
Job Scheduling Strategies for Networks ofWorkstationsB. B. Zhou,1 R. P. Brent,1, D. Walsh2, and K. Suzaki31 Computer Sciences Laboratory, Australian National University,Canberra, ACT 0200, Australia2 CAP Research Program, Australian National University,Canberra, ACT 0200, Australia3 Electrotechnical Laboratory, 1-1-4 Umezono,sukuba, Ibaraki 305, JapanAbstract. In this paper we �rst introduce the concepts of utilisation ra-tio and e�ective speedup and their relations to the system performance.We then describe a two-level scheduling scheme which can be used toachieve good performance for parallel jobs and good response for inter-active sequential jobs and also to balance both parallel and sequentialworkloads. The two-level scheduling can be implemented by introducingon each processor a registration o�ce. We also introduce a loose gangscheduling scheme. This scheme is scalable and has many advantagesover existing explicit and implicit coscheduling schemes for schedulingparallel jobs under a time sharing environment.1 IntroductionThe trend of parallel computer developments is toward networks of worksta-tions [3], or scalable parallel systems [1]. In this type of system each processor,having a high-speed processing element, a large memory space and full function-ality of a standard operating system, can operate as a stand-alone workstationfor sequential computing. Interconnected by high-bandwidth and low-latencynetworks, the processors can also be used for parallel computing. To establisha truly general-purpose and user-friendly system, one of the main problems isto provide users with a single system image. By adopting the technique of dis-tributed shared memory [12], for example, we can provide a single addressingspace for the whole system so that communication for transferring data betweenprocessors is completely transparent to the client programs. In this paper wediscuss another very important issue relating to the provision of single systemimage, that is, e�ective job scheduling strategies for both sequential and parallelprocessing on networks of workstations.Many job scheduling schemes have been introduced in the literature andsome of them implemented on commercial parallel systems. These schedulingschemes for parallel systems can be classi�ed into either space sharing, or timesharing, or a combination of both. With space sharing a system is partitionedinto subsystems, each containing a subset of processors. There are boundary



lines laid between subsystems and so only processors of the same subsystemcan be coordinated to solve problems assigned to that subsystem. During thecomputation each subsystem is allocated only for a single job at a time.The space partition can be either static, or adaptive. With static partitioningthe system con�guration is determined before the system starts operating. Thewhole system has to be stopped when the system needs to be recon�gured.With adaptive partitioning processors in the system are not divided before thecomputation. When a new job arrives, a job manager in the system �rst locatesidle processors and then allocates certain number of those idle processors tothat job according to some processor allocation policies, e.g., those describedin [2, 10, 14, 15,17, 18, 20]. Therefore, the boundary lines are drawn during thecomputation and will disappear after the job is terminated. Normally the staticpartitioning is used for very large systems, while the adaptive partitioning isadopted in systems, or subsystems of small to medium size. One disadvantage ofspace partitioning is that short jobs can easily be blocked by long ones for a longtime before being executed. However, in practice short jobs usually demand ashort turnaround time. To alleviate this problem jobs can be grouped into classesand a special treatment will be given to the class of short jobs [15]. However, itcan only partially solve the problem. Thus time sharing needs to be considered.Many scheduling schemes for time-sharing of a parallel system have beenproposed in the literature. They may be classi�ed into two basic types. The�rst one is local scheduling. With local scheduling there is only a single queueon each processor. Except for higher (or lower) priorities being given, processesassociated with parallel jobs are not distinguished from those associated withsequential jobs. The method simply relies on existing local schedulers on eachprocessor to schedule parallel jobs. Thus there is no guarantee that the processesbelonging to the same parallel job can be executed at the same time across theprocessors. When many parallel programs are simultaneously running on a sys-tem, processes belonging to di�erent jobs will compete for resources with eachother and then some processes have to be blocked when communicating or syn-chronising with non-scheduled processes on other processors. This e�ect can leadto a great degradation in overall system performance [4,6, 9, 11, 13]. One methodto alleviate this problem is to use two-phase blocking [8, 22] which is also calledimplicit coscheduling in [8]. In this method a process waiting for communicationspins for some time in the hope that the process to be communicated with onthe other processor is also scheduled, and then blocks if a response has not beenreceived. The reported experimental results show that for parallel workloads thisscheduling scheme performs better than the simple local scheduling. However,the problem is that the scheduling policy is based on communication require-ments. Then it tends to give special treatment to jobs with a high frequency ofcommunication demands. The policy is also independent of service times. Theperformance of parallel computation is thus unpredictable.The second type of scheduling schemes for time sharing is coscheduling [16](or gang scheduling [9]), which may be a better scheme in adopting short-job-�rstpolicy. Using this method a number of parallel programs is allowed to enter a



service queue (as long as the system has enough memory space). The processesof the same job will run simultaneously across the processors for only certainamount of time which is called scheduling slot. When a scheduling slot is ended,the processors will context-switch at the same time to give the service to pro-cesses of another job. All programs in the service queue take turns to receivethe service in a coordinated manner across the processors. Thus programs neverinterfere with each other and short jobs are likely to be completed more quickly.There are also certain drawbacks associated with coscheduling. A signi�cant oneis that it is designed only for parallel workloads. For networks of workstations weneed an e�ective scheduling strategy for both sequential and parallel processing.The simple coscheduling technique is not a suitable solution.The future networks of workstations should provide a programming-free en-vironment to general users. By providing a variety of high-performance com-puting libraries for a wide range of applications plus user-friendly interfaces forthe access to those libraries, parallel computing will no longer be consideredjust as client's special requests, but become a natural and common phenomenonin the system. Along with many other critical issues, therefore, highly e�ectivejob management strategies are required for the system to meet various client'srequirements and to achieve high e�ciency of resource utilisation. Because ofthe lack of e�cient job scheduling strategies, most networks of workstations arecurrently used exclusively either as an MPP for processing parallel batch jobs,or as a group of separate processors for interactive sequential jobs. The poten-tial power of this type of system are not exploited e�ectively and the systemresources are not utilised e�ciently under these circumstances.In this paper we discuss some new ideas for e�ectively scheduling both se-quential and parallel workloads on networks of workstations. To achieve a de-sired performance for a parallel job on a network of workstations with a varietyof competitive background workloads, it is essential to provide a sustained ra-tio of CPU utilisation to the associated processes on each processor, to allocatemore processors to the job if the assigned utilisation ratio is small and then tocoordinate the execution across the processors. We �rst introduce the conceptsof utilisation ratio and e�ective speedup and their relations to the system per-formance in Section 2. In this section we also argue that, because the resourcesin a system are limited, one cannot guarantee every parallel job to have a sus-tained CPU utilisation ratio in a time sharing environment. One way to solvethe problem is that we give short jobs sustained utilisation ratios to ensure ashort turnaround time, while to each large job we allocate a large number of pro-cessors and assign a utilisation ratio which can vary in a large range accordingto the current system workload so that small jobs will not be blocked and theresource utilisation can be kept high. we then present in Section 3 a two-levelscheduling scheme which can be used to achieve good performance for paral-lel jobs and good response for interactive sequential jobs and also to balanceboth parallel and sequential workloads. The two-level scheduling can be imple-mented by introducing on each processor a registration o�ce which is describedin Section 4. We discuss a scalable coscheduling scheme { loose gang schedul-



ing in Section 5. This scheme requires both global and local job managers. Itis scalable because the coscheduling is mainly controlled by local job managerson each processor so that frequent signal-broadcasting for simultaneous contextswitch across the processors is avoided. Using a global job manager we believethat the system can work more e�ciently than those using only local schedulers.With a local job manager on each processor the system will become more 
exibleand more e�ective in handling more complicated situations than those adoptingonly the conventional gang scheduling policy. Finally the conclusions are givenin Section 6.2 Utilisation Ratio and E�ective SpeedupAssuming that the overall computational time for a parallel job on p dedicatedprocessors is Td(p), the conventionally de�ned speedup is then obtained asSd(p) = Td(1)Td(p) : (1)This speedup can only be achieved by using dedicated processors. It may beimpossible to achieve on a network of workstations because there a parallel jobusually has to time-share resources with other sequential/parallel jobs. If weprovide a sustained ratio of CPU utilisation for a job on each processor and usemore processors, however, we can still achieve the desired performance in termsof time.De�ne utilisation ratio � for 0 � � � 1 as the ratio of CPU utilisation fora given job on each processor. By a given � the job on a processor can on theaverage obtain a service time ��T in each unit of time �T . In our schedulingstrategy each parallel job will be assigned a utilisation ratio which is usuallydetermined based on the current system working conditions. Di�erent ratios canalso be given on di�erent processors for naturally unbalanced parallel jobs toachieve better system load-balancing.Assume that the same utilisation ratio � is assigned to a parallel job acrossall the associated processors and that the job's processes are gang scheduled.The turnaround time Te(p) for that job can then be calculated asTe(p) = Td(p)� (2)where Td(p) is the computational time obtained on p dedicated processors.De�ning e�ective speedup Se(p) as the ratio of Td(1) and Te(p), thenSe(p) = Td(1)Te(p) = � Td(1)Td(p) = �Sd(p): (3)where Sd(p) is the conventional speedup obtained on p dedicated processors.To achieve a desired performance, we may set a performance target 
 andrequire Td(1) � 
Te(p); (4)



or Se(p) � 
: (5)If the e�ective speedup for a given job is lower than that target, the performancewill be considered unacceptable.>From equations in (3) and (5) we can obtainSd(p) � 
� : (6)Using the above inequality we can easily determine how many processorsshould be allocated to a given job in order to achieve a desired performancewhen a particular � is given. Assuming 
 = 2 and � = 0:5, for example, Sd(p)must be greater than, or equal to 4. Allocating 5 processors or more to that jobcan then achieve a desired performance if Sd(5) � 4. When the current systemworkload is not heavy, we may need to use less number of processors to achievethe same performance. If there are several idle processors, we may set � = 1 inthe above example. Then only 3 processors may be required if Sd(3) � 2.In practice the exact speedup Sd(p) may not be known except for thoseprograms in standard general-purpose parallel computing libraries. Thus thevalues can only be approximate in those cases. However, good approximationscan often be obtained. For example, the results of the Linpack Benchmark [7]can be used as a good approximation for problems of matrix computation.The utilisation ratios of the existing jobs may be decreased whenever a newjob enters the system to time-share the resources. The problem is how to ensurea sustained ratio of CPU utilisation for each job so that the performance can bepredictable in a time sharing environment. Since the resources in a system arereally limited, the answer to this question is simply that we cannot guaranteeevery job to have a sustained ratio when the system workload is heavy.One way to solve the above problem is to adopt the following scheme. First weset a limit to the length of each scheduling round �T (or a limit to the number ofjobs in the system). A commonmisunderstanding about time-sharing for paralleljobs is that good performance will be obtained as long as parallel jobs can enterthe system and start operation quickly. As we mentioned previously that theresources in a system are limited, however, good performance just cannot beguaranteed if the length of scheduling round is unbounded. Consider a simpleexample when several large jobs are time-sharing the resources in a round robinmanner. In this case the conventional gang scheduling simply fail to producegood performance in terms of turnaround time.Because of the limit to the length of each scheduling round short jobs stillcan be blocked for a long time. We then adopt a scheduling policy, that is, smalljobs should have sustained utilisation ratios to ensure a short turnaround time,while each large job should be assigned a large number of processors, but given autilisation ratio which can vary in a large range according to the current systemworkload. In this way we think that small jobs will not be blocked, the resourceutilisation can be kept high and reasonably good performance for large jobs mayalso be obtained.



Based on the above ideas amulti-class time/space sharing system is designed.A detailed description of this system is beyond the scope of this paper. Interestedreaders may refer [24] for more details.3 Two-Level SchedulingIt can be seen from the previous section that our scheduling strategy is basedon the utilisation ratios assigned to parallel jobs. In this section we introduce atwo-level scheduling scheme for balancing the workloads for both sequential andparallel processing,At the top level, or global level the gang scheduling, or a loose gang schedulingscheme to be discussed in the next section, is adopted to coordinate parallelcomputing. Each scheduling round �T is divided into time slots. An exampleof the time distribution for di�erent processes on each processor is shown inFig. 1. In the �gure time slot �t(i)s is allocated only to sequential processesassociated with sequential jobs, while slot �t(i)p is assigned to a single parallelprocess associated with a parallel job. A parallel process may share its timeslots with sequential processes through the scheduling at the bottom level, orlocal level. However, no parallel processes will share the same time slots. Thisis to avoid many di�erent types of parallel jobs competing for resources at thesame time and then to guarantee that each parallel process can obtain its propershare of resources. The relation between a scheduling round and those time slotssatis�es the following equation�T = �Ts + nXi=1�t(i)p (7)where �Ts = Pmi=1�t(i)s is the total time dedicated for sequential jobs in ascheduling round and is distributed to gain good response to interactive clients.�t(1)p �t(1)s �t(2)p �t(2)s �t(3)p �t(3)s �t(4)p �t(4)s�TFig. 1. The time distribution in a scheduling round.The width of each time slot is determined by the corresponding utilisationratio �(i)p , or �(i)s . We can then calculate the width of each time slot as�t(i)p = �(i)p �T (8)and �Ts = �s�T (9)



where �s =Pmi=1 �(i)s .There are many ways to distribute �Ts. For example, each slot for a parallelprocess can be followed by a small slot for sequential processes and �Ts isuniformly distributed across the whole scheduling round. Then�t(i)s = �Tsn : (10)We can also distribute �Ts proportionally to the width of each time slot forparallel processes, that is, �t(i)s = �(i)pPnj=1 �(j)p �Ts: (11)The calculation for proportional distribution is a bit more complicated thanthat for uniform distribution. However it is useful when a proper-share policy,which will be described later in the section, is applied at the local level.Di�erent local policies can be adopted to schedule processes within each timeslot. In those time slots dedicated for sequential processing conventional localscheduling schemes of any standard operating system will be good enough. Inthe following we discuss how to schedule processes in each time slot �t(i)p inwhich parallel processing is involved.To ensure that a parallel process can obtain its assinged share of CPU util-isation, the whole slot �t(i)p may be dedicated just to the associated parallelprocess. In that case a very high priority will be given and the process simplydoes busy-waiting, or spins during communication/synchronisation so that noother processes can disturb its execution within each associated time slot. Oneproblem associated with this policy is that the performance of sequential jobs,especially of those which demand good interactive response, may signi�cantly bea�ected. Therefore, its use will be treated as special cases under the environmentof networks of workstations to achieve certain client's special requests .To prevent great performance degradation of sequential interactive jobs, im-plicit coscheduling scheme can be adopted. However, a potential problem is thatthe execution of a parallel process may be disturbed by several sequential pro-cesses and then it is possible that certain parallel processes may not receive theirproper shares in their associated time slots.The above problem may be alleviated by adopting a proper-share policy. Inthis policy we do not consider individual shares allocated for each sequential job.Except for special ones, e.g., multimedia workloads, which may be treated in thesame way as parallel jobs to achieve constant-rate services, only a combinedshare of sequential processes �t(i)s is considered. Each distributed time slot forsequential processes �t(i)s is also integrated with its associated time slot �t(i)p toform a single time slot of width �t(i), that is,�t(i) = �t(i)p +�t(i)s : (12)In each integrated time slot implicit coscheduling is applied to support bothparallel and sequential processing. When its allocated share is not used up in



time�t(i)p , a parallel process can still obtain services till the end of the integratedtime slot �t(i) though �t(i) is longer than �t(i)p . When a parallel process hasconsumed its share before the end of an integrated time slot, however, it will beblocked and the services in the remaining time slot then dedicated to sequentialprocesses. With this policy parallel processes and sequential processes as a wholemay be guaranteed to obtain their proper shares during the computation.Similar to the one described in [5], the policy may be realised by applyingthe proportional-share technique which are originally used for real-time appli-cations [19, 21]. However, our scheduling scheme is much simpler and easier toimplement because only the proper share of a single parallel process is consideredagainst a combined share of sequential processes in each time slot.Now the problem is how to distribute the total time �Ts allocated for pro-cessing sequential jobs. The uniform distribution using the equation in (10) iseasy to calculate. However, the resulting �t(i)s may be too small to compen-sate the lost share of parallel processes which have large �(i)p s. Therefore, theproportional distribution using (11) may be a more proper one.Normalising �T , that is, setting �T = 1, the equation in (7) will become1 = �s + nXi=1 �(i)p : (13)Using equations in (8), (9), (11) and (13), we obtain�t(i) = �t(i)s +�t(i)p = �(i)pPnj=1 �(j)p �T: (14)The width of an integrated time slot �t(i) can directly be obtained by usingthe equation in (14) and thus there is no need to explicitly calculate �t(i)s s.4 Registration O�ceWhen a parallel process has used up its time slot, it will be preempted at theglobal level and another parallel process be dispatched. After being dispatched,parallel processes may time-share resources with sequential processes on eachprocessor. Just like sequential processes, parallel processes will then be eitherin running state, or ready and blocked states, which is controlled by a localscheduler. Because in our two-level scheduling the execution of parallel processesare controlled at both global and local levels, special care has to be taken toavoid potential scheduling con
icts. For example, the global scheduler wants topreempt a parallel process which is currently not in running state. To solve thisproblem we introduce a registration o�ce on each processor.The registration o�ce is constructed by using a linked list as shown in Fig. 2.When a parallel job is initiated, each associated process will enter the local se-quential queueing system the same way as sequential processes on the corre-sponding processor. Just like sequential processes, parallel processes can be ei-ther in running state, or in ready state requesting for service, or in blocked state



servant
procs 2procs 1 procs 3 procs 4IN

alg. timerregistration o�ce manager
node 1 node 2 node 3 node 4H T
IN OUT IN

process dispatchedP
Fig. 2. The organisation of a registration o�ce.during communication/synchronisation. However, every parallel process has tobe registered in the registration o�ce, that is, on each processor the linked listwill be extended with a new node which has a pointer pointing to the processjust being initiated. Similarly, when a parallel job is terminated, it has to checkout from the o�ce, that is, the corresponding node on each processor will bedeleted from the linked list.As we discussed in the previous section, certain parallel processes may be as-signed a very high priority so that they can occupy the whole time slots allocatedto them. In that case the execution of sequential workloads can be seriously de-teriorated. To alleviate this problem we may introduce certain time slots �t(i)swhich are dedicated to sequential jobs only. This can be done by introducingdummy nodes in the linked list. A dummy node is the same type of nodes in alinked list except its pointer points to NULL, the constant zero, instead of a realparallel process. It seems that there is a dummy parallel process associated withthat node. When a service is given to that dummy parallel process, the wholetime slot will be dedicated to sequential processes.There is a servant working in the o�ce. When the servant comes to a place,or a node in the linked list, the process associated with that node can receiveservices, or be dispatched. When a process is dispatched, it will be marked out.Other processes which are not dispatched will be marked in. In practice a processmay be blocked if it is marked in. Therefore, a parallel process can come out of theblocked status only if it is ready for service (controlled by the local scheduler) andthe event out occurs (controlled by the top level scheduler). By letting only oneparallel process be marked out on each processor at any time, we can guaranteethat only one parallel process time-shares resources with sequential processes ineach time slot.When a time slot is ended for the current parallel process, the servant willmove to a new node. The parallel process associated with that node can then



be serviced next. However, the movement of the servant is totally controlledby an o�ce manager which has a timer to determine when the servant is tomove and an algorithm to determine which node the servant is to move to. Thealgorithm can be simple ones such as the conventional round-robin. (To obtain ahigh system throughput, however, other more sophisticated scheduling schemesmay also be considered.) The timer is to ensure that processes can obtain theirallocated service times, that is, �t(i)p s, or �t(i)s s in each scheduling round.The use of registration o�ces is similar to that of the two-dimensional ma-trix adopted in the conventional coscheduling. Each column of the matrix cor-responds to a time slot and each row to a processor. The coscheduling is thencontrolled based on that matrix. It is easy to see that the linked list on eachprocessor plays the same role as a row of that matrix in coscheduling parallelprocesses. However, the key di�erence is that our two-level scheduling schemeallows both parallel and sequential jobs to be executed simultaneously.5 Loose Gang SchedulingThe conventional gang scheduler is centralised. The system has a central con-troller. At the end of each time slot the controller broadcasts a message to allprocessors. The message contains the information about which parallel work-load will receive a service next. The centralised system is easy to implement,especially when the scheduling algorithm is simple. However, frequent signal-broadcasting for simultaneous context switch across the processors may degradethe overall system performance on machines such as networks of workstationsand space-sharing policies may not easily be adopted to enhance the e�ciencyof resource utilisation. Because in our system there is a registration o�ce oneach processor, we can adopt a loose gang scheduling policy to alleviate theseproblems.In our system there is a global job manager. It is used to monitor the work-ing conditions of each processor, to locate and allocate processors and to assignutilisation ratios to parallel jobs, and to balance parallel and sequential work-loads. We believe that resources in networks of workstations cannot e�cientlybe utilised without an e�ective global job manager. This global job manager isalso able to broadcast signals for the purpose of synchronisation to coordinatethe execution of parallel jobs. However, the signals need not be frequently broad-cast for simultaneous context switch between time slots across the processors.They are sent only once after each scheduling round, or even many schedulingrounds to adjust the potential skew of the corresponding time slots (or simplytime skew) across the processors caused by using local job managers on eachprocessor.There is a local job manager on each processor. It is used to monitor andreport to the global job manager the working conditions on that processor. Italso takes orders from the global job manager to properly set up its registrationo�ce and to coordinate the execution of parallel jobs with other processors.



With help of the global job manager the e�ective coscheduling is guaranteed byusing local job managers on each processor.
processor 1processor 2processor 3processor 4processor 5

�1 �2
�3 �4

�5

�6Time
Space

�T

Fig. 3. The time/space allocation for six jobs on �ve processors.In the following we give a simple example which demonstrates more clearlythe e�ectiveness of using the loose gang scheduling scheme and which alsopresents another way of deriving the registration o�ce for the scheme.Our simple example considers the execution of six jobs on �ve processors.We assume that the time/space allocation has already been done, that is, thenumber of processor and the utilisation ratio have been assigned for each job,as depicted in Fig. 3. For various reasons such as described in the previoussections the shapes of time/space allocation may not be the same for each job asindicated in the �gure. This will make it very di�cult for a centralised controllerto coschedule jobs. However, the problem can easily be solved by adopting ourloose gang scheduling.On each processor we run a local job manager and we also set up a schedul-ing table which is given by the global job manager. Parallel processes are thenscheduled according to this scheduling table. In our example there are three dif-ferent scheduling tables, as shown in Fig. 4(a). The processes and the lengthsof their allocated time slots in a scheduling round are listed in each table in



an ordered manner. It is easy to see that, if the processors are synchronisedat the beginning of each scheduling round (It is also possible that the proces-sors can be synchronised once many scheduling rounds.) and local job managersschedule parallel processes according to the given scheduling tables, the correctcoscheduling across the processors is then guaranteed.Because both content and size of each table vary from time to time during thecomputation, it is quite natural to implement the scheduling tables using linkedlists, which results in our registration o�ce. A registration o�ce on processor 1is depicted in Fig. 4(b). Note each node in the linked list has a pointer whichpoints at the corresponding process so that any unnecessary search for parallelprocesses can be avoided.
�3 �4 �6J3 J4 J6

processor 3, 4�1 �2 �6J1 J2 J6
processor 1, 2 �3 �5J3 J5

processor 5
(a)

H T�1 �2 �6J1 J2 J6
processor 1

(b)Fig. 4. (a) The scheduling tables assigned for each processor and (b) The registrationo�ce on processor 1.With the collaboration of the global and local job managers the system canwork correctly and e�ectively. A potential disadvantage of the loose gang schedul-ing is that there is an additional cost for executing the coscheduling algorithmon each processor. However, in practice time slots �t(i)p , or �t(i) are usually inorder of seconds. This extra cost for running a process for coscheduling will berelatively very small.



6 ConclusionsIn this paper we discussed some new ideas for e�ectively scheduling both paralleland sequential workloads on networks of workstations.To achieve a desired performance in a system with a variety of competitivebackground workloads, the key is to assign a sustained CPU utilisation ratio oneach processor to a parallel job so that the performance becomes predictable.Because the resources in a system are limited, however, we cannot guaranteethat every job will be given a sustained utilisation ratio. One way to solve thisproblem is that small parallel jobs are assigned a sustained ratio of resourceutilisation, while each large parallel job is allocated a large number of processorsand assigned a utilisation ratio which can vary in a wide range according tothe current system workload. Thus small jobs are not blocked by larger onesand a short turnaround time is guaranteed, high e�ciency of resource utilisationcan be achieved and reasonably good performance for large jobs may also beobtained.To balance the workloads for both sequential and parallel processing, weintroduced a two-level scheduling scheme. At the global level parallel jobs arecoscheduled so that they can obtain their proper shares without interfering witheach other and they can also be coordinated across the processors to achievehigh e�ciency in parallel computation. At the local level many di�erent policies,e.g., the busy-waiting (or spinning) and the implicit coscheduling (or two-phaseblocking), can be considered to schedule both parallel and sequential processes.We introduced a proper-share policy for e�ectively scheduling processes at thelocal level. By adopting this policy we can obtain good performance for eachparallel job and also maintain good response for interactive sequential jobs. Thetwo-level scheduling can be implemented by adopting a registration o�ce oneach processor. The organisation of the registration o�ce (which is also describedin [23]) is simple and the main purpose is to e�ectively schedule parallel processesat both global and local levels.We also introduced a loose gang scheduling scheme to coschedule parallel jobsacross the processors. This scheme requires both global and local job managers.The coscheduling is mainly controlled by local job managers on each proces-sor, so frequent signal-broadcasting for simultaneous context switch across theprocessors is avoided. There is only a bit extra work for global job manager toadjust potential time skew. The name loose gang has two meanings. First thecoscheduling is achieved by mainly using local job managers but not just a cen-tral controller and second parallel processes may time-share their allocated timeslots with sequential processes. Since both global and local job managers playe�ective roles in job scheduling, we think this may lead a way for us to �ndgood strategies for e�ciently scheduling both parallel and sequential workloadson networks of workstations.A new system based on these ideas is currently under construction on adistributed memory parallel machine, the Fujitsu AP1000+, at the AustralianNational University.



References1. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias and M. Snir, SP2system architecture, IBM Systems Journal, 34(2), 1995.2. S. V. Anastasiadis and K. C. Sevcik, Parallel application scheduling on networks ofworkstations, Journal of Parallel and Distributed Computing, 43, 1997, pp.109-124.3. T. E. Anderson, D. E. Culler, D. A. Patterson and the NOW team, A case forNOW (networks of workstations), IEEE Micro, 15(1), Feb. 1995, pp.54-64.4. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson and D.A. Patterson, The interaction of parallel and sequential workloads on a network ofworkstations, Proceedings of ACM SIGMETRICS'95/PERFORMANCE'95 JointInternational Conference on Measurement and Modeling of Computer Systems,May 1995, pp.267-278.5. A. C. Arpaci-Dusseau and D. E. Culler, Extending proportional-share schedulingto a network of workstations, Proceedings of International Conference on Paralleland Distributed Processing Techniques and Applications, Las Vegas, Nevada, June1997.6. M. Crovella, P. Das, C. Dubnicki, T. LeBlanc and E. Markatos, Multiprogrammingon multiprocessors, Proceedings of the Third IEEE Symposium on Parallel andDistributed Processing, Dec. 1991, pp.590-597.7. J. J. Dongarra, Performance of various computers using standard linear equationssoftware, Technical Report CS-89-95, Computer Science Department, Universityof Tennessee, Nov. 1997.8. A. C. Dusseau, R. H. Arpaci and D. E. Culler, E�ective distributed scheduling ofparallel workloads, Proceedings of ACM SIGMETRICS'96 International Confer-ence, 1996.9. D. G. Feitelson and L. Rudolph, Gang scheduling performance bene�ts for �ne-grained synchronisation, Journal of Parallel and Distributed Computing, 16(4),Dec. 1992, pp.306-318.10. D. Ghosal, G. Serazzi and S. K. Tripathi, The processor working set and its use inscheduling multiprocessor systems, IEEE Transactions on Software Engineering,17(5), May 1991, pp.443-453.11. A. Gupta, A. Tucker and S. Urushibara, The impact of operating system schedul-ing policies and synchronisation methods on the performance of parallel applica-tions. Proceedings of the 1991 ACM SIGMETRICS Conference on Measurementand Modeling of Computer Systems, May 1991, pp.120-131.12. K. Li, IVY: A shared virtual memory system for parallel computing, Proceedingsof International Conference on Parallel Processing, 1988, pp.94-101.13. S.-P. Lo and V. D. Gligor, A comparative analysis of multiprocessor schedulingalgorithms, Proceedings of the 7th International Conference on Distributed Com-puting Systems, Sept. 1987, pp.205-222.14. V. K. Naik, S. K. Setia and M. S. Squillante, Performance analysis of job schedul-ing policies in parallel supercomputing environments, Proceedings of Supercomput-ing'93, Nov. 1993, pp.824-833.15. V. K. Naik, S. K. Setia and M. S. Squillante, Processor allocation in multipro-grammed distributed-memory parallel computer systems, IBM Research ReportRC 20239, 1995.16. J. K. Ousterhout, Scheduling techniques for concurrent systems, Proceedings ofThird International Conference on Distributed Computing Systems, May 1982,pp.20-30.



17. E. Rosti, E. Smirni, L. Dowdy, G. Serazzi and B. M. Carlson, Robust partitioningpolicies of multiprocessor systems, Performance Evaluation, 19(2-3), 1994, pp.141-165.18. S. K. Setia, M. S. Squillante and S. K. Tripathi, Analysis of processor allocation inmultiprogrammed, distributed-memory parallel processing systems, IEEE Trans-actions on Parallel and Distributed Systems, 5(4), April 1994, pp.401-420.19. I. Stoica, H. Abdel-wahab, K, Je�ay, S. Baruah, J. Gehrke and C. G. Plaxton,A Proportional share resource allocation algorithm for real-time, time-shared sys-tems, IEEE Real-Time Systems Symposium, Dec. 1996.20. K. Suzaki, H. Tanuma, S. and Y. Ichisugi, Design of combination of time sharingand space sharing for parallel task scheduling, Proceedings of the InternationalConference on Parallel and Distributed Processing Techniques and Applications,Las Vegas, Nevada, Nov. 1997.21. C. A. Waldspurger and W. E. Weihl, Stride scheduling: deterministic proportional-share resource management, Technical Report MIT/LCS/TM-528, MIT Labora-tory for Computer Science, MIT, June 1995.22. J. Zahorjan and E. D. Lazowska, Spinning versus blocking in parallel systemswith uncertainty, Proceedings of the IFIP International Seminar on Performanceof Distributed and Parallel Systems, Dec. 1988, pp.455-472.23. B. B. Zhou, X. Qu and R. P. Brent, E�ective scheduling in a mixed parallel andsequential computing environment, Proceedings of the 6th Euromicro Workshop onParallel and Distributed Processing, Madrid, Jan 1998.24. B. B. Zhou, R. P. Brent, D. Walsh and K. Suzaki, A multi-class time/space sharingsystem, Tech. Rep., DCS and CSLab, Australian National University, 1998, inprocess.


