
Deterministic Batch Scheduling Without StaticPartitioningKostadis Roussos1, Nawaf Bitar2 and Robert English31 kostadis@sgi.comSGI, 2011 N. Shoreline Blvd, USA2 nawaf@netapp.com3 renglish@netapp.comNetwork Appliance, Santa Clara CA, USAAbstract. The Irix 6.5 scheduling system provides intrinsic support forbatch processing, including support for guaranteed access to resourcesand policy-based static scheduling. Long range scheduling decisions aremade by Miser, a user level daemon, which reserves the resources neededby a batch job to complete its tasks. Short-term decisions are made by thekernel in accordance with the reservations established by Miser. Unlikemany batch systems, the processes in a batch job remain in the systemfrom the time originally scheduled until the job completes. This givesthe system considerable 
exibility in choosing jobs to use idle resources.Unreserved or reserved but unused resources are available to either in-teractive jobs or batch jobs that haven't yet been scheduled. The systemthus gains the advantages of static partitioning and static scheduling,without their inherent costs.1 IntroductionSupercomputers have two distinct resource management problems. The �rst isthe allocation of resources between batch and interactive applications while guar-anteeing deterministic deadlines. In order to ensure deterministic run times,batch applications require that resources become available according to some�xed schedule and not be reclaimed until the application terminates. Interac-tive users expect that resources become available immediately, but can toleratetime-sharing of those resources. When both classes of users share a machine, thebatch users experience poor performance since resources are being time-sharedwith interactive applications. To remedy this problem, supercomputer resourcesare typically partitioned statically between interactive and batch resource poolsthat cannot be shared, resulting in wasted idle resources.The second resource management problem is how to improve throughputof systems that only run batch applications while still guaranteeing resourceavailability and thus deterministic run times. Batch systems that guarantee re-source availability require that applications specify the resources they require,and will only schedule an application on a supercomputer if there are su�cientfree resources. This approach results in idle resources, either because the users



overestimate the resources they require, or because there is no batch applicationthat is small enough to run on the subset of resources available on the computer.We present in this a paper a new approach, consisting of a user level resourcemanager, Miser, and kernel level support code that address both resource man-agement problems, thus improving throughput and overall system performance.Miser is responsible for generating a schedule of start and end times for batchapplications such that the resources are never over-committed. The kernel, onthe other hand, is responsible for ensuring that resources guaranteed by Miserare made available according to the schedule speci�ed by Miser, while simultane-ously making idle resources available to applications that are not yet scheduledto run.To support the CPU scheduling requirements of the Miser resource manager,namely good interactive behavior, non-interruptible CPU time to particular ap-plications, and dynamic partitioning of CPUs between batch and interactiveapplications, we implemented a new scheduler. To support the physical memoryrequirements, namely guaranteed physical memory for particular classes of ap-plications while simultaneously not wasting physical memory, we added a newaccounting data structure to the virtual memory subsystem. The new account-ing data structure allows us to reserve memory for applications without actuallyallocating the memory. As a result, memory is guaranteed to be available, butremains unused until the application actually requires it, and therefore, availableto other applications.It is the combination of scheduler and VM kernel level support that en-ables our system to deliver better throughput. Our approach enables systemadministrators to have deterministic run times for batch applications withoutthe inherent waste in static partitioning, as well as improving throughput ondedicated batch systems.Our paper is divided into �ve sections. The �rst section will compare Miserwith existing batch systems and describe some theoretical work. The secondsection will then describe Miser, showing how Miser manages supercomputerresources so as to generate a schedule of applications that does not over-committhe system. The second section will also describe the interaction between Miserand the kernel. The third section will describe the kernel modi�cations to thescheduler and VM required to support resource reservation and resource sharing.The fourth section will present some empirical evidence that Miser does indeedwork. The paper will conclude with remarks on future directions for Miser andremarks on the work as a whole.2 Related WorkCurrent commercial batch schedulers only provide static mechanisms for man-aging the workload between batch and interactive jobs on systems using toolssuch as PSET [PSET], cpusets [CPUSET], and the HP sub-complex manager[SCM].



Ashok and Zahorjan [AsZa92] considered a more dynamic mechanism of al-locating resources between batch and interactive users. They proposed the par-titioning of memory between interactive and batch applications and proposedthat CPUs be available on demand to interactive applications. Their approachresults in wasted memory when there is insu�cient interactive or batch load toutilize the reserved memory and, by allowing arbitrary preemption of CPUs tofavor interactive users, they cannot guarantee deterministic run times.Other commercial batch schedulers [LSF][LL] are able to manage resourceutilization between batch jobs so as to prevent over-subscription. However, theydo not manage resource utilization of applications that are scheduled outside ofthe batch system. Consequently, on a machine that is shared by interactive andbatch users, a batch system can not guarantee resource availability to batch jobsand thus deterministic run times, because it can not control resource usage ofthe interactive jobs.Commercial batch schedulers allow resources to go idle even if there is workon the system either because of holes in the schedule or because jobs are notusing all the resources they requested. A hole is a point in a schedule of batchjobs where there are still free resources available, but no job su�ciently smallenough to use them. A conventional batch system can not start a job that istoo big to �t in the hole, because it can not restrict a job to a subset of itsresources. Commercial batch schedulers can not exploit resources that are com-mitted but unused, because it has no mechanism for reclaiming them later on ifthe application should require them.3 MiserMiser is a resource manager that runs as a user-level daemon to support batchscheduling. Miser, given a set of resources to manage, a policy to manage theresources, and a job with speci�ed space and time requirements will generate astart and end time for that job. Given a set of these jobs, Miser will generate aschedule such that the resources are never oversubscribed. Miser will then passthe start and end times to the kernel, which will manage the actual allocationof physical resources to the applications according to the schedule de�ned byMiser.3.1 Resource AccountingMiser's resource management was designed both to guarantee that resources al-located to Miser are never oversubscribed, and to give system administrators �negrain control over those resources. The basic abstraction for resource accountingis the resource pool. The resource pool keeps track of the availability of resourcesover time. To guarantee that resources are never oversubscribed, Miser deductsresources from the resource pool as it schedules applications; if an applicationrequests more resources than are available, it is rejected. To enable �ne graincontrol over the resource pools, Miser uses a two-tiered hierarchy of pools. At



the top level is a single resource pool, the system pool, that represents the totalresources available to the system. Below the system pool are one or more userpools whose aggregate resources are equal to or less than the resources availableto the system pool. A two-tiered hierarchy of pools, whose size can vary overtime, allows administrators to control access to resources either by restrictingaccess to user pools, or by controlling how many resources each particular userpools has. For example, a 32 CPU system that needs to be shared equally be-tween three departments for batch use and the university for interactive use,would have Miser con�gured to manage 24 CPUs leaving 8 CPUs for generalpurpose use. The Miser resources would then in turn be divided into three userpools of 8 CPUs each that would have their access restricted to users from theirrespective departments (see �gure 1).3.2 Job SchedulingJob scheduling by Miser is similar to job scheduling by other batch schedulers;applications are submitted to Miser and Miser determines when they can run.Unlike conventional batch schedulers, applications that are scheduled to run arenot waiting to be started on the host system, but are in a suspended state insideof IRIX waiting for the kernel to actually allocate them real physical resourcesso that they can run. As a result, the kernel can start the application beforeits scheduled start time by giving it any currently idle resources. Furthermore,because it is the kernel that is allocating actual physical resources, and not auser level process, the kernel is also able to reclaim any idle resources if it needsthem to run another batch process or interactive workload.To schedule a job, users submit jobs to Miser using the miser submit com-mand. Miser uses a user-de�ned policy that has an associated user resource poolto schedule jobs. The policy and the resource pool are collectively referred to asa queue (see �gure 1). The miser submit command requires the user to specifythe queue to which the job will be submitted, a resource request, and the job in-vocation. The resource request is a tuple of time and space: the time is the totalCPU wall-clock time and the space is the logical number of CPUs and physicalmemory required. Upon submission, Miser schedules the job using the queue'sassociated scheduling policy and resources and returns a guaranteed start andcompletion time for the job, if there are su�cient resources, otherwise the job isrejected.Once Miser successfully schedules a job, and miser submit starts it, the jobwaits in the kernel for resources to be made available so it can run. Prior to thejob's start time, it is in batch state. A job in batch state may run opportunistically.That is, it may run on the otherwise idle resources of other pools. Idle batchqueue resources are �rst made available to interactive users and then to batchqueues; idle interactive resources are made available to the batch queues. Whena job's start time arrives, the kernel transitions the job to the batch-critical stateand provides it with the resources it requested from Miser allowing it to run.Figure 2 shows an example of how Miser schedules a job. The user, in thisexample, is submitting to the math queue from �gure 1 a program called Tuple-



Physics Queue

Job

Resource Pool

Policy

Math Queue

Chemistry Queue

Miser Resources

Interactive Resources

System
Resources

Queue

24 CPU, 512MB

8 CPU, 120 MB

12 CPU, 120 MB

4 CPU, 272 MB

Fig. 1. An example Miser conifguration on a 32 CPU system. Miser is con�gured with24 CPUs in its system pool and there are three queues with user pools of eight CPUseach. The reamining eight CPUs are being used by the general system.Count that requires 4 CPUs, 10 hours of wall clock time and 100 MB of memory.The user speci�es the resource requirements, and the program to be scheduledby Miser using miser submit. Miser upon receipt of the job scheduling request,�rst tries to �nd the math queue, veri�es that the user has su�cient privilegesto schedule the job, and then asks the associated policy of the queue to schedulethe request. The policy uses the resource pool associated with the queue to �nd ahole large enough to �t the job. Once the policy has found the hole, the resourcesare committed and the start and end times of the job are passed both to thekernel and the miser submit command that then starts TupleCount. TupleCount



after being successfully scheduled by Miser now waits in the kernel for resourcesto be made available to
Policy

Hole

The user submits the program
“TupleCount” with a resource request of
4 CPUs 10 hours, and 100MB of memory
using miser_submit.

Miser receives the resource
request and passes it onto the
policy.

After the policy has scheduled the job in hole,
the start and end times of the job request are
passed both to the kernel and to miser_submit

Once miser_submit is notified that
the request has been scheduled, the
program is started.

Miser

Math queue

User

Fig. 2. Scheduling of a job by MiserWhile TupleCount is waiting in the kernel for its start time to arrive, thekernel may let it run oppurtunistically on idle resources. These idle resourcescan either be part of the system resources that are unused by the interactiveportion of the machine, or batch resources that are unused by other queues.So for example, if the physics queue is idle and there is no other interactiveload while TupleCount is waiting in the kernel, the kernel will let it allocatesu�cient resources to begin running. If TupleCount, however, tries to use moreresources than are idle, then the kernel will suspend it. Similarly, any resourcesthat TupleCount uses can be reclaimed, while the job is in the batch state toallow a physics or interactive job to run. When TupleCount's start time doesarrive, however, the kernel transitions the job to the batch-critical state, wakesit up if necessary and allows it to allocate resources up to the total requested.3.3 Kernel - Miser InteractionThe Miser-kernel interaction is limited to Miser providing su�cient informationto the kernel such that applications are started and terminated by the kernelaccording to the schedule determined by Miser with the resources reserved byMiser. As each job is submitted to Miser, its parameters are passed to the kernel.After the job parameters have been passed to the kernel, the daemon does notintervene until the job has terminated. The parameters passed to the kernel donot include the queue information since the queue is a user-level abstraction. Ifthe job terminates early, the kernel noti�es Miser, so it can take any action itwants at that time.



4 Kernel SupportWhile it is the responsibility of the Miser daemon to generate a schedule of jobsthat does not over-commit the resources of the machine, it is the responsibilityof the kernel to manage system resources such that applications receive theresources requested and thus meet deadlines. Miser currently manages CPU andmemory resources. The kernel support consists of a new batch scheduling policyfor the IRIX scheduler and modi�cations to the virtual memory system. Thekernel scheduler and batch scheduling policy are responsible for ensuring thatjobs transition from batch to batch-critical state according to the user-suppliedschedule, that batch-critical applications get the CPUs they requested, and thatidle CPUs are made available to either batch or interactive applications. Thevirtual memory subsystem is responsible for providing physical memory to batch-critical applications and for ensuring that idle physical memory is available tojobs in the batch state and also to nteractive applications.4.1 The SchedulerTo support the CPU scheduling requirements of the Miser resource manager,namely good interactive behavior, non-interruptible CPU time to particular ap-plications, and dynamic partitioning of CPUs between batch and interactiveapplications, we implemented a new scheduler. It consists of a fully preemp-tive, priority based scheduler that has a number of simple abstractions: kernelthreads, CPU run queues, a uni�ed priority range and a batch and interactivescheduling policy. The operation of the scheduler is conceptually simple: when-ever a CPU needs to make a scheduling decision it looks for work on its localrun queue, the run queues of other CPUs, and any queues maintained by thescheduling policies. A scheduling decision is required whenever a higher prioritythread becomes runnable, the current thread ran to the end of its time slice,or yielded the CPU. At a scheduling decision the processor examines, the localrun queue for any work, and for purposes of load balancing, the local queue ofanother randomly selected CPU for a thread with a higher priority that can bestolen from the remote local run queue. If there is no work on the either theprocessors local run queue or on any other local run queue, then the processor,will look at the run queues maintained by the various scheduling policies. Theinteractive and batch scheduling policies can a�ect the scheduling decisions ofthe scheduler by modifying the placement on run queues and the priority ofthreads. The scheduler architecture enables both guaranteed CPU time and dy-namic partitioning of CPU resources. CPU time is guaranteed by boosting thepriority of any thread of a process so that it cannot be preempted during itsexecution. Dynamic partitioning is possible because the scheduler is fully pre-emptive. A CPU can run any thread when it is idle, because if a higher prioritythread suddenly becomes runnable it will immediately preempt a lower prioritythread.The batch scheduling policy has two goals. The �rst is to ensure that Miserjobs receive the requested CPU time. The second goal is to start jobs early on



idle CPUs. To ensure that an application receives its requested CPU time, thescheduler must accomplish two tasks. The �rst is guarantee that an applicationruns for the total requested time without interruption. This is accomplished byraising the priority of the Miser job when it becomes batch-critical to a valuehigher than that of any interactive job. To guarantee that no two jobs in thebatch-critical state time-slice with one another, the CPUs are partitioned be-tween distinct jobs, and the threads of a particular job only run on the job'spartition. The second task is to ensure that an application does not use anymore CPU resources than requested, either by running on more CPUs than re-quested, or by over-running its time because that will prevent other applicationsfrom receiving their allotted time. This is accomplished by restricting the setof CPUs that an application can run on while it is batch-critical and by termi-nating the application should it over-run its time. The second goal of the batchscheduler is accomplished by maintaining a private queue of jobs in the batchstate and using it to generate work for idle CPUs. These threads run on CPUsuntil they are pre-empted by time-share threads or batch-critical threads.Figure 3 illustrates how dynamic partitioning takes place between batch andinteractive threads. Initially, all the threads of the batch job are suspended andthe only active threads are interactive threads (�gure 3.a). When the �rst batchthread becomes active because the job has become batch-critical, it is placed onthe run queue of CPU 4 (�gure 3.b). At the next scheduling decision, the CPUselects the batch thread to run since it has a higher priority and the interactivethread ends up on another run queue as a result of load balancing (�gure 3.c).Later, the second batch thread becomes active, and the interactive thread onCPU 1 is pre-empted so that the batch thread can run (�gure 3.d). As a resultof these preemption the CPUs are now partitioned evenly between batch andinteractive jobs (�gure 3.e). At some point in the future, the batch job exits,and CPUs 1 and 4 go idle (�gure 3.f). At that point the CPUs go looking forwork, and begin to run the interactive threads that are queued on CPU 2 and 3(�gure 3.g).4.2 Virtual Memory SubsystemTo support the notion of guaranteed physical memory to a particular class ofapplications related by scheduling discipline without wasting unused physicalmemory, a new accounting mechanism was added to the virtual memory subsys-tem. The VM did not require major changes because it was already capable ofguaranteeing physical memory to particular applications. What it was not capa-ble of doing is account for memory across a set of applications related only byscheduling discipline. The new accounting data structure used is called a mem-ory pool. There are currently only two pools, a Miser pool and a general pool.The Miser pool is used to keep track of the total amount of memory availablefor use by applications in the batch-critical state. The general pool is used tokeep track of the total amount of physical memory and swap, also called logicalswap, available to the rest of the system. By modifying the size of the generalpool it is possible to reserve enough memory for the Miser pool. Since no actual



Suspended
batch thread

Active batch
thread.

CPU in batch
partition.

CPU in
interactive
partition.

Batch job

Run queue

Scheduling
decision.

Fig. 3(b)

Fig. 3(c)

Fig. 3(d)

Fig. 3(e)

Fig. 3(f)

Fig. 3(g)

Fig. 3(a)

Interactive
ThreadFig. 3. Example of Dynamic Partitioning of CPUs. As the number of batch threadschanges so does the number of the CPUs in the batch partition. The changes take e�ectafter every scheduling decisionphysical memory is reserved, any job using the general pool can use physicalmemory equal in size to the logical swap.Batch applications when running opportunistically use the global pool andthen transition to the Miser pool. To prevent batch jobs from failing a systemcall or memory allocation because of insu�cient memory in the global pool, thejob is suspended until it becomes batch-critical and the operation is restarted.In �gure 4 we show an example of how both the memory accounting andmemory usage varies on a batch system where there is a batch and interactivejob running. The boxes represent each of the resources, the Miser and globalmemory pools as well as the physical and swap memory. The shaded regions of



the boxes represent how much of a particular resource a particular job has atany point in time. The shading color indicates the job type.

Legend

Batch Job

Arrow of Time

Interactive Job

Miser pool
Size 100MB
Free 100MB

Global Pool
Size 100MB
Free 100MB

Physical
Memory
Size 100MB
Free 100MB

Swap
Size 100MB
Free 100MB

Miser pool
Size 100MB
Free 100MB

Global Pool
Size 100MB
Free 0MB

Physical
Memory
Size 100MB
Free 0MB

Swap
Size 100MB
Free 100MB

Miser pool
Size 100MB
Free 0MB

Global Pool
Size 100MB
Free 50MB

Physical
Memory
Size 100MB
Free 0MB

Swap
Size 100MB
Free 50MB

Miser pool
Size 100MB
Free 100MB

Global Pool
Size 100MB
Free 50MB

Physical
Memory
Size 100MB
Free 50MB

Swap
Size 100MB
Free 100MB

Miser pool
Size 100MB
Free 100MB

Global Pool
Size 100MB
Free 50MB

Physical
Memory
Size 100MB
Free 50MB

Swap
Size 100MB
Free 100MB

Fig. 4(a) Fig. 4(b)

Fig. 4(c) Fig. 4(d)

Fig. 4(e) Fig. 4.The machine in �gure 4 is initially con�gured with 100MB of memory in theglobal pool, and 100 MB in the Miser pool. The system also has 100 MB of swapspace and 100MB of physical memory (�gure 4.a). The interactive job is the �rstjob to start and requires 50MB of memory, so it is allocated 50MB from the globalpool (�gure 4.b). Since there is no other workload on the system, the interactiveprogram is able to acquire 50MB physical memory. Later a batch job is startedthat has requested 100MB of memory (�gure 4.c). There are idle resources onthe system, so the batch application begins to run opportunistically, using up the



remaining 50 MB of the global pool. Since there is no other work on the system,the batch job is also able to use the remaining 50MB of physical memory, andnow all physical memory is being used by applications. The batch applicationhad requested 100MB, but there is no more memory in the global pool, so it issuspended. At its start time, the batch job is transitioned to the batch-criticalstate, and the job now claims 100MB from the Miser pool, and releases the50MB from the global pool (�gure 4.d). Now the global pool has 50MB free, andthe Miser pool 0. The batch application, since it has preference over physicalmemory, forces the interactive application to be swapped out because there isno other free physical memory. The usage of the physical and swap memory nowbecomes 100MB for the batch job and 50MB for the interactive job respectively.When the batch job �nally terminates, the Miser pool grows to 100MB, and thefree physical memory is used once again by interactive program (�gure 4.e). Atthis point there is 50MB of physical memory free and 50MB free in the globalpool.5 Empirical EvidenceThe goals of these experiments are to demonstrate that there is no performancecost and that the overall throughput of the system improves as a result of usingMiser. The scheduling policy used by the Miser queue was �rst �t, the defaultOur experiments were conducted on a 16 processor Origin 2000 using cg,bt, and ep from the NAS benchmarks1. We ran the benchmarks repeatedlyand reported either individual performance numbers or the number of times abenchmark was able to complete over a period of time. The load was generatedusing a CPU cycle burner and the load number represents the number of cycleburners used.5.1 ExperimentsThe �rst experiment shows the performance of cg, bt, and ep with di�erentamounts of load (�gure 5). For each benchmark, we ran the benchmark withvarying degrees of load both using and not using Miser. When the load was 0,the performance of the application under Miser and not under Miser was identi-cal, indicating that there is no performance penalty for using Miser. As the loadincreases, however, the applications not scheduled by Miser see degradation inperformance. Applications scheduled by Miser, however, do not. This demon-strates that Miser is able to guarantee deterministic run times for applicationseven with large interactive load.The next two experiments show that Miser can share idle resources betweenthe batch and interactive portions of the machine. To measure this, we mea-sured the throughput of the machine by simultaneously starting 5 copies of each1 The performance of the benchmarks cannot be considered o�cial SGI benchmarkvalues.



Performance vs Load

1

10

100

1000

10000

0 4 8 12 16

Load

Tim
e (l

og
 (se

c)) bt normal

bt miser

cg normal

cg miser

ep normal

ep miser

Fig. 5.benchmark and recording both the total wall clock times for all �ve benchmarksto run, and the average latency. The benchmarks in all cases were run using eightthreads. Miser was con�gured to manage half of the total system resources.The second experiment (see �gure 6) measured the latency of applications ona 16 CPU machine with Miser con�gured, but not using it and compares it to theperformance of the benchmarks on an 8 CPU machine. For each benchmark, notethat the latency improved dramatically, when compared to the performance ofthe benchmark on the smaller machine. The results show that resources reservedby Miser can be used by interactive applications. A 16 CPU machine con�guredto use Miser will result in better average latencies for interactive applicationsthan two single 8 CPU machines reserved for batch and interactive users if thebatch portions of the machine are idle.The third experiment (see �gure 7) examines the di�erence in overall through-put in a batch-scheduling environment. The total time taken for the jobs tocomplete their runs was measured when scheduled by a simulated batch sched-uler, by Miser but with the jobs not taking advantage of the idle resources, and�nally with Miser and with jobs taking advantage of the idle resources. To sim-ulate a batch environment, applications were started sequentially until the totalresources of the machine were consumed. On the 16 CPU system two 8-waythreaded copies of each application ran at the same time. First note that theperformance of batch applications using Miser when using idle resources is betterthan the performance of the applications when Miser does not take advantage of



Interactive Run Times

0

200

400

600

800

1000

1200

1400

bt cg ep

Benchmark

To
tal 

Ru
n T

im
e (s

ec)

16 CPU System

8 CPU System 

Fig. 6.idle resources. This shows that Miser can indeed take advantage of idle resourcesto improve total throughput. The second thing to observe is that performanceof applications using Miser is better than that of the simulated batch schedulerwhen the applications scheduled by Miser can use the idle resources.Jobs scheduled by Miser perform better than the simulated batch schedulerbecause of the way Miser schedules applications. The individual threads arealways run together, the threads are never preempted, and the threads of distinctapplications do not interfere with each other. This results in two bene�ts. The�rst is that applications make better use of the memory system. The second isthat application threads are more e�ciently co-scheduled. Note, however, thatthe improvement depends on how sensitive the applications are to co-scheduling.The amount of sensitivity depends on how frequently the application performsbusy-wait synchronization. Ep that does no busy wait synchronization showedno improvement and cg that does the most showed the most with bt being inthe middle6 Future WorkMiser does not fully exploit the NUMA properties of the underlying architecturevery well. Although Miser is able to reserve total memory well, in order to achieveoptimal performance on NUMA systems, Miser will need to reserve memory onspeci�c nodes, and also reserve particular topologies. In this case Miser would



Batch Scheduling Environment

0

100

200

300

400

500

600

700

bt cg ep

Benchmarks

Tim
e (s

ec) Miser Not Using Static Resources

Simulated Batch Scheduler

Miser Using Idle Resources

Fig. 7.have a fundamental advantage over normal kernel mechanisms because Miserjobs have known run times.Miser currently requires that applications not use more than the availablephysical memory. If the application requires more, Miser can not schedule theapplication. A better solution would be to allow batch jobs to self-page. In thismodel, the batch application still has a reservation of memory, but it also has areservation of swap. It can thus swap out portions of its physical memory to disk,so as to have a working size that is potentially much larger than the physicalmemory size.Miser was originally envisioned as a general-purpose resource managementfacility for scheduling applications that required particular physical resourcesto run. We hope to extend Miser to other classes of applications such as real-time, and to manage more resources such as disk. The problem with real-timeon IRIX, is that the con�guration of a real-time application requires a multi-step process that is error prone. Using Miser, it would be possible to con�gurea particular queue that had the desired real-time attributes, and to start a real-time application by simply submitting the application to Miser. Miser wouldthen take the necessary kernel level actions to guarantee the requirements ofthe real-time application rather than leave it to the application writer. Thisapproach not only is less error prone, it allows a real-time system to be sharedby di�erent users, in a way that prevents them from interfering with each other.



Finally, although there is support for user-de�ned policies, the mechanismshave not yet been fully de�ned. We hope to de�ne and export interfaces thatwould allow users to provide scheduling policies.6.1 ConclusionsTheoretical results have shown that dynamic partitioning of CPUs and the staticpartitioning of memory provide the best batch throughput and interactive re-sponse time. These theoretical results must be balanced against the real require-ment for deterministic batch scheduling that has forced system administrators tostatically partition memory and CPU time. Our system departs from the normof user-level schedulers by providing kernel support. Using the underlying kernelscheduler we are able to guarantee CPU time and memory to batch jobs andare thus able to guarantee deadlines for particular applications. Furthermore,because we have no static scheduling, we are able to schedule jobs on CPUs thatother batch schedulers must leave idle in order to achieve guaranteed perfor-mance, and thus achieve better throughput as we have demonstrated. Miser is anew mechanism for scheduling batch jobs with deterministic deadlines withoutthe inherent waste of resources that result from static partitioning.References[AsZa92] I. Ashok, J. Zahorjan, "Scheduling a Mixed Interactive and Batch Workloadon a Parallel, Shared Memory Supercomputer", Supercomputing 92.[PSET] man Pages (1M): User Commands, IRIX 6.2, Silicon Graphics 1995[CPUSET] man Pages (1M): User Commands, IRIX 6.5, Silicon Graphics 1998[SCM] SubComplex Manager, static partitioning facility by HP. On line documenta-tion: http://www.convex.com/prod serv/exemplar/exemplar scm.html[LL] LoadLeveller, batch scheduler by IBM. On line documentation:http://www.austin.ibm.com/software/sp products/loadlev.html[LSF] LSF Batch Scheduler Users Guide, Platform Computing documentation. Avail-able on line at http://www.platform.com


