
Using Run-Time Predictions to Estimate QueueWait Times and Improve Scheduler PerformanceWarren Smith1;2, Valerie Taylor2, and Ian Foster11 fwsmith, fosterg@mcs.anl.govMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439http://www.mcs.anl.gov2 taylor@ece.nwu.eduElectrical and Computer Engineering DepartmentNorthwestern UniversityEvanston, IL 60208http://www.ece.nwu.eduAbstract. On many computers, a request to run a job is not servicedimmediately but instead is placed in a queue and serviced only whenresources are released by preceding jobs. In this paper, we build on run-time prediction techniques that we developed in previous research toexplore two problems. The �rst problem is to predict how long applica-tions will wait in a queue until they receive resources. We develop run-time estimates that result in more accurate wait-time predictions thanother run-time prediction techniques. The second problem we investi-gate is improving scheduling performance. We use run-time predictionsto improve the performance of the least-work-�rst and back�ll schedulingalgorithms. We �nd that using our run-time predictor results in lowermean wait times for the workloads with higher o�ered loads and for theback�ll scheduling algorithm.1 IntroductionOn many high-performance computers, a request to execute an application is notserviced immediately but instead is placed in a queue and serviced only whenresources are released by running applications. We examine two separate prob-lems in this environment. First, we predict how long applications will wait untilthey execute. These estimates of queue wait times are useful to guide resourceselection when several systems are available [7], to co-allocate resources frommultiple systems [2], to schedule other activities, and so forth. Our techniquefor predicting queue wait times is to use predictions of application executiontimes along with the scheduling algorithms to simulate the actions made by ascheduler and determine when applications will begin to execute.We performed queue wait-time prediction and scheduling experiments usingfour workloads and three scheduling algorithms. The workloads were recorded



from an IBM SP at Argonne National Laboratory, an IBM SP at the CornellTheory Center, and an Intel Paragon at the San Diego Supercomputing Center.The scheduling algorithms are �rst-come �rst-served (FCFS), least-work-�rst(LWF), and back�ll. We �nd that there is a built-in error of 34 to 43 percentwhen predicting wait times of the LWF algorithm and a smaller built-in error of3 to 4 percent for the back�ll algorithm. We also �nd that more accurate run-time predictions result in more accurate wait-time predictions. Speci�cally, usingour run-time prediction technique instead of maximumrun times or the run-timeprediction techniques of Gibbons [8] or Downey [3] improves run-time predictionerror by 39 to 92 percent and this improves wait-time prediction performanceby 16 to 89 percent.Second, we improve the performance of the LWF and back�ll scheduling al-gorithms by using our run-time predictions. These algorithms use run-time pre-dictions when making scheduling decisions, and we therefore expect that moreaccurate run-time predictions will improve scheduling performance. Using ourrun-time predictions using the same four workloads describe above, we �nd thatthe accuracy of the run-time predictions has a minimal e�ect on the utilizationof the systems we are simulating.We also �nd that using our run-time predictorsresult in mean wait times that are within 22 percent of the mean wait times thatare obtained if the scheduler exactly knows the run times of all of the applica-tions. When comparing the di�erent predictors, our run-time predictor resultsin 2 to 67 percent smaller mean wait times for the workload with the highesto�ered load. No prediction technique clearly outperforms the other techniqueswhen the o�ered load is low.The next section summarizes our approach to predicting application runtimes and the approaches of other researchers. Section 3 describes our queuewait-time prediction technique and presents performance data. Section 4 presentsthe results of using our run-time predictions in the LWF and back�ll schedulingalgorithms. Section 5 presents our conclusions.2 Predicting Application Run TimesThis section brie
y describes our prediction technique, discusses the schedulingalgorithms used with this work, and reviews the run-time prediction techniquesof two other researchers, Gibbons [8] and Downey [3]. For further details, see[12].2.1 Our Run-Time Prediction TechniqueOur general approach to predicting application run times is to derive run-timepredictions from historical information of previous \similar" runs. This approachis based on the observation [12,3,5,8] that similar applications are more likelyto have similar run times than applications that have nothing in common. Weaddress the issues of how to de�ne similar and how to generate predictions fromsimilar past applications.



De�ning Similarity A di�culty in developing prediction techniques based onsimilarity is that two jobs can be compared in many ways. For example, we cancompare the application name, submitting user name, executable arguments,submission time, and number of nodes requested. In this work, we are restrictedto those values recorded in workload traces obtained from various supercom-puter centers. However, because the techniques that we propose are based onthe automatic discovery of e�cient similarity criteria, we believe that they willapply even if quite di�erent information is available.Table 1. Characteristics of the trace data used in our studies.Number Number MeanWorkload of of Run TimeName System Nodes Location Requests (minutes)ANL 1 IBM SP2 120 ANL 7994 97.75CTC IBM SP2 512 CTC 13217 171.14SDSC95 Intel Paragon 400 SDSC 22885 108.21SDSC96 Intel Paragon 400 SDSC 22337 166.98The workload traces that we consider are described in Table 1; they originatefrom Argonne National Laboratory (ANL), the Cornell Theory Center (CTC),and the San Diego Supercomputer Center (SDSC). Table 2 summarizes the in-formation provided in these traces. Text in a �eld indicates that a particulartrace contains the information in question; in the case of \Type," \Queue," or\Class" the text speci�es the categories in question.The general approach to de�ning similarity that we as well as Downey andGibbons take is to use characteristics such as those presented in Table 2 tode�ne templates that identify a set of categories to which jobs can be assigned.For example, the template (q,u) speci�es that jobs are to be partitioned byqueue and user; on the SDSC Paragon, this template generates categories suchas (q16m,wsmith), (q64l,wsmith), and (q16m,foster).We �nd that using characteristics 1{6 of Table 2 in the manner just describedworks reasonably well. On the other hand, the number of nodes is an essentiallycontinuous parameter, and so we prefer to introduce an additional parameterinto our templates, namely, a \node range size" that de�nes what ranges ofrequested number of nodes are used to decide whether applications are similar.For example, the template (u, n=4) speci�es a node range size of 4 and generatescategories (wsmith, 1-4 nodes) and (wsmith, 5-8 nodes).Once a set of templates has been de�ned (using a search process describedlater), we can categorize a set of applications (e.g., the workloads of Table 1)1 Because of an error when the trace was recorded, the ANL trace does not includeone-third of the requests actually made to the system. To compensate, we reducedthe number of nodes on the machine from 120 to 80 when performing simulations.



Table 2. Characteristics recorded in workloads. The column \Abbr" indicates abbre-viations used in subsequent discussion.Abbr Characteristic Argonne Cornell SDSCbatch, serial,1 t Type interactive parallel,pvm32 q Queue 29 to35 queues3 c Class DSI/PIOFS4 u User Y Y Y5 s Loadleveler script Y6 e Executable Y7 a Arguments Y8 na Network adaptor Y9 n Number of nodes Y Y Y10 Maximum run time Y Y11 Submission time Y Y Y12 Start time Y Y Y13 Run time Y Y Yby assigning each application to those categories that match its characteristics.Categories need not be disjoint, and hence the same job can occur in severalcategories. If two jobs fall into the same category, they are judged similar; thosethat do not coincide in any category are judged dissimilar.Generating Predictions We now consider the question of how we generaterun-time predictions. The input to this process is a set of templates and a work-load for which run-time predictions are required. In addition to the character-istics described in the preceding section, running time, maximum history, typeof data to store, and prediction type are also de�ned for each template. Therunning time is how long an application has been running when a prediction ismade; we use this characteristic by forming a prediction from a category usingonly the data points that have an execution time less than this running time.The maximumhistory indicates the maximumnumber of data points to store ineach category generated from a template. The type of data is either an actual runtime or a relative run time. A relative run time incorporates information aboutuser-supplied run time estimates by storing the ratio of the actual run time tothe user-supplied estimate (the maximum run times provided by the ANL andCTC workloads). The prediction type determines how a run-time prediction ismade from the data in each category generated from a template. In our previouswork, we considered four prediction types: a mean, a linear regression, an inverseregression, and a logarithmic regression [13,4]. We found that the mean is thesingle best predictor, so this study uses only the mean to form predictions.



The output from this process is a set of run-time predictions and associatedcon�dence intervals. (A con�dence interval is an interval centered on the run-time prediction within which the actual run time is expected to appear somespeci�ed percentage of the time.) The basic algorithm is described below andcomprises three steps: initialization, prediction, and incorporation of historicalinformation.1. De�ne T , the set of templates to be used, and initialize C, the (initiallyempty) set of categories.2. At the time each application a begins to execute:(a) Apply the templates in T to the characteristics of a to identify the cat-egories Ca into which the application may fall.(b) Eliminate fromCa all categories that are not in C or that cannot providea valid prediction (i.e., do not have enough data points).(c) For each category remaining in Ca, compute a run-time estimate and acon�dence interval for the estimate.(d) If Ca is not empty, select the estimate with the smallest con�dence in-terval as the run-time prediction for the application.3. At the time each application a completes execution:(a) Identify the set Ca of categories into which the application falls. Thesecategories may or may not exist in C.(b) For each category ci 2 Cai. If ci 62 C, create ci in C.ii. If jcij = maximum history(ci), remove the oldest point in ci.iii. Insert a into ci.Note that steps 2 and 3 operate asynchronously, since historical informationfor a job cannot be incorporated until the job �nishes. Hence, our algorithmsu�ers from an initial ramp-up during which there is insu�cient information inC to make predictions. This de�ciency could be corrected by using a trainingset to initialize C.The use of maximum histories in step 3(b) of our algorithm allows us tocontrol the amount of historical information used when making predictions andthe amount of storage space needed to store historical information. A smallmaximum history means that less historical information is stored, and henceonly more recent events are used to make predictions.Template De�nition and Search We use search techniques to identify goodtemplates for a particular workload; this approach is in contrast to the strategiesof Gibbons and Downey, who use a �xed set of templates. While the number ofapplication characteristics included in our traces is relatively small, the fact thate�ective template sets may contain many templates means that an exhaustivesearch is impractical. Our previous work compared greedy and genetic algorithmsearches and found that genetic algorithm searches outperform greedy searches.Therefore, we use only genetic algorithm searches in this work.



Genetic algorithms are a probabilistic technique for exploring large searchspaces, in which the concept of cross-over from biology is used to improve e�-ciency relative to purely random search [10]. A genetic algorithm evolves indi-viduals over a series of generations. The process for each generation consists ofevaluating the �tness of each individual in the population, selecting which indi-viduals will be mated to produce the next generation, mating the individuals,and mutating the resulting individuals to produce the next generation. The pro-cess then repeats until a stopping condition is met. The stopping condition weuse is that a �xed number of generations have been processed. There are manydi�erent variations to this process, and we will next describe the variations weused.Our individuals represent template sets. Each template set consists of be-tween 1 and 10 templates, and we encode the following information in binaryform for each template:1. Whether a mean or one of the three regressions is used to produce a predic-tion.2. Whether absolute or relative run times are used.3. Whether each of the binary characteristics associated with the workload inquestion is enabled.4. Whether node information should be used and, if so, the range size from 1to 512 in powers of 2.5. Whether the amount of history stored in each category should be limitedand, if so, the limit between 2 and 65536 in powers of 2.A �tness function is used to compute the �tness of each individual and there-fore its chance to reproduce. The �tness function should be selected so that themost desirable individuals have higher �tness and produce more o�spring, butthe diversity of the population must be maintained by not giving the best in-dividuals overwhelming representation in succeeding generations. In our geneticalgorithm, we wish to minimize the prediction error and maintain a range ofindividual �tnesses regardless of whether the range in errors is large or small.The �tness function we use to accomplish this goal isFmin + Emax�EEmax�Emin � (Fmax � Fmin),where E is the error of the individual (template set), Emin and Emax arethe minimum and maximum errors of individuals in the generation, and Fminand Fmax are the desired minimum and maximum �tnesses desired. We chooseFmax = 4Fmin.We use a common technique called stochiastic sampling with replacementto select which individuals will mate to produce the next generation. In thistechnique, each parent is selected from the individuals by selecting individual iwith probability FiPF .The mating or crossover process is accomplished by randomly selecting pairsof individuals to mate and replacing each pair by their children in the new pop-ulation. The crossover of two individuals proceeds in a slightly nonstandard way



because our chromosomes are not �xed length but a multiple of the numberof bits used to represent each template. Two children are produced from eachcrossover by randomly selecting a template i and a position p in the templatefrom the �rst individual T1 = t1;1; : : : ; t1;n and randomly selecting a templatej in the second individual T2 = t2;1; : : : ; t2;m so that the resulting individu-als will not have more than 10 templates. The new individuals are then ~T1 =t1;1; : : : ; t1;i�1; n1; t2;j+1; : : : ; t2;m and ~T2 = t2;1 : : : t2;j�1; n2; t1;i+1; : : : ; ti;n. Ifthere are b bits used to represent each template, n1 is the �rst p bits of t1;iconcatenated with the last b � p bits of t2;j, and n2 is the �rst p bits of t2;jconcatenated with the last b� p bits of t1;i.In addition to using crossover to produce the individuals of the next gener-ation, we also use a process called elitism whereby the best individuals in eachgeneration survive unmutated to the next generation. We use crossover to pro-duce all but two individuals for each new generation and use elitism to selectthe last two individuals for each new generation. The individuals resulting fromthe crossover process are mutated to help maintain a diversity in the population.Each bit representing the individuals is 
ipped with a probability of .01.Run-Time Prediction Experiments We use run time predictions to pre-dict queue wait times and improve the performance of scheduling algorithms.Therefore, we need to determine what workloads to search over to �nd the besttemplate sets to use. We have already described four sets of trace data thatwere recorded from supercomputers. Next, we describe the three scheduling al-gorithms we consider.We use the �rst-come �rst-served (FCFS), least-work-�rst (LWF), and back-�ll scheduling algorithms in this work. In the FCFS algorithm, applications aregiven resources in the order in which they arrive. The application at the head ofthe queue runs whenever enough nodes become free. The LWF algorithm alsotries to execute applications in order, but the applications are ordered in increas-ing order using estimates of the amount of work (number of nodes multiplied byestimated wallclock execution time) the application will perform.The back�ll algorithm is a variant of the FCFS algorithm. The di�erenceis that the back�ll algorithm allows an application to run before it would inFCFS order if it will not delay the execution of applications ahead of it inthe queue (those that arrived before it). When the back�ll algorithm tries toschedule applications, it examines every application in the queue, in order ofarrival time. If an application can run (there are enough free nodes and runningthe application will not delay the starting times of applications ahead of it in thequeue), it is started. If an application cannot run, nodes are \reserved" for it atthe earliest possible time. This reservation is only to make sure that applicationsbehind it in the queue do not delay it; the application may actually start beforethe reservation time.Each scheduling algorithm predicts application run times at di�erent timeswhen predicting queue wait times for the jobs in each trace. When predictingqueue wait times, we predict the wait time of an application when it is sub-



mitted. A wait-time prediction in this case requires run-time predictions of allapplications in the system so the run-time prediction workload contains predic-tions for all running and queued jobs every time an application is submitted.We insert data points for an application into our historical database as soon aseach application completes. To try to �nd the optimal template set to use topredict execution times, we use a workload for each algorithm/trace pair andsearch over each of these 12 workloads separately.When using run-time predictions while scheduling, run-time predictions arealso made at di�erent times for each algorithm/trace pair, and we attempt to�nd the optimal template sets to use for each pair. The FCFS algorithm doesnot use run-time predictions when scheduling, so we only consider the LWF andback�ll algorithms here. For the LWF algorithm, all waiting applications arepredicted whenever the scheduling algorithm attempts to start an application(when any application is enqueued or �nishes). This occurs because the LWFalgorithm needs to �nd the waiting application that will use the least work.For the back�ll algorithm, all running and waiting applications are predictedwhenever the scheduling algorithm attempts to start an application (when anyapplication is enqueued or �nishes).We generate our run-time prediction workloads for scheduling using maxi-mum run times as run-time predictions. We note that using maximum run timeswill produce predictions and insertions slightly di�erent from those producedwhen the LWF and back�ll algorithms use other run-time predictions. Never-theless, we believe that these run-time prediction workloads are representativeof the predictions and insertions that will be made when scheduling using otherrun-time predictors.2.2 Related WorkGibbons [8,9] also uses historical information to predict the run times of parallelapplications. His technique di�ers from ours principally in that he uses a �xedset of templates and di�erent characteristics to de�ne templates. He uses the sixtemplates/predictor combinations listed in Table 3. The running time (rtime)characteristic indicates how long an application has been executing when a pre-diction is made for the application. Gibbons produces predictions by examiningcategories derived from the templates listed in Table 3, in the order listed, untila category that can provide a valid prediction is found. This prediction is thenused as the run-time prediction.The set of templates listed in Table 3 results because Gibbons uses templatesof (u,e), (e), and () with subtemplates in each template. The subtemplatesadd the characteristics n and rtime. Gibbons also uses the requested numberof nodes slightly di�erently from the way we do: rather than having equal-sizedranges speci�ed by a parameter, as we do, he de�nes the �xed set of exponentialranges 1, 2-3, 4-7, 8-15, and so on.Another di�erence between Gibbons's technique and ours is how he performsa linear regression on the data in the categories (u,e), (e), and (). Thesecategories are used only if one of their subcategories cannot provide a valid



Table 3. Templates used by Gibbons for run-time prediction.Number Template Predictor1 (u,e,n,rtime) mean2 (u,e) linear regression3 (e,n,rtime) mean4 (e) linear regression5 (n,rtime) mean6 () linear regressionprediction. A weighted linear regression is performed on the mean number ofnodes and the mean run time of each subcategory that contains data, with eachpair weighted by the inverse of the variance of the run times in their subcategory.Downey [3] uses a di�erent technique to predict the execution time of parallelapplications. His procedure is to categorize all applications in the workload, thenmodel the cumulative distribution functions of the run times in each category,and �nally use these functions to predict application run times. Downey catego-rizes applications using the queues that applications are submitted to, althoughhe does state that other characteristics can be used in this categorization. In fact,Downey's prediction technique within a category can be used with our techniquefor �nding the best characteristics to use to categorize applications.Downey observed that the cumulative distributions of the execution timesof the jobs in the workloads he examined can be modeled relatively accuratelyby using a logarithmic function: �0+ �1 ln t. Once the distribution functions arecalculated, he uses two di�erent techniques to produce a run-time prediction.The �rst technique uses the median lifetime given that an application has exe-cuted for a time units. If one assumes the logarithmic model for the cumulativedistribution, this equation is qae 1:0��0�1 .The second technique uses the conditional average lifetimetmax � alog tmax � log awith tmax = e(1:0��0)=�1 .3 Predicting Queue Wait TimesWe use the run-time predictions described in the preceding section to predictqueue wait times. Our technique is to perform a scheduling simulation using thepredicted run times as the run times of the applications. This will then providepredictions of when applications will start to execute. Speci�cally, we simulate



the FCFS, LWF, and back�ll scheduling algorithms and predict the wait timefor each application as it is submitted to the scheduler. The accuracy of usingvarious run-time predictors is shown in Table 4 through Table 9.Table 4 shows the wait-time prediction performance when actual run timesare used during prediction. No data is shown for the FCFS algorithm becausethere is no error when computing wait-time predictors in this case: later-arrivingjobs do not a�ect the start times of the jobs that are currently in the queue.For the LWF and back�ll scheduling algorithms, wait-time prediction error doesoccur because later arriving jobs can a�ect when the jobs currently in the queuecan run. As one can see in the table, the wait-time prediction error for the LWFalgorithm is between 34 and 43 percent. For the back�ll scheduling algorithm,there is a smaller error of 3 to 4 percent. This error is higher for the LWFalgorithm because later arriving jobs that wish to perform smaller amountsof work move to the head of the queue. Any error for the back�ll algorithmseems unexpected at �rst, but errors in wait-time prediction can occur becausescheduling is performed using maximumrun times. For example, a job J2 arrivingin the queue can start ahead of an already queued job J1 because the schedulerdoes not believe job J1 can use those nodes; a running job �nishes early, and jobJ1 would start except that the job J2 is using nodes that it needs. This exampleresults in a wait-time prediction error for job J1 before job J2 arrives in thequeue. Table 4. Wait-time prediction performance using actual run times.Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL LWF 37.14 43ANL Back�ll 5.84 3CTC LWF 4.05 39CTC Back�ll 2.62 10SDSC95 LWF 5.83 39SDSC95 Back�ll 1.12 4SDSC96 LWF 3.32 42SDSC96 Back�ll 0.30 3Table 5 shows the wait-time prediction errors while using maximumrun timesas run-time predictions. Maximum run times are used to predict run times inscheduling systems such as EASY [11]. These predictions are provided in theANL and CTC workload and are implied in the SDSC workloads because eachof the queues in the two SDSC workload has maximum limits on resource usage.To derive maximumrun times for the SDSC workloads, we determine the longestrunning job in each queue and use that as the maximum run time for all jobs inthat queue. The wait-time prediction error when using actual run times as run-time predictors is 59 to 99 percent better than the wait-time prediction error of



the LWF and back�ll algorithms when using maximumrun times as the run-timepredictor.Table 5. Wait-time prediction performance using maximum run times.Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL FCFS 996.67 186ANL LWF 97.12 112ANL Back�ll 429.05 242CTC FCFS 125.36 128CTC LWF 9.86 94CTC Back�ll 51.16 190SDSC95 FCFS 162.72 295SDSC95 LWF 28.56 191SDSC95 Back�ll 93.81 333SDSC96 FCFS 47.83 288SDSC96 LWF 14.19 180SDSC96 Back�ll 39.66 350Table 6 shows that our run-time prediction technique results in wait-timeprediction errors that are from 34 to 77 percent of mean wait times. Our dataalso shows that run-time prediction errors that are from 33 to 73 percent ofmean application run times. The best wait-time prediction performance occursfor the ANL and CTC workloads and the worst for the SDSC96 workload. Thisis the opposite of what we expect from the run-time prediction errors. Themost accurate run-time predictions are for the SDSC96 workload and the leastaccurate are for the CTC workload. The results imply that accurate run-timepredictions are not the only factor that determines the accuracy of wait-timepredictions.The results when using our run-time predictor also show that the mean waittime prediction error is 20 percent better to 62 percent worse than when pre-dicting wait times for the LWF algorithm using actual run times. Finally, usingour run-time predictor results in 42 to 88 percent better wait time predictionsthan when using maximum run times as the run-time predictors.Table 7 shows the wait-time prediction errors when using Gibbons's runtime predictor. Our run-time prediction errors are between 39 and 68 percentbetter than Gibbons's and our wait-time prediction errors are between 13 and83 percent better.Tables 8 and 9 show the wait-time prediction error when using Downey'sconditional average and conditional median predictors. The wait-time predictionerrors we achieve when using our run-time predictor are between 19 and 87better than these errors and our run-time prediction errors are between 42 and92 percent better.



Table 6. Wait-time prediction performance using our run-time predictor.Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL FCFS 161.49 30ANL LWF 44.75 51ANL Back�ll 75.55 43CTC FCFS 30.84 31CTC LWF 5.74 55CTC Back�ll 11.37 42SDSC95 FCFS 20.34 37SDSC95 LWF 8.72 58SDSC95 Back�ll 12.49 44SDSC96 FCFS 9.74 59SDSC96 LWF 4.66 59SDSC96 Back�ll 5.03 44In summary, the results show that our run-time predictor is more accuratethan maximum run times, Gibbons's predictor, or Downey's predictors. Theresults also show that the wait-time prediction errors are smaller when our run-time predictor is used. Clearly, there is a correlation between wait-time predictionerror and run-time prediction error.Table 7. Wait-time prediction performance using Gibbons's run-time predictor.Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL FCFS 350.86 66ANL LWF 76.23 91ANL Back�ll 94.01 53CTC FCFS 81.45 83CTC LWF 32.34 309CTC Back�ll 13.57 50SDSC95 FCFS 54.37 99SDSC95 LWF 11.60 78SDSC95 Back�ll 20.27 72SDSC96 FCFS 22.36 135SDSC96 LWF 6.88 87SDSC96 Back�ll 17.31 153



Table 8. Wait-time prediction performance using Downey's conditional average run-time predictor. Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL FCFS 443.45 83ANL LWF 232.24 277ANL Back�ll 339.10 191CTC FCFS 65.22 66CTC LWF 14.78 141CTC Back�ll 17.22 64SDSC95 FCFS 187.73 340SDSC95 LWF 35.84 240SDSC95 Back�ll 62.96 223SDSC96 FCFS 83.62 503SDSC96 LWF 28.42 361SDSC96 Back�ll 47.11 415Table 9. Wait-time prediction performance using Downey's conditional median run-time predictor. Scheduling Mean Error Percentage ofWorkload Algorithm (minutes) Mean Wait TimeANL FCFS 534.71 100ANL LWF 254.91 304ANL Back�ll 410.57 232CTC FCFS 83.33 85CTC LWF 15.47 148CTC Back�ll 19.35 72SDSC95 FCFS 62.67 114SDSC95 LWF 18.28 122SDSC95 Back�ll 27.52 98SDSC96 FCFS 34.23 206SDSC96 LWF 12.65 161SDSC96 Back�ll 20.70 183



4 Improving Scheduler PerformanceOur second application of run-time predictions is to improve the performanceof the LWF and back�ll scheduling algorithms. Table 10 shows the performanceof the scheduling algorithms when the actual run times are used as run-timepredictors. This is the best performance we can expect in each case and servesas an upper bound on scheduling performance.Table 10. Scheduling performance using actual run times.Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 70.34 61.20ANL Back�ll 71.04 142.45CTC LWF 51.28 11.15CTC Back�ll 51.28 23.75SDSC95 LWF 41.14 14.48SDSC95 Back�ll 41.14 21.98SDSC96 LWF 46.79 6.80SDSC96 Back�ll 46.79 10.42Table 11 shows the performance of using maximum run times as run timepredictions in terms of average utilization and mean wait time. The schedulingperformance when using the maximumrun times can once again be considered anupper bound for comparison. When comparing this data to the data in Table 10,one can see that the maximum run times are an inaccurate predictor but thisfact does not a�ect the utilization of the simulated parallel computers. Predictingrun times with actual run-times when scheduling results in 3 to 27 percent lowermean wait times, except in one case where using maximum run times results in6 percent lower mean wait times. The e�ect of accurate run-time predictions ishighest for the ANL workload which has the largest o�ered load.Table 12 shows the performance of using our run-time prediction techniquewhen scheduling. The run-time prediction error in this case is between 23 and 93percent of mean run times, slightly worse than the results when predicting run-times for wait-time prediction. This worse performance is due to more predictionsbeing performed. First, more predictions are made of applications before theybegin executing; and these predictions do not have information about how longan application has executed. Second, more predictions are made of long-runningapplications, the applications that contribute the largest errors to the meanerrors.Our run-time prediction technique results in mean wait times that are 5percent better to 4 percent worse than when using actual run times as predictionsfor the least-work-�rst algorithm. For the back�ll algorithm, mean wait timeswhen using our run-time predictor are 11 to 22 percent worse. These results can



Table 11. Scheduling performance using maximum run times.Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 70.70 83.81ANL Back�ll 71.04 177.14CTC LWF 51.28 10.48CTC Back�ll 51.28 26.86SDSC95 LWF 41.14 14.95SDSC95 Back�ll 41.14 28.20SDSC96 LWF 46.79 7.88SDSC96 Back�ll 46.79 11.34be understood by noticing that the back�ll algorithm requires more accurate run-time predictions than LWF. LWF just needs to know if applications are \big" or\small," and small errors do not greatly a�ect performance. The performance ofthe back�ll algorithm depends on accurate run-time predictions because it triesto �t applications into time/space slots.Table 12. Scheduling performance using our run-time prediction technique.Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 70.28 78.22ANL Back�ll 71.04 148.77CTC LWF 51.28 13.40CTC Back�ll 51.28 22.54SDSC95 LWF 41.14 16.19SDSC95 Back�ll 41.14 22.17SDSC96 LWF 46.79 7.79SDSC96 Back�ll 46.79 10.10When comparing our run-time prediction technique to using maximum runtimes, our technique has a minimal e�ect on the utilization of the systems, butit does decrease the mean wait time in six of the eight experiments. Table 13through Table 15 show the performance of the scheduling algorithms when usingGibbons's and Downey's run-time predictors. The results indicate that onceagain, using our run-time predictor does not produce greater utilization. Theresults also show that our run-time predictor results in 13 to 50 percent lowermean wait times for the ANL workload, but there is no clearly better run-timepredictor for the other three workloads. The ANL workload has much largermean wait times and higher utilization (greater o�ered load) than the otherworkloads (particularly the SDSC workloads). This may indicate that greater



prediction accuracy of our technique when scheduling becomes \hard". To testthis hypothesis, we compressed the interrival time of applications by a factor oftwo for both SDSC workloads and then simulated these two new workloads. Wefound that our run-time predictor results in mean wait times that are 8 percentbetter on average, but are 43 percent lower to 31 percent higher than mean waittimes than obtained when using Gibbons's or Downey's techniques.The results also show that of Gibbons's and Downey's run-time predictors,Downey's conditional average is the worst predictor and Gibbons's predictor isthe most accurate. The data shows that our run-time predictor is between 2 and86 percent better than the other predictors, except for the CTC workload. Forthis workload, our predictor is the worst. This may be explained by the limitedtemplate searches we performed for that workload (because of time constraints).The accuracy of the run-time predictions for the CTC workload carriers over tothe to the mean wait times of the scheduling algorithms when using the variousrun-time predictors: our mean wait times are the worst.Table 13. Scheduling performance using Gibbons' run-time prediction technique.Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 70.72 90.36ANL Back�ll 71.04 181.38CTC LWF 51.28 11.04CTC Back�ll 51.28 27.31SDSC95 LWF 41.14 15.99SDSC95 Back�ll 41.14 24.83SDSC96 LWF 46.79 7.51SDSC96 Back�ll 46.79 10.825 ConclusionsIn this work, we apply predictions of application run times to two separatescheduling problems. The problems are predicting how long applications willwait in queues before executing and improving the performance of schedulingalgorithms. Our technique for predicting application run times is to derive aprediction for an application from the run times of previous applications judgedsimilar by a template of key job characteristics. The novelty of our approachlies in the use of search techniques to �nd the best templates. For the workloadsconsidered in this work, our searches found templates that result in run-timeprediction errors that are signi�cantly better than those of other researchers orusing user-supplied maximum run times.We predict queue wait times by using run-time predictions and the algo-rithms used by schedulers. These two factors are used to simulate scheduling



Table 14. Scheduling performance using Downey's conditional average run-time pre-dictor. Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 71.04 154.76ANL Back�ll 70.88 246.40CTC LWF 51.28 9.87CTC Back�ll 51.28 14.45SDSC95 LWF 41.14 16.22SDSC95 Back�ll 41.14 20.37SDSC96 LWF 46.79 7.88SDSC96 Back�ll 46.79 8.25
Table 15. Scheduling performance using Downey's conditional median run-time pre-dictor. Scheduling Utilization Mean Wait TimeWorkload Algorithm (percent) (minutes)ANL LWF 71.04 154.76ANL Back�ll 71.04 207.17CTC LWF 51.28 11.54CTC Back�ll 51.28 16.72SDSC95 LWF 41.14 16.36SDSC95 Back�ll 41.14 19.56SDSC96 LWF 46.79 7.80SDSC96 Back�ll 46.79 8.02



algorithms and decide when applications will execute. Estimates of queue waittimes are useful to guide resource selection when several systems are available,to co-allocate resources from multiple systems, to schedule other activities, andso forth. This technique results in a wait-time prediction error of between 33and 73 percent of mean wait times when using our run-time predictors. Thiserror is signi�cantly better than when using the run-time predictors of Gibbons,Downey, or user-supplied maximum run times. We also �nd that even if we pre-dict application run times with no error, the wait-time prediction error for theleast-work-�rst algorithm is signi�cant (34 to 43 percent of mean wait times).We improve the performance of the least-work-�rst and back�ll schedulingalgorithms by using our run-time predictions when scheduling. We �nd that theutilization of the parallel computers we simulate does not vary greatly whenusing di�erent run-time predictors. We also �nd that using our run-time pre-dictions does improve the mean wait times in general. In particular, our moreaccurate run-time predictors have the largest e�ect on mean wait time for theANL workload, which has the highest utilization. In this workload, the meanwait times are between 7 and 67 percent lower when using our run-time predic-tions than when using other run-time predictions. We also �nd that on average,the mean wait time when using our predictor is within 8 percent of the meanwait time that would occur if the scheduler knows the exact run times of the ap-plications. The mean wait time when using our technique ranges from 5 percentbetter to 22 percent worse than when scheduling with the actual run times.In future work, we will investigate an alternative method for predicting queuewait times. This method will use the current state of the scheduling system (num-ber of applications in each queue, time of day, etc.) and historical informationon queue wait times during similar past states to predict queue wait times. Wehope this technique will improve wait-time prediction error, particularly for theLWF algorithm, which has a large built-in error using the technique presentedhere. Further, we will expand our work in using run-time prediction techniquesfor scheduling to the problem of combining queue-based scheduling and reser-vations. Reservations are one way to co-allocate resources in metacomputingsystems [1,6,2,7]. Support for resource co-allocation is crucial to large-scale ap-plications that require resources from more than one parallel computer.AcknowledgmentsWe thank the Mathematics and Computer Science Division of Argonne NationalLaboratory, the Cornell Theory Center, and the San Diego Supercomputer Cen-ter for providing us with the trace data used in this work. We also thank RichardGibbons for providing us with his run-time prediction code and Allen Downeyfor assisting in the comparison with his work.This work was supported by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Computational and Tech-nology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38,and by a NSF Young Investigator award under Grant CCR-9215482.



References1. C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44{52, 1992.2. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, andS. Tuecke. A Resource Management Architecture for Metasystems. Lecture Noteson Computer Science, 1998.3. Allen Downey. Predicting Queue Times on Space-Sharing Parallel Computers. InInternational Parallel Processing Symposium, 1997.4. N. R. Draper and H. Smith. Applied Regression Analysis, 2nd Edition. John Wileyand Sons, 1981.5. Dror Feitelson and Bill Nitzberg. Job Characteristics of a Production ParallelScienti�c Workload on the NASA Ames iPSC/860. Lecture Notes on ComputerScience, 949:337{360, 1995.6. Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.International Journal of Supercomputing Applications, 11(2):115{128, 1997.7. Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New ComputingInfrastructure. Morgan Kau�mann, 1999.8. Richard Gibbons. A Historical Application Pro�ler for Use by Parallel Scheculers.Lecture Notes on Computer Science, 1297:58{75, 1997.9. Richard Gibbons. A Historical Pro�ler for Use by Parallel Schedulers. Master'sthesis, University of Toronto, 1997.10. David E. Goldberg. Genetic Algorithms in Search, Optimization, and MachineLearning. Addison-Wesley, 1989.11. David A. Lifka. The ANL/IBM SP Scheduling System. Lecture Notes on ComputerScience, 949:295{303, 1995.12. Warren Smith, Ian Foster, and Valerie Taylor. Predicting Application Run TimesUsing Historical Information. Lecture Notes on Computer Science, 1459:122{142,1998.13. Neil Weiss and Matthew Hassett. Introductory Statistics. Addison-Wesley, 1982.


