
Scheduling for Parallel Supercomputing:
A Histor ical Perspective of Achievable Utilization

James Patton Jones1 and Bill Nitzberg1

MRJ Technology Solutions
NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035-1000

jjones@nas.nasa.gov

Abstract.The NAS facilit y has operated parallel supercomputers for the past 11
years, including the Intel iPSC/860, Intel Paragon, Thinking Machines CM-5,
IBM SP-2, and Cray Origin 2000. Across this wide variety of machine
architectures, across a span of 10 years, across a large number of different
users, and through thousands of minor configuration and policy changes, the
utili zation of these machines shows three general trends: (1) scheduling using a
naive FCFS first-fit policy results in 40-60% utili zation, (2) switching to the
more sophisticated dynamic backfilli ng scheduling algorithm improves
utili zation by about 15 percentage points (yielding about 70% utili zation), and
(3) reducing the maximum allowable job size further increases utili zation. Most
surprising is the consistency of these trends. Over the lifetime of the NAS
parallel systems, we made hundreds, perhaps thousands, of small changes to
hardware, software, and policy, yet util ization was affected litt le. In particular,
these results show that the goal of achieving near 100% util ization while
supporting a real parallel supercomputing workload is unrealistic.

1.0 Introduction

The Numerical Aerospace Simulation (NAS) supercomputer facility, located at
NASA Ames Research Center, serves in the role of pathfinder in high performance
computing for NASA. In the late 1980s, we began exploring the use of highly parallel
systems for supporting scientific and technical computing [1]. Today, it is commonly
accepted that “supercomputing” is synonymous with “parallel supercomputing” .

Supercomputing means running “big” jobs or applications which cannot be run on
small or average-sized systems. Big, of course, is a relative term; we generally con-
sider a job big if it is using at least half of the available resources of a big system. (We
leave the definition of “big system” to the reader.)

1. Work performed under NASA contract NAS2-14303, Moffett Field, CA 94035-1000

Traditional vector supercomputers (e.g., the Cray C90) are capable of sustaining
nearly 100% utili zation while supporting big jobs and running a varied workload [2].
Our experience has shown that this level of utilization is not attainable when running
a supercomputing workload on a parallel supercomputer.

2.0 The NAS Parallel Supercomputing Workload

The NAS facili ty supports research and development in computational aerosciences.
Hundreds of research projects are funded annually which use the parallel supercom-
puters at NAS to perform high-end scientific and technical computing. Over the past
11 years, the NAS parallel workload, priorities, and approach have been consistent.

The workload consists of a mix of:

• hundreds of users; new users are constantly added
• scientific and technical computing for aerospace applications
• code development, debugging, scaling and performance analysis
• “production” runs of existing applications

At the same time, the NAS scheduling policy has consistently striven for (in order of
priority):

1. Overnight turn-around for big jobs, and
2. Good machine utilization.

The first priority supports “supercomputing” , the second supports efficient use of
resources. NAS supports supercomputing by favoring supercomputer-sized jobs (big
ones, typically those that cannot run on any other system within NASA) over smaller
jobs. In general, the system configuration, user allocations, and scheduling policies
are tuned so that big jobs get overnight turn-around.

In apparent conflict to the first priority is the second. Good machine utili zation has
historically meant 99% on traditional vector supercomputers, and the stakeholders
(those whose money purchased the machines) have traditionally used utili zation as a
measure of success. As we show, parallel supercomputing does not achieve 99% utili -
zation. It should be noted that machine utilization is arguably not the best measure of
the “goodness” or value of a computing system. This issue is discussed further in sec-
tion 5 below. System utili zation is used as the basis of comparison in this paper prima-
rily because utili zation was the single largest continuous dataset available for the
systems under discussion.

The system configuration and the mechanisms by which we let users run jobs has also
been consistent throughout the past 11 years. The systems are all space-shared (parti-
tioned), and batch scheduled. Interactive use is permitted, but it must take place by
allocating resources via the batch system, then using those resources interactively.
This approach to using parallel computers has prevailed, despite the availability of

good time-sharing and gang-scheduling facilities on several systems, for two reasons:
the need for consistency of timings and efficiency of execution. Analysis of algo-
rithms, exact megaflop rates, and scaling are major component of the NAS workload.
Approaches other than strict, partitioned space sharing don’t support this. Further-
more, systems such as the Intel Paragon and Cray Origin 2000 suffer from an interfer-
ence problem (discussed below), in which it is possible for jobs to “overlap” in such a
way as to slow each other down by far more than would be expected by the simple
sharing of resources.

Most of the applications run at NAS are statically balanced (applications which
require a well balanced load across all nodes). Statically balanced applications strive
to give an equal amount of work to each processor. A single slow process in a stati-
cally load-balanced application can completely ruin the performance of the applica-
tion, as other processes will have to wait for it. Another issue arises from message-
passing synchronization. Even if we overlay parallel jobs to avoid load-balancing
problems, tightly synchronized applications can incur an extra synchronization delay
for messages because processes are not gang-scheduled (scheduled to run at the same
time across all their assigned nodes). These constraints are consistent across typical
parallel supercomputing workloads. (For further discussion of parallel supercomput-
ing workloads, see [12].)

3.0 Supercomputer Resource Shar ing

In a supercomputer, the two resources most visible to the user are the CPU and the
memory. In parallel supercomputers, these resources are generally grouped together
as compute nodes. This paper focuses on node util ization. There are two methods of
sharing CPUs in a large MPP system: time sharing and space sharing. Time sharing
allows different programs to run on the same node simultaneously. The operating sys-
tem is responsible for scheduling different programs to run, each for a certain time
slice (quantum). Space sharing (also known as tiling) gives a parallel application
exclusive access to a set of compute nodes on which to run.

The five systems under review have a mixture of node sharing methods, as shown in
Table 1.

Table 1. MPP Node Sharing Methods

Parallel Systems
Intel

 IPSC/860
TMC
CM5

Intel
Paragon

IBM
SP-2

SGI
Or igin2000

Gang Scheduling ✔ unusable

Time Sharing ✔ unusable ✔ ✔

Space Sharing ✔ ✔ ✔ ✔ ✔

With the exception of the IPSC/860, all these systems support timesharing. Time-
sharing works well for serial jobs, which can fit into the memory of a single node. But
at NAS we are interested in running parallel applications that cannot run on a single
node because of the resources they require (such as more memory than is available, or
so much CPU that the single-node run time would be too long). It is often assumed
that parallel jobs can be timeshared automatically by the operating system. In reality,
however, the issues of load balancing and synchronization make timesharing unac-
ceptable for the parallel applications in the NAS workload.

The issues of timesharing the NAS workload on parallel systems was discussed in
detail several years ago [10]. The following excerpt is relevant here:

Among the statically balanced applications is a very important class of tightly
synchronized communication-intensive codes. These applications form a large
part of the NAS work load, and tightly synchronized applications are common
in other fields. The reason these applications cannot be efficiently timeshared
is the accumulation of communication delays created by the uncoordinated
scheduling of processes across the nodes. In tightly synchronized applications,
information flows between nodes as the calculation progresses. Even when
there is only nearest neighbor communication, information flows from neigh-
bor to neighbor eventually reaching all nodes. Every time that information flow
is disrupted the entire application slows down.

One solution to this problem is to coordinate time sharing across the nodes of a paral-
lel application, so that all processes of a given application run at the same time. This is
called gang-scheduling or co-scheduling [9]. Gang-scheduling requires operating sys-
tem support, and a scheme for handling communication in progress (i.e. no messages
should be lost when processes are swapped) [3]. Although not necessary, it is easier to
implement gang scheduling if nodes are grouped into fixed size partitions, though
jobs then do not have flexibilit y in how many nodes they run on. Since all nodes in a
partition run the same number of processes, the scheduler does not have to deal with
unbalanced scheduling. Gang-scheduling in fixed-size partitions is an effective way to
deal with the problems of timesharing.

Unfortunately, only the Paragon and the CM5 supported gang scheduling. The Para-
gon’s implementation of gang scheduling added so much instabil ity to the system that
it proved unusable. On the CM5 we determined that the performance impact out-
weighed any benefits gang scheduling would have provided.

The second scheduling method is space sharing. In this model, a parallel application
is given exclusive access to a set of compute nodes on which to run. If any timeshar-
ing occurs, it is with the mostly inactive UNIX daemons. The parallel computer can
then be divided between different parallel applications, without one competing with
another for resources. Space sharing, however, does increase the diff iculty of batch
job scheduling. Space sharing can also lower the ultili zation of other system
resources. Since jobs have exclusive control over the nodes, space sharing controls the

CPU together with other system resources, like memory, disks, and interconnect
bandwidth. If the application is not using those resources, it is wasted.

Given the vast proportion of the NAS workload that consists of message-pasing appli -
cations, space sharing has repeatably been chosen for the NAS parallel supercomput-
ers in order to deliver the greatest per-application performance and consistent
runtimes.

4.0 Analysis of NAS Parallel Supercomputer Util ization

In this section we describe the hardware configuration of five NAS parallel supercom-
puters and discuss batch job scheduling and utili zation for each. (For a discussion of
batch job scheduling requirements for large parallel supercomputers, like those at
NAS, see [10].) During the analysis, several trends begin to emerge. These are dis-
cussed as they become apparent in the data presented.

Figures 1-6 show the weekly available node utili zation for each of the five NAS MPP
systems under review, from installation (or when the system was stable enough to put
users on) until decommission. By “available” node utilization, we mean that both
scheduled and unscheduled outages have been taken into consideration when calculat-
ing the percentage utili zation.

4.1 Intel iPSC/860 (Jan. 1990 to Sept. 1994)

The Intel iPSC/860 (also known as the Touchstone Gamma System) is a MIMD
parallel computer. The system at NAS consisted of 128 compute nodes (each with a
single 40 MHz i860 XR processor and eight megabytes of physical memory), ten I/O
nodes (each with an i386 processor and four megabytes of memory), one service node
(with a single i386 processor, four megabytes of memory, and an ethernet interface),
and an i386-based PC front end with eight megabytes of memory. The compute nodes
are connected via a wormhole-routed hypercube network, which delivers 2.8
megabytes per second per link.

The Network Queueing System (NQS, [8]) was used as the batch system, implement-
ing queue-level “ first-come first-serve first-fit” (FCFS-FF) scheduling with different
size priorities during the day (i.e. big jobs had priority at night, small jobs during the
day). The FCFS-First-Fit algorithm works as follows: batch jobs are evaluated in
FCFS order in the queue, i.e. oldest job first. For each job, the batch system first
checked if there were enough nodes available to run the job, and if so, then compared
the job requirements (wall time and node count) to the current scheduling policy. If
either of these two checks failed, the scheduler skipped to the next job. If both were
successful, the scheduler ran the job and removed it from the list. This process contin-
ued until all the jobs were evaluated.

Scheduling on the iPSC/860 was relatively simple, as the system itself was very
inflexible. The architecture divided the system into “partitions” each of a power-of-2
number of nodes. Batch jobs were then run in the smallest possible partition size. This
made scheduling easier, but forced idle time when running medium- sized jobs. For
example, a 65-node job could run only in a 128-node partition.

Fig. 1. iPSC/860 Util ization

Since there was no timesharing available, this forced the remaining 63 nodes to be left
idle. Furthermore, there existed a system limit of a maximum of ten concurrent parti-
tions. This limit also had the potential for forcing idle time, even when there was a
backlog of work. For example, if the iPSC/860 was running ten 2-node jobs, the
remaining 108 nodes would be idle. But given the typical job size in the NAS work-
load, the maximum partition limit was rarely exceeded. (The system ran out of nodes
well before it allocated ten partitions.)

The iPSC/860 was fairly unreliable during the first two years at NAS. The first year
the system was thoroughly investigated by NAS staff, during which time a variety of
benchmarks were developed and run on the system. Figure 1 shows the node utili za-
tion starting in mid-1993. (Full accounting data for the first two years is unavailable.)
At the time, the util ization shown was considered an impressive improvement over
that of previous years, and is primarily attributable to two factors. The first was a sig-
nificant increase in system stability. Second, in early 1993, users had begun to shift
from application debugging to running their codes as “production” batch jobs. Notice
that the utili zation ranged between 40 and 60 percent for most of the period shown.

Jun.93 Jun.94 Aug.94
0

20

40

60

80

100

A
va

ila
bl

e
N

od
e

U
til

iz
at

io
n

Weekly Node Utilization
3−Month Average

4.2 TMC CM-5 (Jan. 1993 to Mar. 1995)

The Thinking Machines Corporation (TMC) CM-5 is a MIMD parallel computer,
although it retains some properties of its SIMD predecessor, the CM-2. Notably, each
processing node of the CM-5 can be thought of as a small SIMD parallel computer,
each with a master SPARC processor sequencing a 2 x 2 array of custom vector units.
Furthermore, via a dedicated control network, the processing nodes can also operate
in a synchronized SPMD fashion.

The system at NAS consisted of 128 compute nodes (each with one 33 MHz SPARC
processor, four vector units, and 32 megabytes of physical memory), four control
nodes, one I/O node (which manages the attached RAID), and one system-manager
node. Each of these nodes was a standard Sparc-2 workstation (with 64 megabytes of
physical memory). The nodes are interconnected via a 4-ary fat-tree data network,
which supplies 20 megabytes per second per link, and a bisection bandwidth of 655
megabytes per second.

The CM-5 was scheduled using the Distributed Job Manager (DJM) which also
implemented a size-priority FCFS-FF algorithm that was time-of-day sensitive. Like
the iPSC/860, the CM-5 architecture restricted all partitions to a power-of-2 number
of nodes. However, the CM-5 further restricted the partition size to a minimum of 32
nodes, and the partition size could not be changed without a reboot of the entire sys-
tem. During the day, the CM-5 was run with one 64-node partition and two 32-node
partitions. Each night, the system was reconfigured into a single 128-node partition to
allow large jobs to run.

Fig. 2. CM-5 Utilization

Feb.93 Feb.94 Mar.95
0

20

40

60

80

100

A
va

ila
bl

e
N

od
e

U
til

iz
at

io
n

Weekly Node Utilization
3−Month Average

The CM-5 followed quite a different li fe cycle than the iPSC/860. Initially only NAS
staff had access for benchmarking and evaluation purposes, and to work to stabilize
the system. But rather than taking several years as with the iPSC/860, we had to wait
only several weeks before putting “ real” users on. Figure 2 shows how quickly the
scientists put the CM-5 to work. Part of the reason for the short ramp-up was that
most of the researchers were migrating to the CM-5 from the previous generation
CM-200 (which had been previously upgraded from a CM-2) at NAS. Many of these
users already had codes that ran well on this architecture.

Like the iPSC/860 much of the increased usage of the CM-5 in its final year was due
to users completing the debugging cycle, and moving to running production codes.
Halfway through the second year of the system’s stay at NAS, in an effort to increase
the utilization of the machine, space sharing was relaxed on the small partitions dur-
ing the day to allow two jobs to timeshare within a given partition. Doing so resulted
in a gradual increase of utilization; however, it also resulted in a 20 percent slowdown
in both timeshared applications.

4.3 Intel Paragon XP/S-15 (Feb. 1993 to July 1995)

The Intel Paragon XP/S-15 is a MIMD parallel computer. The system at NAS
consisted of 208 compute nodes (each with two 50 MHz i860 XP processors and 32
megabytes of physical memory), four service nodes (which make up the service
partition and provide an interface to the outside world, serving as a “front end” to the
system), eight disk I/O nodes, three HIPPI nodes, and four general-purpose nodes.
The compute nodes are connected via a wormhole-routed 2D mesh network, which
delivers 175 megabytes per second per link. The Paragon is the successor of the Delta
machine.

Using NQS, we implemented queue-level FCFS-FF scheduling with different size pri-
orities, as on the iPSC/860. Scheduling the Paragon, however, was more difficult than
scheduling the previous systems because power-of-2 job sizes were no longer
required. The resulting wide variety of job sizes decreased the scheduling efficiency.

The Paragon, like the CM-5, had a relatively short shake-out period before we started
adding users onto the system. These were primarily users from the iPSC/860 who
wanted to try out the new system. Once on, many chose to return to the iPSC/860 until
the Paragon stabili zed.

The utili zation shown in Figure 3 for the first half of 1993 is based on UNIX SAR
(system activity report) and load average data. Some data for 1993 were lost (thus the
apparent zero usage). Following this, the MACS accounting software was installed,
enabling more accurate utili zation tracking. This is also the time when the remaining
iPSC/860 users began to migrate over to the Paragon in order to continue their work.
(Compare the iPSC/860 and the Paragon utili zation graphs in Figure 6 to see more

clearly the drop in the older system corresponding to an increase in the newer sys-
tem.)

Fig. 3. Paragon Utili zation

The periodic dips in the Paragon utili zation correspond to testing and regular operat-
ing system upgrades. During these times, though the system was available to users,
many opted off the machine to avoid the frustrations of trying to use a system in flux.
From the utilization graph, we see that the FCFS-FF algorithm maintained the utili za-
tion between and 40 and 60 percent for most of the “production” li fetime of the sys-
tem.

4.4 IBM SP-2 (July 1994 to Sept. 1997)

The IBM SP-2 is a MIMD parallel computer. The system at NAS consisted of 160
compute nodes. Each node is an IBM RS6000/590 workstation powered with a single
66.7 MHz POWER2 processor and at least 128 megabytes of physical memory. (Six
of the nodes had 512 megabytes of memory). The nodes of an SP-2 are connected by
a packet-switched, multi -stage omega network (a hierarchy of crossbar switches)
utilizing buffered wormhole-routing. The switch can deliver 40 megabytes per second
bidirectionally.

The system arrived with IBM’s LoadLeveler batch system, which provided simple
FCFS scheduling. Based on what we had learned with previous parallel systems, we
predicted that a FCFS-FF scheduling algorithm would result in a system node utili za-
tion of around 50 percent. However, the Loadleveler batch system used a simple
FCFS algorithm which was achieving roughly 25 percent utilization. After six

Mar.93 Mar.94 Mar.95
0

20

40

60

80

100

A
va

ila
bl

e
N

od
e

U
til

iz
at

io
n

Weekly Node Utilization
3−Month Average

months, we replaced LoadLeveler with the Portable Batch System (PBS) utili zing a
FCFS-FF algorithm [5]. System utili zation immediately doubled (see Figure 4), aver-
aging 50 percent. This level of utilization continued the entire time we used the
FCFS-FF scheduler.

Fig. 4. SP-2 Utili zation

One problem with the First-Fit algorithm is that it can continually take away nodes
from a large waiting job in order to run smaller jobs. As a result, large jobs tend to
“starve” in the queue, always waiting for resources to become available, but never
receiving them. One attempt to remedy this situation is to periodically “drain” the sys-
tem in order to free up enough nodes to be able to run the large waiting jobs. How-
ever, draining the system is an expensive operation since a large number of nodes may
need to be kept idle to ensure that a particular job can run. For example, suppose we
want to run a 128-node job, but there are only 127 nodes available, and there is a 5-
hour job running on the last node. We have to keep 127 nodes idle for 5 hours to guar-
antee that this job will run. While this simplistic approach works, it is obvious that it
does not lead to the best system utilization possible.

A better solution is to have the scheduler recognize that we will not be able run our
job for 5 hours, but we can use the 127 nodes to run any jobs that can complete in 5
hours, using a backfilling method. Static-Backfilling fixes the starting time of the
high-priority job at the earliest time possible (i.e., the earliest time when the required
nodes will be available). In our previous example, this was 5 hours. A Dynamic-Back-
filling (DBF) algorithm, rather than fixing the time at the earliest time that it can, will
instead determine the most appropriate time to start the job within a starting window
[4, 11]. The earliest time possible may in some cases not lead to the best result. Using
our previous example, let’s assume that we also had a 125-node job (for 5 hours 30

Jul.94 Jul.95
0

20

40

60

80

100
A

va
ila

bl
e

N
od

e
U

til
iz

at
io

n

Weekly Node Utilization (FCFS−FF + DBF)
Weekly Node Utilization (FCFS−FF)
Weekly Node Utilization (FCFS)
3−Month Average

minutes) queued. Using static-backfilli ng, we could not run this job as we only have 5
hours to backfill . But with dynamic-backfil ling, we should recognize that by shifting
the starting time by 30 minutes, we will be able to fill 125 nodes, significantly
increasing resource utilization. Thus the DBF algorithm attempts continually to bal-
ance both the need to run high-priority jobs and the need to maintain as many nodes
as possible in-use, by providing the abil ity to drain the system efficiently and to
reserve nodes for the top-ranked job.

As soon as we installed PBS, we began implementing the DBF algorithm. Approxi-
mately two months later, the PBS FCFS-FF scheduler module was replaced with our
PBS DBF scheduler module. (This DBF scheduling module is now included in the
PBS distribution.) System utili zation again jumped, this time roughly 20 percentage
points, to 70 percent. Over time, as users began to run fewer debugging jobs and
started scaling up the problem size of their applications, the utili zation slowly crept up
to 80 percent. The system continued at this level of usage until it was allocated to the
NASA Metacenter project. (Given that the Metacenter project introduced many new
variables, and thereby substantially changing the userbase, scheduling model and
workload flow of the system, we do not report those data here. Further discussion of
the Metacenter project and its meta-scheduling experiments is included in [6, 7].)

4.5 Cray Or igin2000 (Jan. 1997 -)

The SGI/Cray Origin2000 is a MIMD computer based on the cache-coherent non uni-
form memory architecture (ccNUMA) providing a distributed shared memory (DSM)
system. Each node contains two MIPS RISC 64-bit R10000 processors and a config-
urable amount of memory; nodes are connected via a modified hypercube network

In January 1997, NAS received its first 32-processor SGI Origin2000. (Systems larger
than 32-processors receive the “Cray” label.) One of the most useful features of the
Origin2000 is the single-system image. Users can utili ze the system as a large sym-
metrical multiprocessor (SMP) rather than having to be concerned with the distributed
nature of the architecture. Therefore when the system first arrived, we decided to see
if we could schedule it li ke a true timeshared SMP. We installed PBS with a FCFS-FF
SMP scheduling module that we had been running on our cluster of four Cray J90s.

In spite of its single system image, the attempt to schedule this distributed memory
system quickly proved problematic, as both the underlying architecture and the inter-
ference between jobs resulted in severe performance degradation and varied runtimes.
Specifically, since the hardware components are distributed across the interconnected
hypercubes, the number of network routers between any two nodes within the system
increases with the distance between those nodes. This alone translates into a variable
latency in communication for message passing applications. Since applications could
be started on any set of nodes within the system, the runtimes of a given application
varied from run to run.

In addition, the operating system attempts to start applications on contiguous nodes,
but as the system “ fill s up” with work the nodes quickly become fragmented since
every application has a different runtime. As a result, applications are started on nodes
that are scattered throughout the system. As this tends to increase the distance
between the nodes assigned to a given job, latency again increases, as do runtimes.

The third problem we identified was in the “sharing” of nodes between jobs. Remem-
ber that an Origin2000 “node” has two processors which have equal access to locally
shared memory. Scheduling multiple applications onto the same node makes it possi-
ble for these processes to compete for the memory on that node, delaying message-
passing and thereby further increasing the runtime of the application as a whole.
While many sites run applications which are tolerant of these conditions, the applica-
tions run at NAS displayed a range of variation in runtimes, from 30% on a lightly
loaded system up to 300% on a fully loaded system.

Needless to say, we quickly turned to another solution. We switched to software parti-
tioning of the system, where we assigned sets of processors to specific partitions.
Each partition was assigned an SGI NODEMASK which identified which nodes
belonged to that partition. Batch jobs were then scheduled into the smallest possible
partition. (A NODEMASK is similar to a “processor set” , except it is node-based
rather than CPU-based. While not a perfect solution, the NODEMASK capabilit y
proved quite functional, even though it was only advisory to the kernel. Some of this
functionality will be made available in the SGI MISER kernel scheduler.)

Fig. 5. Origin2000 Utili zation

May.97 May.98
0

20

40

60

80

100

A
va

ila
bl

e
N

od
e

U
til

iz
at

io
n

Weekly Utilization (FCFS−FF + DBF)
Weekly Utilization (FCFS−FF)
3−Month Average

64−CPU
System

Two 64−CPU
Systems

In March 1997, we doubled the size of our Origin2000 system, creating a 64-proces-
sor parallel supercomputer running under a single system image. Figure 5 shows the
utilization starting with the installation of this system.

We scheduled each of the partitions within the Origin2000 as we did on the previous
parallel systems. Figure 5 shows the system utili zation that resulted: a rough average
of 35 percent. From our previous experience, we predicted that adding dynamic back-
filli ng to the scheduling algorithm would add another 15 percentage points to the uti-
lization. Our prediction was again borne out: average system utili zation increased
from about 35 percent to about 55 percent. Nearly a year later NAS purchased a sec-
ond 64-processor Origin2000 system. Rather than being run as a separate system, it
was configured to share the workload of the first system.

Another trend we have noticed is that if you change the definition of “big jobs” in
relation to the maximum number of nodes available, util ization will increase. We pre-
dicted that by adding this second 64-processor system to the compute pool (thereby
doubling the number of processors available for computation) but maintaining the
maximum job size at 64-processors, utili zation should increase. We were surprised at
how smoothly the utili zation curve in Figure 5 spanned the doubling of the resources
without increasing the maximum job size. This appears to be in part a result of the
second system being identical to the first. The amount of resources doubled, and the
users responded by submitting twice as many jobs as before. Turnaround time and uti-
lization remained constant, but throughput doubled..

Fig. 6. Comparison of Parallel Supercomputer Utili zation

Jan93 Jan94 Jan95 Jan96 Jan97 Jan98 Jan99
0

20

40

60

80

100

A
va

ila
bl

e
N

od
e

U
til

iz
at

io
n

iPSC/860
CM−5
Paragon
SP−2
Origin2000

Figure 5 ends at the point of installation of two additional 128-processor Origin2000
systems. Given that the full user base was not given immediate access, there are insuf-
ficient data to make a fair comparison between these new systems and those already
reported. Then, in mid-November, the two 128-processor systems were merged into
the first 256-processor Origin2000, and the full NAS parallel system user base was
given access. Accounting, scheduling policy, and the scheduler itself have been con-
tinually changing since that time. Not until the system changes are stabil ized will we
be able to compare the 256-processor origin to the other systems reviewed herein

In order to make the comparison of the various system utilization graphs easier, a
composite graph is included above. Figure 6 shows the li fetime utilization of each of
the five MPP systems, along a single timeline. It is useful to compare the arrival and
decommission of the systems with each other. From such a composite graph, it is eas-
ier to see that the iPSC/860 utili zation began dropping as the Paragon started rising.

5.0 Caveats and Conclusions

First, a caveat. There are hundreds of variables which contribute to effective schedul-
ing of a parallel supercomputer. We have ignored all but one—the scheduling algo-
rithm—in our analysis. Further, we make some broad, sweeping generalizations
which are heavily dependent on the user workload of the system. Although experi-
ence has shown that the NAS facil ity is a prototypical supercomputing center, one
should not totally discount the possibilit y that the unique features of this facility con-
tribute to these results.

Data gathered over 11 years of operating parallel supercomputers (including the Intel
iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SP-2, and Cray Origin
2000) show three distinct trends:

• scheduling using a naive FCFS first-fit policy results in 40-60% utili za-
tion,

• switching to the more sophisticated dynamic-backfilli ng scheduling algo-
rithm improves utili zation by about 15 percentage points (yielding about
70% utili zation), and

• reducing the maximum allowable job size increases util ization.

Most surprising is the consistency of these trends. Over the li fetime of the NAS paral-
lel systems, we made hundreds, perhaps thousands, of small changes to hardware,
software, and policy. Yet, utili zation was affected lit tle, in general increasing slowly
over the li fetime of the system, with the few significant increases attributable to
improvements in the scheduling algorithms. In particular, these results show that the
goal of achieving 100% utili zation while supporting a real parallel supercomputing
workload is currently unrealistic. The utili zation trends are similar irrespective of
what system is used, who the users are, and what method is used for partitioning
resources.

6.0 Future Work

The “goodness” of a scheduling algorithm and policy is hard to quantify. Although
utilization is the most commonly used metric, it is still i nadequate. Utilization does
not take into account properties of the workload which, even if the jobs were opti-
mally scheduled, would not yield 100% utili zation. Such workload parameters as job-
size mix, arrival rate of jobs, efficiency of applications, etc., are ignored. A better met-
ric is needed. The utilization we report is simply the amount of time processors are
assigned out of the total time processors are available (i.e., we ignore only system
down time). We would like to refine utili zation to be based not on the total uptime of a
system, but on the optimal scheduling of the given workload. Other metrics we would
like to explore are throughput measures and comparison of “ time-to-solution” .

Seven years of job accounting data for five different parallel supercomputers is a lot
of data; we have only scratched the surface. We would like to analyze big-job turn-
around times in a fashion similar to our analysis of utili zation trends. Further, we
would like to investigate correlations between system stabili ty (crashes), user load,
turnaround time, workload characteristics, utili zation, and, if possible, system culture
(e.g., night time vs. day time, conference deadlines, etc.).

References

1. David H. Bailey, Experiences with Parallel Computers at NASA/Ames NAS Tech-
nical Repor t RNR-91-007, NAS Facilit y, NASA Ames Research Center, February
1991.

2. Nick Cardo, Batch Scheduling: A Fresh Approach, in Proceedings of Cray’s User
Group Conference, March 1995.

3. Job Scheduling in Multiprogrammed Parallel Systems by Dror G. Feitelson,
IBM Research Report RC 19790 (87657), October 1994.

4. Dror Feitelson and A. Mu'alem Weil , Utilization and Predictability in Scheduling
the IBM SP2 With Backfilling, in Proceedings of 12th International Parallel Pro-
cessing Symposium., pp. 542-546, April 1998.

5. Robert Henderson, Job Scheduling Under the Portable Batch System, in Proceed-
ings of the Workshop on Job Scheduling Strategies for Parallel Processing,
Santa Barbara, CA, April 1995.

6. James Patton Jones, The NASA SP2 Metacenter, in Proceedings of the Computa-
tional Aerosciences Workshop, HPCCP, August 1996.

7. James Patton Jones, Implementation of the NASA Metacenter: Phase 1 Report,
NAS Technical Repor t NAS-97-027, NAS Facilit y, NASA Ames Research Center,
October 1997.

8. B. Kingsbury, The Network Queuing System, Sterling Software, Palo Alto, 1985.

9. Scheduling Techniques for Concurrent Systems by J.K. Ousterhout, In 3rd Inter-
national Conference of Distributed Computing Systems, pp. 22-30, October 1982.

10. Bill Saphir, Leigh Ann Tanner and Bernard Traversat, Job Management Require-
ments for NAS Parallel Systems and Clusters, in Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, Santa Barbara, CA, April
1995.

11. Bernard Traversat, Ed Hook and James Patton Jones. A Dynamic-Backfilling
Algorithm for Efficient Space-Sharing Scheduling on an IBM SP2, NAS Technical
Repor t NAS-98-101, NAS Facil ity, NASA Ames Research Center, November
1998.

12. K. Windisch, Virginia Lo, R. Moore, Dror Feitelson, and Bill Nitzberg, A Com-
parison of Workload Traces From Two Production Parallel Machines, in Proceed-
ings of 6th Synp. Frontiers of Massively Parallel Computing, pp. 319-326,
October 1996.

