Scheduling a Metacomputer With
Uncooperative Sub-schedulers *

Jorn Gehring Thomas Preif}

Paderborn Center for Parallel Computing
D-33095 Paderborn, Germany
{joern | tppb}@uni-paderborn.de
http://www.uni-paderborn.de/pc2/

Abstract. The main advantage of a metacomputer is not its peak per-
formance but better utilization of its machines. Therefore, efficient schedul-
ing strategies are vitally important to any metacomputing project. A real
metacomputer management system will not gain exclusive access to all
its resources, because participating centers will not be willing to give up
autonomy. As a consequence, the scheduling algorithm has to deal with a
set of local sub-schedulers performing individual machine management.
Based on the proposal made by Feitelson and Rudolph in 1998 we de-
veloped a scheduling model that takes these circumstances into account.
It has been implemented as a generic simulation environment, which we
make available to the public. Using this tool, we examined the behavior
of several well known scheduling algorithms in a metacomputing sce-
nario. The results demonstrate that interaction with the sub-schedulers,
communication of parallel applications, and the huge size of the meta-
computer are among the most important aspects for scheduling a meta-
computer. Based upon these observations we developed a new technique
that makes it possible to use scheduling algorithms developed for less
realistic machine models for real world metacomputing projects. Simula-
tion runs demonstrate that this technique leads to far better results than
the algorithms currently used in metacomputer management systems.

1 Introduction

Ever since 1992 when the term metacomputing was coined by Larry Smarr and
Charles E. Catlett [42], researchers all over the world have been working with
increasing effort on this promising concept. The most obvious advantage of a
metacomputer is its tremendous computing power. Theoretically, a nation wide
cluster can provide more FLOPS than any single machine has ever been able
to achieve. However, after six years of research the first wave of enthusiasm has
passed and researchers realized that many problems have to be solved before
the 1dea of Smarr and Catlett can become reality. Especially the Information
Wide Area Year [12] has not only demonstrated the potential of the meta-
computing concept but also its limitations. Particularly on the application side,

* Supported by a grant from the NRW Metacomputing project

there exist only few programs that can fully exploit the accumulated power of
a large heterogeneous machine pool. For most real world applications efficiency
— and sometimes even performance — decreases dramatically, if they are exe-
cuted on a cluster of WAN distributed machines. Consequently, the enormous
efforts necessary for building a metacomputer cannot be justified by its theoret-
ical peak performance. During the recent past, other benefits of metacomputing
have become more and more apparent. One of the most important aspects of
a nationwide computational grid is its ability to share load more evenly and
achieve better utilization of the available hardware.

Nowadays people show a strong tendency to run their jobs on those machines
that are locally available. Only if these resources are absolutely insufficient, they
are willing to go through the trouble of applying for an account at a remote
center with more powerful machines. If access to a remote machine was as easy
as to HPC resources at the local site, users would be more flexible in choosing
their target hardware. As a consequence, the total amount of job requests would
spread more evenly over the available machines. Even more important: computer
systems with special features could more easily be kept free for those applica-
tions that can take advantage of these. Software with less demanding hardware
requirements could be run on general purpose machines without loosing effi-
ciency while code that was tuned for a particular system could be executed
faster on the appropriate hardware. As a consequence, the implementation of
a metacomputer could effectively increase the amount of available computing
power without the need to add extra hardware.

If the primary goal of building a metacomputer is to optimize resource us-
age, then 1ts scheduling component becomes a critical part. From the scheduling
perspective, a metacomputing management system can be divided into two dis-
tinct layers. The bottom layer consists of the primary infrastructure that links
the distributed machines together and manages their information exchange. On
top of this there is the scheduling layer that decides when, how, and where jobs
are executed. Obviously, there has to be close cooperation between the sched-
uler and the underlying infrastructure. During the past, researchers often worked
independently on these two layers. As a consequence, there is now a large gap be-
tween research results achieved in both areas [19,32]. The best known scheduling
algorithms, were studied using analytical models that are not directly compati-
ble with the infrastructure implemented in the various metacomputing projects.
It is therefore the purpose of this work to show a possible way of bridging this
gap and to qualify the inevitable performance decreases.

The rest of this paper is organized as follows. In Sec. 2 we give an overview of
current research in the field of metacomputer environments and relevant schedul-
ing strategies. We describe our machine model in Sec. 3 and the workload model
as well as the evaluation criteria in Sec. 4. Sec. 5 outlines the examined scheduling
algorithms and describes the most important simulation results. Furthermore,
a new technique is shown for that makes it possible to use scheduling algo-
rithms developed for less realistic machine models for real world metacomputing

projects. Finally, in Sec. 7 we summarize the results, draw conclusions for the
scheduling community, and provide an outlook on our future work.

2 Background

Many fields of research are contributing to the implementation of a metacom-
puter. For example, networking, security, interface design, load balancing, map-
ping, distributed system design, or even multimedia are all important aspects of
this field of research. In this paper we concentrate on what has been achieved in
infrastructure oriented projects and on scheduling algorithms that are applicable
to such an environment.

2.1 Infrastructure

Although there exists a definition of ”metacomputing” in [42] that is frequently
referenced, there is no broad agreement about how a metacomputer should look
like. A lot of projects have been set up since 1992 which rightfully claim to be
working in the field of metacomputing. However, some of their approaches and
goals differ significantly. We found that the majority of these projects can be
divided into five distinct categories:

HPC Metacomputing is the most traditional approach. Projects of this category
are targeting at connecting high performance computers via wide area networks.
Supercomputers are typically installed at different locations all over a nation. As
a consequence, these projects do not only have to deal with technical problems
but also with the political aspects arising from the necessary sub-ordination
of supercomputer centers under any form of metacomputer management. The
machines forming the resource pool are heterogeneous in hardware and software
(e.g. operating system). During the past, most representatives of this category
of metacomputing systems had a centralized architecture which incorporated
a global scheduling module with full control over the available resources. Due
to political and technical considerations (e.g. fault tolerance) nowadays most
projects favor a more distributed approach. [20,9,36,44,31] are among the most
prominent initiatives of this category.

Cluster Computing has developed very fast during the last six years. The goal of
these projects is to connect a large number of workstation sized computers as a
cheap alternative to supercomputers. Although some are also trying to connect
resources of different administrative entities (e.g. universities), a more typical
use is a building wide metacomputer. Most of these systems have support of
heterogeneous hardware but put restrictions on software heterogeneity. Since
there is much economical potential in this area, there are several commercial
products available offering a high degree of robustness. However, compared to
HPC-metacomputing these systems focus more on distributing sequential jobs
and less on efficiently scheduling parallel applications. Some of the best known
cluster computing environments are [25,33,23,5].

Single Site Metacomputing is similar to HPC metacomputing. The main differ-
ence is the restriction to only one administrative entity. Many supercomputing
centers have been enhancing their local management systems to provide meta-
computing services on top of the local machine pool. From the algorithmic point
of view, this problem is almost identical to HPC metacomputing. However, re-
sults can be achieved faster, because there are less political problems and a
centralized software architecture is feasible. [21,1,27] are some examples of these
projects.

Object Oriented Metacomputing is increasingly gaining importance in the meta-
computing community. Applications that have been implemented using an object
oriented programming paradigm can easily be ported to the distributed runtime
environment of a metacomputer. Especially the availability of the CORBA stan-
dard [41] has had strong effects on the development of distributed object oriented
environments. CORBA provides full support of heterogeneity in hard- and soft-
ware as well as a possible technical solution to the interconnection of several
sites. Since each site within such a system represents itself by one or more o0b-
ject request brokers;, CORBA also indicates a possible way to overcome some of
the political obstacles. This is not the least reason why similar approaches have
been adopted by several HPC metacomputing projects. The major disadvantage
of object oriented metacomputing is related to the fact that currently only few
relevant applications have been programmed in object oriented languages.

Seamless Computing is the most pragmatic approach and probably not truly
metacomputing. Projects of this class are working on standardizations of super-
computer access interfaces. Nowadays, almost any supercomputing center has
its own access modalities and users have to learn and remember how jobs are
submitted to each of the available machines. Therefore, there is a strong de-
mand for a unified access interface. Some of the projects working in this area
are described in [3,28,6].

Our institute, the Paderborn Center of Parallel Computing, is involved in
a couple of projects that deal with interconnecting supercomputers [30,22,35].
Thus, our work concentrates mainly on aspects of HPC metacomputing. The
model described in Sec. 3 is therefore derived from this category.

2.2 Job Scheduling for Metacomputing

Much research has been done in the field of parallel job scheduling. A good
overview about the current state can be found in [19]. Unfortunately, many re-
searchers have been using their own nomenclature for specifying the capabilities
of their algorithms. In 1997 Feitelson et al. proposed a common set of terms for
describing scheduling strategies [19]. We will use these definitions throughout
the rest of this paper.

According to [19], scheduling models can be classified according to partition
specification, job flexibility, level of preemption, amount of job and workload

knowledge available, and memory allocation. Clearly, a metacomputer is a dis-
tributed memory system (although some of its nodes may be shared memory
machines). The other criterions are less easy to define. Given the current prac-
tice and the results of Smith, Foster, and Taylor in [43], it seems sensible to allow
the expected application runtime as the only job related information available
to the scheduler. Newer management software packages such as CCS [21] allow
much more complex job descriptions, but these systems cannot be expected to be
broadly available in the near future. On the machine level handling of partition
sizes ranges from fixed partitions on many batch systems to dynamic parti-
tions on modern SMP architectures. On the metacomputer level it seems best to
define partition sizes according to job requirements and current load situation
before an application is being executed. The effort of implementing mechanisms
for re-adjusting partition sizes during run time seems inappropriate considering
the small number of applications that currently support such a feature. There-
fore, we are using variable partitions in our metacomputer model. The same
arguments also hold for job flexibility. Several parallel applications can run on
different partition sizes but only few support dynamic re-adjustment during run
time. Therefore, we are looking for a scheduler that can efficiently manage a
mix of moldable and rigid jobs (strictly speaking, rigid jobs are moldable jobs
with a fixed degree of parallelism). The most difficult decision was, whether
the metacomputer shall support preemption. Up to now, only few job manage-
ment systems provide support for preemptive scheduling. However, many long
running scientific applications (i.e. applications well suited for metacomputing)
have internal checkpointing and restart facilities. Therefore, it would not be too
difficult to implement coarse grain preemptive scheduling for these applications.
Especially since preemption seems to be a promising concept for scheduling of
parallel jobs [38]. Nevertheless, current versions of the major metacomputing
environments — including our own MOL system [35] — do not support preemp-
tion and therefore we have so far only considered run-to-completion scheduling
algorithms.

Typically, scheduling disciplines are distinguished as online or offline algo-
rithms. However, as we will show below, this difference becomes less important
in the metacomputer scenario. Therefore, both types of algorithms are poten-
tial candidates for a metacomputer scheduler. Since the problem of scheduling
parallel tasks on multiple parallel machines has been proven to be computa-
tionally hard for most cases, the most commonly used algorithms are based
on heuristics. Although several papers have been published on using general-
purpose heuristics for scheduling [37,8], better results are usually obtained by
more problem specific strategies. The latter can be divided into two categories.
On the one hand, there are algorithms derived from analytical considerations
like for example those discussed in [29]. Often, these strategies are difficult to
be implemented but guarantee a good worst case behavior. On the other hand,
there are several fairly simple heuristics that have been tested in simulation en-
vironments or sometimes even as part of real world scheduling systems [32,4,10].
These approaches do not have such a good worst case behavior, but the results

for ”typical” problems are often quite good [29]. We decided to concentrate our
examinations on those strategies that are not too complex for implementation
and for which good performance has been demonstrated with real workloads.
Although there are still a lot of algorithms in this class, many of them are based
on three fundamental approaches: FCFS [39], FFTH [34], and ASP [40]. In Sec. 5
we provide a closer look at these strategies and show, if and how they can be
applied to a metacomputing scenario.

3 Modeling The Metacomputer Infrastructure

Our main motivation was to find a scheduling algorithm that can be imple-
mented on top of the NRW metacomputing infrastructure [30]. One of the key
concepts of this project is to maintain autonomy for the participating super-
computing centers. Especially, it was not possible to replace existing resource
management systems like NQS [2], NQE [11], LoadLeveler [26], or CCS [21] by
a global scheduling module. The metacomputer management facilities had to
be installed on top of the existing environments. It should be emphasized that
this is not only a problem of the NRW metacomputer. Other metacomputing
projects like GLOBUS [20], POLDER, [44,31], or the Northrhine-Westphalian
Metacomputer [36] had to use similar approaches. As a consequence the meta-
computer scheduling algorithm cannot access the available machines directly
but has to submit its jobs to the local queuing systems. Furthermore, users with
direct access to the machines cannot be forced to submit all their jobs via the
metacomputer. Especially since metacomputer frontends are designed to provide
easy access to a heterogeneous machine pool and therefore often do not support
the more advanced features of the hardware. Thus, local users will continue
submitting jobs to the machines directly, thereby bypassing the metacomputer
scheduler. Fig. 1 depicts this model. Each computer is controlled by a local re-
source management system (RMS). The metacomputer scheduler has no direct
access to the hardware. It can only submit (sub-)jobs via each center’s local queu-
ing environment. In general, there are two different types of resource requests
that can be sent to such a system. On the one hand, these are metacomputer
jobs that are submitted to the metacomputing scheduler. On the other hand,
there are local requests that are submitted directly to the resource management
software without using the metacomputer facilities. The amount of information
that is communicated from the local queuing systems to the metacomputer is a
parameter of the model. Basically, there are three different levels of information
exchange possible:

1. The metacomputer has no knowledge about the locally submitted jobs. It
has no information, if (or how many) resources have already been assigned
by the RMS and how much is left for the metacomputer (scheduling with no
control).

2. The meta-scheduler can query the local queuing systems about the resources
assigned to local jobs. This may include jobs that have already been submit-
ted but are not yet scheduled. This type of information can be unreliable,

metacomputer applications |

local applications

meta-management

local local local
L » management| management management
I ! cee 1
machine machine machine
v v v

Fig. 1. The metacomputer accesses the machines through local resource management
systems

because the jobs’ resource requirements are typically not exactly known in
advance (scheduling with limited control).

3. Whenever a job is submitted to a local management system, it is forwarded
to the metacomputer for scheduling (scheduling with full control). This is
the model that has been used in most theoretical papers on metacomputer
scheduling.

It is obvious that a scheduling algorithm designed for model 1 cannot perform
better than the same strategy working in scenario 2. The same holds for models
2 and 3. Consequently, scenario 1 can be expected to deliver the worst results.
However, this approach is currently used in most real world metacomputer man-
agement systems [20,36,31]. The most promising model is the approach that gives
full control to the metacomputer scheduler. Unfortunately, due to the political
reasons explained above, this approach 1s unlikely to become reality. Therefore
we examined the performance decreases that happen to scheduling algorithms
developed for the full control model, if they are used in a no control environ-
ment. Since worst case analysis can sometimes be misleading, if the performance
of algorithms applied to real world problems shall be determined [19,24], we base
our comparisons on simulation runs. In order to obtain results that are useful for
other researchers, too, we derived our simulated environment from the suggested
standard workload model that was proposed by Feitelson and Rudolph in [18].
A detailed description of the workload model is given in Sec. 4.

Besides the scheduling hierarchy, the configuration of the heterogeneous ma-
chine pool is another important aspect of the metacomputer model. For our
work, we employ the concept of application centric metacomputing described in
[22]. Therefore, we may assume that in principle any job can be fulfilled by each
machine. The only heterogeneity that is visible to the metacomputer scheduler is
caused by performance differences between the computing nodes. For simplicity,
we will use performance and number of processors of a node as synonymous for
the rest of this paper (see [22]). What still remains to be defined is the distri-
bution of machine sizes (i.e. performances) within the metacomputer. Since we
are researching on metacomputing with supercomputers, we used the Top 500
Report of Jack Dongarra et al. as a reference [13]. Fig. 2 depicts the performance
distribution of the world’s 500 fastest supercomputers. As can be seen, perfor-

30 T T T T T

"t500.dat" ¢
2*1/x*100 -----

25 1

20 | 1

15 1

percentage of machines

|
&
10 ¢ .
b
:
\\
\

200 400 600 800 1000
processors

Fig. 2. Performance distribution in Top500 list

mance follows roughly a uniform logarithmic distribution and the probability of
a machine having less than P processors can be estimated by

p(Proes < P)=2In(P)+c¢ (1)

4 Workload Model And Evaluation Criteria

The model for evaluating our scheduling strategies is derived from the suggestion
made by Feitelson and Rudolph in [18]. Their work was a first step towards a
unified benchmark that will make it easier to compare the quality of different
scheduling algorithms. Currently, there exists a broad variety of working sce-
narios and evaluation metrics used by different authors to prove the quality of
their algorithms. This often makes it difficult — if not impossible — to compare
performance values of different algorithms. However, the suggested model does
not provide a clearly defined benchmark but contains several topics that are still
subject of ongoing research. In order to implement a simulation environment, we
had to fill these gaps with what seemed to be the best possible solution at this
time. In the following we give a formal description of the workload model and the
criteria that were used for evaluating the metacomputer scheduling techniques.

4.1 Job Arrivals

As in [18] we use an open on-line model where jobs are continuously fed into
the system while the scheduler is working. The rate at which new jobs enter the
metacomputer is modeled by a polynomial of degree 8 as described in [7]. Thus,
the arrival rate at any given time ¢ is

A(t) = 3.1-8.5t4+24.7¢t*+130.8¢34+107.7¢*4+-804.25+2038 .5t °+ 1856 .8 +46118.6¢
2)
with —0.5 < ¢ < 0.5 representing the time span from 8:30 AM to 6:00 PM.
During the remaining time, we estimate an arrival rate of one job per hour for
normal load situations. In order to obtain scheduling performance as a function
of load, we multiply this arrival rate by a compression factor in order to simulate
different load situations.
Obviously, this way of modeling job arrivals is derived from observations
made on stand-alone supercomputers. At a nation wide or even global meta-
computer jobs will probably arrive in a more uniform distribution.

4.2 Job Sizes

Estimation of job parallelism is based on the suggestions made in [18] and [14].
This means that a distinction is made between jobs using a number of processors
that is a power of two and the remaining ones. Both [18] and [14] observed that
powers of two are much more often requested than other processor numbers.
Hence, it was suggested to use a model where the probability of using fewer
than n processors 1s roughly proportional to logn and modify it to contain extra
steps where n is a power of two. The height of these steps is derived from the
workload parameter p; that determines the fraction of jobs using partition sizes
that are powers of 2. Feitelson and Rudolph observed values of ps around 81%
but since it is unclear, if this is going to decrease in the future, it was suggested
to integrate it as a parameter rather than a constant.

The second dimension of a job’s size is its execution time. Results reported
in [16] and [14] indicate that runtimes of jobs on large systems have a wide
distribution with a high degree of variation. This may be the reason why there
is currently no model available that leads to convincing results for all the ac-
counting data that we have examined [21,17]. But there is evidence that the
traces made available by some supercomputers show a mixture of two different
job classes. On the one hand, there are short running jobs that have only a
small degree of parallelism. These jobs are typically generated during the devel-
opment cycle. On the other hand, there are long running production runs that
require large amounts of resources. This effect cannot be seen equally well on
all available traces and especially for a metacomputer we expect only a small
number of development runs. Consequently we decided to follow the suggestion
made in [18] and [14] for the simulation of batch production runs and assume
uniform logarithmic distribution for the execution times. This means that for
any given job requesting A processors the probability that its execution time on
a monolithic machine lasts ¢ units is

p(t) = 1ot (3)

4.3 Internal Job Structure

The model of the internal job structure proposed in [18] is very generic and needs
some refinement in order to be applicable to our scenario. In the metacomputing
context the most important properties of a job are scalability and sensitivity
towards slowdown of selected communication links. Preliminary surveys among
users of the Metacomputer Online Initiative [35] and the Northrhine- Westphalian
Metacomputer Task-force [36] indicate domination of two distinct job classes:

1. rigid jobs with frequent barrier synchronization or grid structured commu-
nication and

2. malleable applications with only few communications that are programmed
using a client /server paradigm.

In the following, we will refer to class 1 as synchronous jobs and to jobs of class 2
as asynchronous. The fraction p,yn,. of synchronous jobs to all jobs is a parameter
of the model.

For our scheduler it is important to be able to calculate the expected run-
time of a job according to the assigned amount of processors and the number
of machines used. The latter is relevant because the number of machines deter-
mines the number of slow WAN network connections a job has to cope with.
Besides the fact that synchronous jobs imply a fixed degree of parallelism, the
main difference between the two job classes is the dependency between avail-
able communication performance and expected run time. Due to the frequent
synchronizations performed by synchronous jobs, the runtime performance is
determined by the speed of the slowest communication link. This means that,
if a synchronous job is mapped onto multiple computers, the actual number of

machines used has no effect on the expected execution time. If there is one wide
area network link involved, it dominates the communication behavior of the ap-
plication completely. Hence, the parallel execution time of such a request r that
uses ¢; processors on each machine ¢ € {0,..., M — 1} can be derived as

Timegyne (1, (co, ..., ep-1)) =

Sjlfjé(lr) . [1 + C’omm(r) . (%ﬂ - 1) : ¢Sync:|
Sr (Zj:o ¢ 'Pj) WAN

with
Gsyne .= min(Card ({c € {co,...,ep—1} |e>0H =1, 1) (4)

where P; denotes the number of processors available on machine j, BWwan
represents the bandwidth of a wide area communication link, BWj3spp the band-
width within each of the parallel machines, and S, (n) the speedup for n proces-
sors. Seq(r) denotes the runtime on a single processor and Comm(r) the fraction
of the overall execution time that is consumed by communication, if the job is
executed on a number of processors that corresponds to its average parallelism.
Since it is unknown, how the distribution of Comm(r) in a representative set of
metacomputer jobs will look like, we decided to assume a uniform distribution
within the range of 0 < Comm(r) < 0.5.

As a consequence of (4.3) the scheduler should avoid splitting a synchronous
job onto multiple machines wherever possible. However, if it has to be split, then
the algorithm is free to choose an arbitrary number of different machines.

The effect of a partial communication slowdown on an asynchronous job is
less dramatic than in the synchronous case. Here we assume a star-like commu-
nication on the WAN links. In the client/server paradigm this means that all
the work packages are generated on one single machine from which they are dis-
tributed to the worker nodes. Arbitrary communication topologies can be used
within each of the machines. Therefore, the parallel runtime of a synchronous
job is less sensitive towards a partitioning onto multiple computers. The slow-
down in communication is proportional to the amount of data that has to be sent
across wide area links. Assuming that this is again proportional to the amount of
processors on the other side of link, the expected execution time can be obtained
from

Time asyne (7, (Co, ..., Cp—1)) =

iji(lr) . [1 + Comm(r) - <7§VVEMPP — 1) ~¢Async]
Sr (Zj:o ¢ 'Pj) WAN

with
(2?4:51 ¢ 'Pj) —maxogj<m (¢ - Fj)
M—1
Zj:o (cj - Pj)
So far we have not explained, how the speedup function S,(n) shall be de-
fined. Our solution follows the suggestions made by Downey in [15]. His model

(5)

¢Async =

compares well with real life workload traces but incorporates only few free pa-
rameters. Downey characterizes the speedup behavior of a program by its average
parallelism A and the variance in parallelism o with

—4n_ . 0<s<1,1<n<A
A4 2=l
___ An _
6 (ny o | T DR O 7S A< s 2] o
% c>1,1<n<A+Ac~o0
A else

Typical values for ¢ are in the range of 0 < o < 2. Although no extensive study
has been made on the distribution of ¢ in real workloads, Downey suggests in
[14] to use a uniform distribution.

4.4 Evaluation Criteria

Although much research has been done on scheduling, there is still no final
answer to the question, which metrics shall be used for measuring the quality of a
schedule [18,19]. This is because different people have different requirements. For
example, managements of computing centers have strong interests in optimizing
the overall throughput of their machines. The users of these centers however,
like to obtain good response times for their jobs. Since managers of computing
centers should also be interested in satisfying the needs of their users, it might be
a good 1dea to search for optimal response time schedules with good throughput.
However, response time measurement can lead to irritating results since it tends
to overemphasize the effects of small jobs. Nevertheless, we decided to focus
primarily on optimizing response time since it is used in many papers dealing
with on-line scheduling and it is at least considered a sensible metrics in [18]

5 The Algorithms

An analogy that is often used for describing scheduling algorithms represents
machines as two dimensional buckets. The width of such bucket is related to
the total amount of resources on the corresponding machine and the height
represents time (see Fig. 3). Each request that has been scheduled for a single
machine can therefore be represented by a rectangle defined by the number of
processors allocated to that job (width of the rectangle) and the expected run
time (height of the rectangle). For the rest of this paper we will use Freey, (1)
as the amount of free resources on machine m at time ¢. Furthermore, we define
Freer (1) as

Free; (1) := Erllgrtl{Freem ("} (7)

Free}, will also be called the surface of m. In Fig. 3 the surface corresponds to

the dashed line.

requests

time
|

resources

Fig. 3. Job schedule on a parallel machine and the corresponding surface

The same analogy can be used for the metacomputer scenario (see Fig. 4).
For this case we define the surface of the whole machine pool M as Freel, (1)

with
Freey(t) := Z Free;, (1) (8)
meM

|

surface of metacomputer

{

surfaces of single machines

Fig. 4. Constructing the metacomputer’s surface from machine surfaces

5.1 Scheduling With Full Control — The Idealized Scenario

A scenario that offers full control to the metacomputing scheduler can be achieved
by denying direct submission of jobs to the local queuing systems. As a conse-
quence, the scheduler has complete knowledge about all jobs in the system which

makes metacomputer scheduling in this scenario similar to scheduling a single
parallel machine. If the speed of the Internet connections between the machines
was the same as internal communication, the problem would be identical to the
job management of a single parallel machine. However, Internet communication
1s much slower and the algorithm has to take this into account. As explained in
Sec. 2.2 we have chosen scheduling algorithms based on FCFS, FFIH, and ASP
for further investigation.

FCFS First Come First Serve is a very simple approach. When a request for
r resources 1s submitted to the system at time s, i1t will be configured at time ¢
with t = min{t' > s | Free},;(t') > r}. The choice which — and how many —
machines shall be used is based upon a greedy strategy. If the request represents
an asynchronous application 1t is divided into as few parts as possible in order
to decrease its overall execution time. If the program to be launched belongs
to the synchronous class, the algorithm tries to fit the request into one single
machine. If this is not possible, it is divided into as many parts as possible
thereby using up all those small partitions that would otherwise slow down
subsequent asynchronous (or probably also synchronous) applications. This is a
feasible approach since the communication costs of synchronous jobs depend on
the speed of the slowest network connection.

For the metacomputing scenario, we derived a variant called FCFS* that
does not choose t as the earliest possible starting time but as that time that
assures the earliest possible finishing time. This differs from the original algo-
rithm, because in the metacomputing scenario a later starting time can lead
to an earlier result because it could possibly be mapped on less machines (see
equations (4.3) and (5)).

Although FCFS is a very simple algorithm, experience has shown that its
results are usually not as bad as one could have expected [39].

FFIH First Fit Increasing Height is a two-dimensional variant of the well known
List Scheduling algorithm [34]. The basic idea of this approach is to sort all
requests in order of increasing resource demands and then perform an FCFS
scheduling with the sorted list. Strictly speaking, FFIH is an offline algorithm.
However, if a waiting room is introduced [21], it can be used for online scheduling,
too. Since FFIH is derived from FCFS, it shows similar behavior. However, it
is typically better for minimizing the average response time, since small jobs
are scheduled first and therefore the number of jobs with long waiting times is
reduced.

ASP Adaptwe Static Partitioning is one of the most promising disciplines for
scheduling moldable jobs on parallel machines. Although up to now it has only
rarely been used in practice, the algorithm is simple, easy to be implemented,
and shows good performance on monolithic machines, if applied to real work-
loads [29]. ASP stores incoming requests in a waiting room until there are free
processors available. It then assigns as many requests to these processors as pos-
sible. If the waiting room is sufficiently filled, this means that asynchronous (i.e.

moldable) jobs may be scaled down to only a few processors in order to be able
to start more jobs at the same time. For jobs with a high degree of parallelism
this can lead to extremely long execution times. Hence, we introduced a slight
modification of the original algorithm which we call ASP*. This strategy assigns
at least a A processors to any job for which A processors were requested, whereby
a is a constant of the algorithm with 0 < a < 1.

5.2 Scheduling With No Control - The Reference Case

Scheduling with no control models the way job management is currently done by
most metacomputing environments. Local jobs are submitted directly to the ma-
chines without notifying the metacomputer scheduler. Consequently, the sched-
uler mainly concentrates on good mapping and partitioning strategies. Further-
more, heuristics can be integrated to estimate the total workload on each machine
of the metacomputer. In the following, we describe how the scheduling strategies
were modified for this scenario.

Since FFIH, ASP, and ASP* need information about the contents of the
local queues (the waiting room is only drained when the local queues are at
least partially empty), these algorithms are not directly applicable in a scenario
where no information is available. Hence, we chose only the FCFS strategy for
examination in such an environment. FCFS with no control over local queues
first sores all n machines in random order in a vector (mg,...,m,). Then each

with

;;1 Size(my) > Ay,, whereby Size(m;) gives the total amount of processors

of machine ! and A,, gives the overall number of resources requested by r;.

For any two jobs r;,r; with ¢ < j the mapping is created in a way such that
i1 <2 < 1 < o

request 7; in the waiting queue is mapped onto machines m;, ..., m;,

Randomizing the machine vector for each scheduling round works as a simple
heuristics to achieve balanced work distribution over the complete machine pool.

5.3 Scheduling With Minimum Control - The Compromise

Scheduling with minimum control is the compromise we propose as a feasible way
to adapt scheduling algorithms designed for monolithic parallel machines to a
metacomputing environment. The fundamental idea of this approach is to use the
surfaces of all underlying machines for scheduling the metacomputer requests.
Local jobs can still be submitted to the queuing systems directly. However,
from time to time the metacomputer performs a scheduling round. When this
happens, each machine informs the metacomputer about the current shape of
its surface (or probably only a subset of the complete surface, depending on
local administration policies). During the short period while the metacomputer
performs its scheduling, the local queuing systems must not alter the shape of
their surfaces. This can for example be achieved by delaying jobs, that arrive
during this time, in a special waiting room.

This solution offers the freedom of the full control scenario during each
scheduling round without imposing significant restrictions onto the local queu-
ing systems. It is therefore a) feasible and b) a much better basis for advanced
scheduling algorithms like for example those described in [29]. We call this tech-
nique Interleaved Hybrid Scheduling or IHS for short, because each machine is
alternatingly managed by two different schedulers (local and meta scheduler). A
drawback of THS is that the surfaces presented to the metacomputer scheduling
algorithm are usually not flat but rather form a more or less steep staircase.
Hence, many of the algorithms found in literature cannot be applied directly.

The two possible solutions are either to schedule on top of a flat line placed
above the highest step of the surface or to find an algorithm that can efficiently
handle uneven surfaces. So far, we have only used the THS technique with the al-
gorithms described in Sec. 5.1. In the future, we are planning to search scheduling
strategies that are better tuned to the THS scenario.

There exist several possible schemes for deciding, when the metacomputer
shall trigger a new scheduling round. For this paper we have examined two
different approaches. The first solution was to wait a fixed time interval A;
between the termination of the last metacomputing job of the previous round
and the invocation of a new one. This solution is attractive for the machine
owners, since it guarantees a fixed time interval during which their resource are
not used by the metacomputer. For the results presented in Sec. 6 we used a
value of A; = 4 hours.

The second and more flexible approach is to also consider the amount of
resource requests that are pending in the waiting room of the metacomputer.
In order to achieve this, we triggered a scheduling round of the metacomputer
when

1
5 Size (m) . Z Ay - Time (r, Ay) - Waited (r) - v
meEMachinePool
(9)

Where Time (r, A,) is the expected execution time of r on A, processors of a
monolithic machine, Waited () is the amount of time units the request has so
far been waiting, and 7 is a constant weight factor that determines; how much
the overall decision is influenced by the waiting time.

reWaitingRoom

6 Results

The following results were all obtained from a wide range of simulation runs
using the model described in Sections 3 and 4. We measured the accumulated
response time of the first ¢ - M jobs that were completed by the simulated
metacomputer, whereby M was the total number of machines in the pool and ¢
was set to 1000. As can be seen in Figures 5, 6, and 7, ¢ = 1000 is not completely
sufficient to eliminate all the effects of a randomized workload. Although these
simulations were performed on the large parallel machines of the Paderborn
Center for Parallel Computing, it took several weeks to collect the necessary

data. Therefore, we believe that ¢ = 1000 represents a good compromise between
precision of the data and resources needed to obtain the results.

It should be pointed out that jobs are arriving throughout the whole simula-
tion run. This means that the queues are not being drained towards the end of
simulation which would be an unrealistic scenario. However, as we will point out
later, this does not leave the results unaffected and has to be considered, when
the simulation data is being interpreted.

32 machines, p_I=0.5, MppWanRatio=25.0, p_sync=0.5

T T T T T T T T T
1.2e+06 | b
le+06 b
1%}
s
2 800000 |- .
= e
ks
S
£
o 600000 B
(%2}
5 "
Z ASP*_FullControl — PN
& ASP_FullControl -——- roon
| FCFS*_FullControl ----- i N i
400000 | eeFsFyliControl , \
FFIH_FullControl ——~ ! .
FFIH*_FullControl -~ / \ P
/ \ // b\ // N
200000 |- PN N Y N
\;\;\\ b N /,' ™ // -~ AN s /A\ >
~ , e N s \ "
SN A R N Sme o \\ %
0 I I I I I I I i - I
0 2 4 6 8 10 12 14 16 18 20

Compression

Fig. 5. Performance of different algorithms in the idealized scenario

Fig. 5 depicts the simulation results for algorithms running in the idealized
scenario that does not allow direct submission of jobs to local queues (full con-
trol). In this diagram compression ranges up to a value of 19, meaning that within
a certain time interval there are 19 times more job arrivals than normal. The
metacomputer contained 32 machines, Internet communication was assumed to
be 25 times slower than communication within the parallel machines, the ratio
between synchronous and asynchronous workload was 1:1, and there were as
many local jobs as jobs submitted through the metacomputer.

First of all it can be observed that all curves are converging for increasing
load situations. This is due to the fact that the job queues were not drained
towards the end of a simulation run. Thus, if the arrival rate reaches a certain
algorithm dependent threshold, a large fraction of the jobs remains in the queues
and has no or only marginal effect on the performance of the algorithm.

Furthermore, it is remarkable that the ASP-based algorithms show the weak-
est performance. This is due to the fact that ASP has a tendency to allocate
very few processors even to large jobs. This effect is a little bit reduced by the
ASP* variant. However, since ASP* becomes identical to FCFS if o gets close to
1, we have chosen a = 0.5. This was not large enough to prevent the algorithm
from creating extremely long running jobs and thereby preventing the start of
large synchronous (i.e. rigid) jobs for a long time. We suppose that ASP would
perform better, if the job mix did only contain asynchronous jobs.

FFIH, on the other hand, demonstrates good results in our simulation envi-
ronment. However, the plots indicate that this strategy is very sensitive towards
the job sequence to be scheduled. The reason for this becomes clear, if we imag-
ine the worst possible case. This is an alternating sequence of jobs that either
use few processors and run for a long time or jobs that block the whole meta-
computer but can be finished almost instantly. Since these requests have similar

resource demands such sequences are likely to be created by the sorting step of
FFIH.

32 machines, p_I=0.5, MppWanRatio=25.0, p_sync=0.5

T T T T T T T T T
1.2e+06 |]
le+06 _
1%]
£ o
= 800000 - e 4
| T o
S . e S
s | - R
© 600000 - s |
17} -
c .- N,
o
(=%
a8 -
Q . ; - e T T Seeo— T
22 A PR ‘/v::y,(,fz— =i
400000 | = P i
e - FCFS_NoControl ——
200000 - o FFIH_adaptive_IHS --- 4
S FCFS*_IHS -
7 FFIH_IHS -
ot ASP*_adaptive_IHS -~
7 ASP*_IHS -----
0 4 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Compression

Fig. 6. Performance of different algorithms in a real world scenario

The results presented in Fig. 6 indicate what can be achieved in a real world
scenario, if the THS technique is applied. It can be seen that for smaller and
therefore more realistic compression values all IHS variants show significantly
better performance than an FCFS algorithm that uses no information about the

local queues. For these load values the FFIH and FCFS strategies even seem to be
better then they are in the scenario with full control over the local queues. This
1s caused by the fact that in the idealized scenario there are no locally submitted
Jjobs, which are restricted to the size of the corresponding machines and therefore
are smaller than many of the metacomputing jobs. As a consequence, care has
to be taken when comparing the plots of Figures 5 and 6. We think that the
slight difference in the incoming job mix corresponds to the users’ behavior, but
this assumption still has to be proven.

At a first glance, it is astonishing that the ASP algorithm seems to be the
best strategy for the real world scenario. Having a closer look at Fig. 7, it can be
seen that the result plots for ASP in Fig. 6 are mainly dominated by the response
times of those jobs submitted by local users. In other words, the execution times
of metacomputing jobs became so long that only few of them terminated among
the first ¢ - M jobs. Hence the good results of APS have been achieved by
providing a much worse quality of service for multi-site applications. Hence, for
scheduling a metacomputer we propose to use THS either with FCFS* or with
FFIH. The latter is best for moderate workloads while FCFS tends to behave
slightly better, when the system is extremely heavy loaded.

32 machines, p_I=0.5, MppWanRatio=25.0, p_sync=0.5
T T T T T

1.2e+06 T T : .
1e+06 | . P
17 —
5 800000 - e]
® I e P
Q - -~ T T
°c | - - -
o L 7 S - u
£ 600000
[}
(%2}
c
o = e o
Q X e mimemiEem T - .
a i . T
& 400000 |- . e i
ST FCFS_NoControl ——
Lo oo FFIH_adaptive_IHS ---- i
200000 . FCFS* HS
FFIH_IHS -
;o ASP*_adaptive_IHS ---
ASP*_IHS -----
O 4 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

Compression

Fig. 7. Average response time of jobs that were submitted locally

7 Conclusion

Our motivation was — and still is — to find the best possible scheduling algorithm
for the NRW metacomputer. Looking at what was available in the literature
exposed a large gap between algorithms that have been studied analytically
and those found in existing environments. Therefore, we extended the model of
Feitelson and Rudolph towards metacomputer scheduling in order to obtain a
tool for measuring the quality of different algorithms. Care was taken to derive a
model that reflects the real world scenario as close as possible. Only in the second
line, we tried to keep it simple enough for analytical studies. We think, that our
model is still close enough to the proposal of Feitelson and Rudolph to allow
comparison with other results obtained from the same approach. Much effort has
been spent on the implementation of this model. Therefore, we tried to create
a generic simulation environment, which we are making publicly available. This
may also be useful to researchers, who study scheduling of monolithic parallel
machines, since a metacomputer can be seen as a generalization of this concept.

We found that an important factor for metacomputer scheduling is the exis-
tence of local queues to which jobs are submitted without being passed through
the metacomputer system. Hence, we developed the THS technique as a feasible
approach to use well known scheduling algorithms for the prototype of a work-
ing metacomputer. Our results indicate that for moderate workloads use of the
IHS technique with the FFIH algorithm decreases the average response times
significantly. However, more effort should be spent on examining more powerful
algorithms with THS.

Another important aspect of metacomputer scheduling that was not dealt
with in this paper is the reliability of job descriptions. So far we assumed that
everything the scheduler is being told about a job is absolutely precise. However,
in reality this 1s usually not the case. Hence, in our future work, we plan to pay
closer attention to the effects of unreliable information on scheduling algorithms
for metacomputing.

References

1. Academic Computing Services Amsterdam. The SARA Metacomputing Project.
WWW Page. http://www.sara.nl/hec/projects/meta/.

2. Carl Albing. Cray NQS: production batch for a distributed computing world. In
Proceedings of the 11th Sun User Group Conference and Fzhibition, pages 302309,
Brookline, MA, USA, December 1993. Sun User Group, Inc.

3. J. Almond and D. Snelling. UNICORE: Secure and Uniform Access to
Distributed Resources via the World Wide Web, 1998. http://www .kfa-
Jjuelich.de/zam /RD/coop /unicore/ .

4. Stergios V. Anastasiadis and Kenneth C. Sevcik. Parallel application schedul-
ing on networks of workstations. Journal of Parallel and Distributed Computing,
43(2):109-124, June 1997.

5. T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for NOW (Networks of
Workstations). IEEE Micro, 15(1):54-64, February 1995.

6. R. Baraglia, R. Ferrini, D. Laforenza, and A. Lagana. Metacomputing to over-
come the power limits of a single machine. Lecture Notes in Computer Science,
1225:982ff, 1997.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. Calzarossa and G. Serazzi. A characterization of the variation in time of work-
load arrival patterns. IFEFE Transactions on Computers, Vol. C-34, :2, 156-162,
1985.

Olivier Catoni. Solving scheduling problems by simulated annealing. STAM Journal
on Control and Optimization, 36(5):1539-1575, September 1998.

. Steve J. Chapin, Dimitrios Katramatos, John Karpovich, and Andrew S.

Grimshaw. Resource management in legion. Technical Report CS-98-09, Depart-
ment of Computer Science, University of Virginia, February 11 1998. Wed, 19 Aug
1998 17:14:25 GMT.

Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of Application
Characteristics and Limited Preemption for Run-To-Completion Parallel Processor
Scheduling Policies. In Proceedings of the 1994 ACM SIGMETRICS Conference,
pages 33-44, February 1994.

Cray Research. NQE. commercial product.

Thomas A. DeFanti, lan Foster, Michael E. Papka, Rick Stevens, and Tim Kuh-
fuss. Overview of the [-WAY: Wide-area visual supercomputing. The Interna-
tional Journal of Supercomputer Applications and High Performance Computing,
10(2/3):123-131, Summer/Fall 1996.

Jack Dongarra and Hans Meuer and Erich Strohmaier. Top 500 Report. WWW
Page, 1998. http://www.netlib.org/benchmark/top500/top500.list.html.

Allen B. Downey. A parallel workload model and its implications for processor allo-
cation. Technical Report CSD-96-922, University of California, Berkeley, November
6, 1996.

Allen B Downey. A model for speedup of parallel programs. Technical Report
CSD-97-933, University of California, Berkeley, January 30, 1997.

D. G. Feitelson. Packing schemes for gang scheduling. Lecture Notes in Computer
Science, 1162:891f, 1996.

D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel scien-
tific workload on the NASA ames iPSC/ 860. Lecture Notes in Computer Science,
949:337ff, 1995.

D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job schedul-
ing. Lecture Notes in Computer Science, 1459:1ff, 1998.

D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, and K. C. Sevcik. Theory and
practice in parallel job scheduling. Lecture Notes in Computer Science, 1291:1ff,
1997.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

J. Gehring and F. Ramme. Architecture-independent request-scheduling with tight
waiting-time estimations. Lecture Notes in Computer Science, 1162:65ff, 1996.

J. Gehring, A. Reinefeld, and A. Weber. PHASE and MICA: Application specific
metacomputing. In Proceedings of Furopar 97, Passau, Germany, 1997.

Genias Software GmbH, Erzgebirgstr. 2B, D-93073 Neutraubling. CODINE User’s
Guide, 1993. http://www.genias.de/genias/english/codine/.

Hoare. Quicksort. In C. A. A. Hoare and C. B. Jones (Ed.), Essays in Computing
Science, Prentice Hall. 1989.

Chao-Ju Hou and Kang G. Shin. Implementation of decentralized load sharing
in networked workstations using the Condor package. Journal of Parallel and
Distributed Computing, 40(2):173-184, February 1997.

IBM Corporation. Using and Admanistering LoadLeveler — Release 3.0, 4 edition,
August 1996. Document Number SC23-3989-00.

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

K. Koski. A step towards large scale parallelism: building a parallel computing
environment from heterogenous resources. Future Generation Computer Systems,
11(4-5):491-498, August 1995.

Robert R. Lipman and Judith E. Devaney. Websubmit - running supercomputer
applications via the web. In Supercomputing '96, Pittsburgh, PA, November 1996.
Walter T. Ludwig. Algorithms for scheduling malleable and nonmalleable parallel
tasks. Technical Report CS-TR-95-1279, University of Wisconsin, Madison, August
1995.

The NRW Metacomputing Initiative. WWW Page. http://www.uni-
paderborn.de/pc2/nrwmc/.

B. J. Overeinder and P. M. A. Sloot. Breaking the curse of dynamics by task mi-
gration: Pilot experiments in the polder metacomputer. Lecture Notes in Computer
Science, 1332:194ff, 1997.

E. W. Parsons and K. C. Sevcik. Implementing multiprocessor scheduling disci-
plines. Lecture Notes in Computer Science, 1291:166ff, 1997.

Platform Computing Corporation. LSF Product Information. WWW Page, Octo-
ber 1996. http://www.platform.com/.

F. Ramme and K. Kremer. Scheduling a metacomputer by an implicit voting
system. In Int. IEFE Symposium on High-Performance Distributed Computing.
Paderborn Center for Parallel Computing, 94.

A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme,
T. Romke, and J. Simon. The MOL project: An open, extensible metacomputer.
In Debra Hensgen, editor, Proceedings of the 6th Heterogeneous Computing Work-
shop, pages 17-31, Washington, April 1 1997. IEEE Computer Society Press.

V. Sander, D. Erwin, and V. Huber. High-performance computer management
based on Java. Lecture Notes in Computer Science, 1401:526ff, 1998.

M. Schwehm and T. Walter. Mapping and scheduling by genetic algorithms. Lec-
ture Notes in Computer Science, 854:832ff, 1994.

Uwe Schwiegelshohn. Preemptive weighted completion time scheduling of parallel
jobs. In Josep Diaz and Maria Serna, editors, Algorithms—ESA "96, Fourth Annual
Furopean Symposium, volume 1136 of Lecture Notes in Computer Science, pages
39-51, Barcelona, Spain, 25-27 September 1996. Springer.

Uwe Schwiegelshohn and Ramin Yahyapour. Analysis of first-come-first-serve par-
allel job scheduling. In Proceedings of the Ninth Annual ACM-STIAM Symposium
on Discrete Algorithms, pages 629-638, San Francisco, California, 25-27 January
1998.

S. Setia and S. Tripathi. A comparative analysis of static processor partitioning
policies for parallel computers. In Internat. Workshop on Modeling and Simula-
tion of Computer and Telecommunication Systems (MASCOTS), pages 283-286,
January 1993.

Jon Siegel. CORBA: Fundamentals and Programming. John Wiley & Sons Inc.,
New York, 1 edition, 1996.

Larry Smarr and Charles E. Catlett. Metacomputing. Communications of the
ACM, 35(6):44-52, June 1992.

W. Smith, I. Foster, and V. Taylor. Predicting application run times using histor-
ical information. Lecture Notes in Computer Science, 1459:122ff, 1998.

A. W. van Halderen, Benno J. Overeinder, Peter M. A. Sloot, R. van Dantzig, Dick
H. J. Epema, and Miron Livny. Hierarchical resource management in the polder
metacomputing initiative. submitted to Parallel Computing, 1997.

