioning facility by HP. On line documenta-
tion: http://www.convex.com/prod_serv/exemplar/exemplar_scm.html

[LL] LoadLeveller, batch scheduler by IBM. On line documentation:
http://www.austin.ibm.com /software/sp_products/loadlev.html

[LSF] LSF Batch Scheduler Users Guide, Platform Computing documentation. Avail-
able on line at http://www.platform.com

