Using Run-Time Predictions to Estimate Queue
Wait Times and Improve Scheduler Performance

Warren Smith"?, Valerie Taylor?, and Ian Foster!

! {wsmith, foster}@mcs.anl.gov
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, 11, 60439
http://www.mcs.anl.gov
2 taylor@ece.nwu.edu
FElectrical and Computer Engineering Department
Northwestern University
Evanston, IL 60208
http://www.ece.nwu.edu

Abstract. On many computers, a request to run a job is not serviced
immediately but instead is placed in a queue and serviced only when
resources are released by preceding jobs. In this paper, we build on run-
time prediction techniques that we developed in previous research to
explore two problems. The first problem is to predict how long applica-
tions will wait in a queue until they receive resources. We develop run-
time estimates that result in more accurate wait-time predictions than
other run-time prediction techniques. The second problem we investi-
gate is improving scheduling performance. We use run-time predictions
to improve the performance of the least-work-first and backfill scheduling
algorithms. We find that using our run-time predictor results in lower
mean wait times for the workloads with higher offered loads and for the
backfill scheduling algorithm.

1 Introduction

On many high-performance computers, a request to execute an application is not
serviced immediately but instead is placed in a queue and serviced only when
resources are released by running applications. We examine two separate prob-
lems in this environment. First, we predict how long applications will wait until
they execute. These estimates of queue wait times are useful to guide resource
selection when several systems are available [7], to co-allocate resources from
multiple systems [2], to schedule other activities, and so forth. Our technique
for predicting queue wait times i1s to use predictions of application execution
times along with the scheduling algorithms to simulate the actions made by a
scheduler and determine when applications will begin to execute.

We performed queue wait-time prediction and scheduling experiments using
four workloads and three scheduling algorithms. The workloads were recorded

from an IBM SP at Argonne National Laboratory, an IBM SP at the Cornell
Theory Center, and an Intel Paragon at the San Diego Supercomputing Center.
The scheduling algorithms are first-come first-served (FCFS), least-work-first
(LWT), and backfill. We find that there is a built-in error of 34 to 43 percent
when predicting wait times of the LWF algorithm and a smaller built-in error of
3 to 4 percent for the backfill algorithm. We also find that more accurate run-
time predictions result in more accurate wait-time predictions. Specifically, using
our run-time prediction technique instead of maximum run times or the run-time
prediction techniques of Gibbons [8] or Downey [3] improves run-time prediction
error by 39 to 92 percent and this improves wait-time prediction performance
by 16 to 89 percent.

Second, we improve the performance of the LWF and backfill scheduling al-
gorithms by using our run-time predictions. These algorithms use run-time pre-
dictions when making scheduling decisions, and we therefore expect that more
accurate run-time predictions will improve scheduling performance. Using our
run-time predictions using the same four workloads describe above, we find that
the accuracy of the run-time predictions has a minimal effect on the utilization
of the systems we are simulating. We also find that using our run-time predictors
result in mean wait times that are within 22 percent of the mean wait times that
are obtained if the scheduler exactly knows the run times of all of the applica-
tions. When comparing the different predictors, our run-time predictor results
in 2 to 67 percent smaller mean wait times for the workload with the highest
offered load. No prediction technique clearly outperforms the other techniques
when the offered load is low.

The next section summarizes our approach to predicting application run
times and the approaches of other researchers. Section 3 describes our queue
wait-time prediction technique and presents performance data. Section 4 presents
the results of using our run-time predictions in the LWF and backfill scheduling
algorithms. Section 5 presents our conclusions.

2 Predicting Application Run Times

This section briefly describes our prediction technique, discusses the scheduling
algorithms used with this work, and reviews the run-time prediction techniques
of two other researchers, Gibbons [8] and Downey [3]. For further details, see

[12].

2.1 Owur Run-Time Prediction Technique

Our general approach to predicting application run times is to derive run-time
predictions from historical information of previous “similar” runs. This approach
is based on the observation [12,3,5,8] that similar applications are more likely
to have similar run times than applications that have nothing in common. We
address the issues of how to define similar and how to generate predictions from
similar past applications.

Defining Similarity A difficulty in developing prediction techniques based on
similarity is that two jobs can be compared in many ways. For example, we can
compare the application name, submitting user name, executable arguments,
submission time, and number of nodes requested. In this work, we are restricted
to those values recorded in workload traces obtained from various supercom-
puter centers. However, because the techniques that we propose are based on
the automatic discovery of efficient similarity criteria, we believe that they will
apply even if quite different information is available.

Table 1. Characteristics of the trace data used in our studies.

Number Number | Mean
Workload of of Run Time
Name System Nodes |Location|Requests| (minutes)

ANL ' | IBM SP2 120 | ANL | 7994 97.75

CTC IBM SP2 512 CTC 13217 171.14
SDSC95 |Intel Paragon| 400 SDSC | 22885 108.21
SDSC96 |Intel Paragon| 400 SDSC | 22337 166.98

The workload traces that we consider are described in Table 1; they originate
from Argonne National Laboratory (ANL), the Cornell Theory Center (CTC),
and the San Diego Supercomputer Center (SDSC). Table 2 summarizes the in-
formation provided in these traces. Text in a field indicates that a particular
trace contains the information in question; in the case of “Type,” “Queue,” or
“Class” the text specifies the categories in question.

The general approach to defining similarity that we as well as Downey and
Gibbons take is to use characteristics such as those presented in Table 2 to
define templates that identify a set of categories to which jobs can be assigned.
For example, the template (q,u) specifies that jobs are to be partitioned by
queue and user; on the SDSC Paragon, this template generates categories such
as (q16m,wsmith), (q641,wsmith), and (q16m,foster).

We find that using characteristics 1-6 of Table 2 in the manner just described
works reasonably well. On the other hand, the number of nodes is an essentially
continuous parameter, and so we prefer to introduce an additional parameter
into our templates, namely, a “node range size” that defines what ranges of
requested number of nodes are used to decide whether applications are similar.
For example, the template (u, n=4) specifies a node range size of 4 and generates
categories (wsmith, 1-4 nodes) and (wsmith, 5-8 nodes).

Once a set of templates has been defined (using a search process described
later), we can categorize a set of applications (e.g., the workloads of Table 1)

! Because of an error when the trace was recorded, the ANL trace does not include
one-third of the requests actually made to the system. To compensate, we reduced
the number of nodes on the machine from 120 to 80 when performing simulations.

Table 2. Characteristics recorded in workloads. The column “Abbr” indicates abbre-
viations used in subsequent discussion.

Abbr| Characteristic Argonne Cornell SDSC
batch, serial,
1 ¢ Type interactive| parallel,
pvm3
2| q Queue 29 to
35 queues
3| ¢ Class DSI/PIOFS
4| u User Y Y Y
5| s | Loadleveler script Y
6| e Executable Y
7| a Arguments Y
8| na | Network adaptor Y
9| n | Number of nodes Y Y Y
10 Maximum run time Y Y
11 Submission time Y Y Y
12 Start time Y Y Y
13 Run time Y Y Y

by assigning each application to those categories that match its characteristics.
Categories need not be disjoint, and hence the same job can occur in several
categories. If two jobs fall into the same category, they are judged similar; those
that do not coincide in any category are judged dissimilar.

Generating Predictions We now consider the question of how we generate
run-time predictions. The input to this process is a set of templates and a work-
load for which run-time predictions are required. In addition to the character-
istics described in the preceding section, running time, maximum history, type
of data to store, and prediction type are also defined for each template. The
running time is how long an application has been running when a prediction is
made; we use this characteristic by forming a prediction from a category using
only the data points that have an execution time less than this running time.
The maximum history indicates the maximum number of data points to store in
each category generated from a template. The type of data is either an actual run
time or a relative run time. A relative run time incorporates information about
user-supplied run time estimates by storing the ratio of the actual run time to
the user-supplied estimate (the maximum run times provided by the ANL and
CTC workloads). The prediction type determines how a run-time prediction is
made from the data in each category generated from a template. In our previous
work, we considered four prediction types: a mean, a linear regression, an inverse
regression, and a logarithmic regression [13,4]. We found that the mean is the
single best predictor, so this study uses only the mean to form predictions.

The output from this process is a set of run-time predictions and associated
confidence intervals. (A confidence interval is an interval centered on the run-
time prediction within which the actual run time is expected to appear some
specified percentage of the time.) The basic algorithm is described below and
comprises three steps: initialization, prediction, and incorporation of historical
information.

1. Define T, the set of templates to be used, and initialize C', the (initially
empty) set of categories.
2. At the time each application a begins to execute:
(a) Apply the templates in T to the characteristics of a to identify the cat-
egories (', into which the application may fall.
(b) Eliminate from C all categories that are not in C' or that cannot provide
a valid prediction (i.e., do not have enough data points).
(c) For each category remaining in Cy, compute a run-time estimate and a
confidence interval for the estimate.
(d) If Cy is not empty, select the estimate with the smallest confidence in-
terval as the run-time prediction for the application.
3. At the time each application a completes execution:

(a) Identify the set C of categories into which the application falls. These
categories may or may not exist in C'.
(b) For each category ¢; € C
i. If ¢; € O, create ¢; in C.
ii. If |¢;| = maximum history(c;), remove the oldest point in ¢;.
1. Insert a into ¢;.

Note that steps 2 and 3 operate asynchronously, since historical information
for a job cannot be incorporated until the job finishes. Hence, our algorithm
suffers from an initial ramp-up during which there is insufficient information in
C' to make predictions. This deficiency could be corrected by using a training
set to initialize C'.

The use of maximum histories in step 3(b) of our algorithm allows us to
control the amount of historical information used when making predictions and
the amount of storage space needed to store historical information. A small
maximum history means that less historical information is stored, and hence
only more recent events are used to make predictions.

Template Definition and Search We use search techniques to identify good
templates for a particular workload; this approach is in contrast to the strategies
of Gibbons and Downey, who use a fixed set of templates. While the number of
application characteristics included in our traces is relatively small, the fact that
effective template sets may contain many templates means that an exhaustive
search is impractical. OQur previous work compared greedy and genetic algorithm
searches and found that genetic algorithm searches outperform greedy searches.
Therefore, we use only genetic algorithm searches in this work.

Genetic algorithms are a probabilistic technique for exploring large search
spaces, in which the concept of cross-over from biology is used to improve effi-
ciency relative to purely random search [10]. A genetic algorithm evolves indi-
viduals over a series of generations. The process for each generation consists of
evaluating the fitness of each individual in the population, selecting which indi-
viduals will be mated to produce the next generation, mating the individuals,
and mutating the resulting individuals to produce the next generation. The pro-
cess then repeats until a stopping condition is met. The stopping condition we
use 1s that a fixed number of generations have been processed. There are many
different variations to this process, and we will next describe the variations we
used.

Our individuals represent template sets. Each template set consists of be-
tween 1 and 10 templates, and we encode the following information in binary
form for each template:

1. Whether a mean or one of the three regressions is used to produce a predic-
tion.

2. Whether absolute or relative run times are used.

3. Whether each of the binary characteristics associated with the workload in
question is enabled.

4. Whether node information should be used and, if so, the range size from 1
to 512 in powers of 2.

5. Whether the amount of history stored in each category should be limited
and, if so, the limit between 2 and 65536 in powers of 2.

A fitness function is used to compute the fitness of each individual and there-
fore its chance to reproduce. The fitness function should be selected so that the
most desirable individuals have higher fitness and produce more offspring, but
the diversity of the population must be maintained by not giving the best in-
dividuals overwhelming representation in succeeding generations. In our genetic
algorithm, we wish to minimize the prediction error and maintain a range of
individual fitnesses regardless of whether the range in errors is large or small.
The fitness function we use to accomplish this goal is

Fmin + EE"L% X (Fmax - szn)a

mae —Emin

where E is the error of the individual (template set), Epin and ey are
the minimum and maximum errors of individuals in the generation, and F;,
and F,4. are the desired minimum and maximum fitnesses desired. We choose
Frar = 4Fpin.

We use a common technique called stochiastic sampling with replacement
to select which individuals will mate to produce the next generation. In this
technique, each parent is selected from the individuals by selecting individual ¢
with probability FzF.

The mating or crossover process is accomplished by randomly selecting pairs
of individuals to mate and replacing each pair by their children in the new pop-
ulation. The crossover of two individuals proceeds in a slightly nonstandard way

because our chromosomes are not fixed length but a multiple of the number
of bits used to represent each template. Two children are produced from each
crossover by randomly selecting a template ¢ and a position p in the template
from the first individual 77 = #11,...,%1, and randomly selecting a template
J in the second individual 75 = %21,...,%2,, so that the resulting individu-
als will not have more than 10 templates. The new individuals are then T, =
tl,la . ~at1,i—1a nl,t27j+1, . ~at2,m and T2 = t2,1 . ~t2,j—1a nz,tlyH_l, . ~ati,n~ If
there are b bits used to represent each template, n; is the first p bits of ¢ ;
concatenated with the last b — p bits of ¢5 ;, and ns is the first p bits of ¢, ;
concatenated with the last & — p bits of ¢; ;.

In addition to using crossover to produce the individuals of the next gener-
ation, we also use a process called elitism whereby the best individuals in each
generation survive unmutated to the next generation. We use crossover to pro-
duce all but two individuals for each new generation and use elitism to select
the last two individuals for each new generation. The individuals resulting from
the crossover process are mutated to help maintain a diversity in the population.
Each bit representing the individuals is flipped with a probability of .01.

Run-Time Prediction Experiments We use run time predictions to pre-
dict queue wait times and improve the performance of scheduling algorithms.
Therefore, we need to determine what workloads to search over to find the best
template sets to use. We have already described four sets of trace data that
were recorded from supercomputers. Next, we describe the three scheduling al-
gorithms we consider.

We use the first-come first-served (FCFS), least-work-first (LWT), and back-
fill scheduling algorithms in this work. In the FCFS algorithm, applications are
given resources in the order in which they arrive. The application at the head of
the queue runs whenever enough nodes become free. The LWF algorithm also
tries to execute applications in order, but the applications are ordered in increas-
ing order using estimates of the amount of work (number of nodes multiplied by
estimated wallclock execution time) the application will perform.

The backfill algorithm is a variant of the FCFS algorithm. The difference
is that the backfill algorithm allows an application to run before it would in
FCFS order if it will not delay the execution of applications ahead of it in
the queue (those that arrived before it). When the backfill algorithm tries to
schedule applications, it examines every application in the queue, in order of
arrival time. If an application can run (there are enough free nodes and running
the application will not delay the starting times of applications ahead of it in the
queue), it is started. If an application cannot run, nodes are “reserved” for it at
the earliest possible time. This reservation is only to make sure that applications
behind it in the queue do not delay it; the application may actually start before
the reservation time.

Each scheduling algorithm predicts application run times at different times
when predicting queue wait times for the jobs in each trace. When predicting
queue wait times, we predict the wait time of an application when it is sub-

mitted. A wait-time prediction in this case requires run-time predictions of all
applications in the system so the run-time prediction workload contains predic-
tions for all running and queued jobs every time an application is submitted.
We insert data points for an application into our historical database as soon as
each application completes. To try to find the optimal template set to use to
predict execution times, we use a workload for each algorithm/trace pair and
search over each of these 12 workloads separately.

When using run-time predictions while scheduling, run-time predictions are
also made at different times for each algorithm /trace pair, and we attempt to
find the optimal template sets to use for each pair. The FCFS algorithm does
not use run-time predictions when scheduling, so we only consider the LWF and
backfill algorithms here. For the LWF algorithm, all waiting applications are
predicted whenever the scheduling algorithm attempts to start an application
(when any application is enqueued or finishes). This occurs because the LWF
algorithm needs to find the waiting application that will use the least work.
For the backfill algorithm, all running and waiting applications are predicted
whenever the scheduling algorithm attempts to start an application (when any
application is enqueued or finishes).

We generate our run-time prediction workloads for scheduling using maxi-
mum run times as run-time predictions. We note that using maximum run times
will produce predictions and insertions slightly different from those produced
when the LWF and backfill algorithms use other run-time predictions. Never-
theless, we believe that these run-time prediction workloads are representative
of the predictions and insertions that will be made when scheduling using other
run-time predictors.

2.2 Related Work

Gibbons [8,9] also uses historical information to predict the run times of parallel
applications. His technique differs from ours principally in that he uses a fixed
set of templates and different characteristics to define templates. He uses the six
templates/predictor combinations listed in Table 3. The running time (rtime)
characteristic indicates how long an application has been executing when a pre-
diction is made for the application. Gibbons produces predictions by examining
categories derived from the templates listed in Table 3, in the order listed, until
a category that can provide a valid prediction is found. This prediction is then
used as the run-time prediction.

The set of templates listed in Table 3 results because Gibbons uses templates
of (u,e), (e), and () with subtemplates in each template. The subtemplates
add the characteristics n and rtime. Gibbons also uses the requested number
of nodes slightly differently from the way we do: rather than having equal-sized
ranges specified by a parameter, as we do, he defines the fixed set of exponential
ranges 1, 2-3, 4-7, 8-15, and so on.

Another difference between Gibbons’s technique and ours is how he performs
a linear regression on the data in the categories (u,e), (e), and (). These
categories are used only if one of their subcategories cannot provide a valid

Table 3. Templates used by Gibbons for run-time prediction.

Number| Template | Predictor |
1 (u,e,n,rtime) mean |
2 (u,e) linear regressi0n|
3 (e,n,rtime) mean |
4 (e) linear regressi0n|
5 (n,rtime) mean |
6 O linear regressi0n|

prediction. A weighted linear regression is performed on the mean number of
nodes and the mean run time of each subcategory that contains data, with each
pair weighted by the inverse of the variance of the run times in their subcategory.

Downey [3] uses a different technique to predict the execution time of parallel
applications. His procedure is to categorize all applications in the workload, then
model the cumulative distribution functions of the run times in each category,
and finally use these functions to predict application run times. Downey catego-
rizes applications using the queues that applications are submitted to, although
he does state that other characteristics can be used in this categorization. In fact,
Downey’s prediction technique within a category can be used with our technique
for finding the best characteristics to use to categorize applications.

Downey observed that the cumulative distributions of the execution times
of the jobs in the workloads he examined can be modeled relatively accurately
by using a logarithmic function: gy + 81 Int. Once the distribution functions are
calculated, he uses two different techniques to produce a run-time prediction.
The first technique uses the median lifetime given that an application has exe-
cuted for @ time units. If one assumes the logarithmic model for the cumulative
distribution, this equation is

1.0—Bg
ae P,

The second technique uses the conditional average lifetime

tmax —a

logtmar — loga

with ¢, = e(1:0=F0)/F1

3 Predicting Queue Wait Times

We use the run-time predictions described in the preceding section to predict
queue wait times. Our technique is to perform a scheduling simulation using the
predicted run times as the run times of the applications. This will then provide
predictions of when applications will start to execute. Specifically, we simulate

the FCFS, LWF, and backfill scheduling algorithms and predict the wait time
for each application as it 1s submitted to the scheduler. The accuracy of using
various run-time predictors is shown in Table 4 through Table 9.

Table 4 shows the wait-time prediction performance when actual run times
are used during prediction. No data is shown for the FCFS algorithm because
there is no error when computing wait-time predictors in this case: later-arriving
jobs do not affect the start times of the jobs that are currently in the queue.
For the LWF and backfill scheduling algorithms, wait-time prediction error does
occur because later arriving jobs can affect when the jobs currently in the queue
can run. As one can see in the table, the wait-time prediction error for the LWF
algorithm is between 34 and 43 percent. For the backfill scheduling algorithm,
there is a smaller error of 3 to 4 percent. This error is higher for the LWF
algorithm because later arriving jobs that wish to perform smaller amounts
of work move to the head of the queue. Any error for the backfill algorithm
seems unexpected at first, but errors in wait-time prediction can occur because
scheduling is performed using maximum run times. For example, a job Js arriving
in the queue can start ahead of an already queued job J; because the scheduler
does not believe job J; can use those nodes; a running job finishes early, and job
J1 would start except that the job Js is using nodes that it needs. This example
results in a wait-time prediction error for job J; before job J; arrives in the
queue.

Table 4. Wait-time prediction performance using actual run times.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL LWF 37.14 43

ANL Backfill 5.84 3

CTC LWF 4.05 39

CTC Backfill 2.62 10
SDSC95 LWF 5.83 39
SDSC95 | Backfill 1.12 4
SDSC96 LWF 3.32 42
SDSC96 | Backfill 0.30 3

Table 5 shows the wait-time prediction errors while using maximumrun times
as run-time predictions. Maximum run times are used to predict run times in
scheduling systems such as EASY [11]. These predictions are provided in the
ANL and CTC workload and are implied in the SDSC workloads because each
of the queues in the two SDSC workload has maximum limits on resource usage.
To derive maximum run times for the SDSC workloads, we determine the longest
running job in each queue and use that as the maximum run time for all jobs in
that queue. The wait-time prediction error when using actual run times as run-
time predictors is 59 to 99 percent better than the wait-time prediction error of

the LWF and backfill algorithms when using maximum run times as the run-time
predictor.

Table 5. Wait-time prediction performance using maximum run times.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL FCFS 996.67 186

ANL LWF 97.12 112

ANL Backfill 429.05 242

CTC FCFS 125.36 128

CTC LWF 9.86 94

CTC Backfill 51.16 190
SDSC95 FCFS 162.72 295
SDSC95 LWF 28.56 191
SDSC95 | Backfill 93.81 333
SDSC96 | FCFS 47.83 288
SDSC96 LWF 14.19 180
SDSC96 | Backfill 39.66 350

Table 6 shows that our run-time prediction technique results in wait-time
prediction errors that are from 34 to 77 percent of mean wait times. Our data
also shows that run-time prediction errors that are from 33 to 73 percent of
mean application run times. The best wait-time prediction performance occurs
for the ANL and CTC workloads and the worst for the SDSC96 workload. This
is the opposite of what we expect from the run-time prediction errors. The
most accurate run-time predictions are for the SDSC96 workload and the least
accurate are for the CTC workload. The results imply that accurate run-time
predictions are not the only factor that determines the accuracy of wait-time
predictions.

The results when using our run-time predictor also show that the mean wait
time prediction error is 20 percent better to 62 percent worse than when pre-
dicting wait times for the LWF algorithm using actual run times. Finally, using
our run-time predictor results in 42 to 88 percent better wait time predictions
than when using maximum run times as the run-time predictors.

Table 7 shows the wait-time prediction errors when using Gibbons’s run
time predictor. Our run-time prediction errors are between 39 and 68 percent
better than Gibbons’s and our wait-time prediction errors are between 13 and
83 percent better.

Tables 8 and 9 show the wait-time prediction error when using Downey’s
conditional average and conditional median predictors. The wait-time prediction
errors we achieve when using our run-time predictor are between 19 and 87
better than these errors and our run-time prediction errors are between 42 and
92 percent better.

Table 6. Wait-time prediction performance using our run-time predictor.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL FCFS 161.49 30

ANL LWF 44.75 51

ANL Backfill 75.55 43

CTC FCFS 30.84 31

CTC LWF 5.74 55

CTC Backfill 11.37 42
SDSC95 | FCFS 20.34 37
SDSC95 LWF 8.72 58
SDSC95 | Backfill 12.49 44
SDSC96 | FCFS 9.74 59
SDSC96 LWF 4.66 59
SDSC96 | Backfill 5.03 44

In summary, the results show that our run-time predictor is more accurate
than maximum run times, Gibbons’s predictor, or Downey’s predictors. The
results also show that the wait-time prediction errors are smaller when our run-
time predictor 1s used. Clearly, there is a correlation between wait-time prediction
error and run-time prediction error.

Table 7. Wait-time prediction performance using Gibbons’s run-time predictor.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL FCFS 350.86 66

ANL LWF 76.23 91

ANL Backfill 94.01 53

CTC FCFS 81.45 83

CTC LWF 32.34 309

CTC Backfill 13.57 50
SDSC95 | FCFS 54.37 99
SDSC95 LWF 11.60 78
SDSC95 | Backfill 20.27 72
SDSC96 FCFS 22.36 135
SDSC96 LWF 6.88 87
SDSC96 | Backfill 17.31 153

Table 8. Wait-time prediction performance using Downey’s conditional average run-
time predictor.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL FCFS 443.45 83

ANL LWF 232.24 277

ANL Backfill 339.10 191

CTC FCFS 65.22 66

CTC LWF 14.78 141

CTC Backfill 17.22 64
SDSC95 | FCFS 187.73 340
SDSC95 LWF 35.84 240
SDSC95 | Backfill 62.96 223
SDSC96 FCFS 83.62 503
SDSC96 LWF 28.42 361
SDSC96 | Backfill 47.11 415

Table 9. Wait-time prediction performance using Downey’s conditional median run-
time predictor.

Scheduling| Mean Error| Percentage of

Workload| Algorithm || (minutes) |Mean Wait Time

ANL FCFS 534.71 100

ANL LWF 254.91 304

ANL Backfill 410.57 232

CTC FCFS 83.33 85

CTC LWF 15.47 148

CTC Backfill 19.35 72
SDSC95 | FCFS 62.67 114
SDSC95 LWF 18.28 122
SDSC95 | Backfill 27.52 98
SDSC96 FCFS 34.23 206
SDSC96 LWF 12.65 161
SDSC96 | Backfill 20.70 183

4 Improving Scheduler Performance

Our second application of run-time predictions is to improve the performance
of the LWF and backfill scheduling algorithms. Table 10 shows the performance
of the scheduling algorithms when the actual run times are used as run-time
predictors. This i1s the best performance we can expect in each case and serves
as an upper bound on scheduling performance.

Table 10. Scheduling performance using actual run times.

Scheduling| Utilization|Mean Wait Time

Workload| Algorithm || (percent) (minutes)

ANL LWF 70.34 61.20

ANL Backfill 71.04 142.45

CTC LWF 51.28 11.15

cTC Backfill 51.28 23.75
SDSC95 LWF 41.14 14.48
SDSC95 | Backfill 41.14 21.98
SDSC96 LWF 46.79 6.80
SDSC96 | Backfill 46.79 10.42

Table 11 shows the performance of using maximum run times as run time
predictions in terms of average utilization and mean wait time. The scheduling
performance when using the maximum run times can once again be considered an
upper bound for comparison. When comparing this data to the data in Table 10,
one can see that the maximum run times are an inaccurate predictor but this
fact does not affect the utilization of the simulated parallel computers. Predicting
run times with actual run-times when scheduling results in 3 to 27 percent lower
mean wait times, except in one case where using maximum run times results in
6 percent lower mean wait times. The effect of accurate run-time predictions is
highest for the ANL workload which has the largest offered load.

Table 12 shows the performance of using our run-time prediction technique
when scheduling. The run-time prediction error in this case is between 23 and 93
percent of mean run times, slightly worse than the results when predicting run-
times for wait-time prediction. This worse performance is due to more predictions
being performed. First, more predictions are made of applications before they
begin executing; and these predictions do not have information about how long
an application has executed. Second, more predictions are made of long-running
applications, the applications that contribute the largest errors to the mean
eITors.

Our run-time prediction technique results in mean wait times that are 5
percent better to 4 percent worse than when using actual run times as predictions
for the least-work-first algorithm. For the backfill algorithm, mean wait times
when using our run-time predictor are 11 to 22 percent worse. These results can

Table 11. Scheduling performance using maximum run times.

Scheduling| Utilization|Mean Wait Time

Workload| Algorithm || (percent) (minutes)

ANL LWF 70.70 83.81

ANL Backfill 71.04 177.14

CTC LWF 51.28 10.48

cTC Backfill 51.28 26.86
SDSC95 LWF 41.14 14.95
SDSC95 | Backfill 41.14 28.20
SDSC96 LWF 46.79 7.88
SDSC96 | Backfill 46.79 11.34

be understood by noticing that the backfill algorithm requires more accurate run-
time predictions than LWF. LWF just needs to know if applications are “big” or
“small,” and small errors do not greatly affect performance. The performance of
the backfill algorithm depends on accurate run-time predictions because it tries
to fit applications into time/space slots.

Table 12. Scheduling performance using our run-time prediction technique.

Scheduling| Utilization|Mean Wait Time

Workload| Algorithm || (percent) (minutes)

ANL LWF 70.28 78.22

ANL Backfill 71.04 148.77

CTC LWF 51.28 13.40

cTC Backfill 51.28 22.54
SDSC95 LWF 41.14 16.19
SDSC95 | Backfill 41.14 22.17
SDSC96 LWF 46.79 7.79
SDSC96 | Backfill 46.79 10.10

When comparing our run-time prediction technique to using maximum run
times, our technique has a minimal effect on the utilization of the systems, but
it does decrease the mean wait time in six of the eight experiments. Table 13
through Table 15 show the performance of the scheduling algorithms when using
Gibbons’s and Downey’s run-time predictors. The results indicate that once
again, using our run-time predictor does not produce greater utilization. The
results also show that our run-time predictor results in 13 to 50 percent lower
mean wait times for the ANL workload, but there is no clearly better run-time
predictor for the other three workloads. The ANL workload has much larger
mean wait times and higher utilization (greater offered load) than the other
workloads (particularly the SDSC workloads). This may indicate that greater

prediction accuracy of our technique when scheduling becomes “hard”. To test
this hypothesis, we compressed the interrival time of applications by a factor of
two for both SDSC workloads and then simulated these two new workloads. We
found that our run-time predictor results in mean wait times that are 8 percent
better on average, but are 43 percent lower to 31 percent higher than mean wait
times than obtained when using Gibbons’s or Downey’s techniques.

The results also show that of Gibbons’s and Downey’s run-time predictors,
Downey’s conditional average is the worst predictor and Gibbons’s predictor is
the most accurate. The data shows that our run-time predictor is between 2 and
86 percent better than the other predictors, except for the CTC workload. For
this workload, our predictor is the worst. This may be explained by the limited
template searches we performed for that workload (because of time constraints).
The accuracy of the run-time predictions for the CTC workload carriers over to
the to the mean wait times of the scheduling algorithms when using the various
run-time predictors: our mean wait times are the worst.

Table 13. Scheduling performance using Gibbons’ run-time prediction technique.

Scheduling| Utilization|Mean Wait Time

Workload| Algorithm || (percent) (minutes)

ANL LWF 70.72 90.36

ANL Backfill 71.04 181.38

CTC LWF 51.28 11.04

cTC Backfill 51.28 27.31
SDSC95 LWF 41.14 15.99
SDSC95 | Backfill 41.14 24.83
SDSC96 LWF 46.79 7.51
SDSC96 | Backfill 46.79 10.82

5 Conclusions

In this work, we apply predictions of application run times to two separate
scheduling problems. The problems are predicting how long applications will
wait in queues before executing and improving the performance of scheduling
algorithms. Our technique for predicting application run times is to derive a
prediction for an application from the run times of previous applications judged
similar by a template of key job characteristics. The novelty of our approach
lies in the use of search techniques to find the best templates. For the workloads
considered in this work, our searches found templates that result in run-time
prediction errors that are significantly better than those of other researchers or
using user-supplied maximum run times.

We predict queue wait times by using run-time predictions and the algo-
rithms used by schedulers. These two factors are used to simulate scheduling

Table 14. Scheduling performance using Downey’s conditional average run-time pre-

dictor.

Scheduling| Utilization|Mean Wait Time
Workload| Algorithm || (percent) (minutes)
ANL LWF 71.04 154.76
ANL Backfill 70.88 246.40
cTC LWF 51.28 9.87
cTC Backfill 51.28 14.45
SDSC95 LWF 41.14 16.22
SDSC95 | Backfill 41.14 20.37
SDSC96 LWF 46.79 7.88
SDSC96 | Backfill 46.79 8.25

Table 15. Scheduling performance using Downey’s conditional median run-time pre-

dictor.

Scheduling| Utilization|Mean Wait Time
Workload| Algorithm || (percent) (minutes)
ANL LWF 71.04 154.76
ANL Backfill 71.04 207.17
CTC LWF 51.28 11.54
CcTC Backfill 51.28 16.72
SDSC95 LWF 41.14 16.36
SDSC95 | Backfill 41.14 19.56
SDSC96 LWF 46.79 7.80
SDSC96 | Backfill 46.79 8.02

algorithms and decide when applications will execute. Estimates of queue wait
times are useful to guide resource selection when several systems are available,
to co-allocate resources from multiple systems, to schedule other activities, and
so forth. This technique results in a wait-time prediction error of between 33
and 73 percent of mean wait times when using our run-time predictors. This
error is significantly better than when using the run-time predictors of Gibbons,
Downey, or user-supplied maximum run times. We also find that even if we pre-
dict application run times with no error, the wait-time prediction error for the
least-work-first algorithm is significant (34 to 43 percent of mean wait times).

We improve the performance of the least-work-first and backfill scheduling
algorithms by using our run-time predictions when scheduling. We find that the
utilization of the parallel computers we simulate does not vary greatly when
using different run-time predictors. We also find that using our run-time pre-
dictions does improve the mean wait times in general. In particular, our more
accurate run-time predictors have the largest effect on mean wait time for the
ANL workload, which has the highest utilization. In this workload, the mean
wait times are between 7 and 67 percent lower when using our run-time predic-
tions than when using other run-time predictions. We also find that on average,
the mean wait time when using our predictor is within 8 percent of the mean
wait time that would occur if the scheduler knows the exact run times of the ap-
plications. The mean wait time when using our technique ranges from 5 percent
better to 22 percent worse than when scheduling with the actual run times.

In future work, we will investigate an alternative method for predicting queue
wait times. This method will use the current state of the scheduling system (num-
ber of applications in each queue, time of day, etc.) and historical information
on queue wait times during similar past states to predict queue wait times. We
hope this technique will improve wait-time prediction error, particularly for the
LWF algorithm, which has a large built-in error using the technique presented
here. Further, we will expand our work in using run-time prediction techniques
for scheduling to the problem of combining queue-based scheduling and reser-
vations. Reservations are one way to co-allocate resources in metacomputing
systems [1,6,2,7]. Support for resource co-allocation is crucial to large-scale ap-
plications that require resources from more than one parallel computer.

Acknowledgments

We thank the Mathematics and Computer Science Division of Argonne National
Laboratory, the Cornell Theory Center, and the San Diego Supercomputer Cen-
ter for providing us with the trace data used in this work. We also thank Richard
Gibbons for providing us with his run-time prediction code and Allen Downey
for assisting in the comparison with his work.

This work was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Computational and Tech-
nology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,
and by a NSF Young Investigator award under Grant CCR-9215482.

References

10.

11.

12.

13.

C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44—
52, 1992.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A Resource Management Architecture for Metasystems. Lecture Notes
on Computer Science, 1998.

Allen Downey. Predicting Queue Times on Space-Sharing Parallel Computers. In
International Parallel Processing Symposium, 1997.

N. R. Draper and H. Smith. Applied Regression Analysis, 2nd Edition. John Wiley
and Sons, 1981.

Dror Feitelson and Bill Nitzberg. Job Characteristics of a Production Parallel
Scientific Workload on the NASA Ames iPSC/860. Lecture Notes on Computer
Sceence, 949:337-360, 1995.

. lan Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

International Journal of Supercomputing Applications, 11(2):115-128, 1997.

lan Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kauffmann, 1999.

Richard Gibbons. A Historical Application Profiler for Use by Parallel Scheculers.
Lecture Notes on Computer Science, 1297:58-75, 1997.

Richard Gibbons. A Historical Profiler for Use by Parallel Schedulers. Master’s
thesis, University of Toronto, 1997.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

David A. Lifka. The ANL/IBM SP Scheduling System. Lecture Notes on Computer
Science, 949:295-303, 1995.

Warren Smith, Tan Foster, and Valerie Taylor. Predicting Application Run Times
Using Historical Information. Lecture Notes on Computer Science, 1459:122-142,
1998.

Neil Weiss and Matthew Hassett. Introductory Statistics. Addison-Wesley, 1982.

