
Scheduling a Metacomputer WithUncooperative Sub-schedulers ?J�orn Gehring Thomas Prei�Paderborn Center for Parallel ComputingD-33095 Paderborn, Germanyfjoern j tppbg@uni-paderborn.dehttp://www.uni-paderborn.de/pc2/Abstract. The main advantage of a metacomputer is not its peak per-formance but better utilization of its machines. Therefore, e�cient schedul-ing strategies are vitally important to any metacomputing project. A realmetacomputer management system will not gain exclusive access to allits resources, because participating centers will not be willing to give upautonomy. As a consequence, the scheduling algorithm has to deal with aset of local sub-schedulers performing individual machine management.Based on the proposal made by Feitelson and Rudolph in 1998 we de-veloped a scheduling model that takes these circumstances into account.It has been implemented as a generic simulation environment, which wemake available to the public. Using this tool, we examined the behaviorof several well known scheduling algorithms in a metacomputing sce-nario. The results demonstrate that interaction with the sub-schedulers,communication of parallel applications, and the huge size of the meta-computer are among the most important aspects for scheduling a meta-computer. Based upon these observations we developed a new techniquethat makes it possible to use scheduling algorithms developed for lessrealistic machine models for real world metacomputing projects. Simula-tion runs demonstrate that this technique leads to far better results thanthe algorithms currently used in metacomputer management systems.1 IntroductionEver since 1992 when the term metacomputing was coined by Larry Smarr andCharles E. Catlett [42], researchers all over the world have been working withincreasing e�ort on this promising concept. The most obvious advantage of ametacomputer is its tremendous computing power. Theoretically, a nation widecluster can provide more FLOPS than any single machine has ever been ableto achieve. However, after six years of research the �rst wave of enthusiasm haspassed and researchers realized that many problems have to be solved beforethe idea of Smarr and Catlett can become reality. Especially the InformationWide Area Year [12] has not only demonstrated the potential of the meta-computing concept but also its limitations. Particularly on the application side,? Supported by a grant from the NRW Metacomputing project

there exist only few programs that can fully exploit the accumulated power ofa large heterogeneous machine pool. For most real world applications e�ciency{ and sometimes even performance { decreases dramatically, if they are exe-cuted on a cluster of WAN distributed machines. Consequently, the enormouse�orts necessary for building a metacomputer cannot be justi�ed by its theoret-ical peak performance. During the recent past, other bene�ts of metacomputinghave become more and more apparent. One of the most important aspects ofa nationwide computational grid is its ability to share load more evenly andachieve better utilization of the available hardware.Nowadays people show a strong tendency to run their jobs on those machinesthat are locally available. Only if these resources are absolutely insu�cient, theyare willing to go through the trouble of applying for an account at a remotecenter with more powerful machines. If access to a remote machine was as easyas to HPC resources at the local site, users would be more
exible in choosingtheir target hardware. As a consequence, the total amount of job requests wouldspread more evenly over the available machines. Even more important: computersystems with special features could more easily be kept free for those applica-tions that can take advantage of these. Software with less demanding hardwarerequirements could be run on general purpose machines without loosing e�-ciency while code that was tuned for a particular system could be executedfaster on the appropriate hardware. As a consequence, the implementation ofa metacomputer could e�ectively increase the amount of available computingpower without the need to add extra hardware.If the primary goal of building a metacomputer is to optimize resource us-age, then its scheduling component becomes a critical part. From the schedulingperspective, a metacomputing management system can be divided into two dis-tinct layers. The bottom layer consists of the primary infrastructure that linksthe distributed machines together and manages their information exchange. Ontop of this there is the scheduling layer that decides when, how, and where jobsare executed. Obviously, there has to be close cooperation between the sched-uler and the underlying infrastructure. During the past, researchers often workedindependently on these two layers. As a consequence, there is now a large gap be-tween research results achieved in both areas [19,32]. The best known schedulingalgorithms, were studied using analytical models that are not directly compati-ble with the infrastructure implemented in the various metacomputing projects.It is therefore the purpose of this work to show a possible way of bridging thisgap and to qualify the inevitable performance decreases.The rest of this paper is organized as follows. In Sec. 2 we give an overview ofcurrent research in the �eld of metacomputer environments and relevant schedul-ing strategies. We describe our machine model in Sec. 3 and the workload modelas well as the evaluation criteria in Sec. 4. Sec. 5 outlines the examined schedulingalgorithms and describes the most important simulation results. Furthermore,a new technique is shown for that makes it possible to use scheduling algo-rithms developed for less realistic machine models for real world metacomputing

projects. Finally, in Sec. 7 we summarize the results, draw conclusions for thescheduling community, and provide an outlook on our future work.2 BackgroundMany �elds of research are contributing to the implementation of a metacom-puter. For example, networking, security, interface design, load balancing, map-ping, distributed system design, or even multimedia are all important aspects ofthis �eld of research. In this paper we concentrate on what has been achieved ininfrastructure oriented projects and on scheduling algorithms that are applicableto such an environment.2.1 InfrastructureAlthough there exists a de�nition of "metacomputing" in [42] that is frequentlyreferenced, there is no broad agreement about how a metacomputer should looklike. A lot of projects have been set up since 1992 which rightfully claim to beworking in the �eld of metacomputing. However, some of their approaches andgoals di�er signi�cantly. We found that the majority of these projects can bedivided into �ve distinct categories:HPC Metacomputing is the most traditional approach. Projects of this categoryare targeting at connecting high performance computers via wide area networks.Supercomputers are typically installed at di�erent locations all over a nation. Asa consequence, these projects do not only have to deal with technical problemsbut also with the political aspects arising from the necessary sub-ordinationof supercomputer centers under any form of metacomputer management. Themachines forming the resource pool are heterogeneous in hardware and software(e.g. operating system). During the past, most representatives of this categoryof metacomputing systems had a centralized architecture which incorporateda global scheduling module with full control over the available resources. Dueto political and technical considerations (e.g. fault tolerance) nowadays mostprojects favor a more distributed approach. [20,9,36,44,31] are among the mostprominent initiatives of this category.Cluster Computing has developed very fast during the last six years. The goal ofthese projects is to connect a large number of workstation sized computers as acheap alternative to supercomputers. Although some are also trying to connectresources of di�erent administrative entities (e.g. universities), a more typicaluse is a building wide metacomputer. Most of these systems have support ofheterogeneous hardware but put restrictions on software heterogeneity. Sincethere is much economical potential in this area, there are several commercialproducts available o�ering a high degree of robustness. However, compared toHPC-metacomputing these systems focus more on distributing sequential jobsand less on e�ciently scheduling parallel applications. Some of the best knowncluster computing environments are [25,33,23,5].

Single Site Metacomputing is similar to HPC metacomputing. The main di�er-ence is the restriction to only one administrative entity. Many supercomputingcenters have been enhancing their local management systems to provide meta-computing services on top of the local machine pool. From the algorithmic pointof view, this problem is almost identical to HPC metacomputing. However, re-sults can be achieved faster, because there are less political problems and acentralized software architecture is feasible. [21,1,27] are some examples of theseprojects.Object Oriented Metacomputing is increasingly gaining importance in the meta-computing community.Applications that have been implemented using an objectoriented programming paradigm can easily be ported to the distributed runtimeenvironment of a metacomputer. Especially the availability of the CORBA stan-dard [41] has had strong e�ects on the development of distributed object orientedenvironments. CORBA provides full support of heterogeneity in hard- and soft-ware as well as a possible technical solution to the interconnection of severalsites. Since each site within such a system represents itself by one or more ob-ject request brokers, CORBA also indicates a possible way to overcome some ofthe political obstacles. This is not the least reason why similar approaches havebeen adopted by several HPC metacomputing projects. The major disadvantageof object oriented metacomputing is related to the fact that currently only fewrelevant applications have been programmed in object oriented languages.Seamless Computing is the most pragmatic approach and probably not trulymetacomputing. Projects of this class are working on standardizations of super-computer access interfaces. Nowadays, almost any supercomputing center hasits own access modalities and users have to learn and remember how jobs aresubmitted to each of the available machines. Therefore, there is a strong de-mand for a uni�ed access interface. Some of the projects working in this areaare described in [3,28,6].Our institute, the Paderborn Center of Parallel Computing, is involved ina couple of projects that deal with interconnecting supercomputers [30,22,35].Thus, our work concentrates mainly on aspects of HPC metacomputing. Themodel described in Sec. 3 is therefore derived from this category.2.2 Job Scheduling for MetacomputingMuch research has been done in the �eld of parallel job scheduling. A goodoverview about the current state can be found in [19]. Unfortunately, many re-searchers have been using their own nomenclature for specifying the capabilitiesof their algorithms. In 1997 Feitelson et al. proposed a common set of terms fordescribing scheduling strategies [19]. We will use these de�nitions throughoutthe rest of this paper.According to [19], scheduling models can be classi�ed according to partitionspeci�cation, job
exibility, level of preemption, amount of job and workload

knowledge available, and memory allocation. Clearly, a metacomputer is a dis-tributed memory system (although some of its nodes may be shared memorymachines). The other criterions are less easy to de�ne. Given the current prac-tice and the results of Smith, Foster, and Taylor in [43], it seems sensible to allowthe expected application runtime as the only job related information availableto the scheduler. Newer management software packages such as CCS [21] allowmuch more complex job descriptions, but these systems cannot be expected to bebroadly available in the near future. On the machine level handling of partitionsizes ranges from �xed partitions on many batch systems to dynamic parti-tions on modern SMP architectures. On the metacomputer level it seems best tode�ne partition sizes according to job requirements and current load situationbefore an application is being executed. The e�ort of implementing mechanismsfor re-adjusting partition sizes during run time seems inappropriate consideringthe small number of applications that currently support such a feature. There-fore, we are using variable partitions in our metacomputer model. The samearguments also hold for job
exibility. Several parallel applications can run ondi�erent partition sizes but only few support dynamic re-adjustment during runtime. Therefore, we are looking for a scheduler that can e�ciently manage amix of moldable and rigid jobs (strictly speaking, rigid jobs are moldable jobswith a �xed degree of parallelism). The most di�cult decision was, whetherthe metacomputer shall support preemption. Up to now, only few job manage-ment systems provide support for preemptive scheduling. However, many longrunning scienti�c applications (i.e. applications well suited for metacomputing)have internal checkpointing and restart facilities. Therefore, it would not be toodi�cult to implement coarse grain preemptive scheduling for these applications.Especially since preemption seems to be a promising concept for scheduling ofparallel jobs [38]. Nevertheless, current versions of the major metacomputingenvironments { including our own MOL system [35] { do not support preemp-tion and therefore we have so far only considered run-to-completion schedulingalgorithms.Typically, scheduling disciplines are distinguished as online or o�ine algo-rithms. However, as we will show below, this di�erence becomes less importantin the metacomputer scenario. Therefore, both types of algorithms are poten-tial candidates for a metacomputer scheduler. Since the problem of schedulingparallel tasks on multiple parallel machines has been proven to be computa-tionally hard for most cases, the most commonly used algorithms are basedon heuristics. Although several papers have been published on using general-purpose heuristics for scheduling [37,8], better results are usually obtained bymore problem speci�c strategies. The latter can be divided into two categories.On the one hand, there are algorithms derived from analytical considerationslike for example those discussed in [29]. Often, these strategies are di�cult tobe implemented but guarantee a good worst case behavior. On the other hand,there are several fairly simple heuristics that have been tested in simulation en-vironments or sometimes even as part of real world scheduling systems [32,4,10].These approaches do not have such a good worst case behavior, but the results

for "typical" problems are often quite good [29]. We decided to concentrate ourexaminations on those strategies that are not too complex for implementationand for which good performance has been demonstrated with real workloads.Although there are still a lot of algorithms in this class, many of them are basedon three fundamental approaches: FCFS [39], FFIH [34], and ASP [40]. In Sec. 5we provide a closer look at these strategies and show, if and how they can beapplied to a metacomputing scenario.3 Modeling The Metacomputer InfrastructureOur main motivation was to �nd a scheduling algorithm that can be imple-mented on top of the NRW metacomputing infrastructure [30]. One of the keyconcepts of this project is to maintain autonomy for the participating super-computing centers. Especially, it was not possible to replace existing resourcemanagement systems like NQS [2], NQE [11], LoadLeveler [26], or CCS [21] bya global scheduling module. The metacomputer management facilities had tobe installed on top of the existing environments. It should be emphasized thatthis is not only a problem of the NRW metacomputer. Other metacomputingprojects like GLOBUS [20], POLDER [44,31], or the Northrhine-WestphalianMetacomputer [36] had to use similar approaches. As a consequence the meta-computer scheduling algorithm cannot access the available machines directlybut has to submit its jobs to the local queuing systems. Furthermore, users withdirect access to the machines cannot be forced to submit all their jobs via themetacomputer. Especially since metacomputer frontends are designed to provideeasy access to a heterogeneous machine pool and therefore often do not supportthe more advanced features of the hardware. Thus, local users will continuesubmitting jobs to the machines directly, thereby bypassing the metacomputerscheduler. Fig. 1 depicts this model. Each computer is controlled by a local re-source management system (RMS). The metacomputer scheduler has no directaccess to the hardware. It can only submit (sub-)jobs via each center's local queu-ing environment. In general, there are two di�erent types of resource requeststhat can be sent to such a system. On the one hand, these are metacomputerjobs that are submitted to the metacomputing scheduler. On the other hand,there are local requests that are submitted directly to the resource managementsoftware without using the metacomputer facilities. The amount of informationthat is communicated from the local queuing systems to the metacomputer is aparameter of the model. Basically, there are three di�erent levels of informationexchange possible:1. The metacomputer has no knowledge about the locally submitted jobs. Ithas no information, if (or how many) resources have already been assignedby the RMS and how much is left for the metacomputer (scheduling with nocontrol).2. The meta-scheduler can query the local queuing systems about the resourcesassigned to local jobs. This may include jobs that have already been submit-ted but are not yet scheduled. This type of information can be unreliable,

l o c a l
m a n a g e m e n t

m a c h i n e m a c h i n e m a c h i n e

l o c a l
m a n a g e m e n t

l o c a l
m a n a g e m e n t

m e t a - m a n a g e m e n t

l o c a l a p p l i c a t i o n s

m e t a c o m p u t e r a p p l i c a t i o n s

Fig. 1. The metacomputer accesses the machines through local resource managementsystemsbecause the jobs' resource requirements are typically not exactly known inadvance (scheduling with limited control).3. Whenever a job is submitted to a local management system, it is forwardedto the metacomputer for scheduling (scheduling with full control). This isthe model that has been used in most theoretical papers on metacomputerscheduling.It is obvious that a scheduling algorithm designed for model 1 cannot performbetter than the same strategy working in scenario 2. The same holds for models2 and 3. Consequently, scenario 1 can be expected to deliver the worst results.However, this approach is currently used in most real world metacomputer man-agement systems [20,36,31].The most promisingmodel is the approach that givesfull control to the metacomputer scheduler. Unfortunately, due to the politicalreasons explained above, this approach is unlikely to become reality. Thereforewe examined the performance decreases that happen to scheduling algorithmsdeveloped for the full control model, if they are used in a no control environ-ment. Since worst case analysis can sometimes be misleading, if the performanceof algorithms applied to real world problems shall be determined [19,24], we baseour comparisons on simulation runs. In order to obtain results that are useful forother researchers, too, we derived our simulated environment from the suggestedstandard workload model that was proposed by Feitelson and Rudolph in [18].A detailed description of the workload model is given in Sec. 4.

Besides the scheduling hierarchy, the con�guration of the heterogeneous ma-chine pool is another important aspect of the metacomputer model. For ourwork, we employ the concept of application centric metacomputing described in[22]. Therefore, we may assume that in principle any job can be ful�lled by eachmachine. The only heterogeneity that is visible to the metacomputer scheduler iscaused by performance di�erences between the computing nodes. For simplicity,we will use performance and number of processors of a node as synonymous forthe rest of this paper (see [22]). What still remains to be de�ned is the distri-bution of machine sizes (i.e. performances) within the metacomputer. Since weare researching on metacomputing with supercomputers, we used the Top 500Report of Jack Dongarra et al. as a reference [13]. Fig. 2 depicts the performancedistribution of the world's 500 fastest supercomputers. As can be seen, perfor-
0

5

10

15

20

25

30

200 400 600 800 1000

pe
rc

en
ta

ge
 o

f m
ac

hi
ne

s

processors

"t500.dat"
2 * 1/x *100

Fig. 2. Performance distribution in Top500 listmance follows roughly a uniform logarithmic distribution and the probability ofa machine having less than P processors can be estimated byp(Procs � P) = 2 ln(P) + c (1)

4 Workload Model And Evaluation CriteriaThe model for evaluating our scheduling strategies is derived from the suggestionmade by Feitelson and Rudolph in [18]. Their work was a �rst step towards auni�ed benchmark that will make it easier to compare the quality of di�erentscheduling algorithms. Currently, there exists a broad variety of working sce-narios and evaluation metrics used by di�erent authors to prove the quality oftheir algorithms. This often makes it di�cult { if not impossible { to compareperformance values of di�erent algorithms. However, the suggested model doesnot provide a clearly de�ned benchmark but contains several topics that are stillsubject of ongoing research. In order to implement a simulation environment, wehad to �ll these gaps with what seemed to be the best possible solution at thistime. In the following we give a formal description of the workload model and thecriteria that were used for evaluating the metacomputer scheduling techniques.4.1 Job ArrivalsAs in [18] we use an open on-line model where jobs are continuously fed intothe system while the scheduler is working. The rate at which new jobs enter themetacomputer is modeled by a polynomial of degree 8 as described in [7]. Thus,the arrival rate at any given time t is�(t) = 3:1�8:5t+24:7t2+130:8t3+107:7t4+804:2t5+2038:5t6+1856:8t7+4618:6t8(2)with �0:5 � t � 0:5 representing the time span from 8:30 AM to 6:00 PM.During the remaining time, we estimate an arrival rate of one job per hour fornormal load situations. In order to obtain scheduling performance as a functionof load, we multiply this arrival rate by a compression factor in order to simulatedi�erent load situations.Obviously, this way of modeling job arrivals is derived from observationsmade on stand-alone supercomputers. At a nation wide or even global meta-computer jobs will probably arrive in a more uniform distribution.4.2 Job SizesEstimation of job parallelism is based on the suggestions made in [18] and [14].This means that a distinction is made between jobs using a number of processorsthat is a power of two and the remaining ones. Both [18] and [14] observed thatpowers of two are much more often requested than other processor numbers.Hence, it was suggested to use a model where the probability of using fewerthan n processors is roughly proportional to logn and modify it to contain extrasteps where n is a power of two. The height of these steps is derived from theworkload parameter p2 that determines the fraction of jobs using partition sizesthat are powers of 2. Feitelson and Rudolph observed values of p2 around 81%but since it is unclear, if this is going to decrease in the future, it was suggestedto integrate it as a parameter rather than a constant.

The second dimension of a job's size is its execution time. Results reportedin [16] and [14] indicate that runtimes of jobs on large systems have a widedistribution with a high degree of variation. This may be the reason why thereis currently no model available that leads to convincing results for all the ac-counting data that we have examined [21,17]. But there is evidence that thetraces made available by some supercomputers show a mixture of two di�erentjob classes. On the one hand, there are short running jobs that have only asmall degree of parallelism. These jobs are typically generated during the devel-opment cycle. On the other hand, there are long running production runs thatrequire large amounts of resources. This e�ect cannot be seen equally well onall available traces and especially for a metacomputer we expect only a smallnumber of development runs. Consequently we decided to follow the suggestionmade in [18] and [14] for the simulation of batch production runs and assumeuniform logarithmic distribution for the execution times. This means that forany given job requesting A processors the probability that its execution time ona monolithic machine lasts t units isp(t) = 110t (3)4.3 Internal Job StructureThe model of the internal job structure proposed in [18] is very generic and needssome re�nement in order to be applicable to our scenario. In the metacomputingcontext the most important properties of a job are scalability and sensitivitytowards slowdown of selected communication links. Preliminary surveys amongusers of theMetacomputer Online Initiative [35] and the Northrhine-WestphalianMetacomputer Task-force [36] indicate domination of two distinct job classes:1. rigid jobs with frequent barrier synchronization or grid structured commu-nication and2. malleable applications with only few communications that are programmedusing a client/server paradigm.In the following, we will refer to class 1 as synchronous jobs and to jobs of class 2as asynchronous. The fraction psync of synchronous jobs to all jobs is a parameterof the model.For our scheduler it is important to be able to calculate the expected run-time of a job according to the assigned amount of processors and the numberof machines used. The latter is relevant because the number of machines deter-mines the number of slow WAN network connections a job has to cope with.Besides the fact that synchronous jobs imply a �xed degree of parallelism, themain di�erence between the two job classes is the dependency between avail-able communication performance and expected run time. Due to the frequentsynchronizations performed by synchronous jobs, the runtime performance isdetermined by the speed of the slowest communication link. This means that,if a synchronous job is mapped onto multiple computers, the actual number of

machines used has no e�ect on the expected execution time. If there is one widearea network link involved, it dominates the communication behavior of the ap-plication completely. Hence, the parallel execution time of such a request r thatuses ci processors on each machine i 2 f0; : : : ;M � 1g can be derived asT imeSync (r; (c0; : : : ; cM�1)) :=Seq(r)Sr �PM�1j=0 cj � Pj� � �1 +Comm(r) ��BWMPPBWWAN � 1� � �Sync�with �Sync := min(Card (fc 2 fc0; : : : ; cM�1g j c > 0g) � 1 ; 1) (4)where Pj denotes the number of processors available on machine j, BWWANrepresents the bandwidth of a wide area communication link,BWMPP the band-width within each of the parallel machines, and Sr(n) the speedup for n proces-sors. Seq(r) denotes the runtime on a single processor and Comm(r) the fractionof the overall execution time that is consumed by communication, if the job isexecuted on a number of processors that corresponds to its average parallelism.Since it is unknown, how the distribution of Comm(r) in a representative set ofmetacomputer jobs will look like, we decided to assume a uniform distributionwithin the range of 0 < Comm(r) � 0:5.As a consequence of (4.3) the scheduler should avoid splitting a synchronousjob onto multiple machines wherever possible. However, if it has to be split, thenthe algorithm is free to choose an arbitrary number of di�erent machines.The e�ect of a partial communication slowdown on an asynchronous job isless dramatic than in the synchronous case. Here we assume a star-like commu-nication on the WAN links. In the client/server paradigm this means that allthe work packages are generated on one single machine from which they are dis-tributed to the worker nodes. Arbitrary communication topologies can be usedwithin each of the machines. Therefore, the parallel runtime of a synchronousjob is less sensitive towards a partitioning onto multiple computers. The slow-down in communication is proportional to the amount of data that has to be sentacross wide area links. Assuming that this is again proportional to the amount ofprocessors on the other side of link, the expected execution time can be obtainedfromT imeAsync (r; (c0; : : : ; cM�1)) :=Seq(r)Sr �PM�1j=0 cj �Pj� � �1 + Comm(r) ��BWMPPBWWAN � 1� � �Async�with �Async := �PM�1j=0 cj � Pj��max0�j<M (cj � Pj)PM�1j=0 (cj �Pj) (5)So far we have not explained, how the speedup function Sr(n) shall be de-�ned. Our solution follows the suggestions made by Downey in [15]. His model

compares well with real life workload traces but incorporates only few free pa-rameters. Downey characterizes the speedup behavior of a program by its averageparallelism A and the variance in parallelism � withSr (n) := 8>>>>>><>>>>>>: AnA+ �(n�1)2 0 � � � 1 ; 1 � n � AAn�(A� 12)+n(1��2) 0 � � � 1 ; A < n � 2A� 1nA(�+1)A+A���+n� � > 1 ; 1 � n � A +A� � �A else (6)Typical values for � are in the range of 0 � � � 2. Although no extensive studyhas been made on the distribution of � in real workloads, Downey suggests in[14] to use a uniform distribution.4.4 Evaluation CriteriaAlthough much research has been done on scheduling, there is still no �nalanswer to the question, which metrics shall be used for measuring the quality of aschedule [18,19]. This is because di�erent people have di�erent requirements. Forexample, managements of computing centers have strong interests in optimizingthe overall throughput of their machines. The users of these centers however,like to obtain good response times for their jobs. Since managers of computingcenters should also be interested in satisfying the needs of their users, it might bea good idea to search for optimal response time schedules with good throughput.However, response time measurement can lead to irritating results since it tendsto overemphasize the e�ects of small jobs. Nevertheless, we decided to focusprimarily on optimizing response time since it is used in many papers dealingwith on-line scheduling and it is at least considered a sensible metrics in [18]5 The AlgorithmsAn analogy that is often used for describing scheduling algorithms representsmachines as two dimensional buckets. The width of such bucket is related tothe total amount of resources on the corresponding machine and the heightrepresents time (see Fig. 3). Each request that has been scheduled for a singlemachine can therefore be represented by a rectangle de�ned by the number ofprocessors allocated to that job (width of the rectangle) and the expected runtime (height of the rectangle). For the rest of this paper we will use Freem(t)as the amount of free resources on machine m at time t. Furthermore, we de�neFree�m(t) as Free�m(t) := mint0�t fFreem (t0)g (7)Free�m will also be called the surface of m. In Fig. 3 the surface corresponds tothe dashed line.

r e s o u r c e s

tim
e r e q u e s t sFig. 3. Job schedule on a parallel machine and the corresponding surfaceThe same analogy can be used for the metacomputer scenario (see Fig. 4).For this case we de�ne the surface of the whole machine pool M as Free�M (t)with Free�M (t) := Xm2M Free�m(t) (8)

s u r f a c e s o f s i n g l e m a c h i n e s

s u r f a c e o f m e t a c o m p u t e r

Fig. 4. Constructing the metacomputer's surface from machine surfaces5.1 Scheduling With Full Control { The Idealized ScenarioA scenario that o�ers full control to the metacomputing scheduler can be achievedby denying direct submission of jobs to the local queuing systems. As a conse-quence, the scheduler has complete knowledge about all jobs in the system which

makes metacomputer scheduling in this scenario similar to scheduling a singleparallel machine. If the speed of the Internet connections between the machineswas the same as internal communication, the problem would be identical to thejob management of a single parallel machine. However, Internet communicationis much slower and the algorithm has to take this into account. As explained inSec. 2.2 we have chosen scheduling algorithms based on FCFS, FFIH, and ASPfor further investigation.FCFS First Come First Serve is a very simple approach. When a request forr resources is submitted to the system at time s, it will be con�gured at time twith t = minft0 � s j Free�M(t0) � rg. The choice which { and how many {machines shall be used is based upon a greedy strategy. If the request representsan asynchronous application it is divided into as few parts as possible in orderto decrease its overall execution time. If the program to be launched belongsto the synchronous class, the algorithm tries to �t the request into one singlemachine. If this is not possible, it is divided into as many parts as possiblethereby using up all those small partitions that would otherwise slow downsubsequent asynchronous (or probably also synchronous) applications. This is afeasible approach since the communication costs of synchronous jobs depend onthe speed of the slowest network connection.For the metacomputing scenario, we derived a variant called FCFS� thatdoes not choose t as the earliest possible starting time but as that time thatassures the earliest possible �nishing time. This di�ers from the original algo-rithm, because in the metacomputing scenario a later starting time can leadto an earlier result because it could possibly be mapped on less machines (seeequations (4.3) and (5)).Although FCFS is a very simple algorithm, experience has shown that itsresults are usually not as bad as one could have expected [39].FFIH First Fit Increasing Height is a two-dimensional variant of the well knownList Scheduling algorithm [34]. The basic idea of this approach is to sort allrequests in order of increasing resource demands and then perform an FCFSscheduling with the sorted list. Strictly speaking, FFIH is an o�ine algorithm.However, if a waiting room is introduced [21], it can be used for online scheduling,too. Since FFIH is derived from FCFS, it shows similar behavior. However, itis typically better for minimizing the average response time, since small jobsare scheduled �rst and therefore the number of jobs with long waiting times isreduced.ASP Adaptive Static Partitioning is one of the most promising disciplines forscheduling moldable jobs on parallel machines. Although up to now it has onlyrarely been used in practice, the algorithm is simple, easy to be implemented,and shows good performance on monolithic machines, if applied to real work-loads [29]. ASP stores incoming requests in a waiting room until there are freeprocessors available. It then assigns as many requests to these processors as pos-sible. If the waiting room is su�ciently �lled, this means that asynchronous (i.e.

moldable) jobs may be scaled down to only a few processors in order to be ableto start more jobs at the same time. For jobs with a high degree of parallelismthis can lead to extremely long execution times. Hence, we introduced a slightmodi�cation of the original algorithm which we call ASP�. This strategy assignsat least �A processors to any job for which A processors were requested, whereby� is a constant of the algorithm with 0 < � � 1.5.2 Scheduling With No Control - The Reference CaseScheduling with no control models the way job management is currently done bymost metacomputing environments. Local jobs are submitted directly to the ma-chines without notifying the metacomputer scheduler. Consequently, the sched-uler mainly concentrates on good mapping and partitioning strategies. Further-more, heuristics can be integrated to estimate the total workload on each machineof the metacomputer. In the following, we describe how the scheduling strategieswere modi�ed for this scenario.Since FFIH, ASP, and ASP� need information about the contents of thelocal queues (the waiting room is only drained when the local queues are atleast partially empty), these algorithms are not directly applicable in a scenariowhere no information is available. Hence, we chose only the FCFS strategy forexamination in such an environment. FCFS with no control over local queues�rst sores all n machines in random order in a vector (m0; : : : ;mn). Then eachrequest ri in the waiting queue is mapped onto machines mi1 ; : : : ;mi2 withPi2l=i1 Size(ml) � Ari , whereby Size(ml) gives the total amount of processorsof machine l and Ari gives the overall number of resources requested by ri.For any two jobs ri; rj with i < j the mapping is created in a way such thati1 � i2 � j1 � j2.Randomizing the machine vector for each scheduling round works as a simpleheuristics to achieve balanced work distribution over the complete machine pool.5.3 Scheduling With Minimum Control - The CompromiseScheduling with minimumcontrol is the compromise we propose as a feasible wayto adapt scheduling algorithms designed for monolithic parallel machines to ametacomputing environment. The fundamental idea of this approach is to use thesurfaces of all underlying machines for scheduling the metacomputer requests.Local jobs can still be submitted to the queuing systems directly. However,from time to time the metacomputer performs a scheduling round. When thishappens, each machine informs the metacomputer about the current shape ofits surface (or probably only a subset of the complete surface, depending onlocal administration policies). During the short period while the metacomputerperforms its scheduling, the local queuing systems must not alter the shape oftheir surfaces. This can for example be achieved by delaying jobs, that arriveduring this time, in a special waiting room.

This solution o�ers the freedom of the full control scenario during eachscheduling round without imposing signi�cant restrictions onto the local queu-ing systems. It is therefore a) feasible and b) a much better basis for advancedscheduling algorithms like for example those described in [29]. We call this tech-nique Interleaved Hybrid Scheduling or IHS for short, because each machine isalternatingly managed by two di�erent schedulers (local and meta scheduler). Adrawback of IHS is that the surfaces presented to the metacomputer schedulingalgorithm are usually not
at but rather form a more or less steep staircase.Hence, many of the algorithms found in literature cannot be applied directly.The two possible solutions are either to schedule on top of a
at line placedabove the highest step of the surface or to �nd an algorithm that can e�cientlyhandle uneven surfaces. So far, we have only used the IHS technique with the al-gorithms described in Sec. 5.1. In the future, we are planning to search schedulingstrategies that are better tuned to the IHS scenario.There exist several possible schemes for deciding, when the metacomputershall trigger a new scheduling round. For this paper we have examined twodi�erent approaches. The �rst solution was to wait a �xed time interval �tbetween the termination of the last metacomputing job of the previous roundand the invocation of a new one. This solution is attractive for the machineowners, since it guarantees a �xed time interval during which their resource arenot used by the metacomputer. For the results presented in Sec. 6 we used avalue of �t = 4 hours.The second and more
exible approach is to also consider the amount ofresource requests that are pending in the waiting room of the metacomputer.In order to achieve this, we triggered a scheduling round of the metacomputerwhen 1Pm2MachinePool Size (m) � Xr2WaitingRoomAr � T ime (r; Ar) � Waited (r) �
(9)Where T ime (r; Ar) is the expected execution time of r on Ar processors of amonolithic machine, Waited (r) is the amount of time units the request has sofar been waiting, and
 is a constant weight factor that determines, how muchthe overall decision is in
uenced by the waiting time.6 ResultsThe following results were all obtained from a wide range of simulation runsusing the model described in Sections 3 and 4. We measured the accumulatedresponse time of the �rst c � M jobs that were completed by the simulatedmetacomputer, whereby M was the total number of machines in the pool and cwas set to 1000. As can be seen in Figures 5, 6, and 7, c = 1000 is not completelysu�cient to eliminate all the e�ects of a randomized workload. Although thesesimulations were performed on the large parallel machines of the PaderbornCenter for Parallel Computing, it took several weeks to collect the necessary

data. Therefore, we believe that c = 1000 represents a good compromise betweenprecision of the data and resources needed to obtain the results.It should be pointed out that jobs are arriving throughout the whole simula-tion run. This means that the queues are not being drained towards the end ofsimulation which would be an unrealistic scenario. However, as we will point outlater, this does not leave the results una�ected and has to be considered, whenthe simulation data is being interpreted.
0

200000

400000

600000

800000

1e+06

1.2e+06

0 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
tim

e
of

 a
ll

jo
bs

Compression

32 machines, p_l=0.5, MppWanRatio=25.0, p_sync=0.5

ASP*_FullControl
ASP_FullControl

FCFS*_FullControl
FCFS_FullControl
FFIH_FullControl

FFIH*_FullControlFig. 5. Performance of di�erent algorithms in the idealized scenarioFig. 5 depicts the simulation results for algorithms running in the idealizedscenario that does not allow direct submission of jobs to local queues (full con-trol). In this diagram compression ranges up to a value of 19, meaning that withina certain time interval there are 19 times more job arrivals than normal. Themetacomputer contained 32 machines, Internet communication was assumed tobe 25 times slower than communication within the parallel machines, the ratiobetween synchronous and asynchronous workload was 1:1, and there were asmany local jobs as jobs submitted through the metacomputer.First of all it can be observed that all curves are converging for increasingload situations. This is due to the fact that the job queues were not drainedtowards the end of a simulation run. Thus, if the arrival rate reaches a certainalgorithm dependent threshold, a large fraction of the jobs remains in the queuesand has no or only marginal e�ect on the performance of the algorithm.

Furthermore, it is remarkable that the ASP-based algorithms show the weak-est performance. This is due to the fact that ASP has a tendency to allocatevery few processors even to large jobs. This e�ect is a little bit reduced by theASP� variant. However, since ASP� becomes identical to FCFS if � gets close to1, we have chosen � = 0:5. This was not large enough to prevent the algorithmfrom creating extremely long running jobs and thereby preventing the start oflarge synchronous (i.e. rigid) jobs for a long time. We suppose that ASP wouldperform better, if the job mix did only contain asynchronous jobs.FFIH, on the other hand, demonstrates good results in our simulation envi-ronment. However, the plots indicate that this strategy is very sensitive towardsthe job sequence to be scheduled. The reason for this becomes clear, if we imag-ine the worst possible case. This is an alternating sequence of jobs that eitheruse few processors and run for a long time or jobs that block the whole meta-computer but can be �nished almost instantly. Since these requests have similarresource demands such sequences are likely to be created by the sorting step ofFFIH.
0

200000

400000

600000

800000

1e+06

1.2e+06

0 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
tim

e
of

 a
ll

jo
bs

Compression

32 machines, p_l=0.5, MppWanRatio=25.0, p_sync=0.5

FCFS_NoControl
FFIH_adaptive_IHS

FCFS*_IHS
FFIH_IHS

ASP*_adaptive_IHS
ASP*_IHSFig. 6. Performance of di�erent algorithms in a real world scenarioThe results presented in Fig. 6 indicate what can be achieved in a real worldscenario, if the IHS technique is applied. It can be seen that for smaller andtherefore more realistic compression values all IHS variants show signi�cantlybetter performance than an FCFS algorithm that uses no information about the

local queues. For these load values the FFIH and FCFS strategies even seem to bebetter then they are in the scenario with full control over the local queues. Thisis caused by the fact that in the idealized scenario there are no locally submittedjobs, which are restricted to the size of the corresponding machines and thereforeare smaller than many of the metacomputing jobs. As a consequence, care hasto be taken when comparing the plots of Figures 5 and 6. We think that theslight di�erence in the incoming job mix corresponds to the users' behavior, butthis assumption still has to be proven.At a �rst glance, it is astonishing that the ASP algorithm seems to be thebest strategy for the real world scenario. Having a closer look at Fig. 7, it can beseen that the result plots for ASP in Fig. 6 are mainly dominated by the responsetimes of those jobs submitted by local users. In other words, the execution timesof metacomputing jobs became so long that only few of them terminated amongthe �rst c � M jobs. Hence the good results of APS have been achieved byproviding a much worse quality of service for multi-site applications. Hence, forscheduling a metacomputer we propose to use IHS either with FCFS� or withFFIH. The latter is best for moderate workloads while FCFS tends to behaveslightly better, when the system is extremely heavy loaded.
0

200000

400000

600000

800000

1e+06

1.2e+06

0 2 4 6 8 10 12 14 16 18 20

R
es

po
ns

e
tim

e
of

 lo
ca

l j
ob

s

Compression

32 machines, p_l=0.5, MppWanRatio=25.0, p_sync=0.5

FCFS_NoControl
FFIH_adaptive_IHS

FCFS*_IHS
FFIH_IHS

ASP*_adaptive_IHS
ASP*_IHSFig. 7. Average response time of jobs that were submitted locally

7 ConclusionOur motivation was { and still is { to �nd the best possible scheduling algorithmfor the NRW metacomputer. Looking at what was available in the literatureexposed a large gap between algorithms that have been studied analyticallyand those found in existing environments. Therefore, we extended the model ofFeitelson and Rudolph towards metacomputer scheduling in order to obtain atool for measuring the quality of di�erent algorithms. Care was taken to derive amodel that re
ects the real world scenario as close as possible. Only in the secondline, we tried to keep it simple enough for analytical studies. We think, that ourmodel is still close enough to the proposal of Feitelson and Rudolph to allowcomparison with other results obtained from the same approach. Much e�ort hasbeen spent on the implementation of this model. Therefore, we tried to createa generic simulation environment, which we are making publicly available. Thismay also be useful to researchers, who study scheduling of monolithic parallelmachines, since a metacomputer can be seen as a generalization of this concept.We found that an important factor for metacomputer scheduling is the exis-tence of local queues to which jobs are submitted without being passed throughthe metacomputer system. Hence, we developed the IHS technique as a feasibleapproach to use well known scheduling algorithms for the prototype of a work-ing metacomputer. Our results indicate that for moderate workloads use of theIHS technique with the FFIH algorithm decreases the average response timessigni�cantly. However, more e�ort should be spent on examining more powerfulalgorithms with IHS.Another important aspect of metacomputer scheduling that was not dealtwith in this paper is the reliability of job descriptions. So far we assumed thateverything the scheduler is being told about a job is absolutely precise. However,in reality this is usually not the case. Hence, in our future work, we plan to paycloser attention to the e�ects of unreliable information on scheduling algorithmsfor metacomputing.References1. Academic Computing Services Amsterdam. The SARA Metacomputing Project.WWW Page. http://www.sara.nl/hec/projects/meta/.2. Carl Albing. Cray NQS: production batch for a distributed computing world. InProceedings of the 11th Sun User Group Conference and Exhibition, pages 302{309,Brookline, MA, USA, December 1993. Sun User Group, Inc.3. J. Almond and D. Snelling. UNICORE: Secure and Uniform Access toDistributed Resources via the World Wide Web, 1998. http://www.kfa-juelich.de/zam/RD/coop/unicore/.4. Stergios V. Anastasiadis and Kenneth C. Sevcik. Parallel application schedul-ing on networks of workstations. Journal of Parallel and Distributed Computing,43(2):109{124, June 1997.5. T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for NOW (Networks ofWorkstations). IEEE Micro, 15(1):54{64, February 1995.6. R. Baraglia, R. Ferrini, D. Laforenza, and A. Lagana. Metacomputing to over-come the power limits of a single machine. Lecture Notes in Computer Science,1225:982�, 1997.

7. M. Calzarossa and G. Serazzi. A characterization of the variation in time of work-load arrival patterns. IEEE Transactions on Computers, Vol. C-34, :2, 156-162,1985.8. Olivier Catoni. Solving scheduling problems by simulated annealing. SIAM Journalon Control and Optimization, 36(5):1539{1575, September 1998.9. Steve J. Chapin, Dimitrios Katramatos, John Karpovich, and Andrew S.Grimshaw. Resource management in legion. Technical Report CS-98-09, Depart-ment of Computer Science, University of Virginia, February 11 1998. Wed, 19 Aug1998 17:14:25 GMT.10. Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of ApplicationCharacteristics and Limited Preemption for Run-To-Completion Parallel ProcessorScheduling Policies. In Proceedings of the 1994 ACM SIGMETRICS Conference,pages 33{44, February 1994.11. Cray Research. NQE. commercial product.12. Thomas A. DeFanti, Ian Foster, Michael E. Papka, Rick Stevens, and Tim Kuh-fuss. Overview of the I-WAY: Wide-area visual supercomputing. The Interna-tional Journal of Supercomputer Applications and High Performance Computing,10(2/3):123{131, Summer/Fall 1996.13. Jack Dongarra and Hans Meuer and Erich Strohmaier. Top 500 Report. WWWPage, 1998. http://www.netlib.org/benchmark/top500/top500.list.html.14. Allen B. Downey. A parallel workload model and its implications for processor allo-cation. Technical Report CSD-96-922, University of California, Berkeley, November6, 1996.15. Allen B Downey. A model for speedup of parallel programs. Technical ReportCSD-97-933, University of California, Berkeley, January 30, 1997.16. D. G. Feitelson. Packing schemes for gang scheduling. Lecture Notes in ComputerScience, 1162:89�, 1996.17. D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scien-ti�c workload on the NASA ames iPSC/ 860. Lecture Notes in Computer Science,949:337�, 1995.18. D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job schedul-ing. Lecture Notes in Computer Science, 1459:1�, 1998.19. D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik. Theory andpractice in parallel job scheduling. Lecture Notes in Computer Science, 1291:1�,1997.20. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal of Supercomputer Applications and High PerformanceComputing, 11(2):115{128, Summer 1997.21. J. Gehring and F. Ramme. Architecture-independent request-scheduling with tightwaiting-time estimations. Lecture Notes in Computer Science, 1162:65�, 1996.22. J. Gehring, A. Reinefeld, and A. Weber. PHASE and MICA: Application speci�cmetacomputing. In Proceedings of Europar 97, Passau, Germany, 1997.23. Genias Software GmbH, Erzgebirgstr. 2B, D-93073 Neutraubling. CODINE User'sGuide, 1993. http://www.genias.de/genias/english/codine/.24. Hoare. Quicksort. In C. A. A. Hoare and C. B. Jones (Ed.), Essays in ComputingScience, Prentice Hall. 1989.25. Chao-Ju Hou and Kang G. Shin. Implementation of decentralized load sharingin networked workstations using the Condor package. Journal of Parallel andDistributed Computing, 40(2):173{184, February 1997.26. IBM Corporation. Using and Administering LoadLeveler { Release 3.0, 4 edition,August 1996. Document Number SC23-3989-00.

27. K. Koski. A step towards large scale parallelism: building a parallel computingenvironment from heterogenous resources. Future Generation Computer Systems,11(4-5):491{498, August 1995.28. Robert R. Lipman and Judith E. Devaney. Websubmit - running supercomputerapplications via the web. In Supercomputing '96, Pittsburgh, PA, November 1996.29. Walter T. Ludwig. Algorithms for scheduling malleable and nonmalleable paralleltasks. Technical Report CS-TR-95-1279, University of Wisconsin, Madison, August1995.30. The NRW Metacomputing Initiative. WWW Page. http://www.uni-paderborn.de/pc2/nrwmc/.31. B. J. Overeinder and P. M. A. Sloot. Breaking the curse of dynamics by task mi-gration: Pilot experiments in the polder metacomputer. Lecture Notes in ComputerScience, 1332:194�, 1997.32. E. W. Parsons and K. C. Sevcik. Implementing multiprocessor scheduling disci-plines. Lecture Notes in Computer Science, 1291:166�, 1997.33. Platform Computing Corporation. LSF Product Information. WWW Page, Octo-ber 1996. http://www.platform.com/.34. F. Ramme and K. Kremer. Scheduling a metacomputer by an implicit votingsystem. In Int. IEEE Symposium on High-Performance Distributed Computing.Paderborn Center for Parallel Computing, 94.35. A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme,T. R�omke, and J. Simon. The MOL project: An open, extensible metacomputer.In Debra Hensgen, editor, Proceedings of the 6th Heterogeneous Computing Work-shop, pages 17{31, Washington, April 1 1997. IEEE Computer Society Press.36. V. Sander, D. Erwin, and V. Huber. High-performance computer managementbased on Java. Lecture Notes in Computer Science, 1401:526�, 1998.37. M. Schwehm and T. Walter. Mapping and scheduling by genetic algorithms. Lec-ture Notes in Computer Science, 854:832�, 1994.38. Uwe Schwiegelshohn. Preemptive weighted completion time scheduling of paralleljobs. In Josep D��az and Maria Serna, editors, Algorithms|ESA '96, Fourth AnnualEuropean Symposium, volume 1136 of Lecture Notes in Computer Science, pages39{51, Barcelona, Spain, 25{27 September 1996. Springer.39. Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of �rst-come-�rst-serve par-allel job scheduling. In Proceedings of the Ninth Annual ACM-SIAM Symposiumon Discrete Algorithms, pages 629{638, San Francisco, California, 25{27 January1998.40. S. Setia and S. Tripathi. A comparative analysis of static processor partitioningpolicies for parallel computers. In Internat. Workshop on Modeling and Simula-tion of Computer and Telecommunication Systems (MASCOTS), pages 283{286,January 1993.41. Jon Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons Inc.,New York, 1 edition, 1996.42. Larry Smarr and Charles E. Catlett. Metacomputing. Communications of theACM, 35(6):44{52, June 1992.43. W. Smith, I. Foster, and V. Taylor. Predicting application run times using histor-ical information. Lecture Notes in Computer Science, 1459:122�, 1998.44. A. W. van Halderen, Benno J. Overeinder, Peter M. A. Sloot, R. van Dantzig, DickH. J. Epema, and Miron Livny. Hierarchical resource management in the poldermetacomputing initiative. submitted to Parallel Computing, 1997.

