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Abstract. We report the implementation of a scheduling method which
combines time sharing and space sharing on AP/Linux. To run many
tasks simultaneously on a parallel computer, the parallel computer sys-
tem needs a partitioning algorithm that can partition processors for in-
coming tasks. However, a typical problem for the algorithm is a blockade
situation, which causes low processor utilization and slow response. To
avoid such a situation, we present a Time Sharing System(TSS) scheme
that uses a partitioning algorithm. In this paper we state the implementa-
tion design of our T'SS on a real parallel computer, the Fujitsu AP1000+.
The design is based on the parallel operating system, AP /Linux. We re-
port our current implementation and the performance.
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1 Introduction

Parallel computers are becoming more popular for many applications and many
commercial parallel computers are on the market. Since every application can-
not utilize all processors in a parallel computer, it is desirable to run many tasks
simultaneously. To achieve this, we can use partitioning algorithms, which al-
locate a region of processors for an incoming task and then release the region
when the task is outgoing, and do not allow the regions to overlap.

Partitioning algorithms have been proposed for many architectures. For mesh-
connected parallel computers, these algorithms include the Frame Slide[1], the
Two-Dimensional Buddy[2], the First Fit[3], the Best Fit[3], the Adaptive Scan[4],
the Busy List[5], the Quick Allocation[6], and the non-partitioning algorithm|7,
8]. However, such partitioning algorithms have a typical drawback, namely, the
blockade situation.

Figure 1 illustrates the blockade situation occurring on a mesh-connected
parallel computer. Since such partitioning algorithms have a first-come-first-
served (FCFS) policy, their incoming tasks(1 and 2 in Figure 1) are allocated in
the incoming order and can be accommodated at the same time. When task 3
is incoming, it cannot be allocated, because the allocation is prevented by tasks
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Fig. 1. Blockade situation for a mesh-connected parallel computer.

1 and 2. Task 3 is then queued until both tasks 1 and 2 are outgoing. Even
if task 3 is allocated, task 4 cannot be allocated; thus, causing the blockade
situation. If task 3 did not exist, tasks 1, 2, and 4 would be allocated on the
parallel computer at the same time. The blockade situation causes decrease in
the processor utilization and delay in response time for each task.

To avoid this blockade situation, Time Sharing System(TSS) schemes that
uses a partitioning algorithm are proposed by Yoo et al.[9] and Suzaki et al.[10]
as a kind of gang scheduling[11],[12]. They describe more detail of relation of
space sharing and time sharing on a mesh-connected parallel computer.

The TSS provides virtual parallel computers which are activated alternately
on a real parallel computer.Tasks are allocated on virtual parallel computers
by a partitioning algorithm. In Figure 1, tasks 1, 2, and 4 are allocated on one
virtual parallel computer and task 3 is allocated on another. TSS can avoid the
blockade situation. It also achieves high processor utilization and quick response
for each task.

In this paper we state the implementation design of TSS on a parallel com-
puter, the Fujitsu AP1000+4. The design is based on the parallel operating system
AP/Linux[13] which is developed by the CAP group at the Australian National
University (ANU). According to the design we have implemented the TSS on the
AP1000+ at the ANU and at Electrotechincal Laboratory(ETL), which have 16
CPU’s. We also confirmed performance of the tasks under our TSS.

In the next section, we present a number of time sharing systems which
use partitioning algorithms. In Section 3, we give an overview of the Fujitsu
AP1000+. In Section 4, we introduce AP /Linux, a parallel operating system for
the AP1000+. In Section 5, we show the design of TSS on the AP/Linux. We

report the current status of our implementation and performance in Section 6.



In Section 7, we discuss our future work. Finally, in Section 8, we state our
conclusions.

2 Time Sharing System on Parallel Computers
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Fig. 2. TSS diagram showing single and multiple tasks.

On a single computer, a TSS allocates CPU time to tasks alternately, thus im-
proving the response time of a task. This technique is also available for parallel
computers. For example the CM5[14] offers TSS for users. However, there are
idle processors, because not every application can utilize all the processors in a
parallel computer. To decrease the number of idle processors, the use of parti-
tioning algorithms have been proposed in the papers[9],[10]. The TSS scheme is
combination of time sharing and space sharing, and is able to avoid the blockade
situation, which is a typical problem in partitioning algorithms.

The TSS provides a number of virtual parallel computers that can be mapped
to the structure of the target parallel computer. We call such virtual parallel
computers slices. An incoming task is allocated on a slice. If no room is left
for the incoming task on existing slices, a new slice is created and the task is
allocated on this new slice. Based on round-robin scheme, each slice 1s alternately
activated on the real parallel computer.

The TSS allows tasks to be allocated on more than one slice. If a processor
region for a task on a slice 1s free on other slices, the task can sit on these other
slices. The task is then executed as many times as the number of slices that hold



that task, while all slices are activated by a round-robin scheme. We call a task
that exists on more than one slices a multiple task, and a task that exists on
only one slice a single task. Figure 2 illustrates multiple tasks and single tasks
on slices. The idea of multiple task is resemble to multiple slot[15] and dynamic
partitioning[16]. The multiple task is specialized for a mesh-connected parallel
computer and is considered to searching algorithm of multiple tasks.

The tasks on slices are managed using the data structure illustrated in Fig-
ure 3. Each slice has two lists that manage the tasks, a single task list and a
multiple task list. A single task list has submesh information for single tasks;
namely, the x and y starting points of the submesh, the submesh width, and
the submesh height. A multiple task list has the same submesh information, and
also includes information for multiple tasks; namely, the slice number which links
multiple tasks. The information for multiple tasks is used for the termination of
tasks and reduction of slices[10].
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Fig. 3. Data structure for slices.

3 AP1000+

The AP1000+ is a distributed memory parallel computer, developed by Fujitsu.
It has three networks; a broadcast network(B-net; 25MB/s), a torus network(T-
net; 50MB/s per a link), and a synchronization network(S-net) illustrated in
Figure 4. On the AP1000+4 a processing unit is called a cell. Each cell is con-
trolled by a host machine using the B-net and S-net. The AP1000+ offers special
instructions which allow remote memory access. The remote memory access does
not disturb a remote processor. Each cell can read remote memory with a get
instruction and write with a put instruction.



Fig. 4. AP1000+

Figure b shows the detail of a cell. The cell consists of a SuperSPARC pro-
cessor, a memory controller(MC), a message controller(MSC+), a routing con-
troller(RTC), and a B-net interface(BIF). The SuperSPARC offers write through
cache action for memory protection due to the remote memory access. The MC
has a MMU and manages address translation. The MSC+ controls messaging
and remote memory accesses. The messages on the T-net are forwarded by worm
hole routing. The BIF manages broadcast of messages using the B-net and syn-
chronization using the S-net.

Fujitsu offers a simple operating system called “Cell-OS” for the AP1000+.
Under Cell-OS, the machine is reset before launching each parallel program,
and the kernel is loaded with the parallel program. Cell-OS offers a single-user
and single-program environment and does not support all UNIX compatible
functions. To improve this environment, AP/Linux has been developed by the
CAP group at the Australian National University.

4 AP /Linux

AP/Linux[13] is the operating system for the Fujitsu AP1000+. It is based on
the popular Linuz operating system. It provides the facility of a parallel pro-
gramming environment, as well as normal unix functionality. The Linux kernel
is loaded on each cell and is long lived. It manages process scheduling, virtual
memory, file systems, and system calls. Normal user logins are permitted on any
cell and it behaves as a modern operating system.

AP/Linux also offers the environment to run parallel programs. We can run
parallel programs on AP/Linux. To build parallel applications, AP /Linux offers
APlib and MPT libraries[17]. APlib library offers a compatible Cell-OS interface.
APlib and MPI libraries are able to access the MSC+ hardware directly from
user space and give high throughput and low latency.
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The parallel programming environment is supported by the parallel run com-
mand prun, the parallel daemon paralleld which exists on each cell and manages
the creation and termination of parallel processes, and special scheduling for
parallel processing in the kernel(Figure 6). The normal scheduling provided by
the Linux kernel can also manage parallel processes. However, performance can
be poor due to the time waiting for messages, particularly when the message li-
braries wait by polling. The authors of AP/Linux recommend that a cooperative
scheduling is used to achieve reasonable performance[13].

The procedure to run parallel programs is divided into process allocation and
synchronization. We state these details.

4.1 Process allocation

prun is the command used to launch a parallel process. It requires the number
of processors and a parallel program name. For example, in Figure 6 the three
prun commands require 2 X 2 processors to run taskl, 3 x 3 processors for task2,
and 1 x 3 for task3. A prun command can be issued on any cell and it sends a
message to the paralleld on the primary cell. In this paper we assume that the
primary cell 1s cell0.

The parallelds manage creation and termination of parallel processes and
manage a standard I/O session between prun and the parallel process. The
paralleld on cell) reserves processors required by the prun and sends the par-
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Fig. 6. AP /Linux

allel process image to the parallelds on the reserved processors. Each paralleld
launches the parallel process using the clone(} system call and the parallel pro-
cess enqueued to each local scheduling queue. The clone() system call can get
the same process ID(PID) and Task ID(TID) on each cell. The IDs make it pos-
sible to identify the parallel process on all cells. On AP/Linux, high numbered
PIDs are reserved for parallel processes and low numbered PIDs are reserved for
single processes. The TID is attached to the header of messages and is used for
posting the message to the destination process.

Figure 7 shows the process allocation required by pruns in Figure 6. The
processors which are offered by the paralleld start from cell0. The scheduling
queue on cell0 has all parallel processes. In the figure, cell0 has three parallel
processes although cell5,6,7, and 8 have only one parallel process. This situation
is caused by lack of space sharing, which results in poor load balancing over the
machine.

When a parallel process is terminated, the paralleld catches a signal from the
parallel process and cuts the standard 1/O session between the parallel process
and the prun.

4.2 Synchronization

AP/Linux provides a loose wake-up synchronization of parallel processes. It is a
reasonable compromise, because it is difficult to predict the state of processes on
remote processors in UNIX environments, including Linux. For example, page
faults are done asynchronously.

The local scheduler on cell) manages wake-up synchronization for each par-
allel process, because all parallel processes are allocated from cell0, and the local
scheduling queue has all parallel process information. The local scheduler on
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Fig. 7. Process allocation and Synchronization by AP /Linux

cell0 is responsible for the control of wake-up synchronization for all parallel
processes.

In Figure 7, three wake-up synchronizations are issued for each process. The
wake-up synchronization of parallel processes is controlled by the wake-up of
parallel processes on cell0. Just before a parallel process on the scheduling queue
of cell0 i1s activated, the kernel on cell0 informs other cells that they should
activate the parallel process, i.e. the kernel on cell0 sends the TID of the parallel
process using B-net. The TID is used for identification of parallel process on each
cells. The kernels on the cells which have the TID wake up the parallel process
at the next scheduling.

The handler for identification and rescheduling of parallel process is imple-
mented by fast handler, which is Linux interrupt handler. The fast handler catchs
an interrupt just when an interrupt has occurred, but the main handling is done
after the current process is suspended. The fast handler only handles the identi-
fication of TID just when the wake-up synchronization has occurred. If the cell
has the TID, the kernel reschedules after the current process is suspended. It
achieves loose synchronization.

Parallel processes can get processing time if the processor is not busy. The
scheduling depends on the load on each processor. In Figure 7, while task3 is
running on cell0,1, and 2, task! and task2 may be running on cell3 and 4. How-
ever, there is no guarantee of synchronization. The local scheduler decides which
processes run.

The process switch sometimes cause problems with messaging on network. To
solve this problem, the CM5[14] offers the all-fall-down mechanism on network
switch. The all-fall-down mechanism enqueues messages to the nearest switch
when a process switch has occurred. The all-fall-down mechanism clears the



network. The typical overhead of a process switch on the CM5 is reported as
10 ms[18]. The AP1000+ does not offer this facility. On AP/Linux, messages
can be alive on the network even after a process switch has occurred. The mes-
sage header has the TID which is used for identification. Even if the process
is switched on the destination cell, the message is identified by the TID and is
buffered at the memory space of the process.

5 Design of our TSS on AP /Linux

Unfortunately original AP/Linux cannot make the best use of parallel comput-
ers, because of the following reasons.

— No space sharing.
— Wake-up synchronization of parallel process depends on the scheduling queue
on cell0.

Original AP/Linux does not allow space sharing. The allocations of parallel
processes always start from cell0. These allocations cause concentration of load
on cellQ.

Wake-up synchronization is issued depending on the scheduling queue on
cell0, because the scheduling queue have all PIDs of parallel processes. Only one
parallel process can run synchronously at a time. At that time other parallel pro-
cesses cannot run synchronously. Owing to the wake-up synchronization, space
sharing is not implemented.

In order to implement our TSS, allocation of parallel processes should be al-
lowed to start from any cells, namely the allocation must be independent form the
kernel on each cell. Furthermore wake-up synchronization of parallel processes
should be done by a special facility which is independent from the scheduling
queue on cell0, namely, the facility does not implement in a kernel. To settle
these requirements, we provide a slice daemon(sliced) which takes responsibility
of process allocation and wake-up synchronization of parallel processes.

Our TSS design is based on the AP/Linux implementation. We use most
of the facilities of the parallel execution environment provided by the original
AP/Linux, as we do not want to increase special facilities, and it is easy to
implement.

5.1 Process allocation

sliced takes responsibility of space sharing. In the same manner of the original
AP/Linux, prun requests the paralleld on cell0 to execute a parallel process.
The new paralleld asks the allocation region to sliced. The sliced searches a
processor region using a partitioning algorithm. If a region is decided, sliced
supplies the region to paralleld. Creation of parallel processes are done in the
same manner as the original AP/Linux, that is, the parallel process gets the
same PID and TID(using clone() system call) and is subsequently enqueued in
a local scheduling queue.
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Fig. 8. Process allocation and Synchronization by our method

The partitioning algorithm assumes slices(virtual parallel processors men-
tioned in Section 2.) and uses the data structure described in Figure 3. Figure 8
shows the allocation required by pruns in Figure 6. task! and task2 are allocated
on a slice and task3 is allocated on another slice. sliced also manages multiple
tasks using this data structure.

When a parallel process finishes, it sends a message to paralleld in the same
manner as the original AP/Linux. Then paralleld informs sliced of the termina-
tion, which deletes the processor region data for the parallel process for reuse.
The details of the processor region management are described in the paper[10].

5.2 Wake-up synchronization

The sliced holds the data structure which is illustrated in Figure 3, and knows
the parallel processes which are on a slice. The parallel processes on a slice are
activated simultaneously every certain interval, which are parameterized.

Wake-up synchronization is controlled by sliced. In Figure 8, synchronization
is issued for taskl and task?2 and for task3. This means that the wake-up of
parallel processes is independent from the scheduling queue on cell0.

The synchronization request is issued using B-net, as in the original AP/Linux.
The synchronization request issued by sliced uses PID instead of TID, because
parallel processes are distinguished by PID in sliced. A synchronization request
can send plural PIDs to achieve low overhead. In Figure 8, a synchronization
request 1s issued to wake up task! and task3. These cells ,which have the PIDs,
handle synchronization requests in the same manner as the original AP/Linux.



6 Current Status

The new paralleld and sliced are running on the 16 cell AP1000+4 at Electrotech-
incal Laboratory and the Australian National University. Unfortunately it does
not offer 2 dimensional partitioning, as this depends on broadcast mechanism of
old paralleld !. It offers 1 dimensional First Fit partitioning. The requirement of
rectangular cell region is linearized. For example 2 x 2 cells request is translated
into 4 x 1 cells and allocated as contiguous cells. This implementation offers
multiple tasks as described in Section 2.

The sliced sends a wake-up synchronization every 100ms. The Linux tick
time is 16.7(1/60)ms. Therefore A wake-up synchronization is sent once every 6
process time quantum.

6.1 Simple Performance test

In order to evaluate the effect of our scheduling, we ran test processes and
measured elapsed process time.

At first we ran 8 processes which required the similar CPU time and 2
CPUs, namely, matrix multiply. Figure 9 shows the results. The x axis indi-
cates time and the y axis indicates the order of submitted processes, the lowest
process(No.1) is submitted first and highest process(No.8) is submitted last. In
this figure, lines indicate the start time and finish time of each process. The
black lines indicate the results by our method and gray lines indicate the re-
sults by the original AP /Linux. The number in front of the parenthesis indicates
the required processors and the number in parentheses indicates the allocated
processor region.

This result shows the effect of space sharing. The original scheduling allocated
all processes on cell 0 and 1. Our method can distribute processes equally on
all cells. The 8 processes do not overlap on any cells and run simultaneously.
Therefore the theoretical improvement is 1/8.0. However, there is the overhead of
synchronization and other processes, including paralleld and sliced. The practical
improvement was 1/7.1 in this case. This result means that the overhead is
insignificant, the effect of space sharing could achieve high performance.

The start time of each process(on the left side of the line) depends on the time
of allocation. From Figure 9, we know that allocation time of our methods are
faster than the original scheduling. The reason for this was that paralleld existed
on cell0, and all processes were allocated on cell) by the original scheduling
policy. Cell0 had a heavier load. In our method, paralleld and sliced also exist on
cell0 but only a parallel process is allocated on cell0 in this case. The load on
cell0 was not high with our method. Therefore the response for allocation could
be fast.

Second, we confirmed the effect of the multiple task. Figure 10 shows the
results with 8 processes, which require random cells(2,6,6,2,2,11,4, and 3). In

! The broadcast mechanism is updated[19] and enables to get 2 dimensional regions.
We are now updating our paralleld and sliced.
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Fig. 9. Trace of parallel processes on original AP /Linux and our method

this case three slices were created. The first slice had three processes(processl,4,
and 6 which occupied cell0-1, cell14-15, and cell 2-13 respectively). The second
slice had 4 processes(process2,3,4, and 5 which were occupied cell2-7, cell8-13,
cell14-15, and cell0-1 respectively). The third slice had 4 processes(process 3,4,7
and 8 which occupied cell8-13, cell14-15, cell0-3 and cell4-6 respectively). Process
3 and 4 could be multiple tasks. Process 3 existed on slice 2 and 3. Process 4
existed on slice 1, 2, and 3. The other tasks were single tasks. In this case
process 3 was approximately 2/3 times faster than a single task. Process 4 was
approximately 1/3 times faster than a single task. These results indicate that
multiple tasks worked well and overhead of allocation and synchronization did
not affect processes severely.

In Figure 10 the process 1,5 and 7 showed late finish times. These pro-
cesses were allocated on cell0. The reason is that cell0 is busy with single pro-
cesses(paralleld and sliced) as well as parallel processes. The situation caused
unfairness of CPU time for parallel processes. We discuss how to settle this
problem in Section 7.

7 Discussions

7.1 Parallel process and UNIX environment

We have implemented scheduling method which combines time sharing and space
sharing. The original concepts assume that only parallel processes exist and these
parallel processes can switch at the same time. Also it does not consider a process
switch caused by virtual memory or I/O. However, in real implementation we
must deal with these side effects.

Our implementation deals with the existence of sequential processes on each
cell. Some sequential processes are standard UNIX daemons, for example nit,
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kswap, kflushd, and paralleld. Parallel processes also use virtual memory resulting
in asynchronous pasing events. Both of the effects cause skew of time quantum
for each process.

We use autonomous scheduling on each cell to compensate for this skew.
When a parallel process on a cell causes virtual memory activity, anther pro-
cess 1s activated to compensate for the skew while the parallel process on other
cell is running. This is one solution to allow for the UNIX environment still,
while running tightly scheduled parallel processes. Unfortunately the combina-
tion does not fit nicely in some cases. For example the process switch causes
delay in communication with a parallel process. In the original gang scheduling
algorithm, there is no process switch in a time quanta. Therefore a parallel pro-
cess 1s supposed that there is no interference communication. However, in this
implementation the problem arises. We must estimate the effect of the delay and
minimize the cost.

7.2 Load distribution

The load of parallel processes can be distributed by our TSS, which uses a par-
titioning algorithm. However, AP /Linux allows a mix of parallel processes and
sequential processes. Unfortunately the sliced doesn’t observe the load caused
by sequential processes. The sliced should observe the situation and distribute
the load of parallel and sequential processes on each cell. We propose it should
act like NQS(Network Queuing System). NQS observes the load on each proces-
sor and allocates a job to the processor which has the smallest load. We must
consider the new partitioning algorithm for this purpose.



7.3 New partitioning Algorithm

We have proposed a new partitioning algorithm[20] which is a combination of a
contiguous and a non-contiguous partitioning algorithm[7,8]. The new algorithm
compensates for the weak points of contiguous and non-contiguous partitioning
algorithms. It could achieve high processor utilization and quick response. We
plan to implement this algorithm on a real machine.

However, there may be difficultiies implementing multiple tasks which exist
on some slices, as processor regions of a task are sometimes distributed. This
may invoke a significant cross-checking overhead at task load time. The multiple
task is useful to decrease the number of slices as well as to increase processor
utilization. If we use the non-contiguous partitioning algorithm in our TSS, we
must consider the algorithm to check crossing processor regions.

8 Conclusions

In this paper we presented the design of a time sharing system on a real parallel
computer, the AP10004. The time sharing system includes space sharing by a
partitioning algorithm, and can make the best use of the number of processors.
The implementation design is based on the modern operating system AP /Linux,
because AP/Linux offers many facilities for parallel processing, the parallel ex-
ecution command prun, a daemon for creating parallel processes paralleld, and
scheduling for parallel processes. Using these facilities, we introduced space shar-
ing on AP/Linux, and separated wake-up synchronization from the scheduling
queue on the primary cell. These special facilities for space sharing and wake-up
synchronization did not implemented in a kernel. We showed the improvement
of the special facilities as a sliced daemon for process allocation and synchro-
nization of parallel processes. Performance tests were also taken, showing the
effects of space sharing. In the near future, we are planning to measure the exact
performance by using some real applications. We will make clear the effect of
messaging and scheduling policy.
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