
Predicting Application Run TimesUsing Historical InformationWarren Smith12, Ian Foster1, and Valerie Taylor2fwsmith, fosterg@mcs.anl.govtaylor@ece.nwu.edu1 Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439http://www.mcs.anl.gov2 Electrical and Computer Engineering DepartmentNorthwestern UniversityEvanston, IL 60208http://www.ece.nwu.eduAbstract. We present a technique for deriving predictions for the runtimes of parallel applications from the run times of \similar" applica-tions that have executed in the past. The novel aspect of our work isthe use of search techniques to determine those application characteris-tics that yield the best de�nition of similarity for the purpose of makingpredictions. We use four workloads recorded from parallel computersat Argonne National Laboratory, the Cornell Theory Center, and theSan Diego Supercomputer Center to evaluate the e�ectiveness of ourapproach. We show that on these workloads our techniques achieve pre-dictions that are between 14 and 60 percent better than those achievedby other researchers; our approach achieves mean prediction errors thatare between 40 and 59 percent of mean application run times.1 IntroductionPredictions of application run time can be used to improve the performanceof scheduling algorithms [8] and to predict how long a request will wait forresources [4]. We believe that run-time predictions can also be useful in meta-computing environments in several di�erent ways. First, they are useful as ameans of estimating queue times and hence guiding selections from among var-ious resources. Second, they are useful when attempting to gain simultaneousaccess to resources from multiple scheduling systems [2].The problem of how to generate run time estimates has been examined byDowney [4] and Gibbons [8]. Both adopt the approach of making predictions forfuture jobs by applying a \template" of job characteristics to identify \similar"jobs that have executed in the past. Unfortunately, their techniques are not veryaccurate, with errors frequently exceeding execution times.

We believe that the key to making more accurate predictions is to be morecareful about which past jobs are used to make predictions. Accordingly, we ap-ply greedy and genetic algorithm search techniques to identify templates thatperform well when partitioning jobs into categories within which jobs are judgedto be similar. We also examine and evaluate a number of variants of our basicprediction strategy. We look at whether it is useful to use linear regression tech-niques to exploit node count information when jobs in a category have di�erentnode counts. We also look at the e�ect of varying the amount of past informa-tion used to make predictions, and we consider the impact of using user-suppliedmaximum run times on prediction accuracy.We evaluate our techniques using four workloads recorded from supercom-puter centers. This study shows that the use of search techniques makes a sig-ni�cant di�erence to prediction accuracy: our prediction algorithm achieves pre-diction errors that are 14 to 49 percent lower than those achieved by Gibbons,depending on the workload, and 27 to 60 percent lower than those achieved byDowney. The genetic algorithm search performs better than greedy search.The rest of the paper is structured as follows. Section 2 describes how wede�ne application similarity, perform predictions, and use search techniques toidentify good templates. Section 3 describes the results when our algorithm isapplied to supercomputer workloads. Section 4 compares our techniques andresults with those of other researchers. Section 5 presents our conclusions andnotes directions for further work. An appendix provides details of the statisticalmethods used in our work.2 Prediction TechniquesBoth intuition and previous work [6,4, 8] indicate that \similar" applicationsare more likely to have similar run times than applications that have nothingin common. This observation is the basis for our approach to the predictionproblem, which is to derive run-time predictions from historical information ofprevious similar runs.In order to translate this general approach into a speci�c prediction method,we need to answer two questions:1. How do we de�ne \similar"? Jobs may be judged similar because they aresubmitted by the same user, at the same time, on the same computer, withthe same arguments, on the same number of nodes, and so on. We requiretechniques for answering the question: Are these two jobs similar?2. How do we generate predictions? A de�nition of similarity allows us to parti-tion a set of previously executed jobs into buckets or categories within whichall are similar. We can then generate predictions by, for example, computinga simple mean of the run times in a category.We structure the description of our approach in terms of these two issues.

2.1 De�ning SimilarityIn previous work, Downey [4] and Gibbons [8] demonstrated the value of us-ing historical run-time information for \similar" jobs to predict run times forthe purpose of improving scheduling performance and predicting wait times inqueues. However, both Downey and Gibbons restricted themselves to relativelysimple de�nitions of similarity. A major contribution of the present work is toshow that more sophisticated de�nitions of similarity can lead to signi�cant im-provements in prediction accuracy.A di�culty in developing prediction techniques based on similarity is thattwo jobs can be compared in many ways. For example, we can compare the ap-plication name, submitting user name, executable arguments, submission time,and number of nodes requested. We can conceivably also consider more esotericparameters such as home directory, �les staged, executable size, and account towhich the run is charged. We are restricted to those values recorded in work-load traces obtained from various supercomputer centers. However, because thetechniques that we propose are based on the automatic discovery of e�cient sim-ilarity criteria, we believe that they will apply even if quite di�erent informationis available.Table 1. Characteristics of the workloads used in our studies. Because of an errorwhen the trace was recorded, the ANL trace does not include one-third of the requestsactually made to the system. MeanWorkload Number of Number of Run TimeName System Nodes Location Requests (minutes)ANL IBM SP2 120 ANL 7994 97.40CTC IBM SP2 512 CTC 79302 182.18SDSC95 Intel Paragon 400 SDSC 22885 107.76SDSC96 Intel Paragon 400 SDSC 22337 166.48The workload traces that we consider are described in Table 1; they originatefrom Argonne National Laboratory (ANL), the Cornell Theory Center (CTC),and the San Diego Supercomputer Center (SDSC). Table 2 summarizes the in-formation provided in these traces: text in a �eld indicates that a particular tracecontains the information in question; in the case of \Type," \Queue," or \Class"the text speci�es the categories in question. The characteristics described in rows1{9 are physical characteristics of the job itself. Characteristic 10, \maximumrun time," is information provided by the user and is used by the ANL and CTCschedulers to improve scheduling performance. Rows 11 and 12 are temporal in-formation, which we have not used in our work to date; we hope to evaluate theutility of this information in future work. Characteristic 13 is the run time thatwe seek to predict.

Table 2. Characteristics recorded in workloads. The column \Abbr" indicates abbre-viations used in subsequent discussion.Abbr Characteristic Argonne Cornell SDSCbatch, serial,1 t Type interactive parallel,pvm32 q Queue 29 to35 queues3 c Class DSI/PIOFS4 u User Y Y Y5 s Loadleveler script Y6 e Executable Y7 a Arguments Y8 na Network adaptor Y9 n Number of nodes Y Y Y10 Maximum run time Y Y11 Submission time Y Y Y12 Start time Y Y Y13 Run time Y Y YThe general approach to de�ning similarity taken by ourselves, Downey, andGibbons is to use characteristics such as those presented in Table 2 to de�netemplates that identify a set of categories to which jobs can be assigned. Forexample, the template (q, u) speci�es that jobs are to be partitioned by queueand user; on the SDSC Paragon, this template generates categories such as(q16m,wsmith), (q64l,wsmith), and (q16m,foster).We �nd that using discrete characteristics 1{8 in the manner just describedworks reasonably well. On the other hand, the number of nodes is an essentiallycontinuous parameter, and so we prefer to introduce an additional parameterinto our templates, namely a \node range size" that de�nes what ranges ofrequested number of nodes are used to decide whether applications are similar.For example, the template (u, n=4) speci�es a node range size of 4 and generatescategories (wsmith, 1-4 nodes) and (wsmith, 5-8 nodes).Once a set of templates has been de�ned (see Section 2.4) we can categorizea set of jobs (e.g., the workloads of Table 1) by assigning each job to thosecategories that match its characteristics. Categories need not be disjoint, andhence the same job can occur in several categories. If two jobs fall into the samecategory, they are judged similar; those that do not coincide in any category arejudged dissimilar.2.2 Generating PredictionsWe now consider the question of how we generate run-time predictions. Theinput to this process is a set of templates T and a workload W for which run-

time predictions are required. In addition to the characteristics described in thepreceding section, a maximumhistory, type of data, and prediction type are alsode�ned for each template. The maximumhistory indicates the maximumnumberof data points to store in each category generated from a template. The type ofdata is either an actual run time, denoted by act, or a relative run time, denotedby rel. A relative run-time incorporates information about user-supplied runtime estimates by storing the ratio of the actual run time to the user-suppliedestimate (as described in Section 2.3). The prediction type determines how arun-time prediction is made from the data in each category generated from atemplate. We use a mean, denoted by mean, or a linear regression, denoted bylr, to compute estimates.The output from this process is a set of run-time predictions and associatedcon�dence intervals. (As discussed in the appendix, a con�dence interval is aninterval centered on the run-time prediction within which the actual run time isexpected to appear some speci�ed percentage of the time.) The basic algorithmcomprises three phases: initialization, prediction, and incorporation of historicalinformation:1. De�ne T , the set of templates to be used, and initialize C, the (initiallyempty) set of categories.2. At the time each application a begins to execute:(a) Apply the templates in T to the characteristics of a to identify the cat-egories Ca into which the application may fall.(b) Eliminate fromCa all categories that are not in C or that cannot providea valid prediction, as described in the appendix.(c) For each category remaining in Ca, compute a run-time estimate and acon�dence interval for the estimate.(d) If Ca is not empty, select the estimate with the smallest con�dence in-terval as the run-time prediction for the application.3. At the time each application a completes execution:(a) Identify the set Ca of categories into which the application falls. Thesecategories may or may not exist in C.(b) For each category ci 2 Cai. If ci 62 C, then create ci in C.ii. If jcij = maximum history(ci), remove the oldest point in ci.iii. Insert a into ci.Note that steps 2 and 3 operate asynchronously, since historical informationfor a job cannot be incorporated until the job �nishes. Hence, our algorithm suf-fers from an initial ramp-up phase during which there is insu�cient informationin C to make predictions. This de�ciency could be corrected by using a trainingset to initialize C.We now discuss how a prediction is generated from the contents of a categoryin step 2(c) of our algorithm.We consider two techniques in this paper. The �rstsimply computes the mean of the run times contained in the category. Thesecond attempts to exploit the additional information provided by the node

counts associated with previous run times by performing a linear regression tocompute coe�cients a and b for the equation R = aN + b, where N is nodecount and R is run time. This equation is then used to make the prediction.The techniques used to compute con�dence intervals in these two cases, whichwe term mean and linear regression predictors, respectively, are described in theappendix.The use of maximum histories in step 3(b) of our algorithm allows us tocontrol the amount of historical information used when making predictions andthe amount of storage space needed to store historical information. A smallmaximum history means that less historical information is stored, and henceonly more recent events are used to make predictions.2.3 User GuidanceAnother approach to obtaining accurate run-time predictions is to ask users forthis information at the time of job submission. This approach may be viewed ascomplementary to the prediction techniques discussed previously, since historicalinformation presumably can be used to evaluate the accuracy of user predictions.Unfortunately, none of the systems for which we have workload traces askusers to explicitly provide information about expected run times. However, all ofthe workloads provide implicit user estimates. The ANL and CTC workloads in-clude user-supplied maximum run times. This information is interesting becauseusers have some incentive to provide accurate estimates. The ANL and CTCsystems both kill a job after its maximum run time has elapsed, so users haveincentive not to underestimate this value. Both systems also use the maximumrun time to determine when a job can be �t into a free slot, so users also haveincentive not to overestimate this value.Users also provide implicit estimates of run times in the SDSC workloads.The scheduler for the SDSC Paragon has many di�erent queues with di�erentpriorities and di�erent limits on application resource use. When users pick aqueue to submit a request to, they are providing a prediction of the resource useof their application. Queues that have lower resource limits tend to have higherpriority, and applications in these queues tend to begin executing quickly, sousers are motivated to submit to queues with low resource limits. Also, thescheduler will kill applications that go over their resource limits, so users aremotivated not to submit to queues with resource limits that are too low.A simple approach to exploiting user guidance is to base predictions not onthe run times of previous applications, but on the relationship between appli-cation run times and user predictions. For example, a prediction for the ratioof actual run time to user-predicted run time can be used along with the user-predicted run time of a particular application to predict the run time of theapplication. We use this technique for the ANL and CTC workloads by storingrelative run times, the run times divided by the user-speci�ed maximum runtimes, as data points in categories instead of the actual run times.

2.4 Template De�nition and SearchWe have not yet addressed the question of how we de�ne an appropriate setof templates. This is a nontrivial problem. If too few categories are de�ned, wegroup too many unrelated jobs together, and obtain poor predictions. On theother hand, if too many categories are de�ned, we have too few jobs in a categoryto make accurate predictions.Downey and Gibbons both selected a �xed set of templates to use for all oftheir predictions. Downey uses only a single template containing only the queuename; prediction is based on a conditional probability function. Gibbons uses thesix templates/predictor combinations listed in Table 3. The age characteristicindicates how long an application has been executing when a prediction is made.Section 4 discusses further details of their approaches and a comparison withour work. Table 3. Templates used by Gibbons for run-time prediction.Number Template Predictor1 (u,e,n,age) mean2 (u,e) linear regression3 (e,n,age) mean4 (e) linear regression5 (n,age) mean6 () linear regressionWe use search techniques to identify good templates for a particular work-load. While the number of application characteristics included in our traces isrelatively small, the fact that e�ective template sets may contain many templatesmeans that an exhaustive search is impractical. Hence, we consider alternativesearch techniques. Results for greedy and genetic algorithm search are presentedin this paper.The greedy and genetic algorithms both take as input a workload W fromTable 1 and produce as output a template set; they di�er in the techniques usedto explore di�erent template sets. Both algorithms evaluate the e�ectivenessof a template set T by applying the algorithm of Section 2.2 to workload W .Predicted and actual values are compared to determine for W and T both themean error and the percentage of predictions that fall within the 90 percentcon�dence interval.Greedy Algorithm The greedy algorithm proceeds iteratively to construct atemplate set T = ftig with each ti of the formf () (h1;1) (h2;1; h2;2); : : : ; (hi;1; hi;2; : : : ; hi;i) g,

where every hj;k is one of the n characteristics h1; h2 : : : ; hn fromwhich templatescan be constructed for the workload in question. The search over workload Wis performed with the following algorithm:1. Set the template set T = f()g2. For i = 1 to n(a) Set Tc to contain the �ni � di�erent templates that contain i characteris-tics.(b) For each template tc in Tci. Create a candidate template set Xc = T [ftcgii. Apply the algorithm of Section 2.2 to W and Xc, and determinemean error(c) Select the Xc with the lowest mean error, and add the associated tem-plate tc to TOur greedy algorithm can search over any set of characteristics. Here, however,because of time constraints we do not present searches over maximum historysizes. This restriction reduces the size of the search space, but potentially alsoresults in less e�ective templates.Genetic Algorithm Search The second search algorithm that we consideruses genetic algorithm techniques to achieve a more detailed exploration of thesearch space. Genetic algorithms are a probabilistic technique for exploring largesearch spaces, in which the concept of cross-over from biology is used to improvee�ciency relative to purely random search [10]. A genetic algorithm evolves indi-viduals over a series of generations. The processing for each generation consistsof evaluating the �tness of each individual in the population, selecting which in-dividuals will be mated to produce the next generation, mating the individuals,and mutating the resulting individuals to produce the next generation. The pro-cess then repeats until a stopping condition is met. The stopping condition weuse is that a �xed number of generations have been processed. There are manydi�erent variations to this process, and we will next describe the variations weused.Our individuals represent template sets. Each template set consists of be-tween 1 and 10 templates, and we encode the following information in binaryform for each template:1. Whether a mean or linear regression prediction is performed2. Whether absolute or relative run times are used3. Whether each of the binary characteristics associated with the workload inquestion is enabled4. Whether node information should be used and, if so, the range size from 1to 512 in powers of 2A �tness function is used to compute the �tness of each individual and there-fore its chance to reproduce. The �tness function should be selected so that the

most desirable individuals have higher �tness and therefore have more o�spring,but the diversity of the population must be maintained by not giving the bestindividuals overwhelming representation in succeeding generations. In our ge-netic algorithm, we wish to minimize the prediction error and maintain a rangeof individual �tnesses regardless of whether the range in errors is large or small.The �tness function we use to accomplish this goal isFmin + Emax�EEmax�Emin � (Fmax � Fmin),where E is the error of the individual Emin and Emax are the minimum andmaximum errors of individuals in the generation and Fmin and Fmax are thedesired minimum and maximum �tnesses desired. We chose Fmax = 4 � Fmin.We use a common technique called stochiastic sampling without replacementto select which individuals will mate to produce the next generation. In thistechnique, each individual is selected b FFavg c times to be a parent. The rest ofthe parents are selected by Bernoulli trials where each individual is selected, inorder, with a probability of F � Favgb FFavg c until all parents are selected.The mating or crossover process is accomplished by randomly selecting pairsof individuals to mate and replacing each pair by their children in the new pop-ulation. The crossover of two individuals proceeds in a slightly nonstandard waybecause our chromosomes are not �xed length but a multiple of the numberof bits used to represent each template. Two children are produced from eachcrossover by randomly selecting a template i and a position in the template pfrom the �rst individual T1 = t1;1; : : : ; t1;n and randomly selecting a templatej in the second individual T2 = t2;1; : : : ; t2;m so that the resulting individu-als will not have more than 10 templates. The new individuals are then T1 =t1;1; : : : ; t1;i�1; n1; t2;j+1; : : : ; t2;m and T2 = t2;1 : : : t2;j�1; n2; t1;i+1; : : : ; ti;n. Ifthere are b bits used to represent each template, n1 is the �rst p bits of t1;iconcatenated with the last b � p bits of t2;j. and n2 is the �rst p bits of t2;jconcatenated with the last b� p bits of t1;i.In addition to using crossover to produce the individuals of the next gener-ation, we also use a process called elitism whereby the best individuals in eachgeneration survive unmutated to the next generation. We use crossover to pro-duce all but 2 individuals for each new generation and use elitism to select thelast 2 individuals for each new generation. The individuals resulting from thecrossover process are mutated to help maintain a diversity in the population.Each bit representing the individuals is
ipped with a probability of 0.001.3 Experimental ResultsIn the preceding section we described our basic approach to run-time prediction.We introduced the concept of template search as a means of identifying e�cientcriteria for selecting \similar" jobs in historical workloads. We also noted poten-tial re�nements to this basic technique, including the use of alternative searchmethods (greedy vs. genetic), the introduction of node count information vialinear regression, support for user guidance, and the potential for varying the

amount of historical information used. In the rest of this paper, we discuss ex-perimental studies that we have performed to evaluate the e�ectiveness of ourtechniques and the signi�cant of the re�nements just noted.Our experiments used the workload traces summarized in Table 1 and areintended to answer the following questions:{ How e�ectively do our greedy and genetic search algorithms perform?{ What is the relative e�ectiveness of mean and linear regression predictors?{ What is the impact of user guidance as represented by the maximum runtimes provided on the ANL and CTC SPs?{ What is the impact of varying the number of nodes in each category onprediction performance?{ What are the trends for the best templates in the workloads?{ How do our techniques compare with those of Downey and Gibbons?3.1 Greedy SearchFigure 1 and Figure 2 showy the results of performing a greedy search for the bestcategory templates for all four workloads. Several trends can be observed fromthis data. First, adding a second template with a single characteristic results inthe most dramatic improvement in performance. The addition of this templatehas the least e�ect for the CTC workload where performance is improved between5 and 25 percent and has the greatest e�ect for the SDSC workloads whichimprove between 34 and 48 percent. The addition of templates using up toall possible characteristics results in less improvement than the addition of thetemplate containing a single characteristic. The improvements range from anadditional 1 to 20 percent improvement with the ANL workload seeing the mostbene�t and the SDSC96 workload seeing the least.Second, the graphs show that the mean is a better predictor than linearregression except when a single template is used with the SDSC workloads. The�nal predictors obtained by using means are between 2 and 48 percent moreaccurate than those based on linear regressions. The impact of the choice ofpredictor on accuracy is greatest in the ANL and least in the SDSC96 workload.A third trend, evident in the ANL and CTC results, is that using the relativerun times gives a signi�cant improvement in performance. When this informationis incorporated, prediction accuracy increases between 23 and 48 percent withthe ANL workload bene�ting most.Table 4 lists for each workload the accuracy of the best category templatesfound by the greedy search. In the last column, the mean error is expressedas a fraction of mean run time. Mean errors of between 42 and 70 percent ofmean run times may appear high; however, as we will see later, these �gures arecomparable to those achieved by other techniques, and genetic search performssigni�cantly better.Looking at the templates listed in Table 4, we observe that for the ANL andCTC workloads, the executable and user name are both important characteristicsto use when deciding whether applications are similar. Examination of other data

40

50

60

70

80

90

100

110

120

130

140

1 1.5 2 2.5 3 3.5 4 4.5 5

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload ANL

Linear Regression, Run Time
Mean, Run Time

Linear Regression, Relative Run Time
Mean, Relative Run Time

100

120

140

160

180

200

220

240

1 2 3 4 5 6

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload CTC

Linear Regression, Run Time
Mean, Run Time

Linear Regression, Relative Run Time
Mean, Relative Run Time

Fig. 1. Mean errors of ANL and CTC greedy searches

70

80

90

100

110

120

130

140

150

1 2 3

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload SDSC95

Linear Regression
Mean

80

90

100

110

120

130

140

150

160

170

1 2 3

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Number of Templates

Workload SDSC96

Linear Regression
Mean

Fig. 2. Mean errors of SDSC greedy searches

gathered during the experiments shows that these two characteristics are highlycorrelated: substituting u for e or s or vice versa in templates results in similarperformance in many experiments. This observation may imply that users tendto run a single application on these parallel computers.The templates selected for the SDSC workloads indicate that the user whosubmits an application is more important in determining application similaritythan the queue to which an application is submitted. Furthermore, Figure 2shows that adding the third template results in performance improvements ofonly 2 to 12 percent on the SDSC95 and SDSC96 workloads. Comparing thisresult with the greater improvements obtained when relative run times are usedin the ANL and CTC workloads suggests that SDSC queue classes are not gooduser-speci�ed run-time estimates. It would be interesting to use the resourcelimits associated with queues as maximum run times. However, this informationwas not available to us when this paper was being written.We next perform a second series of greedy searches to identify the impactof using node information when de�ning categories. We use node ranges whende�ning categories as described in Section 2.1. The results of these searches areshown in Table 5. Because of time constraints, no results are available for theCTC workload.The table shows that using node information improves prediction perfor-mance by 2 and 10 percent with the largest improvement for the San Diegoworkloads. This information and the fact that characteristics such as executable,user name, and arguments are selected before nodes when searching for templatesindicates that the importance of node information to prediction accuracy is onlymoderate.Further, the greedy search selects relatively small node range sizes coupledwith user name or executable. This fact indicates, as expected, that an applica-tion executes for similar times on similar numbers of nodes.3.2 Genetic Algorithm SearchFigure 3 shows the progress of the genetic algorithm search of the ANL workload.While the average and maximumerrors tend to decrease signi�cantly as evolutionproceeds, the minimumerror decreases only slightly. This behavior suggests thatthe genetic algorithm is working correctly but that it is not di�cult to �ndindividual templates with low prediction errors.As shown in Table 6, the best templates found during the genetic algorithmsearch provide mean errors that are 2 to 12 percent less than the best templatesfound during the greedy search. The largest improvements are obtained on theCTC and SDSC95 workloads. These results indicate that the genetic searchperforms slightly better than the greedy search. This di�erence in performancemay increase if the search space becomes larger by, for example, including themaximum history characteristic while searching.The template sets identi�ed by the genetic search procedure are listed inTable 7. Studying these and other template sets produced by genetic search,we see that the mean is not uniformly used as a predictor. From the results

Table 4. Best predictions found during greedy �rst search.Data Template Mean Error Percentage ofWorkload Predictor Point Set (minutes) Mean Run Timerelative (), (e), (u,a),ANL mean run time (t,u,a), (t,u,e,a) 40.68 41.77relative (), (u), (u,s), (t,c,s),CTC mean run time (t,u,s,ni), (t,c,u,s,ni) 118.89 65.25SDSC95 mean run time (),(u), (q,u) 75.56 70.12SDSC96 mean run time (),(u),(q,u) 82.40 49.50Table 5. Best predictions found during second greedy search.Data Template Mean Error Percentage ofWorkload Predictor Point Set (minutes) Mean Run Timerelative (),(e),(u,a),(t,u,n=2),ANL mean run time (t,e,a,n=16), (t,u,e,a,n=32), 39.87 40.93SDSC95 mean run time (),(u),(u,n=1),(q,u,n=1) 67.63 62.76SDSC96 mean run time (),(u),(u,n=4),(q,u,n=8) 76.20 45.77

30

40

50

60

70

80

90

100

110

120

130

140

0 2 4 6 8 10 12 14 16 18 20

M
ea

n
E

rr
or

 (
m

in
ut

es
)

Generation

Maximum
Average

Minimum

Fig. 3. Errors during genetic algorithm search of workload ANLTable 6. Performance of the best templates found during genetic algorithm search.Results for greedy search are also presented, for comparison.Genetic Algorithm GreedyWorkload Mean Error Percentage of Mean Error Percentage of(minutes) Mean Run Time (minutes) Mean Run TimeANL 38.48 39.51 39.87 40.93CTC 106.73 58.58 118.89 65.25SDSC95 59.65 55.35 67.63 62.76SDSC96 74.56 44.79 76.20 45.77

of the greedy searches, the mean is clearly a better predictor in general butthese results indicate that combining mean and linear regression predictors doesprovide a performance bene�t. Similarly to the greedy searches of the ANLand CTC workloads, using relative run times as data points provides the bestperformance.Table 7. The best templates found during genetic algorithm searchWorkload Best Template Set(t,u,a,n=4,mean,rel), (u,e,n=16,lr,rel),ANL (t,u,e,a,lr,rel), (t,u,e,a,n=16,lr,rel),(t,u,e,a,mean,rel)CTC (u,n=512,mean,rel), (c,e,a,ni,n=4,mean,rel)SDSC95 (q,u,n=1,mean,act), (q,n=16,lr,act)(q,u,n=16,lr,act), (q,u,n=4,lr,act)(u,n=1,mean,act), (q,n=4,lr,act),SDSC96 (q,u,n=4,lr,act), (q,u,n=128,mean,act),(q,u,n=16,mean,act), (q,u,n=2,mean,act),(q,u,n=4,mean,act)A third observation is that node information is used in the templates ofTable 7 and throughout the best templates found during the genetic search.This con�rms the observation made during the greedy search that using nodeinformationwhen de�ning templates results in improved prediction performance.4 Related WorkGibbons [8, 9] also uses historical information to predict the run times of parallelapplications. His technique di�ers from ours principally in that he uses a �xedset of templates and di�erent characteristics to de�ne templates.Gibbons produces predictions by examining categories derived from the tem-plates listed in Table 3, in the order listed, until a category that can provide avalid prediction is found. This prediction is then used as the run time prediction.The set of templates listed in Table 3 results because Gibbons uses templatesof (u,e), (e), and () with subtemplates in each template. The subtemplates usethe characteristics n and age (how long an application has executed). In our workwe have used the user, executable, and nodes characteristics. We do not use theage of applications in this discussion, although this characteristic has value [4,3]. Gibbons also uses the requested number of nodes slightly di�erently from theway we do: rather than having equal-sized ranges speci�ed by a parameter, aswe do, he de�nes the �xed set of exponential ranges 1, 2-3, 4-7, 8-15, and so on.Another di�erence between Gibbons's technique and ours is how he performsa linear regression on the data in the categories (u,e), (e), and (). These

categories are used only if one of their subcategories cannot provide a validprediction. A weighted linear regression is performed on the mean number ofnodes and the mean run time of each subcategory that contains data, with eachpair weighted by the inverse of the variance of the run times in their subcategory.Table 8 compares the performance of Gibbons's technique with our technique.Using code supplied by Gibbons, we applied his technique to our workloads. Wesee that our greedy search results in templates that perform between 4 and 46percent better than Gibbons's technique and our genetic algorithm search �ndstemplate sets that have between 14 and 49 percent lower mean error than thetemplate sets Gibbons selected.Table 8. Comparison of our prediction technique with that of GibbonsOur Mean ErrorGibbons's Mean Error Greedy Search Genetic AlgorithmWorkload (minutes) (minutes) (minutes)ANL 75.26 39.87 38.48CTC 124.06 118.89 106.73SDSC95 74.05 67.63 59.65SDSC96 122.55 76.20 74.56In his original work, Gibbons did not have access to workloads that containedthe maximum run time of applications, so he could not use this information tore�ne his technique. In order to study the potential bene�t of this data on hisapproach, we reran his predictor while using application run time divided by theuser-speci�ed maximum run time. Table 9 shows our results. Using maximumrun times improves the performance of Gibbons's prediction technique on bothworkloads, although not to the level of the predictions found during our geneticalgorithm search.Table 9. Comparison of our prediction technique to that of Gibbons, when Gibbons'stechnique is modi�ed to use run times divided by maximum run times as data pointsOur Mean ErrorGibbons's Mean Error Greedy Search Genetic AlgorithmWorkload (minutes) (minutes) (minutes)ANL 49.47 39.87 38.48CTC 107.41 118.89 106.73Downey [4] uses a di�erent technique to predict the execution time of parallelapplications. His technique is to model the applications in a workload and thenuse these models to predict application run times. His procedure is to categorize

all applications in the workload, then model the cumulative distribution func-tions of the run times in each category, and �nally use these functions to predictapplication run times. Downey categorizes applications using the queues thatapplications are submitted to, although he does state that other characteristicscan be used in this categorization.Downey observed that the cumulative distributions can be modeled by usinga logarithmic function: �0 + �1 ln t, although this function is not completelyaccurate for all distributions he observed. Once the distribution functions arecalculated, he uses two di�erent techniques to produce a run-time prediction. The�rst technique uses the median lifetime given that an application has executedfor a time units. Assuming the logorithmicmodel for the cumulative distribution,this equation is qae 1:0��0�1 .The second technique uses the conditional average lifetimetmax � alog tmax � log awith tmax = e(1:0��0)=�1 .The performance of both of these techniques are shown in Table 10. We havereimplemented Downey's technique as described in [4] and used his technique onour workloads. The predictions are made assuming that the application beingpredicted has executed for one second. The data shows that of Downey's twotechniques, using the median has better performance in general and the templatesets found by our genetic algorithm perform 27 to 60 percent better than theDowney's best predictors. There are two reasons for this performance di�erence.First, our techniques use more characteristics than just the queue name to de-termine which applications are similar. Second, calculating a regression to thecumulative distribution functions minimizes the error for jobs of all ages whilewe concentrate on accurately predicting jobs of age 0.5 ConclusionsWe have described a novel technique for using historical information to predictthe run times of parallel applications. Our technique is to derive a predictionfor a job from the run times of previous jobs judged similar by a template ofkey job characteristics. The novelty of our approach lies in the use of searchtechniques to �nd the best templates. We experimented with the use of botha greedy search and a genetic algorithm search for this purpose, and we foundthat the genetic search performs better for every workload and �nds templatesthat result in prediction errors of 40 to 59 percent of mean run times in foursupercomputer center workloads. The greedy search �nds templates that resultin prediction errors of 41 to 65 percent of mean run times. Furthermore, thesetemplates provide more accurate run-time estimates than the techniques of other

Table 10. Comparison of our prediction technique with that of DowneyDowney's Mean Error Our Mean ErrorConditional Median Conditional Average Greedy Search Genetic AlgorithmWorkload Lifetime (minutes) Lifetime (minutes) (minutes) (minutes)ANL 97.01 106.80 39.87 38.48CTC 179.46 201.34 118.89 106.73SDSC95 82.44 171.00 67.63 59.65SDSC96 102.04 168.24 76.20 74.56

researchers: we achieve mean errors that are 14 to 49 percent lower error thanthose obtained by Gibbons and 27 to 60 percent lower error than Downey.We �nd that using user guidance in the form of user-speci�ed maximum runtimes when performing predictions results in a signi�cant 23 percent to 48 per-cent improvement in performance for the Argonne and Cornell workloads. Weused both means and linear regressions to produce run-time estimates from sim-ilar past applications and found that means provide more accurate predictionsin general. For the best templates found in the greedy search, using the meanfor predictions resulted in between 2 percent and 48 percent smaller errors. Thegenetic search shows that combining templates that use both mean and linearregression improves performance.Our work also provides insights into the job characteristics that are mostuseful for identifying similar jobs. We �nd that the names of the submitting userand the application are the most useful and that the number of nodes is alsovaluable.In future work, we hope to use search techniques to explore yet more sophis-ticated prediction techniques. For example, we are interested in understandingwhether it is useful to constrain the amount of history information used to makepredictions. We are also interested in understanding the potential bene�t of us-ing submission time, start time, and application age when making predictions.We may also consider more sophisticated search techniques and more
exiblede�nitions of similarity. For example, instead of applications being either similaror disimilar, there could be a range of similarities. A second direction for futurework is to apply our techniques to the problem of selecting and co-allocatingresources in metacomputing systems [1, 7, 2]AcknowledgmentsWe thank the Mathematics and Computer Science Division of Argonne NationalLaboratory, the Cornell Theory Center, and the San Diego Supercomputer Cen-ter for providing us with the trace data used in this work. We also thank GeneRackow for helping to record the ANL trace, Allen Downey for providing theSDSC workloads, Jerry Gerner for providing the CTC workload, and RichardGibbons for providing us with the code used for the comparative analysis.This work was supported by the Mathematical, Information, and Computa-tional Sciences Division subprogram of the O�ce of Computational and Tech-nology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38and a NSF Young Investigator award under Grant CCR-9215482.Appendix: Statistical MethodsWe use statistical methods [11, 5] to calculate run-time estimates and con�denceintervals from categories. A category contains a set of data points called a sample,which are a subset of all data points that will be placed in the category, thepopulation. We use a sample to produce an estimate using either a mean or a

linear regression. This estimate includes a con�dence interval that is useful asa measure of the expected accuracy of this prediction. If the X% con�denceinterval is of size c, a new data point will be within c units of the prediction X%of the time. A smaller con�dence interval indicates a more accurate prediction.A mean is simply the sum of the data points divided by the number of datapoints. A con�dence interval is computed for a mean by assuming that the datapoints in our sample S are an accurate representation of all data points in thepopulation P of data points that will ever be placed in a category. The sample isan accurate representation if they are taken randomly from the population andthe sample is large enough. We assume that the sample is random, even thoughit consists of the run times of a series of applications that have completed inthe recent past. If the sample is not large enough, the sample mean x will notbe nearly equal to the population mean �, and the sample standard deviations will not be near to the population standard deviation �. The prediction andcon�dence interval we compute will not be accurate in this case. In fact, thecentral limit theorem states that a sample size of at least 30 is needed for x toapproximate �, although the exact sample size needed is dependent on � andthe standard deviation desired for x [11].We used a minimumsample size of 2 when making our predictions in practice.This is because while a small sample size may result in x not being nearly equalto �, we �nd that an estimate from a category that uses many characteristicsbut has a small sample is more accurate than an estimate from a category thatuses few characteristics but has a larger sample size.The X% con�dence interval can be computed when using the sample meanas a predictor by applying Chebychev's theorem. This theorem states that theportion of data that lies within k standard deviations to either side of the meanis at least 1 � 1k2 for any data set. We need only compute the sample standarddeviation and k such that 1� 1k2 = X100 .Our second technique for producing a prediction is to perform a linear re-gression to a sample using the equationt = b0 + b1n,where n is the number of nodes requested and t is the run time. This type ofprediction attempts to use information about the number of nodes requested. Acon�dence interval can be constructed by observing how close the data pointsare to this line. The con�dence interval is computed by the equationt�2 pMSEs1 + 1N + (n0��n)2Pn2� (Pn)2N ,where N is the sample size, MSE is the mean squared error of the sample, n0is the number of nodes requested for the application being predicted, and �n isthe mean number of nodes in the sample. Alpha is computed with the equation� = 1� X%100

if the X% con�dence interval is desired and t�2 is the Student's t-distributionwith N � 2 degrees of freedom [11, 5].References1. C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44{52, 1992.2. K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. AResource Management Architecture for Metasystems. Lecture Notes on ComputerScience, 1998.3. Murthy Devarakonda and Ravishankar Iyer. Predictability of Process ResourceUsage: A Measurement-Based Study on UNIX. IEEE Transactions on SoftwareEngineering, 15(12):1579{1586, December 1989.4. Allen Downey. Predicting Queue Times on Space-Sharing Parallel Computers. InInternational Parallel Processing Symposium, 1997.5. N. R. Draper and H. Smith. Applied Regression Analysis, 2nd Edition. John Wileyand Sons, 1981.6. Dror Feitelson and Bill Nitzberg. Job Characteristics of a Production ParallelScienti�c Workload on the NASA Ames iPSC/860. Lecture Nodes on ComputerScience, 949, 1995.7. Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.International Journal of Supercomputing Applications, 11(2):115{128, 1997.8. Richard Gibbons. A Historical Application Pro�ler for Use by Parallel Scheculers.Lecture Notes on Computer Science, pages 58{75, 1997.9. Richard Gibbons. A Historical Pro�ler for Use by Parallel Schedulers. Master'sthesis, University of Toronto, 1997.10. David E. Goldberg. Genetic Algorithms in Search, Optimization, and MachineLearning. Addison-Wesley, 1989.11. Neil Weiss and Matthew Hassett. Introductory Statistics. Addison-Wesley, 1982.

