1.0

The Numericd Aerospace Simulation (NAS) supercomputer fadlity, located at
NASA Ames Reseach Center, serves in the role of pathfinder in high performance
computing for NASA. In the late 1980s, we began exploring the use of highly parallel
systems for supporting scientific and technicad computing [1]. Today, it is commonly

Scheduling for Parallel Supercomputing:
A Historical Perspedive of Achievable Utilization

James Patton Jones! and Bill Nitzberg®

MRJ Technology Solutions
NASA Ames Reseach Center, M/S 258-6
Moffett Field, CA 94035-1000

jjones@nas.nasa.gov

Abstract.The NAS fadlity has operated parall € supercomputers for the past 11
years, including the Intel iPSC/860, Intel Paragon, Thinking Madines CM-5,
IBM SP-2, and Cray Origin 2000. Across this wide variety of machine
architectures, acoss a span o 10 years, acdoss a large number of different
users, and through thousands of minor configuration and policy changes, the
utili zation of these machines $ows threegeneral trends: (1) scheduling using a
naive FCFS first-fit policy results in 40-60% utili zaion, (2) switching to the
more sophisticaed dynamic backfilling scheduling algorithm improves
utili zation by about 15 percentage points (yielding about 70% utili zation), and
(3) reducing the maximum all owable job size further increases utili zation. Most
surprising is the mnsistency of these trends. Over the lifetime of the NAS
paralel systems, we made hundreds, perhaps thousands, of small changes to
hardware, software, and pdlicy, yet utilization was affeded little. In particular,
these results dow that the goal of achieving near 100% utilization while
supporting ared parallel supercomputing workload is unrealistic.

I ntroduction

acceted that “ supercomputing” is synonymous with “parallel supercomputing’”.

Supercomputing means running “big” jobs or applicaions which cannot be run on
small or average-sized systems. Big, of course, is arelative term; we generally con-
sider ajob higif itisusing at least half of the available resources of a big system. (We

leave the definition of “big system” to the reader.)

1. Work performed under NASA contract NAS2-14303, Moffett Field, CA 94035-1000

Traditional vedor supercomputers (e.g., the Cray C90) are cgable of sustaining
nealy 100% utili zation whil e supporting hig jobs and running a varied workload [2].
Our experience has shown that this level of utilization is not attainable when running
a supercomputing workload on a parall el supercomputer.

2.0 TheNAS Paralle Supercomputing Workload

The NAS fadlity supports research and development in computational agosciences.
Hundreds of reseach projeds are funded annually which use the parallel supercom-
puters at NAS to perform high-end scientific and technicad computing. Over the past
11 yeas, the NAS parallel workload, priorities, and approach have been consistent.

The workload consists of amix of:

hundreds of users; new users are constantly added

scientific and technicad computing for agospace gplicaions
code devel opment, debugging, scding and performance analysis
“production” runs of existing applicaions

At the same time, the NAS scheduling policy has consistently striven for (in order of
priority):

1. Overnight turn-around for big jobs, and

2. Good machine utilization.

The first priority supports “supercomputing’, the seaond supports efficient use of
resources. NAS supports supercomputing by favoring supercomputer-sized jobs (big
ones, typicdly those that cannot run onany other system within NASA) over smaller
jobs. In general, the system configuration, user allocaions, and scheduling policies
are tuned so that big jobs get overnight turn-around.

In apparent conflict to the first priority is the second. Good machine utili zation has
historicdly meant 99% on traditional vedor supercomputers, and the stakeholders
(those whose money purchased the machines) have traditionally used utili zation as a
measure of success. Aswe show, parallel supercomputing does not achieve 99% utili -
zdion. It should be noted that machine utilizaion is arguably not the best measure of
the “goodness’ or value of a mmputing system. Thisissueis discussed further in sec
tion 5 below. System utili zationis used as the basis of comparison in this paper prima-
rily because utilization was the single largest continuous dataset available for the
systems under discusson.

The system configuration and the mecdhanisms by which we let users runjobs has also
been consistent throughout the past 11 yeas. The systems are dl spaceshared (parti-
tioned), and batch scheduled. Interadive use is permitted, but it must take placeby
alocding resources via the batch system, then using those resources interadively.
This approach to using perallel computers has prevail ed, despite the availability of

good time-sharing and gang-scheduli ng fadliti es on several systems, for two reasons:
the need for consistency of timings and efficiency of exeaution. Analysis of algo-
rithms, exad megaflop rates, and scaing are major component of the NAS workload.
Approaches other than strict, partitioned space sharing don’t support this. Further-
more, systems guch asthe Intel Paragon and Cray Origin 2000 suffer from an interfer-
ence problem (discussed below), in which it is possible for jobsto “overlap” in such a
way as to slow ead other down by far more than would be expeded by the simple
sharing of resources.

Most of the gplicaions run at NAS are staticdly balanced (applicaions which
require awell balanced load aaoss all nodes). Staticdly balanced appli caions strive
to give an equal amount of work to ead processor. A single slow process in a stati-
cdly load-balanced applicaion can completely ruin the performance of the goplica
tion, as other processes will have to wait for it. Ancther issue aises from message-
passing synchronizaion. Even if we overlay parallel jobs to avoid load-balancing
problems, tightly synchronized applications can incur an extra synchronization delay
for messages because processes are not gang-scheduled (scheduled to run at the same
time acoss al their assigned nodes). These wnstraints are wnsistent aaoss typicd
parallel supercomputing workloads. (For further discussion o parallel supercomput-
ing workloads, see[12].)

3.0 Supercomputer Resource Sharing

In a supercomputer, the two resources most visible to the user are the CPU and the
memory. In paralel supercomputers, these resources are generally grouped together
as compute nodes. This paper focuses on node utilizaion. There ae two methods of
sharing CPUs in a large MPP system: time sharing and space sharing. Time sharing
allows different programs to run on the same node simultaneously. The operating sys-
tem is responsible for scheduling different programs to run, ead for a cetain time
dice (quantum). Space sharing (also known as tiling) gives a parallel applicdion
exclusive accssto a set of compute nodes onwhich to run.

The five systems under review have amixture of node sharing methods, as shown in
Table 1.

Intel TMC I ntel IBM SGI
Parallel Systems | IPSC/860 | CM5 | Paragon | SP-2 | Origin2000

Gang Scheduling O unusable
Time Sharing O unusable O O
SpaceSharing O O ad O d

Table 1. MPP Node Sharing Methods

With the exception o the IPSC/860, al these systems support timesharing. Time-
sharing works well for serial jobs, which can fit into the memory of asingle node. But
at NAS we ae interested in running parallel applicaions that cannot run onasingle
node because of the resources they require (such as more memory than is avail able, or
so much CPU that the single-node run time would be too long). It is often assumed
that parall el jobs can be timeshared automaticdly by the operating system. In redity,
however, the issues of load balancing and synchronizaion make timesharing unac
ceptable for the parall € applications in the NAS workload.

The issues of timesharing the NAS workload on parallel systems was discussd in
detail several yeasago [10]. The following excerpt isrelevant here:

Among the staticdly balanced applicaions is a very important class of tightly
synchronized communicaion-intensive codes. These goplications form alarge
part of the NAS work load, and tightly synchronized applications are ommon
in other fields. The reason these gplicaions cannot be dficiently timeshared
is the acumulation of communicaion delays creaed by the uncoordinated
scheduling o processes aaoss the nodes. In tightly synchronized applications,
information flows between nades as the cdculation progresses. Even when
there is only neaest neighbor communicaion, information flows from neigh-
bor to neighbor eventually reading al nodes. Every time that information flow
is disrupted the entire gplication slows down.

One solution to this problem is to coordinate time sharing aaoss the nodes of a paral-
lel application, sothat all processes of agiven application runat the sametime. Thisis
cdl ed gang-scheduling or co-scheduling [9]. Gang-scheduling requires operating sys-
tem support, and a scheme for handling communicaionin progress (i.e. no messages
should belost when processes are swapped) [3]. Although not necessary, it iseasier to
implement gang scheduling if nodes are grouped into fixed size partitions, though
jobs then do nat have flexibility in how many nodes they run on. Since dl nodesin a
partition run the same number of processes, the scheduler does not have to ded with
unbalanced scheduling. Gang-scheduling in fixed-size partitionsis an effedive way to
ded with the problems of timesharing.

Unfortunately, only the Paragon and the CM5 supported gang scheduling. The Para-
gon'simplementation of gang scheduling added so much instabil ity to the system that
it proved unusable. On the CM5 we determined that the performance impad out-
weighed any benefits gang scheduling would have provided.

The second scheduling method is space sharing. In this model, a parall el applicaion
is given exclusive acces to a set of compute nodes on which to run. If any timeshar-
ing ocaurs, it is with the mostly inadive UNIX daemons. The parallel computer can
then be divided between different parallel applicaions, without one mmpeting with
another for resources. Spacesharing, however, does increase the difficulty of batch
job scheduling. Space sharing can also lower the ultili zation of other system
resources. Sincejobs have exclusive antrol over the nodes, spacesharing controls the

CPU together with other system resources, like memory, disks, and interconned
bandwidth. If the gplication is not using those resources, it is wasted.

Given the vast proportion of the NAS workload that consists of message-pasing appli -
caions, spacesharing has repeaably been chasen for the NAS parall el supercomput-
ers in oder to deliver the gredest per-applicaion performance ad consistent
runtimes.

4.0 Analysisof NAS Parallel Supercomputer Utilization

In this sedion we describe the hardware configuration o five NAS parallel supercom-
puters and discussbatch job scheduling and utili zation for ead. (For a discussion of
batch job scheduling requirements for large paralel supercomputers, like those &
NAS, see[10].) During the analysis, several trends begin to emerge. These ae dis-
cussed as they beaome gparent in the data presented.

Figures 1-6 show the weekly available node utili zation for ead of the five NAS MPP
systems under review, from install ation (or when the system was stable enough to put
users on) until decmmission. By “available” node utilizaion, we mean that both
scheduled and unscheduled outages have been taken into consideration when cdculat-
ing the percentage utili zation.

4.1 Intel iPSC/860 (Jan. 1990t0 Sept. 19%4)

The Intel iPSC/860 (also known as the Touchstone Gamma System) is a MIMD
parallel computer. The system at NAS consisted of 128 compute nodes (ead with a
single 40 MHz i860 XR processor and eight megabytes of physicd memory), ten 1/0
nodes (ead with an i386 processor and four megabytes of memory), one servicenode
(with a single i386 procesr, four megabytes of memory, and an ethernet interface,
and an i386-based PC front end with eight megabytes of memory. The compute nodes
are mnneded via a wormhole-routed hypercube network, which delivers 2.8
megabytes per second per link.

The Network Queueing System (NQS, [8]) was used as the batch system, implement-
ing queue-level “first-come first-serve first-fit” (FCFS-FF) scheduling with different
size priorities during the day (i.e. big jobs had priority at night, small jobs during the
day). The FCFS-First-Fit algorithm works as follows: batch jobs are evaluated in
FCFS order in the queue, i.e. oldest job first. For ead job, the batch system first
chedked if there were enough nodes avail able to run the job, and if so, then compared
the job requirements (walltime and node count) to the aurrent scheduling pdicy. If
either of these two chedks fail ed, the scheduler skipped to the next job. If both were
succesgul, the scheduler ran the job and removed it from the list. This process contin-
ued until all the jobs were evaluated.

Scheduling on the iPSC/860 was relatively simple, as the system itself was very
inflexible. The achitecure divided the system into “partitions” each of a power-of-2
number of nodes. Batch jobs were then run in the small est possible partition size. This
made scheduling easier, but forced idle time when running medium- sized jobs. For
example, a 65-node job could run only in a 128-node partiti on.

100

Weekly Node Utilization
---- 3-Month Average

80 - -

60 -

40 + o T -

Available Node Utilization

20 -

(‘)]un‘.93 Jun‘.94 Aué.94
Fig. 1. iPSC/860 Utilization

Sincethere was no timesharing avail able, this forced the remaining 63 rodes to be left
idle. Furthermore, there existed a system limit of a maximum of ten concurrent parti-
tions. This limit also had the potential for forcing idle time, even when there was a
badlog of work. For example, if the iPSC/860 was running ten 2-node jobs, the
remaining 108 nades would be idle. But given the typicd job sizein the NAS work-
|oad, the maximum partition limit was rarely exceealed. (The system ran out of nodes
well beforeit all ocated ten partitions.)

The iPSC/860 was fairly urreliable during the first two yeas at NAS. The first yea
the system was thoroughly investigated by NAS staff, during which time avariety of
benchmarks were developed and run on the system. Figure 1 shows the node utili za
tion starting in mid-1993. (Full acounting data for the first two yeasis unavail able.)
At the time, the utilizaion shown was considered an impressve improvement over
that of previous yeas, andis primarily attributable to two fadors. The first wasa sig-
nificant increase in system stability. Second, in ealy 1993, users had begun to shift
from applicaion debugging to running their codes as “ production” batch jobs. Notice
that the utili zation ranged between 40 and 60 percent for most of the period shown.

42 TMC CM-5 (Jan. 1993 to Mar. 1995)

The Thinking Madines Corporation (TMC) CM-5 is a MIMD parallel computer,
although it retains some properties of its SIMD predecessor, the CM-2. Notably, eat
processng node of the CM-5 can be thought of as a small SIMD paralel computer,
ead with amaster SPARC processor sequencing a2 x 2 array of custom vedor units.
Furthermore, via adedicaed control network, the processing nodes can also gperate
in asynchronized SPMD fashion.

The system at NAS consisted of 128 compute nodes (ead with one 33 MHz SPARC
procesor, four vedor units, and 32 megabytes of physicd memory), four control
nodes, one I/O node (which manages the dtached RAID), and ore system-manager
node. Each of these nodes was a standard Sparc-2 workstation (with 64 megabytes of
physicd memory). The nodes are interconneded via a4-ary fat-tree data network,
which supplies 20 megabytes per seaond per link, and a bisedion bandwidth of 655
megabytes per seaond.

The CM-5 was scheduled using the Distributed Job Manager (DJM) which also
implemented a size-priority FCFS-FF algorithm that was time-of-day sensitive. Like
the iPSC/860, the CM-5 architedure restricted al partitions to a power-of-2 nunber
of nodes. However, the CM-5 further restricted the partition sizeto a minimum of 32
nodes, and the partition size muld na be changed without a reboot of the etire sys-
tem. During the day, the CM-5 was run with one 64-node partition and two 32-node
partitions. Each night, the system was recmnfigured into asingle 128-node partition to
allow large jobs to run.

100 p

Weekly Node Utilization
---- 3-Month Average

80 b

60 - 1 B

Available Node Utilization

20 - |4 4

O Il Il Il
Feb.93 Feb.94 Mar.95

Fig. 2. CM-5 Utilization

The CM-5 followed cuite adifferent life cycle than the iPSC/860. Initially only NAS
staff had access for benchmarking and evaluation purposes, and to work to stabilize
the system. But rather than taking several yeas as with the iPSC/860, we had to wait
only several weeks before putting “red” users on. Figure 2 shows how quickly the
scientists put the CM-5 to work. Part of the reason for the short ramp-up was that
most of the reseachers were migrating to the CM-5 from the previous generation
CM-200 (which had been previously upgraded from a CM-2) at NAS. Many of these
users arealy had codes that ran well on this architedure.

Like the iPSC/860 much o the increased usage of the CM-5inits final yea was due
to users completing the debugging cycle, and moving to running groduction codes.
Halfway through the second yea of the system’s stay at NAS, in an effort to increase
the utilization of the madhine, spacesharing was relaxed on the small partitions dur-
ing the day to allow two jobs to timeshare within a given partition. Doing so resulted
in agradual increase of utilization; however, it also resulted in a 20 percent slowdown
in both timeshared appli cations.

4.3 Intel Paragon XP/S-15 (Feb. 1993 to July 1995)

The Intel Paragon XP/S-15 is a MIMD paralel computer. The system at NAS
consisted of 208 compute nodes (ead with two 50 MHz i860 XP processors and 32
megabytes of physicd memory), four service nodes (which make up the service
partition and provide an interfaceto the outside world, serving as a “front end” to the
system), eight disk 1/0O nodes, three HIPPI nodes, and four general-purpose nodes.
The mmpute nodes are omnneded via awormhole-routed 2D mesh network, which
delivers 175 megabytes per seaond per link. The Paragon is the successor of the Delta
madine.

Using NQS, we implemented queue-level FCFS-FF scheduling with different size pri-
orities, as on the iPSC/860. Scheduling the Paragon, however, was more difficult than
scheduling the previous systems because power-of-2 job sizes were no longer
required. The resulting wide variety of job sizes deaeased the scheduling efficiency.

The Paragon, like the CM-5, had arelatively short shake-out period before we started
adding users onto the system. These were primarily users from the iPSC/860 who
wanted to try out the new system. Onceon, many chose to return to the iPSC/860 until
the Paragon stabili zed.

The utili zation shown in Figure 3 for the first half of 1993 is based on UNIX SAR
(system adivity report) and load average data. Some data for 1993 were lost (thus the
apparent zero usage). Following this, the MACS acounting software was install ed,
enabling more acarrate utili zation tradking. This is also the time when the remaining
iPSC/860 users began to migrate over to the Paragon in order to continue their work.
(Compare the iPSC/860 and the Paragon utili zation graphs in Figure 6 to see more

clealy the drop in the older system corresponding to an increase in the newer sys-
tem.)

100

Weekly Node Utilization
---- 3-Month Average

80 - -

60 S -

Available Node Utilization

20+ , |

Mar.o4 Mar.o5
Fig. 3. Paragon Utili zation

The periodic dips in the Paragon utili zation correspond to testing and regular operat-
ing system upgrades. During these times, though the system was avail able to users,
many opted off the machine to avoid the frustrations of trying to use asystem in flux.
From the utilization graph, we seethat the FCFS-FF algorithm maintained the utili za-
tion between and 40 and 60 percent for most of the “production” lifetime of the sys-
tem.

44 |BM SP-2 (July 1994 to Sept. 1997)

The IBM SP-2 is a MIMD paralel computer. The system at NAS consisted of 160
compute nodes. Each node is an IBM RS6000/590 workstation powered with asingle
66.7 MHz POWER2 processor and at least 128 megabytes of physicd memory. (Six
of the nodes had 512 megabytes of memory). The nodes of an SP-2 are mnneded by
a padket-switched, multi-stage omega network (a hierarchy of crossbar switches)
utilizing buffered wormhole-routing. The switch can deliver 40 megabytes per second
bidiredionally.

The system arrived with IBM’s LoadlL eveler batch system, which provided ssimple
FCFS scheduling. Based on what we had learned with previous parallel systems, we
predicted that a FCFS-FF scheduling algorithm would result in a system node utili za:
tion of around 50 percent. However, the Loadleveler batch system used a simple
FCFS agorithm which was adhieving roughly 25 percent utilization. After six

months, we replaced LoadLeveler with the Portable Batch System (PBS) utilizing a
FCFSFF agorithm [5]. System utili zation immediately doubled (seeFigure 4), aver-
aging 50 percent. This level of utilization continued the eitire time we used the
FCFS-FF scheduler.

100

Weekly Node Utilization (FCFS-FF + DBF)
- \Weekly Node Utilization (FCFS-FF)
—— Weekly Node Utilization (FCFS)
— — - 3-Month Average

60 -

Available Node Utilization

20 -

O Il
il aa nl o

Fig. 4. SP-2 Utili zaion

One problem with the First-Fit algorithm is that it can continually take away nodes
from a large waiting job in order to run smaller jobs. As aresult, large jobs tend to
“starve” in the queue, always waiting for resources to become avail able, but never
receving them. One atempt to remedy thissituationisto periodicdly “drain” the sys-
tem in order to free up enough rodes to be ale to run the large waiting jobs. How-
ever, draining the system is an expensive operation since alarge number of nodes may
need to be kept idle to ensure that a particular job can run. For example, suppose we
want to run a 128-node job, but there ae only 127 nades available, and there is a 5-
hour job running onthe last node. We have to kegp 127 nadesidle for 5 hours to guar-
anteethat this job will run. While this smplistic gpproach works, it is obvious that it
does not lea to the best system utilization possible.

A better solution is to have the scheduler reaognize that we will not be ale run our
job for 5 hours, but we can use the 127 rnodes to run any jobs that can complete in 5
hours, using a backfilling method. Satic-Backfilling fixes the starting time of the
high-priority job at the ealiest time possible (i.e., the ealiest time when the required
nodes will be available). In our previous example, thiswas 5 hours. A Dynamic-Back-
filling (DBF) algorithm, rather than fixing the time at the ealiest time that it can, will
instead determine the most appropriate time to start the job within a starting window
[4, 11]. The ealiest time possible may in some caes not leal to the best result. Using
our previous example, let's assume that we dso had a 125-node job (for 5 hours 30

minutes) queued. Using static-badfilli ng, we auld na runthisjob aswe only have 5
hours to bad«fill . But with dynamic-badkfilling, we should recognize that by shifting
the starting time by 30 minutes, we will be ale to fill 125 ndes, significantly
increasing resource utilization. Thus the DBF agorithm attempts continually to bal-
ance both the need to run high-priority jobs and the need to maintain as many nodes
as posshle in-use, by providing the aility to drain the system efficiently and to
reserve nodes for the top-ranked job.

As soon as we installed PBS, we began implementing the DBF algorithm. Approxi-
mately two months later, the PBS FCFS-FF scheduler module was replaced with our
PBS DBF scheduler module. (This DBF scheduling module is now included in the
PBS distribution.) System utili zation again jumped, this time roughly 20 percentage
points, to 70 percent. Over time, as users began to run fewer debugging jobs and
started scding upthe problem size of their appli cations, the utili zation slowly crept up
to 80 percent. The system cortinued at this level of usage until it was allocated to the
NASA Metaceter projed. (Given that the Metacenter projed introduced many new
variables, and thereby substantially changing the userbase, scheduling model and
workload flow of the system, we do not report those data here. Further discussion of
the Metacenter projed and its meta-scheduling experimentsisincluded in [6, 7].)

45 Cray Origin2000 (Jan. 1997 -)

The SGI/Cray Origin2000 isaMIMD computer based on the cahe-coherent non uni-
form memory architecture (ccNUMA) providing a distributed shared memory (DSM)
system. Each node mntains two MIPSRISC 64-bit R10000 processors and a config-
urable anount of memory; nodes are wnneded via amodified hypercube network

In January 1997, NAS received itsfirst 32-procesor SGI Origin2000. (Systems larger
than 32-processors recave the “Cray” label.) One of the most useful feaures of the
Origin2000 is the single-system image. Users can utili ze the system as a large sym-
metrical multi processor (SMP) rather than havingto be concerned with the distributed
nature of the achitedure. Therefore when the system first arrived, we dedded to see
if we ould scheduleit like atrue timeshared SMP. Weinstalled PBS with a FCFS-FF
SMP scheduling module that we had been running onour cluster of four Cray J90s.

In spite of its sngle system image, the dtempt to schedule this distributed memory
system quickly proved problematic, as both the underlying architecure and the inter-
ference between jobs resulted in severe performance degradation and varied runtimes.
Spedficdly, sincethe hardware cmmponents are distributed acoss the interconneded
hypercubes, the number of network routers between any two nades within the system
increases with the distance between thase nodes. This alone translates into a variable
latency in communication for message passing applications. Since gplications could
be started on any set of nodes within the system, the runtimes of a given appli cation
varied from run to run.

In addition, the operating system attempts to start applications on contiguous nodes,
but as the system “fill s up” with work the nodes quickly become fragmented since
every application has adifferent runtime. Asaresult, appli caions are started on nodes
that are scatered throughout the system. As this tends to increase the distance
between the nodes assigned to a given job, latency again increases, as do runtimes.

The third problem we identified was in the “sharing” of nodes between jobs. Remem-
ber that an Origin2000 “node” has two processors which have equal accessto locdly
shared memory. Scheduling multi ple goplicaions onto the same node makes it possi-
ble for these processes to compete for the memory on that node, delaying message-
passing and thereby further increasing the runtime of the gplicaion as a whole.
While many sites run appli cations which are tolerant of these conditions, the gplica
tions run at NAS displayed a range of variation in runtimes, from 30% on a lightly
|loaded system up to 300% on a fully loaded system.

Neeallessto say, we quickly turned to another solution. We switched to software parti-
tioning d the system, where we asdgned sets of processors to spedfic partitions.
Each partition was assigned an SGI NODEMASK which identified which nodes
belonged to that partition. Batch jobs were then scheduled into the small est possible
partition. (A NODEMASK is similar to a “procesor set”, except it is node-based
rather than CPU-based. While not a perfed solution, the NODEMASK capability
proved quite functional, even though it was only advisory to the kernel. Some of this
functionality will be made avail able in the SGI MISER kernel scheduler.)

100

64-CPU Two 64-CPU
System Systems

80 - -

Available Node Utilization

Weekly Utilization (FCFS-FF + DBF)
—— Weekly Utilization (FCFS-FF)
---- 3-Month Average

0
May.97 May.98

Fig. 5. Origin2000 Utili zation

In March 1997, we doubled the size of our Origin2000 system, creding a 64-proces-
sor parallel supercomputer running under a single system image. Figure 5 shows the
utilization starting with the install ation of this g/stem.

We scheduled ead of the partitions within the Origin2000 as we did on the previous
paralel systems. Figure 5 shows the system utili zation that resulted: a rough average
of 35 percent. From our previous experience, we predicted that adding dynamic back-
filli ng to the scheduling algorithm would add ancther 15 percentage points to the uti-
lization. Our prediction was again borne out: average system utili zation increased
from about 35 percent to about 55 percent. Nealy ayea later NAS purchased a sec
ond 64processor Origin2000 system. Rather than being run as a separate system, it
was configured to share the workload of the first system.

Another trend we have noticed is that if you change the definition of “big jobs” in
relation to the maximum number of nodes available, utilization will incresse. We pre-
dicted that by adding this sscond 64-processor system to the cmpute pod (thereby
doubling the number of processors available for computation) but maintaining the
maximum job size d 64-processors, utili zation should increase. We were surprised at
how smoothly the utili zation curve in Figure 5 spanned the doubling of the resources
without increasing the maximum job size This appeasto bein part a result of the
semnd system being identicd to the first. The anount of resources doubled, and the
users responded by submitting twice & many jobs as before. Turnaround time and uti-
lization remained constant, but throughput doubled..

100

iPSC/860
o CM=5
Paragon
80 ——- SP-2 o 7
—-— 0rigin2000 //
c } A /
% I arl i
N S b
= 60 i \ Ao |
= L/ / I
) g \ S
o) / v s
° | !
(=} N
2 [|
@ | |
g 4| (l ‘ .
2 ! Mt
[,
20 | o 1
/
|
/
0 . . , , \
Jan93 Jan94 Jan95 Jan96 Jan97 Jan98 Jan99

Fig. 6. Comparison of Parallel Supercomputer Utili zation

Figure 5 ends at the point of installation of two additional 128-processor Origin2000
systems. Given that the full user base was not given immediate accss, there ae insuf-
ficient data to make afair comparison between these new systems and those dready
reported. Then, in mid-November, the two 128-processor systems were merged into
the first 256-processor Origin2000, and the full NAS parallel system user base was
given access. Acoounting, scheduling palicy, and the scheduler itself have been con-
tinually changing sincethat time. Not until the system changes are stabilized will we
be ale to compare the 256-processor origin to the other systems reviewed herein

In order to make the comparison of the various g/stem utilization graphs easier, a
composite graph isincluded above. Figure 6 shows the lifetime utilization of ead of
the five MPP systems, along a single timeline. It is useful to compare the arival and
decommission of the systems with ead ather. From such a compaosite graph, it iseas-
ier to seethat the iIPSC/860 utili zation began dropping as the Paragon started rising.

5.0 Caveatsand Conclusions

First, a aved. There ae hundreds of variables which contribute to effedive schedul-
ing of a parallel supercomputer. We have ignored all but one—the scheduling algo-
rithm—in our analysis. Further, we make some broad, sweeing generalizaions
which are heavily dependent on the user workload of the system. Although experi-
ence has sown that the NAS fadlity is a prototypicd supercomputing center, one
should not totally discount the possibility that the unique feaures of this fadlity con-
tribute to these results.

Data gathered over 11 yeas of operating parallel supercomputers (including the Intel
iPSC/860, Intel Paragon, Thinking Machines CM-5, IBM SR-2, and Cray Origin
2000) show threedistinct trends:

* scheduling wsing a naive FCFS first-fit palicy results in 40-60% utili za-
tion,

e switching to the more sophisticated dynamic-badkfilli ng scheduling algo-
rithm improves utili zation by about 15 percentage points (yielding about
70% utili zation), and

* reducing the maximum allowable job sizeincreases utilizaion.

Most surprising is the ansistency of these trends. Over the lifetime of the NAS paral-
lel systems, we made hundreds, perhaps thousands, of small changes to hardware,
software, and policy. Yet, utili zation was affeded little, in genera increasing slowly
over the lifetime of the system, with the few significant increases attributable to
improvements in the scheduling algorithms. In particular, these results show that the
goal of achieving 100% utili zation while supporting a red parallel supercomputing
workload is currently unredistic. The utili zation trends are similar irrespedive of
what system is used, who the users are, and what method is used for partitioning
resources.

6.0 FutureWork

The “goodness’ of a scheduling algorithm and policy is hard to quantify. Although
utilization is the most commonly used metric, it is dill i nadequate. Utilization does
not take into acount properties of the workload which, even if the jobs were opti-
mally scheduled, would not yield 100% utili zation. Such workload parameters as job-
sizemix, arrival rate of jobs, efficiency of applicaions, etc., areignored. A better met-
ric is needed. The utilization we report is simply the amnount of time processors are
asdgned ou of the total time processors are available (i.e., we ignore only system
down time). We would like to refine utili zation to be based not on the total uptime of a
system, but on the optimal scheduling d the given workload. Other metrics we would
like to explore ae throughput measures and comparison of “time-to-solution”.

Seven yeas of job acmunting data for five different parallel supercomputersis alot
of data; we have only scratched the surface We would like to analyze big-job turn-
around times in a fashion similar to our analysis of utilization trends. Further, we
would like to investigate wrrelations between system stability (crashes), user load,
turnaround time, workload charaderistics, utili zaion, and, if posdgble, system culture
(e.g., night time vs. day time, conference deallines, etc.).

References

1. David H. Bail ey, Experiences with Parallel Computers at NASA/Ames NAS Tedh-
nical Report RNR-91-007, NAS Fadlity, NASA Ames Reseach Center, February
1991.

2. Nick Cardo, Batch Scheduling: A Fresh Approach, in Proceealings of Cray's User
Group Conference, March 1995.

3. Job Scheduling in Multiprogrammed Parallel Systems by Dror G. Feitelson,
IBM Reseach Report RC 19790 (87657), October 1994.

4. Dror Feitelson and A. Mu'alem Weil, Utilization and Predictability in Scheduling
the IBM SP2 With Backfilling, in Proceedings of 12th International Parallel Pro-
cesdng Symposium., pp. 542-546, April 1998.

5. Robert Henderson, Job Scheduling Under the Portable Batch System, in Proceed-
ings of the Workshop on Job Scheduling Strategies for Parallel Processing,
Santa Barbara, CA, April 1995.

6. James Patton Jones, The NASA SP2 Metacenter, in Proceealings of the Computa-
tional Aerosciences Workshop, HPCCP, August 1996.

7. James Patton Jones, Implementation of the NASA Metacenter: Phase 1 Report,
NAS Technical Report NAS-97-027, NAS Fadlity, NASA Ames Reseach Center,
October 1997.

8. B. Kingsbury, The Network Queuing System, Sterling Software, Palo Alto, 1985.

9. Scheduling Techniquesfor Concurrent Systems by J.K. Ousterhout, In 3rd Inter-
national Conference of Distributed Computing Systems, pp. 22-30, October 1982.

10. Bill Saphir, Leigh Ann Tanner and Bernard Traversat, Job Management Require-
ments for NAS Parallel Systems and Clusters, in Proceelings of the Workshop on
Job Scheduling Strategies for Parallel Processng, Santa Barbara, CA, April
1995.

11. Bernard Traversat, Ed Hook and James Patton Jones. A Dynamic-Backfilling
Algorithm for Efficient Space-Sharing Scheduling on an IBM SP2, NAS Technical
Report NAS-98-101, NAS Fadlity, NASA Ames Reseach Center, November
1998.

12. K. Windisch, Virginia Lo, R. Moore, Dror Feitelson, and Bill Nitzberg, A Com-
parison of Workload Traces From Two Production Parallel Machines, in Proceed-
ings of 6th Synp. Frontiers of Massively Parallel Computing, pp. 319-326,
October 199.

