
Implementing the Combination of Time Sharingand Space Sharing on AP/LinuxKuniyasu Suzaki1;2 and David Walsh11 Australian National University, Canberra, ACT 0200, Australiafsuzaki, dwalshg@cafe.anu.edu.auhttp://cap.anu.edu.au/cap/projects/linux/2 Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, 305, JapanAbstract. We report the implementation of a scheduling method whichcombines time sharing and space sharing on AP/Linux. To run manytasks simultaneously on a parallel computer, the parallel computer sys-tem needs a partitioning algorithm that can partition processors for in-coming tasks. However, a typical problem for the algorithm is a blockadesituation, which causes low processor utilization and slow response. Toavoid such a situation, we present a Time Sharing System(TSS) schemethat uses a partitioning algorithm. In this paper we state the implementa-tion design of our TSS on a real parallel computer, the Fujitsu AP1000+.The design is based on the parallel operating system, AP/Linux. We re-port our current implementation and the performance.Keywords: time sharing, space sharing, partitioning algorithm, AP/Linux1 IntroductionParallel computers are becoming more popular for many applications and manycommercial parallel computers are on the market. Since every application can-not utilize all processors in a parallel computer, it is desirable to run many taskssimultaneously. To achieve this, we can use partitioning algorithms, which al-locate a region of processors for an incoming task and then release the regionwhen the task is outgoing, and do not allow the regions to overlap.Partitioning algorithms have been proposed for many architectures. Formesh-connected parallel computers, these algorithms include the Frame Slide[1], theTwo-DimensionalBuddy[2], the First Fit[3], the Best Fit[3], the Adaptive Scan[4],the Busy List[5], the Quick Allocation[6], and the non-partitioning algorithm[7,8]. However, such partitioning algorithms have a typical drawback, namely, theblockade situation.Figure 1 illustrates the blockade situation occurring on a mesh-connectedparallel computer. Since such partitioning algorithms have a �rst-come-�rst-served(FCFS) policy, their incoming tasks(1 and 2 in Figure 1) are allocated inthe incoming order and can be accommodated at the same time. When task 3is incoming, it cannot be allocated, because the allocation is prevented by tasks

124

1 2 4

Trace of Partitioning Algorithm

3

3

Incoming Tasks

Fig. 1. Blockade situation for a mesh-connected parallel computer.1 and 2. Task 3 is then queued until both tasks 1 and 2 are outgoing. Evenif task 3 is allocated, task 4 cannot be allocated; thus, causing the blockadesituation. If task 3 did not exist, tasks 1, 2, and 4 would be allocated on theparallel computer at the same time. The blockade situation causes decrease inthe processor utilization and delay in response time for each task.To avoid this blockade situation, Time Sharing System(TSS) schemes thatuses a partitioning algorithm are proposed by Yoo et al.[9] and Suzaki et al.[10]as a kind of gang scheduling[11],[12]. They describe more detail of relation ofspace sharing and time sharing on a mesh-connected parallel computer.The TSS provides virtual parallel computers which are activated alternatelyon a real parallel computer.Tasks are allocated on virtual parallel computersby a partitioning algorithm. In Figure 1, tasks 1, 2, and 4 are allocated on onevirtual parallel computer and task 3 is allocated on another. TSS can avoid theblockade situation. It also achieves high processor utilization and quick responsefor each task.In this paper we state the implementation design of TSS on a parallel com-puter, the Fujitsu AP1000+. The design is based on the parallel operating systemAP/Linux[13] which is developed by the CAP group at the Australian NationalUniversity(ANU). According to the design we have implemented the TSS on theAP1000+ at the ANU and at Electrotechincal Laboratory(ETL), which have 16CPU's. We also con�rmed performance of the tasks under our TSS.In the next section, we present a number of time sharing systems whichuse partitioning algorithms. In Section 3, we give an overview of the FujitsuAP1000+. In Section 4, we introduce AP/Linux, a parallel operating system forthe AP1000+. In Section 5, we show the design of TSS on the AP/Linux. Wereport the current status of our implementation and performance in Section 6.

In Section 7, we discuss our future work. Finally, in Section 8, we state ourconclusions.2 Time Sharing System on Parallel Computers
Slice 1

Slice 2

Slice 3

Round
Robin

Single Task

Multiple Task

Real Parallel ComputerFig. 2. TSS diagram showing single and multiple tasks.On a single computer, a TSS allocates CPU time to tasks alternately, thus im-proving the response time of a task. This technique is also available for parallelcomputers. For example the CM5[14] o�ers TSS for users. However, there areidle processors, because not every application can utilize all the processors in aparallel computer. To decrease the number of idle processors, the use of parti-tioning algorithms have been proposed in the papers[9],[10]. The TSS scheme iscombination of time sharing and space sharing, and is able to avoid the blockadesituation, which is a typical problem in partitioning algorithms.The TSS provides a number of virtual parallel computers that can be mappedto the structure of the target parallel computer. We call such virtual parallelcomputers slices. An incoming task is allocated on a slice. If no room is leftfor the incoming task on existing slices, a new slice is created and the task isallocated on this new slice. Based on round-robin scheme, each slice is alternatelyactivated on the real parallel computer.The TSS allows tasks to be allocated on more than one slice. If a processorregion for a task on a slice is free on other slices, the task can sit on these otherslices. The task is then executed as many times as the number of slices that hold

that task, while all slices are activated by a round-robin scheme. We call a taskthat exists on more than one slices a multiple task, and a task that exists ononly one slice a single task. Figure 2 illustrates multiple tasks and single taskson slices. The idea of multiple task is resemble to multiple slot[15] and dynamicpartitioning[16]. The multiple task is specialized for a mesh-connected parallelcomputer and is considered to searching algorithm of multiple tasks.The tasks on slices are managed using the data structure illustrated in Fig-ure 3. Each slice has two lists that manage the tasks, a single task list and amultiple task list. A single task list has submesh information for single tasks;namely, the x and y starting points of the submesh, the submesh width, andthe submesh height. A multiple task list has the same submesh information, andalso includes information for multiple tasks; namely, the slice number which linksmultiple tasks. The information for multiple tasks is used for the termination oftasks and reduction of slices[10].
<5, 7, 4, 3.>

Multiple
Infomation

< 3.>

Slice Number

Multiple
Infomation

Submesh height
Submesh width

Submesh
Infomation

Multiple
Task List

Single
Task List

Submesh
Infomation

Submesh
Infomation

Y starting point
X starting point

Round Robin

Fig. 3. Data structure for slices.3 AP1000+The AP1000+ is a distributed memory parallel computer, developed by Fujitsu.It has three networks; a broadcast network(B-net; 25MB/s), a torus network(T-net; 50MB/s per a link), and a synchronization network(S-net) illustrated inFigure 4. On the AP1000+ a processing unit is called a cell. Each cell is con-trolled by a host machine using the B-net and S-net. The AP1000+ o�ers specialinstructions which allow remote memory access. The remote memory access doesnot disturb a remote processor. Each cell can read remote memory with a getinstruction and write with a put instruction.

Fig. 4. AP1000+Figure 5 shows the detail of a cell. The cell consists of a SuperSPARC pro-cessor, a memory controller(MC), a message controller(MSC+), a routing con-troller(RTC), and a B-net interface(BIF). The SuperSPARC o�ers write throughcache action for memory protection due to the remote memory access. The MChas a MMU and manages address translation. The MSC+ controls messagingand remote memory accesses. The messages on the T-net are forwarded by wormhole routing. The BIF manages broadcast of messages using the B-net and syn-chronization using the S-net.Fujitsu o�ers a simple operating system called \Cell-OS" for the AP1000+.Under Cell-OS, the machine is reset before launching each parallel program,and the kernel is loaded with the parallel program. Cell-OS o�ers a single-userand single-program environment and does not support all UNIX compatiblefunctions. To improve this environment, AP/Linux has been developed by theCAP group at the Australian National University.4 AP/LinuxAP/Linux[13] is the operating system for the Fujitsu AP1000+. It is based onthe popular Linux operating system. It provides the facility of a parallel pro-gramming environment, as well as normal unix functionality. The Linux kernelis loaded on each cell and is long lived. It manages process scheduling, virtualmemory, �le systems, and system calls. Normal user logins are permitted on anycell and it behaves as a modern operating system.AP/Linux also o�ers the environment to run parallel programs. We can runparallel programs on AP/Linux. To build parallel applications, AP/Linux o�ersAPlib and MPI libraries[17]. APlib library o�ers a compatible Cell-OS interface.APlib and MPI libraries are able to access the MSC+ hardware directly fromuser space and give high throughput and low latency.

Cache

Super

SPARC

MSC+

MC

SIMM

RTC
 BIF

T-net
 B/S-net
Fig. 5. CellThe parallel programming environment is supported by the parallel run com-mand prun, the parallel daemon paralleld which exists on each cell and managesthe creation and termination of parallel processes, and special scheduling forparallel processing in the kernel(Figure 6). The normal scheduling provided bythe Linux kernel can also manage parallel processes. However, performance canbe poor due to the time waiting for messages, particularly when the message li-braries wait by polling. The authors of AP/Linux recommend that a cooperativescheduling is used to achieve reasonable performance[13].The procedure to run parallel programs is divided into process allocation andsynchronization. We state these details.4.1 Process allocationprun is the command used to launch a parallel process. It requires the numberof processors and a parallel program name. For example, in Figure 6 the threeprun commands require 2 � 2 processors to run task1, 3 � 3 processors for task2,and 1 � 3 for task3. A prun command can be issued on any cell and it sends amessage to the paralleld on the primary cell. In this paper we assume that theprimary cell is cell0.The parallelds manage creation and termination of parallel processes andmanage a standard I/O session between prun and the parallel process. Theparalleld on cell0 reserves processors required by the prun and sends the par-

kernel

paralleld

kernel

paralleld

kernel

paralleld

prun -n 1*3 task3

prun -n 2*2 task1

prun -n 3*3 task2

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

0
 1
 2

3
 4
 5

6
 7
 8

Fig. 6. AP/Linuxallel process image to the parallelds on the reserved processors. Each paralleldlaunches the parallel process using the clone() system call and the parallel pro-cess enqueued to each local scheduling queue. The clone() system call can getthe same process ID(PID) and Task ID(TID) on each cell. The IDs make it pos-sible to identify the parallel process on all cells. On AP/Linux, high numberedPIDs are reserved for parallel processes and low numbered PIDs are reserved forsingle processes. The TID is attached to the header of messages and is used forposting the message to the destination process.Figure 7 shows the process allocation required by pruns in Figure 6. Theprocessors which are o�ered by the paralleld start from cell0. The schedulingqueue on cell0 has all parallel processes. In the �gure, cell0 has three parallelprocesses although cell5,6,7, and 8 have only one parallel process. This situationis caused by lack of space sharing, which results in poor load balancing over themachine.When a parallel process is terminated, the paralleld catches a signal from theparallel process and cuts the standard I/O session between the parallel processand the prun.4.2 SynchronizationAP/Linux provides a loose wake-up synchronization of parallel processes. It is areasonable compromise, because it is di�cult to predict the state of processes onremote processors in UNIX environments, including Linux. For example, pagefaults are done asynchronously.The local scheduler on cell0 manages wake-up synchronization for each par-allel process, because all parallel processes are allocated from cell0, and the localscheduling queue has all parallel process information. The local scheduler on

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

t2

t3

t1
 t1

t1
t1

t2

t2

t2

t2
t2
t2

t2

t2

t3

t3

0
 1
 2

3
 4
 5

6
 7
 8

wake up t3

wake up t1

wake up t2
Fig. 7. Process allocation and Synchronization by AP/Linuxcell0 is responsible for the control of wake-up synchronization for all parallelprocesses.In Figure 7, three wake-up synchronizations are issued for each process. Thewake-up synchronization of parallel processes is controlled by the wake-up ofparallel processes on cell0. Just before a parallel process on the scheduling queueof cell0 is activated, the kernel on cell0 informs other cells that they shouldactivate the parallel process, i.e. the kernel on cell0 sends the TID of the parallelprocess using B-net. The TID is used for identi�cation of parallel process on eachcells. The kernels on the cells which have the TID wake up the parallel processat the next scheduling.The handler for identi�cation and rescheduling of parallel process is imple-mented by fast handler, which is Linux interrupt handler. The fast handler catchsan interrupt just when an interrupt has occurred, but the main handling is doneafter the current process is suspended. The fast handler only handles the identi-�cation of TID just when the wake-up synchronization has occurred. If the cellhas the TID, the kernel reschedules after the current process is suspended. Itachieves loose synchronization.Parallel processes can get processing time if the processor is not busy. Thescheduling depends on the load on each processor. In Figure 7, while task3 isrunning on cell0,1, and 2, task1 and task2 may be running on cell3 and 4. How-ever, there is no guarantee of synchronization. The local scheduler decides whichprocesses run.The process switch sometimes cause problems with messaging on network. Tosolve this problem, the CM5[14] o�ers the all-fall-down mechanism on networkswitch. The all-fall-down mechanism enqueues messages to the nearest switchwhen a process switch has occurred. The all-fall-down mechanism clears the

network. The typical overhead of a process switch on the CM5 is reported as10 ms[18]. The AP1000+ does not o�er this facility. On AP/Linux, messagescan be alive on the network even after a process switch has occurred. The mes-sage header has the TID which is used for identi�cation. Even if the processis switched on the destination cell, the message is identi�ed by the TID and isbu�ered at the memory space of the process.5 Design of our TSS on AP/LinuxUnfortunately original AP/Linux cannot make the best use of parallel comput-ers, because of the following reasons.{ No space sharing.{ Wake-up synchronization of parallel process depends on the scheduling queueon cell0.Original AP/Linux does not allow space sharing. The allocations of parallelprocesses always start from cell0. These allocations cause concentration of loadon cell0.Wake-up synchronization is issued depending on the scheduling queue oncell0, because the scheduling queue have all PIDs of parallel processes. Only oneparallel process can run synchronously at a time. At that time other parallel pro-cesses cannot run synchronously. Owing to the wake-up synchronization, spacesharing is not implemented.In order to implement our TSS, allocation of parallel processes should be al-lowed to start from any cells, namely the allocationmust be independent form thekernel on each cell. Furthermore wake-up synchronization of parallel processesshould be done by a special facility which is independent from the schedulingqueue on cell0, namely, the facility does not implement in a kernel. To settlethese requirements, we provide a slice daemon(sliced) which takes responsibilityof process allocation and wake-up synchronization of parallel processes.Our TSS design is based on the AP/Linux implementation. We use mostof the facilities of the parallel execution environment provided by the originalAP/Linux, as we do not want to increase special facilities, and it is easy toimplement.5.1 Process allocationsliced takes responsibility of space sharing. In the same manner of the originalAP/Linux, prun requests the paralleld on cell0 to execute a parallel process.The new paralleld asks the allocation region to sliced. The sliced searches aprocessor region using a partitioning algorithm. If a region is decided, slicedsupplies the region to paralleld. Creation of parallel processes are done in thesame manner as the original AP/Linux, that is, the parallel process gets thesame PID and TID(using clone() system call) and is subsequently enqueued ina local scheduling queue.

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

kernel

paralleld

t2

t1
 t1

t1
t1

t2

t2

t2

t2
t2
t2

t2

t2

Sliced

t3
 t3
 t3

wake up t1 & t3

wake up t2

3
 4
 5

0
 1
 2

6
 7
 8
Fig. 8. Process allocation and Synchronization by our methodThe partitioning algorithm assumes slices(virtual parallel processors men-tioned in Section 2.) and uses the data structure described in Figure 3. Figure 8shows the allocation required by pruns in Figure 6. task1 and task2 are allocatedon a slice and task3 is allocated on another slice. sliced also manages multipletasks using this data structure.When a parallel process �nishes, it sends a message to paralleld in the samemanner as the original AP/Linux. Then paralleld informs sliced of the termina-tion, which deletes the processor region data for the parallel process for reuse.The details of the processor region management are described in the paper[10].5.2 Wake-up synchronizationThe sliced holds the data structure which is illustrated in Figure 3, and knowsthe parallel processes which are on a slice. The parallel processes on a slice areactivated simultaneously every certain interval, which are parameterized.Wake-up synchronization is controlled by sliced. In Figure 8, synchronizationis issued for task1 and task2 and for task3. This means that the wake-up ofparallel processes is independent from the scheduling queue on cell0.The synchronization request is issued using B-net, as in the originalAP/Linux.The synchronization request issued by sliced uses PID instead of TID, becauseparallel processes are distinguished by PID in sliced. A synchronization requestcan send plural PIDs to achieve low overhead. In Figure 8, a synchronizationrequest is issued to wake up task1 and task3. These cells ,which have the PIDs,handle synchronization requests in the same manner as the original AP/Linux.

6 Current StatusThe new paralleld and sliced are running on the 16 cell AP1000+ at Electrotech-incal Laboratory and the Australian National University. Unfortunately it doesnot o�er 2 dimensional partitioning, as this depends on broadcast mechanism ofold paralleld 1. It o�ers 1 dimensional First Fit partitioning. The requirement ofrectangular cell region is linearized. For example 2� 2 cells request is translatedinto 4 � 1 cells and allocated as contiguous cells. This implementation o�ersmultiple tasks as described in Section 2.The sliced sends a wake-up synchronization every 100ms. The Linux ticktime is 16:7(1=60)ms. Therefore A wake-up synchronization is sent once every 6process time quantum.6.1 Simple Performance testIn order to evaluate the e�ect of our scheduling, we ran test processes andmeasured elapsed process time.At �rst we ran 8 processes which required the similar CPU time and 2CPUs, namely, matrix multiply. Figure 9 shows the results. The x axis indi-cates time and the y axis indicates the order of submitted processes, the lowestprocess(No.1) is submitted �rst and highest process(No.8) is submitted last. Inthis �gure, lines indicate the start time and �nish time of each process. Theblack lines indicate the results by our method and gray lines indicate the re-sults by the original AP/Linux. The number in front of the parenthesis indicatesthe required processors and the number in parentheses indicates the allocatedprocessor region.This result shows the e�ect of space sharing. The original scheduling allocatedall processes on cell 0 and 1. Our method can distribute processes equally onall cells. The 8 processes do not overlap on any cells and run simultaneously.Therefore the theoretical improvement is 1/8.0. However, there is the overhead ofsynchronization and other processes, including paralleld and sliced. The practicalimprovement was 1/7.1 in this case. This result means that the overhead isinsigni�cant, the e�ect of space sharing could achieve high performance.The start time of each process(on the left side of the line) depends on the timeof allocation. From Figure 9, we know that allocation time of our methods arefaster than the original scheduling. The reason for this was that paralleld existedon cell0, and all processes were allocated on cell0 by the original schedulingpolicy. Cell0 had a heavier load. In our method, paralleld and sliced also exist oncell0 but only a parallel process is allocated on cell0 in this case. The load oncell0 was not high with our method. Therefore the response for allocation couldbe fast.Second, we con�rmed the e�ect of the multiple task. Figure 10 shows theresults with 8 processes, which require random cells(2,6,6,2,2,11,4, and 3). In1 The broadcast mechanism is updated[19] and enables to get 2 dimensional regions.We are now updating our paralleld and sliced.

10000 20000 30000 40000 50000
m-sec

Trace of processes

2

4

6

8

Processes

Our method2(0-1)

2(2-3)

2(4-5)

2(6-7)

2(8-9)

2(10-11)

2(12-13)

2(14-15)

Original APLinux2(0-1)

2(0-1)

2(0-1)

2(0-1)

2(0-1)

2(0-1)

2(0-1)

2(0-1)

Fig. 9. Trace of parallel processes on original AP/Linux and our methodthis case three slices were created. The �rst slice had three processes(process1,4,and 6 which occupied cell0-1, cell14-15, and cell 2-13 respectively). The secondslice had 4 processes(process2,3,4, and 5 which were occupied cell2-7, cell8-13,cell14-15, and cell0-1 respectively). The third slice had 4 processes(process 3,4,7and 8 which occupied cell8-13, cell14-15, cell0-3 and cell4-6 respectively). Process3 and 4 could be multiple tasks. Process 3 existed on slice 2 and 3. Process 4existed on slice 1, 2, and 3. The other tasks were single tasks. In this caseprocess 3 was approximately 2=3 times faster than a single task. Process 4 wasapproximately 1=3 times faster than a single task. These results indicate thatmultiple tasks worked well and overhead of allocation and synchronization didnot a�ect processes severely.In Figure 10 the process 1,5 and 7 showed late �nish times. These pro-cesses were allocated on cell0. The reason is that cell0 is busy with single pro-cesses(paralleld and sliced) as well as parallel processes. The situation causedunfairness of CPU time for parallel processes. We discuss how to settle thisproblem in Section 7.7 Discussions7.1 Parallel process and UNIX environmentWe have implemented scheduling method which combines time sharing and spacesharing. The original concepts assume that only parallel processes exist and theseparallel processes can switch at the same time. Also it does not consider a processswitch caused by virtual memory or I/O. However, in real implementation wemust deal with these side e�ects.Our implementation deals with the existence of sequential processes on eachcell. Some sequential processes are standard UNIX daemons, for example init,

5000 10000 15000 20000 25000
m-sec

Trace of processes

2

4

6

8

Processes

 1

 2

 2,3

 1,2,3

 2

 1

 3

 3

 Slices

2(0-1)

6(2-7)

6(8-13)

2(14-15)

2(0-1)

11(2-12)

4(0-3)

3(4-6)

Fig. 10. E�ect of multiple taskskswap, k
ushd, and paralleld. Parallel processes also use virtual memory resultingin asynchronous pasing events. Both of the e�ects cause skew of time quantumfor each process.We use autonomous scheduling on each cell to compensate for this skew.When a parallel process on a cell causes virtual memory activity, anther pro-cess is activated to compensate for the skew while the parallel process on othercell is running. This is one solution to allow for the UNIX environment still,while running tightly scheduled parallel processes. Unfortunately the combina-tion does not �t nicely in some cases. For example the process switch causesdelay in communication with a parallel process. In the original gang schedulingalgorithm, there is no process switch in a time quanta. Therefore a parallel pro-cess is supposed that there is no interference communication. However, in thisimplementation the problem arises. We must estimate the e�ect of the delay andminimize the cost.7.2 Load distributionThe load of parallel processes can be distributed by our TSS, which uses a par-titioning algorithm. However, AP/Linux allows a mix of parallel processes andsequential processes. Unfortunately the sliced doesn't observe the load causedby sequential processes. The sliced should observe the situation and distributethe load of parallel and sequential processes on each cell. We propose it shouldact like NQS(Network Queuing System). NQS observes the load on each proces-sor and allocates a job to the processor which has the smallest load. We mustconsider the new partitioning algorithm for this purpose.

7.3 New partitioning AlgorithmWe have proposed a new partitioning algorithm[20] which is a combination of acontiguous and a non-contiguous partitioning algorithm[7,8]. The new algorithmcompensates for the weak points of contiguous and non-contiguous partitioningalgorithms. It could achieve high processor utilization and quick response. Weplan to implement this algorithm on a real machine.However, there may be di�cultiies implementing multiple tasks which existon some slices, as processor regions of a task are sometimes distributed. Thismay invoke a signi�cant cross-checking overhead at task load time. The multipletask is useful to decrease the number of slices as well as to increase processorutilization. If we use the non-contiguous partitioning algorithm in our TSS, wemust consider the algorithm to check crossing processor regions.8 ConclusionsIn this paper we presented the design of a time sharing system on a real parallelcomputer, the AP1000+. The time sharing system includes space sharing by apartitioning algorithm, and can make the best use of the number of processors.The implementationdesign is based on the modern operating system AP/Linux,because AP/Linux o�ers many facilities for parallel processing, the parallel ex-ecution command prun, a daemon for creating parallel processes paralleld, andscheduling for parallel processes. Using these facilities, we introduced space shar-ing on AP/Linux, and separated wake-up synchronization from the schedulingqueue on the primary cell. These special facilities for space sharing and wake-upsynchronization did not implemented in a kernel. We showed the improvementof the special facilities as a sliced daemon for process allocation and synchro-nization of parallel processes. Performance tests were also taken, showing thee�ects of space sharing. In the near future, we are planning to measure the exactperformance by using some real applications. We will make clear the e�ect ofmessaging and scheduling policy.References1. P. Chuang and N. Tzeng. An e�cient submesh allocation strategy for mesh com-puter systems. Proceedings of the 11th International Conference on DistributedComputing Systems, pages 259{263, 1991.2. K. Li and K. Cheng. A two dimensional buddy system for dynamic resource alloca-tion in a partitionable mesh connected system. Journal of Parallel and DistributedComputing, (12):79{83, 1991.3. Y. Zhu. E�cient processor allocation strategies for mesh-connected parallel com-puters. Journal of Parallel and Distributed Computing, 16:328{337, 1992.4. J. Ding and L. N. Bhuyan. An adaptive submesh allocation strategy for two-dimensional mesh connected systems. Proceedings of International Conference onParallel Processing, pages (II)193{200, 1993.

5. D. D. Sharma and D. K. Pradhan. A fast and e�cient strategy for submesh alloca-tion in mesh-connected parallel computers. Procedings of the 5th IEEE Symposiumon Parallel and Distributed Processing, pages 682{689, 1993.6. S.M. Yoo and H.Y. Youn. An e�cient task allocation scheme for two-dimensionalmesh-connected systems. Proceedings of the 15th International Conference on Dis-tributed Computing Systems, pages 501{508, 1995.7. W. Liu, V. Lo, K. Windish, and B Nitzberg. Non-contiguous Processor AllocationAlgorithms for Distributed Memory Multicomputers. Supercomputing, pages 227{236, 1994.8. V. Lo, K. Windish, W. Liu, and B Nitzberg. Non-contiguous Processor AllocationAlgorithms for Mesh-connected Multicomputers. IEEE Trans. on PARALLELAND DISTRIBUTED SYSTEMS, 8(7):712{726, 1997.9. B. Yoo, C. Das, and C. Yu. Processor management techniques for mesh-connectedmultiprocessors. Proceedings on International Conference on Parallel Processing,pages II{105{112, 1995.10. K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, and M. Tukamoto. Time sharing sys-tems that use a partitioning algorithm on mesh-connected parallel computers. TheNinth International Conference on Parallel and Distributed Computing Systems,pages 268{275, 1996.11. J.K. Ousterout. Scheduling techniques for concurrent Systems. Proceedings ofthe 3rd International Conference on Distributed Computing Systems, pages 22{30,1982.12. D. Feitelson and L. Rudolph. Distributed Hierachical Control for Parallel Process-ing. IEEE COMPUTER, 23(5):65{77, 1990.13. A. Tridgell, P. Mackerras, D. Sitsky, and D. Walsh. Ap/linux a modern os for theap1000+. The 6th Parallel Computing Workshop, pages P2C1{P2C9, 1996.14. Connection Machine CM-5 Technical Summary. Thinking Machines, 1992.15. D. Feitelson. Packing Schemes for Gang Scheduling. Lecture Notes in ComputerScience 1162, pages 89{110, 1996.16. A. Hori, Y. Ishikawa, H. Konaka, M. Maeda, and T. Tomokiyo. A scalable time-sharing scheduling for partitionalble, distributed memory parallel machines. Pro-ceedings of the 28th Annual Hawaii International Conference on System Sciences,pages 173{182, 1995.17. D. Sitsky, P. Mackerras, A. Tridgell, and D. Walsh. Implementing MPI underAP/Linux. Second MPI Developers Conference, pages 32{39, 1996.18. D. C. Burger, R. S. Hyder, B. P. Miller, and D.A. Wood. Paging Trade o� in Dis-tributed Shared-Memory Multiprocessors. Supercomputing, pages 590{599, 1994.19. D. Walsh. Parallel process management on the ap1000+ under ap/linux. The 7thParallel Computing Workshop, pages P1V1{P1v5, 1997.20. K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, C. Connelly, and M. Tukamoto.Multi-tasking method on parallel computers which combines a contiguous anda non-contiguous processor partitioning algorithm. Lecture Notes in ComputerScience 1184, pages 641{650, 1996.

