
Lachesis: a job scheduler for the Cray T3EAllen B. DowneyColby College, Waterville, ME 04901,downey@colby.edu,http://www.sdsc.edu/�downeyAbstract. This paper presents the design and implementation of Lach-esis, a job scheduler for the Cray T3E. Lachesis was developed at theSan Diego Supercomputer Center (SDSC) in an attempt to correct someproblems with the scheduling system Cray provides with the T3E.1 IntroductionThe Cray T3E is a distributed-memory multiprocessor consisting of DEC Alpha21164 processors connected by a bidirectional 3-dimensional torus. The T3E atSDSC has 272 processors, of which 240 are application nodes reserved for parallelapplications, 28 are command nodes, which execute sequential commands, and 4are OS nodes, which provide operating system services like process managementand I/O.Each processor has 128 MB of memory, and is capable of peak performanceof 600 MFLOPS. The application (APP) nodes at SDSC are con�gured withno swap space, because the scheduler does currently allow timesharing betweenparallel applications. There are, however, 9 GB of swap space for the command(CMD) processors, which do timeshare.Although the T3E at SDSC can run parallel applications on up to 240 proces-sors, the vast majority run on smaller partitions. These partitions are allocateddynamically by the scheduling system, and must be made up of logically con-tiguous processors. The contiguity requirement is only one-dimensional, though;each processor has a unique one-dimensional logical address. Thus, the virtualarrangement of processors (linear) is not the same as the virtual topology of theprocessors on the network (the 3D torus), and the virtual topology does not nec-essarily re
ect the physical arrangement (which can be discontiguous). Unlikeon the Cray T3D, partitions on the T3E are not required to be powers of two;jobs can run on any cluster size from 2 to 240.In the context of this machine, job scheduling refers to the following decisions:Queueing: choosing when each job or application should begin execution.Preemption/timesharing: deciding when one job should be interrupted (ormigrated) to allow another to run.Allocation: choosing which set of processors to allocate to each parallel appli-cation.



APP
nodes

nodes

parallel

sequential
command

mpprun

A B C D

time

CMD

applicationFig. 1. A chart of the execution of a simple script with several sequential commandsand one parallel application.Section 2 describes the existing scheduler and the problems we encounteredat SDSC. Section 3 outlines the goals we would like the scheduler to address;Section 4 proposes an abstract design that might achieve these goals. Section5 describes two implementations of this design that we considered. Section 6describes the current status of the project.1.1 De�nitionsJob: A job is a unit of work submitted by a user to the batch system. In mostcases, a job executes a single script that contains a sequence of commands(possibly, although not commonly, iterative). Some of these commands aresequential; for example, they might move data between disk and tape orprocess temporary �les. Sequential commands run on the command nodes(CMD nodes). Some commands are parallel; these create parallel applica-tions, which run on the application nodes (APP nodes).(Parallel) application: A parallel application is a set of sequential processesrunning concurrently on a set of APP nodes, usually communicating witheach other during the execution of a common task. The most common wayto spawn a parallel application is to execute the command mpprun on a CMDnode. This has the e�ect of invoking the Global Resource Manager (GRM)to allocate a set of APP nodes, load the named executable on each of theallocated nodes, and begin execution of the application.Process: A job is made up of a set of processes, including both sequentialprocesses and the processes that make up parallel applications. Accountinginformation is generally collected on a per-process basis, and later aggregatedinto per-job reports.Figure 1 shows the execution of a job with a single parallel application. Thejob starts at time A and runs a sequential command, possibly moving datafrom tertiary storage, until time B. During this interval, it runs only on thecommand node; no APP nodes have been allocated yet. Just before time B, the



job executes mpprun, which allocates a set of APP nodes and creates the parallelapplication that runs from time B to time C. During this interval, the commandnode is idle, and may begin (or continue) execution of another job. After theapplication completes, the job executes another sequential command and thencompletes.2 Existing schedulers for the T3EThe scheduler that is shipped with the T3E has two components: NQS, whichhandles job scheduling, and GRM, which handles process scheduling. When ajob arrives, NQS (Network Queueing System) determines when it will beginexecution (and whether it might be interrupted or killed). As the job runs andspawns processes, the GRM (Global Resource Manager) decides where to runeach process. Cray also provides an optional scheduling daemon, called PScheD,that provides additional features like gang scheduling. The next two sectionsdescribe these scheduling components.2.1 NQS and GRMUnder NQS users submit jobs using the qsub command and specify their resourcerequirements by choosing the appropriate queue. For example, if a job requires 25nodes, but does not run for very long, it should be submitted to q32s, where 32is the smallest cluster size greater than the required 25, and s (short) indicatesthe user's estimate of the run time of the job, where the exact de�nition of\short" varies from site to site. Users have the option of providing additionalinformation about their jobs, either on the command line or as pragmas in theirscripts, but few users take advantage of this capability.NQS holds jobs in queue until it sees that there are enough resources availableto run the job (on the T3E, the only resource is processors; on many shared-memory machines, NQS also monitors the availability of memory). Once NQSreleases the job, it runs as in Figure 1. Since NQS does not release the job untilthere are enough idle nodes to run the job, it is guaranteed that when the jobexecutes mpprun, it will be able to allocate enough APP nodes from the GRM.There are several problems with this approach:{ NQS does not communicate directly with the GRM; thus, it often does notknow the number of APP nodes that are available. In the example, NQSwould reserve 32 nodes for the job, even though it uses only 25. If there werea 7-node job in queue, NQS would not release it, although it would be ableto run.{ NQS does not know when the job is running a sequential command or whenit is running a parallel application. Thus, it reserves the requested numberof APP nodes from the beginning of the job (time A) until the end (time D),although they are only used from the beginning of the parallel application(time B) to the end (time C). As Figure 1 suggests, the duration of the



sequential commands may be large compared to the duration of the parallelapplication.{ This con�guration does not support jobs with multiple parallel applications,if they are not the same size. The user is forced to declare the size of thelargest application; again, the system reserves more APP nodes than areneeded.There is another problem with the default scheduler that is due to the queue-ing discipline used by NQS. Di�erent queues are given di�erent priorities, suchthat a job submitted to a high-priority queue may run before a lower-priority jobthat arrived �rst. Thus, the queueing discipline is non-FIFO (�rst-in-�rst-out).The problem with non-FIFO queues is that they are likely to allow starvation;that is, there is a class of jobs that might wait in queue inde�nitely while otherjobs arrive and run.In the T3E's default con�guration, the scheduler gives priority to large jobs(96 or 128 nodes), because otherwise fragmentation might prevent these jobsfrom running. But if large jobs arrive frequently enough, smaller jobs (64 nodesand smaller) sit in queue inde�nitely. At the moment, SDSC addresses this prob-lem with the following ad hoc mechanism:{ After each preventative maintenance shutdown (roughly weekly), the shortqueues are restarted �rst, in order to get the starving short jobs out of thequeue.{ Over the course of the week, large jobs take up the majority of the nodes,and many small jobs accumulate in queue. Operators sometimes start thesejobs manually, by manipulating the NQS queues; otherwise, they run afterthe next shutdown.In e�ect, SDSC runs the system in a weekly cycle: short jobs early in theweek, large jobs later. The problems with this system are (1) it requires constantsupervision and intervention, (2) the resulting schedules are neither e�cientin their use of resources not satisfactory to users, and (3) the system createsincentives for users to modify their workloads (e.g., by submitting only largejobs) in a way that will further reduce the e�cient use of the system.2.2 NQS and GRM and PScheDPScheD stands for political scheduling, which is scheduling that is based onexternally-derived priorities (for example, one group of users may outrank an-other), as opposed to the internal priorities the system might use to improveperformance (for example, by giving priority to small or short jobs).PScheD is a daemon that runs periodically, examines the state of a domain(set) of nodes, and makes scheduling decisions [4]. One of the goals of PScheDis to achieve fair scheduling, where Cray de�nes \fair" to mean that service isallocated to users according to their priorities, independent of the number ofjobs the user is running. The PScheD documentation explains [1]:



With political scheduling, users are allocated a portion of the CPUresource speci�ed by their share. Scheduling fairly among users meansthat users with the same number of shares should be able to consumethe same amount of CPU resource, regardless of the number of [jobs]an individual user has active. Scheduling without the political schedulerhas a tendency to let users with more [jobs] have a larger share of themachine resources. The political scheduler knows the consumption ratefor each user, and users with many active [jobs] consume CPU resourcesat a higher rate than those with only a few. Therefore, users with manyactive [jobs] will have their [jobs] positioned lower in the scheduling (run)queue.This conception of fairness is not an appropriate goal for scheduling at su-percomputer centers. In these environments, the resources a researcher needstypically vary over time: during code design and development, a user may con-sume few node-hours; during production, especially before a deadline, the sameuser might want the whole machine. Assuming that users' deadlines are not si-multaneous, it is desirable to allow a user to dominate the machine at times.When user peaks do coincide, the primary goal of the scheduler will be to avoidstarvation, rather than to enforce external priorities.To �nd a de�nition of fairness that is appropriate for supercomputer centers,we divide job scheduling into two separate problems, called \allocation" and\scheduling." The allocation problem is the decision of how many resourcesshould be allocated to each user in a relatively long allocation cycle (typicallyseveral months). This decision is made by an Allocation Committee on the basisof the requirements and scienti�c merit of the project. The scheduling problemis the short-term decision (on the order of minutes or hours) of what job to runand what resources to allocate to it.The two problems are connected by the liquid currency (node-hours, serviceunits, etc.) that is the unit of allocation. A user's consumption is eventuallylimited by the allocation, but in the short term there is nothing to prevent auser from allocating a large fraction of the machine.Even if Cray's notion of fairness were appropriate, their scheduler does notachieve it. Under PScheD, it is possible for an idle user to accumulate such alarge priority that when he enters a production phase he is able to dominate themachine for a long time.A more general problem is that PScheD seems to be based on a schedulingmodel in which small changes in priority yield gradual changes in quality ofservice. This model may apply to shared-memory machines with �ne-grainedtime sharing, but on a distributed-memory machine, where time sharing (if itexists) tends to be coarse, with long quanta and signi�cant memory swapping,the tools available to the scheduler are likely to be too blunt for discriminationon the basis of priority to be gradual or subtle.



3 Scheduling goalsMany of the users of parallel computers at supercomputer centers are workingon Grand Challenge Problems; the nature of these problems is that they expandto use the available resources. Given a faster computer (or a larger allocation)researchers increase the size of their problems rather than solve the same problemfaster.In this environment, high system utilization is not the most important goal;it is generally not di�cult to keep machines busy, provided that at any giventime at least a few users are in a production phase. Instead, we conceive thegoals of the scheduler from the users' point-of-view. The scheduler should:{ Allow users to run programs up to the limit of their allocations.{ Create the illusion that each user is running on a dedicated system.The second goal implies that the scheduler should try to minimize queuetimes while allowing users to allocate large fractions of the machine when neces-sary. The scheduler should avoid imposing arbitrary restrictions like time limitsand cluster size limits.Of course, these goals are con
icting; for example, if users can allocate theentire machine for inde�nite periods, it will be impossible to avoid long queuetimes. Addressing this con
ict has been the focus of a large body of work on jobscheduling.Based on a survey of this work and observations of the atmosphere and goalsof supercomputer centers, we have adopted the following design goals for thescheduler:{ Jobs must not starve. In terms of user satisfaction, avoiding starvation ismore important than any other performance metric. It is also one of themost di�cult to measure because we seldom see, in real systems, a set ofjobs that literally starve. Instead, users typically kill starving jobs and learnnot to submit the sort of job that receives poor service. Thus, it is not enoughto say that starvation is not a problem because we don't see it. Rather, it isimportant to choose a queueing strategy that makes starvation impossible.A �rst-in-�rst-out queue (FIFO) can make this guarantee. There are, how-ever, serious problems with FIFO queueing. The next section explains theseproblems and proposes ways to mitigate them.{ Delays should be proportional to run time. It may be acceptable for a 24-hour job to wait in queue for 12 hours, but it is not acceptable for a 1-hourjob to wait that long. During testing phases, fast turnaround time for shortjobs is critical. In general, the best way to prevent long-running jobs frominterfering with short jobs is with preemption. We are considering a form oflazy time-sharing that might solve this problem.{ The system should provide a range of quality-of-service. Users should havethe option of requesting higher priority (at some cost) or lower priority (inexchange for a discount). Although this feature is desirable, it may be in-compatible with the requirement to avoid starvation. It also complicates the



2

3 4 5

nodes
APP

time

nodes
APP

time

nodes
APP

1
2

45

Jobs in queue

running job

time

3

Strict FIFO
schedule

with backfilling
Schedule

1

1
3 4 5

2

idle nodes

Fig. 2. Back�lling can mitigate the cost of FIFO queueing.use of accounting to enforce externally-chosen allocations, since a CPU-hourwould no longer be a unit of currency.{ E�ective accounting is essential in order to control the allocation of themachine, monitor its utilization, and make it possible for users to makeinformed decisions. The cost of running a job must re
ect the resourcesallocated to the job, rather than the resources used by the job. For parallelapplication, that means that the relevant measure of a job is the number ofprocessors multiplied by the wall clock time. The existing system charges byCPU time, thereby undercharging jobs that perform a lot of I/O or leaveprocessors idle.The next three sections describe three scheduling features that might achievethese goals: back�lling, lazy timesharing, and support for moldable jobs.3.1 Back�llingThe bene�ts of FIFO queueing are the guarantee that no jobs will starve and theability to make predictions. Predictability is particularly useful in the contextof metasystems, in which software agents will need to observe the state of thesystem (the length of the queue, the jobs already running, etc.) and predict thequeue time until a new job can run.The problems with FIFO queueing are (1) large jobs can impose long queuetimes on many small jobs, and (2) the system may be underutilized. Figure 2



demonstrates these e�ects. One way to improve the performance of a FIFOsystem is to add back�lling. Back�lling allows small jobs to begin executioneven if a larger job is waiting, provided that the back�lled jobs do not delay thewaiting job.In the �gure, Job 1 is waiting for a large cluster. If the other jobs were forcedto wait, many processors would be left idle. We would like to allow the smallerjobs to run, but we can only do so if we can guarantee that they will completebefore the running job. There are several variations on this strategy:{ Deterministic back�lling: if the run times of all jobs are known, it is easy totell when back�lling is safe. In general, though, this is not the case.{ Pessimistic back�lling: we can assume that all jobs will run until their timelimits, and back�ll accordingly. Observations of other systems indicate thatfew jobs run until their time limits, so pessimism may not be warranted.{ Non-deterministic back�lling: given the distribution of lifetimes for past jobs,we can make claims about the probability that a job will run for a certaintime. We might allow a job to back�ll if it has a high probability of complet-ing before the running job. In the occasional event that it exceeds that limit,we would have to delay the waiting job. Although this approach violates theFIFO principle, it can still be shown to avoid starvation, since you can't beatthe odds forever.{ Contractual back�lling: we might o�er a contract to a waiting job, o�eringto let it back�ll, with the understanding that if it runs longer than therunning job it will be killed. For applications that do their own checkpointing,this o�er would be attractive. Of course, less robust jobs would decline.Contractual back�lling requires a user interface that allows users to identifykillable jobs.For all kinds of back�lling, the system needs estimates from users aboutthe run times of their jobs. At the moment, users provide this information bychoosing a queue with the appropriate time limit. This information is often notvery accurate, but it is still useful. One of the features we are planning to addto Lachesis is an interface that solicits two estimates of run time, a best guessand a maximum. The best guess is the user's estimate of how long the job willtake; the maximum is the time after which the job may be killed. Users have anincentive to provide accurate information, so that their jobs will be scheduled assoon as possible, with minimal chance of being killed.The EASY scheduler, developed for the IBM SP at the Argonne NationalLaboratory, uses pessimistic back�lling [5] [7].3.2 Lazy timesharingThe best way to prevent long jobs from imposing queue times on short jobs isto allow preemption. The motivation for preemption is that the longer a job hasrun the longer we expect it to run. So a newly-arrived job has a shorter expectedremaining lifetime than a running job. It is preferable to impose a short delayon the (long) running job than a long delay on the (probably short) arrival.



nodes
APP

running job long

time

job
short

job

A BFig. 3. An example of lazy timesharing.Figure 3 shows how lazy timesharing might work. At Time A, a job arrivesand preempts the running job. Since it turns out to be a short job, as expected,the delay imposed on the running job is not signi�cant, and the turnaround timefor the short job is good. The second job, arriving at Time B, turns out to be along job. In this case, we run the new job until its expected remaining lifetimeexceeds that of the original job. At that point, we resume the original job. Thenew job might migrate to another set of nodes, or continue to timeshare withthe original job. Feitelson proposed the name \lazy timesharing" for this kindof preemption [3].There is consensus in the scheduling research community that gang-schedulingis a necessary feature for timesharing parallel applications with signi�cant com-munication (although Dusseau et al. argue to the contrary [2]). Gang schedulingis available with PScheD, but not under the vanilla UNICOS/mk scheduler.However, the timesharing strategy used by PScheD is very di�erent from lazytimesharing; it is based on �xed quantum lengths that are shorter than lazytimesharing calls for|on the order of seconds, rather than minutes or hours. Itmay not be possible to modify PScheD to implement lazy timesharing.Memory constraints will limit our ability to implement timesharing. Althoughthe T3E memory system implements virtual memory, the T3E at SDSC is cur-rently con�gured with no swap space. Thus, in order for jobs to timeshare, theymust all �t in physical memory. The accounting data for past jobs suggests thatthere are many jobs (about 60%) that use less than half of the available memory,so some timesharing will be possible. On the other hand, it is not easy to pre-dict before a job begins execution how much memory it will use, and many jobsgrow dynamically as they run. Dealing with the allocation of physical memorywill signi�cantly complicate the timesharing strategies we can implement (fordiscussion of this issue, see [6]).An alternate form of timesharing, checkpointing, may eliminate the prob-lems associated with memory scheduling. Checkpointing di�ers from standardcontext-switching in that all of the memory associated with a process is writtento disk, along with its system state. Of course, the overhead is potentially muchgreater, but the mechanism has the potential to be more robust, reducing thepossibility that one process can interfere with another, and thereby improving



���
���
���
���

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����

����
����
����
����

��
��
��
��

throttle

jobs in
queue

CMD
nodes

process
scheduler

APP
nodes

in queue
applicationsFig. 4. The abstract design of a two-level job scheduler.the illusion of a dedicated machine. Because we expect context switches to beinfrequent, the overhead of checkpointing may not be prohibitive. Checkpoint-ing was not available in UNICOS/mk when we designed Lachesis, but becameavailable with Version 2.0.3.3 Support for moldable applicationsMany of the applications running at SDSC are moldable, meaning that they canbe con�gured to run on a range of cluster sizes. In general, this con�guration hap-pens once; it is not possible to recon�gure an application once it starts running.We distinguish moldable applications from malleable ones, which can changesize dynamically as they execute. Most of the applications running on MPPs arewritten in SPMD style, which seldom supports dynamic recon�guration.Ideally, users should specify the range of cluster sizes on which their appli-cations can run, so that the system can choose the size most appropriate forthe current load. In current systems, though, the user interface requires usersto choose a speci�c cluster size. One of the features Lachesis will provide is aninterface that allows users to specify a range of cluster sizes (or a set of particularvalues).4 Abstract designThe following is the abstract design of a scheduler that meets the criteria dis-cussed above. This design is based on the goal of separating job-level schedulingfrom process-level scheduling. In the next section, we will discuss the particularimplementation of Lachesis.Figure 4 shows a diagram of the design. Jobs are represented by small rect-angles; the processes (sequential and parallel) that make up jobs are representedby circles. When a new job arrives, the throttle controls when and on which CMDnode the job begins execution.Once the job begins execution, it may execute mpprun one or more times,spawning parallel applications. When this happens, the process scheduler deter-mines when and on which APP nodes the application runs. Thus, after a job



executes mpprun, it may be some time before the spawned application beginsexecution. In the �gure, the �rst two applications start right away; the thirdwaits in queue until the second completes.The primary goal of the throttle is to allow as many jobs as possible to beginexecution, probably several on each CMD node. Since many of the housekeepingcommands that make up a job are I/O bound, multiple jobs may timeshare e�ec-tively. Also, the sooner a job arrives at its (�rst) mpprun, the sooner the spawnedapplication becomes visible to the process scheduler. The only limitations on thenumber of jobs running simultaneously are (1) available memory on the CMDnodes, (2) the possibility of thrashing at the level of tertiary-secondary storage,and (3) lost state in the event of a crash.Regarding the �rst point, accounting information from the �rst three monthsof operation (August through October 1997) suggests that more than 99% of jobsuse fewer than 4 MB of memory on the CMD nodes. Since each node has 128MB of memory, we can �t 32 to 64 jobs on each node.Regarding the second point, it is possible that if many jobs start simultane-ously and move data from tertiary storage onto disk, then there might be a longdelay between the execution of mpprun and the beginning of a parallel applica-tion. During this time, the data moved from tertiary storage might be purged.It is not clear whether this is a serious concern at SDSC.The last consideration is that it may be wise to limit the number of jobsrunning simultaneously in order to reduce the amount of work operators andusers have to do to restart jobs that are active during a crash. As users gainexperience with the T3E, they tend to write scripts that are robust, either bytaking advantage of new checkpoint-restart mechanisms, or by using their ownapplication-level checkpointing. Thus, it may not be necessary to worry aboutthe number of jobs running simultaneously.Since it is not clear that there are any immediate limitations on the numberof jobs running simultaneously, an initial implementation of the throttle is likelyto be trivial|it should allow all jobs to begin execution immediately.The more interesting work happens at the level of process scheduling. Theprocess scheduler needs to keep track of the state of the system; thus, it mustbe noti�ed when a parallel application arrives or completes, and may use statuscommands to keep track of various system information. The process scheduleris responsible for starting new processes, preempting running applications (ifthere is timesharing), and killing applications that exceed their time limits. Themost appropriate structure for the process scheduler is an event-driven decision-maker. That is, the process scheduler should be noti�ed about relevant eventsand allowed to execute commands to realize its decisions.If the process scheduler is doing probablistic back�lling, it will need to main-tain a database of accounting information from past applications, so that it canpredict the resource requirements of new applications. It also needs to generateaccounting data of its own and respond to user queries about the state of thesystem.



A basic principle of this design is that in order to do intelligent scheduling,the scheduler must be aware of the applications that are waiting for service andtheir attributes. The only way to expose these applications is to get jobs runningas quickly as possible until they execute mpprun, and then schedule the spawnedapplications.5 Implementation optionsWe considered two implementation options, one based on PScheD, the otherbased on a wrapper around the existing mpprun combined with a schedulingdaemon we would write from scratch. We chose not to work with PScheD; thefollowing section explains why.5.1 PScheDAs discussed in Section 2.2, PScheD implements a scheduling strategy very dif-ferent fromwhat we want. It does, however, provide a set of hooks where sites caninstall scheduling modules that implement alternate strategies. Thus, it might bepossible to take advantage of the infrastructure provided by PScheD and buildour scheduler on top of it.The primary advantage of a PScheD-based scheduler is the possibility ofgang scheduling. ScheD makes it possible to run more than one parallel appli-cations on a given set of nodes, timesharing among them. Without PScheD, theT3E provides no support for gang scheduling; that is, parallel applications canshare processors, but there is no guarantee that the processes that make up anapplication will be scheduled at the same time.A fundamental problem with PScheD is that it does not address the problemsregarding communication between NQS and the GRM. For example, one ofthe scheduling modules tries to reduce processor fragmentation by migratingapplications from one set of nodes to another. It appears that PScheD does notconsider the backlog of queued jobs when it makes its packing decisions. But thisinformation is certainly relevant; as a trivial example, it is pointless to reducefragmentation unless a waiting job requires it.A second problem is that the interfaces between PScheD and the schedulingmodules are narrow|PScheD provides little information and gives the moduleslittle control. In our preliminary designs we realized that we would have to doa lot of work to get the information the scheduler needs into the appropriatemodules. We also got the sense that we were not using PScheD in a way thatwas intended, and feared that we would waste too much e�ort cutting againstthe grain.A �nal di�culty with the PScheD scheduling modules is that they were notavailable in the version of UNICOS/mk that was available when we startedimplementing Lachesis. Although we knew they would be available soon, wedecided not to wait.



5.2 Scheduler daemon and mpprun wrapperThe design we implemented is based on a scheduler daemon similar to thePScheD daemon, but based on an event-driven paradigm. The daemon workswith a wrapper around mpprun that noti�es the daemon when applications ar-rive and complete. The entire system is called Lachesis, after the Fate in Greekmythology that \schedules" the threads of men's lives. The scheduling daemonis called lachd; the wrapper around mpprun is called mppfun.In order to activate Lachesis, we start lachd and replace mpprun with mppfun.Then, when a user executes mpprun, he actually executes our wrapper, whichcommunicates with lachd through a socket. The wrapper collects informationabout the application, including the user's name, the location of the executable,and any user-provided information like the cluster size and expected duration,and sends this information to lachd.When lachd receives a request, it either allocates processors immediately oradds the request to its queue. Eventually, lachd starts the job by sending amessage to the mpprun wrapper, telling it which processors (and how many) itcan allocate. The wrapper then executes the \real" mpprun, spawning the parallelapplication.When the application completes, the wrapper collects the completion codeand sends it to lachd. If an application exceeds its time limit, the mpprunwrapperkills it (not, as might be expected, the daemon). Since the wrapper is executed bythe owner of the parallel application, it does not need any special permission tokill (or migrate) the application. Furthermore, since lachd does not execute anyprotected commands, it does not need to run with any special permissions. Thus,at least abstractly, running Lachesis does not introduce any security problems.In the next section, though, we will discuss some implementation problems thatundermine what would otherwise be a pleasantly secure system.An advantage of putting a wrapper around mpprun is that is it is easy toextend the interface to solicit di�erent or additional information from users. Inthe current implementation, we have not modi�ed the interface, but soon wewill make it possible for users to specify a range (or set) of possible cluster sizes,rather than a single choice, and solicit more information about the expected runtimes of jobs.We are using an eviscerated con�guration of NQS as a throttle. Since usersprovide information for each application (when they execute mpprun), they nolonger have to provide information about jobs when they are submitted. Thus,we do not need a queue for each cluster size and duration. Instead, we have onlya few queues, specifying the desired level of service. Within each queue, NQSstarts jobs in FIFO order. Some queues have higher priority than others, withcorrespondingly higher pricing.5.3 Implementation di�cultiesWe ran into several problems building Lachesis, some of which we have still notaddressed to our satisfaction. The �rst is that it is possible on the T3E to start a



parallel application without using mpprun. This capability is new, and we did notrealize when we designed Lachesis that so many people were using it. Of course,putting a wrapper around mpprun is not as e�ective if users can circumvent it.So, one user-visible consequence of the new scheduler is that we require users touse mpprun.Unfortately, in the current version of Lachesis, we have no way to enforcethis restriction. Thus, it is possible for users to run rogue jobs that never notifyLachesis, and that occupy nodes that Lachesis think are idle. For this reason(and others) Lachesis performs periodic reality checks that allow it to detect andmonitor rogue jobs.Because of the reality check mechanism, Lachesis has the ability to starton the 
y|that is, while there are already jobs in the system. When Lachesisstarts, it collects information about running jobs and monitors them until theycomplete. Meanwhile, it starts scheduling arriving jobs on the idle processors.The ability to start on the 
y has made it possible to test Lachesis in a productionenvironment with a minimal impact on users.We encountered one other di�culty that is a result of the division of laborbetween Lachesis and mppfun. Although lachd chooses which processors to allo-cate to an application, mppfun actually starts the application. Thus, we need amechanism whereby mppfun speci�es where each application runs. In a typicalT3E installation, this capability is reserved for system administrators. Users donot have control over the placement of their applications. In order to give usersthis capability, we had to give all users a special permission bit called DIAG.At the moment, this permbit is not used for anything else, so it does not createa security problem to give it to everyone, but in the future there may be otherdiagnostic activities we would like to protect, and in that case we would have tocreate a new permbit.6 Project statusA simple version of the Lachesis daemon and the mpprun wrapper ran in produc-tion at SDSC from August 1997 to January 1998. During that time, Lachesis didnot actually schedule the machine; it only observed and logged system activity.A bene�t of the prototype system is that it provides more complete informationabout parallel applications than is available from the Cray Accouting System.We are currently using that information in our design of a non-deterministicback�lling strategy.Since January 1998, we have been testing Lachesis version 1.0, which imple-ments a variation of the pessimistic back�lling strategy decribed in Section 3.1.At the time of this writing we do not have enough information to evaluate theperformance of the new system.Along with the development of Lachesis, we have also built a simulator thatreads events from the Lachesis logs and simulates the state of the system. Thesame scheduling module that plugs into the Lachesis daemon also plugs into



the simulator, allowing us to test new modules for correctness and to evaluatevarious scheduling strategies.AcknowledgementsThe primary implementors of Lachesis are Allen Downey and Victor Hazlewoodat SDSC.We would also like to thank Larry Diegel from SDSC and Peter Ashfordfrom Cray for all their help.References1. Cray Research, Inc. UNICOS/mk Resource Administration, SG2602, 1997.2. Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler. E�ective distributedscheduling of parallel workloads. In Proceedings of the ACM Sigmetrics Conferenceon Measurement and Modeling of Computer Systems, pages 25{36, May 1996.3. Dror G. Feitelson. Job scheduling in multiprogrammed parallel system. TechnicalReport RC 19790 (87657), T. J. Watson Research Lab, I.B.M., August 1997. Secondrevision.4. Richard N. Lagerstrom and Stephan K. Gipp. PScheD: Political scheduling on theCray T3E. In Job Scheduling Strategies for Parallel Processing, Springer-VerlagLNCS Vol 1291, pages 117{138, 1997.5. David Lifka. The ANL/IBM SP scheduling system. In Job Scheduling Strategies forParallel Processing, Springer-Verlag LNCS Vol 949, pages 295{303, 1995.6. Eric W. Parsons and Kenneth C. Sevcik. Coordinated allocation of memory andprocessors in multiprocessors. In Proceedings of the ACM Sigmetrics Conference onMeasurement and Modeling of Computer Systems, pages 57{67, May 1996.7. Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY {LoadLeveler API project. In Job Scheduling Strategies for Parallel Processing,Springer-Verlag LNCS Vol 1162, pages 41{47, 1996.


